On the Multifractal Formalism

Jacques Peyrière

Conference in honour of Gavin Brown Sydney, March 5–6, 2007 The Brown-Michon-Peyrière 1992 paper

$$\mu : \text{ probability measure on } [0,1]$$

$$I_{n,j} : \text{ the } j\text{th } c\text{-adic interval of length } c^n \ (0 \le j < c^n)$$

$$I_n(x) : \text{ the } c\text{-adic interval of length } c^n \text{ containing } x$$

$$E_\alpha = \left\{ x \in [0,1] ; \lim_{n \to \infty} \frac{\log \mu \left(I_n(x) \right)}{-n \log c} = \alpha \right\}$$

$$\tau(q) = \lim_{n \to \infty} \frac{1}{n \log c} \log \sum_{j=0}^{c^n - 1} \mu \left(I_{n,j} \right)^q$$

Then dim $E_{\alpha} = \tau^*(\alpha) = \inf_{t \in \mathbb{R}} \tau(t) + \alpha t$

if $\alpha = -\tau'(q)$ and if there exists a measure μ_q such that $C^{-1}\mu(I)^q c^{-n\tau(q)} \leq \mu_q(I) \leq C \mu(I)^q c^{-n\tau(q)}$ for any *c*-adic interval of order *n*

The Legendre Transform : $\tau^*(\alpha) = \inf_{q \in \mathbb{R}} \tau(q) + \alpha q$

The setting in BMP is more general:

 $\{\{I_{n,j}\}_{0\leq j< N_n}\}_{n>0}$ is a sequence of nested partitions of [0, 1) by semi-open intervals.

Set $C_n(q,t) = \sum_{j} \mu (I_{n,j})^q |I_{n,j}|^t$ and $C(q,t) = \limsup_{n \to \infty} C_n(q,t)$

The boundary of the convex set $\{(q,t) ; C(q,t) = 0\}$ is the graph of a function τ , which is convex and non-increasing.

Then

always dim $E_{\alpha} \leq \tau^*(\alpha)$, sometimes dim $E_{\alpha} = \tau^*(\alpha)$.

Hausdorff measures and dimension

Let (X, d) be a metric space.

 $B(a,r) = \{x \in \mathbb{X} \mid d(a,x) \le r\}$

For $A \subset \mathbb{X}$, t > 0 and $\delta > 0$

$$\mathcal{H}_{\delta}^{t}(A) = \inf \left\{ \sum r_{j}^{t} \mid A \subset \bigcup B(x_{j}, r_{j}), r_{j} \leq \delta \right\}$$
$$\mathcal{H}^{t}(A) = \lim_{\delta \searrow 0} \mathcal{H}_{\delta}^{t}(A)$$
$$\dim A = \inf \{t \geq 0 \mid \mathcal{H}^{t}(A) = 0\}$$
$$= \sup \{t \geq 0 \mid \mathcal{H}^{t}(A) = +\infty \}$$

A general setting

 ξ : a positive function defined on the balls of \mathbb{R}^n

$$X(\alpha) = \left\{ x \; ; \; \lim_{r \searrow 0} \frac{\log \xi(B(x,r))}{\log r} = \alpha \right\}$$

Task: to compute the dimension of $X(\alpha)$; more precisely, to express $\alpha \mapsto \dim X(\alpha)$, as a Legendre transform.

Common choices

 $-\xi$ is a measure,

(this is the case considered in [BMP], with boxes instead of balls)

 $-\xi(B(x,r))$ is the modulus of continuity at x of a function.

Indeed, one could think of other choices, e.g.

- a Choquet capacity

$$-\xi \left(B(x,r)\right) = \int_{B(x,r)} \left| f(y) - \frac{1}{|B(x,r)|} \int_{B(x,r)} f(z) \, \mathrm{d}z \right| \, \mathrm{d}y$$

One could also wish to perform simultaneous analysis of several functions ξ . Expressions such as

 $\sum \xi_1(B_j)^{q_1} \xi_2(B_j)^{q_2} \cdots \xi_k(B_j)^{q_k} |B_j|^t$

would be involved.

To be able to consider infinitely many ξ 's at a time, it is better to write $\xi = \exp - \varkappa$.

Let (X, d) be a metric space satisfying the Besicovitch covering property.

