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Z2m

2 = set of binary 2m-tuples,m ≥ 1.

For each n, 1 ≤ n ≤ 2m − 1, and each j, 1 ≤ j ≤ m,
δj,n = coefficient of 2j−1 in binary expansion of n.
Also δ0,n = 1, 0 ≤ n ≤ 2m − 1.

n =
m∑

j=1

2j−1δj,n, ~gj = ~gj(m) = 〈 δj,0 δj,1 δj,2 . . . δj,2m−1 〉,

~g0 = ~g0(m) = 〈 1 1 1 . . . 1 〉.

Gm = {~g0, ~g1, . . . , ~gm}
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Example: m = 3

n 0 1 2 3 4 5 6 7
~g0 1 1 1 1 1 1 1 1
~g1 0 1 0 1 0 1 0 1
~g2 0 0 1 1 0 0 1 1
~g3 0 0 0 0 1 1 1 1

G3 = { 〈 1 1 1 1 1 1 1 1 〉, 〈 0 1 0 1 0 1 0 1 〉,
〈 0 0 1 1 0 0 1 1 〉, 〈 0 0 0 0 1 1 1 1 〉 }

The ~gm are discretized versions of the Rademacher functions.
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Claim. The elements of Gm are linearly independent.

Proof. For any set ~a = 〈 a0 a1 . . . am 〉 of real (or complex) num-
bers let

~V = ~V (~a) =
m∑

j=0

aj~gj = 〈 v0 v1 v2 . . . v2m−1 〉.

Since δ0,0 = 1 and δj,0 = 0 for 1 ≤ j ≤ m, v0 = a0.
Considering those n, 1 ≤ n ≤ 2m − 1, which have exactly one 1 in
their binary expansion,

v2k = a0 + ak+1 0 ≤ k ≤ m− 1.

So, if ~V = ~0, first a0 = 0 and then aj = 0, 1 ≤ j ≤ m. �
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The Reed-Muller code of rank m and order 0 is

RM(0,m) = {〈0 0 . . . 0〉, 〈1 1 . . . 1〉},

where each vector (codeword) has 2m entries. RM(1,m) is the
subgroup of Z2m

2 generated by the codewords in Gm, i.e., the vector
space over Z2 spanned by these codewords. RM(1,m) contains
2m+1 codewords.

Define multiplication · on Z2m

2 by

〈x0 x1 . . . x2m−1〉·〈y0 y1 . . . y2m−1〉 = 〈x0y0 x1y1 . . . x2m−1y2m−1〉.

Augment Gm with all products ~gi · ~gj , 1 ≤ i < j ≤ m, to form
G(2)

m .
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Example: m = 3

n 0 1 2 3 4 5 6 7
~g0 1 1 1 1 1 1 1 1
~g1 0 1 0 1 0 1 0 1
~g2 0 0 1 1 0 0 1 1
~g3 0 0 0 0 1 1 1 1

~g1 · ~g2 0 0 0 1 0 0 0 1
~g1 · ~g3 0 0 0 0 0 1 0 1
~g2 · ~g3 0 0 0 0 0 0 1 1

G(2)
3 = G3 ∪ {〈 0 0 0 1 0 0 0 1 〉, 〈 0 0 0 0 0 1 0 1 〉, 〈 0 0 0 0 0 0 1 1 〉}.

Slide 6



Claim. The 1+m+
(
m
2

)
elements of G(2)

m are linearly independent.

Proof. For any set ~b = 〈b0 b1 . . . bm bm+1 . . . bm+(m
2 )〉 of real (or

complex) numbers suppose

m∑
j=0

bj~gj +
m−1∑
j=1

m∑
i=j+1

b
jm− j(j+1)

2 +i
~gi · ~gj = ~0.

By first considering (as above) those n which have exactly one 1 in
their binary expansion, b0 = b1 = . . . = bm = 0. Analogously, by
then considering those n which have exactly two 1’s in their binary
expansion,

bm+1 = bm+2 = . . . = bm+(m
2 ) = 0.

�
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RM(2,m) is the subgroup of Z2m

2 generated by the codewords in
G(2)

m . RM(2,m) contains 21+m+(m
2 ) codewords.

