

What can the working mathematician expect from deep learning?
Geordie Williamson, University of Sydney Mathematical Research Institute
University of Sydney Colloquium, November 2022

Theorem: There are infinitely many prime numbers.

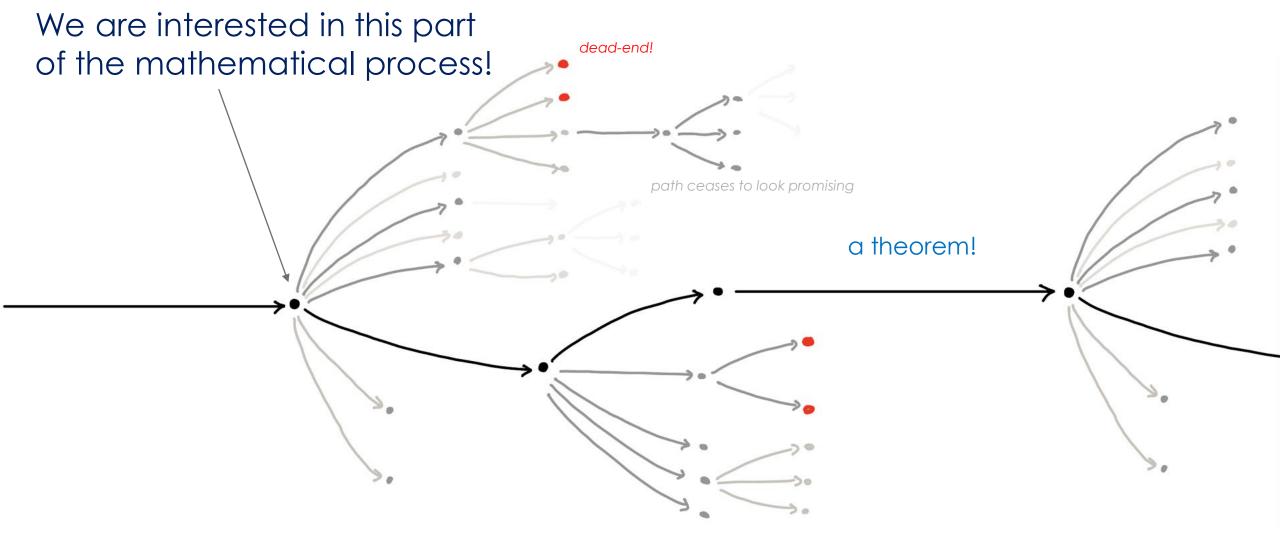
Proof:

- 1) Assume there are finitely many: $p_1, p_2, ..., p_n$.
 - 2) Consider $p_1 p_2 ... p_n + 1$.
 - 3) You know the rest...

"There is the monastic, introverted period, where we are just contemplating the ocean of our ignorance; but then suddenly something happens...the monk becomes busy and excited, in a hurry to look more closely at the details."

—Claire Voisin, How to make a portrait of a bird.

The Development of Ideas



totally lost

an idea!

checking details

digestion by community

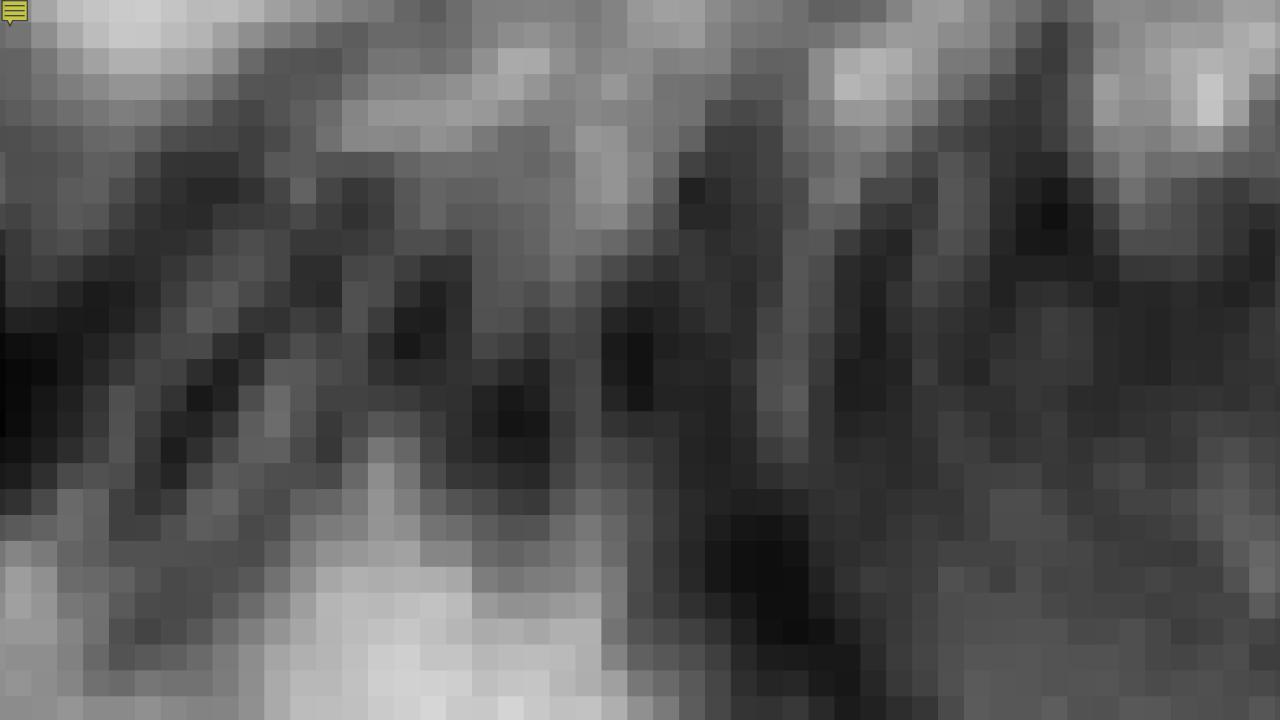
Plan:

- 1) Crash course in deep learning
- 2) Simple examples in mathematics
 - 3) Myths, advice and scale
- 4) Some examples in (pure) mathematics research.

Disclaimer:

- 1) I am a pure mathematician, interested (mostly) in representation theory, algebraic geometry... I won't discuss deep learning in applied math or mathematical questions raised by deep learning.
 - 2) I have been working with DeepMind (of AlphaGo fame) tor two years. We are interested in potential interactions of Al and mathematics. This is a two-way bridge.
 - 3) I have spent two years engaging with machine learning. I know the basics but am far from an expert.
 - 4) All opinions are my own.

