Shapiro Sequences, Reed-Muller Codes, and Functional Equations

Harold S. Shapiro and Jim Byrnes
Prometheus Inc.
$\mathbb{Z}_{2}^{2^{m}}=$ set of binary 2^{m}-tuples, $m \geq 1$.
For each $n, 1 \leq n \leq 2^{m}-1$, and each $j, 1 \leq j \leq m$, $\delta_{j, n}=$ coefficient of 2^{j-1} in binary expansion of n. Also $\delta_{0, n}=1,0 \leq n \leq 2^{m}-1$.

$$
\begin{gathered}
n=\sum_{j=1}^{m} 2^{j-1} \delta_{j, n}, \quad \vec{g}_{j}=\vec{g}_{j}(m)=\left\langle\delta_{j, 0} \delta_{j, 1} \delta_{j, 2} \ldots \delta_{j, 2^{m}-1}\right\rangle, \\
\vec{g}_{0}=\vec{g}_{0}(m)=\langle 111 \ldots 1\rangle \\
\mathbf{G}_{m}=\left\{\vec{g}_{0}, \vec{g}_{1}, \ldots, \vec{g}_{m}\right\}
\end{gathered}
$$

Example: $m=3$

$$
\begin{aligned}
& n \\
& \overrightarrow{\vec{g}}_{0} \\
& \vec{g}_{1}
\end{aligned} \left\lvert\, \begin{array}{cccccccc}
& 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array} 1\right.
$$

The \vec{g}_{m} are discretized versions of the Rademacher functions.

Slide 3

Claim. The elements of \mathbf{G}_{m} are linearly independent.
Proof. For any set $\vec{a}=\left\langle a_{0} a_{1} \ldots a_{m}\right\rangle$ of real (or complex) numbers let

$$
\vec{V}=\vec{V}(\vec{a})=\sum_{j=0}^{m} a_{j} \vec{g}_{j}=\left\langle v_{0} v_{1} v_{2} \ldots v_{2^{m}-1}\right\rangle
$$

Since $\delta_{0,0}=1$ and $\delta_{j, 0}=0$ for $1 \leq j \leq m, v_{0}=a_{0}$.
Considering those $n, 1 \leq n \leq 2^{m}-1$, which have exactly one 1 in their binary expansion,

$$
v_{2^{k}}=a_{0}+a_{k+1} \quad 0 \leq k \leq m-1
$$

So, if $\vec{V}=\overrightarrow{0}$, first $a_{0}=0$ and then $a_{j}=0,1 \leq j \leq m$.

Slide 4

The Reed-Muller code of rank m and order 0 is

$$
R M(0, m)=\{\langle 00 \ldots 0\rangle,\langle 11 \ldots 1\rangle\}
$$

where each vector (codeword) has 2^{m} entries. $R M(1, m)$ is the subgroup of $\mathbb{Z}_{2}^{2^{m}}$ generated by the codewords in \mathbf{G}_{m}, i.e., the vector space over \mathbb{Z}_{2} spanned by these codewords. $R M(1, m)$ contains 2^{m+1} codewords.

Define multiplication • on $\mathbb{Z}_{2}^{2^{m}}$ by
$\left\langle x_{0} x_{1} \ldots x_{2^{m}-1}\right\rangle \cdot\left\langle y_{0} y_{1} \ldots y_{2^{m}-1}\right\rangle=\left\langle x_{0} y_{0} x_{1} y_{1} \ldots x_{2^{m}-1} y_{2^{m}-1}\right\rangle$.
Augment \mathbf{G}_{m} with all products $\vec{g}_{i} \cdot \vec{g}_{j}, 1 \leq i<j \leq m$, to form $\mathbf{G}_{m}^{(2)}$.

Slide 5

Example: $m=3$

n	0	1	2	3	4	5	6	7
\vec{g}_{0}	1	1	1	1	1	1	1	1
\vec{g}_{1}	0	1	0	1	0	1	0	1
\vec{g}_{2}	0	0	1	1	0	0	1	1
\vec{g}_{3}	0	0	0	0	1	1	1	1
$\vec{g}_{1} \cdot \vec{g}_{2}$	0	0	0	1	0	0	0	1
$\vec{g}_{1} \cdot \vec{g}_{3}$	0	0	0	0	0	1	0	1
$\vec{g}_{2} \cdot \vec{g}_{3}$	0	0	0	0	0	0	1	1

$\mathbf{G}_{3}^{(2)}=\mathbf{G}_{3} \cup\{\langle 00010001\rangle,\langle 00000101\rangle,\langle 00000011\rangle\}$.

