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Abstract
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with the full energy. We have proved the existence of the weak solution as well as some further
regularities of it.
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1. Introduction

Landau-Lifshitz-Gilbert equation (LLGE) coupled to Maxwell equations provides a fundamental
mathematical model for physical properties of ferromagnetic materials, and it has been intensely
investigated by physicists since the seminal work by Landau and Lifshitz [24] and Gilbert [18].
The exact form of the equation is determined by the energy functional that may include varying
number of terms, so that in fact we have to deal with the whole family of equations. The first
mathematical analysis of the LLGE corresponding to the full energy functional and coupled to
the time dependent Maxwell equations was provided by Visintin in [30].
It has been noticed by physics community a long time ago, that there are phase transitions
between different equilibrium states, such phase transitions are induced by thermal fluctuations
of the effective magnetic field. To describe the phase transitions, the noise must be included into
the deterministic LLGE, see [26, 7, 6]. Including the noise into LLGE requires sophisticated tools
from the theory of quasi-linear stochastic PDEs that have been missing for some time and are still
not well developed. A rigorous mathematical theory of stochastic LLGE was initiated in [10] and
intensely studied since then, see [4, 5, 9, 11, 19, 21]. In all these papers a simplified version of
the energy functional is considered and so far the stochastic LLG equation associated to the full
energy functional and coupled to the time dependent Maxwell equations has never been studied.
This is a serious deficiency since coupling with the Maxwell equations is fundamental for many
physical phenomena, such as emergence and movement of boundary vortices, and movement of
the domain walls, see [25]. Even for deterministic systems, the case with time dependent Maxwell
equations is not well understood and after the seminal paper [30] most of the effort was focused
on the so-called quasi-static case. Recently, the interest in the full time-dependent case has been
renewed, see for example [16, 23, 31]. In the stochastic case, the only work in this direction, we
are aware of, is the paper [20] but it imposes strong simplifying assumptions on the noise and the
energy functional.
In this paper we are concerned with the stochastic Landau-Lifshitz-Gilbert equation coupled to
time dependent Maxwell equations and we assume that the evolution of spins is driven by the
full energy functional described below. To be more precise, given the time horizon 𝑇 > 0 and
a bounded open domain D ⊂ 𝑅3, the magnetization field 𝑀 : [0, 𝑇] × D −→ R3 satisfies the
Landau-Lifshitz-Gilbert equation:

d𝑀 (𝑡, 𝑥)
d𝑡

= 𝜆1𝑀 (𝑡, 𝑥) × 𝜌(𝑡, 𝑥) − 𝜆2𝑀 (𝑡, 𝑥) × (𝑀 (𝑡, 𝑥) × 𝜌(𝑡, 𝑥)), (1.1)

where 𝜆1 ∈ R and 𝜆2 > 0, subject to the constraint

|𝑀 (𝑡, 𝑥) | = |𝑀0(𝑥) |. (1.2)

where 𝜌 is the effective field defined by

𝜌 = −∇𝑀E . (1.3)

2



Here E is the total electro-magnetic energy including anisotropy energy, exchange energy,
magnetic field energy and electronic energy.
In order to describe phase transitions between different equilibrium states induced by thermal
fluctuations of the effective field 𝜌, we introduce the Gaussian noise into the Landau-Lifschitz
equation to perturb 𝜌 and so have the following stochastic Landau-Lifschitz-Gilbert equation
(SLLGE):

d𝑀 (𝑡) = 𝜆1𝑀 (𝑡) ×
[
𝜌(𝑡) d𝑡 +

∑︁
𝑗

ℎ 𝑗 ◦ d𝑊 𝑗 (𝑡)
]

(1.4)

−𝜆2𝑀 (𝑡) ×
(
𝑀 (𝑡) ×

[
𝜌(𝑡) d𝑡 +

∑︁
𝑗

ℎ 𝑗 ◦ d𝑊 𝑗 (𝑡)
] )
,

where {𝑊 𝑗 } 𝑗 are independent real-valued Wiener processes and {ℎ 𝑗 } 𝑗 are coefficients with good
enough regularities. The reason we choose Stratonovich type noise is that we want to keep the
geometric property (1.2) of the SLLG equations. More detailed assumptions and discussion can
be found in the statement of Problem 2.7 and Remark 2.8.
Since the magnetic field energy and electronic energy are related to the magnetic field and
electric field, we also consider the magnetic field 𝐻 : [0, 𝑇] × R3 −→ R3 and the electric field
𝐸 : [0, 𝑇] × R3 −→ R3 in this paper. We denote

𝐵 := 𝐻 + 𝑀,

where
𝑀 (𝑥) :=

{
𝑀 (𝑥), 𝑥 ∈ D;
0, 𝑥 ∉ D .

Then 𝐵 and 𝐸 are related by the Maxwell’s equation:

d𝐵 = ∇ × 𝐸 d𝑡.

d𝐸 = ∇ × [𝐵 − 𝑀] d𝑡 − [1D𝐸 + 𝑓 (𝑡)] d𝑡,

where 𝑓 is a map
𝑓 : [0, 𝑇] × R3 −→ R3,

which is a given non-inductive applied electromotive field.
Summarising, the equation we are going to study in this paper has the following form:

d𝑀 (𝑡) = [𝜆1𝑀 × 𝜌 − 𝜆2𝑀 × (𝑀 × 𝜌)] d𝑡

+
∞∑︁
𝑗=1

{[
𝑀 × ℎ 𝑗 + 𝑀 × (𝑀 × ℎ 𝑗 )

]
◦ d𝑊 𝑗 (𝑡)

}
.

d𝐵(𝑡) = ∇ × 𝐸 (𝑡) d𝑡.

d𝐸 (𝑡) = ∇ × [𝐵(𝑡) − 𝑀 (𝑡)] d𝑠 − [1D𝐸 (𝑡) + 𝑓 (𝑡)] d𝑡.

3



𝜕𝑀

𝜕𝜈

����
𝜕D

= 0.

𝑀 (0) = 𝑀0, 𝐵(0) = 𝐵0, 𝐸 (0) = 𝐸0.

This paper is constructed as follows. In section 2, firstly we give all the formal definitions of all
the energies and state the problem we consider. Secondly we give the definition of the solution of
the stochastic differential equation. And at last we formulate the main result (Theorem 2.10) of
the whole paper. In section 3, we construct a series of some auxiliary equations (3.12), with all
the elements in a finite dimensional space and prove the existence and uniqueness of the global
solution of the finite dimensional equations. In section 4, we get some a’priori estimates of the
series of solutions of equations (3.12). In section 5, we show the laws of the finite dimensional
solutions are tight on some spaces. In section 6, we construct a new probability space by the
Skorohod Theorem in which there exist limit processes 𝑀, 𝐵, 𝐸 of the solutions of (3.12). In
section 7, we prove that the 𝑀, 𝐵, 𝐸 which we got in section 6 are actually the weak solution of
our original problem. In section 8, we show some more regularities of the weak solution. Finally
in section 9, we complete the proof of the main result, i.e. the Theorem 2.10. In the Appendix,
we list the important lemmata which are used in this paper.
By the end of this introduction, it may worth to mention that the uniqueness of 3-dimensional
LLG equations is an open problem, we do not discuss it in this paper.

2. Statement of the problem and formulation of the main result

Assumption 2.1. Throughout this paper we assume D ⊂ R3 to be a bounded open domain with
𝐶2 boundary.

Notation 2.2.
(1) We use the following notations for the classical functional spaces:

L𝑝 := 𝐿𝑝 (D;R3) or 𝐿𝑝 (D;R3×3), L𝑝 (R3) := 𝐿𝑝 (R3;R3)

W𝑘,𝑝 := 𝑊 𝑘,𝑝 (D;R3), H𝑘 := 𝐻𝑘 (D;R3) = 𝑊 𝑘,2(D;R3), and V := W1,2, H := L2.

(2) The duality between a Banach space 𝑋 and its dual 𝑋∗ will be denoted by 𝑋∗ ⟨·, ·⟩𝑋 . The
notations ⟨·, ·⟩𝐾 and ∥ · ∥𝐾 stand for the scalar product and its associated norm in a given Hilbert
space 𝐾 respectively. The norm of a vector 𝑥 ∈ R𝑑 will be denoted by |𝑥 | and the inner product
in R𝑑 will be denoted by ⟨·, ·⟩ for any 𝑑.

(3) For a function 𝜑 : R3 → R we will write

𝜑′ := ∇𝜑, and 𝜑′′ := ∇2𝜑 .

(4) For a function 𝑢 : D → R3, we denote

𝑢(𝑥) :=
{
𝑢(𝑥), 𝑥 ∈ D,
0, 𝑥 ∉ D .

4



(5) For 𝑢 ∈ L2(R3), we define the distribution ∇ × 𝑢 by

𝒟′ ⟨∇ × 𝑢, 𝑣⟩𝒟 = ⟨𝑢,∇ × 𝑣⟩H , 𝑣 ∈ 𝐶∞
0

(
R3,R3

)
.

Then we define the Hilbert space

Y :=
{
𝑢 ∈ L2(R3) : ∇ × 𝑢 ∈ L2(R3)

}
,

with the inner product

⟨𝑢, 𝑣⟩Y := ⟨𝑢, 𝑣⟩L2 (R3) + ⟨∇ × 𝑢,∇ × 𝑣⟩L2 (R3) .

(6) For a fixed ℎ ∈ L∞ and 𝜆1 ∈ R, 𝜆2 > 0 we define a mapping 𝐺ℎ by

L4 ∋ 𝑢 −→ 𝐺ℎ (𝑢) = 𝜆1𝑢 × ℎ − 𝜆2𝑢 × (𝑢 × ℎ) ∈ L2 .

For a given sequence {ℎ 𝑗 }∞𝑗=1 ⊂ L∞ we will use the notation 𝐺 𝑗 (𝑢) := 𝐺ℎ 𝑗 (𝑢).
(7) To avoid too long equations, we may simply use 𝑢 to denote 𝑢(𝑡, 𝑥).

Definition 2.3 (Magnetic Induction). Given a magnetization field 𝑀 : D −→ R3 and a magnetic
field 𝐻 : R3 −→ R3, we define the magnetic induction as a vector field 𝐵 : R3 −→ R3 by

𝐵 := 𝐻 + 𝑀. (2.1)

Definition 2.4. (The energy)

(i) Suppose that 𝜑 ∈ 𝐶2
0 (R

3;R+). For a magnetization field 𝑀 ∈ V, we define the anisotropy
energy of 𝑀 by:

E𝑎𝑛 (𝑀) :=
∫
D
𝜑(𝑀 (𝑥)) d𝑥.

(ii) We define the exchange energy of 𝑀 by:

E𝑒𝑥 (𝑀) :=
1
2

∫
D
|∇𝑀 (𝑥) |2 d𝑥 =

1
2
∥∇𝑀 ∥2

L2 . (2.2)

(iii) For a magnetic field 𝐻 ∈ L2(R3), we define the Zeeman energy by:

E𝑧𝑒 (𝐻) :=
1
2

∫
R3

|𝐻 (𝑥) |2 d𝑥 =
1
2
∥𝐻∥2

L2 (R3) =
1
2




𝐵 − 𝑀



2

L2 (R3)
. (2.3)

Finally, given an electric field 𝐸 ∈ L2(R3), a magnetization field 𝑀 ∈ V and a magnetic field
𝐻 ∈ L2(R3), (hence the magnetic induction 𝐵 ∈ L2(R3)) we define the total electro-magnetic
energy by

E(𝑀, 𝐵, 𝐸) =
∫
D
𝜑(𝑀 (𝑥)) 𝑑𝑥 + 1

2
∥∇𝑀 ∥2

H + 1
2




𝐵 − 𝑀



2

L2 (R3)
+ 1

2
∥𝐸 ∥2

L2 (R3) (2.4)
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To investigate some properties of the total energy E, we need the following Lemma, the proof of
which is straightforward.

