NOT MY TITLE

How many positive integers $n \leq 1000$ are such that 2^{n} begins with the digit 1 ?

NOT MY TITLE

How many positive integers $n \leq 1000$ are such that 2^{n} begins with the digit 1 ?

301

NOT MY TITLE

How many positive integers $n \leq 1000$ are such that 2^{n} begins with the digit 1 ?

301

$$
\log _{10} 2=0.30102999566398 \ldots
$$

x	$\#\left\{n \leq x: 2^{n}\right.$ begins with 1$\}$
10	3

x	$\#\left\{n \leq x: 2^{n}\right.$ begins with 1$\}$
10	3
100	30
1000	301

x	$\#\left\{n \leq x: 2^{n}\right.$ begins with 1$\}$
10	3
100	30
1000	301
10000	3010
100000	30102
1000000	301029
10000000	3010299

x	$\#\left\{n \leq x: 2^{n}\right.$ begins with 1$\}$
10	3
100	30
1000	301
10000	3010
100000	30102
1000000	301029
10000000	3010299

$\log _{10} 2=0.30102999566398 \ldots$

An Awful Problem about Integers in Base Four (d'après J H Loxton and A J vdP, Acta Arith. 49 (1987), 192-203)

Alf van der Poorten

ceNTRe for Number Theory Research, Sydney

Integers in Base Four

In base four one can express all the integers in terms of the four digits 0,1 , $\overline{1}$, and 2 ; here $\overline{1}$ is a convenient abbreviation for -1 .

Integers in Base Four

In base four one can express all the integers in terms of the four digits 0,1 , $\overline{1}$, and 2 ; here $\overline{1}$ is a convenient abbreviation for -1 . In automata speak: the set \mathbb{Z} of all integers coincides with the language of all words on the symbols $0,1, \overline{1}$, and 2 .

Integers in Base Four

In base four one can express all the integers in terms of the four digits 0,1 , $\overline{1}$, and 2 ; here $\overline{1}$ is a convenient abbreviation for -1 . In automata speak: the set \mathbb{Z} of all integers coincides with the language of all words on the symbols $0,1, \overline{1}$, and 2 .

For examples, $2 \overline{1} 2 \overline{1} 1(=477)$ and $\overline{1} 21 \overline{11}(=-117)$.

Integers in Base Four

In base four one can express all the integers in terms of the four digits 0,1 , $\overline{1}$, and 2 ; here $\overline{1}$ is a convenient abbreviation for -1 . In automata speak: the set \mathbb{Z} of all integers coincides with the language of all words on the symbols $0,1, \overline{1}$, and 2 .

For examples, $2 \overline{1} 2 \overline{1} 1(=477)$ and $\overline{1} 21 \overline{11}(=-117)$.
Now consider the subset \mathcal{L} of \mathbb{Z} omitting the digit 2 ;

Integers in Base Four

In base four one can express all the integers in terms of the four digits 0,1 , $\overline{1}$, and 2 ; here $\overline{1}$ is a convenient abbreviation for -1 . In automata speak: the set \mathbb{Z} of all integers coincides with the language of all words on the symbols $0,1, \overline{1}$, and 2 .

For examples, $2 \overline{1} 2 \overline{1} 1(=477)$ and $\overline{1} 21 \overline{11}(=-117)$.
Now consider the subset \mathcal{L} of \mathbb{Z} omitting the digit 2 ; in other words, the language of all words on just the symbols 0,1 , and $\overline{1}$ interpreted as integers in base four.

Integers in Base Four

In base four one can express all the integers in terms of the four digits 0,1 , $\overline{1}$, and 2 ; here $\overline{1}$ is a convenient abbreviation for -1 . In automata speak: the set \mathbb{Z} of all integers coincides with the language of all words on the symbols $0,1, \overline{1}$, and 2 .

For examples, $2 \overline{1} 2 \overline{1} 1(=477)$ and $\overline{1} 21 \overline{11}(=-117)$.
Now consider the subset \mathcal{L} of \mathbb{Z} omitting the digit 2 ; in other words, the language of all words on just the symbols 0,1 , and $\overline{1}$ interpreted as integers in base four. Our problem is this:

Integers in Base Four

In base four one can express all the integers in terms of the four digits 0,1 , $\overline{1}$, and 2 ; here $\overline{1}$ is a convenient abbreviation for -1 . In automata speak: the set \mathbb{Z} of all integers coincides with the language of all words on the symbols $0,1, \overline{1}$, and 2 .

For examples, $2 \overline{1} 2 \overline{1} 1(=477)$ and $\overline{1} 21 \overline{11}(=-117)$.
Now consider the subset \mathcal{L} of \mathbb{Z} omitting the digit 2 ; in other words, the language of all words on just the symbols 0,1 , and $\overline{1}$ interpreted as integers in base four. Our problem is this: can every odd integer be written as a quotient of elements of \mathcal{L} ?

Integers in Base Four

In base four one can express all the integers in terms of the four digits 0,1 , $\overline{1}$, and 2 ; here $\overline{1}$ is a convenient abbreviation for -1 . In automata speak: the set \mathbb{Z} of all integers coincides with the language of all words on the symbols $0,1, \overline{1}$, and 2 .

For examples, $2 \overline{1} 2 \overline{1} 1(=477)$ and $\overline{1} 21 \overline{11}(=-117)$.
Now consider the subset \mathcal{L} of \mathbb{Z} omitting the digit 2 ; in other words, the language of all words on just the symbols 0,1 , and $\overline{1}$ interpreted as integers in base four. Our problem is this: can every odd integer be written as a quotient of elements of \mathcal{L} ?

The matter is troublesome.

Integers in Base Four

In base four one can express all the integers in terms of the four digits 0,1 , $\overline{1}$, and 2 ; here $\overline{1}$ is a convenient abbreviation for -1 . In automata speak: the set \mathbb{Z} of all integers coincides with the language of all words on the symbols $0,1, \overline{1}$, and 2 .

For examples, $2 \overline{1} 2 \overline{1} 1(=477)$ and $\overline{1} 21 \overline{11}(=-117)$.
Now consider the subset \mathcal{L} of \mathbb{Z} omitting the digit 2 ; in other words, the language of all words on just the symbols 0,1 , and $\overline{1}$ interpreted as integers in base four. Our problem is this: can every odd integer be written as a quotient of elements of \mathcal{L} ?

The matter is troublesome. For instance, given an odd integer k it is not at all obvious how to find a nonzero multiplier m in \mathcal{L} so that also $k m$ is in \mathcal{L}.

Integers in Base Four

In base four one can express all the integers in terms of the four digits 0,1 , $\overline{1}$, and 2 ; here $\overline{1}$ is a convenient abbreviation for -1 . In automata speak: the set \mathbb{Z} of all integers coincides with the language of all words on the symbols $0,1, \overline{1}$, and 2 .

For examples, $2 \overline{1} 2 \overline{1} 1(=477)$ and $\overline{1} 21 \overline{11}(=-117)$.
Now consider the subset \mathcal{L} of \mathbb{Z} omitting the digit 2 ; in other words, the language of all words on just the symbols 0,1 , and $\overline{1}$ interpreted as integers in base four. Our problem is this: can every odd integer be written as a quotient of elements of \mathcal{L} ?

The matter is troublesome. For instance, given an odd integer k it is not at all obvious how to find a nonzero multiplier m in \mathcal{L} so that also $k m$ is in \mathcal{L}. Indeed, the only method we found is not an algorithm at all:

Integers in Base Four

In base four one can express all the integers in terms of the four digits 0,1 , $\overline{1}$, and 2 ; here $\overline{1}$ is a convenient abbreviation for -1 . In automata speak: the set \mathbb{Z} of all integers coincides with the language of all words on the symbols $0,1, \overline{1}$, and 2 .

For examples, $2 \overline{1} 2 \overline{1} 1(=477)$ and $\overline{1} 21 \overline{11}(=-117)$.
Now consider the subset \mathcal{L} of \mathbb{Z} omitting the digit 2 ; in other words, the language of all words on just the symbols 0,1 , and $\overline{1}$ interpreted as integers in base four. Our problem is this: can every odd integer be written as a quotient of elements of \mathcal{L} ?

The matter is troublesome. For instance, given an odd integer k it is not at all obvious how to find a nonzero multiplier m in \mathcal{L} so that also $k m$ is in \mathcal{L}. Indeed, the only method we found is not an algorithm at all: it happens always to work, but there's no good a priori reason why it must work.

Roughly, the strategy at each step in the computations below is to multiply by 4 and to add or subtract k or to do nothing, all the while ensuring that no digit 2 remains trapped on the left.

Roughly, the strategy at each step in the computations below is to multiply by 4 and to add or subtract k or to do nothing, all the while ensuring that no digit 2 remains trapped on the left. We see respectively that $k=477$ has a multiplier $1 \overline{11} 11(=181)$ and that $2 \overline{1} 11(=117)$ has the multiplier $1 \overline{11} 01$ $(=175)$ in \mathcal{L}.

Roughly, the strategy at each step in the computations below is to multiply by 4 and to add or subtract k or to do nothing, all the while ensuring that no digit 2 remains trapped on the left. We see respectively that $k=477$ has a multiplier $1 \overline{11} 11(=181)$ and that $2 \overline{1} 11(=117)$ has the multiplier $1 \overline{11} 01$ $(=175)$ in \mathcal{L}. The digits on the right seem to take care of themselves.

