On the Multifractal Formalism

Jacques Peyrière

Conference in honour of Gavin Brown Sydney, March 5-6, 2007

The Brown-Michon-Peyrière 1992 paper
μ : probability measure on $[0,1]$
$I_{n, j}$: the j th c-adic interval of length $c^{n}\left(0 \leq j<c^{n}\right)$
$I_{n}(x)$: the c-adic interval of length c^{n} containing x
$E_{\alpha}=\left\{x \in[0,1] ; \lim _{n \rightarrow \infty} \frac{\log \mu\left(I_{n}(x)\right)}{-n \log c}=\alpha\right\}$
$\tau(q)=\lim _{n \rightarrow \infty} \frac{1}{n \log c} \log \sum_{j=0}^{c^{n}-1} \mu\left(I_{n, j}\right)^{q}$
Then $\operatorname{dim} E_{\alpha}=\tau^{*}(\alpha)=\inf _{t \in \mathbb{R}} \tau(t)+\alpha t$
if $\alpha=-\tau^{\prime}(q)$ and if there exists a measure μ_{q} such that $C^{-1} \mu(I)^{q} c^{-n \tau(q)} \leq \mu_{q}(I) \leq C \mu(I)^{q} c^{-n \tau(q)}$ for any c-adic interval of order n

The Legendre Transform: $\tau^{*}(\alpha)=\inf _{q \in \mathbb{R}} \tau(q)+\alpha q$

The setting in BMP is more general:
$\left\{\left\{I_{n, j}\right\}_{0 \leq j<N_{n}}\right\}_{n>0}$ is a sequence of nested partitions of $[0,1)$ by semi-open intervals.
Set $C_{n}(q, t)=\sum_{j} \mu\left(I_{n, j}\right)^{q}\left|I_{n, j}\right|^{t}$
and $C(q, t)=\limsup _{n \rightarrow \infty} C_{n}(q, t)$
The boundary of the convex set $\{(q, t) ; C(q, t)=0\}$ is the graph of a function τ, which is convex and non-increasing.

Then

$$
\begin{array}{ll}
\text { always } & \operatorname{dim} E_{\alpha} \leq \tau^{*}(\alpha) \\
\text { sometimes } & \operatorname{dim} E_{\alpha}=\tau^{*}(\alpha)
\end{array}
$$

Hausdorff measures and dimension

Let (\mathbb{X}, d) be a metric space.

$$
B(a, r)=\{x \in \mathbb{X} \mid d(a, x) \leq r\}
$$

For $A \subset \mathbb{X}, t>0$ and $\delta>0$

$$
\begin{aligned}
\mathcal{H}_{\delta}^{t}(A) & =\inf \left\{\sum r_{j}^{t} \mid A \subset \bigcup B\left(x_{j}, r_{j}\right), r_{j} \leq \delta\right\} \\
\mathcal{H}^{t}(A) & =\lim _{\delta \backslash 0} \mathcal{H}_{\delta}^{t}(A) \\
\operatorname{dim} A & =\inf \left\{t \geq 0 \mid \mathcal{H}^{t}(A)=0\right\} \\
& =\sup \left\{t \geq 0 \mid \mathcal{H}^{t}(A)=+\infty\right\}
\end{aligned}
$$

A general setting

ξ : a positive function defined on the balls of \mathbb{R}^{n}

$$
X(\alpha)=\left\{x ; \lim _{r \searrow 0} \frac{\log \xi(B(x, r))}{\log r}=\alpha\right\}
$$

Task: to compute the dimension of $X(\alpha)$; more precisely, to express $\alpha \mapsto \operatorname{dim} X(\alpha)$, as a Legendre transform.

Common choices
$-\xi$ is a measure, (this is the case considered in [BMP], with boxes instead of balls)
$-\xi(B(x, r))$ is the modulus of continuity at x of a function.

Indeed, one could think of other choices, e.g.

- a Choquet capacity
$-\xi\left(B(x, r)=\int_{B(x, r)}\left|f(y)-\frac{1}{|B(x, r)|} \int_{B(x, r)} f(z) \mathrm{d} z\right| \mathrm{d} y\right.$

One could also wish to perform simultaneous analysis of several functions ξ. Expressions such as

$$
\sum \xi_{1}\left(B_{j}\right)^{q_{1}} \xi_{2}\left(B_{j}\right)^{q_{2}} \cdots \xi_{k}\left(B_{j}\right)^{q_{k}}\left|B_{j}\right|^{t}
$$

would be involved.

To be able to consider infinitely many ξ 's at a time, it is better to write $\xi=\exp -\varkappa$.