Lemma 2.5. For 𝑀 ∈ V, if we define Δ𝑀 ∈ V∗ by

V∗ ⟨Δ𝑀, 𝑢⟩V := − ⟨∇𝑀,∇𝑢⟩L2 , ∀𝑢 ∈ V. (2.5)

Then the total energy E : V × L2(R3) × L2(R3) −→ R defined in (2.4) has partial derivatives of
2nd order with respect to 𝑀, 𝐵 and 𝐸 well defined and:

𝜕E
𝜕𝑀

(𝑀, 𝐵, 𝐸) = 𝜑′(𝑀) − (1D𝐵 − 𝑀) − Δ𝑀, in V∗ , (2.6)

for 𝑢, 𝑣 ∈ V,

𝜕2E
𝜕𝑀2 (𝑀, 𝐵, 𝐸) (𝑢, 𝑣) =

∫
D
𝜑′′(𝑀 (𝑥)) (𝑢(𝑥), 𝑣(𝑥)) d𝑥 + ⟨𝑢, 𝑣⟩V , (2.7)

𝜕E
𝜕𝐵

(𝑀, 𝐵, 𝐸) = 𝐵 − 𝑀 , (2.8)

𝜕E
𝜕𝐸

(𝑀, 𝐵, 𝐸) = 𝐸 . (2.9)

Now we can define the effective field, which is the partial derivative of the total energy.

Definition 2.6 (Effective field). We define the effective field 𝜌 ∈ V∗ as

𝜌 := 𝜑′(𝑀) − (1D𝐵 − 𝑀) − Δ𝑀, in V∗. (2.10)

We are now ready to formulate the problem we are going to study in this paper.

Problem 2.7. Let (Ω, F , F = (F𝑡)𝑡≥0, P) be a filtered probability space, and let𝑊 = {𝑊 𝑗 }∞𝑗=1 be
a set of independent, real valued, F−Wiener processes. Let

𝑀0 ∈ V with |𝑀0(𝑥) | = 1 for all 𝑥 ∈ D;

𝐵0 ∈ L2(R3); ∇ · 𝐵0 = 0, in 𝒟
′(R3;R); 𝐸0 ∈ L2(R3);

𝑐2
ℎ =

∞∑︁
𝑗=1



ℎ 𝑗

L∞ +
∞∑︁
𝑗=1



ℎ 𝑗

2
V < ∞. (2.11)

𝑓 ∈ 𝐿2(0, 𝑇 ;H); 𝜑 ∈ 𝐶2
0 (R

3;R+);
𝜆1 ∈ R, 𝜆2 > 0 .

Our aim is to show that the following system of stochastic PDEs has a solution in the sense made
precise below:

d𝑀 (𝑡) = [𝜆1𝑀 × 𝜌 − 𝜆2𝑀 × (𝑀 × 𝜌)] d𝑡 +
∞∑︁
𝑗=1
𝐺 𝑗 (𝑀) ◦ d𝑊 𝑗 (𝑡) ,

d𝐵(𝑡) = ∇ × 𝐸 (𝑡) d𝑡 ,

d𝐸 (𝑡) = ∇ × [𝐵(𝑡) − 𝑀 (𝑡)] d𝑠 − [1D𝐸 (𝑡) + 𝑓 (𝑡)] d𝑡 .

(2.12)
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with the boundary conditions

𝜕𝑀 (𝑡)
𝜕𝜈

����
𝜕D

= 0, 𝑡 ≥ 0, where 𝜈 is the exterior normal vector on 𝜕D.

and the initial conditions

𝑀 (0) = 𝑀0, 𝐵(0) = 𝐵0, 𝐸 (0) = 𝐸0.

The Stratonovich equation in (2.12) can be rewritten as an Itô equation

d𝑀 =

𝜆1𝑀 × 𝜌 − 𝜆2𝑀 × (𝑀 × 𝜌) + 1
2

∞∑︁
𝑗=1
𝐺′
𝑗 (𝑀)𝐺 𝑗 (𝑀)

 d𝑡 +
∞∑︁
𝑗=1
𝐺 𝑗 (𝑀) d𝑊 𝑗 (2.13)

=

{
𝜆1𝑀 × 𝜌 − 𝜆2𝑀 × (𝑀 × 𝜌) + 1

2

∞∑︁
𝑗=1

[
𝜆2

1
[
(𝑀 × ℎ 𝑗 ) × ℎ 𝑗

]
+ 𝜆1𝜆2

[ [
𝑀 × (𝑀 × ℎ 𝑗 )

]
× ℎ 𝑗

]
+𝜆2

2
[
𝑀 ×

[
𝑀 × (𝑀 × ℎ 𝑗 ) × ℎ 𝑗

] ]
+ 𝜆1𝜆2

[
𝑀 ×

[
(𝑀 × ℎ 𝑗 ) × ℎ 𝑗

] ]
+𝜆2

2
[
𝑀 × (𝑀 × ℎ 𝑗 ) × (𝑀 × ℎ 𝑗 )

] ]}
d𝑡 +

∞∑︁
𝑗=1

{
𝜆1

[
𝑀 × ℎ 𝑗

]
+ 𝜆2

[
𝑀 × (𝑀 × ℎ 𝑗 )

] }
d𝑊 𝑗 .

Remark 2.8. We can understand the noise as a 𝑄-Wiener process 𝑊ℎ (𝑡) :=
∑∞
𝑗=1𝑊 𝑗 (𝑡)ℎ 𝑗 ∼

𝑁 (0, 𝑡𝑄) on H for some operator 𝑄 which is nonnegative, symmetric and with finite trace.
In fact,𝑊ℎ (0) = 0 a.s. is obvious.
By [14, Proposition 3.18],𝑊 𝑗ℎ 𝑗 can be viewed as a random variable taking values on𝐶 ( [0, 𝑇];H)
for each 𝑗 . And by our assumption of ℎ 𝑗 as in (2.11) and using Doob’s maximal inequality, we
can show {∑𝑛

𝑗=1𝑊 𝑗ℎ 𝑗 }𝑛 is a Cauchy sequence in 𝐿2(Ω;𝐶 ( [0, 𝑇];H)) (We put the proof in the
Appendix, Proposition 11.1). Therefore its limit 𝑊ℎ ∈ 𝐿2(Ω;𝐶 ( [0, 𝑇];H)). Hence 𝑊ℎ has
continuous trajectory almost surely.
The independence of increment of 𝑊ℎ follows from the fact that 𝑊 𝑗 are independent for all
different 𝑗 and they all have independent increments for each 𝑗 .
So it only remains to check the distribution of 𝑊ℎ on H. Since 𝑊ℎ is the sum of independent
normal random variables with mean 0, it has normal distribution with mean 0 as well.
Next we try to find its covariance operator. For any 𝑢, 𝑣 ∈ H, we have

E (⟨𝑊ℎ (𝑡), 𝑢⟩H ⟨𝑊ℎ (𝑡), 𝑣⟩H) = E ©­«
〈 ∞∑︁
𝑗=1
𝑊 𝑗 (𝑡)ℎ 𝑗 , 𝑢

〉
H

〈 ∞∑︁
𝑗=1
𝑊 𝑗 (𝑡)ℎ 𝑗 , 𝑣

〉
H

ª®¬
= 𝑡

∞∑︁
𝑗=1

〈
ℎ 𝑗 , 𝑢

〉
H

〈
ℎ 𝑗 , 𝑣

〉
H .

So the covariance operator 𝑄 is uniquely determined by

⟨𝑄𝑢, 𝑣⟩H =

∞∑︁
𝑗=1

〈
ℎ 𝑗 , 𝑢

〉
H

〈
ℎ 𝑗 , 𝑣

〉
H , 𝑢, 𝑣 ∈ H.
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We can check that the operator 𝑄 is nonnegative, symmetric and with finite trace.
So𝑊ℎ is really a𝑄-Wiener process for some nonnegative, symmetric and with finite trace operator
𝑄. Hence it has a representation

𝑊ℎ (𝑡) =
∞∑︁
𝑗=1
𝑊̄ 𝑗 (𝑡) ℎ̄ 𝑗 ,

Where 𝑊̄ 𝑗 are independent 1-dimensional Brownian motions and {ℎ̄ 𝑗 } 𝑗 is an ONB of H which
consists of eigenvectors of 𝑄.
Therefore we can actually assume that {ℎ 𝑗 } 𝑗 is an ONB of H.

Definition 2.9 (Weak martingale solution of equation (2.12)). Given 𝑇 > 0, a weak martingale
solution of equation (2.12) is a set consisting of a filtered probability space (Ω̃, F̃ , F̃, P̃), an
∞-dimensional F̃-Wiener process𝑊 = (𝑊 𝑗 )∞𝑗=1 and F̃-progressively measurable processes

𝑀 : [0, 𝑇] × Ω̃ −→ V ∩ L∞, 𝐵 : [0, 𝑇] × Ω̃ −→ L2(R3), 𝐸 : [0, 𝑇] × Ω̃ −→ L2(R3)
such that for all the test functions 𝑢 ∈ V ∩ L∞, 𝑣 ∈ Y and 𝑡 ∈ [0, 𝑇], we have the following
equalities holding P̃-a.s.:∫

D

〈
𝑀 (𝑡) − 𝑀0, 𝑢

〉
d𝑥 (2.14)

=

∫ 𝑡

0

∫
D

{ 〈
𝐵 − 𝑀 − 𝜑′(𝑀), 𝜆1𝑢 × 𝑀 − 𝜆2(𝑢 × 𝑀) × 𝑀

〉
−

3∑︁
𝑖=1

〈
∇𝑖𝑀, 𝜆1∇𝑖𝑢 × 𝑀 − 𝜆2

(
∇𝑖𝑢 × 𝑀 + 𝑢 × ∇𝑖𝑀

)
× 𝑀

〉 }
d𝑥 d𝑠

+
∞∑︁
𝑗=1

∫ 𝑡

0

〈
𝐺 𝑗

(
𝑀

)
, 𝑢

〉
◦ d𝑊 𝑗 (𝑠);∫

R3

〈
𝐵(𝑡) − 𝐵0, 𝑣

〉
d𝑥 = −

∫ 𝑡

0

∫
R3

〈
𝐸,∇ × 𝑣

〉
d𝑥 d𝑠; (2.15)∫

R3

〈
𝐸 (𝑡) − 𝐸0, 𝑣

〉
d𝑥 =

∫ 𝑡

0

∫
R3

〈
𝐵 − 𝑀,∇ × 𝑣

〉
d𝑥 d𝑠 −

∫ 𝑡

0

∫
D

〈
𝐸 + 𝑓 , 𝑣

〉
d𝑥 d𝑠. (2.16)

Next we would like to formulate the main result of this paper:

Theorem 2.10. There exists a weak martingale solution of Problem 2.7 with the following stronger
regularity properties:

(i)
𝑀 ∈ 𝐿2𝑟 (Ω̃; 𝐿∞(0, 𝑇 ;V)), ∀𝑟 > 0; 𝐵, 𝐸 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L2(R3))); (2.17)

𝑀 × 𝜌̃ ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;H)), where 𝜌̃ := −𝜑′(𝑀) + 1D𝐵 − 𝑀 + Δ𝑀 . (2.18)
Δ𝑀 ∈ 𝐿1(Ω̃; 𝐿1(0, 𝑇 ;L1)). (2.19)

for any 𝑇 > 0.
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(ii) For every 𝑡 ∈ [0,∞), the equation