Roughly, the strategy at each step in the computations below is to multiply by 4 and to add or subtract k or to do nothing, all the while ensuring that no digit 2 remains trapped on the left. We see respectively that $k=477$ has a multiplier $1 \overline{11} 11(=181)$ and that $2 \overline{1} 11(=117)$ has the multiplier $1 \overline{11} 01$ $(=175)$ in \mathcal{L}. The digits on the right seem to take care of themselves.
$2 \overline{1} 2 \overline{1} 1+$

Roughly, the strategy at each step in the computations below is to multiply by 4 and to add or subtract k or to do nothing, all the while ensuring that no digit 2 remains trapped on the left. We see respectively that $k=477$ has a multiplier $1 \overline{11} 11(=181)$ and that $2 \overline{1} 11(=117)$ has the multiplier $1 \overline{11} 01$ $(=175)$ in \mathcal{L}. The digits on the right seem to take care of themselves.

$$
\begin{array}{ll}
2 \overline{1} 2 \overline{1} 1 & + \\
\frac{2 \overline{1} 2 \overline{1} 1}{11212 \overline{1}} & -
\end{array}
$$

Roughly, the strategy at each step in the computations below is to multiply by 4 and to add or subtract k or to do nothing, all the while ensuring that no digit 2 remains trapped on the left. We see respectively that $k=477$ has a multiplier $1 \overline{11} 11(=181)$ and that $2 \overline{1} 11(=117)$ has the multiplier $1 \overline{11} 01$ $(=175)$ in \mathcal{L}. The digits on the right seem to take care of themselves.

$$
\begin{array}{ll}
2 \overline{1} 2 \overline{1} 1 & + \\
2 \overline{1} 2 \overline{1} 1 \\
\hline 11212 \overline{1} & - \\
2 \overline{1} 2 \overline{1} 1 & - \\
\hline 110200 \overline{1} & -
\end{array}
$$

Roughly, the strategy at each step in the computations below is to multiply by 4 and to add or subtract k or to do nothing, all the while ensuring that no digit 2 remains trapped on the left. We see respectively that $k=477$ has a multiplier $1 \overline{11} 11(=181)$ and that $2 \overline{1} 11(=117)$ has the multiplier $1 \overline{11} 01$ $(=175)$ in \mathcal{L}. The digits on the right seem to take care of themselves.

$2 \overline{1} 2 \overline{1} 1$	+
$\frac{2 \overline{1} 2 \overline{1} 1}{11212 \overline{1}}$	-
$\frac{2 \overline{1} 2 \overline{1} 1}{110200 \overline{1}}$	-
$\frac{2 \overline{1} 2 \overline{1} 1}{1110 \overline{1} 121}$	+

Roughly, the strategy at each step in the computations below is to multiply by 4 and to add or subtract k or to do nothing, all the while ensuring that no digit 2 remains trapped on the left. We see respectively that $k=477$ has a multiplier $1 \overline{11} 11(=181)$ and that $2 \overline{1} 11(=117)$ has the multiplier $1 \overline{11} 01$ $(=175)$ in \mathcal{L}. The digits on the right seem to take care of themselves.

$$
\begin{array}{ll}
2 \overline{1} 2 \overline{1} 1 & + \\
\frac{2 \overline{1} 2 \overline{1} 1}{11212 \overline{1}} & - \\
\frac{2 \overline{1} 2 \overline{1} 1}{110200 \overline{1}} & - \\
\frac{2 \overline{1} 2 \overline{1} 1}{1110 \overline{1} 21} & + \\
\frac{2 \overline{1} 2 \overline{1} 1}{111011001} & +
\end{array}
$$

Roughly, the strategy at each step in the computations below is to multiply by 4 and to add or subtract k or to do nothing, all the while ensuring that no digit 2 remains trapped on the left. We see respectively that $k=477$ has a multiplier $1 \overline{11} 11(=181)$ and that $2 \overline{1} 11(=117)$ has the multiplier $1 \overline{11} 01$ $(=175)$ in \mathcal{L}. The digits on the right seem to take care of themselves.

$$
\begin{array}{lll}
2 \overline{1} 2 \overline{1} 1 & + & 2 \overline{1} 11 \\
\frac{2 \overline{1} 2 \overline{1} 1}{11212 \overline{1}} & - & + \\
\frac{2 \overline{1} 2 \overline{1} 1}{110200 \overline{1}} & - & \\
\frac{2 \overline{1} 2 \overline{1} 1}{1110 \overline{1} 121} & + & \\
\frac{2 \overline{1} 2 \overline{1} 1}{111011001} & + & \\
\hline &
\end{array}
$$

Roughly, the strategy at each step in the computations below is to multiply by 4 and to add or subtract k or to do nothing, all the while ensuring that no digit 2 remains trapped on the left. We see respectively that $k=477$ has a multiplier $1 \overline{11} 11(=181)$ and that $2 \overline{1} 11(=117)$ has the multiplier $1 \overline{11} 01$ $(=175)$ in \mathcal{L}. The digits on the right seem to take care of themselves.

$2 \overline{1} 2 \overline{1} 1$	+	$2 \overline{1} 11$	+
$\frac{2 \overline{1} 2 \overline{1} 1}{11212 \overline{1}}$	-	$\frac{2 \overline{1} 11}{1120 \overline{1}}$	-

Roughly, the strategy at each step in the computations below is to multiply by 4 and to add or subtract k or to do nothing, all the while ensuring that no digit 2 remains trapped on the left. We see respectively that $k=477$ has a multiplier $1 \overline{11} 11(=181)$ and that $2 \overline{1} 11(=117)$ has the multiplier $1 \overline{11} 01$ $(=175)$ in \mathcal{L}. The digits on the right seem to take care of themselves.

$2 \overline{1} 2 \overline{1} 1$	+	$2 \overline{1} 11$	+
$\frac{2 \overline{1} 2 \overline{1} 1}{11212 \overline{1}}$	-	$\frac{2 \overline{1} 11}{1120 \overline{1}}$	-
$\frac{2 \overline{1} 2 \overline{1} 1}{110200 \overline{1}}$	-	$\frac{2 \overline{1} 11}{11002 \overline{1}}$	-
$\frac{2 \overline{1} 2 \overline{1} 1}{1110 \overline{1} 121}$	+		
$\frac{2 \overline{1} 2 \overline{1} 1}{111011001}$	+		

Roughly, the strategy at each step in the computations below is to multiply by 4 and to add or subtract k or to do nothing, all the while ensuring that no digit 2 remains trapped on the left. We see respectively that $k=477$ has a multiplier $1 \overline{11} 11(=181)$ and that $2 \overline{1} 11(=117)$ has the multiplier $1 \overline{11} 01$ $(=175)$ in \mathcal{L}. The digits on the right seem to take care of themselves.

$2 \overline{1} 2 \overline{1} 1$	+	$2 \overline{1} 11$	+
$\frac{2 \overline{1} 2 \overline{1} 1}{11212 \overline{1}}$	-	$\frac{2 \overline{1} 11}{1120 \overline{1}}$	-
$\frac{2 \overline{1} 2 \overline{1} 1}{110200 \overline{1}}$	-	$\frac{2 \overline{1} 11}{11002 \overline{1}}$	-
$\frac{2 \overline{1} 2 \overline{1} 1}{1110 \overline{1} 121}$	+		0
$\frac{2 \overline{1} 2 \overline{1} 1}{111011001}$	+	$\frac{2 \overline{1} 11}{110000 \overline{1} \overline{1}}$	-

$\mathcal{S}-\mathcal{S}=\mathcal{L}$

Now denote by \mathcal{S} the set of integers which can be written in base four using just the digits 0 and 1 , and for $n=0,1,2, \ldots$, denote by \mathcal{S}_{n} the subset of words in \mathcal{S} of at most n letters.

$\mathcal{S}-\mathcal{S}=\mathcal{L}$

Now denote by \mathcal{S} the set of integers which can be written in base four using just the digits 0 and 1 , and for $n=0,1,2, \ldots$, denote by \mathcal{S}_{n} the subset of words in \mathcal{S} of at most n letters. Our main result is that if the last nonzero digit of k is odd then for all sufficiently large n the set

$$
\mathcal{S}_{n}+k \mathcal{S}_{n}=\left\{s+k s^{\prime} \mid s, s^{\prime} \text { in } \mathcal{S}_{n}\right\}
$$

has fewer than 4^{n} elements.

$\mathcal{S}-\mathcal{S}=\mathcal{L}$

Now denote by \mathcal{S} the set of integers which can be written in base four using just the digits 0 and 1 , and for $n=0,1,2, \ldots$, denote by \mathcal{S}_{n} the subset of words in \mathcal{S} of at most n letters. Our main result is that if the last nonzero digit of k is odd then for all sufficiently large n the set

$$
\mathcal{S}_{n}+k \mathcal{S}_{n}=\left\{s+k s^{\prime} \mid s, s^{\prime} \text { in } \mathcal{S}_{n}\right\}
$$

has fewer than 4^{n} elements. More, for some r strictly less than 4 , these elements lie in only $O\left(r^{n}\right)$ distinct residue classes.

$\mathcal{S}-\mathcal{S}=\mathcal{L}$

Now denote by \mathcal{S} the set of integers which can be written in base four using just the digits 0 and 1 , and for $n=0,1,2, \ldots$, denote by \mathcal{S}_{n} the subset of words in \mathcal{S} of at most n letters. Our main result is that if the last nonzero digit of k is odd then for all sufficiently large n the set

$$
\mathcal{S}_{n}+k \mathcal{S}_{n}=\left\{s+k s^{\prime} \mid s, s^{\prime} \text { in } \mathcal{S}_{n}\right\}
$$

has fewer than 4^{n} elements. More, for some r strictly less than 4 , these elements lie in only $O\left(r^{n}\right)$ distinct residue classes.