Let (\mathbb{X}, d) be a metric space satisfying the Besicovitch covering property.
$B(a, r)=\{x \in \mathbb{X} \mid d(a, x) \leq r\}$

We are given a function \varkappa from $\mathbb{X} \times \mathbb{R}^{+}$to \mathbb{E}^{\prime}, the dual of a separable real Banach space \mathbb{E}. We denote by \langle,$\rangle the duality$ bracket between \mathbb{E} and \mathbb{E}^{\prime}.

We are going to define several quantities and sets, as L. Olsen.

Multifractal Hausdorff measures

For $A \subset \mathbb{X}, q \in \mathbb{E}, t \in \mathbb{R}$, and $\delta>0$, we set

$$
\overline{\mathcal{H}}^{q, t}(A)=\inf \sum_{j} \mathrm{e}^{-\left(\left\langle q, \varkappa\left(x_{j}, r_{j}\right)\right\rangle-t \log r_{j}\right)}
$$

where the infimum is taken over the families $\left\{\left(x_{j}, r_{j}\right)\right\}$ such that $\left\{B\left(x_{j}, r_{j}\right)\right\}$ is a centered δ-cover of A,

$$
\overline{\mathcal{H}}^{q, t}(A)=\lim _{\delta \backslash 0} \overline{\mathcal{H}}(A), \text { and } \mathcal{H}^{q, t}(A)=\sup _{F \subset A} \overline{\mathcal{H}}^{q, t}(F) .
$$

When $\varkappa=0$, these measures reduce to the usual Hausdorff measures.

If $\overline{\mathcal{H}}^{q, t}(A)<\infty$, then for all $s>t, \overline{\mathcal{H}}^{q, s}(A)=0$, so there is a critical index t_{0} such that $\overline{\mathcal{H}}^{q, t}(A)=0$ for $t>t_{0}$ and $\overline{\mathcal{H}}^{q, s}(A)=\infty$ for $t<t_{0}$.

Packing measures

For $A \subset \mathbb{X}, q \in \mathbb{E}, t \in \mathbb{R}$, and $\delta>0$, we set

$$
\overline{\mathcal{P}}_{\delta}^{q, t}(A)=\sup \sum_{j} \mathrm{e}^{-\left(\left\langle q, \varkappa\left(x_{j}, r_{j}\right)\right\rangle-t \log r_{j}\right)}
$$

where this supremum is taken on collections $\left\{\left(x_{j}, r_{j}\right)\right\}$ such that $r_{j} \leq \delta$ and $\left\{B\left(x_{j}, r_{j}\right)\right\}$ is a centered δ-packing of A.

$$
\begin{aligned}
& \overline{\mathcal{P}}^{q, t}(A)=\lim _{\delta \backslash 0} \overline{\mathcal{P}}_{\delta}^{q, t}(A) \\
& \mathcal{P}^{q, t}(A)=\inf \left\{\sum_{j} \overline{\mathcal{P}}^{q, t}\left(F_{j}\right) \mid A \subset \bigcup_{j} F_{j}\right\} .
\end{aligned}
$$

One defines, as Olsen,

$$
\mathrm{B}(q)=\inf \left\{t \in \mathbb{R} \mid \mathcal{P}^{q, t}(\mathbb{X})=0\right\},
$$

and

$$
\mathrm{b}(q)=\inf \left\{t \in \mathbb{R} \mid \mathcal{H}^{q, t}(\mathbb{X})=0\right\} .
$$

We have the inequality $\mathrm{b} \leq \mathrm{B}$.
Proposition 1. The function B is convex.

Proof. Let $p, q \in \mathbb{E}, t>\mathrm{B}(p)$, and $u>\mathrm{B}(q)$.

So, for all $n \geq 1, \mathcal{P}^{p, t}(\mathbb{X})=\mathcal{P}^{q, u}(\mathbb{X})=0$. One can write $\mathbb{X}=$ $\cup_{j \geq 1} A_{j}=\cup_{k \geq 1} F_{k}$ so that $\sum_{j \geq 1} \overline{\mathcal{P}}^{p, t}\left(A_{j}\right) \leq 1$ and $\sum_{k \geq 1} \overline{\mathcal{P}}^{q, u}\left(F_{k}\right) \leq$ 1. Then, for all $\alpha \in(0,1)$

$$
\overline{\mathcal{P}}^{\alpha p+(1-\alpha) q, \alpha t+(1-\alpha) u}\left(A_{j} \cap F_{k}\right) \leq\left(\overline{\mathcal{P}}^{p, t}\left(A_{j} \cap F_{k}\right)\right)^{\alpha}\left(\overline{\mathcal{P}}^{q, u}\left(A_{j} \cap F_{k}\right)\right)^{1-\alpha}
$$