Slide 6

Claim. The $1+m+\binom{m}{2}$ elements of $\mathbf{G}_{m}^{(2)}$ are linearly independent.
Proof. For any set $\vec{b}=\left\langle b_{0} b_{1} \ldots b_{m} b_{m+1} \ldots b_{m+\binom{m}{2}}\right\rangle$ of real (or complex) numbers suppose

$$
\sum_{j=0}^{m} b_{j} \vec{g}_{j}+\sum_{j=1}^{m-1} \sum_{i=j+1}^{m} b_{j m-\frac{j(j+1)}{2}+i} \vec{g}_{i} \cdot \vec{g}_{j}=\overrightarrow{0}
$$

By first considering (as above) those n which have exactly one 1 in their binary expansion, $b_{0}=b_{1}=\ldots=b_{m}=0$. Analogously, by then considering those n which have exactly two 1 's in their binary expansion,

$$
b_{m+1}=b_{m+2}=\ldots=b_{m+\binom{m}{2}}=0 .
$$

Slide 7
$R M(2, m)$ is the subgroup of $\mathbb{Z}_{2}^{2^{m}}$ generated by the codewords in $\mathbf{G}_{m}^{(2)} . R M(2, m)$ contains $2^{1+m+\binom{m}{2}}$ codewords.
Augmenting $\mathbf{G}_{m}^{(2)}$ with all products of the form $\vec{g}_{i} \cdot \vec{g}_{j} \cdot \vec{g}_{k}, 1 \leq i<$ $j<k \leq m$, and continuing as above we get $\mathbf{G}_{m}^{(3)}, R M(3, m)$, etc. Theorem. $R M(k, m)$ for $m \geq 1,0 \leq k \leq m$ is a subgroup of $\mathbb{Z}_{2}^{2^{m}}$ consisting of 2^{N} codewords, where $N=\sum_{i=0}^{k}\binom{m}{i}$. The minimum Hamming weight (i.e., number of ones) of the nonzero codewords in $R M(k, m)$ is 2^{m-k}.

Proof. Exercise, or see Handbook of Coding Theory, V. Pless and W.C. Huffman, Editors, Vol. 1, pp. 122-126.

Slide 8

Let's examine a particular element $\vec{S}_{m} \in R M(2, m)$ given by

$$
\vec{S}_{m}=\sum_{j=1}^{m-1} \vec{g}_{j} \cdot \vec{g}_{j+1}=\left\langle s_{0} s_{1} \ldots s_{2^{m}-1}\right\rangle
$$

Example. $m=3$

n	0	1	2	3	4	5	6	7
\vec{g}_{1}	0	1	0	1	0	1	0	1
\vec{g}_{2}	0	0	1	1	0	0	1	1
\vec{g}_{3}	0	0	0	0	1	1	1	1
$\vec{g}_{1} \cdot \vec{g}_{2}$	0	0	0	1	0	0	0	1
$\vec{g}_{2} \cdot \vec{g}_{3}$	0	0	0	0	0	0	1	1
\vec{S}_{3}	0	0	0	1	0	0	1	0

Slide 9

Let $\phi(n)$ be the number of times that the block $B=[11]$ occurs in the binary expansion of $n, 0 \leq n \leq 2^{m}-1$.

Claim.

$$
s_{n}= \begin{cases}0 & \text { if } \phi(n) \text { is even } \\ 1 & \text { if } \phi(n) \text { is odd }\end{cases}
$$

Proof. Consider the n-th entry in each individual term of the sum \vec{S}_{m}. This entry is 1 iff $\delta(j, n)=\delta(j+1, n)=1$, otherwise it is 0.

Let $\mathcal{G}_{m}=\left\{\vec{\gamma}_{0}, \vec{\gamma}_{1}, \vec{\gamma}_{2}, \ldots, \vec{\gamma}_{2^{m}-1}\right\}$ be the subgroup of $R M(1, m)$ generated by $\vec{g}_{1}, \vec{g}_{2}, \ldots, \vec{g}_{m}$.

Example. $m=3$

	n	0	1	2	3	4	5	6	7
	\vec{g}_{1}	0	1	0	1	0	1	0	1
\vec{g}_{2}	0	0	1	1	0	0	1	1	
\vec{g}_{3}	0	0	0	0	1	1	1	1	
\mathcal{G}_{3}	$\vec{\gamma}_{0}=0 \cdot \vec{g}_{1}+0 \cdot \vec{g}_{2}+0 \cdot \vec{g}_{3}$	0	0	0	0	0	0	0	0
	$\vec{\gamma}_{1}=1 \cdot \vec{g}_{1}+0 \cdot \vec{g}_{2}+0 \cdot \vec{g}_{3}$	0	1	0	1	0	1	0	1
	0	0	1	1	0	0	1	1	
	0	1	1	0	0	1	1	0	
	0	0	0	0	1	1	1	1	
	0	0	1	1	0	0	1	1	
$\vec{\gamma}_{5}$									
$\vec{\gamma}_{6}=0 \cdot \vec{g}_{1}+1 \cdot \vec{g}_{2}+1 \cdot \vec{g}_{3}$	0	0	1	1	1	1	0	0	
	$\vec{\gamma}_{7}=1 \cdot \vec{g}_{1}+1 \cdot \vec{g}_{2}+1 \cdot \vec{g}_{3}$	0	1	1	0	1	0	0	1

Slide 11

Switch gears: rewrite all codewords in $R M(k, m)$ by mapping $0 \rightarrow 1$, $1 \rightarrow-1$. Since $\vec{g}_{1}, \vec{g}_{2}, \ldots, \vec{g}_{m}$ are discretized versions of the Rademacher functions, $\vec{\gamma}_{0}, \vec{\gamma}_{1}, \ldots, \vec{\gamma}_{2^{m}-1}$, are discretized versions of the Walsh functions. That is, \mathcal{G}_{m} is the $2^{m} \times 2^{m}$ Sylvester Hadamard matrix, which we relabel H_{m}.