The so what of this result is of course that, necessarily, if some element of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ has two representatives, say $s_{1}+k s_{1}^{\prime}=s_{2}+k s_{2}^{\prime}$, then

$$
k\left(s_{1}^{\prime}-s_{2}^{\prime}\right)=s_{2}-s_{1}
$$

displays a multiplier $s_{1}^{\prime}-s_{2}^{\prime}$ in \mathcal{L} yielding $s_{2}-s_{1}$ in \mathcal{L}.

$\mathcal{S}-\mathcal{S}=\mathcal{L}$

Now denote by \mathcal{S} the set of integers which can be written in base four using just the digits 0 and 1 , and for $n=0,1,2, \ldots$, denote by \mathcal{S}_{n} the subset of words in \mathcal{S} of at most n letters. Our main result is that if the last nonzero digit of k is odd then for all sufficiently large n the set

$$
\mathcal{S}_{n}+k \mathcal{S}_{n}=\left\{s+k s^{\prime} \mid s, s^{\prime} \text { in } \mathcal{S}_{n}\right\}
$$

has fewer than 4^{n} elements. More, for some r strictly less than 4 , these elements lie in only $O\left(r^{n}\right)$ distinct residue classes.

The so what of this result is of course that, necessarily, if some element of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ has two representatives, say $s_{1}+k s_{1}^{\prime}=s_{2}+k s_{2}^{\prime}$, then

$$
k\left(s_{1}^{\prime}-s_{2}^{\prime}\right)=s_{2}-s_{1}
$$

displays a multiplier $s_{1}^{\prime}-s_{2}^{\prime}$ in \mathcal{L} yielding $s_{2}-s_{1}$ in \mathcal{L}. The 'more' provides an independent proof.

$\mathcal{S}-\mathcal{S}=\mathcal{L}$

Now denote by \mathcal{S} the set of integers which can be written in base four using just the digits 0 and 1 , and for $n=0,1,2, \ldots$, denote by \mathcal{S}_{n} the subset of words in \mathcal{S} of at most n letters. Our main result is that if the last nonzero digit of k is odd then for all sufficiently large n the set

$$
\mathcal{S}_{n}+k \mathcal{S}_{n}=\left\{s+k s^{\prime} \mid s, s^{\prime} \text { in } \mathcal{S}_{n}\right\}
$$

has fewer than 4^{n} elements. More, for some r strictly less than 4 , these elements lie in only $O\left(r^{n}\right)$ distinct residue classes.

The so what of this result is of course that, necessarily, if some element of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ has two representatives, say $s_{1}+k s_{1}^{\prime}=s_{2}+k s_{2}^{\prime}$, then

$$
k\left(s_{1}^{\prime}-s_{2}^{\prime}\right)=s_{2}-s_{1}
$$

displays a multiplier $s_{1}^{\prime}-s_{2}^{\prime}$ in \mathcal{L} yielding $s_{2}-s_{1}$ in \mathcal{L}. The 'more' provides an independent proof; more of that later.

Congruence Classes and Types

Congruence Classes and Types

Given k, say $k \equiv 1(\bmod 4)$, the set $\mathcal{S}_{1}+k \mathcal{S}_{1}$ yields three groups $\{0\},\{1, k\}$, $\{k+1\}$ consisting of its four elements grouped in congruence classes mod 4.

Congruence Classes and Types

Given k, say $k \equiv 1(\bmod 4)$, the set $\mathcal{S}_{1}+k \mathcal{S}_{1}$ yields three groups $\{0\}$, $\{1, k\},\{k+1\}$ consisting of its four elements grouped in congruence classes $\bmod 4$. To move to level $n=2$ we add the set $4\left(\mathcal{S}_{1}+k \mathcal{S}_{1}\right)$ obtaining 4^{2} numbers grouped into classes mod 4^{2}, and so on.

Congruence Classes and Types

Given k, say $k \equiv 1(\bmod 4)$, the set $\mathcal{S}_{1}+k \mathcal{S}_{1}$ yields three groups $\{0\}$, $\{1, k\},\{k+1\}$ consisting of its four elements grouped in congruence classes $\bmod 4$. To move to level $n=2$ we add the set $4\left(\mathcal{S}_{1}+k \mathcal{S}_{1}\right)$ obtaining 4^{2} numbers grouped into classes $\bmod 4^{2}$, and so on.

The point to notice is that numbers belonging to different classes of course cannot give rise to numbers in the same class at higher level, so it suffices to follow the career of a typical class.

Congruence Classes and Types

Given k, say $k \equiv 1(\bmod 4)$, the set $\mathcal{S}_{1}+k \mathcal{S}_{1}$ yields three groups $\{0\}$, $\{1, k\},\{k+1\}$ consisting of its four elements grouped in congruence classes $\bmod 4$. To move to level $n=2$ we add the set $4\left(\mathcal{S}_{1}+k \mathcal{S}_{1}\right)$ obtaining 4^{2} numbers grouped into classes $\bmod 4^{2}$, and so on.

The point to notice is that numbers belonging to different classes of course cannot give rise to numbers in the same class at higher level, so it suffices to follow the career of a typical class. More, take a group $\left\{t_{1}, t_{2}, \ldots, t_{h}\right\}$, with $t_{1}<t_{2}<\ldots<t_{h}$, of elements congruent mod 4^{n} and set $t_{i}-t_{1}=4^{n} r_{i}$.

Congruence Classes and Types

Given k, say $k \equiv 1(\bmod 4)$, the set $\mathcal{S}_{1}+k \mathcal{S}_{1}$ yields three groups $\{0\}$, $\{1, k\},\{k+1\}$ consisting of its four elements grouped in congruence classes $\bmod 4$. To move to level $n=2$ we add the set $4\left(\mathcal{S}_{1}+k \mathcal{S}_{1}\right)$ obtaining 4^{2} numbers grouped into classes mod 4^{2}, and so on.

The point to notice is that numbers belonging to different classes of course cannot give rise to numbers in the same class at higher level, so it suffices to follow the career of a typical class. More, take a group $\left\{t_{1}, t_{2}, \ldots, t_{h}\right\}$, with $t_{1}<t_{2}<\ldots<t_{h}$, of elements congruent $\bmod 4^{n}$ and set $t_{i}-t_{1}=4^{n} r_{i}$. Then following the career of $\left\{t_{1}, t_{2}, \ldots, t_{h}\right\}$ from level n is equivalent to following its type $\left\{r_{1}=0, r_{2}, \ldots, r_{h}\right\}$ from level 0 .

Congruence Classes and Types

Given k, say $k \equiv 1(\bmod 4)$, the set $\mathcal{S}_{1}+k \mathcal{S}_{1}$ yields three groups $\{0\}$, $\{1, k\},\{k+1\}$ consisting of its four elements grouped in congruence classes $\bmod 4$. To move to level $n=2$ we add the set $4\left(\mathcal{S}_{1}+k \mathcal{S}_{1}\right)$ obtaining 4^{2} numbers grouped into classes mod 4^{2}, and so on.

The point to notice is that numbers belonging to different classes of course cannot give rise to numbers in the same class at higher level, so it suffices to follow the career of a typical class. More, take a group $\left\{t_{1}, t_{2}, \ldots, t_{h}\right\}$, with $t_{1}<t_{2}<\ldots<t_{h}$, of elements congruent mod 4^{n} and set $t_{i}-t_{1}=4^{n} r_{i}$. Then following the career of $\left\{t_{1}, t_{2}, \ldots, t_{h}\right\}$ from level n is equivalent to following its type $\left\{r_{1}=0, r_{2}, \ldots, r_{h}\right\}$ from level 0 .

Obviously the r_{i} are bounded in terms of k; in fact by $(k+1) / 3$. Since the r_{i} must be distinct it follows that for each k only finitely many different types can occur in the construction.

The first nontrivial case is $k=9$, and we have already seen that the singleton $\{0\}$ yields two singletons and a doubleton of type $\{0,2\}$ at level 1 .

The first nontrivial case is $k=9$, and we have already seen that the singleton $\{0\}$ yields two singletons and a doubleton of type $\{0,2\}$ at level 1 . The type $\{0,2\}$ provides three doubletons of type $\{0,2\}$, namely, $\{1,9\},\{2,10\}$, and $\{3,11\}$, and $\{0,12\}$ of type $\{0,3\}$.

The first nontrivial case is $k=9$, and we have already seen that the singleton $\{0\}$ yields two singletons and a doubleton of type $\{0,2\}$ at level 1 . The type $\{0,2\}$ provides three doubletons of type $\{0,2\}$, namely, $\{1,9\},\{2,10\}$, and $\{3,11\}$, and $\{0,12\}$ of type $\{0,3\}$. Thus at $n=2$ we have four singletons, five doubletons of type $\{0,2\}$, and one of type $\{0,3\}$.

The first nontrivial case is $k=9$, and we have already seen that the singleton $\{0\}$ yields two singletons and a doubleton of type $\{0,2\}$ at level 1 . The type $\{0,2\}$ provides three doubletons of type $\{0,2\}$, namely, $\{1,9\},\{2,10\}$, and $\{3,11\}$, and $\{0,12\}$ of type $\{0,3\}$. Thus at $n=2$ we have four singletons, five doubletons of type $\{0,2\}$, and one of type $\{0,3\}$.
At the next level the new type $\{0,3\}$ becomes two singletons, $\{10\}$ and $\{3\}$, and two triples $\{0,4,12\}$ and $\{1,9,13\}$, of respective types $\{0,1,3\}$ and $\{0,2,3\}$.