 $B(a,r) = \{x \in \mathbb{X} \mid d(a,x) \le r\}$

We are given a function \varkappa from $\mathbb{X} \times \mathbb{R}^+$ to \mathbb{E}' , the dual of a separable real Banach space \mathbb{E} . We denote by \langle , \rangle the duality bracket between \mathbb{E} and \mathbb{E}' .

We are going to define several quantities and sets, as L. Olsen.

Multifractal Hausdorff measures

For $A \subset \mathbb{X}$, $q \in \mathbb{E}$, $t \in \mathbb{R}$, and $\delta > 0$, we set

$$\overline{\mathcal{H}}^{q,t}(A) = \inf \sum_{j} e^{-\left(\langle q, \varkappa(x_j, r_j) \rangle - t \log r_j\right)},$$

where the infimum is taken over the families $\{(x_j, r_j)\}$ such that $\{B(x_j, r_j)\}$ is a centered δ -cover of A,

$$\overline{\mathcal{H}}^{q,t}(A) = \lim_{\delta \searrow 0} \overline{\mathcal{H}}(A), \text{ and } \mathcal{H}^{q,t}(A) = \sup_{F \subset A} \overline{\mathcal{H}}^{q,t}(F).$$

When $\varkappa = 0$, these measures reduce to the usual Hausdorff measures.

If $\overline{\mathcal{H}}^{q,t}(A) < \infty$, then for all s > t, $\overline{\mathcal{H}}^{q,s}(A) = 0$, so there is a critical index t_0 such that $\overline{\mathcal{H}}^{q,t}(A) = 0$ for $t > t_0$ and $\overline{\mathcal{H}}^{q,s}(A) = \infty$ for $t < t_0$.

Packing measures

For $A \subset \mathbb{X}$, $q \in \mathbb{E}$, $t \in \mathbb{R}$, and $\delta > 0$, we set

$$\overline{\mathcal{P}}^{q,t}_{\delta}(A) = \sup \sum_{j} e^{-\left(\langle q, \varkappa(x_{j}, r_{j}) \rangle - t \log r_{j}\right)},$$

where this supremum is taken on collections $\{(x_j, r_j)\}$ such that $r_j \leq \delta$ and $\{B(x_j, r_j)\}$ is a centered δ -packing of A.

$$\overline{\mathcal{P}}^{q,t}(A) = \lim_{\delta \searrow 0} \overline{\mathcal{P}}^{q,t}_{\delta}(A),$$
$$\mathcal{P}^{q,t}(A) = \inf \left\{ \sum_{j} \overline{\mathcal{P}}^{q,t}(F_{j}) \mid A \subset \bigcup_{j} F_{j} \right\}.$$

One defines, as Olsen,

$$\mathsf{B}(q) = \inf\{t \in \mathbb{R} \mid \mathcal{P}^{q,t}(\mathbb{X}) = 0\},\$$

and

$$\mathsf{b}(q) = \inf\{t \in \mathbb{R} \mid \mathcal{H}^{q,t}(\mathbb{X}) = 0\}.$$

We have the inequality $b \leq B$.

Proposition 1. The function B is convex.

Proof. Let $p, q \in \mathbb{E}$, t > B(p), and u > B(q).

So, for all $n \ge 1$, $\mathcal{P}^{p,t}(\mathbb{X}) = \mathcal{P}^{q,u}(\mathbb{X}) = 0$. One can write $\mathbb{X} = \bigcup_{j\ge 1} A_j = \bigcup_{k\ge 1} F_k$ so that $\sum_{j\ge 1} \overline{\mathcal{P}}^{p,t}(A_j) \le 1$ and $\sum_{k\ge 1} \overline{\mathcal{P}}^{q,u}(F_k) \le 1$. Then, for all $\alpha \in (0, 1)$

$$\overline{\mathcal{P}}^{\alpha p + (1-\alpha)q, \alpha t + (1-\alpha)u}(A_j \cap F_k) \le \left(\overline{\mathcal{P}}^{p,t}(A_j \cap F_k)\right)^{\alpha} \left(\overline{\mathcal{P}}^{q,u}(A_j \cap F_k)\right)^{1-\alpha}$$