A crash course in deep learning.



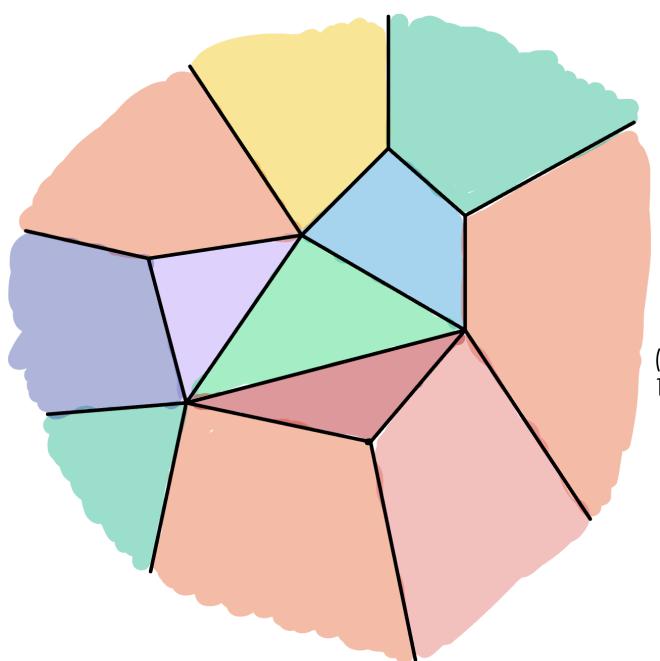
9 <u>2</u> 1	01 1	10 1	18 1	26	122	107	096	077	070	083	094	107	133	148	150	150	156	152	140	126	126	135	131	126	116	113	078	072	078	103	123	151	152	137	115	087	070	057	053	065	096	150
79 0	85 0	92 1	03 1	106	094	078	072	071	063	074	090	112	135	137	134	145	140	121	107	105	125	150	146	123	113	098	060	059	067	098	109	122	129	114	083	071	061	052	049	062	089	127
78 0	79 0	85 0	95 (92	070	052	051	051	063	087	090	083	082	085	100	108	109	106	107	102	112	141	148	130	102	066	054	057	067	087	100	116	106	085	069	084	070	051	042	041	075	107
79 0	80 0	91 0	94 (77	059	048	040	040	050	069	098	069	055	063	087	100	096	097	106	108	117	139	148	124	088	033	044	055	064	074	110	119	072	072	055	086	075	045	034	025	046	084
67 0	78 0	89 0	85 (065	050	044	042	056	059	063	073	060	049	060	085	100	088	090	096	101	116	130	134	106	076	040	040	050	057	075	096	092	057	051	059	085	074	043	026	016	032	064
58 0	73 0	78 0	67 ()53	046	047	052	070	077	070	056	056	058	066	078	078	069	084	092	099	115	112	104	086	066	055	045	051	055	084	086	060	043	037	067	079	068	038	024	023	030	051
57 0	64 0	57 0	44 ()41	045	054	067	077	082	070	045	045	070	074	062	049	050	082	090	093	108	093	075	060	049	056	048	045	053	086	076	043	036	042	073	069	056	034	034	034	032	038
52 0	50 0	37 0	27 (31	042	060	080	088	074	058	046	041	080	075	048	033	044	082	085	078	092	078	055	040	038	049	051	042	058	085	073	042	032	050	067	058	047	034	046	048	041	033
34 0	32 0	27 0	26 (34	048	069	088	080	053	050	062	054	080	060	031	029	046	081	079	065	077	067	037	028	035	043	051	044	067	084	070	043	028	046	056	050	043	039	052	061	055	041
15 0	18 0	25 0	34 (146	062	072	073	048	040	061	077	066	070	044	024	034	048	070	064	051	068	065	026	018	032	036	040	044	071	080	061	037	028	039	054	046	041	047	053	060	056	042
09 0	13 0	25 0	39 ()55	069	065	045	032	050	089	088	075	069	050	042	044	050	054	043	035	061	070	029	018	037	039	037	051	078	083	058	029	032	035	060	045	038	053	055	056	054	042
10 0	22 0	32 0	52 (79	067	051	024	035	077	105	086	066	066	063	059	050	048	035	024	031	063	072	037	022	035	035	033	045	079	090	052	030	031	039	052	054	047	047	055	052	043	042
12 0	24 0	36 0	56 (81	059	038	035	055	092	108	081	057	070	086	079	060	047	032	020	023	056	072	051	044	046	038	033	043	071	082	052	036	039	041	052	062	054	046	052	058	046	044
19 0	30 0	45 0	64 (83	053	029	047	074	094	095	073	055	084	118	102	067	046	039	030	029	060	079	068	059	050	036	032	039	060	070	053	042	045	042	048	063	061	051	055	057	051	058
29 0	47 0	74 0	81 (76	049	037	069	090	086	078	077	073	104	141	116	076	055	052	043	040	068	086	078	068	051	037	034	037	047	055	052	048	047	043	047	057	064	065	067	056	054	066
50 0	73 1	05 0	96 (064	051	060	092	099	080	074	096	101	119	147	126	099	083	074	061	057	085	103	092	077	057	042	035	031	032	039	048	051	045	049	053	053	064	077	077	067	056	059
90 0	98 1	07 0	94 (064	065	079	093	089	073	079	112	123	129	148	142	115	108	092	082	083	105	119	102	080	058	041	029	022	020	026	045	048	045	053	059	055	063	076	076	075	063	057
.33 1	22 1	00 0	93 (81	081	080	079	077	075	094	127	145	151	158	162	134	133	105	099	106	116	128	106	076	054	038	023	016	014	019	040	046	051	055	061	067	067	067	074	072	070	063
57 1	44 1	07 1	04 (97	083	073	076	079	880	113	142	167	176	173	176	174	168	125	117	124	127	140	120	076	056	040	023	016	014	015	034	049	060	057	062	080	074	064	077	068	069	063
60 1	49 1	19 1	13 (90	075	073	075	090	107	131	158	181	186	184	190	194	187	154	145	146	153	159	122	073	060	048	036	024	015	015	029	042	051	056	066	076	078	079	079	072	069	068
51 1	51 1	32 1	12 (79	068	075	087	108	126	148	166	180	187	193	198	191	182	171	174	167	176	176	115	083	073	064	050	032	017	013	018	032	046	057	067	076	080	081	082	082	073	074
42 1	42 1	29 1	04 (83	089	095	106	122	141	165	176	181	191	203	207	196	196	183	187	188	186	175	131	096	087	078	063	040	028	027	024	024	042	059	069	079	085	085	086	083	082	082
48 1	41 1	33 1	12 1	06	118	114	114	124	142	170	184	184	193	206	209	208	206	191	196	197	183	174	160	119	105	089	070	046	037	039	027	023	038	056	066	080	090	087	086	083	084	085