The first nontrivial case is $k=9$, and we have already seen that the singleton $\{0\}$ yields two singletons and a doubleton of type $\{0,2\}$ at level 1 . The type $\{0,2\}$ provides three doubletons of type $\{0,2\}$, namely, $\{1,9\},\{2,10\}$, and $\{3,11\}$, and $\{0,12\}$ of type $\{0,3\}$. Thus at $n=2$ we have four singletons, five doubletons of type $\{0,2\}$, and one of type $\{0,3\}$.
At the next level the new type $\{0,3\}$ becomes two singletons, $\{10\}$ and $\{3\}$, and two triples $\{0,4,12\}$ and $\{1,9,13\}$, of respective types $\{0,1,3\}$ and $\{0,2,3\}$. The complete set of classes at $n=3$ happens to comprise ten singletons, nineteen doubletons of type $\{0,2\}$ and five of type $\{0,3\}$, and the two triples.

The first nontrivial case is $k=9$, and we have already seen that the singleton $\{0\}$ yields two singletons and a doubleton of type $\{0,2\}$ at level 1 . The type $\{0,2\}$ provides three doubletons of type $\{0,2\}$, namely, $\{1,9\},\{2,10\}$, and $\{3,11\}$, and $\{0,12\}$ of type $\{0,3\}$. Thus at $n=2$ we have four singletons, five doubletons of type $\{0,2\}$, and one of type $\{0,3\}$.
At the next level the new type $\{0,3\}$ becomes two singletons, $\{10\}$ and $\{3\}$, and two triples $\{0,4,12\}$ and $\{1,9,13\}$, of respective types $\{0,1,3\}$ and $\{0,2,3\}$. The complete set of classes at $n=3$ happens to comprise ten singletons, nineteen doubletons of type $\{0,2\}$ and five of type $\{0,3\}$, and the two triples.
At level $n=4$, however, the triple $\{0,1,3\}$ becomes just two triples $\{0,4,12\}$ and $\{1,9,13\}$ of respective types $\{0,1,3\}$ and $\{0,2,3\}$, and two doubletons $\{2,10\}$ and $\{3,11\}$ of type $\{0,2\}$

The first nontrivial case is $k=9$, and we have already seen that the singleton $\{0\}$ yields two singletons and a doubleton of type $\{0,2\}$ at level 1 . The type $\{0,2\}$ provides three doubletons of type $\{0,2\}$, namely, $\{1,9\},\{2,10\}$, and $\{3,11\}$, and $\{0,12\}$ of type $\{0,3\}$. Thus at $n=2$ we have four singletons, five doubletons of type $\{0,2\}$, and one of type $\{0,3\}$.
At the next level the new type $\{0,3\}$ becomes two singletons, $\{10\}$ and $\{3\}$, and two triples $\{0,4,12\}$ and $\{1,9,13\}$, of respective types $\{0,1,3\}$ and $\{0,2,3\}$. The complete set of classes at $n=3$ happens to comprise ten singletons, nineteen doubletons of type $\{0,2\}$ and five of type $\{0,3\}$, and the two triples.
At level $n=4$, however, the triple $\{0,1,3\}$ becomes just two triples $\{0,4,12\}$ and $\{1,9,13\}$ of respective types $\{0,1,3\}$ and $\{0,2,3\}$, and two doubletons $\{2,10\}$ and $\{3,11\}$ of type $\{0,2\}$, comprising only ten elements rather than the expected twelve!

The first nontrivial case is $k=9$, and we have already seen that the singleton $\{0\}$ yields two singletons and a doubleton of type $\{0,2\}$ at level 1 . The type $\{0,2\}$ provides three doubletons of type $\{0,2\}$, namely, $\{1,9\},\{2,10\}$, and $\{3,11\}$, and $\{0,12\}$ of type $\{0,3\}$. Thus at $n=2$ we have four singletons, five doubletons of type $\{0,2\}$, and one of type $\{0,3\}$.
At the next level the new type $\{0,3\}$ becomes two singletons, $\{10\}$ and $\{3\}$, and two triples $\{0,4,12\}$ and $\{1,9,13\}$, of respective types $\{0,1,3\}$ and $\{0,2,3\}$. The complete set of classes at $n=3$ happens to comprise ten singletons, nineteen doubletons of type $\{0,2\}$ and five of type $\{0,3\}$, and the two triples.

At level $n=4$, however, the triple $\{0,1,3\}$ becomes just two triples $\{0,4,12\}$ and $\{1,9,13\}$ of respective types $\{0,1,3\}$ and $\{0,2,3\}$, and two doubletons $\{2,10\}$ and $\{3,11\}$ of type $\{0,2\}$, comprising only ten elements rather than the expected twelve! So there must be an $m \in \mathcal{L}$ so that $9 m$ is in \mathcal{L} and has at most four digits.

The first nontrivial case is $k=9$, and we have already seen that the singleton $\{0\}$ yields two singletons and a doubleton of type $\{0,2\}$ at level 1 . The type $\{0,2\}$ provides three doubletons of type $\{0,2\}$, namely, $\{1,9\},\{2,10\}$, and $\{3,11\}$, and $\{0,12\}$ of type $\{0,3\}$. Thus at $n=2$ we have four singletons, five doubletons of type $\{0,2\}$, and one of type $\{0,3\}$.
At the next level the new type $\{0,3\}$ becomes two singletons, $\{10\}$ and $\{3\}$, and two triples $\{0,4,12\}$ and $\{1,9,13\}$, of respective types $\{0,1,3\}$ and $\{0,2,3\}$. The complete set of classes at $n=3$ happens to comprise ten singletons, nineteen doubletons of type $\{0,2\}$ and five of type $\{0,3\}$, and the two triples.

At level $n=4$, however, the triple $\{0,1,3\}$ becomes just two triples $\{0,4,12\}$ and $\{1,9,13\}$ of respective types $\{0,1,3\}$ and $\{0,2,3\}$, and two doubletons $\{2,10\}$ and $\{3,11\}$ of type $\{0,2\}$, comprising only ten elements rather than the expected twelve! So there must be an $m \in \mathcal{L}$ so that $9 m$ is in \mathcal{L} and has at most four digits. Indeed, $21 \times 11=1 \overline{111}$.

The first nontrivial case is $k=9$, and we have already seen that the singleton $\{0\}$ yields two singletons and a doubleton of type $\{0,2\}$ at level 1 . The type $\{0,2\}$ provides three doubletons of type $\{0,2\}$, namely, $\{1,9\},\{2,10\}$, and $\{3,11\}$, and $\{0,12\}$ of type $\{0,3\}$. Thus at $n=2$ we have four singletons, five doubletons of type $\{0,2\}$, and one of type $\{0,3\}$.

At the next level the new type $\{0,3\}$ becomes two singletons, $\{10\}$ and $\{3\}$, and two triples $\{0,4,12\}$ and $\{1,9,13\}$, of respective types $\{0,1,3\}$ and $\{0,2,3\}$. The complete set of classes at $n=3$ happens to comprise ten singletons, nineteen doubletons of type $\{0,2\}$ and five of type $\{0,3\}$, and the two triples.

At level $n=4$, however, the triple $\{0,1,3\}$ becomes just two triples $\{0,4,12\}$ and $\{1,9,13\}$ of respective types $\{0,1,3\}$ and $\{0,2,3\}$, and two doubletons $\{2,10\}$ and $\{3,11\}$ of type $\{0,2\}$, comprising only ten elements rather than the expected twelve! So there must be an $m \in \mathcal{L}$ so that $9 m$ is in \mathcal{L} and has at most four digits. Indeed, $21 \times 11=1 \overline{11} 1$; and we have noticed this just by following the types.

Suppose now, contrary to what we want, that each set $\mathcal{S}_{n}+k \mathcal{S}_{n}$ has 4^{n} distinct elements

Equations

Suppose now, contrary to what we want, that each set $\mathcal{S}_{n}+k \mathcal{S}_{n}$ has 4^{n} distinct elements, yet recall that the congruence classes $\bmod 4^{n}$ in the sets $\mathcal{S}_{n}+k \mathcal{S}_{n}$ have bounded size because only finitely many different types can occur.

Equations

Suppose now, contrary to what we want, that each set $\mathcal{S}_{n}+k \mathcal{S}_{n}$ has 4^{n} distinct elements, yet recall that the congruence classes $\bmod 4^{n}$ in the sets $\mathcal{S}_{n}+k \mathcal{S}_{n}$ have bounded size because only finitely many different types can occur. We show these constraints are incompatible.

Equations

Suppose now, contrary to what we want, that each set $\mathcal{S}_{n}+k \mathcal{S}_{n}$ has 4^{n} distinct elements, yet recall that the congruence classes mod 4^{n} in the sets $\mathcal{S}_{n}+k \mathcal{S}_{n}$ have bounded size because only finitely many different types can occur. We show these constraints are incompatible.
Given a type of M elements, denote by $N_{i}=N_{i}^{(n)}$ the number of elements of this class congruent to $i \bmod 4^{n}$.