𝑀 (𝑡) = 𝑀0 +
∫ 𝑡

0

{
𝜆1𝑀 × 𝜌̃ − 𝜆2𝑀 × (𝑀 × 𝜌̃)

}
d𝑠 +

∞∑︁
𝑗=1

∫ 𝑡

0
𝐺 𝑗 (𝑀) ◦ d𝑊 𝑗 (𝑠),

holds in 𝐿2(Ω̃;H).
𝐵(𝑡) = 𝐵0 −

∫ 𝑡

0
∇ × 𝐸 d𝑠 ∈ Y∗, P̃ − 𝑎.𝑠. (2.20)

𝐸 (𝑡) = 𝐸0 +
∫ 𝑡

0
∇ × [𝐵 − 𝑀] d𝑠 −

∫ 𝑡

0
[1D𝐸 + 𝑓 ] d𝑠 ∈ Y∗, P̃ − 𝑎.𝑠. (2.21)

(iii)
|𝑀 (𝑡, 𝑥) | = 1, for Lebesgue a.e. (𝑡, 𝑥) ∈ [0,∞) × D and P̃ − 𝑎.𝑠. (2.22)

(iv) For every 𝜃 ∈
(
0, 1

2

)
,

𝑀 ∈ 𝐶𝜃 ( [0, 𝑇];H), P̃ − 𝑎.𝑠. (2.23)

Remark 2.11. In (2.18) 𝜌̃ is a distribution, but 𝑀 × 𝜌̃ ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;H)). Precise definition is
provided in Notation 6.20.
Remark 2.12. Equality (2.20) implies ∇ · 𝐵(𝑡) = 0, for all 𝑡 ∈ [0, 𝑇].

3. Galerkin approximation

In this section we start to prove the existence of the martingale solution to Problem 2.7. We begin
with the classical Galerkin approximation. Let 𝐴 denoteus the negative Laplace operator in D
with the homogeneous Neumann boundary condition:

𝐷 (𝐴) :=
{
𝑢 ∈ H2 :

𝜕𝑢

𝜕𝜈

���
𝜕D

= 0
}
, 𝐴 := −Δ ,

where 𝜈 stands for the outer normal to the boundary of D. The operator 𝐴 is self-adjoint and there
exists an orthonormal basis {𝑒𝑘 : 𝑘 ≥ 1} ⊂ 𝐶∞ (

D;R3)∩𝐷 (𝐴) ofH that consists of eigenvectors
of 𝐴. We set H𝑛 = linspan{𝑒1, 𝑒2, . . . , 𝑒𝑛} and denote by 𝜋𝑛 the orthogonal projection from H to
H𝑛. We also note that V = 𝐷

(
𝐴

1/2
1

)
for 𝐴1 := 𝐼 + 𝐴, and ∥𝑢∥V =




𝐴1/2
1 𝑢





H

for 𝑢 ∈ V.
The following properties of the operator 𝐴 will be frequently used later: for any 𝑢 ∈ 𝐷 (𝐴) and
𝑣 ∈ V,

⟨𝐴𝑢, 𝑣⟩H =

∫
D

(
∇𝑢(𝑥),∇𝑣(𝑥)

)
R3×3

d𝑥,

and

⟨𝑢 × 𝐴𝑢, 𝑣⟩H =

3∑︁
𝑖=1

⟨∇𝑖𝑢,∇𝑖𝑣 × 𝑢⟩H . (3.1)
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Let {𝑦𝑛}∞𝑛=1 ⊂ 𝐶∞
0 (R3;R3) be an orthonormal basis ofL2(R3). We defineY𝑛 := linspan{𝑦1, . . . , 𝑦𝑛}

and the orthogonal projections

𝜋Y𝑛 : L2(R3) −→ Y𝑛 and 𝜋Y𝑛 |Y : Y −→ Y𝑛, 𝑛 ∈ N.

On H𝑛 and Y𝑛 we consider the scalar product inherited from H and Y respectively. Let us denote
by E𝑛 the restriction of the total energy functional E to the finite dimensional space H𝑛×Y𝑛×Y𝑛,
i.e.

E𝑛 : H𝑛 × Y𝑛 × Y𝑛 −→ R,

E𝑛 (𝑀, 𝐵, 𝐸) =
∫
D
𝜑(𝑀 (𝑥)) d𝑥 + 1

2
∥∇𝑀 ∥2

H + 1
2




𝐵 − 𝜋Y𝑛 𝑀



2

L2 (R3)
+ 1

2
∥𝐸 ∥2

L2 (R3) .

The proof of the following Lemma is straightforward by the definition of Frêchet derivative, so
we only state the result.

Lemma 3.1. The function E𝑛 is of class 𝐶2 and for 𝑀 ∈ H𝑛, 𝐵, 𝐸 ∈ Y𝑛 we have:

(i)
(∇𝑀E𝑛) (𝑀, 𝐵, 𝐸) = 𝜋𝑛

[
𝜑′(𝑀) − 1D (𝐵 − 𝜋Y𝑛 𝑀)

]
− Δ𝑀 , (3.2)

(ii)
(∇𝐵E𝑛) (𝑀, 𝐵, 𝐸) = 𝐵 − 𝜋Y𝑛 𝑀 , (3.3)

(iii)
(∇𝐸E𝑛) (𝑀, 𝐵, 𝐸) = 𝐸 , (3.4)

(iv)

𝜕2E𝑛
𝜕𝑀2 (𝑀, 𝐵, 𝐸) (𝑢, 𝑣) =

∫
D
𝜑′′(𝑀 (𝑥)) (𝑢(𝑥), 𝑣(𝑥)) d𝑥 + ⟨𝑢, 𝑣⟩V , 𝑢, 𝑣 ∈ V. (3.5)

Notation 3.2. Let us define the function 𝜌𝑛 : H𝑛 × Y𝑛 × Y𝑛 −→ H𝑛 which corresponds to 𝜌 by:

𝜌𝑛 := −(∇𝑀E𝑛) (𝑀𝑛, 𝐵𝑛, 𝐸𝑛) = 𝜋𝑛
[
− 𝜑′(𝑀𝑛) + 1D (𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛)

]
+ Δ𝑀𝑛 ∈ H𝑛. (3.6)

We will also need a function 𝜓 : R3 −→ R such that 𝜓 ∈ 𝐶1 (
R3) ,

𝜓(𝑥) =
{

1, |𝑥 | ≤ 3,
0, |𝑥 | ≥ 5,

and |∇𝜓 | ≤ 1.
Remark 3.3. The 𝜓 defined above is used to truncate 𝑀 in order to make sure we can get the
estimates in Proposition 4.1 below. The setting of |∇𝜓 | ≤ 1 is also necessary, for instance in the
proof of Lemma 7.2. By Lemma 7.5, we will prove that |𝑀 (𝑡, 𝑥) | = 1 for almost every 𝑥 ∈ D,
therefore we can remove this 𝜓 by the end.
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It also will be convenient to define mappings
𝐹𝑛 : H𝑛 × Y𝑛 × Y𝑛 −→ H𝑛 and 𝐺𝑛 𝑗 : H𝑛 −→ H𝑛, 𝑗 = 1, 2, . . ., by

𝐹𝑛 (𝑀𝑛, 𝐵𝑛, 𝐸𝑛) := 𝜆1𝜋𝑛 [𝑀𝑛 × 𝜌𝑛] − 𝜆2𝜋𝑛 [𝑀𝑛 × (𝑀𝑛 × 𝜌𝑛)] +
1
2

∞∑︁
𝑗=1
𝐺′
𝑗𝑛 (𝑀𝑛)

[
𝐺 𝑗𝑛 (𝑀𝑛)

]
,

(3.7)
𝐺 𝑗𝑛 (𝑀𝑛) := 𝜆1𝜋𝑛

[
𝑀𝑛 × ℎ 𝑗

]
+ 𝜆2𝜋𝑛

[
𝜓(𝑀𝑛)𝑀𝑛 × (𝑀𝑛 × ℎ 𝑗 )

]
. (3.8)

where

𝐺′
𝑗𝑛 (𝑀𝑛)

[
𝐺 𝑗𝑛 (𝑀𝑛)

]
:= 𝜆2

1𝜋𝑛
[
𝜋𝑛 (𝑀𝑛 × ℎ 𝑗 ) × ℎ 𝑗

]
(3.9)

+𝜆1𝜆2𝜋𝑛
[
𝜓(𝑀𝑛)

[
𝑀𝑛 × (𝑀𝑛 × ℎ 𝑗 )

]
× ℎ 𝑗

]
+ 𝜆2

2𝜋𝑛
[
𝜓(𝑀𝑛)𝑀𝑛 ×

[
(𝑀𝑛 × (𝑀𝑛 × ℎ 𝑗 )) × ℎ 𝑗

] ]
+𝜆1𝜆2𝜋𝑛

[
𝜓(𝑀𝑛)𝑀𝑛 ×

[
(𝑀𝑛 × ℎ 𝑗 ) × ℎ 𝑗

] ]
+ 𝜆2

2𝜋𝑛
[
𝜋𝑛

[
𝜓(𝑀𝑛)𝑀𝑛 × (𝑀𝑛 × ℎ 𝑗 )

]
× (𝑀𝑛 × ℎ 𝑗 )

]
note that because of the 𝜓, (3.9) is only a notation, not the Fréchet derivative of 𝐺 𝑗𝑛.
Similar as (3.9), we will also use the following notations

𝐺
𝜓

𝑗
(𝑀) := 𝜆1𝑀 × ℎ 𝑗 + 𝜆2𝜓(𝑀)𝑀 × (𝑀 × ℎ 𝑗 ), (3.10)

and

(𝐺𝜓

𝑗
)′ (𝑀)

[
𝐺
𝜓

𝑗
(𝑀)

]
:= 𝜆2

1
[
(𝑀 × ℎ 𝑗 ) × ℎ 𝑗

]
(3.11)

+𝜆1𝜆2
[
𝜓(𝑀)

[
𝑀 × (𝑀 × ℎ 𝑗 )

]
× ℎ 𝑗

]
+ 𝜆2

2
[
𝜓(𝑀)𝑀 ×

[
(𝑀 × (𝑀 × ℎ 𝑗 )) × ℎ 𝑗

] ]
+𝜆1𝜆2𝜋𝑛

[
𝜓(𝑀)𝑀 ×

[
(𝑀 × ℎ 𝑗 ) × ℎ 𝑗

] ]
+ 𝜆2

2
[ [
𝜓(𝑀)𝑀 × (𝑀 × ℎ 𝑗 )

]
× (𝑀 × ℎ 𝑗 )

]
Remark 3.4. It may looks like there are too many 𝜋𝑛s in (3.9), but all of them are necessary. It is
not only we want all the terms of (3.9) are in H𝑛, but we also want to get the a’priori estimates in
Proposition 4.1.
To solve Problem 2.7, we first consider the following system of equations in H𝑛, Y𝑛 and Y𝑛:

Problem 3.5. Let us consider the following 𝑛-dimensional system:
d𝑀𝑛 (𝑡) =𝐹𝑛 (𝑀𝑛 (𝑡), 𝐵(𝑡), 𝐸 (𝑡)) d𝑡 +

∞∑︁
𝑗=1
𝐺 𝑗𝑛 (𝑀𝑛 (𝑡)) d𝑊 𝑗

d𝐸𝑛 (𝑡) = − 𝜋Y𝑛
[
1D (𝐸𝑛 (𝑡) + 𝑓 (𝑡))