Example.

$$
H_{3}=\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}
$$

Slide 12

Now $s_{n}=(-1)^{\phi(n)}$.

Claim.

$$
s_{2 n}=s_{n}, \quad s_{2 n+1}=\left\{\begin{array}{ll}
s_{n} & \text { if } n \text { is even } \\
-s_{n} & \text { if } n \text { is odd }
\end{array} .\right.
$$

Proof. The binary expansion of $2 n$ is the binary expansion of n shifted one slot to the left with a 0 added on the right, so $\phi(2 n)=\phi(n)$. Similarly the binary expansion of $2 n+1$ is the binary expansion of n shifted one slot to the left with a 1 added on the right. If n is even this does not change $\phi(n)$. If n is odd (i.e., n ends in 1) then $\phi(2 n+1)=\phi(n)+1$.

Consider the generating function of $\left\{s_{n}\right\}$,

$$
g(z)=\sum_{n=0}^{\infty} s_{n} z^{n}
$$

Claim. $g(z)$ satisfies the functional equation (FE) (Brillhart and Carlitz)

$$
g(z)=g\left(z^{2}\right)+z g\left(-z^{2}\right)
$$

Proof. Write $g(z)$ as the sum of its even and odd parts, $E(z)$ and $O(z)$, respectively. So

$$
E(z)=\sum_{n=0}^{\infty} s_{2 n} z^{2 n} \quad \text { and } \quad O(z)=\sum_{n=0}^{\infty} s_{2 n+1} z^{2 n+1}
$$

Slide 14

From the previous claim

$$
\begin{aligned}
E(z) & =\sum_{n=0}^{\infty} s_{n} z^{2 n}=g\left(z^{2}\right) \text { and } \\
O(z) & =\sum_{\substack{n=0 \\
n \text { even }}}^{\infty} s_{2 n+1} z^{2 n+1}+\sum_{\substack{n=0 \\
n \text { odd }}}^{\infty} s_{2 n+1} z^{2 n+1} \\
& =z \sum_{\substack{n=0 \\
n \text { even }}}^{\infty} s_{n} z^{2 n}-z \sum_{\substack{n=0 \\
n \text { odd }}}^{\infty} s_{n} z^{2 n} \\
& =z \sum_{n=0}^{\infty}(-1)^{n} s_{n} z^{2 n}=z g\left(-z^{2}\right)
\end{aligned}
$$

Iterate the FE for $g(z)$:

$$
\begin{aligned}
g\left(z^{2}\right) & =g\left(z^{4}\right)+z^{2} g\left(-z^{4}\right) \\
g\left(-z^{2}\right) & =g\left(z^{4}\right)-z^{2} g\left(-z^{4}\right), \quad \text { so } \\
g(z) & =(1+z) g\left(z^{4}\right)+z^{2}(1-z) g\left(-z^{4}\right) .
\end{aligned}
$$

Repeat:

$$
\begin{aligned}
g\left(z^{4}\right) & =g\left(z^{8}\right)+z^{4} g\left(-z^{8}\right) \\
g\left(-z^{4}\right) & =g\left(z^{8}\right)-z^{4} g\left(-z^{8}\right), \quad \text { so } \\
g(z) & =\left(1+z+z^{2}-z^{3}\right) g\left(z^{8}\right)+z^{4}\left(1+z-z^{2}+z^{3}\right) g\left(-z^{8}\right) .
\end{aligned}
$$

Slide 16

Continuing we see that, beginning with

$$
g(z)=A(z) g\left(z^{2^{m}}\right)+z^{2^{m-1}} B(z) g\left(-z^{2^{m}}\right)
$$

and applying

$$
\begin{aligned}
g\left(z^{2^{m}}\right) & =g\left(z^{2^{m+1}}\right)+z^{2^{m}} g\left(-z^{2^{m+1}}\right) \\
g\left(-z^{2^{m}}\right) & =g\left(z^{2^{m+1}}\right)-z^{2^{m}} g\left(-z^{2^{m+1}}\right)
\end{aligned}
$$

we get at the next step

$$
\begin{aligned}
& g(z)=\left[A(z)+z^{2^{m-1}} B(z)\right] g\left(z^{2^{m+1}}\right) \\
& \quad+z^{2^{m}}\left[A(z)-z^{2^{m-1}} B(z)\right] g\left(-z^{2^{m+1}}\right)
\end{aligned}
$$

Slide 17

Renaming the initial $A(z)$ and $B(z)$ to $P_{0}(z)$ and $Q_{0}(z)$, respectively, and naming the (polynomial) coefficients of $g\left(z^{2^{m}}\right)$ and $g\left(-z^{2^{m}}\right)$ $P_{m-1}(z)$ and $Q_{m-1}(z)$, respectively, $m \geq 1$, the above yields

$$
\begin{aligned}
P_{0}(z) & =Q_{0}(z)=1 \\
P_{m}(z) & =P_{m-1}(z)+z^{2^{m-1}} Q_{m-1}(z) \\
Q_{m}(z) & =P_{m-1}(z)-z^{2^{m-1}} Q_{m-1}(z) .
\end{aligned}
$$