Then, due to the Hölder inequality, one has

$$
\begin{aligned}
& \sum_{1 \leq j, k \leq m} \overline{\mathcal{P}}^{\alpha p+(1-\alpha) q, \alpha t+(1-\alpha) u}\left(A_{j} \cap F_{k}\right) \\
& \leq\left(\sum_{1 \leq j, k \leq m} \overline{\mathcal{P}}^{p, t}\left(A_{j} \cap F_{k}\right)\right)^{\alpha}\left(\sum_{1 \leq j, k \leq m} \overline{\mathcal{P}}^{q, u}\left(A_{j} \cap F_{k}\right)\right)^{1-\alpha} \\
& \quad \leq\left(m \sum_{1 \leq j \leq m} \overline{\mathcal{P}}^{p, t}\left(A_{j}\right)\right)^{\alpha}\left(m \sum_{1 \leq k \leq m} \overline{\mathcal{P}}^{q, u}\left(F_{k}\right)\right)^{1-\alpha} \leq m .
\end{aligned}
$$

It results that

$$
\mathcal{P}^{\alpha p+(1-\alpha) q, \alpha t+(1-\alpha) u}\left(\bigcup_{1 \leq j, k<m} A_{j} \cap F_{k}\right) \leq m
$$

Therefore, if $\varepsilon>0$,

$$
\mathcal{P}^{\alpha p+(1-\alpha) q, \alpha t+(1-\alpha) u+\varepsilon}(\mathbb{X})=0
$$

and

$$
\mathrm{B}(\alpha p+(1-\alpha) q) \leq \alpha t+(1-\alpha) u+\varepsilon
$$

Local Hölder exponent - Chernoff-like inequalities

For $\alpha \in \mathbb{E}^{\prime}$ and $E \subset \mathbb{E}$, we set

$$
X(\alpha, E)=\left\{x \left\lvert\, \limsup _{r \backslash 0} \frac{\langle w, \varkappa(x, r)\rangle}{-\log r} \leq\langle w, \alpha\rangle\right. \text { for all } w \in E\right\}
$$

$X(\alpha, \mathbb{E})$, simply denoted by $X(\alpha)$, is the set of points x such that $\lim _{r \backslash 0} \frac{\varkappa(x, r)}{-\log r}=\alpha$ (in the $\sigma\left(\mathbb{E}, \mathbb{E}^{\prime}\right)$ topology).
Proposition 2. $\operatorname{Dim} X(\alpha,\{q\}) \leq\langle q, \alpha\rangle+\mathrm{B}(q)$.
Corollary 3. For $\alpha \in \mathbb{E}^{\prime}$ and $E \subset \mathbb{E}$, one has

$$
\operatorname{Dim} X(\alpha, E) \leq \inf _{q \in E}\langle q, \alpha\rangle+\mathrm{B}(q)
$$

$\operatorname{Dim} X(\alpha) \leq \inf _{q \in \mathbb{E}}\langle q, \alpha\rangle+\mathrm{B}(q)=B^{*}(\alpha)$ (Legendre transform).

Proof. Let $\varepsilon>0, \eta>0, q \in \mathbb{E}, m \geq 1$.
Set $\quad A_{m}(\varepsilon)=\left\{x \in \mathbb{X} \left\lvert\, \frac{\langle q, \varkappa(x, r)\rangle}{-\log r} \leq\langle q, \alpha\rangle+\varepsilon\right.\right.$ for $\left.r<1 / m\right\}$.
Let $\left\{B\left(x_{j}, r_{j}\right)\right\}$ be a δ-packing of $F \subset A_{m}(\varepsilon)$, with $\delta<1 / m$. One has

$$
\sum_{j} \mathrm{e}^{(\langle q, \alpha\rangle+\varepsilon+\mathrm{B}(q)+\eta) \log r_{j}} \leq \sum_{j} \mathrm{e}^{-\left(\left\langle q, \varkappa\left(x_{j}, r_{j}\right)\right\rangle-\log \left(r_{j}\right)(\mathrm{B}(q)+\eta)\right)}
$$

so

$$
\overline{\mathcal{P}}^{\langle q, \alpha\rangle+\varepsilon+\mathrm{B}(q)+\eta}(F) \leq \overline{\mathcal{P}}^{q, \mathrm{~B}(q)+\eta}(F)
$$

 $\inf \left\{\sum_{j} \overline{\mathcal{P}}^{q, \mathrm{~B}(q)+\eta}\left(F_{j}\right) \mid \mathbb{X}_{n} \subset \cup F_{j}\right\}=0$. It results

$$
\mathcal{P}^{\langle q, \alpha\rangle+\varepsilon+\mathrm{B}(q)+\eta}\left(A_{m}(\varepsilon)\right)=0 .
$$

Since $\mathcal{P}^{\langle q, \alpha\rangle+\varepsilon+\mathrm{B}(q)+\eta}\left(A_{m}(\varepsilon)\right)=0$ for any $\eta>0$,
$\operatorname{Dim} A_{m}(\varepsilon) \leq\langle q, \alpha\rangle+\varepsilon+\mathrm{B}(q)$. But as

$$
\left\{x \in \mathbb{X} \left\lvert\, \limsup _{r \searrow 0} \frac{\langle q, \varkappa(x, r)\rangle}{-\log r} \leq\langle q, \alpha\rangle\right.\right\} \subset \bigcap_{p \geq 1} \bigcup_{m \geq 1} A_{m}(1 / p)
$$

we get the announced inequality.