Equations

Suppose now, contrary to what we want, that each set $\mathcal{S}_{n}+k \mathcal{S}_{n}$ has 4^{n} distinct elements, yet recall that the congruence classes $\bmod 4^{n}$ in the sets $\mathcal{S}_{n}+k \mathcal{S}_{n}$ have bounded size because only finitely many different types can occur. We show these constraints are incompatible.
Given a type of M elements, denote by $N_{i}=N_{i}^{(n)}$ the number of elements of this class congruent to $i \bmod 4^{n}$. Now move to level n by adding the set $\mathcal{S}_{n}+k \mathcal{S}_{n}$ to each element of the class.

Equations

Suppose now, contrary to what we want, that each set $\mathcal{S}_{n}+k \mathcal{S}_{n}$ has 4^{n} distinct elements, yet recall that the congruence classes $\bmod 4^{n}$ in the sets $\mathcal{S}_{n}+k \mathcal{S}_{n}$ have bounded size because only finitely many different types can occur. We show these constraints are incompatible.
Given a type of M elements, denote by $N_{i}=N_{i}^{(n)}$ the number of elements of this class congruent to $i \bmod 4^{n}$. Now move to level n by adding the set $\mathcal{S}_{n}+k \mathcal{S}_{n}$ to each element of the class. By our assumption, we must obtain $4^{n} M$ distinct integers falling into various congruence classes $\bmod 4^{n}$.

Equations

Suppose now, contrary to what we want, that each set $\mathcal{S}_{n}+k \mathcal{S}_{n}$ has 4^{n} distinct elements, yet recall that the congruence classes $\bmod 4^{n}$ in the sets $\mathcal{S}_{n}+k \mathcal{S}_{n}$ have bounded size because only finitely many different types can occur. We show these constraints are incompatible.
Given a type of M elements, denote by $N_{i}=N_{i}^{(n)}$ the number of elements of this class congruent to $i \bmod 4^{n}$. Now move to level n by adding the set $\mathcal{S}_{n}+k \mathcal{S}_{n}$ to each element of the class. By our assumption, we must obtain $4^{n} M$ distinct integers falling into various congruence classes $\bmod 4^{n}$. If, moreover, M was chosen maximal, then necessarily each of those 4^{n} classes must contain exactly M elements.

Equations

Suppose now, contrary to what we want, that each set $\mathcal{S}_{n}+k \mathcal{S}_{n}$ has 4^{n} distinct elements, yet recall that the congruence classes $\bmod 4^{n}$ in the sets $\mathcal{S}_{n}+k \mathcal{S}_{n}$ have bounded size because only finitely many different types can occur. We show these constraints are incompatible.
Given a type of M elements, denote by $N_{i}=N_{i}^{(n)}$ the number of elements of this class congruent to $i \bmod 4^{n}$. Now move to level n by adding the set $\mathcal{S}_{n}+k \mathcal{S}_{n}$ to each element of the class. By our assumption, we must obtain $4^{n} M$ distinct integers falling into various congruence classes $\bmod 4^{n}$. If, moreover, M was chosen maximal, then necessarily each of those 4^{n} classes must contain exactly M elements. That yields the equations

$$
\sum_{t \text { in } \mathcal{S}_{n}+k \mathcal{S}_{n}} N_{i-t}^{(n)}=M \quad\left(0<i \leq 4^{n}\right), \text { and the given } \sum_{i \bmod 4^{n}} N_{i}^{(n)}=M
$$

Circulants

Circulants

Further, denote by $c_{i}^{(n)}$ the number of elements of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ congruent to $-i \bmod 4^{n}$.

Circulants

Further, denote by $c_{i}^{(n)}$ the number of elements of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ congruent to $-i \bmod 4^{n}$. Then we have

$$
\begin{aligned}
& \sum_{t \in \mathcal{S}_{n}+k \mathcal{S}_{n}} N_{i-t}^{(n)}=\sum_{j \bmod 4^{n}} c_{j}^{(n)} N_{i+j}^{(n)}=\sum_{j \bmod 4^{n}} c_{j-i}^{(n)} N_{j}^{(n)}=M \quad\left(0<i \leq 4^{n}\right) \\
& \text { and so } \sum_{j \bmod 4^{n}} c_{j-i}^{(n)}=4^{n} \quad \text { and } \sum_{j \bmod 4^{n}}\left(c_{j-i}^{(n)}-1\right) N_{j}^{(n)}=0 \quad\left(0<i \leq 4^{n}\right) .
\end{aligned}
$$

Circulants

Further, denote by $c_{i}^{(n)}$ the number of elements of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ congruent to $-i \bmod 4^{n}$. Then we have

$$
\begin{aligned}
& \sum_{t \in \mathcal{S}_{n}+k \mathcal{S}_{n}} N_{i-t}^{(n)}=\sum_{j \bmod 4^{n}} c_{j}^{(n)} N_{i+j}^{(n)}=\sum_{j \bmod 4^{n}} c_{j-i}^{(n)} N_{j}^{(n)}=M \quad\left(0<i \leq 4^{n}\right) \\
& \text { and so } \sum_{j \bmod 4^{n}} c_{j-i}^{(n)}=4^{n} \quad \text { and } \sum_{j \bmod 4^{n}}\left(c_{j-i}^{(n)}-1\right) N_{j}^{(n)}=0 \quad\left(0<i \leq 4^{n}\right)
\end{aligned}
$$

So our attention should turn to the the $4^{n} \times 4^{n}$ matrix $C=\left(c_{j-i}^{(n)}-1\right)$.

Circulants

Further, denote by $c_{i}^{(n)}$ the number of elements of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ congruent to $-i \bmod 4^{n}$. Then we have

$$
\begin{aligned}
& \sum_{t \in \mathcal{S}_{n}+k \mathcal{S}_{n}} N_{i-t}^{(n)}=\sum_{j \bmod 4^{n}} c_{j}^{(n)} N_{i+j}^{(n)}=\sum_{j \bmod 4^{n}} c_{j-i}^{(n)} N_{j}^{(n)}=M \quad\left(0<i \leq 4^{n}\right) \\
& \text { and so } \sum_{j \bmod 4^{n}} c_{j-i}^{(n)}=4^{n} \quad \text { and } \sum_{j \bmod 4^{n}}\left(c_{j-i}^{(n)}-1\right) N_{j}^{(n)}=0 \quad\left(0<i \leq 4^{n}\right)
\end{aligned}
$$

So our attention should turn to the the $4^{n} \times 4^{n}$ matrix $C=\left(c_{j-i}^{(n)}-1\right)$. It is a circulant

Circulants

Further, denote by $c_{i}^{(n)}$ the number of elements of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ congruent to $-i \bmod 4^{n}$. Then we have

$$
\begin{aligned}
& \sum_{t \in \mathcal{S}_{n}+k \mathcal{S}_{n}} N_{i-t}^{(n)}=\sum_{j \bmod 4^{n}} c_{j}^{(n)} N_{i+j}^{(n)}=\sum_{j \bmod 4^{n}} c_{j-i}^{(n)} N_{j}^{(n)}=M \quad\left(0<i \leq 4^{n}\right) \\
& \text { and so } \sum_{j \bmod 4^{n}} c_{j-i}^{(n)}=4^{n} \quad \text { and } \sum_{j \bmod 4^{n}}\left(c_{j-i}^{(n)}-1\right) N_{j}^{(n)}=0 \quad\left(0<i \leq 4^{n}\right)
\end{aligned}
$$

So our attention should turn to the the $4^{n} \times 4^{n}$ matrix $C=\left(c_{j-i}^{(n)}-1\right)$. It is a circulant and those who know such things well well know that it is diagonalisable and that its eigenvalues are given by the 4^{n} resolvent sums

$$
\varphi^{(n)}(\theta)=\sum_{i \bmod 4^{n}} c_{i}^{(n)} \theta^{i} \quad \text { for } \theta^{4^{n}}=1 \text { and } \theta \neq 1 ; \text { but } \varphi^{(n)}(1)=0
$$

Circulants

Further, denote by $c_{i}^{(n)}$ the number of elements of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ congruent to $-i \bmod 4^{n}$. Then we have

$$
\begin{aligned}
& \sum_{t \in \mathcal{S}_{n}+k \mathcal{S}_{n}} N_{i-t}^{(n)}=\sum_{j \bmod 4^{n}} c_{j}^{(n)} N_{i+j}^{(n)}=\sum_{j \bmod 4^{n}} c_{j-i}^{(n)} N_{j}^{(n)}=M \quad\left(0<i \leq 4^{n}\right) \\
& \text { and so } \sum_{j \bmod 4^{n}} c_{j-i}^{(n)}=4^{n} \quad \text { and } \sum_{j \bmod 4^{n}}\left(c_{j-i}^{(n)}-1\right) N_{j}^{(n)}=0 \quad\left(0<i \leq 4^{n}\right) .
\end{aligned}
$$

So our attention should turn to the the $4^{n} \times 4^{n}$ matrix $C=\left(c_{j-i}^{(n)}-1\right)$. It is a circulant and those who know such things well well know that it is diagonalisable and that its eigenvalues are given by the 4^{n} resolvent sums

$$
\varphi^{(n)}(\theta)=\sum_{i \bmod 4^{n}} c_{i}^{(n)} \theta^{i} \quad \text { for } \theta^{4^{n}}=1 \text { and } \theta \neq 1 ; \text { but } \varphi^{(n)}(1)=0
$$

The general solution for $N_{i}^{(n)}$ is given by $4^{-n} M$ from $\theta=1$ plus some linear combination of solutions coming from the other θ for which $\varphi^{(n)}(\theta)$ vanishes.