$$\phi: \mathbb{R}^{10^4} \xrightarrow{\text{luitar}} \mathbb{R}^{10^3} \xrightarrow{\text{ReLU}} \mathbb{R}^{10^3} \xrightarrow{\text{luitar}} \mathbb{R}^{10^2} \xrightarrow{\text{ReLU}} \mathbb{R}^{10^2} \xrightarrow{\text{luitar}} \mathbb{R}$$

Trained to approximate a target function & via gradient descent on

Loss =
$$\sum l(\tilde{\phi}(x), \phi(x))$$
. e.g. mean squared error

Simple examples in mathematics

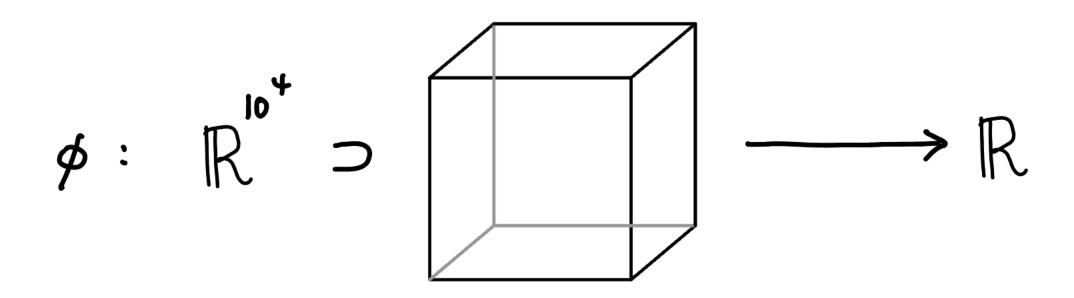


Geometric picture of training.

(But try to imagine this happening in 10000 dimensions, rather than 2!)

Deep learning works best when:

- 1) Input dimension is high
- 2) Function is on unit cube
- 3) Coordinates have low symbolic content



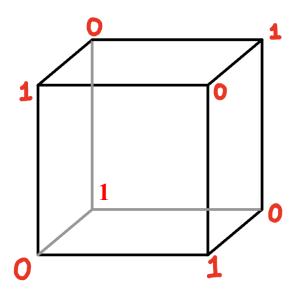
In some settings, overcomes "curse of dimensionality".

Example: "parity bit" $\{0,1\}^{1000} \longrightarrow \{0,1\}$ $(x_{0},...,x_{199}) \longmapsto \sum x_{i} \mod 2$

Very noise sensitive.

Difficult to learn!

Many examples in number theory are like this one.



$$x = (x_1, ..., x_n)$$
 a permutation of n .

$$\Re(x) = \left\{ i \mid x_i > x_{i+1} \right\}$$
 "right descent set"

$$\mathcal{L}(\alpha) = \{i \mid i \text{ occurs to the night of it I in } (x_1,...,x_n)\}$$

"leff descent set"

$$\mathcal{R}(x) = \mathcal{L}(x^{-1}) \Rightarrow \text{symmetrical concepts.}$$

$$x = (x_1, ..., x_n)$$
 a permutation of n .