Then, due to the Hölder inequality, one has

$$\sum_{1 \le j,k \le m} \overline{\mathcal{P}}^{\alpha p + (1-\alpha)q,\alpha t + (1-\alpha)u} (A_j \cap F_k)$$

$$\leq \left(\sum_{1 \le j,k \le m} \overline{\mathcal{P}}^{p,t} (A_j \cap F_k) \right)^{\alpha} \left(\sum_{1 \le j,k \le m} \overline{\mathcal{P}}^{q,u} (A_j \cap F_k) \right)^{1-\alpha}$$

$$\leq \left(m \sum_{1 \le j \le m} \overline{\mathcal{P}}^{p,t} (A_j) \right)^{\alpha} \left(m \sum_{1 \le k \le m} \overline{\mathcal{P}}^{q,u} (F_k) \right)^{1-\alpha} \le m.$$

It results that

$$\mathcal{P}^{\alpha p + (1-\alpha)q, \alpha t + (1-\alpha)u} \left(\bigcup_{1 \le j, k < m} A_j \cap F_k \right) \le m.$$

Therefore, if $\varepsilon > 0$,

$$\mathcal{P}^{\alpha p + (1-\alpha)q, \alpha t + (1-\alpha)u + \varepsilon}(\mathbb{X}) = 0$$

and

$$\mathsf{B}(\alpha p + (1 - \alpha)q) \le \alpha t + (1 - \alpha)u + \varepsilon$$

Local Hölder exponent – Chernoff-like inequalities

For $\alpha \in \mathbb{E}'$ and $E \subset \mathbb{E}$, we set

$$X(\alpha, E) = \left\{ x \mid \limsup_{r \searrow 0} \frac{\langle w, \varkappa(x, r) \rangle}{-\log r} \le \langle w, \alpha \rangle \text{ for all } w \in E \right\}.$$

 $X(\alpha, \mathbb{E})$, simply denoted by $X(\alpha)$, is the set of points x such that $\lim_{r \searrow 0} \frac{\varkappa(x, r)}{-\log r} = \alpha$ (in the $\sigma(\mathbb{E}, \mathbb{E}')$ topology).

Proposition 2. Dim $X(\alpha, \{q\}) \leq \langle q, \alpha \rangle + B(q)$.

Corollary 3. For $\alpha \in \mathbb{E}'$ and $E \subset \mathbb{E}$, one has

$$\operatorname{Dim} X(\alpha, E) \leq \inf_{q \in E} \langle q, \alpha \rangle + \mathsf{B}(q).$$

 $\operatorname{Dim} X(\alpha) \leq \operatorname{inf}_{q \in \mathbb{E}} \langle q, \alpha \rangle + \mathsf{B}(q) = B^*(\alpha)$ (Legendre transform).

Proof. Let $\varepsilon > 0$, $\eta > 0$, $q \in \mathbb{E}$, $m \ge 1$.

Set $A_m(\varepsilon) = \left\{ x \in \mathbb{X} \mid \frac{\langle q, \varkappa(x, r) \rangle}{-\log r} \leq \langle q, \alpha \rangle + \varepsilon \text{ for } r < 1/m \right\}.$ Let $\{B(x_j, r_j)\}$ be a δ -packing of $F \subset A_m(\varepsilon)$, with $\delta < 1/m$. One has

$$\sum_{j} e^{\left(\langle q, \alpha \rangle + \varepsilon + B(q) + \eta\right) \log r_{j}} \leq \sum_{j} e^{-\left(\langle q, \varkappa(x_{j}, r_{j}) \rangle - \log(r_{j})(B(q) + \eta)\right)},$$

SO

$$\overline{\mathcal{P}}^{\langle q,\alpha\rangle+\varepsilon+\mathsf{B}(q)+\eta}(F)\leq \overline{\mathcal{P}}^{q,\mathsf{B}(q)+\eta}(F).$$

Since
$$\mathcal{P}^{q,\mathsf{B}(q)+\eta}(\mathbb{X}) = 0$$
,
inf $\left\{ \sum_{j} \overline{\mathcal{P}}^{q,\mathsf{B}(q)+\eta}(F_{j}) \mid \mathbb{X}_{n} \subset \bigcup F_{j} \right\} = 0$. It results
 $\mathcal{P}^{\langle q,\alpha \rangle + \varepsilon + \mathsf{B}(q) + \eta} (A_{m}(\varepsilon)) = 0.$