Augmenting G(2)
m with all products of the form ~gi · ~gj · ~gk, 1 ≤ i <

j < k ≤ m, and continuing as above we get G(3)
m , RM(3,m), etc.

Theorem. RM(k, m) for m ≥ 1, 0 ≤ k ≤ m is a subgroup of Z2m

2

consisting of 2N codewords, where N =
∑k

i=0

(
m
i

)
. The minimum

Hamming weight (i.e., number of ones) of the nonzero codewords
in RM(k, m) is 2m−k.

Proof. Exercise, or see Handbook of Coding Theory, V. Pless and
W.C. Huffman, Editors, Vol. 1, pp. 122–126.
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Let’s examine a particular element ~Sm ∈ RM(2,m) given by

~Sm =
m−1∑
j=1

~gj · ~gj+1 = 〈s0 s1 . . . s2m−1〉.

Example. m = 3

n 0 1 2 3 4 5 6 7
~g1 0 1 0 1 0 1 0 1
~g2 0 0 1 1 0 0 1 1
~g3 0 0 0 0 1 1 1 1

~g1 · ~g2 0 0 0 1 0 0 0 1
~g2 · ~g3 0 0 0 0 0 0 1 1

~S3 0 0 0 1 0 0 1 0
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Let φ(n) be the number of times that the block B = [1 1] occurs in
the binary expansion of n, 0 ≤ n ≤ 2m − 1.

Claim.

sn =

{
0 if φ(n) is even
1 if φ(n) is odd.

Proof. Consider the n-th entry in each individual term of the
sum ~Sm. This entry is 1 iff δ(j, n) = δ(j + 1, n) = 1, otherwise it is
0. �
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Let Gm = {~γ0, ~γ1, ~γ2, . . . , ~γ2m−1} be the subgroup of RM(1,m)
generated by ~g1, ~g2, . . . , ~gm.

Example. m = 3

n 0 1 2 3 4 5 6 7
~g1 0 1 0 1 0 1 0 1
~g2 0 0 1 1 0 0 1 1
~g3 0 0 0 0 1 1 1 1

~γ0 = 0 · ~g1 + 0 · ~g2 + 0 · ~g3 0 0 0 0 0 0 0 0
~γ1 = 1 · ~g1 + 0 · ~g2 + 0 · ~g3 0 1 0 1 0 1 0 1
~γ2 = 0 · ~g1 + 1 · ~g2 + 0 · ~g3 0 0 1 1 0 0 1 1

G3 ~γ3 = 1 · ~g1 + 1 · ~g2 + 0 · ~g3 0 1 1 0 0 1 1 0
~γ4 = 0 · ~g1 + 0 · ~g2 + 1 · ~g3 0 0 0 0 1 1 1 1
~γ5 = 1 · ~g1 + 0 · ~g2 + 1 · ~g3 0 0 1 1 0 0 1 1
~γ6 = 0 · ~g1 + 1 · ~g2 + 1 · ~g3 0 0 1 1 1 1 0 0
~γ7 = 1 · ~g1 + 1 · ~g2 + 1 · ~g3 0 1 1 0 1 0 0 1

Slide 11



Switch gears: rewrite all codewords in RM(k, m) by mapping 0 → 1,
1 → −1. Since ~g1, ~g2, . . . , ~gm are discretized versions of the Rademacher
functions, ~γ0, ~γ1, . . . , ~γ2m−1, are discretized versions of the Walsh
functions. That is, Gm is the 2m×2m Sylvester Hadamard matrix,
which we relabel Hm.

Example.

H3 =

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1
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Now sn = (−1)φ(n).

Claim.

s2n = sn, s2n+1 =

{
sn if n is even
−sn if n is odd

.

Proof. The binary expansion of 2n is the binary expansion of
n shifted one slot to the left with a 0 added on the right, so
φ(2n) = φ(n). Similarly the binary expansion of 2n + 1 is the
binary expansion of n shifted one slot to the left with a 1 added on
the right. If n is even this does not change φ(n). If n is odd (i.e.,
n ends in 1) then φ(2n + 1) = φ(n) + 1.

�
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Consider the generating function of {sn},

g(z) =
∞∑

n=0

snzn.

Claim. g(z) satisfies the functional equation (FE) (Brillhart and
Carlitz)

g(z) = g(z2) + zg(−z2).