$$\mathcal{R}(x) = \left\{ i \mid x_{i} > x_{i+1} \right\}$$
 "right descent set"
$$\mathcal{L}(x) = \left\{ i \mid i \text{ occurs to the right of it in } (x_{1}, ..., x_{n}) \right\}$$
 "left descent set"

```
Input pensutation malnies (n=20):
```

```
Right descent set:

Epoch 299: Train loss 0.01, Test loss 0.01, 4907 out of 5000 correct (98.14%).

Left descent set:

Epoch 299: Train loss 0.68, Test loss 0.70, 0 out of 5000 correct (0%).

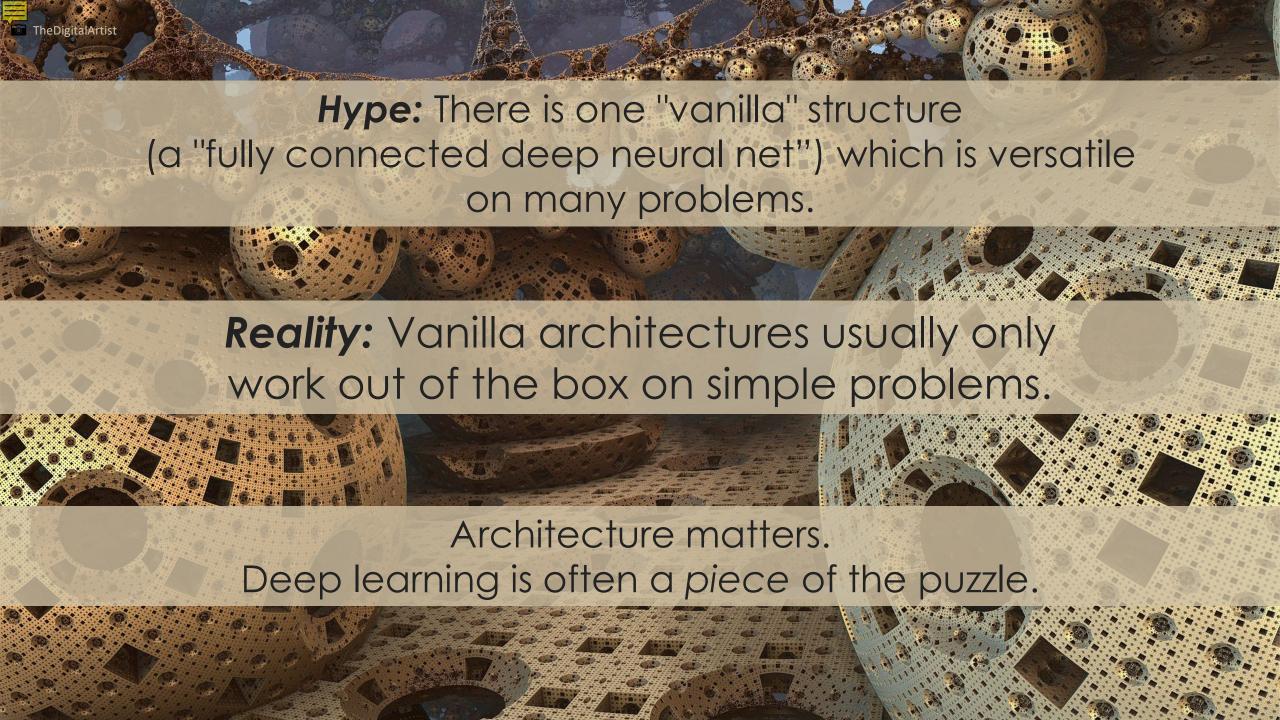
Right descent set:

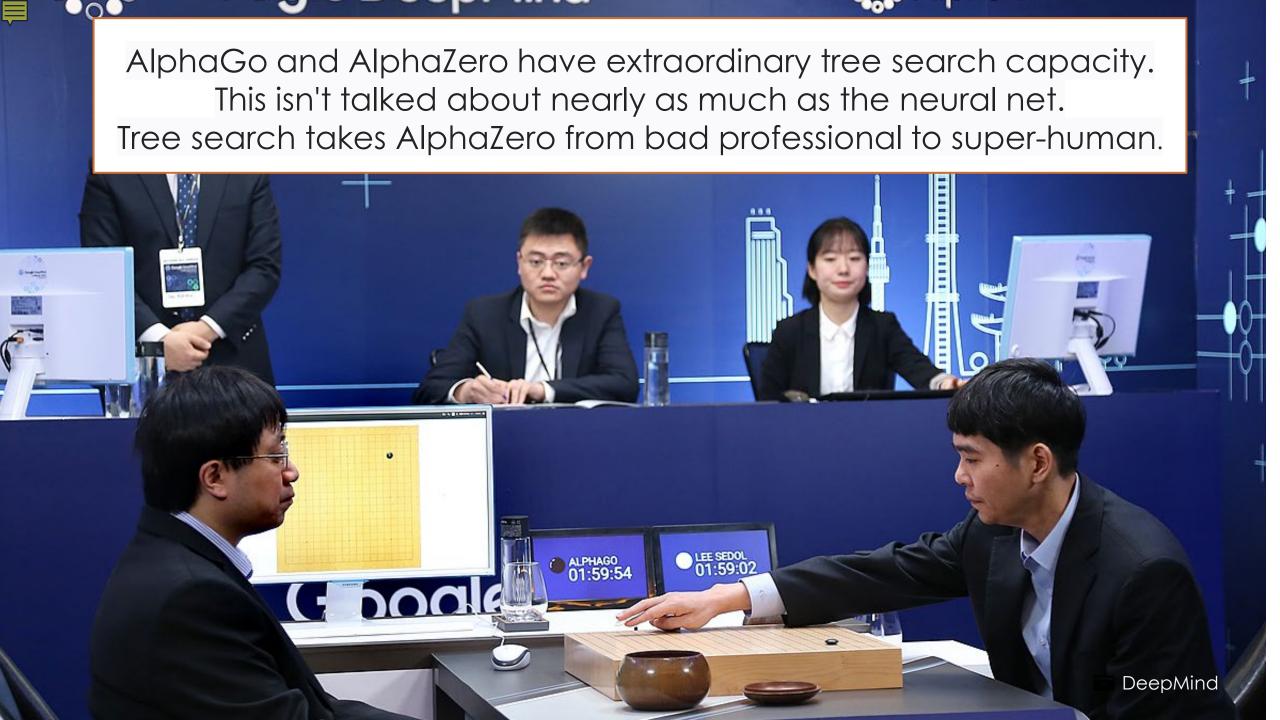
Epoch 64: Train loss 0.00, Test loss 0.01, 4977 out of 5000 correct (99.54%).

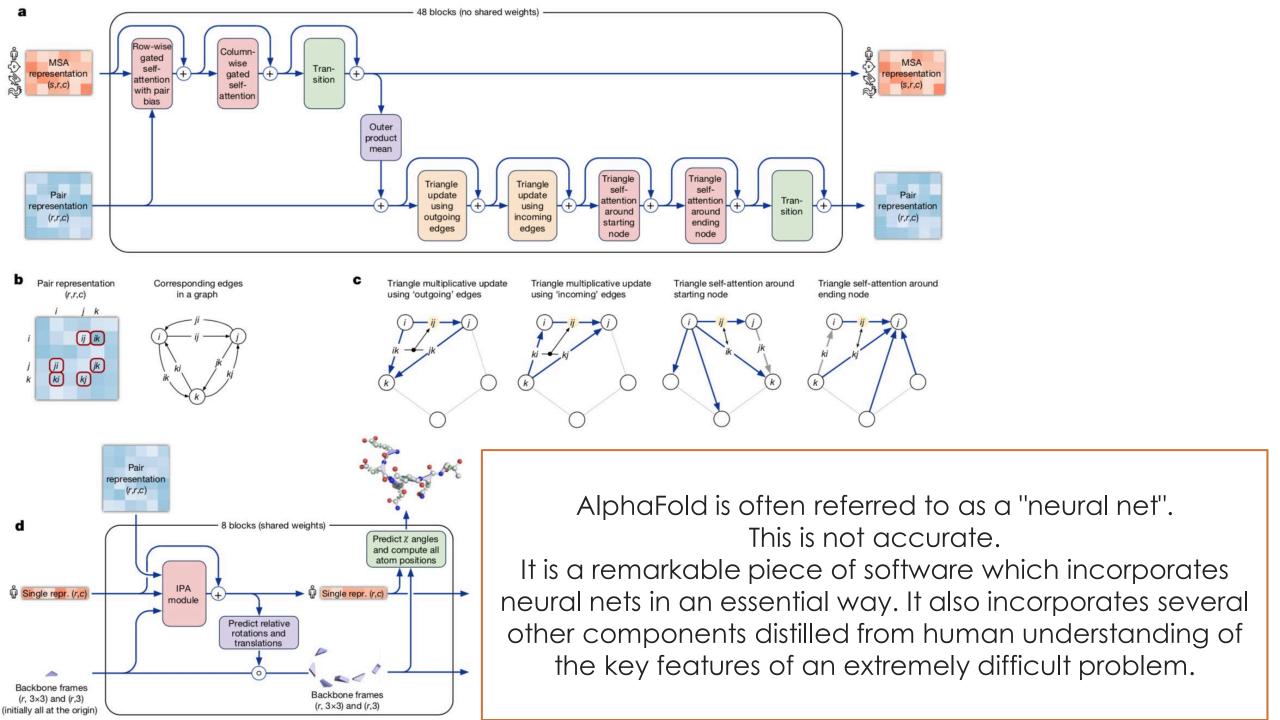
Epoch 64: Train loss 0.00, Test loss 0.01, 4977 out of 5000 correct (99.54%).
```

How input sits in space (the "representation") really matters.