Since
$$\mathcal{P}^{\langle q, \alpha \rangle + \varepsilon + \mathsf{B}(q) + \eta} (A_m(\varepsilon)) = 0$$
 for any $\eta > 0$,

 $\operatorname{Dim} A_m(\varepsilon) \leq \langle q, \alpha \rangle + \varepsilon + \mathsf{B}(q)$. But as

$$\left\{x \in \mathbb{X} \mid \limsup_{r \searrow 0} \frac{\langle q, \varkappa(x, r) \rangle}{-\log r} \leq \langle q, \alpha \rangle \right\} \subset \bigcap_{p \ge 1} \bigcup_{m \ge 1} A_m(1/p),$$

we get the announced inequality.

Remark. If the formula gives a negative dimension, this means that the corresponding set is empty.

Proposition 4. Set

$$X^*(\alpha, E) = \left\{ x \mid \liminf_{r \searrow 0} \frac{\langle w, \varkappa(x, r) \rangle}{-\log r} \le \langle w, \alpha \rangle \text{ for all } w \in E \right\}.$$

Then

$$\dim X^*(\alpha, E) \le \inf_{q \in E} \langle q, \alpha \rangle + \mathsf{B}(q).$$

The converse inequality

Notations:

• If $|\mathsf{B}(q)| < \infty$ and $v \in \mathbb{E}$, one sets

$$\partial_v \mathsf{B}(q) = \lim_{t \searrow 0} \frac{\mathsf{B}(q + tv) - \mathsf{B}(q)}{t};$$

 B'(q) stands for the derivative (considered as an element of 𝔼') of 𝔅 at point q, when it exists.

When B has a partial derivative at point q along the direction v, one has $\partial_{-v}B(q) = -\partial_{v}B(q)$.

When B'(q) exists, $\partial_v B(q) = \langle v, B'(q) \rangle$.

Lemma 5. Let $v \in \mathbb{E}$ and q such that $|\mathsf{B}(q)| < \infty$. Then

$$\mathcal{H}^{q,\mathsf{B}(q)}\left\{x \mid \liminf_{r \searrow 0} \frac{\langle v, \varkappa(x,r) \rangle}{-\log r} < -\partial_v \mathsf{B}(q)\right\} = 0.$$

Lemma 6. Let $x \in \mathbb{X}$. Consider the function $\rho_x(v) = \liminf_{r \searrow 0} \frac{\langle v, \varkappa(x, r) \rangle}{-\log r}$ and the cone $C_x = \{v \in \mathbb{E} \mid \rho_x(v) > -\infty\}$. The function ρ_x is concave and the cone C_x is convex. If the interior C_x° of C_x is nonempty two alternatives may occur: either $\rho_x(v) = +\infty$ for one $v \in C_x^\circ$ and then $\rho_x(v) = +\infty$ for all $v \in C_x^\circ$, or ρ_x is continuous on C_x° .

Proposition 7. If $|B(q)| < \infty$ and if the function $v \mapsto \partial_v B(q)$ is lower semi-continuous, one has

$$\mathcal{H}^{q,\mathsf{B}(q)}\left\{x \mid \liminf_{r \searrow 0} \frac{\langle v, \varkappa(x,r) \rangle}{-\log r} < -\partial_v \mathsf{B}(q) \text{ for some } v \in \mathbb{E}\right\} = 0.$$

Proposition 8. If, for some q, $\mathcal{H}^{q,\mathsf{B}(q)}(\mathbb{X}) > 0$, and if the function $v \mapsto \partial_v \mathsf{B}(q)$ is lower semi-continuous, then

$$\dim \left\{ x \mid \liminf_{r \searrow 0} \frac{\langle v, \varkappa(x, r) \rangle}{-\log r} + \partial_v \mathsf{B}(q) \ge 0 \text{ for all } v \in \mathbb{E} \right\} \ge \mathsf{B}(q) - \partial_q \mathsf{B}(q).$$