Proof. Write g(z) as the sum of its even and odd parts, E(z) and
O(z), respectively. So

E(z) =
∞∑

n=0

s2nz2n and O(z) =
∞∑

n=0

s2n+1z
2n+1.
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From the previous claim

E(z) =
∞∑

n=0

snz2n = g(z2) and

O(z) =
∞∑

n=0
n even

s2n+1z
2n+1 +

∞∑
n=0
n odd

s2n+1z
2n+1

= z
∞∑

n=0
n even

snz2n − z
∞∑

n=0
n odd

snz2n

= z

∞∑
n=0

(−1)nsnz2n = zg(−z2)

�
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Iterate the FE for g(z):

g(z2) = g(z4) + z2g(−z4)

g(−z2) = g(z4)− z2g(−z4), so

g(z) = (1 + z)g(z4) + z2(1− z)g(−z4).

Repeat:

g(z4) = g(z8) + z4g(−z8)

g(−z4) = g(z8)− z4g(−z8), so

g(z) = (1 + z + z2 − z3)g(z8) + z4(1 + z − z2 + z3)g(−z8).
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Continuing we see that, beginning with

g(z) = A(z)g(z2m

) + z2m−1
B(z)g(−z2m

)

and applying

g(z2m

) = g(z2m+1
) + z2m

g(−z2m+1
)

g(−z2m

) = g(z2m+1
)− z2m

g(−z2m+1
)

we get at the next step

g(z) =
[
A(z) + z2m−1

B(z)
]
g(z2m+1

)

+ z2m
[
A(z)− z2m−1

B(z)
]
g(−z2m+1

) .
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Renaming the initial A(z) and B(z) to P0(z) and Q0(z), respec-
tively, and naming the (polynomial) coefficients of g(z2m

) and g(−z2m

)
Pm−1(z) and Qm−1(z), respectively, m ≥ 1, the above yields

P0(z) = Q0(z) = 1

Pm(z) = Pm−1(z) + z2m−1
Qm−1(z)

Qm(z) = Pm−1(z)− z2m−1
Qm−1(z) .

Thus, the {Pm(z)}∞m=0 and {Qm(z)}∞m=0 are precisely the Shapiro
Polynomials! Pm(z) and Qm(z) are each polynomials of degree
2m − 1 with coefficients ±1. For each m the first 2m coefficients
of g(z) are exactly the coefficients of Pm(z). So, for each m, the
2m-truncation 〈 s0 s1 . . . s2m−1 〉 of the Shapiro sequence {sj}∞j=0

is an element of RM(2,m).
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Why might that be important?

Recall the fundamental property of the Shapiro polynomials, namely
that for each m Pm and Qm are complementary:

|Pm(z)|2 + |Qm(z)|2 = 2m+1 for all |z| = 1.

Consequently Pm and Qm each have crest factor (the ratio of the
sup norm to the L2 norm on the unit circle) bounded by

√
2 inde-

pendent of m. i.e., Pm and Qm are energy spreading. So the co-
efficients of Pm are an energy spreading second order Reed-Muller
codeword.
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Also, letting ~hj , 0 ≤ j ≤ 2m−1, denote the rows of Hm, the matrix
Pm whose rows are ~Sm ·~hj , is a PONS matrix. Its 2m rows can be
split into 2m−1 pairs of complementary rows, with each row having
crest factor (bounded by)

√
2.

Since each ~hj ∈ RM(1,m) and ~Sm ∈ RM(2,m), the (rows of the)
PONS matrix is a coset of the subgroup RM(1,m) of RM(2,m).

Thus we have constructed 2m (really 2m+1 by considering −Hm)
energy spreading second order Reed-Muller codewords.
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Let’s now briefly examine growth properties of g(reiθ) as r ↑ 1.

For 0 < r < 1 set

M(r) = max
θ
|g(reiθ)| .

Using the crest factor bound for Pm(z) and partial summation

yields M(r) = O
(

1
1−r

) 1
2
.

Challenge. Since the FE g(z) = g(z2) + zg(−z2) together with
the initial condition g(0) = 1 uniquely determines g(z), obtain this
bound on M(r) directly from the FE, without resorting to the (very
beautiful but very specific) complementarity property of Pm and
Qm.
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Why bother?