Myths, advice and scale

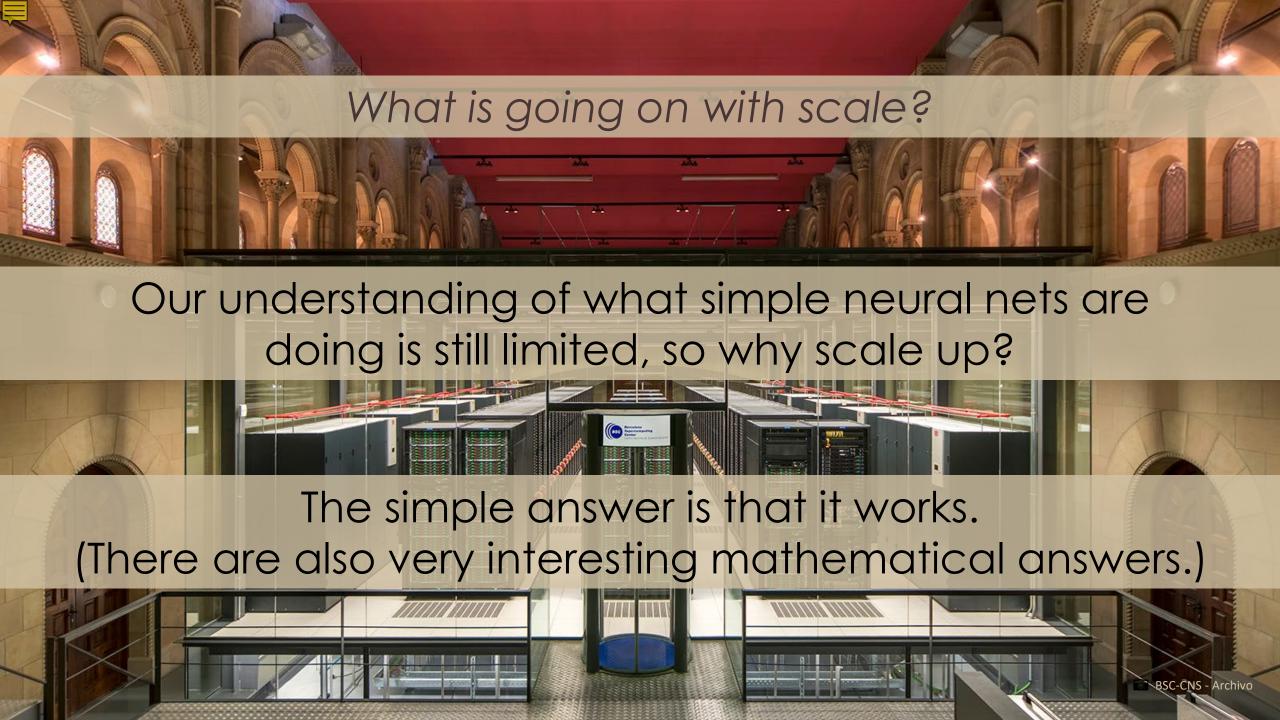


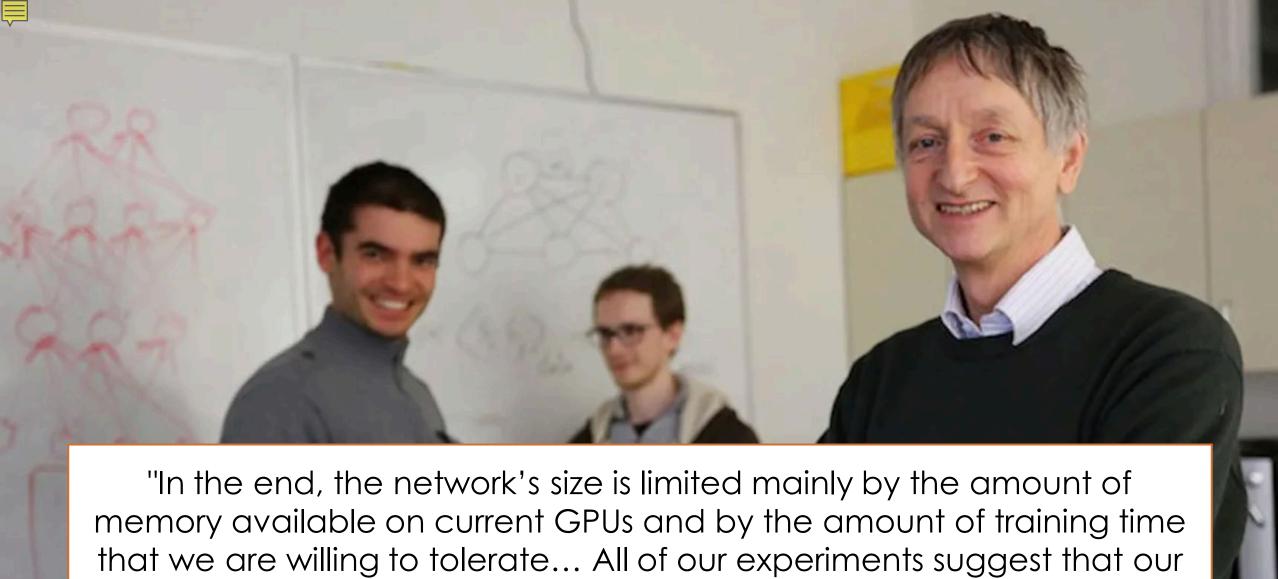




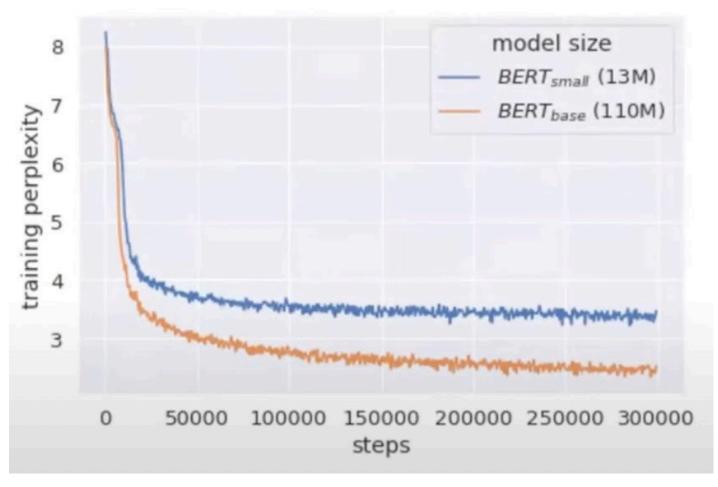
Advice for the interested mathematician:

- 1) Expect to spend considerable time experimenting with details like learning rate, model selection etc.
- 2) Try to work with someone who has background in machine learning.
 - 3) Try to push either mathematics or machine learning, but not both! (Remember that AlphaGo began as a supervised learning task.)
- 4) Have a precise idea of what you want machine learning to achieve. (We are not yet at the stage where we can "throw AlphaZero at the problem".)





results can be improved simply by waiting for faster GPUs and bigger datasets to become available." -- AlexNet paper.



Greg Yang, https://www.youtube.com/watch?v=XpU3mDKJOak&ab_channel=AutoMLSeminars

Increasing network size appears to monotonically increase performance. (After getting numerous details right!)

"An epic fight between a laptop, a lone tiger and a compass, oil painting"

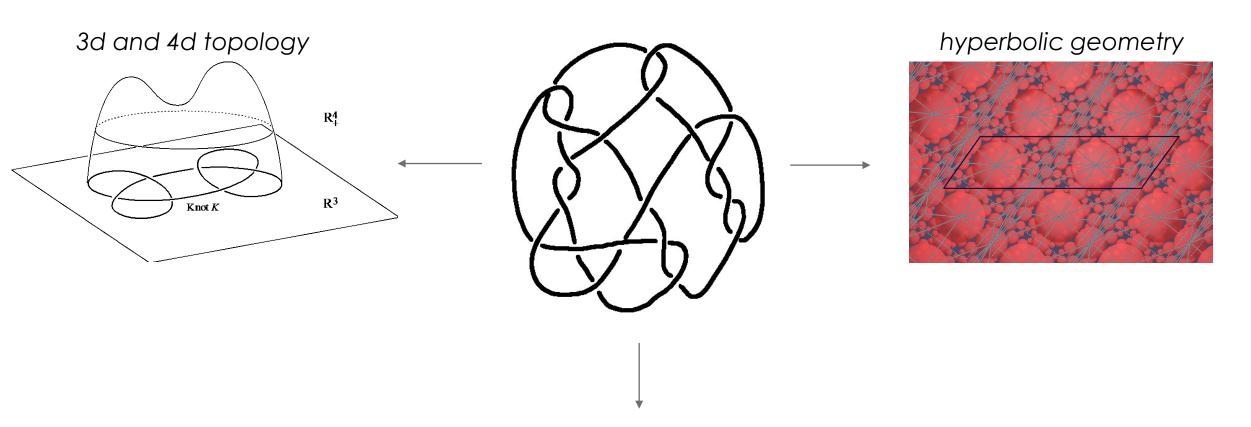
Created with DALL·E, an AI system by OpenAI

Three Examples

Machine learning in use in knot theory, representation theory and graph theory

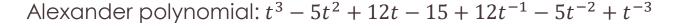
Knot theory

Knot Theory



quantum topology, mathematical physics, ...

Knot Theory



Hyperbolic volume: 13.29

Jones:
$$-2q^6 - 5q^5 - 7q^4 + 9q^3 - 9q^2 + 8q - 6 + 4q^{-1} - q^{-2}$$

HOMFLY-PT:
$$z^6a^{-2} + 3z^4a^{-4} - z^4a^{-4} - z^4 + 2z^2a^{-2} - z^2 - a^{-2} + 2a^{-4} - a^{-6} + 1$$

A2:
$$-q^6 + 2q^4 + 1 + 2q^{-2} - 3q^{-4} + q^{-6} - 2q^{-8} + 2q^{-10} + 2q^{-12} + 2q^{-16} - 2q^{-18} - q^{-20}$$

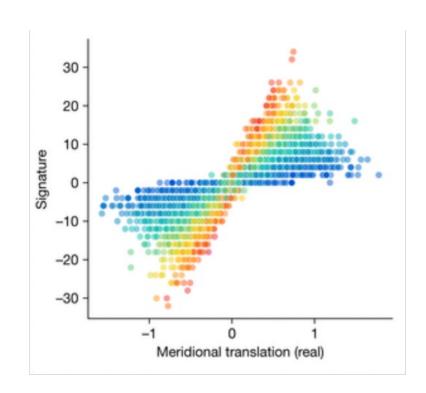
3-genus: 3

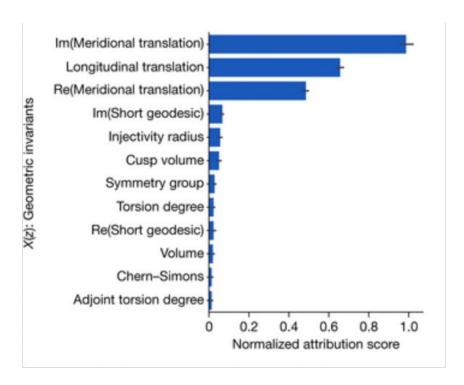
Topological 4-genus: 1

Do there exist unexpected relations between these invariants?

Determinant: 51

Knot Theory





Davies, Juhász, Lackenby and Tomasev prove:

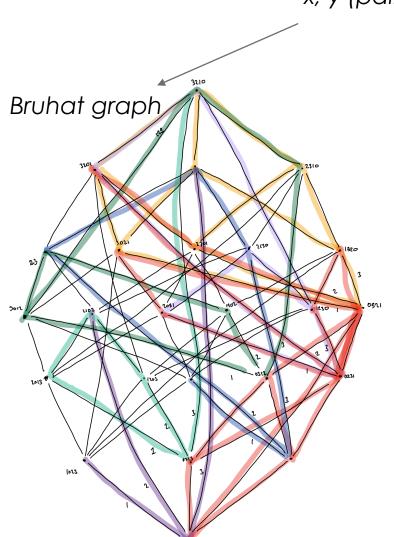
Theorem 1.1. There exists a constant c_1 such that, for any hyperbolic knot K, $|2\sigma(K) - \operatorname{slope}(K)| \leq c_1 \operatorname{vol}(K) \operatorname{inj}(K)^{-3}$.