Remark. If the formula gives a negative dimension, this means

that the corresponding set is empty.

Proposition 4. Set

$$
X^{*}(\alpha, E)=\left\{x \left\lvert\, \liminf _{r \backslash 0} \frac{\langle w, \varkappa(x, r)\rangle}{-\log r} \leq\langle w, \alpha\rangle\right. \text { for all } w \in E\right\}
$$

Then

$$
\operatorname{dim} X^{*}(\alpha, E) \leq \inf _{q \in E}\langle q, \alpha\rangle+\mathrm{B}(q)
$$

The converse inequality

Notations:

- If $|\mathrm{B}(q)|<\infty$ and $v \in \mathbb{E}$, one sets

$$
\partial_{v} \mathrm{~B}(q)=\lim _{t \searrow 0} \frac{\mathrm{~B}(q+t v)-\mathrm{B}(q)}{t}
$$

- $\mathrm{B}^{\prime}(q)$ stands for the derivative (considered as an element of \mathbb{E}^{\prime}) of B at point q, when it exists.

When B has a partial derivative at point q along the direction v, one has $\partial_{-v} \mathrm{~B}(q)=-\partial_{v} \mathrm{~B}(q)$.

When $\mathrm{B}^{\prime}(q)$ exists, $\partial_{v} \mathrm{~B}(q)=\left\langle v, \mathrm{~B}^{\prime}(q)\right\rangle$.

Lemma 5. Let $v \in \mathbb{E}$ and q such that $|\mathrm{B}(q)|<\infty$. Then

$$
\mathcal{H}^{q, \mathrm{~B}(q)}\left\{x \left\lvert\, \liminf _{r \searrow 0} \frac{\langle v, \varkappa(x, r)\rangle}{-\log r}<-\partial_{v} \mathrm{~B}(q)\right.\right\}=0
$$

Lemma 6. Let $x \in \mathbb{X}$. Consider the function $\rho_{x}(v)=\liminf _{r \geq 0} \frac{\langle v, \varkappa(x, r)\rangle}{-\log r}$ and the cone $C_{x}=\left\{v \in \mathbb{E} \mid \rho_{x}(v)>-\infty\right\}$. The function ρ_{x} is concave and the cone C_{x} is convex. If the interior C_{x}° of C_{x} is nonempty two alternatives may occur: either $\rho_{x}(v)=+\infty$ for one $v \in C_{x}^{\circ}$ and then $\rho_{x}(v)=+\infty$ for all $v \in C_{x}^{\circ}$, or ρ_{x} is continuous on C_{x}°.
Proposition 7. If $|\mathrm{B}(q)|<\infty$ and if the function $v \mapsto \partial_{v} \mathrm{~B}(q)$ is lower semi-continuous, one has

$$
\mathcal{H}^{q, \mathrm{~B}(q)}\left\{x \left\lvert\, \liminf _{r \backslash 0} \frac{\langle v, \varkappa(x, r)\rangle}{-\log r}<-\partial_{v} \mathrm{~B}(q)\right. \text { for some } v \in \mathbb{E}\right\}=0
$$

Proposition 8. If, for some $q, \mathcal{H}^{q, \mathrm{~B}(q)}(\mathbb{X})>0$, and if the function $v \mapsto \partial_{v} \mathrm{~B}(q)$ is lower semi-continuous, then

$$
\begin{array}{r}
\operatorname{dim}\left\{x \left\lvert\, \liminf _{r \backslash 0} \frac{\langle v, \varkappa(x, r)\rangle}{-\log r}+\partial_{v} \mathrm{~B}(q) \geq 0\right. \text { for all } v \in \mathbb{E}\right\} \geq \\
\mathrm{B}(q)-\partial_{q} \mathrm{~B}(q) .
\end{array}
$$

Theorem 9. If, for some q, the function B is differentiable with derivative $\mathrm{B}^{\prime}(q)$ and if $\mathcal{H}^{q, \mathrm{~B}(q)}(\mathbb{X})>0$, then one has $\mathrm{b}(q)=\mathrm{B}(q)$ and

$$
\operatorname{dim} X\left(-\mathrm{B}^{\prime}(q)\right)=\operatorname{Dim} X\left(-\mathrm{B}^{\prime}(q)\right)=\mathrm{B}^{*}\left(-\mathrm{B}^{\prime}(q)\right)
$$