]
d𝑡 + 𝜋Y𝑛

[
∇ × (𝐵𝑛 (𝑡) − 𝜋Y𝑛 𝑀𝑛 (𝑡))

]
d𝑡

d𝐵𝑛 (𝑡) = − 𝜋Y𝑛
[
∇ × 𝐸𝑛 (𝑡)

]
d𝑡

(3.12)

with the initial conditions

𝑀𝑛 (0) = 𝜋𝑛𝑀0, 𝐸𝑛 (0) = 𝜋Y𝑛 𝐸0, 𝐵𝑛 (0) = 𝜋Y𝑛 𝐵0 . (3.13)

Lemma 3.6. There exists a unique global strong solution (𝑀𝑛, 𝐵𝑛, 𝐸𝑛) of Problem 3.5. In
particular, (𝑀𝑛, 𝐵𝑛, 𝐸𝑛) ∈ 𝐶 ( [0,∞);H𝑛 × Y𝑛 × Y𝑛), P-almost surely.
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Proof. We define mappings

𝐹𝑛 : H𝑛 × Y𝑛 × Y𝑛 −→ H𝑛 × Y𝑛 × Y𝑛

𝐺 𝑗𝑛 : H𝑛 × Y𝑛 × Y𝑛 −→ H𝑛 × Y𝑛 × Y𝑛

putting

𝐹𝑛 (𝑢, 𝑣, 𝑤) = ©­«
𝐹𝑛 (𝑢, 𝑣, 𝑤)

−𝜋Y𝑛 [1D (𝑤 + 𝑓 )] + 𝜋Y𝑛 [∇ × (𝑣 − 𝜋Y𝑛 𝑢)]
−𝜋Y𝑛 [∇ × 𝑤]

ª®¬ (3.14)

and

𝐺 𝑗𝑛 (𝑢, 𝑣, 𝑤) =
©­«
𝐺 𝑗𝑛 (𝑢)

0
0

ª®¬ (3.15)

Then system (3.12) takes the form of a stochastic differential equation

d𝑋𝑛 = 𝐹𝑛 (𝑋𝑛) d𝑡 +
∞∑︁
𝑗=1
𝐺 𝑗𝑛 (𝑋𝑛) d𝑊 𝑗

where 𝑋𝑛 = (𝑀𝑛, 𝐵𝑛, 𝐸𝑛). The mapping 𝐹𝑛 defined in (3.16) is Lipschitz on balls. For the
mapping 𝐺 𝑗𝑛 defined in (3.15), note that 𝐺 𝑗𝑛 are Lipschitz and we have

∞∑︁
𝑗=1



𝐺 𝑗𝑛 (𝑢) − 𝐺 𝑗𝑛 (𝑣)



H ≤ 𝑐2

ℎ | |𝑢 − 𝑣 | |H ,

where 𝑐ℎ was defined in (2.11). Hence we have checked the condition of the Lipschitz on balls.
Next let us check that the system also satisfy the one sided linear growth condition.
For 𝐹̂𝑛 are of one sided linear growth, we need to show that there exists 𝐾 > 0 such that for all
(𝑢, 𝑣, 𝑤) ∈ H𝑛 × Y𝑛 × Y𝑛, we have:

⟨(𝑢, 𝑣, 𝑤), 𝐹̂𝑛 (𝑢, 𝑣, 𝑤)⟩H𝑛×Y𝑛×Y𝑛
≤ 𝐾 (1 + ∥𝑢∥2

H𝑛×Y𝑛×Y𝑛
).

𝐹̂𝑛 has following vector expression, we only need to show the one sided linear growth property
for each component.

𝐹𝑛 (𝑢, 𝑣, 𝑤) = ©­«
𝐹𝑛 (𝑢, 𝑣, 𝑤)

−𝜋Y𝑛 [1D (𝑤 + 𝑓 )] + 𝜋Y𝑛 [∇ × (𝑣 − 𝜋Y𝑛 𝑢)]
−𝜋Y𝑛 [∇ × 𝑤]

ª®¬ (3.16)

For the first component, we have

⟨𝑢, 𝐹𝑛 (𝑢, 𝑣, 𝑤)⟩H =
1
2

〈
𝑢,

∞∑︁
𝑗=1
𝐺′
𝑗𝑛 (𝑢) [𝐺 𝑗𝑛 (𝑢)]

〉
H

.
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Now let us consider each term in
〈
𝑢,

∑∞
𝑗=1𝐺

′
𝑗𝑛
(𝑢) [𝐺 𝑗𝑛 (𝑢)]

〉
H

, we will repeatedly using the facts:
⟨𝑎 × 𝑏, 𝑎⟩ = 0, ⟨𝑎 × 𝑏, 𝑐⟩ = ⟨𝑎, 𝑏 × 𝑐⟩, 𝑎 × 𝑏 = −𝑏 × 𝑎, definition of the function 𝜓 in Notation
3.2 and equation (2.11) in the assumption part of Problem 2.7. For the first term in the right hand
side of (3.9), we have������ ∞∑︁

𝑗=1
⟨𝑢, 𝜋𝑛 [𝜋𝑛 (𝑢 × ℎ 𝑗 ) × ℎ 𝑗 ]⟩H

������ =
������ ∞∑︁
𝑗=1

⟨𝑢, 𝜋𝑛 (𝑢 × ℎ 𝑗 ) × ℎ 𝑗 ⟩H

������ ≤ ∥𝑢∥2
H

∞∑︁
𝑗=1

∥ℎ 𝑗 ∥2
𝐿∞ ≤ 𝑐ℎ∥𝑢∥2

H.

For the second term in the right hand side of (3.9), we have

⟨𝑢, 𝜋𝑛 [𝜓(𝑢) [𝑢 × (𝑢 × ℎ 𝑗 )] × ℎ 𝑗 ]⟩H = −⟨𝑢 × ℎ 𝑗 , 𝜓(𝑢) [𝑢 × (𝑢 × ℎ 𝑗 )]⟩H = 0.

For the third term in the right hand side of (3.9), we have������ ∞∑︁
𝑗=1

⟨𝑢, 𝜋𝑛 [𝜋𝑛 [𝜓(𝑢)𝑢 × (𝑢 × ℎ 𝑗 )]] × (𝑢 × ℎ 𝑗 )⟩H

������
=

∞∑︁
𝑗=1

��⟨𝑢 × (𝑢 × ℎ 𝑗 ), 𝜋𝑛 [𝜓(𝑢)𝑢 × (𝑢 × ℎ 𝑗 )]⟩H
��

=

∞∑︁
𝑗=1

∥𝜓(𝑢)𝑢 × (𝑢 × ℎ 𝑗 )∥2
H𝑛

≤𝐶
∞∑︁
𝑗=1

∥ℎ 𝑗 ∥2
H ≤ 𝐶𝑐2

ℎ,

for some constant 𝐶 > 0. Similarly we can check that for the fourth term in the right hand side
of (3.9), we have

⟨𝑢, 𝜋𝑛 [𝜓(𝑢)𝑢 × [(𝑢 × ℎ 𝑗 ) × ℎ 𝑗 ]]⟩H = 0.

And for the fifth term in the right hand side of (3.9), we have������ ∞∑︁
𝑗=1

⟨𝑢, 𝜋𝑛 [𝜋𝑛 [𝜓(𝑢)𝑢 × (𝑢 × ℎ 𝑗 )] × (𝑢 × ℎ 𝑗 )]⟩H

������ ≤ 𝐶𝑐2
ℎ,

for some constant 𝐶 > 0. Therefore we have proved that the first component in 𝐹̂𝑛 satisfies the
one sided linear growth condition.
Now let us consider the second component in 𝐹̂𝑛 as in (3.14). For the first term in the second
component, we have

|⟨𝑣, 𝜋Y𝑛 [1D (𝑤 + 𝑓 )]⟩Y𝑛
| ≤ ∥𝑣∥Y𝑛

(∥𝑤∥Y𝑛
+ ∥ 𝑓 ∥H) ≤ 𝐶 (1 + ∥(𝑣, 𝑤)∥2

Y𝑛×Y𝑛
),

for some constant 𝐶 > 0. For the second term in the second component, we have

⟨𝑣, 𝜋Y𝑛 [∇ × (𝑣 − 𝜋Y𝑛 𝑢̄)]⟩Y𝑛
≤ ∥𝑣∥2

Y𝑛
+ ∥𝑣∥Y𝑛

∥𝑢∥Y𝑛
≤ 2∥(𝑣, 𝑤)∥2

Y𝑛×Y𝑛
.
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Therefore the second component in 𝐹̂𝑛 also satisfies the one sided linear growth condition. And
it is obvious that the third component in 𝐹̂𝑛 satisfies the one sided linear growth condition. Hence
𝐹̂𝑛 satisfies the one sided linear growth condition.
It remains to check if we have

𝑇𝑟 (𝜎(𝑢)𝜎∗(𝑢)) ≤ 𝐾 (1 + ∥𝑢∥2
H𝑛
), 𝑢 ∈ H𝑛,

where 𝜎(𝑢) : H −→ H𝑛 is defined by

𝜎(𝑢) (𝑔) = 𝜆1𝜋𝑛 (𝑢 × 𝑔) − 𝜆2𝜋𝑛𝜓(𝑢)𝑢 × (𝑢 × 𝑔), 𝑔 ∈ H.

Hence
𝜎∗(𝑢) (ℎ) = −𝜆1𝑢 × ℎ − 𝜆2𝜓(𝑢)𝑢 × (𝑢 × ℎ), ℎ ∈ H𝑛.

Therefore

𝑇𝑟 (𝜎(𝑢)𝜎∗(𝑢)) =
𝑛∑︁
𝑘=1

⟨𝜎(𝑢)𝜎∗(𝑢)𝑒𝑘 , 𝑒𝑘⟩H =

𝑛∑︁
𝑘=1

∥𝜎∗(𝑢)𝑒𝑘 ∥2
H

≤2
𝑛∑︁
𝑘=1

(
∥𝑢 × 𝑒𝑘 ∥2

H + ∥𝜓(𝑢)𝑢 × (𝑢 × 𝑒𝑘 )∥2
H

)
≤2∥𝑢∥2

H

𝑛∑︁
𝑘=1

∥𝑒𝑘 ∥2
𝐿∞ + 𝐶

𝑛∑︁
𝑘=1

∥𝑒𝑘 ∥2
𝐿∞

≤𝐾 (1 + ∥𝑢∥2
H𝑛
),

for some constants 𝐶 > 0 and 𝐾 > 0. So the proof of the one sided linear growth condition is
complete.
Therefore the claim follows by standard arguments, see for example Theorem 3.1 in [1]. □

4. A priori estimates

Next we will get some a priori estimates of the solution to equation (3.12).