Theorem 9. If, for some q, the function B is differentiable with derivative B'(q) and if $\mathcal{H}^{q,B(q)}(X) > 0$, then one has b(q) = B(q) and

$$\dim X\left(-\mathsf{B}'(q)\right) = \operatorname{Dim} X\left(-\mathsf{B}'(q)\right) = \mathsf{B}^*\left(-\mathsf{B}'(q)\right).$$

Proof of Lemma 7

Take $\lambda > \partial_v B(q)$ and t > 0 such that $B(q + tv) < B(q) + \lambda t$. Consider the set

$$F = \left\{ x \in \mathbb{X} \mid \liminf_{r \searrow 0} \frac{\langle v, \varkappa(x, r) \rangle}{-\log r} < -\lambda \right\}.$$

Given $\delta > 0$, for each $x \in F_n$, one can find $r_x > 0$ such that $r_x < \delta$ and $\langle v, \varkappa(x, r_x) \rangle - \lambda \log r_x \leq 0$.

Let $\emptyset \neq F' \subset F$. One can find (Besicovitch covering property) θ sequences $(x_{i,j})_j$ $(1 \leq i \leq \theta)$ of points of F' such that, for $i = 1, 2, \dots, \theta$, the balls $(B(x_{i,j}, r_{x_{i,j}}))_j$ form a packing of F' and that these packings altogether form a cover of F'.

$$\begin{aligned} \overline{\mathcal{H}}_{\delta}^{q,\mathsf{B}(q)}(F') &\leq \sum_{1 \leq i \leq \theta} \sum_{j} e^{-\left(\langle q,\varkappa(x_{i,j},r_{x_{i,j}}) \rangle - \mathsf{B}(q)\log r_{x_{i,j}}\right)} \\ &\leq \sum_{1 \leq i \leq \theta} \sum_{j} e^{-\left(\langle q+tv,\varkappa(x_{i,j},r_{x_{i,j}}) \rangle - (\mathsf{B}(q)+\lambda t)\log r_{x_{i,j}}\right)} \\ &\leq \theta \,\overline{\mathcal{P}}_{\delta}^{q+tv,\mathsf{B}(q)+\lambda t}(F'). \\ &\overline{\mathcal{H}}^{q,\mathsf{B}(q)}(F') \leq \theta \,\overline{\mathcal{P}}^{q+tv,\mathsf{B}(q)+\lambda t}(F'). \end{aligned}$$
If $F' = \bigcup F'_{j}$,

$$\overline{\mathcal{H}}^{q,\mathsf{B}(q)}(F') \leq \sum \overline{\mathcal{H}}^{q,\mathsf{B}(q)}(F'_{j}) \leq \theta \sum \overline{\mathcal{P}}^{q+tv,\mathsf{B}(q)+\lambda t}(F'_{j}).$$
$$\overline{\mathcal{H}}^{q,\mathsf{B}(q)}(F') \leq \theta \,\mathcal{P}^{q+tv,\mathsf{B}(q)+\lambda t}(F') = 0,$$
$$\mathcal{H}^{q,\mathsf{B}(q)}(F) = 0.$$

Proof of Proposition 10

Set
$$X = \left\{ x \mid \liminf_{r \searrow 0} \frac{\langle v, \varkappa(x, r) \rangle}{-\log r} + \partial_v \mathsf{B}(q) \ge 0 \text{ for all } v \in \mathbb{E} \right\}.$$

We have $\mathcal{H}^{q,\mathsf{B}(q)}(X) > 0$.

Take $\varepsilon > 0$. For $m \ge 1$, consider $F_{m,\varepsilon} = \left\{ x \in X \mid \langle q, \varkappa(x,r) \rangle - \left(\partial_q \mathsf{B}(q) + \varepsilon \right) \log r > 0 \text{ for } r \le 1/m \right\}.$ As $X = \bigcup_{m \ge 1} F_{m,\varepsilon}$, there exists m so that $\mathcal{H}^{q,\mathsf{B}(q)}(F_{m,\varepsilon}) > 0$.

Therefore, there exist m and a subset F of $F_{m,\varepsilon}$ such that $\overline{\mathcal{H}}^{q,\mathsf{B}(q)}(F) > 0$.