Resolution

Resolution

Earlier we used $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=\mathcal{S}_{n}+k \mathcal{S}_{n}+4^{n}\left(\mathcal{S}_{1}+k \mathcal{S}_{1}\right)$; here we apply $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=4\left(\mathcal{S}_{n}+k \mathcal{S}_{n}\right)+\mathcal{S}_{1}+k \mathcal{S}_{1}$.

Resolution

Earlier we used $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=\mathcal{S}_{n}+k \mathcal{S}_{n}+4^{n}\left(\mathcal{S}_{1}+k \mathcal{S}_{1}\right)$;
here we apply $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=4\left(\mathcal{S}_{n}+k \mathcal{S}_{n}\right)+\mathcal{S}_{1}+k \mathcal{S}_{1}$.
Thus each element of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ congruent to $-i \bmod 4^{n}$ yields four elements of $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}$ congruent respectively to $-4 i,-4 i+1,-4 i+k$, and $-4 i+k+1$.

Resolution

Earlier we used $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=\mathcal{S}_{n}+k \mathcal{S}_{n}+4^{n}\left(\mathcal{S}_{1}+k \mathcal{S}_{1}\right)$;
here we apply $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=4\left(\mathcal{S}_{n}+k \mathcal{S}_{n}\right)+\mathcal{S}_{1}+k \mathcal{S}_{1}$.
Thus each element of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ congruent to $-i \bmod 4^{n}$ yields four elements of $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}$ congruent respectively to $-4 i,-4 i+1,-4 i+k$, and $-4 i+k+1$. In brief, if η is a 4^{n+1} th root of unity then
$\varphi^{n+1}(\eta)=\sum_{i \bmod 4^{n}} c_{i}^{(n)} \eta^{4 i}\left(1+1 / \eta+1 / \eta^{k}+1 / \eta^{k+1}\right)=\varphi^{(n)}\left(\eta^{4}\right)(1+1 / \eta)\left(1+1 / \eta^{k}\right) ;$

Resolution

Earlier we used $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=\mathcal{S}_{n}+k \mathcal{S}_{n}+4^{n}\left(\mathcal{S}_{1}+k \mathcal{S}_{1}\right)$;
here we apply $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=4\left(\mathcal{S}_{n}+k \mathcal{S}_{n}\right)+\mathcal{S}_{1}+k \mathcal{S}_{1}$.
Thus each element of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ congruent to $-i \bmod 4^{n}$ yields four elements of $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}$ congruent respectively to $-4 i,-4 i+1,-4 i+k$, and $-4 i+k+1$. In brief, if η is a 4^{n+1} th root of unity then

$$
\begin{aligned}
\varphi^{n+1}(\eta)=\sum_{i \bmod 4^{n}} c_{i}^{(n)} \eta^{4 i}\left(1+1 / \eta+1 / \eta^{k}+1 / \eta^{k+1}\right) & =\varphi^{(n)}\left(\eta^{4}\right)(1+1 / \eta)\left(1+1 / \eta^{k}\right) ; \\
\text { and so, by induction, } \varphi^{(n)}(\theta) & =\prod_{i=0}^{n-1}\left(1+\theta^{-4^{i}}\right)\left(1+\theta^{-k 4^{i}}\right) .
\end{aligned}
$$

Resolution

Earlier we used $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=\mathcal{S}_{n}+k \mathcal{S}_{n}+4^{n}\left(\mathcal{S}_{1}+k \mathcal{S}_{1}\right)$;
here we apply $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=4\left(\mathcal{S}_{n}+k \mathcal{S}_{n}\right)+\mathcal{S}_{1}+k \mathcal{S}_{1}$.
Thus each element of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ congruent to $-i \bmod 4^{n}$ yields four elements of $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}$ congruent respectively to $-4 i,-4 i+1,-4 i+k$, and $-4 i+k+1$. In brief, if η is a 4^{n+1} th root of unity then

$$
\varphi^{n+1}(\eta)=\sum_{i \bmod 4^{n}} c_{i}^{(n)} \eta^{4 i}\left(1+1 / \eta+1 / \eta^{k}+1 / \eta^{k+1}\right)=\varphi^{(n)}\left(\eta^{4}\right)(1+1 / \eta)\left(1+1 / \eta^{k}\right) ;
$$

$$
\text { and so, by induction, } \varphi^{(n)}(\theta)=\prod_{i=0}^{n-1}\left(1+\theta^{-4^{i}}\right)\left(1+\theta^{-k 4^{i}}\right)
$$

Hence, $\varphi^{(n)}(\theta) \neq 0$ if θ has exact order 4^{h}; and $\varphi^{(n)}(\theta)=0$ if θ has exact order $2 \cdot 4^{h-1}(0<h \leq n)$

Resolution

Earlier we used $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=\mathcal{S}_{n}+k \mathcal{S}_{n}+4^{n}\left(\mathcal{S}_{1}+k \mathcal{S}_{1}\right)$;
here we apply $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=4\left(\mathcal{S}_{n}+k \mathcal{S}_{n}\right)+\mathcal{S}_{1}+k \mathcal{S}_{1}$.
Thus each element of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ congruent to $-i \bmod 4^{n}$ yields four elements of $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}$ congruent respectively to $-4 i,-4 i+1,-4 i+k$, and $-4 i+k+1$. In brief, if η is a 4^{n+1} th root of unity then

$$
\varphi^{n+1}(\eta)=\sum_{i \bmod 4^{n}} c_{i}^{(n)} \eta^{4 i}\left(1+1 / \eta+1 / \eta^{k}+1 / \eta^{k+1}\right)=\varphi^{(n)}\left(\eta^{4}\right)(1+1 / \eta)\left(1+1 / \eta^{k}\right)
$$

$$
\text { and so, by induction, } \varphi^{(n)}(\theta)=\prod_{i=0}^{n-1}\left(1+\theta^{-4^{i}}\right)\left(1+\theta^{-k 4^{i}}\right)
$$

Hence, $\varphi^{(n)}(\theta) \neq 0$ if θ has exact order 4^{h}; and $\varphi^{(n)}(\theta)=0$ if θ has exact order $2 \cdot 4^{h-1}(0<h \leq n)$; here we really do explicitly use the condition k odd.

Resolution

Earlier we used $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=\mathcal{S}_{n}+k \mathcal{S}_{n}+4^{n}\left(\mathcal{S}_{1}+k \mathcal{S}_{1}\right)$; here we apply $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}=4\left(\mathcal{S}_{n}+k \mathcal{S}_{n}\right)+\mathcal{S}_{1}+k \mathcal{S}_{1}$.

Thus each element of $\mathcal{S}_{n}+k \mathcal{S}_{n}$ congruent to $-i \bmod 4^{n}$ yields four elements of $\mathcal{S}_{n+1}+k \mathcal{S}_{n+1}$ congruent respectively to $-4 i,-4 i+1,-4 i+k$, and $-4 i+k+1$. In brief, if η is a 4^{n+1} th root of unity then

$$
\varphi^{n+1}(\eta)=\sum_{i \bmod 4^{n}} c_{i}^{(n)} \eta^{4 i}\left(1+1 / \eta+1 / \eta^{k}+1 / \eta^{k+1}\right)=\varphi^{(n)}\left(\eta^{4}\right)(1+1 / \eta)\left(1+1 / \eta^{k}\right)
$$

$$
\text { and so, by induction, } \varphi^{(n)}(\theta)=\prod_{i=0}^{n-1}\left(1+\theta^{-4^{i}}\right)\left(1+\theta^{-k 4^{i}}\right)
$$

Hence, $\varphi^{(n)}(\theta) \neq 0$ if θ has exact order 4^{h}; and $\varphi^{(n)}(\theta)=0$ if θ has exact order $2 \cdot 4^{h-1}(0<h \leq n)$; here we really do explicitly use the condition k odd. The almost magical result $N_{i}^{(n)}=N_{i+2 \cdot 4^{n-1}}^{(n)}\left(0 \leq i<2 \cdot 4^{n-1}\right)$ follows, and that is enough to give us our contradiction.

Indeed, it is easy to see by induction that at least 2^{n} of the $N_{i}^{(n)}$ are non-zero: for each $i \bmod 4^{n}$ for which $N_{i}^{(n)}$ is non-zero, at least two of

$$
N_{i}^{(n+1)}, \quad N_{i+4^{n}}^{(n+1)}, \quad N_{i+2 \cdot 4 n}^{(n+1)}, \quad N_{i+3 \cdot 4^{n}}^{(n+1)}
$$

must be non-zero.