Proposition 4.1. For any 𝑇 > 0, 𝑝 > 0 and 𝑏 > 1
4 , there exists a constant 𝐶 = 𝐶 (𝑝, 𝑏) > 0

independent of 𝑛 such that:
∥𝑀𝑛∥𝐿∞ (0,𝑇 ;H) ≤ ∥𝑀0∥H , (4.1)

E∥𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛∥𝑝𝐿∞ (0,𝑇 ;L2 (R3)) ≤ 𝐶 , (4.2)

E∥𝐸𝑛∥𝑝𝐿∞ (0,𝑇 ;L2 (R3)) ≤ 𝐶 , (4.3)

E∥𝑀𝑛∥𝑝𝐿∞ (0,𝑇 ;V) ≤ 𝐶 , (4.4)

E∥𝑀𝑛 × 𝜌𝑛∥𝑝𝐿2 (0,𝑇 ;H) ≤ 𝐶 , (4.5)

E∥𝐵𝑛∥𝑝𝐿∞ (0,𝑇 ;L2 (R3)) ≤ 𝐶 , (4.6)
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E
(∫ 𝑇

0
∥𝑀𝑛 (𝑡) × (𝑀𝑛 (𝑡) × 𝜌𝑛 (𝑡))∥2

L
3
2

d𝑡
) 𝑝

2

≤ 𝐶 , (4.7)

E ∥𝜋𝑛 [𝑀𝑛 (𝑡) × (𝑀𝑛 (𝑡) × 𝜌𝑛 (𝑡))] ∥2
𝐿2 (0,𝑇 ;X−𝑏) ≤ 𝐶 , (4.8)

E





 d𝐸𝑛
d𝑡





𝑝
𝐿∞ (0,𝑇 ;Y∗)

≤ 𝐶 , (4.9)

E





 d𝐵𝑛
d𝑡





𝑝
𝐿∞ (0,𝑇 ;Y∗)

≤ 𝐶 , (4.10)

where X−𝑏 is the dual space of 𝑋𝑏 = 𝐷 (𝐴𝑏).

Proof of (4.1). By the Itô formula and straightforward calculus we have

d∥𝑀𝑛∥2
H =

∞∑︁
𝑗=1

2
〈
𝑀𝑛, 𝐺𝑛 𝑗 (𝑀𝑛)

〉
H d𝑊 𝑗 +

2 ⟨𝑀𝑛, 𝐹𝑛 (𝑀𝑛)⟩H +
∞∑︁
𝑗=1

∥𝐺𝑛 𝑗 (𝑀𝑛)∥2
H

 d𝑡

= 0

hence
∥𝑀𝑛 (𝑡)∥2

H = ∥𝑀𝑛 (0)∥2
H = ∥𝜋𝑛𝑀0∥2

H ≤ ∥𝑀0∥2
H, 𝑡 ≥ 0.

□

Proof of (4.2), (4.3), (4.4), (4.5). By the Itô formula we get:

dE𝑛 (𝑀𝑛 (𝑡), 𝐵𝑛 (𝑡), 𝐸𝑛 (𝑡))

=

[
𝜕E𝑛
𝜕𝑀𝑛

(
𝐹𝑛 (𝑀𝑛) (𝑡)

)
+ 1

2

∞∑︁
𝑗=1

𝜕2E𝑛
𝜕𝑀2

𝑛

(
𝐺 𝑗𝑛 (𝑀𝑛) (𝑡), 𝐺 𝑗𝑛 (𝑀𝑛) (𝑡)

)
− 𝜕E𝑛
𝜕𝐵𝑛

(
𝜋Y𝑛 (∇ × 𝐸𝑛 (𝑡))

)
+𝜕E𝑛
𝜕𝐸𝑛

(
𝜋Y𝑛 [∇ × (𝐵𝑛 (𝑡) − 𝜋Y𝑛 𝑀𝑛 (𝑡))] − 𝜋Y𝑛 [1D (𝐸𝑛 (𝑡) + 𝑓 (𝑡))]

)]
d𝑡

+
∞∑︁
𝑗=1

𝜕E𝑛
𝜕𝑀𝑛

(
𝐺 𝑗𝑛 (𝑀𝑛) (𝑡)

)
d𝑊 𝑗 (𝑡).
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Then by (3.2)-(3.5) and (3.6), we have

E𝑛 (𝑡) − E𝑛 (0)

=

∫ 𝑡

0

{
− ⟨𝜌𝑛 (𝑠), 𝐹𝑛 (𝑀𝑛) (𝑠)⟩H (4.11)

+1
2

∞∑︁
𝑗=1

〈
𝜑′′(𝑀𝑛 (𝑠))𝐺 𝑗𝑛 (𝑀𝑛) (𝑠), 𝐺 𝑗𝑛 (𝑀𝑛) (𝑠)

〉
H

+1
2

∞∑︁
𝑗=1

∥∇𝐺 𝑗𝑛 (𝑀𝑛 (𝑠))∥2
H −

〈
𝐵𝑛 (𝑠) − 𝜋Y𝑛 𝑀𝑛 (𝑠), 𝜋Y𝑛 (∇ × 𝐸𝑛 (𝑠))

〉
L2 (R3)

+
〈
𝐸𝑛 (𝑠), 𝜋Y𝑛 [∇ × (𝐵𝑛 (𝑠) − 𝜋Y𝑛 𝑀𝑛 (𝑠))] − 𝜋Y𝑛 [1D (𝐸𝑛 (𝑠) + 𝑓 (𝑠))]

〉
L2 (R3)

}
d𝑠

−
∞∑︁
𝑗=1

∫ 𝑡

0

〈
𝜌𝑛 (𝑠), 𝐺 𝑗𝑛 (𝑀𝑛) (𝑠)

〉
d𝑊 𝑗 (𝑠).

Now let’s consider each term in the equality (4.11).
For the term on the left hand side of (4.11),

E𝑛 (𝑡) − E𝑛 (0) =
∫
D
𝜑(𝑀𝑛 (𝑡, 𝑥)) d𝑥 −

∫
D
𝜑(𝑀𝑛 (0, 𝑥)) d𝑥

+ 1
2
∥∇𝑀𝑛 (𝑡)∥2

H + 1
2




𝐵𝑛 (𝑡) − 𝜋Y𝑛 𝑀𝑛 (𝑡)



2

L2 (R3)
+ 1

2
∥𝐸𝑛 (𝑡)∥2

L2 (R3)

− 1
2
∥∇𝑀𝑛 (0)∥2

H − 1
2




𝐵𝑛 (0) − 𝜋Y𝑛 𝑀𝑛 (0)



2

L2 (R3)
− 1

2
∥𝐸𝑛 (0)∥2

L2 (R3) .

(4.12)

For the 1st term on the right hand side of (4.11), by (3.7),

− ⟨𝜌𝑛, 𝐹𝑛 (𝑀𝑛)⟩H = − 𝜆1 ⟨𝜌𝑛, 𝜋𝑛 [𝑀𝑛 × 𝜌𝑛]⟩H + 𝜆2 ⟨𝜌𝑛, 𝜋𝑛 [𝑀𝑛 × (𝑀𝑛 × 𝜌𝑛)]⟩H

− 1
2

∞∑︁
𝑗=1

〈
𝜌𝑛, 𝐺

′
𝑗𝑛 (𝑀𝑛)

(
𝐺 𝑗𝑛 (𝑀𝑛)

)〉
.

Since
⟨𝜌𝑛, 𝜋𝑛 [𝑀𝑛 × 𝜌𝑛]⟩H = ⟨𝜌𝑛, 𝑀𝑛 × 𝜌𝑛⟩H = 0 ,

and
⟨𝜌𝑛, 𝜋𝑛 [𝑀𝑛 × (𝑀𝑛 × 𝜌𝑛)]⟩H = ⟨𝜌𝑛, 𝑀𝑛 × (𝑀𝑛 × 𝜌𝑛)⟩H = −∥𝑀𝑛 × 𝜌𝑛∥2

H ,

we find that

− ⟨𝜌𝑛, 𝐹𝑛 (𝑀𝑛)⟩H = −𝜆2∥𝑀𝑛 × 𝜌𝑛∥2
H − 1

2

∞∑︁
𝑗=1

〈
𝜌𝑛, 𝐺

′
𝑗𝑛 (𝑀𝑛)

[
𝐺 𝑗𝑛 (𝑀𝑛)

]〉
.
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For the 4th and 5th terms on the right hand side of (4.11), we notice that

−
〈
𝐵𝑛 (𝑠) − 𝜋Y𝑛 𝑀𝑛 (𝑠), 𝜋Y𝑛 (∇ × 𝐸𝑛 (𝑠))

〉
L2 (R3) +

〈
𝐸𝑛 (𝑠), 𝜋Y𝑛 [∇ × (𝐵𝑛 (𝑠) − 𝜋Y𝑛 𝑀𝑛 (𝑠))]

〉
L2 (R3)

= −
〈
𝐵𝑛 (𝑠) − 𝜋Y𝑛 𝑀𝑛 (𝑠),∇ × 𝐸𝑛 (𝑠)

〉
L2 (R3) +

〈
𝐸𝑛 (𝑠),∇ × (𝐵𝑛 (𝑠) − 𝜋Y𝑛 𝑀𝑛 (𝑠))

〉
L2 (R3) = 0.

Therefore,

−
〈
𝐵𝑛 (𝑠) − 𝜋Y𝑛 𝑀𝑛 (𝑠), 𝜋Y𝑛 (∇ × 𝐸𝑛 (𝑠))

〉
L2 (R3)

+
〈
𝐸𝑛 (𝑠), 𝜋Y𝑛 [∇ × (𝐵𝑛 (𝑠) − 𝜋Y𝑛 𝑀𝑛 (𝑠))] − 𝜋Y𝑛 [1D (𝐸𝑛 (𝑠) + 𝑓 (𝑠))]

〉
L2 (R3)

(4.13)

= −
〈
𝐸𝑛 (𝑠), 1D (𝐸𝑛 (𝑠)) + 𝑓 (𝑠)

〉
L2 (R3)

= −∥1D𝐸𝑛∥2
H − ⟨ 𝑓 , 1D𝐸𝑛⟩H .

By (4.12) and (4.13), equality (4.11) takes the form∫
D
𝜑(𝑀𝑛 (𝑡, 𝑥)) d𝑥 + 1

2
∥∇𝑀𝑛 (𝑡)∥2

H + 1
2




𝐵𝑛 (𝑡) − 𝜋Y𝑛 𝑀𝑛 (𝑡)



2

L2 (R3)
+ 1

2
∥𝐸𝑛 (𝑡)∥2

L2 (R3)(4.14)

+𝜆2

∫ 𝑡

0
|𝑀𝑛 × 𝜌𝑛 |2 d𝑠 + 1

2

∞∑︁
𝑗=1

∫ 𝑡

0

〈
𝜌𝑛, 𝐺

′
𝑗𝑛 (𝑀𝑛)

[
𝐺 𝑗𝑛 (𝑀𝑛)

]〉
d𝑠

−1
2

∞∑︁
𝑗=1

∫ 𝑡

0

��𝐺 𝑗𝑛 (𝑀𝑛)
��2 d𝑠 − 1

2

∞∑︁
𝑗=1

∫ 𝑡

0

��∇𝐺 𝑗𝑛 (𝑀𝑛)
��2 d𝑠

−1
2

∞∑︁
𝑗=1

∫ 𝑡

0

〈
𝜑′′(𝑀𝑛)𝐺 𝑗𝑛 (𝑀𝑛) , 𝐺 𝑗𝑛 (𝑀𝑛)

〉
d𝑠

+
∞∑︁
𝑗=1

∫ 𝑡

0

〈
𝜌𝑛, 𝐺 𝑗𝑛 (𝑀𝑛)

〉
d𝑊 𝑗 (𝑠)

=

∫
D
𝜑(𝑀𝑛 (0, 𝑥)) d𝑥 + 1

2
∥∇𝑀𝑛 (0)∥2

H

+1
2




𝐵𝑛 (0) − 𝜋Y𝑛 (𝑀𝑛 (0))



2

L2 (R3)
+ 1

2
∥𝐸𝑛 (0)∥2

L2 (R3) , ∀𝑡 ∈ (0, 𝑇).