Representation theory

Representation Theory

Combinatorial invariance conjecture (Dyer, Lusztig 1980s)

x, y (pair of permutations)

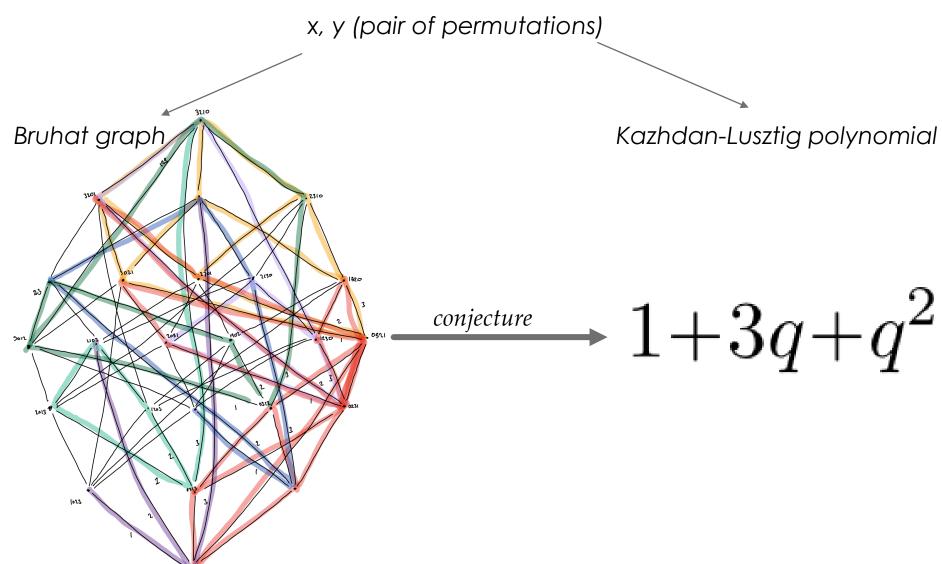


Kazhdan-Lusztig polynomial

$$1+3q+q^2$$

Representation Theory

Combinatorial invariance conjecture (Dyer, Lusztig 1980s)



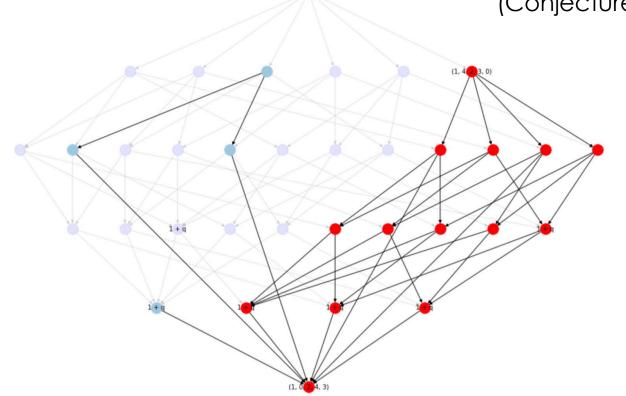
Representation Theory

Blundell, Buesing, Davies, Veličković, Williamson:

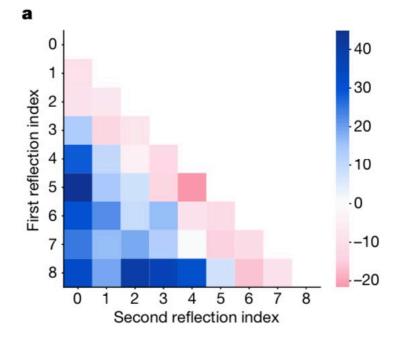
Conjecture 3.1. For any hypercube decomposition we have

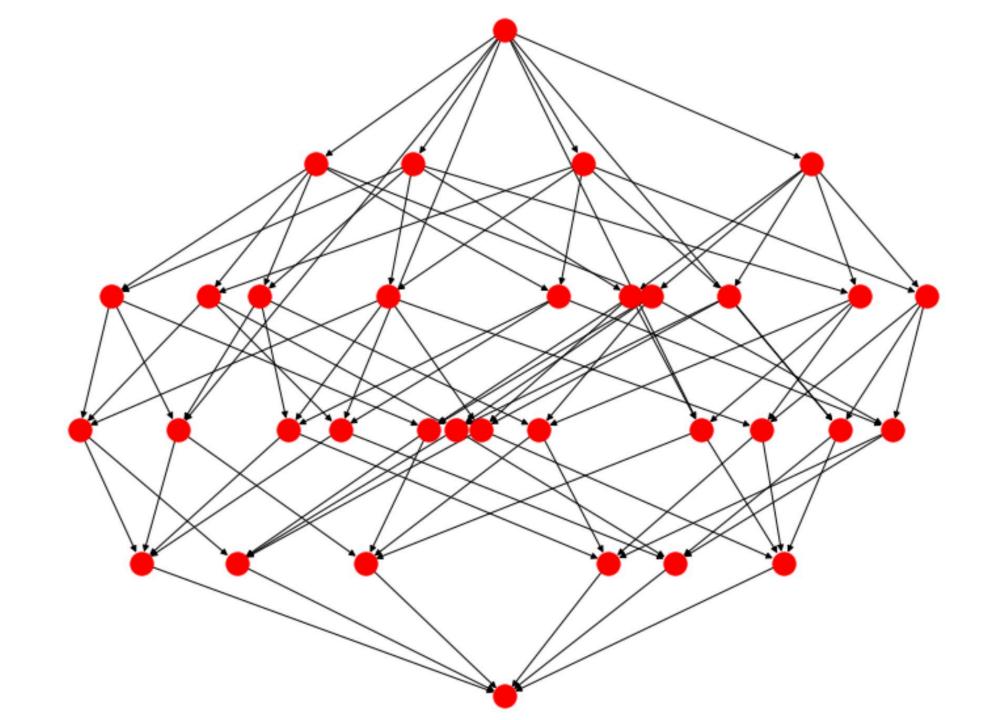
$$P_{x,y}^{\partial} = q^{\ell(y) - \ell(x) - 1} \sum_{\varnothing \neq I \subset E} (q^{-1} - 1)^{|I| - 1} P_{\theta(I),y}(q^{-1}) + \sum_{x \neq v \in J} \gamma_v \cdot P_{x,v}^{\partial}$$