If
$$\{B(x_j, r_j)\}$$
 is a centered δ -cover of F , with $\delta < 1/m$, one has

$$\sum e^{\left(\mathsf{B}(q) - \partial_q \mathsf{B}(q) - \varepsilon\right) \log r_j} \geq \sum e^{-\left(\langle q, \varkappa(x_j, r_j) \rangle - \mathsf{B}(q) \log r_j\right)}$$

$$\geq \overline{\mathcal{H}}^{q, \mathsf{B}(q)}_{\delta}(F),$$

which gives

$$\mathcal{H}^{\mathsf{B}(q)-\partial_q\mathsf{B}(q)-\varepsilon}(F_{m,\varepsilon}) \geq \overline{\mathcal{H}}^{\mathsf{B}(q)-\partial_q\mathsf{B}(q)-\varepsilon}(F) \geq \overline{\mathcal{H}}^{q,\mathsf{B}(q)}(F) > 0.$$

So, dim $X \ge \dim F_{m,\varepsilon} \ge \mathsf{B}(q) - \partial_q \mathsf{B}(q) - \varepsilon$.

Gibbs and Frostman measures

Lemma 10. If there exists a measure $\mu^{[q]}$ such that $\lim_{r \searrow 0} \frac{\mu^{[q]}(B(x,r))}{e^{-(\langle q,\varkappa(x,r) \rangle - B(q)\log r)}} < +\infty \text{ for } \mu^{[q]}\text{-almost every } x, \text{ then } \mathcal{H}^{q,B(q)}(\mathbb{X}) > 0.$

We call such a measure a Frostman measure at q.

When there exists a Borel measure $\mu^{[q]}$, and two positive numbers η and C such that, for all $x \in \mathbb{X}$, and for all $r \leq \eta$, one has

$$\frac{1}{C} \le \frac{\mu^{[q]}(B(x,r))}{e^{-(\langle q,\varkappa(x,r)\rangle - \mathsf{B}(q)\log r)}} \le C$$

we say that $\mu^{[q]}$ is a Gibbs measure at q.

In [BMP], it was proven that the multifractal formula holds when Gibbs measures exist.

The A function

$$\overline{\mathcal{P}}^{q,t}_{\delta}(A) = \sup\left\{\sum_{j} e^{-\left(\langle q,\varkappa(x_{j},r_{j})\rangle - t\log r_{j}\right)} \mid \text{ packing, } r_{j} \leq \delta\right\}$$

$$\mathcal{P}_{\delta}^{*q,t}(A) = \sup\left\{\sum_{j} r_{j}^{t} \mathrm{e}^{-\langle q, \varkappa(x_{j}, r_{j}) \rangle} \mid \text{ packing, } \delta/2 < r_{j} \leq \delta\right\}$$

$$\overline{\mathcal{P}}^{q,t}(A) = \lim_{\delta \searrow 0} \overline{\mathcal{P}}^{q,t}_{\delta}(A), \qquad \mathcal{P}^{*q,t}(A) = \lim_{\delta \searrow 0} \mathcal{P}^{*q,t}_{\delta}(A)$$

$$\Lambda(q) = \lim_{R \to +\infty} \inf \left\{ t \mid \overline{\mathcal{P}}^{q,t} \left(B(x_0, R) \right) = 0 \right\} \ge B(q)$$

Alternate definition:

$$\Lambda(q) = \lim_{R \to +\infty} \inf \left\{ t \mid \mathcal{P}^{*q,t} \left(B(x_0, R) \right) = 0 \right\}$$

When e^{\varkappa} is a measure and \mathbb{X} is the boundary of an homogeneous tree, one gets the τ function of [BMP].

Theorems by Besicovitch and Eggleston

Theorem 11 (Besicovitch). Let B_f be the set

$$\left\{x \in [0,1] \mid \limsup \frac{1}{n} \sum_{i=1}^{n} x_j \leq f\right\},\$$

where $\sum x_j 2^{-j}$ is the dyadic expansion of x. Then dim $B_f = -f \log_2 f - (1 - f) \log_2(1 - f)$ if $0 \le f \le 1/2$, and dim $B_f = 1$ if $f \ge 1/2$. **Theorem 12** (Eggleston). Let $f = (f_0, f_1, \dots, f_{c-1})$ be a proba-

bility vector. Consider the set

 $E_f = \{x \in [0, 1] \mid \text{frequency of digit } j = f_j \text{ for } j = 0, 1, \dots, c-1\}.$ Then dim $E_f = -\sum_{j=0}^{c-1} f_j \log_c f_j.$ Let c be an integer ≥ 2 and $\mathbb{X} = \{0, 1, 2, \dots, c-1\}^{\mathbb{N}}$ endowed with the usual ultrametric distance: two sequences $(\varepsilon_n)_{n\geq 0}$ and $(\alpha_n)_{n\geq 0}$ are distant from c^{-k} if $\varepsilon_k \neq \alpha_k$ and if $\varepsilon_j = \alpha_j$ for all j such that $0 \leq j < k$.