Now let us consider some terms in the equality (4.14).
By (3.6) we have 〈

𝜌𝑛, 𝐺 𝑗𝑛 (𝑀𝑛)
〉

= −
〈
𝜋𝑛 [𝜑′(𝑀𝑛)], 𝐺 𝑗𝑛 (𝑀𝑛)

〉
+

〈
Δ𝑀𝑛, 𝐺 𝑗𝑛 (𝑀𝑛)

〉
+

〈
𝜋𝑛 [𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛], 𝐺 𝑗𝑛 (𝑀𝑛)

〉
.

We also have〈
Δ𝑀𝑛, 𝐺 𝑗𝑛 (𝑀𝑛)

〉
= −

〈
∇𝑀𝑛,∇𝐺 𝑗𝑛 (𝑀𝑛)

〉
= −𝜆1

〈
∇𝑀𝑛,∇𝐾 𝑗𝑛 (𝑀𝑛)

〉
≤ ∥∇𝑀𝑛∥2

𝐿2 ∥ℎ 𝑗 ∥2
L∞ (D) + 2∥∇𝑀𝑛∥𝐿2 ∥𝑀𝑛∥L6 (𝐷) ∥ℎ 𝑗 ∥L∞ (D) ∥∇ℎ 𝑗 ∥L3 (𝐷)

≤∥𝑀𝑛∥2
V∥ℎ 𝑗 ∥

2
L∞ (D) + 2∥𝑀𝑛∥2

V∥ℎ 𝑗 ∥L∞ (D) ∥∇ℎ 𝑗 ∥L3 (𝐷) .
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Next we have ���〈𝜋𝑛 [𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛], 𝐺 𝑗𝑛 (𝑀𝑛)
〉��� ≤ 𝐶 (

ℎ 𝑗

2

L∞ +



1D

[
𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛

]


2

H

)
Since we assume that 𝜑′ is bounded we obtain��〈𝜋𝑛 [𝜑′(𝑀𝑛)], 𝐺 𝑗𝑛 (𝑀𝑛)

〉
H

�� ≤ 𝐶∥ℎ 𝑗 ∥L∞ (D) .

Note that we also have,����∫ 𝑡

0

∫
D
⟨ 𝑓 , 𝐸𝑛⟩ d𝑥 d𝑠

���� ≤ 1
2

∫ 𝑡

0

∫
D

(
| 𝑓 |2 + |𝐸𝑛 |2

)
d𝑥 d𝑠.

Hence by (4.1) and (4.14) we infer that there exists a constant 𝐶 (𝛼, 𝛽,D) > 0 independent of 𝑛
such that

1
2
∥𝐵𝑛 (𝑡) − 𝜋Y𝑛 𝑀𝑛 (𝑡)∥2

L2 (R3) +
1
2
∥𝐸𝑛 (𝑡)∥2

L2 (R3) (4.15)

+𝜆2

∫ 𝑡

0
∥𝑀𝑛 (𝑠) × 𝜌𝑛 (𝑠)∥2

H d𝑠 +
∫
D
𝜑(𝑀𝑛 (𝑡)) d𝑥 + 1

2
∥𝑀𝑛 (𝑡)∥2

V

≤ 1
2
∥𝐵𝑛 (0) − 𝜋Y𝑛 𝑀𝑛 (0)∥2

L2 (R3) +
1
2
∥𝐸𝑛 (0)∥2

L2 (R3) +
1
2

∫ 𝑡

0
∥ 𝑓 (𝑠)∥2

H d𝑠

+
∫
D
𝜑(𝑀𝑛 (0, 𝑥)) d𝑥 + 1

2
∥∇𝑀𝑛 (0)∥2

H

+𝐶𝑐ℎ
∫ 𝑡

0

(
∥𝑀𝑛 (𝑠)∥2

V +



1D

[
𝐵𝑛 (𝑠) − 𝜋Y𝑛 𝑀𝑛 (𝑠)

]


2

H

)
d𝑠 + 𝐶𝑐ℎ𝑡

+

������ ∞∑︁
𝑗=1

∫ 𝑡

0

〈
𝜌𝑛, 𝐺 𝑗𝑛 (𝑀𝑛)

〉
d𝑊 𝑗 (𝑠)

������ .
We are going to estimate the stochastic term in the above inequality (4.15). We will show first

that the infinite sum of stochastic integrals
∞∑︁
𝑗=1

∫ 𝑡

0

〈
𝜌𝑛, 𝐺 𝑗𝑛 (𝑀𝑛)

〉
d𝑊 𝑗 (𝑠) (4.16)

is well defined. We have��〈𝜌𝑛, 𝐺 𝑗𝑛 (𝑀𝑛)
〉
H

��
≤

���〈−𝜑′(𝑀𝑛) + 1D (𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛), 𝐺 𝑗𝑛 (𝑀𝑛)
〉
H

��� + ��〈Δ𝑀𝑛, 𝐺 𝑗𝑛 (𝑀𝑛)
〉
H

�� (4.17)

≤ 𝐶

(
∥ℎ 𝑗 ∥L∞ + ∥1D (𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛)∥H∥ℎ 𝑗 ∥L∞ + ∥∇𝑀𝑛∥2

H

(
∥∇ℎ 𝑗 ∥H + ∥ℎ 𝑗 ∥L∞

) )
≤ 𝐶

(
∥∇ℎ 𝑗 ∥H + ∥ℎ 𝑗 ∥L∞

) (
1 + ∥1D (𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛)∥H + ∥∇𝑀𝑛∥2

H

)
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hence

E
∞∑︁
𝑗=1

∫ 𝑡

0

〈
𝜌𝑛, 𝐺 𝑗𝑛 (𝑀𝑛)

〉2
H d𝑠 ≤ 𝑐ℎ𝐶

∫ 𝑡

0

(
1 + ∥1D (𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛)∥H + ∥∇𝑀𝑛∥2

H

)2
d𝑠

and the Itô integral (4.16) is a well defined square-integrable martingale. Secondly, we do some
preparation before using the Burkholder-Davis-Gundy inequality on the stochastic term of (4.15).
Taking supremum over 𝑟 ∈ [0, 𝑡] on both sides of (4.15) we obtain

1
2

sup
𝑟∈[0,𝑡]

(
∥𝐵𝑛 (𝑟) − 𝜋Y𝑛 (𝑀𝑛 (𝑟))∥2

L2 (R3) + ∥𝐸𝑛 (𝑟)∥2
L2 (R3)

)
+𝜆2

∫ 𝑡

0
∥𝑀𝑛 (𝑠) × 𝜌𝑛 (𝑠)∥2

H d𝑠 + sup
𝑟∈[0,𝑡]

(∫
D
𝜑(𝑀𝑛 (𝑟)) d𝑥 + 1

2
∥𝑀𝑛 (𝑟)∥2

V

)
≤ 1

2
∥𝐵𝑛 (0) − 𝜋Y𝑛 𝑀𝑛 (0)∥2

L2 (R3) +
1
2
∥𝐸𝑛 (0)∥2

L2 (R3) +
1
2

∫ 𝑡

0
∥ 𝑓 (𝑠)∥2

H d𝑠

+
∫
D
𝜑(𝑀𝑛 (0, 𝑥)) d𝑥 + 1

2
∥∇𝑀𝑛 (0)∥2

H

+𝐶𝑐ℎ
∫ 𝑡

0

(
∥𝑀𝑛 (𝑠)∥2

V +



1D

[
𝐵𝑛 (𝑠) − 𝜋Y𝑛 𝑀𝑛 (𝑠)

]


2

H

)
d𝑠 + 𝐶𝑐ℎ𝑡

+ sup
𝑟∈[0,𝑡]

������ ∞∑︁
𝑗=1

∫ 𝑟

0

〈
𝜌𝑛, 𝐺 𝑗𝑛 (𝑀𝑛)

〉
H d𝑊 𝑗 (𝑠)

������ .
Let 𝑝 ≥ 2. Then using the Jensen inequality we find that for some constant 𝐶 which includes

the initial data, we have

(4.18)

E

(
sup
𝑟∈[0,𝑡]

(
∥ [𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛] (𝑟)∥2

L2 (R3) + ∥𝐸𝑛 (𝑟)∥2
L2 (R3) + ∥𝑀𝑛 (𝑟)∥2

V

)
+ 2𝜆2

∫ 𝑡

0
∥𝑀𝑛 × 𝜌𝑛∥2

H d𝑠

) 𝑝
≤ 𝐶𝑐

𝑝

ℎ
𝑡 𝑝−1E

∫ 𝑡

0

(
∥𝑀𝑛 (𝑠)∥2

V + ∥[𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛] (𝑠)∥2
L2 (R3)

) 𝑝
d𝑠

+3𝑝−1E ©­« sup
𝑟∈[0,𝑡]

������ ∞∑︁
𝑗=1

∫ 𝑟

0

〈
𝜌𝑛, 𝐺 𝑗𝑛 (𝑀𝑛)

〉
H d𝑊 𝑗 (𝑠)

������ª®¬
𝑝

+ 𝐶𝑐𝑝
ℎ
𝑡 𝑝 .

Finally, by the Burkholder-Davis-Gundy inequality, the Jensen’s inequality again and (4.17), there
exists a 𝑛-independent constants 𝐾 = 𝐾 (𝑝) > 0 and 𝐶 > 0 such that:
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E ©­« sup
𝑟∈[0,𝑡]

������ ∞∑︁
𝑗=1

∫ 𝑟

0

〈
𝜌𝑛, 𝐺 𝑗𝑛 (𝑀𝑛)

〉
H d𝑊 𝑗

������ª®¬
𝑝

≤ 𝐾E

������ ∞∑︁
𝑗=1

∫ 𝑡

0

〈
𝜌𝑛, 𝐺 𝑗𝑛 (𝑀𝑛)

〉2
H d𝑠

������
𝑝

2

≤ 𝐶𝑡
𝑝

2 −1E
∫ 𝑡

0
sup
𝑟∈[0,𝑠]

(
∥𝑀𝑛 (𝑟)∥2𝑝

V + ∥1D (𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛) (𝑟)∥2𝑝
H

)
d𝑠 (4.19)

Hence by (4.18) and (4.19) there exists 𝐶 > 0 independent of 𝑛 such that,

E sup
𝑟∈[0,𝑡]

(
∥ [𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛] (𝑟)∥2

L2 (R3) + ∥𝐸𝑛 (𝑟)∥2
L2 (R3) + ∥𝑀𝑛 (𝑟)∥2

V +
∫ 𝑡

0
∥𝑀𝑛 × 𝜌𝑛∥2

H d𝜏

) 𝑝
≤ 𝐶 (𝑡 𝑝−1 + 𝑡

𝑝

2 −1)
∫ 𝑡

0
E sup
𝑟∈[0,𝑠]

(
∥𝑀𝑛 (𝑟)∥2𝑝

V + ∥[𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛] (𝑟)∥2𝑝
L2 (R3)

)
d𝑠 + 𝐶𝑡 𝑝

Hence by the Gronwall inequality, with 𝐶 = 𝐶𝑇 𝑝𝑒𝐶 (𝑇
𝑝+𝑇

𝑝
2 ) , we get the following four a’priori

estimates,
E∥𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛∥2𝑝

𝐿∞ (0,𝑇 ;L2 (R3)) ≤ 𝐶,

E∥𝐸𝑛∥2𝑝
𝐿∞ (0,𝑇 ;L2 (R3)) ≤ 𝐶,

E∥𝑀𝑛∥2𝑝
𝐿∞ (0,𝑇 ;V) ≤ 𝐶,

E∥𝑀𝑛 × 𝜌𝑛∥2𝑝
𝐿2 (0,𝑇 ;H) ≤ 𝐶.