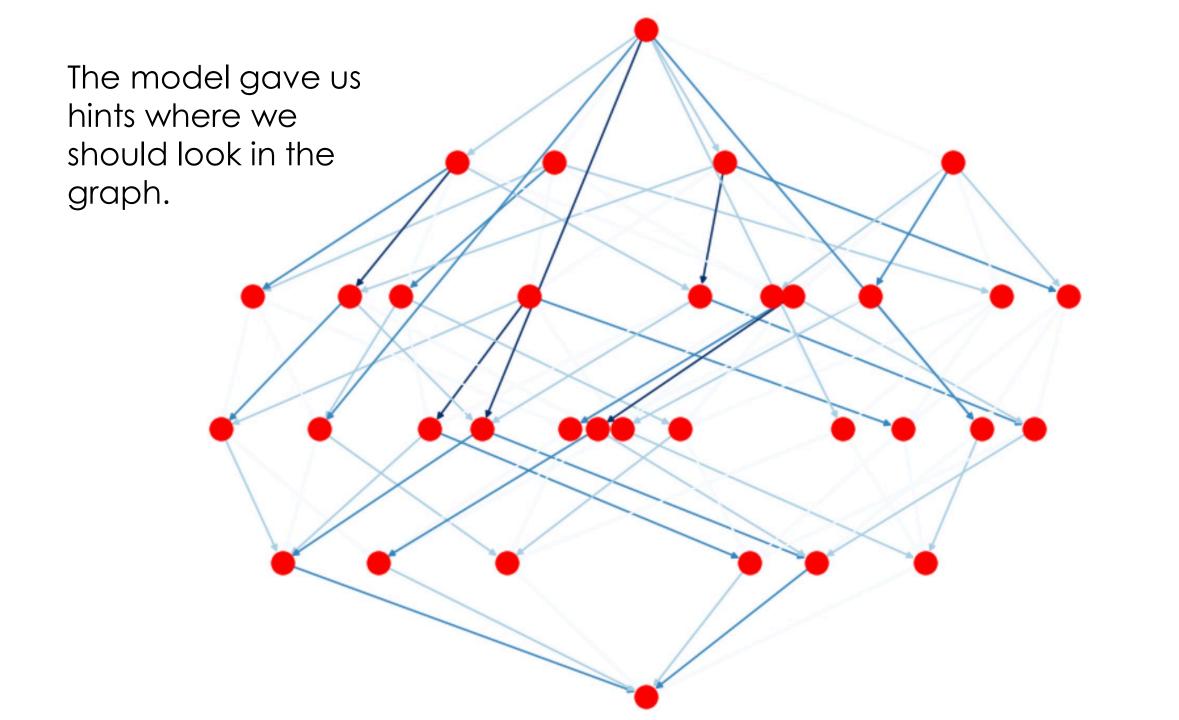
(Conjecture is proved in an important special case.)



(4, 1, 2, 3, 0)







Graph Theory

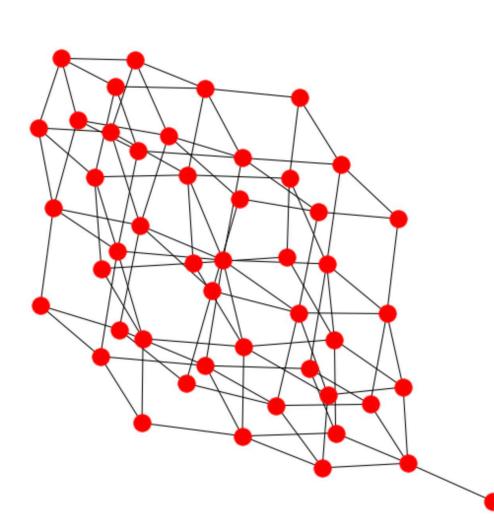
Graph Theory

Graph theory contains many conjectures. Some are true. Some are simply false.

However, finding counter-examples is difficult!

Wagner: Finding a counter-example can be posed as a game, and computers can be trained to play the game via reinforcement learning.

Thus, the computer generates hundreds of examples at random, by accepting or rejecting an edge. Over multiple training rounds it learns patterns that result in graphs which are close to being counter-examples.



Conjecture 2.1 ([4]). Let G be a connected graph on $n \geq 3$ vertices, with largest eigenvalue λ_1 and matching number μ . Then

$$\lambda_1 + \mu \ge \sqrt{n-1} + 1.$$

Conjecture 2.3 (Auchiche–Hansen [6]). Let G be a connected graph on $n \geq 4$ vertices with diameter D, proximity π and distance spectrum $\partial_1 \geq \ldots \geq \partial_n$. Then

$$\pi + \partial_{\left\lfloor \frac{2D}{3} \right\rfloor} > 0.$$

Summary

Neural nets perform some tasks remarkably well. They are strongest on tasks like speech recognition and image classification that is simple and intuitive for us.

The functions that neural nets like to learn are rather different from the functions I usually think about.

Architecture matters, and most applications of neural nets to "difficult" problems incorporate them into more complicated architectures.

Neural nets can provide useful tools for conjecture generation and refutation.

I suspect that the next few years will see many more applications in pure mathematics, particularly organising calculation and guiding search.

I don't yet see convincing evidence that neural nets are capable of replicating the "system 2" parts of the mathematical process.

Mathematical Research Institute

A philanthropically funded Institute in Mathematics and Statistics within the University of Sydney www.sydney.edu.au/research/centres/mathematical-research-institute.html

Photography & artwork

DeepMind

Mare Nostrum/BSC-CNS

Christian Haugen/Flickr

Marc Chagall: Sandi Hemmerlein/avoidingregret.com

Simulation & knot measurements

A Neural Network Playground: TensorFlow on GitHub bit.ly/network-playground

Benjamin Burton (Regina), Jessica Purcell

Papers

Davies et al., Advancing mathematics by guiding human intuition with AI: nature.com/articles/s41586-021-04086-x

Davies, Juhász, Lackenby, Tomasev, The signature and cusp geometry of hyperbolic knots: arXiv:2111.15323

Blundell, Buesing, Davies, Veličković, Williamson, Towards combinatorial invariance for Kazhdan-Lusztig polynomials: arXiv:2111.15161

Wagner, Constructions in combinatorics via neural networks: arXiv:2104.14516v1