Indeed, it is easy to see by induction that at least 2^{n} of the $N_{i}^{(n)}$ are non-zero: for each $i \bmod 4^{n}$ for which $N_{i}^{(n)}$ is non-zero, at least two of

$$
N_{i}^{(n+1)}, \quad N_{i+4^{n}}^{(n+1)}, \quad N_{i+2 \cdot 4^{n}}^{(n+1)}, \quad N_{i+3 \cdot 4^{n}}^{(n+1)}
$$

must be non-zero. Thus we obtain the absurd consequence that for every n

$$
M=\sum_{i \bmod 4^{n}} N_{i}^{(n)} \geq 2^{n}
$$

Indeed, it is easy to see by induction that at least 2^{n} of the $N_{i}^{(n)}$ are non-zero: for each $i \bmod 4^{n}$ for which $N_{i}^{(n)}$ is non-zero, at least two of

$$
N_{i}^{(n+1)}, \quad N_{i+4^{n}}^{(n+1)}, \quad N_{i+2 \cdot 4^{n}}^{(n+1)}, \quad N_{i+3 \cdot 4^{n}}^{(n+1)}
$$

must be non-zero. Thus we obtain the absurd consequence that for every n

$$
M=\sum_{i \bmod 4^{n}} N_{i}^{(n)} \geq 2^{n}
$$

Painting the Lilly

Indeed, it is easy to see by induction that at least 2^{n} of the $N_{i}^{(n)}$ are non-zero: for each $i \bmod 4^{n}$ for which $N_{i}^{(n)}$ is non-zero, at least two of

$$
N_{i}^{(n+1)}, \quad N_{i+4^{n}}^{(n+1)}, \quad N_{i+2 \cdot 4^{n}}^{(n+1)}, \quad N_{i+3 \cdot 4^{n}}^{(n+1)}
$$

must be non-zero. Thus we obtain the absurd consequence that for every n

$$
M=\sum_{i \bmod 4^{n}} N_{i}^{(n)} \geq 2^{n}
$$

Painting the Lilly

'To gild refined gold, to paint the lilly, ... is', as Salisbury warns King John, 'wasteful and ridiculous excess'. Nonetheless, we add some remarks on the number of congruence classes of $\mathcal{S}+k \mathcal{S} \bmod 4^{n}$, and therefore an alternate proof, primarily, I guess, because that was our original line of argument.

Recall the example $k=9$.

Recall the example $k=9$. To complete its discussion one adds that also the type $\{0,2,3\}$ yields triples of types $\{0,1,3\}$ and $\{0,2,3\}$ respectively, and two doubletons of type $\{0,2\}$.

Recall the example $k=9$. To complete its discussion one adds that also the type $\{0,2,3\}$ yields triples of types $\{0,1,3\}$ and $\{0,2,3\}$ respectively, and two doubletons of type $\{0,2\}$. Thus $k=9$ has precisely the types $\{0\}$, $\{0,2\}\{0,3\},\{0,1,3\}$ and $\{0,2,3\}$.

Recall the example $k=9$. To complete its discussion one adds that also the type $\{0,2,3\}$ yields triples of types $\{0,1,3\}$ and $\{0,2,3\}$ respectively, and two doubletons of type $\{0,2\}$. Thus $k=9$ has precisely the types $\{0\}$, $\{0,2\}\{0,3\},\{0,1,3\}$ and $\{0,2,3\}$. Retaining that ordering, their behaviour under change of level is given completely by the transition matrix

$$
T=\left[\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0 \\
2 & 0 & 0 & 1 & 1 \\
0 & 2 & 0 & 1 & 1 \\
0 & 2 & 0 & 1 & 1
\end{array}\right]
$$

Recall the example $k=9$. To complete its discussion one adds that also the type $\{0,2,3\}$ yields triples of types $\{0,1,3\}$ and $\{0,2,3\}$ respectively, and two doubletons of type $\{0,2\}$. Thus $k=9$ has precisely the types $\{0\}$, $\{0,2\}\{0,3\},\{0,1,3\}$ and $\{0,2,3\}$. Retaining that ordering, their behaviour under change of level is given completely by the transition matrix

$$
T=\left[\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0 \\
2 & 0 & 0 & 1 & 1 \\
0 & 2 & 0 & 1 & 1 \\
0 & 2 & 0 & 1 & 1
\end{array}\right]
$$

Thus if we follow a type of say h elements to level n we either find fewer than $4^{n} h$ elements or we find a congruence class $\bmod 4^{n}$ with more than h elements.

Recall the example $k=9$. To complete its discussion one adds that also the type $\{0,2,3\}$ yields triples of types $\{0,1,3\}$ and $\{0,2,3\}$ respectively, and two doubletons of type $\{0,2\}$. Thus $k=9$ has precisely the types $\{0\}$, $\{0,2\}\{0,3\},\{0,1,3\}$ and $\{0,2,3\}$. Retaining that ordering, their behaviour under change of level is given completely by the transition matrix

$$
T=\left[\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0 \\
2 & 0 & 0 & 1 & 1 \\
0 & 2 & 0 & 1 & 1 \\
0 & 2 & 0 & 1 & 1
\end{array}\right]
$$

Thus if we follow a type of say h elements to level n we either find fewer than $4^{n} h$ elements or we find a congruence class $\bmod 4^{n}$ with more than h elements. In either case at least one of the 4^{n} congruence classes must contain fewer than h elements.

Recall the example $k=9$. To complete its discussion one adds that also the type $\{0,2,3\}$ yields triples of types $\{0,1,3\}$ and $\{0,2,3\}$ respectively, and two doubletons of type $\{0,2\}$. Thus $k=9$ has precisely the types $\{0\}$, $\{0,2\}\{0,3\},\{0,1,3\}$ and $\{0,2,3\}$. Retaining that ordering, their behaviour under change of level is given completely by the transition matrix

$$
T=\left[\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0 \\
2 & 0 & 0 & 1 & 1 \\
0 & 2 & 0 & 1 & 1 \\
0 & 2 & 0 & 1 & 1
\end{array}\right]
$$

Thus if we follow a type of say h elements to level n we either find fewer than $4^{n} h$ elements or we find a congruence class $\bmod 4^{n}$ with more than h elements. In either case at least one of the 4^{n} congruence classes must contain fewer than h elements. So each type leads eventually to the singleton type.

Perron-Frobenius Theory

Perron-Frobenius Theory

Results of Perron and of Frobenius assert that an irreducible non-negative matrix has a positive eigenvalue, r say, such that all other eigenvalues have absolute value at most r.

Perron-Frobenius Theory

Results of Perron and of Frobenius assert that an irreducible non-negative matrix has a positive eigenvalue, r say, such that all other eigenvalues have absolute value at most r. Moreover, each such dominant eigenvalue is a simple root of the characteristic equation.

Perron-Frobenius Theory

Results of Perron and of Frobenius assert that an irreducible non-negative matrix has a positive eigenvalue, r say, such that all other eigenvalues have absolute value at most r. Moreover, each such dominant eigenvalue is a simple root of the characteristic equation. Further, r lies between the minimal and maximal row sums of the matrix.

Perron-Frobenius Theory

Results of Perron and of Frobenius assert that an irreducible non-negative matrix has a positive eigenvalue, r say, such that all other eigenvalues have absolute value at most r. Moreover, each such dominant eigenvalue is a simple root of the characteristic equation. Further, r lies between the minimal and maximal row sums of the matrix.

We have just now seen that, in our problem, a transition matrix T is irreducible, in the sense that each type eventually yields every other type.

Perron-Frobenius Theory

Results of Perron and of Frobenius assert that an irreducible non-negative matrix has a positive eigenvalue, r say, such that all other eigenvalues have absolute value at most r. Moreover, each such dominant eigenvalue is a simple root of the characteristic equation. Further, r lies between the minimal and maximal row sums of the matrix.

We have just now seen that, in our problem, a transition matrix T is irreducible, in the sense that each type eventually yields every other type. Moreover, for arbitrary odd k, its first row, corresponding to the singleton type, will always sum to 3 , the others to at most 4 .

Perron-Frobenius Theory

Results of Perron and of Frobenius assert that an irreducible non-negative matrix has a positive eigenvalue, r say, such that all other eigenvalues have absolute value at most r. Moreover, each such dominant eigenvalue is a simple root of the characteristic equation. Further, r lies between the minimal and maximal row sums of the matrix.

We have just now seen that, in our problem, a transition matrix T is irreducible, in the sense that each type eventually yields every other type. Moreover, for arbitrary odd k, its first row, corresponding to the singleton type, will always sum to 3 , the others to at most 4 . Hence $3<r<4$, and it follows that the number of distinct elements of $\mathcal{S}+k \mathcal{S}$ not exceeding N is $O\left(N^{\log r / \log 4}\right)$ as $N \rightarrow \infty$.

Perron-Frobenius Theory

Results of Perron and of Frobenius assert that an irreducible non-negative matrix has a positive eigenvalue, r say, such that all other eigenvalues have absolute value at most r. Moreover, each such dominant eigenvalue is a simple root of the characteristic equation. Further, r lies between the minimal and maximal row sums of the matrix.

We have just now seen that, in our problem, a transition matrix T is irreducible, in the sense that each type eventually yields every other type. Moreover, for arbitrary odd k, its first row, corresponding to the singleton type, will always sum to 3 , the others to at most 4 . Hence $3<r<4$, and it follows that the number of distinct elements of $\mathcal{S}+k \mathcal{S}$ not exceeding N is $O\left(N^{\log r / \log 4}\right)$ as $N \rightarrow \infty$. Thus most integers are not in $\mathcal{S}+k \mathcal{S}$.

Perron-Frobenius Theory

Results of Perron and of Frobenius assert that an irreducible non-negative matrix has a positive eigenvalue, r say, such that all other eigenvalues have absolute value at most r. Moreover, each such dominant eigenvalue is a simple root of the characteristic equation. Further, r lies between the minimal and maximal row sums of the matrix.

We have just now seen that, in our problem, a transition matrix T is irreducible, in the sense that each type eventually yields every other type. Moreover, for arbitrary odd k, its first row, corresponding to the singleton type, will always sum to 3 , the others to at most 4 . Hence $3<r<4$, and it follows that the number of distinct elements of $\mathcal{S}+k \mathcal{S}$ not exceeding N is $O\left(N^{\log r / \log 4}\right)$ as $N \rightarrow \infty$. Thus most integers are not in $\mathcal{S}+k \mathcal{S}$.