And since 𝐿2𝑝 (Ω) ↩→ 𝐿𝑞 (Ω) continuously for all 𝑞 < 2𝑝, these four inequalities imply the
inequalities: (4.2), (4.3), (4.4), (4.5) for all 𝑝 > 0. □

We continue with the proof of Proposition 4.1.

Proof of (4.6). For fixed 𝑝 ≥ 1, we have

E∥𝐵𝑛∥2𝑝
𝐿∞ (0,𝑇 ;L2 (R3)) ≤ 2𝑝

(
E∥ [𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛] ∥2𝑝

𝐿∞ (0,𝑇 ;L2 (R3)) + E∥𝑀𝑛∥2𝑝
𝐿∞ (0,𝑇 ;H)

)
.

By the a’priori estimates (4.2) and (4.4), there exists some 𝐶 > 0 independent of 𝑛 such that

E∥𝐵𝑛∥2𝑝
𝐿∞ (0,𝑇 ;L2 (R3)) ≤ 𝐶.

Together with the fact 𝐿2𝑝 (Ω) ↩→ 𝐿𝑞 (Ω) continuously for all 𝑞 < 2𝑝, we complete the proof of
(4.6). □
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Proof of (4.7). By the Soblev imbedding theorem, there is a constant 𝐶 such that

𝑀𝑛




L6 ≤ 𝐶



𝑀𝑛




V,

therefore by the H¥older inequality, we have


𝑀𝑛 (𝑡) ×
(
𝑀𝑛 (𝑡) × 𝜌𝑛 (𝑡)

)



L

3
2
≤



𝑀𝑛 (𝑡)



L6



𝑀𝑛 (𝑡) × 𝜌𝑛 (𝑡)



L2 ≤ 𝐶



𝑀𝑛 (𝑡)



V



𝑀𝑛 (𝑡) × 𝜌𝑛 (𝑡)



L2 .

Hence, by the Cauchy-Schwartz inequality,

E

[(∫ 𝑇

0




𝑀𝑛 (𝑡) ×
(
𝑀𝑛 (𝑡) × 𝜌𝑛 (𝑡)

)


2

L
3
2

d𝑡
) 𝑝

2
]

≤ 𝐶 𝑝E

[
sup

𝑟∈[0,𝑇]



𝑀𝑛 (𝑟)


𝑝
V

(∫ 𝑇

0



𝑀𝑛 (𝑡) × 𝜌𝑛 (𝑡)


2
L2 d𝑡

) 𝑝

2
]

≤ 𝐶 𝑝

(
E

[
sup
𝑡∈[0,𝑇]



𝑀𝑛 (𝑡)


2𝑝
V

]) 1
2 (

E
[(∫ 𝑇

0



𝑀𝑛 (𝑡) × 𝜌𝑛 (𝑡)


2
L2 d𝑡

) 𝑝] ) 1
2

.

Then by (4.4) and (4.5), we get (4.7). □

Proof of (4.8). Since ∥ · ∥𝑋𝑏 = ∥𝐴𝑏1 · ∥H = ∥ · ∥H2𝑏 , 𝑋𝑏 ↩→ L3 compactly for 𝑏 > 1
4 . Hence L

3
2 is

compactly embedded in X−𝑏. Thus there is a constant 𝐶 independent of 𝑛 such that

E
∫ 𝑇

0
∥𝜋𝑛 [𝑀𝑛 (𝑡) × (𝑀𝑛 (𝑡) × 𝜌𝑛 (𝑡))] ∥2

X−𝑏 d𝑡

≤ E
∫ 𝑇

0
∥ [𝑀𝑛 (𝑡) × (𝑀𝑛 (𝑡) × 𝜌𝑛 (𝑡))] ∥2

X−𝑏 d𝑡

≤ 𝐶E
∫ 𝑇

0
∥ [𝑀𝑛 (𝑡) × (𝑀𝑛 (𝑡) × 𝜌𝑛 (𝑡))] ∥2

L
3
2

d𝑡.

Then by (4.7), we get (4.8). □

Proof of (4.9) and (4.10). By the second equation in (3.12), we have

E





 d𝐸𝑛
d𝑡





𝑝
𝐿∞ (0,𝑇 ;Y∗)

= E∥𝜋Y𝑛 (∇ × [𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛]) − 𝜋Y𝑛
[
1𝐷 (𝐸𝑛 + 𝑓 )

]
∥𝑝
𝐿∞ (0,𝑇 ;Y∗)

≤ 𝐶𝑝E sup
𝑡∈(0,𝑇)

∥∇ × [𝐵𝑛 (𝑡) − 𝜋Y𝑛 𝑀𝑛 (𝑡)] ∥𝑝Y∗ + 𝐶𝑝E sup
𝑡∈(0,𝑇)

∥1𝐷 (𝐸𝑛 (𝑡) + 𝑓 (𝑡))∥𝑝Y∗

≤ 𝐶𝑝E sup
𝑡∈(0,𝑇)

sup
𝑦≠0

©­­«
������
〈
𝐵𝑛 (𝑡) − 𝜋Y𝑛 𝑀𝑛 (𝑡),∇ × 𝑦

〉
L2 (R3)

∥𝑦∥Y

������
𝑝

+

�������
〈
1𝐷 (𝐸𝑛 + 𝑓 ), 𝑦

〉
L2 (R3)

∥𝑦∥Y

�������
𝑝ª®®¬

≤ 𝐶𝑝E∥ [𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛] ∥𝑝𝐿∞ (0,𝑇 ;L2 (R3)) + 𝐶𝑝E∥𝐸𝑛∥
𝑝

𝐿∞ (0,𝑇 ;L2 (R3)) + 𝐶𝑝 ∥ 𝑓 ∥
𝑝

L2 (0,𝑇 ;H) .

Hence, since 𝑓 ∈ 𝐿2(0, 𝑇 ;H), by (4.2) and (4.3), we get (4.9) and similarly (4.10). □
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After so many pages of long calculation, the proof of Proposition 4.1 has been finished. Next let
us consider the estimate of the stochastic term in the finite dimensional system (3.12).

Lemma 4.2. For 𝑎 ∈ [0, 1
2 ) and 𝑝 ≥ 2, there exists a constant 𝐶 ≥ 0 such that for all 𝑛 ∈ N,

E






 ∞∑︁
𝑗=1

∫ ·

0
𝐺 𝑗𝑛 (𝑀𝑛 (𝑠)) d𝑊 𝑗 (𝑠)






𝑝
𝑊𝑎,𝑝 (0,𝑇 ;H)

≤ 𝐶 . (4.20)

To prove Lemma 4.2, we will use the Lemma 2.1 from Flandoli and Gatarek’s paper [17], which
is stated as Lemma 11.2 in the Appendix.

Proof of Lemma 4.2. By Lemma 11.2, there exists constant 𝐶1 > 0, such that

E






 ∞∑︁
𝑗=1

∫ ·

0
𝐺 𝑗𝑛 (𝑀𝑛) d𝑊 𝑗 (𝑠)






𝑝
𝑊𝑎,𝑝 (0,𝑇 ;H)

≤ 𝐶1E
©­«
∫ 𝑇

0

∞∑︁
𝑗=1



𝐺 𝑗𝑛 (𝑀𝑛)


2
H d𝑡ª®¬

𝑝

2

≤ 2𝑝−1𝐶1
©­«

∞∑︁
𝑗=1

∥ℎ 𝑗 ∥2
L∞

ª®¬
𝑝/2

E
∫ 𝑇

0

(
1 + ∥𝑀𝑛∥𝑝H

)
d𝑡

≤ 𝐶,

where the last inequality followed by (4.4). This completes the proof of the estimate (4.20). □

Remark 4.3. From now on we will always assume 𝑎 ∈ [0, 1
2 ), 𝑏 >

1
4 and 𝑝 ≥ 2.

Lemma 4.4. For 𝑎 ∈ [0, 1
2 ), 𝑏 >

1
4 , 𝑝 ≥ 2, there exists 𝐶 > 0 such that for all 𝑛 ∈ N,

E ∥𝑀𝑛∥2
𝑊𝑎,𝑝 (0,𝑇 ;X−𝑏) ≤ 𝐶. (4.21)

Proof. By (3.12),

E ∥𝑀𝑛∥2
𝑊𝑎,𝑝 (0,𝑇 ;X−𝑏)

= E






 ∫ ·

0
𝜋𝑛

{
𝜆1𝑀𝑛 × 𝜌𝑛 − 𝜆2𝑀𝑛 × (𝑀𝑛 × 𝜌𝑛) +

1
2

∞∑︁
𝑗=1
𝐺′
𝑗𝑛 (𝑀𝑛)

[
𝐺 𝑗𝑛 (𝑀𝑛)

] }
d𝑠

+
∞∑︁
𝑗=1

∫ ·

0
𝐺 𝑗𝑛 (𝑀𝑛) d𝑊 𝑗






2

𝑊𝑎,𝑝 (0,𝑇 ;X−𝑏)
.

By our assumption, 𝑎 ∈ [0, 1
2 ), so 𝐻1(0, 𝑇 ;X−𝑏) ↩→ 𝑊𝑎,𝑝 (0, 𝑇 ;X−𝑏) compactly for all 𝑝 > 0.
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And since H ↩→ X−𝑏 continuously, there is a constant 𝐶 independent of 𝑛 such that

E ∥𝑀𝑛∥2
𝑊𝑎,𝑝 (0,𝑇 ;X−𝑏) ≤𝐶 E






 ∫ 𝑡

0
𝜋𝑛

{
𝜆1𝑀𝑛 × 𝜌𝑛 +

1
2

∞∑︁
𝑗=1
𝐺′
𝑗𝑛 (𝑀𝑛)

[
𝐺 𝑗𝑛 (𝑀𝑛)

] }
d𝑠






2

𝐻1 (0,𝑇 ;H)

+ 𝐶 E





∫ 𝑡

0
𝜆2𝜋𝑛 [𝑀𝑛 × (𝑀𝑛 × 𝜌𝑛)] d𝑠





2

𝐻1 (0,𝑇 ;X−𝑏)

+ 𝐶 E






 ∞∑︁
𝑗=1

∫ 𝑡

0
𝐺 𝑗𝑛 (𝑀𝑛) d𝑊 𝑗






2

𝑊𝑎,𝑝 (0,𝑇 ;H)

To prove (4.21), it is enough to consider each term on the right hand side of the above inequality.
By (4.5), (4.8) and (4.20), we can conclude (4.21). □

5. Tightness results

In this subsection we will use the a’priori estimates (4.1)-(4.10) to show that the laws {L(𝑀𝑛, 𝐵𝑛, 𝐸𝑛) :
𝑛 ∈ N} are tight on a suitable path space. Then we will use Skorohod’s theorem to obtain another
probability space and an almost surely convergent sequence defined on this space whose limit is
a weak martingale solution of the Problem 2.7.
To do so, we will need some compact embedding results from Flandoli and Gatarek’s paper [17],
which stated in the Appendix as Lemma 11.3-Lemma 11.4. We will also need the following
Lemma about tightness.

Lemma 5.1. Let 𝑋,𝑌 be separable Banach spaces and (Ω, F , P) be a probability space, we
assume that 𝑖 : 𝑋 ↩→ 𝑌 is compact and the random variables 𝑢𝑛 : Ω −→ 𝑋 , 𝑛 ∈ N, satisfy the
following condition: there is a constant 𝐶 > 0, such that

E
(
∥𝑢𝑛∥𝑋

)
≤ 𝐶, 𝑛 ∈ N.

Then the family of laws
{
L(𝑖 ◦ 𝑢𝑛)

}
𝑛∈N is tight on 𝑌 .