Thus, the $\left\{P_{m}(z)\right\}_{m=0}^{\infty}$ and $\left\{Q_{m}(z)\right\}_{m=0}^{\infty}$ are precisely the Shapiro Polynomials! $P_{m}(z)$ and $Q_{m}(z)$ are each polynomials of degree $2^{m}-1$ with coefficients ± 1. For each m the first 2^{m} coefficients of $g(z)$ are exactly the coefficients of $P_{m}(z)$. So, for each m, the 2^{m}-truncation $\left\langle s_{0} s_{1} \ldots s_{2^{m}-1}\right\rangle$ of the Shapiro sequence $\left\{s_{j}\right\}_{j=0}^{\infty}$ is an element of $R M(2, m)$.

Slide 18

Why might that be important?

Recall the fundamental property of the Shapiro polynomials, namely that for each $m P_{m}$ and Q_{m} are complementary:

$$
\left|P_{m}(z)\right|^{2}+\left|Q_{m}(z)\right|^{2}=2^{m+1} \quad \text { for all }|z|=1
$$

Consequently P_{m} and Q_{m} each have crest factor (the ratio of the sup norm to the L^{2} norm on the unit circle) bounded by $\sqrt{2}$ independent of m. i.e., P_{m} and Q_{m} are energy spreading. So the coefficients of P_{m} are an energy spreading second order Reed-Muller codeword.

Also, letting $\vec{h}_{j}, 0 \leq j \leq 2^{m}-1$, denote the rows of \mathbf{H}_{m}, the matrix \mathbf{P}_{m} whose rows are $\vec{S}_{m} \cdot \vec{h}_{j}$, is a PONS matrix. Its 2^{m} rows can be split into 2^{m-1} pairs of complementary rows, with each row having crest factor (bounded by) $\sqrt{2}$.
Since each $\vec{h}_{j} \in R M(1, m)$ and $\vec{S}_{m} \in R M(2, m)$, the (rows of the) PONS matrix is a coset of the subgroup $R M(1, m)$ of $R M(2, m)$.

Thus we have constructed 2^{m} (really 2^{m+1} by considering $-\mathbf{H}_{m}$) energy spreading second order Reed-Muller codewords.

Let's now briefly examine growth properties of $g\left(r e^{i \theta}\right)$ as $r \uparrow 1$.
For $0<r<1$ set

$$
M(r)=\max _{\theta}\left|g\left(r e^{i \theta}\right)\right|
$$

Using the crest factor bound for $P_{m}(z)$ and partial summation yields $M(r)=O\left(\frac{1}{1-r}\right)^{\frac{1}{2}}$.
Challenge. Since the FE $g(z)=g\left(z^{2}\right)+z g\left(-z^{2}\right)$ together with the initial condition $g(0)=1$ uniquely determines $g(z)$, obtain this bound on $M(r)$ directly from the FE , without resorting to the (very beautiful but very specific) complementarity property of P_{m} and Q_{m}.

Why bother?

I. Because it is a challenge;
II. Blocks other than $B=[11]$ appear in connection with higherorder Reed-Muller codes. For example, the block [111] yields codewords in $R M(3, m)$. The generating functions of these blocks satisfy similar (although more complicated) FE's. The idea (hope?) is that these FE's should yield corresponding crest factor bounds for subsets of $R M(k, m), k \geq 3$, resulting in higher-order energy spreading Reed-Muller codes.

Slide 22

Current state of the art
Theorem. For any $\epsilon>0, M(r)=O\left(\frac{1}{1-r}\right)^{\frac{1}{2}+\epsilon}$.
Corollary. Let $s_{n}(z)=\sum_{j=0}^{n} s_{j} z^{j}$ be a partial sum of $g(z)$. Then for each $\alpha>\frac{1}{2}$,

$$
\max _{|z|=1}\left|s_{n}(z)\right|=O\left(n^{\alpha}\right) \quad \text { as } n \rightarrow \infty .
$$

Basic Lemma. Let $F(r)$ be a positive increasing continuous function on $[0,1)$. If

$$
F(r) \leq A F\left(r^{\alpha}\right)
$$

for some $A>0, \alpha>1$ then

$$
F(r)=O\left(\frac{1}{1-r}\right)^{\frac{\log A}{\log \alpha}}
$$

for r near 1 .
Proofs. To appear.