If
$$x = (x_n)_{n \ge 0} \in \mathbb{X}$$
, set $\varphi_n(x, j) = \frac{1}{n} \operatorname{card} \{ 0 \le k < n \mid x_k = j \}$
for $j = 0, 1, \dots, c - 1$.

Let $p = (p_0, p_1, \dots, p_{c-1})$ be a family of positive numbers. If $x = (x_n)_{n>0} \in \mathbb{X}$, one sets

$$\varkappa(x, c^{-k}) = -\log \prod_{0 \le j < k} p_{x_j} = -k \sum_{0 \le j < c} \varphi_k(x, j) \log p_j$$

and take \mathbb{E}' to be \mathbb{R} ..

It is easily seen that $\Lambda(q) = \log_c \sum_{0 \le j < c} p_j^q$.

If $q \in \mathbb{R}$, one sets, for $0 \leq j < c$,

$$r_j = p_j^q \Big/ \sum_{0 \le k < c} p_k^q.$$

A measure $\mu^{[q]}$ is defined on $\mathbb X$ by the formula

$$\mu^{[q]}(B(x,c^{-k})) = \prod_{l=0}^{k-1} r_{x_l}.$$

It is easy to check that

$$\mu^{[q]}(B(x,c^{-k})) = \mathrm{e}^{-\left(q \varkappa(x,c^{-k}) + k\Lambda(q)\log c\right)}.$$

So, $\mu^{[q]}$ is a Gibbs measure. This implies $\mathcal{H}^{q,\Lambda(q)}(\mathbb{X}) > 0$, which has two consequences: $b(q) = B(q) = \Lambda(q)$ and the fact that the multifractal formalism holds for all q.

By taking c = 2 and p = (1/2, 1), one gets the Besicovitch theorem.

By taking p = (1/c, 1, ..., 1) one gets that the set of numbers of which the frequency of digit 0 in their base c expansion is f has

$$-f\log_c f - (1-f)\log_c \frac{1-f}{c-1}$$

for its Hausdorff dimension.

Generalization

Let $p = \{(p_{l,0}, p_{l,1}, \cdots, p_{l,c-1})\}_{0 \le l < \nu}$ be a family of positive numbers. If $x = (x_n)_{n \ge 0} \in \mathbb{X}$, one sets

$$\varkappa(x,c^{-k}) = \left(-\log\prod_{0\leq j< k} p_{l,x_j}\right)_{0\leq l<\nu}$$

and take \mathbb{E}' to be \mathbb{R}^{ν} .

It is easily seen that $\Lambda(q) = \log_c \left(\sum_{0 \le j < c} \prod_{0 \le l < \nu} p_{l,j}^{q_l} \right).$

If $q \in \mathbb{R}^{\nu}$, one sets, for $1 \leq j \leq \nu$, $r_j = \prod_{0 \leq l < \nu} p_{l,j}^{q_l} / \sum_{0 \leq k < c} \prod_{0 \leq l < \nu} p_{l,k}^{q_l}$. As previously, one considers the multinomial measure $\mu^{[q]}$ defined on \mathbb{X} by the formula $\mu^{[q]} (B(x, c^{-k})) = \prod_{l=0}^{k-1} r_{x_l}$. As before, this is a Gibbs measure, which has two consequences: $b(q) = B(q) = \Lambda(q)$ and the fact that the multifractal formalism holds for all q. Recalling the notation $\varphi_n(x,j) = \frac{1}{n} \operatorname{card} \{ 0 \le k < n \mid x_k = j \}$ for $j = 0, 1, \dots, c-1$,