Incidentally, the argument fails if the last nonzero digit of k is a 2 , because T then has an irreducible component in which all row sums are 4 .

The Number of Representations $r_{k}(n)$ of n

The Number of Representations $r_{k}(n)$ of n

It is easy to see that

$$
F_{k}(X)=\prod_{n=0}^{\infty}\left(1+X^{4^{n}}\right)\left(1+X^{k 4^{n}}\right)=\sum_{n=0}^{\infty} r_{n}(k) X^{n}
$$

is the generating function of the number of representations $r_{n}(k)$ of n of the shape $s+k s^{\prime}$ with s and s^{\prime} in \mathcal{S}.

The Number of Representations $r_{k}(n)$ of n

It is easy to see that

$$
F_{k}(X)=\prod_{n=0}^{\infty}\left(1+X^{4^{n}}\right)\left(1+X^{k 4^{n}}\right)=\sum_{n=0}^{\infty} r_{n}(k) X^{n}
$$

is the generating function of the number of representations $r_{n}(k)$ of n of the shape $s+k s^{\prime}$ with s and s^{\prime} in \mathcal{S}.

It is now not too hard to see that, on average, $r_{n}(k)$ is about $1 / \sqrt{k}$.

The Number of Representations $r_{k}(n)$ of n

It is easy to see that

$$
F_{k}(X)=\prod_{n=0}^{\infty}\left(1+X^{4^{n}}\right)\left(1+X^{k 4^{n}}\right)=\sum_{n=0}^{\infty} r_{n}(k) X^{n}
$$

is the generating function of the number of representations $r_{n}(k)$ of n of the shape $s+k s^{\prime}$ with s and s^{\prime} in \mathcal{S}.

It is now not too hard to see that, on average, $r_{n}(k)$ is about $1 / \sqrt{k}$. It suffices to remark that

$$
\sum_{n<N} r_{k}(n)=\sum_{s+k s^{\prime}<N} 1
$$

to take $N \sim 4^{n}$, and to recall $\left|\mathcal{S}_{n}\right|=2^{n}$.

The Number of Representations $r_{k}(n)$ of n

It is easy to see that

$$
F_{k}(X)=\prod_{n=0}^{\infty}\left(1+X^{4^{n}}\right)\left(1+X^{k 4^{n}}\right)=\sum_{n=0}^{\infty} r_{n}(k) X^{n}
$$

is the generating function of the number of representations $r_{n}(k)$ of n of the shape $s+k s^{\prime}$ with s and s^{\prime} in \mathcal{S}.

It is now not too hard to see that, on average, $r_{n}(k)$ is about $1 / \sqrt{k}$. It suffices to remark that

$$
\sum_{n<N} r_{k}(n)=\sum_{s+k s^{\prime}<N} 1
$$

to take $N \sim 4^{n}$, and to recall $\left|\mathcal{S}_{n}\right|=2^{n}$.
It follows that if almost all the $r_{n}(k)$ are zero then some $r_{n}(k)$ must exceed 1, again solving our problem.

The Number of Representations $r_{k}(n)$ of n

It is easy to see that

$$
F_{k}(X)=\prod_{n=0}^{\infty}\left(1+X^{4^{n}}\right)\left(1+X^{k 4^{n}}\right)=\sum_{n=0}^{\infty} r_{n}(k) X^{n}
$$

is the generating function of the number of representations $r_{n}(k)$ of n of the shape $s+k s^{\prime}$ with s and s^{\prime} in \mathcal{S}.

It is now not too hard to see that, on average, $r_{n}(k)$ is about $1 / \sqrt{k}$. It suffices to remark that

$$
\sum_{n<N} r_{k}(n)=\sum_{s+k s^{\prime}<N} 1
$$

to take $N \sim 4^{n}$, and to recall $\left|\mathcal{S}_{n}\right|=2^{n}$.
It follows that if almost all the $r_{n}(k)$ are zero then some $r_{n}(k)$ must exceed 1, again solving our problem. Our arguments in fact show, if k is odd, that there are $r_{n}(k)$ that are arbitrarily large.

Notes and References

Gavin Brown, William Moran, and Robert Tijdeman, 'Riesz products are basic measures', J. London Math. Soc. 30 (1984), 105-109.

Notes and References

Gavin Brown, William Moran, and Robert Tijdeman, 'Riesz products are basic measures', J. London Math. Soc. 30 (1984), 105-109.

My recollection is that the 'awful problem' arose in the course of the attempted construction of a possible counter-example to the theorem eventually proved by BMT. John's and my work in fact shows that the construction could not have provided a counter-example at all; that's no doubt a good thing.

Notes and References

Gavin Brown, William Moran, and Robert Tijdeman, 'Riesz products are basic measures', J. London Math. Soc. 30 (1984), 105-109.

My recollection is that the 'awful problem' arose in the course of the attempted construction of a possible counter-example to the theorem eventually proved by BMT. John's and my work in fact shows that the construction could not have provided a counter-example at all; that's no doubt a good thing.
F. R. Gantmacher, The theory of matrices, Chelsea, 1974.

A fine not explicitly statistical source for the theorems of Perron and of Frobenius.

Notes and References

Gavin Brown, William Moran, and Robert Tijdeman, 'Riesz products are basic measures', J. London Math. Soc. 30 (1984), 105-109.

My recollection is that the 'awful problem' arose in the course of the attempted construction of a possible counter-example to the theorem eventually proved by BMT. John's and my work in fact shows that the construction could not have provided a counter-example at all; that's no doubt a good thing.
F. R. Gantmacher, The theory of matrices, Chelsea, 1974.

A fine not explicitly statistical source for the theorems of Perron and of Frobenius.
D. H. Lehmer, K. Mahler and A. J.vdP, 'Integers with digits 0 or 1', Math. Comp. 46 (1986), 683-689.

We knew that $\mathcal{S}-\mathcal{S}=\mathcal{L}$ because of this work.

Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge UP,

 2003.A wonderful book that will have you too talking comfortably about languages and words, and loving it.

Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge UP, 2003.

A wonderful book that will have you too talking comfortably about languages and words, and loving it.
J. H. Loxton and A. J.vdP, 'An awful problem about integers in base four', Acta Arith. 49 (1987), 192-203.

The paper of the present talk.

Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge UP, 2003.

A wonderful book that will have you too talking comfortably about languages and words, and loving it.
J. H. Loxton and A. J.vdP, 'An awful problem about integers in base four', Acta Arith. 49 (1987), 192-203.

The paper of the present talk. At the time, we accidentally dedicated the article to Paul Erdős on his 80th birthday (rather than his 75 th, as intended),

Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge UP, 2003.

A wonderful book that will have you too talking comfortably about languages and words, and loving it.
J. H. Loxton and A. J.vdP, 'An awful problem about integers in base four', Acta Arith. 49 (1987), 192-203.

The paper of the present talk. At the time, we accidentally dedicated the article to Paul Erdős on his 80th birthday (rather than his 75th, as intended), leading Andrzej Schinzel to say to me that he accepted the paper subject to one change, unless we wanted it kept for five years.

Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge UP, 2003.

A wonderful book that will have you too talking comfortably about languages and words, and loving it.
J. H. Loxton and A. J.vdP, 'An awful problem about integers in base four', Acta Arith. 49 (1987), 192-203.

The paper of the present talk. At the time, we accidentally dedicated the article to Paul Erdős on his 80th birthday (rather than his 75 th, as intended), leading Andrzej Schinzel to say to me that he accepted the paper subject to one change, unless we wanted it kept for five years. I was able to retort that our error was understandable, given the way that Erdős carries on about his age - smile from Schinzel

Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge UP, 2003.

A wonderful book that will have you too talking comfortably about languages and words, and loving it.
J. H. Loxton and A. J.vdP, 'An awful problem about integers in base four', Acta Arith. 49 (1987), 192-203.

The paper of the present talk. At the time, we accidentally dedicated the article to Paul Erdős on his 80th birthday (rather than his 75 th, as intended), leading Andrzej Schinzel to say to me that he accepted the paper subject to one change, unless we wanted it kept for five years. I was able to retort that our error was understandable, given the way that Erdős carries on about his age - smile from Schinzel - and that, anyhow, given Acta Arithmetica publication delays, it was probably spot on - laughter from everyone else.

Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge UP, 2003.

A wonderful book that will have you too talking comfortably about languages and words, and loving it.
J. H. Loxton and A. J.vdP, 'An awful problem about integers in base four', Acta Arith. 49 (1987), 192-203.

The paper of the present talk. At the time, we accidentally dedicated the article to Paul Erdős on his 80th birthday (rather than his 75 th, as intended), leading Andrzej Schinzel to say to me that he accepted the paper subject to one change, unless we wanted it kept for five years. I was able to retort that our error was understandable, given the way that Erdős carries on about his age - smile from Schinzel - and that, anyhow, given Acta Arithmetica publication delays, it was probably spot on - laughter from everyone else.

This talk, though without my spoken commentary, can be found at http://www.maths.mq.edu.au/~alf/AwfulTalk.pdf.

Gavin

$\mathrm{V} \times \mathrm{XIII}=\mathrm{XIII} \times \mathrm{V}$

Gavin

Happy $\mathrm{V} \times \mathrm{XIII}=\mathrm{XIII} \times \mathrm{V}$
 Gavin

Many Happy

 $\mathrm{V} \times \mathrm{XIII}=\mathrm{XIII} \times \mathrm{V}$Gavin

Many Happy Returns $\mathrm{V} \times$ XIII $=$ XIII $\times \mathrm{V}$

Gavin