Proof of Lemma 7

Take $\lambda>\partial_{v} \mathrm{~B}(q)$ and $t>0$ such that $\mathrm{B}(q+t v)<\mathrm{B}(q)+\lambda t$. Consider the set

$$
F=\left\{x \in \mathbb{X} \left\lvert\, \liminf _{r \searrow 0} \frac{\langle v, \varkappa(x, r)\rangle}{-\log r}<-\lambda\right.\right\}
$$

Given $\delta>0$, for each $x \in F_{n}$, one can find $r_{x}>0$ such that $r_{x}<\delta$ and $\left\langle v, \varkappa\left(x, r_{x}\right)\right\rangle-\lambda \log r_{x} \leq 0$.

Let $\emptyset \neq F^{\prime} \subset F$. One can find (Besicovitch covering property) θ sequences $\left(x_{i, j}\right)_{j}(1 \leq i \leq \theta)$ of points of F^{\prime} such that, for $i=1,2, \cdots, \theta$, the balls $\left(B\left(x_{i, j}, r_{x_{i, j}}\right)\right)_{j}$ form a packing of F^{\prime} and that these packings altogether form a cover of F^{\prime}.

$$
\begin{aligned}
\overline{\mathcal{H}}_{\delta}^{q, \mathrm{~B}(q)}\left(F^{\prime}\right) & \leq \sum_{1 \leq i \leq \theta} \sum_{j} \mathrm{e}^{-\left(\left\langle q, \varkappa\left(x_{i, j}, r_{x_{i, j}}\right)\right\rangle-\mathrm{B}(q) \log r_{x_{i, j}}\right)} \\
& \leq \sum_{1 \leq i \leq \theta} \sum_{j} \mathrm{e}^{-\left(\left\langle q+t v, \varkappa\left(x_{i, j}, r_{x, j}\right)\right\rangle-(\mathrm{B}(q)+\lambda t) \log r_{x_{i, j}}\right)} \\
& \leq \theta \overline{\mathcal{P}}_{\delta}^{q+t v, \mathrm{~B}(q)+\lambda t}\left(F^{\prime}\right) . \\
& \overline{\mathcal{H}}^{q, \mathrm{~B}(q)}\left(F^{\prime}\right) \leq \theta \overline{\mathcal{P}}^{q+t v, \mathrm{~B}(q)+\lambda t}\left(F^{\prime}\right) .
\end{aligned}
$$

If $F^{\prime}=\bigcup F_{j}^{\prime}$,

$$
\begin{gathered}
\overline{\mathcal{H}}^{q, \mathrm{~B}(q)}\left(F^{\prime}\right) \leq \sum \overline{\mathcal{H}}^{q, \mathrm{~B}(q)}\left(F_{j}^{\prime}\right) \leq \theta \sum \overline{\mathcal{P}}^{q+t v, \mathrm{~B}(q)+\lambda t}\left(F_{j}^{\prime}\right) \\
\overline{\mathcal{H}}^{q, \mathrm{~B}(q)}\left(F^{\prime}\right) \leq \theta \mathcal{P}^{q+t v, \mathrm{~B}(q)+\lambda t}\left(F^{\prime}\right)=0, \\
\mathcal{H}^{q, \mathrm{~B}(q)}(F)=0 .
\end{gathered}
$$

Set $X=\left\{x \left\lvert\, \liminf _{r \backslash 0} \frac{\langle v, \varkappa(x, r)\rangle}{-\log r}+\partial_{v} \mathrm{~B}(q) \geq 0\right.\right.$ for all $\left.v \in \mathbb{E}\right\}$.
We have $\mathcal{H}^{q, \mathrm{~B}(q)}(X)>0$.

Take $\varepsilon>0$. For $m \geq 1$, consider
$F_{m, \varepsilon}=\left\{x \in X \mid\langle q, \varkappa(x, r)\rangle-\left(\partial_{q} \mathrm{~B}(q)+\varepsilon\right) \log r>0\right.$ for $\left.r \leq 1 / m\right\}$.
As $X=\bigcup_{m \geq 1} F_{m, \varepsilon}$, there exists m so that $\mathcal{H}^{q, \mathrm{~B}(q)}\left(F_{m, \varepsilon}\right)>0$.
Therefore, there exist m and a subset F of $F_{m, \varepsilon}$ such that $\overline{\mathcal{H}}^{q, \mathrm{~B}(q)}(F)>$ 0.