I. Because it is a challenge;

II. Blocks other than B = [1 1] appear in connection with higher-
order Reed-Muller codes. For example, the block [1 1 1] yields
codewords in RM(3,m). The generating functions of these
blocks satisfy similar (although more complicated) FE’s. The
idea (hope?) is that these FE’s should yield corresponding
crest factor bounds for subsets of RM(k,m), k ≥ 3, resulting
in higher-order energy spreading Reed-Muller codes.
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Current state of the art

Theorem. For any ε > 0, M(r) = O
(

1
1−r

) 1
2+ε

.

Corollary. Let sn(z) =
∑n

j=0 sjz
j be a partial sum of g(z). Then

for each α > 1
2 ,

max
|z|=1

|sn(z)| = O(nα) as n →∞.
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Basic Lemma. Let F (r) be a positive increasing continuous

function on [0, 1). If
F (r) ≤ AF (rα)

for some A > 0, α > 1 then

F (r) = O

(
1

1− r

) log A
log α

for r near 1.

Proofs. To appear.
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Blocks and FE’s

Let B = [β1 β2 . . . βr], βj = 0 or 1, β1 = 1 be a binary block
and N = N(B) = βr + 2βr−1 + . . . + 2r−1β1 be the integer whose
binary expansion is B. Let ΨB(n) be the number of occurrences
of B in the binary expansion of n and let fB(z) be the generating
function of ΨB ,

fB(z) =
∞∑

n=0

ΨB(n)zn .

Theorem. fB(z) satisfies the FE

fB(z) = (1 + z)fB(z2) +
zN(B)

1− z2r .

Proof. To appear.
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Now consider the parity sequence of ΨB(n), δB(n) = (−1)ΨB(n),
and its generating function gB(z) =

∑∞
n=0 δB(n)zn. For the gen-

eral case it will again be useful to split gB into its even and odd
parts,

EB(z) =
∞∑

n=0

δB(2n)z2n

OB(z) =
∞∑

n=0

δB(2n + 1)z2n+1

Previous example: B = [11], δB(n) is the Shapiro sequence,
gB(z) satisfies the FE gB(z) = gB(z2) + zgB(−z2).
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Example: B = [1].
Arguing as before, ΨB(2n) = ΨB(n) and ΨB(2n+1) = ΨB(n)+1 so
that (writing δn for δB(n) to ease notation) δ2n = δn, δ2n+1 = −δn.
Hence EB(z) = gB(z2), OB(z) = −zgB(z2), and we have the FE
gB(z) = (1−z)gB(z2). Iterating, gB(z) = (1−z)(1−z2)(1−z4) . . .
and δn is the Thue-Morse sequence [1 − 1 − 1 1 − 1 1 1 − 1 . . .].
Drop the subscript B from now on.

Example: βr = 0.
Ψ(2n + 1) = Ψ(n), so δ2n+1 = δn, so O(z) = zg(z2). Since g(z)−
g(−z) = 2O(z) we have the FE g(z) = g(−z) + 2zg(z2).

Example: βr = 1.
As above, now g(z) = −g(−z) + 2g(z2).
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Example (a typical case?): B = [1 1 0 0 1 0], r = 6.

Ψ(2n + 1) = Ψ(n). Ψ(2n) = Ψ(n) unless the binary expansion
of n ends in [1 1 0 0 1], i.e., unless n ≡ K(mod 25), where K =
24 + 23 + 20 = 25, in which case Ψ(2n) = Ψ(n) + 1. So

δ2n+1 = δn, δ2n =

{
−δn if n ≡ 25(mod 32)
δn otherwise

.

So O(z) = zg(z2).

Slide 28



E(z) =
∞∑

n=0

δ2nz2n =
∞∑

n=0

δnz2n − 2
∑

n≡25(mod 32)

δnz2n

= g(z2)− 2
∞∑

j=0

δ32j+25z
64j+50 = g(z2)− 2z50F (z)

where F (z) =
∑∞

j=0 δ32j+25z
64j .

But δ32j+25 = δ2(16j+12)+1 = δ16j+12 = δ2(8j+6) = δ8j+6 = δ2(4j+3) =
δ4j+3 = δ2(2j+1)+1 = δ2j+1 = δj , where we have used the fact that
neither 8j + 6 nor 4j + 3 can be congruent to 25(mod 32). So
F (z) =

∑∞
j=0 δjz

64j = g(z64), and we have the FE
g(z) = (1 + z)g(z2)− 2z50g(z64).
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How typical is this example? Do we always get Full Reduction
(FR) of the index of δ?