one has
$$\varkappa(x, c^{-k}) = \left(-k \sum_{0 \le j < c} \varphi_k(x, j) \log p_{l,j}\right)_{0 \le l < \nu}$$
.
Theorem 13. Let $\nu < c$ and $f_0, f_1, \ldots, f_{\nu-1}$ be positive numbers such that $\sum_{0 \le j < \nu} f_j \le 1$. Then,

$$\dim \left\{ x \in \mathbb{X} \mid \lim_{n \to +\infty} \varphi_n(x, j) = f_j \text{ for } 0 \le j < \nu \right\}$$
$$= -\left(1 - \sum_{0 \le j < \nu} f_j \right) \log_c \frac{1 - \sum_{0 \le j < \nu} f_j}{c - \nu} - \sum_{0 \le j < \nu} f_j \log_c f_j.$$

Proof. Take
$$p_{j,j} = c^{-1}$$
 and $p_{l,j} = 1$ if $l \neq j$. Then

$$\Lambda(q) = \log_c \left(c - \nu + \sum_{0 \le j < \nu} c^{-q_j} \right)$$

and

$$\frac{\varkappa(x,c^{-k})}{k\log c} = \left(\varphi_k(x,j)\right)_{0 \le j < \nu}.$$

Then, it is easy to complete the computation of the Legendre transform.

Set $H_c(x_0, x_1, \dots, x_{c-1}) = -\sum_{j=0}^{c-1} x_j \log_c x_j$.

Theorem 14. Suppose $\nu < c$. Let $f_0, f_1, \ldots, f_{\nu-1}$ be non-negative numbers and consider the set

$$B_f = \left\{ x \in \mathbb{X} \mid \limsup_{n \to \infty} \varphi_j(x, n) \le f_j \text{ for } 0 \le j < \nu \right\}.$$

Let $f_0^* \ge f_1^* \ge \cdots \ge f_{\nu-1}^*$ be the sequence $(f_j)_{0 \le j < \nu}$ rearranged in decreasing order, and $f_j^{**} = \sum_{j \le k < \nu} f_k^*$. Then

1. If
$$(c - \nu)f_0^* + f_0^{**} < 1$$
,
then dim $B_f = H_c(f_0^*, \dots, f_{\nu-1}^*, \frac{1 - f_0^{**}}{c - \nu}, \frac{1 - f_0^{**}}{c - \nu}, \dots)$.

2. For $0 \le k < \nu - 1$, if $(c - \nu + k)f_k^* + f_k^{**} \ge 1$ and $(c - \nu + k + 1)f_{k+1}^* + f_{k+1}^{**} < 1$, then dim $E = H_c(f_k^*, \dots, f_{\nu-1}^*, \frac{1 - f_{k+1}^{**}}{c - \nu + k + 1}, \frac{1 - f_{k+1}^{**}}{c - \nu + k + 1}, \dots)$.

3. If $f_{\nu-1}^* \ge \frac{1}{c}$, then dim E = 1.

Short bibliography

F. Ben Nasr, I. Bhouri, and Y. Heurteaux, *The validity of the multifractal formalism: results and examples.* Adv. in Math. **165** (2002), 264–284.

A.S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system. Math. Ann. **110** (1934), 1–18.

G. Brown, G. Michon, and J. Peyrière, *On the multifractal analysis of measures.* J. Stat. Phys.**66** (1992), 775–790.

P. Collet, J. Lebowitz, and A. Porzio, *The dimension spectrum of some dynamical systems*. J. Stat. Phys. **47** (1987), 609–644.

H.G. Eggleston, *The fractional dimension of a set defined by decimal properties.* Q. J. Math. Oxford, Ser. **20** (1949), 31–46.

Lévy Véhel J. and Vojak R., *Mutual multifractal analysis of sequences of Choquet capacities: preliminary results.* Adv. Applied Math. **20** (1998), 1–43.

L. Olsen, *A multifractal formalism.* Advances in Math. **116** (1995), 82–196.

J. Peyrière, *Multifractal measures.* In: Probabilistic and Stochastic Methods in Analysis (Proceedings of the NATO ASI, Il Ciocco 1991). Ed. J. Byrnes, Kluwer Academic Publishers (1992).

J. Peyrière, *A Vectorial Multifractal Formalism.* Proceedings of Symposia in Pure Mathematics, **72.2** (2004), 217–230.