Slide 24

Blocks and FE's

Let $B=\left[\beta_{1} \beta_{2} \ldots \beta_{r}\right], \beta_{j}=0$ or $1, \beta_{1}=1$ be a binary block and $N=N(B)=\beta_{r}+2 \beta_{r-1}+\ldots+2^{r-1} \beta_{1}$ be the integer whose binary expansion is B. Let $\Psi_{B}(n)$ be the number of occurrences of B in the binary expansion of n and let $f_{B}(z)$ be the generating function of Ψ_{B},

$$
f_{B}(z)=\sum_{n=0}^{\infty} \Psi_{B}(n) z^{n}
$$

Theorem. $f_{B}(z)$ satisfies the FE

$$
f_{B}(z)=(1+z) f_{B}\left(z^{2}\right)+\frac{z^{N(B)}}{1-z^{2^{r}}}
$$

Proof. To appear.

Slide 25

Now consider the parity sequence of $\Psi_{B}(n), \delta_{B}(n)=(-1)^{\Psi_{B}(n)}$, and its generating function $g_{B}(z)=\sum_{n=0}^{\infty} \delta_{B}(n) z^{n}$. For the general case it will again be useful to split g_{B} into its even and odd parts,

$$
\begin{aligned}
& E_{B}(z)=\sum_{n=0}^{\infty} \delta_{B}(2 n) z^{2 n} \\
& O_{B}(z)=\sum_{n=0}^{\infty} \delta_{B}(2 n+1) z^{2 n+1}
\end{aligned}
$$

Previous example: $B=[11], \delta_{B}(n)$ is the Shapiro sequence, $g_{B}(z)$ satisfies the FE $g_{B}(z)=g_{B}\left(z^{2}\right)+z g_{B}\left(-z^{2}\right)$.

Example: $B=[1]$.
Arguing as before, $\Psi_{B}(2 n)=\Psi_{B}(n)$ and $\Psi_{B}(2 n+1)=\Psi_{B}(n)+1$ so that (writing δ_{n} for $\delta_{B}(n)$ to ease notation) $\delta_{2 n}=\delta_{n}, \delta_{2 n+1}=-\delta_{n}$. Hence $E_{B}(z)=g_{B}\left(z^{2}\right), O_{B}(z)=-z g_{B}\left(z^{2}\right)$, and we have the FE $g_{B}(z)=(1-z) g_{B}\left(z^{2}\right)$. Iterating, $g_{B}(z)=(1-z)\left(1-z^{2}\right)\left(1-z^{4}\right) \ldots$ and δ_{n} is the Thue-Morse sequence $[1-1-11-111-1 \ldots]$. Drop the subscript B from now on.

Example: $\beta_{r}=0$.
$\Psi(2 n+1)=\Psi(n)$, so $\delta_{2 n+1}=\delta_{n}$, so $O(z)=z g\left(z^{2}\right)$. Since $g(z)-$ $g(-z)=2 O(z)$ we have the FE $g(z)=g(-z)+2 z g\left(z^{2}\right)$.
Example: $\beta_{r}=1$.
As above, now $g(z)=-g(-z)+2 g\left(z^{2}\right)$.

Example (a typical case?): $B=[110010], r=6$.
$\Psi(2 n+1)=\Psi(n) . \Psi(2 n)=\Psi(n)$ unless the binary expansion of n ends in [11001], i.e., unless $n \equiv K\left(\bmod 2^{5}\right)$, where $K=$ $2^{4}+2^{3}+2^{0}=25$, in which case $\Psi(2 n)=\Psi(n)+1$. So

$$
\delta_{2 n+1}=\delta_{n}, \quad \delta_{2 n}= \begin{cases}-\delta_{n} & \text { if } n \equiv 25(\bmod 32) \\ \delta_{n} & \text { otherwise }\end{cases}
$$

So $O(z)=z g\left(z^{2}\right)$.

$$
\begin{aligned}
E(z) & =\sum_{n=0}^{\infty} \delta_{2 n} z^{2 n}=\sum_{n=0}^{\infty} \delta_{n} z^{2 n}-2 \sum_{n \equiv 25(\bmod 32)} \delta_{n} z^{2 n} \\
& =g\left(z^{2}\right)-2 \sum_{j=0}^{\infty} \delta_{32 j+25} z^{64 j+50}=g\left(z^{2}\right)-2 z^{50} F(z)
\end{aligned}
$$

where $F(z)=\sum_{j=0}^{\infty} \delta_{32 j+25} z^{64 j}$.
But $\delta_{32 j+25}=\delta_{2(16 j+12)+1}=\delta_{16 j+12}=\delta_{2(8 j+6)}=\delta_{8 j+6}=\delta_{2(4 j+3)}=$ $\delta_{4 j+3}=\delta_{2(2 j+1)+1}=\delta_{2 j+1}=\delta_{j}$, where we have used the fact that neither $8 j+6$ nor $4 j+3$ can be congruent to $25(\bmod 32)$. So $F(z)=\sum_{j=0}^{\infty} \delta_{j} z^{64 j}=g\left(z^{64}\right)$, and we have the FE

$$
g(z)=(1+z) g\left(z^{2}\right)-2 z^{50} g\left(z^{64}\right)
$$

How typical is this example? Do we always get Full Reduction (FR) of the index of δ ?