If $\left\{B\left(x_{j}, r_{j}\right)\right\}$ is a centered δ-cover of F, with $\delta<1 / m$, one has

$$
\begin{aligned}
\sum \mathrm{e}^{\left(\mathrm{B}(q)-\partial_{q} \mathrm{~B}(q)-\varepsilon\right) \log r_{j}} & \geq \sum \mathrm{e}^{-\left(\left\langle q, \varkappa\left(x_{j}, r_{j}\right)\right\rangle-\mathrm{B}(q) \log r_{j}\right)} \\
& \geq \overline{\mathcal{H}}_{\delta}^{q, \mathrm{~B}(q)}(F)
\end{aligned}
$$

which gives

$$
\mathcal{H}^{\mathrm{B}(q)-\partial_{q} \mathrm{~B}(q)-\varepsilon}\left(F_{m, \varepsilon}\right) \geq \overline{\mathcal{H}}^{\mathrm{B}(q)-\partial_{q} \mathrm{~B}(q)-\varepsilon}(F) \geq \overline{\mathcal{H}}^{q, \mathrm{~B}(q)}(F)>0 .
$$

So, $\operatorname{dim} X \geq \operatorname{dim} F_{m, \varepsilon} \geq \mathrm{B}(q)-\partial_{q} \mathrm{~B}(q)-\varepsilon$.

Gibbs and Frostman measures

Lemma 10. If there exists a measure $\mu^{[q]}$ such that $\limsup _{r \backslash 0} \frac{\mu^{[q]}(B(x, r))}{\mathrm{e}^{-(\langle q, \varkappa(x, r)\rangle-\mathrm{B}(q) \log r)}}<+\infty$ for $\mu^{[q]}$-almost every x, then $\mathcal{H}^{q, \mathrm{~B}(q)}(\mathbb{X})>0$.

We call such a measure a Frostman measure at q.

When there exists a Borel measure $\mu^{[q]}$, and two positive numbers η and C such that, for all $x \in \mathbb{X}$, and for all $r \leq \eta$, one has

$$
\frac{1}{C} \leq \frac{\mu^{[q]}(B(x, r))}{\mathrm{e}^{-(\langle q, \varkappa(x, r)\rangle-\mathrm{B}(q) \log r)}} \leq C
$$

we say that $\mu^{[q]}$ is a Gibbs measure at q.
In [BMP], it was proven that the multifractal formula holds when Gibbs measures exist.

$$
\begin{gathered}
\overline{\mathcal{P}}_{\delta}^{q, t}(A)=\sup \left\{\sum_{j} \mathrm{e}^{-\left(\left\langle q, \varkappa\left(x_{j}, r_{j}\right)\right\rangle-t \log r_{j}\right)} \mid \text { packing, } r_{j} \leq \delta\right\} \\
\mathcal{P}_{\delta}^{* q, t}(A)=\sup \left\{\sum_{j} r_{j}^{t} \mathrm{e}^{-\left\langle q, \varkappa\left(x_{j}, r_{j}\right)\right\rangle} \mid \text { packing, } \delta / 2<r_{j} \leq \delta\right\} \\
\overline{\mathcal{P}}^{q, t}(A)=\lim _{\delta \backslash 0} \overline{\mathcal{P}}_{\delta}^{q, t}(A), \quad \mathcal{P}^{* q, t}(A)=\lim _{\delta<0} \mathcal{P}_{\delta}^{* q, t}(A) \\
\wedge(q)=\lim _{R \rightarrow+\infty} \inf \left\{t \mid \overline{\mathcal{P}}^{q, t}\left(B\left(x_{0}, R\right)\right)=0\right\} \geq B(q)
\end{gathered}
$$

Alternate definition:

$$
\wedge(q)=\lim _{R \rightarrow+\infty} \inf \left\{t \mid \mathcal{P}^{* q, t}\left(B\left(x_{0}, R\right)\right)=0\right\}
$$

When e^{\varkappa} is a measure and \mathbb{X} is the boundary of an homogeneous tree, one gets the τ function of [BMP].

Theorems by Besicovitch and Eggleston

Theorem 11 (Besicovitch). Let B_{f} be the set

$$
\left\{x \in[0,1] \left\lvert\, \lim \sup \frac{1}{n} \sum_{i=1}^{n} x_{j} \leq f\right.\right\}
$$

where $\sum x_{j} 2^{-j}$ is the dyadic expansion of x.
Then $\operatorname{dim} B_{f}=-f \log _{2} f-(1-f) \log _{2}(1-f)$ if $0 \leq f \leq 1 / 2$, and $\operatorname{dim} B_{f}=1$ if $f \geq 1 / 2$.
Theorem 12 (Eggleston). Let $f=\left(f_{0}, f_{1}, \ldots, f_{c-1}\right)$ be a probability vector. Consider the set
$E_{f}=\left\{x \in[0,1] \mid\right.$ frequency of digit $j=f_{j}$ for $\left.j=0,1, \ldots, c-1\right\}$.
Then $\operatorname{dim} E_{f}=-\sum_{j=0}^{c-1} f_{j} \log _{c} f_{j}$.