Consider the general case:

B = [β1 β2 . . . βr]

N = βr + 2βr−1 + . . . + 2r−1β1

K = βr−1 + 2βr−2 + . . . + 2r−2β1 .

Case I: βr = 0. As above,

δ2n+1 = δn, δ2n =

{
−δn if n ≡ K(mod 2r−1)
δn otherwise

.

O(z) = zg(z2), E(z) = g(z2)− 2z2K
∞∑

j=0

δ2r−1j+Kz2rj .
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To get FR the index I(1) = Ij,K(1) = 2r−1j + K must reduce to j
by repeated applications of the mapping µ(n):

µ(2n + 1) = n, µ(2n) = n unless n ≡ K(mod 2r−1).

Let {I(1), I(2), . . .} be the succession of indices that we get by
repeating µ (assuming it works), and let I denote one of these
indices. Whether I = 2n + 1 or I = 2n, reduction to n occurs by
dropping the last binary digit on the right of I and shifting what’s
left 1 slot to the right. For reduction to fail at the first step, I(1)
must be of the form 2n where n ≡ K(mod 2r−1), or n = 2r−1m+K
for some integer m, or 2n = 2rm + 2K.

The binary expansion (BE) of K is (β1 β2 . . . βr−1) so that of 2K
is (β1 β2 . . . βr−1 0).
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So for the first reduction I(1) → I(2) to fail the BE of I(1) must
end in (β1 β2 . . . βr−1 0). This is possible (i.e., there are integers j
which make it possible) iff the BE of I(1) ends in (β2 β3 . . . βr−10),
or (since the BE of I(1) ends in that of K)

(β1 β2 . . . βr−1) = (β2 β3 . . . βr−10) .

Assuming this equation does not hold we get I(2) whose BE ends in
(β1 β2 . . . βr−2). As above, I(2) → I(3) fails iff the BE of I(2) ends
in (β1 β2 . . . βr−1 0) which is possible (again, there are integers j
which make it possible) iff I(2) ends in (β3 β4 . . . βr−1 0), or

(β1 β2 . . . βr−2) = (β3 β4 . . . βr−1 0) .
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Call the block B = [β1 β2 . . . βr] nonrepeatable if

[β1 β2 . . . βν ] 6= [βr−(ν−1) βr−(ν−2) . . . βr]

for each ν, 1 ≤ ν ≤ r − 1.

Theorem. FR works iff B is nonrepeatable. When FR works we
get the FE g(z) = (1 + z)g(z2)− 2z2Kg(z2r

).

Case II: βr = 1. The above argument works when B is nonre-
peatable up to the last step, yielding:

Theorem. If [β1 β2 . . . βν ] 6= [βr−(ν−1) βr−(ν−2) . . . βr] for each
ν, 2 ≤ ν ≤ r − 1, and β1 = βr = 1, then reduction works up until
the final step and we get the FE

g(z) = (1 + z)g(z2)− 2z2K+1−2r−1
[
g(z2r−1

)− g(z2r

)
]

.

Slide 33



Other cases are not so neat.

Example. B = [1 1 0 1 1 1].

The FE is

g(z) = (1 + z)g(z2)− 2z7g(z16) + 2z7g(z32) + 2z23g(z64) .

Example. B = [1 0 1 1 0 1].

The FE is

g(z) = (1+z)g(z2)−2z5[g(z8)−(1+z8)g(z16)]−2z13[g(z32)−g(z64)].
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The general “1-1” case, β1 = βr = 1.

δ2n = δn, δ2n+1 =

{
−δn if n ≡ K(mod 2r−1)
δn otherwise

,

K = βr−1 + 2βr−2 + . . . + 2r−2β1 ,

E(z) = g(z2) ,

O(z) = zg(z2)− 2
∑
n≡K

(mod 2r−1)

δnz2n+1 = zg(z2)− 2GB(z)

where GB(z) =
∞∑

j=0

δ2r−1j+Kz2rj+2K+1.
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Basic idea: Reduce subscript of δ as much as possible, express
GB(z) in terms of GB(z2p

) for some p > 0, replace GB(z2p

) by
using −2GB(z2p

) = O(z2p

) − z2p

g(z2p+1
) = g(z2p

) − g(z2p+1
) −

z2p

g(z2p+1
) and then repeat to get the desired expression for O(z) =

g(z)− g(z2).