Consider the general case:

$$
\begin{aligned}
B & =\left[\beta_{1} \beta_{2} \ldots \beta_{r}\right] \\
N & =\beta_{r}+2 \beta_{r-1}+\ldots+2^{r-1} \beta_{1} \\
K & =\beta_{r-1}+2 \beta_{r-2}+\ldots+2^{r-2} \beta_{1}
\end{aligned}
$$

Case I: $\beta_{r}=0$. As above,

$$
\begin{gathered}
\delta_{2 n+1}=\delta_{n}, \quad \delta_{2 n}= \begin{cases}-\delta_{n} & \text { if } n \equiv K\left(\bmod 2^{r-1}\right) \\
\delta_{n} & \text { otherwise }\end{cases} \\
O(z)=z g\left(z^{2}\right), \quad E(z)=g\left(z^{2}\right)-2 z^{2 K} \sum_{j=0}^{\infty} \delta_{2^{r-1} j+K} z^{2^{r} j}
\end{gathered}
$$

Slide 30

To get FR the index $I(1)=I_{j, K}(1)=2^{r-1} j+K$ must reduce to j by repeated applications of the mapping $\mu(n)$:

$$
\mu(2 n+1)=n, \quad \mu(2 n)=n \quad \text { unless } n \equiv K\left(\bmod 2^{r-1}\right) .
$$

Let $\{I(1), I(2), \ldots\}$ be the succession of indices that we get by repeating μ (assuming it works), and let I denote one of these indices. Whether $I=2 n+1$ or $I=2 n$, reduction to n occurs by dropping the last binary digit on the right of I and shifting what's left 1 slot to the right. For reduction to fail at the first step, $I(1)$ must be of the form $2 n$ where $n \equiv K\left(\bmod 2^{r-1}\right)$, or $n=2^{r-1} m+K$ for some integer m, or $2 n=2^{r} m+2 K$.

The binary expansion (BE) of K is $\left(\beta_{1} \beta_{2} \ldots \beta_{r-1}\right)$ so that of $2 K$ is $\left(\beta_{1} \beta_{2} \ldots \beta_{r-1} 0\right)$.

So for the first reduction $I(1) \rightarrow I(2)$ to fail the BE of $I(1)$ must end in $\left(\beta_{1} \beta_{2} \ldots \beta_{r-1} 0\right)$. This is possible (i.e., there are integers j which make it possible) iff the BE of $I(1)$ ends in $\left(\beta_{2} \beta_{3} \ldots \beta_{r-1} 0\right)$, or (since the BE of $I(1)$ ends in that of K)

$$
\left(\beta_{1} \beta_{2} \ldots \beta_{r-1}\right)=\left(\beta_{2} \beta_{3} \ldots \beta_{r-1} 0\right)
$$

Assuming this equation does not hold we get $I(2)$ whose BE ends in $\left(\beta_{1} \beta_{2} \ldots \beta_{r-2}\right)$. As above, $I(2) \rightarrow I(3)$ fails iff the BE of $I(2)$ ends in $\left(\beta_{1} \beta_{2} \ldots \beta_{r-1} 0\right)$ which is possible (again, there are integers j which make it possible) iff $I(2)$ ends in ($\beta_{3} \beta_{4} \ldots \beta_{r-1} 0$), or

$$
\left(\beta_{1} \beta_{2} \ldots \beta_{r-2}\right)=\left(\beta_{3} \beta_{4} \ldots \beta_{r-1} 0\right)
$$

Call the block $B=\left[\beta_{1} \beta_{2} \ldots \beta_{r}\right]$ nonrepeatable if

$$
\left[\beta_{1} \beta_{2} \ldots \beta_{\nu}\right] \neq\left[\beta_{r-(\nu-1)} \beta_{r-(\nu-2)} \ldots \beta_{r}\right]
$$

for each $\nu, 1 \leq \nu \leq r-1$.
Theorem. FR works iff B is nonrepeatable. When FR works we get the FE $g(z)=(1+z) g\left(z^{2}\right)-2 z^{2 K} g\left(z^{2^{r}}\right)$.
Case II: $\beta_{r}=1$. The above argument works when B is nonrepeatable up to the last step, yielding:
Theorem. If $\left[\beta_{1} \beta_{2} \ldots \beta_{\nu}\right] \neq\left[\beta_{r-(\nu-1)} \beta_{r-(\nu-2)} \ldots \beta_{r}\right]$ for each $\nu, 2 \leq \nu \leq r-1$, and $\beta_{1}=\beta_{r}=1$, then reduction works up until the final step and we get the FE

$$
g(z)=(1+z) g\left(z^{2}\right)-2 z^{2 K+1-2^{r-1}}\left[g\left(z^{2^{r-1}}\right)-g\left(z^{2^{r}}\right)\right] .
$$

Slide 33

Other cases are not so neat.
Example. $B=\left[\begin{array}{llllll}1 & 1 & 0 & 1 & 1\end{array}\right]$.
The FE is

$$
g(z)=(1+z) g\left(z^{2}\right)-2 z^{7} g\left(z^{16}\right)+2 z^{7} g\left(z^{32}\right)+2 z^{23} g\left(z^{64}\right) .
$$

Example. $B=\left[\begin{array}{lll}1 & 1 & 1\end{array} 01\right]$.
The FE is
$g(z)=(1+z) g\left(z^{2}\right)-2 z^{5}\left[g\left(z^{8}\right)-\left(1+z^{8}\right) g\left(z^{16}\right)\right]-2 z^{13}\left[g\left(z^{32}\right)-g\left(z^{64}\right)\right]$.