Let c be an integer ≥ 2 and $\mathbb{X}=\{0,1,2, \ldots, c-1\}^{\mathbb{N}}$ endowed with the usual ultrametric distance: two sequences $\left(\varepsilon_{n}\right)_{n \geq 0}$ and $\left(\alpha_{n}\right)_{n \geq 0}$ are distant from c^{-k} if $\varepsilon_{k} \neq \alpha_{k}$ and if $\varepsilon_{j}=\alpha_{j}$ for all j such that $0 \leq j<k$.

$$
\begin{aligned}
& \text { If } x=\left(x_{n}\right)_{n \geq 0} \in \mathbb{X} \text {, set } \varphi_{n}(x, j)=\frac{1}{n} \operatorname{card}\left\{0 \leq k<n \mid x_{k}=j\right\} \\
& \text { for } j=0,1, \ldots, c-1
\end{aligned}
$$

Let $p=\left(p_{0}, p_{1}, \cdots, p_{c-1}\right)$ be a family of positive numbers. If $x=\left(x_{n}\right)_{n \geq 0} \in \mathbb{X}$, one sets

$$
\varkappa\left(x, c^{-k}\right)=-\log \prod_{0 \leq j<k} p_{x_{j}}=-k \sum_{0 \leq j<c} \varphi_{k}(x, j) \log p_{j} .
$$

and take \mathbb{E}^{\prime} to be \mathbb{R}..

It is easily seen that $\Lambda(q)=\log _{c} \sum_{0 \leq j<c} p_{j}^{q}$.

If $q \in \mathbb{R}$, one sets, for $0 \leq j<c$,

$$
r_{j}=p_{j}^{q} / \sum_{0 \leq k<c} p_{k}^{q}
$$

A measure $\mu^{[q]}$ is defined on \mathbb{X} by the formula

$$
\mu^{[q]}\left(B\left(x, c^{-k}\right)\right)=\prod_{l=0}^{k-1} r_{x_{l}}
$$

It is easy to check that

$$
\mu^{[q]}\left(B\left(x, c^{-k}\right)\right)=\mathrm{e}^{\left.-\left(q \varkappa\left(x, c^{-k}\right)+k \wedge(q) \log c\right)\right)}
$$

So, $\mu^{[q]}$ is a Gibbs measure. This implies $\mathcal{H}^{q, \wedge(q)}(\mathbb{X})>0$, which has two consequences: $\mathrm{b}(q)=\mathrm{B}(q)=\wedge(q)$ and the fact that the multifractal formalism holds for all q.

By taking $c=2$ and $p=(1 / 2,1)$, one gets the Besicovitch theorem.

By taking $p=(1 / c, 1, \ldots, 1)$ one gets that the set of numbers of which the frequency of digit 0 in their base c expansion is f has

$$
-f \log _{c} f-(1-f) \log _{c} \frac{1-f}{c-1}
$$

for its Hausdorff dimension.

Generalization

Let $p=\left\{\left(p_{l, 0}, p_{l, 1}, \cdots, p_{l, c-1}\right)\right\}_{0 \leq l<\nu}$ be a family of positive numbers. If $x=\left(x_{n}\right)_{n \geq 0} \in \mathbb{X}$, one sets

$$
\varkappa\left(x, c^{-k}\right)=\left(-\log \prod_{0 \leq j<k} p_{l, x_{j}}\right)_{0 \leq l<\nu}
$$

and take \mathbb{E}^{\prime} to be \mathbb{R}^{ν}.

It is easily seen that $\Lambda(q)=\log _{c}\left(\sum_{0 \leq j<c} \prod_{0 \leq l<\nu} p_{l, j}^{q_{l}}\right)$.
If $q \in \mathbb{R}^{\nu}$, one sets, for $1 \leq j \leq \nu, r_{j}=\prod_{0 \leq l<\nu} p_{l, j}^{q_{l}} / \sum_{0 \leq k<c 0 \leq l<\nu} \prod_{l, k}^{q_{l}}$. As previously, one considers the multinomial measure $\mu^{[q]}$ defined on \mathbb{X} by the formula $\mu^{[q]}\left(B\left(x, c^{-k}\right)\right)=\prod_{l=0}^{k-1} r_{x_{l}}$. As before, this is a Gibbs measure, which has two consequences: $\mathrm{b}(q)=\mathrm{B}(q)=\wedge(q)$ and the fact that the multifractal formalism holds for all q.