Details for the “fully repeatable” case, βj = 1, 1 ≤ j ≤ r.

Now K = 2r−1 − 1. For 1 ≤ m ≤ r − 1 let

Gm(z) =
∞∑

j=0

δ2r−mj+2r−m−1z
2rj+2r−1 ,

so that GB(z) = G1(z).

Slide 36



For 2 ≤ q ≤ r − 1,

δ2qj+2q−1 = δ2(2q−1j+2q−1−1)+1 =

=

{
−δ2q−1j+2q−1−1 if j ≡ 2r−q − 1(mod 2r−q)
δ2q−1j+2q−1−1 otherwise

,

since

2q−1j + 2q−1 − 1 ≡ (2r−1 − 1)(mod 2r−1)

⇔ j ≡ (2r−q − 1)(mod 2r−q) .
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Let q = r −m, so m = r − q, so 1 ≤ m ≤ r − 2. Then

δ2r−mj+2r−m−1 =

{
−δ2r−m−1j+2r−m−1−1 if j ≡ (2m − 1)(mod 2m)
δ2r−m−1j+2r−m−1−1 otherwise

So, for 1 ≤ m ≤ r − 2,

Gm(z) =
∞∑

j=0

δ2r−m−1j+2r−m−1−1z
2rj+2r−1

− 2
∑

j≡(2m−1)
(mod 2m)

δ2r−m−1j+2r−m−1−1z
2rj+2r−1 .
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When you replace j in the second sum by 2mj +2m− 1 it becomes

∞∑
j=0

δ2r−1j+2r−1−2r−m−1+2r−m−1−1z
2r+mj+2r+m−2r+2r−1

=
∞∑

j=0

δ2r−1j+2r−1−1z
2r+mj+2r+m−1

=z2m−1
∞∑

j=0

δ2r−1j+2r−1−1z
2r+mj+2m(2r−1)

=z2m−1
∞∑

j=0

δ2r−1j+2r−1−1

(
z2m

)2rj+2r−1

=z2m−1G1

(
z2m

)
.
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The first sum is obviously Gm+1(z), so

Gm(z) = Gm+1(z)− 2z2m−1G1(z2m

)

for 1 ≤ m ≤ r − 2. For m = r − 1,

Gr−1(z) =
∞∑

j=0

δ2j+1z
2rj+2r−1

= z2r−1−1
∞∑

j=0

δ2j+1(z2r−1
)2j+1

= z2r−1−1O(z2r−1
) .
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Combining these Gm’s in turn yields: GB(z) = G1(z) =

= G2(z)− 2zG1(z2) = G3(z)− 2zG1(z2)− 2z3G1(z4)

= G4(z)− 2zG1(z2)− 2z3G1(z4)− 2z7G1(z8) = . . .

= Gr−1 − 2zG1(z2)− 2z3G1(z4)− . . .− 2z2r−2−1G1(z2r−2
)

= z2r−1−1O(z2r−1
) + z[−2G1(z2)− 2z2G1(z4)− 2z6G1(z8)

− . . .− 2z2r−2−2G1(z2r−2
)]

= z2r−1−1[g(z2r−1
)− g(z2r

)] + z[g(z2)− g(z4)− z2g(z4)

+ z2{g(z4)− g(z8)− z4g(z8)}+ z6{g(z8)− g(z16)− z8g(z16)}

+ . . . + z2r−2−2{g(z2r−2
)− g(z2r−1

)− z2r−2
g(z2r−1

)}]
= zg(z2)− zg(z4)− z3g(z8)− z7g(z16)

− . . .− z2r−2−1g(z2r−1
)− z2r−1−1g(z2r

)
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With

g(z) = E(z) + O(z) = g(z2) + zg(z2)− 2GB(z)

we finally have the FE

g(z) = (1− z)g(z2) + 2z[g(z4) + z2g(z8) + z6g(z16)

+ . . . + z2r−2−2g(z2r−1
) + z2r−1−2g(z2r

)].
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