Slide 34

The general " $1-1$ " case, $\beta_{1}=\beta_{r}=1$.

$$
\begin{gathered}
\delta_{2 n}=\delta_{n}, \quad \delta_{2 n+1}= \begin{cases}-\delta_{n} & \text { if } n \equiv K\left(\bmod 2^{r-1}\right) \\
\delta_{n} & \text { otherwise }\end{cases} \\
K=\beta_{r-1}+2 \beta_{r-2}+\ldots+2^{r-2} \beta_{1}, \\
E(z)=g\left(z^{2}\right), \\
O(z)=z g\left(z^{2}\right)-2 \sum_{\substack{n \equiv K \\
\left(\bmod 2^{r-1}\right)}} \delta_{n} z^{2 n+1}=z g\left(z^{2}\right)-2 G_{B}(z) \\
\text { where } \quad G_{B}(z)=\sum_{j=0}^{\infty} \delta_{2^{r-1} j+K} z^{2^{r} j+2 K+1} .
\end{gathered}
$$

Basic idea: Reduce subscript of δ as much as possible, express $G_{B}(z)$ in terms of $G_{B}\left(z^{2^{p}}\right)$ for some $p>0$, replace $G_{B}\left(z^{2^{p}}\right)$ by using $-2 G_{B}\left(z^{2^{p}}\right)=O\left(z^{2^{p}}\right)-z^{2^{p}} g\left(z^{2^{p+1}}\right)=g\left(z^{2^{p}}\right)-g\left(z^{2^{p+1}}\right)-$ $z^{2^{p}} g\left(z^{2^{p+1}}\right)$ and then repeat to get the desired expression for $O(z)=$ $g(z)-g\left(z^{2}\right)$.
Details for the "fully repeatable" case, $\beta_{j}=1,1 \leq j \leq r$.
Now $K=2^{r-1}-1$. For $1 \leq m \leq r-1$ let

$$
G_{m}(z)=\sum_{j=0}^{\infty} \delta_{2^{r-m} j+2^{r-m}-1} z^{2^{r} j+2^{r}-1}
$$

so that $G_{B}(z)=G_{1}(z)$.

For $2 \leq q \leq r-1$,

$$
\begin{aligned}
\delta_{2^{q} j+2^{q}-1}= & \delta_{2\left(2^{q-1} j+2^{q-1}-1\right)+1}= \\
& = \begin{cases}-\delta_{2^{q-1} j+2^{q-1}-1} & \text { if } j \equiv 2^{r-q}-1\left(\bmod 2^{r-q}\right) \\
\delta_{2^{q-1} j+2^{q-1}-1} & \text { otherwise }\end{cases}
\end{aligned}
$$

since

$$
\begin{aligned}
& 2^{q-1} j+2^{q-1}-1 \equiv\left(2^{r-1}-1\right)\left(\bmod 2^{r-1}\right) \\
& \Leftrightarrow j \equiv\left(2^{r-q}-1\right)\left(\bmod 2^{r-q}\right) .
\end{aligned}
$$

Slide 37

Let $q=r-m$, so $m=r-q$, so $1 \leq m \leq r-2$. Then
$\delta_{2^{r-m} j+2^{r-m}-1}= \begin{cases}-\delta_{2^{r-m-1} j+2^{r-m-1}-1} & \text { if } j \equiv\left(2^{m}-1\right)\left(\bmod 2^{m}\right) \\ \delta_{2^{r-m-1} j+2^{r-m-1}-1} & \text { otherwise }\end{cases}$
So, for $1 \leq m \leq r-2$,

$$
\begin{aligned}
G_{m}(z)=\sum_{j=0}^{\infty} \delta_{2^{r-m-1} j+2^{r-m-1}-1} z^{2^{r} j+2^{r}-1} \\
-2 \sum_{\substack{j \equiv\left(2^{m}-1\right) \\
\left(\bmod 2^{m}\right)}} \delta_{2^{r-m-1} j+2^{r-m-1}-1} z^{2^{r} j+2^{r}-1}
\end{aligned}
$$

When you replace j in the second sum by $2^{m} j+2^{m}-1$ it becomes

$$
\begin{aligned}
& \sum_{j=0}^{\infty} \delta_{2^{r-1} j+2^{r-1}-2^{r-m-1}+2^{r-m-1}-1} 2^{r+m} j+2^{r+m}-2^{r}+2^{r}-1 \\
= & \sum_{j=0}^{\infty} \delta_{2^{r-1} j+2^{r-1}-1} z^{2^{r+m} j+2^{r+m}-1} \\
= & z^{2^{m}-1} \sum_{j=0}^{\infty} \delta_{2^{r-1} j+2^{r-1}-1} z^{2^{r+m}} j+2^{m}\left(2^{r}-1\right) \\
= & z^{2^{m}-1} \sum_{j=0}^{\infty} \delta_{2^{r-1} j+2^{r-1}-1}\left(z^{2^{m}}\right)^{2^{r} j+2^{r}-1} \\
= & z^{2^{m}-1} G_{1}\left(z^{2^{m}}\right) .
\end{aligned}
$$