Recalling the notation $\varphi_{n}(x, j)=\frac{1}{n} \operatorname{card}\left\{0 \leq k<n \mid x_{k}=j\right\}$ for $j=0,1, \ldots, c-1$,
one has $\varkappa\left(x, c^{-k}\right)=\left(-k \sum_{0 \leq j<c} \varphi_{k}(x, j) \log p_{l, j}\right)_{0 \leq l<\nu}$.
Theorem 13. Let $\nu<c$ and $f_{0}, f_{1}, \ldots, f_{\nu-1}$ be positive numbers such that $\sum_{0 \leq j<\nu} f_{j} \leq 1$. Then,

$$
\begin{aligned}
\operatorname{dim} & \left\{x \in \mathbb{X} \mid \lim _{n \rightarrow+\infty} \varphi_{n}(x, j)=f_{j} \text { for } 0 \leq j<\nu\right\} \\
& =-\left(1-\sum_{0 \leq j<\nu} f_{j}\right) \log _{c} \frac{1-\sum_{0 \leq j<\nu} f_{j}}{c-\nu}-\sum_{0 \leq j<\nu} f_{j} \log _{c} f_{j}
\end{aligned}
$$

Proof. Take $p_{j, j}=c^{-1}$ and $p_{l, j}=1$ if $l \neq j$. Then

$$
\wedge(q)=\log _{c}\left(c-\nu+\sum_{0 \leq j<\nu} c^{-q_{j}}\right)
$$

and

$$
\frac{\varkappa\left(x, c^{-k}\right)}{k \log c}=\left(\varphi_{k}(x, j)\right)_{0 \leq j<\nu}
$$

Then, it is easy to complete the computation of the Legendre transform.

Set $H_{c}\left(x_{0}, x_{1}, \ldots, x_{c-1}\right)=-\sum_{j=0}^{c-1} x_{j} \log _{c} x_{j}$.
Theorem 14. Suppose $\nu<c$. Let $f_{0}, f_{1}, \ldots, f_{\nu-1}$ be non-negative numbers and consider the set

$$
B_{f}=\left\{x \in \mathbb{X} \mid \limsup _{n \rightarrow \infty} \varphi_{j}(x, n) \leq f_{j} \text { for } 0 \leq j<\nu\right\}
$$

Let $f_{0}^{*} \geq f_{1}^{*} \geq \cdots \geq f_{\nu-1}^{*}$ be the sequence $\left(f_{j}\right)_{0 \leq j<\nu}$ rearranged in decreasing order, and $f_{j}^{* *}=\sum_{j \leq k<\nu} f_{k}^{*}$. Then

1. If $(c-\nu) f_{0}^{*}+f_{0}^{* *}<1$, then $\operatorname{dim} B_{f}=H_{c}\left(f_{0}^{*}, \ldots, f_{\nu-1}^{*}, \frac{1-f_{0}^{* *}}{c-\nu}, \frac{1-f_{0}^{* *}}{c-\nu}, \ldots\right)$.
2. For $0 \leq k<\nu-1$, if $(c-\nu+k) f_{k}^{*}+f_{k}^{* *} \geq 1$ and $(c-\nu+k+$ 1) $f_{k+1}^{*}+f_{k+1}^{* *}<1$,
then $\operatorname{dim} E=H_{c}\left(f_{k}^{*}, \ldots, f_{\nu-1}^{*}, \frac{1-f_{k+1}^{* *}}{c-\nu+k+1}, \frac{1-f_{k+1}^{* *}}{c-\nu+k+1}, \ldots\right)$.
3. If $f_{\nu-1}^{*} \geq \frac{1}{c}$, then $\operatorname{dim} E=1$.

Short bibliography
F. Ben Nasr, I. Bhouri, and Y. Heurteaux, The validity of the multifractal formalism: results and examples. Adv. in Math. 165 (2002), 264-284.
A.S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system. Math. Ann. 110 (1934), 1-18.
G. Brown, G. Michon, and J. Peyrière, On the multifractal analysis of measures. J. Stat. Phys. 66 (1992), 775-790.
P. Collet, J. Lebowitz, and A. Porzio, The dimension spectrum of some dynamical systems. J. Stat. Phys. 47 (1987), 609-644.
H.G. Eggleston, The fractional dimension of a set defined by decimal properties. Q. J. Math. Oxford, Ser. 20 (1949), 31-46.

Lévy Véhel J. and Vojak R., Mutual multifractal analysis of sequences of Choquet capacities: preliminary results. Adv. Applied Math. 20 (1998), 1-43.
L. Olsen, A multifractal formalism. Advances in Math. 116 (1995), 82-196.
J. Peyrière, Multifractal measures. In: Probabilistic and Stochastic Methods in Analysis (Proceedings of the NATO ASI, Il Ciocco 1991). Ed. J. Byrnes, Kluwer Academic Publishers (1992).
J. Peyrière, A Vectorial Multifractal Formalism. Proceedings of Symposia in Pure Mathematics, 72.2 (2004), 217-230.