The first sum is obviously $G_{m+1}(z)$, so

$$
G_{m}(z)=G_{m+1}(z)-2 z^{2^{m}-1} G_{1}\left(z^{2^{m}}\right)
$$

for $1 \leq m \leq r-2$. For $m=r-1$,

$$
\begin{aligned}
G_{r-1}(z) & =\sum_{j=0}^{\infty} \delta_{2 j+1} z^{2^{r} j+2^{r}-1} \\
& =z^{2^{r-1}-1} \sum_{j=0}^{\infty} \delta_{2 j+1}\left(z^{2^{r-1}}\right)^{2 j+1} \\
& =z^{2^{r-1}-1} O\left(z^{2^{r-1}}\right) .
\end{aligned}
$$

Combining these G_{m} 's in turn yields: $G_{B}(z)=G_{1}(z)=$

$$
\begin{aligned}
= & G_{2}(z)-2 z G_{1}\left(z^{2}\right)=G_{3}(z)-2 z G_{1}\left(z^{2}\right)-2 z^{3} G_{1}\left(z^{4}\right) \\
= & G_{4}(z)-2 z G_{1}\left(z^{2}\right)-2 z^{3} G_{1}\left(z^{4}\right)-2 z^{7} G_{1}\left(z^{8}\right)=\ldots \\
= & G_{r-1}-2 z G_{1}\left(z^{2}\right)-2 z^{3} G_{1}\left(z^{4}\right)-\ldots-2 z^{2^{r-2}-1} G_{1}\left(z^{2^{r-2}}\right) \\
= & z^{2^{r-1}-1} O\left(z^{2^{r-1}}\right)+z\left[-2 G_{1}\left(z^{2}\right)-2 z^{2} G_{1}\left(z^{4}\right)-2 z^{6} G_{1}\left(z^{8}\right)\right. \\
& \left.-\ldots-2 z^{2^{r-2}-2} G_{1}\left(z^{2^{r-2}}\right)\right] \\
= & z^{2^{r-1}-1}\left[g\left(z^{2^{r-1}}\right)-g\left(z^{2^{r}}\right)\right]+z\left[g\left(z^{2}\right)-g\left(z^{4}\right)-z^{2} g\left(z^{4}\right)\right. \\
& +z^{2}\left\{g\left(z^{4}\right)-g\left(z^{8}\right)-z^{4} g\left(z^{8}\right)\right\}+z^{6}\left\{g\left(z^{8}\right)-g\left(z^{16}\right)-z^{8} g\left(z^{16}\right)\right\} \\
& \left.+\ldots+z^{2^{r-2}-2}\left\{g\left(z^{2^{r-2}}\right)-g\left(z^{2^{r-1}}\right)-z^{2^{r-2}} g\left(z^{2^{r-1}}\right)\right\}\right] \\
= & z g\left(z^{2}\right)-z g\left(z^{4}\right)-z^{3} g\left(z^{8}\right)-z^{7} g\left(z^{16}\right) \\
& -\ldots-z^{2^{r-2}-1} g\left(z^{2^{r-1}}\right)-z^{2^{r-1}-1} g\left(z^{2^{r}}\right)
\end{aligned}
$$

Slide 41

With

$$
g(z)=E(z)+O(z)=g\left(z^{2}\right)+z g\left(z^{2}\right)-2 G_{B}(z)
$$

we finally have the FE

$$
\begin{aligned}
g(z)=(1-z) g\left(z^{2}\right)+ & 2 z\left[g\left(z^{4}\right)+z^{2} g\left(z^{8}\right)+z^{6} g\left(z^{16}\right)\right. \\
& \left.+\ldots+z^{2^{r-2}-2} g\left(z^{2^{r-1}}\right)+z^{2^{r-1}-2} g\left(z^{2^{r}}\right)\right] .
\end{aligned}
$$

Slide 42

References

1 Papers, patent, etc., at www.prometheus-inc.com/public/pons
2 Brillhart \& Carlitz, "Note on the Shapiro Polynomials". Proc. AMS 25, 1970 (pp. 114-118)
3 H.S. Shapiro, "Extremal Problems for Polynomials and Power Series", Sc.M. thesis, MIT, 1951
4 J.A. Davis and J. Jedwab, "Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes", IEEE Trans. Inf. Th., 45(7), pp. 2397-2417, 1999
5 S. R. Weller, W. Moran and J. S. Byrnes, "On the Use of the PONS Sequences for Peak-to-Mean Power Control in OFDM", Proc. of the Workshop on Defense Applications in Signal Processing, LaSalle, Illinois, pp. 203-209, 1999
6 P.-G. Becker, "k-Regular Power Series and Mahler-Typer Functional Equations", Journal of Number Theory, Vol. 49, pp. 269-286, 1994

7 Handbook of Coding Theory, V. Pless and W.C. Huffman, Eds., Vol. 1