Proof. Let us arbitrarily fix 𝜀 > 0.
Since E

(
∥𝑢𝑛∥𝑋

)
≤ 𝐶 for all 𝑛, we have

P
(
| |𝑢𝑛 | |𝑋 ≤ 𝐶

𝜀

)
≥ 1 − 𝜀, 𝑛 ∈ N.

On the other hand, since the embedding map 𝑖 : 𝑋 ↩→ 𝑌 is compact,

𝐾𝜀 :=
{
𝑖 ◦ 𝑢𝑛 (𝜔) : | |𝑢𝑛 (𝜔) | |𝑋 ≤ 𝐶

𝜀
, 𝜔 ∈ Ω

}
is compact in 𝑌 . And we have

L(𝑖 ◦ 𝑢𝑛) (𝐾𝜀) ≥ P
(
| |𝑢𝑛 | |𝑋 ≤ 𝐶

𝜀

)
≥ 1 − 𝜀, 𝑛 ∈ N.

Therefore
{
L(𝑖 ◦ 𝑢𝑛)

}
𝑛∈N is tight on 𝑌 and the proof is complete. □
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Now let’s state and prove our tightness results.

Lemma 5.2. For any 𝑝 ≥ 2, 𝑞 ∈ [2, 6) and 𝑏 > 1
4 the set of laws {L(𝑀𝑛) : 𝑛 ∈ N} on the

Banach space
𝐿𝑝 (0, 𝑇 ;L𝑞) ∩ 𝐶 ( [0, 𝑇];X−𝑏)

is tight.

Proof. Firstly, let us prove {L(𝑀𝑛) : 𝑛 ∈ N} is tight on 𝐿𝑝 (0, 𝑇 ;L𝑞) for all 𝑝 ≥ 2 and 𝑞 ∈ [2, 6).
To this end fix 𝑝 ≥ 2, 𝑎 ∈ (0, 1

2 ), 𝑏 > 1
4 and 𝑞 ∈ [2, 6). Since 𝑞 < 6 and the embedding

V = 𝐷 (𝐴 1
2 ) ↩→ 𝑋𝛾 = 𝐷 (𝐴𝛾) is compact for 𝛾 < 1

2 , we can choose 𝛾 ∈ ( 3
4 − 3

2𝑞 ,
1
2 ), such that,

Lemma 11.3 yields a compact embedding

𝐿𝑝 (0, 𝑇 ;V) ∩𝑊𝑎,𝑝 (0, 𝑇 ;X−𝑏) ↩→ 𝐿𝑝 (0, 𝑇 ; 𝑋𝛾) .

Therefore

P
(
∥𝑀𝑛∥𝐿𝑝 (0,𝑇 ;V)∩𝑊𝑎,𝑝 (0,𝑇 ;X−𝑏) > 𝑟

)
= P

(
∥𝑀𝑛∥𝐿𝑝 (0,𝑇 ;V) + ∥𝑀𝑛∥𝑊𝑎,𝑝 (0,𝑇 ;X−𝑏) > 𝑟

)
≤ P

(
∥𝑀𝑛∥𝐿𝑝 (0,𝑇 ;V) >

𝑟

2

)
+ P

(
∥𝑀𝑛∥𝑊𝑎,𝑝 (0,𝑇 ;X−𝑏) >

𝑟

2

)
≤ 4
𝑟2E

(
∥𝑀𝑛∥2

𝐿𝑝 (0,𝑇 ;V) + ∥𝑀𝑛∥2
𝑊𝑎,𝑝 (0,𝑇 ;X−𝑏)

)
.

Let 𝑋𝑇 := 𝐿𝑝 (0, 𝑇 ;V) ∩𝑊𝑎,𝑝 (0, 𝑇 ;X−𝑏). By estimates (4.21) and (4.4), there exists a constant
𝐶, such that

P
(
∥𝑀𝑛∥𝑋𝑇 > 𝑟

)
≤ 𝐶

𝑟2 , ∀𝑟, 𝑛.

hence
E
(
∥𝑀𝑛∥𝑋𝑇

)
≤ 1 +

∫ ∞

1

𝐶

𝑟2 d𝑟 = 1 + 𝐶, ∀𝑛 ∈ N.

By Lemma 5.1, the family of laws
{
L(𝑀𝑛) : 𝑛 ∈ N

}
is tight on 𝐿𝑝 (0, 𝑇 ; 𝑋𝛾). For 𝛾 > 3

4 − 3
2𝑞 ,

we have 𝑋𝛾 = H2𝛾 (𝐷) ↩→ L𝑞 continuously. Hence 𝐿𝑝 (0, 𝑇 ; 𝑋𝛾) ↩→ 𝐿𝑝 (0, 𝑇 ;L𝑞) continuously
and

{
L(𝑀𝑛) : 𝑛 ∈ N

}
is also tight on 𝐿𝑝 (0, 𝑇 ;L𝑞).

Secondly, we prove the laws {L(𝑀𝑛) : 𝑛 ∈ N} are tight on 𝐶 ( [0, 𝑇];X−𝑏) for all 𝑏 > 1
4 . To

do this, we fix some 𝑏 > 1
4 and choose 𝑏′ ∈ ( 1

4 , 𝑏). Since 𝑏′ < 𝑏, by Lemma 11.4 we have
𝑊𝑎,𝑝 (0, 𝑇 ; 𝑋−𝑏′) ↩→ 𝐶 ( [0, 𝑇];X−𝑏) compactly for 𝑎 ∈ (0, 1

2 ) and 𝑝 > 2 satisfying 𝑎 > 1
𝑝
.

Therefore by estimate (4.21) and Lemma 5.1 again, we conclude that
{
L(𝑀𝑛) : 𝑛 ∈ N

}
is tight

on 𝐶 ( [0, 𝑇];X−𝑏).
Therefore

{
L(𝑀𝑛) : 𝑛 ∈ N

}
is tight on 𝐿𝑝 (0, 𝑇 ;L𝑞) ∩𝐶 ( [0, 𝑇];X−𝑏) and the proof is complete.

□

To prove the tightness results about {L(𝐸𝑛)} and {L(𝐵𝑛)}, we need the version ([12], Def. 3.7)
of Aldous Condition ([2]), i.e. Definition 11.6 and the tightness criterion Lemma 11.7.

Lemma 5.3. The sets of laws {L(𝐸𝑛)} and {L(𝐵𝑛)} are tight on the space 𝐿2
𝑤 (0, 𝑇 ;L2(R3)).
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Proof. Here we will only prove the result about {L(𝐸𝑛)}, the proof about {L(𝐵𝑛)} is exactly the
same.
In order to use Lemma 11.7, let us set 𝐻 = L2(R3) and choose an auxiliary Hilbert space𝑈 such
that the embedding𝑈 ↩→ Y is compact. (The existence of such𝑈 is actually worth to justify, we
put it in the Lemma 11.5 in the Appendix.)
Since the embedding Y ↩→ L2(R3) is bounded, the embedding𝑈 ↩→ L2(R3) is also compact.
Next we will check the condition (a) and (b) in Lemma 11.7.
Firstly, let us observe that by estimate (4.3), condition (a) of the Lemma 11.7 is satisfied.
Secondly, we will check the Aldous condition (Definition 11.6) in the space 𝑈∗. To this end, fix
𝜀 > 0, 𝜂 > 0 and a sequence of F-stopping times {𝜏𝑛}. The embedding Y∗ ↩→ 𝑈∗ is compact so
it is bounded and thus there exists a constant 𝐶1 > 0 such that ∥ · ∥Y∗ ≥ 𝐶1∥ · ∥𝑈∗ . Hence together
with the Chebyshev inequality and estimate (4.9), we have

P (∥𝐸𝑛 (𝜏𝑛 + 𝜃) − 𝐸𝑛 (𝜏𝑛)∥𝑈∗ ≥ 𝜂) ≤ P (∥𝐸𝑛 (𝜏𝑛 + 𝜃) − 𝐸𝑛 (𝜏𝑛)∥Y∗ ≥ 𝐶1𝜂)

≤ 1
𝐶1𝜂

E (∥𝐸𝑛 (𝜏𝑛 + 𝜃) − 𝐸𝑛 (𝜏𝑛)∥Y∗) ≤ 1
𝐶1𝜂

E
∫ 𝜏𝑛+𝜃

𝜏𝑛





 d𝐸𝑛 (𝑠)
d𝑠






Y∗

d𝑠 ≤ 𝐶𝜃

𝐶1𝜂
, 𝜃 > 0.

Hence for 𝛿 ≤ 𝐶1
𝐶
𝜀𝜂, we have

sup
𝑛∈N

sup
0≤𝜃≤𝛿

P (∥𝐸𝑛 (𝜏𝑛 + 𝜃) − 𝐸𝑛 (𝜏𝑛)∥𝑈∗ ≥ 𝜂) ≤ 𝜀.

The Aldous condition (11.1) has been verified.
Therefore by Lemma 11.7, the laws {L(𝐸𝑛)} are tight on 𝐶 ( [0, 𝑇];𝑈∗) ∩ 𝐿2

𝑤 (0, 𝑇 ;𝐻) and the
lemma follows. □

By the previous tightness results and the Prokhorov Theorem, we have the following result of
weakly convergence of laws.

Proposition 5.4. There exists a subsequence {(𝑀𝑛𝑘 , 𝐵𝑛𝑘 , 𝐸𝑛𝑘 )} of {(𝑀𝑛, 𝐵𝑛, 𝐸𝑛)}, such that the
laws L(𝑀𝑛𝑘 , 𝐵𝑛𝑘 , 𝐸𝑛𝑘 ,𝑊ℎ) converge weakly to a probability measure 𝜇 on [𝐿𝑝 (0, 𝑇 ;L𝑞) ∩
𝐶 ( [0, 𝑇];X−𝑏)] × 𝐿2

𝑤 (0, 𝑇 ;L2(R3)) × 𝐿2
𝑤 (0, 𝑇 ;L2(R3)) × 𝐶 ( [0, 𝑇];H), where 𝑝 ∈ [2,∞), 𝑞 ∈

[2, 6) and 𝑏 > 1
4 .

6. Construction of new probability space and processes

Now we are going to use the Skorokhod Theorem to construct our new probability space and
processes as the weak solution of Problem 2.7.

Lemma 6.1. For 𝑝 ∈ [2,∞), 𝑞 ∈ [2, 6), 𝑏 > 1
4 , there exists a probability space (Ω̃, F̃ , P̃) and a

sequence {(𝑀𝑛, 𝐸𝑛, 𝐵𝑛,𝑊ℎ𝑛)},
of

[𝐿𝑝 (0, 𝑇 ;L𝑞 (𝐷)) ∩ 𝐶 ( [0, 𝑇];X−𝑏)] × 𝐿2
𝑤 (0, 𝑇 ;L2(R3)) × 𝐿2

𝑤 (0, 𝑇 ;L2(R3)) × 𝐶 ( [0, 𝑇];H)

-valued random variables defined on (Ω̃, F̃ , P̃) such that
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(a) On the product space

[𝐿𝑝 (0, 𝑇 ;L𝑞 (𝐷)) ∩ 𝐶 ( [0, 𝑇];X−𝑏)] × 𝐿2
𝑤 (0, 𝑇 ;L2(R3)) × 𝐿2

𝑤 (0, 𝑇 ;L2(R3)) × 𝐶 ( [0, 𝑇];H)

L(𝑀𝑛, 𝐸𝑛, 𝐵𝑛,𝑊ℎ) = L(𝑀𝑛, 𝐸𝑛, 𝐵𝑛,𝑊ℎ𝑛), ∀𝑛 ∈ N

(b) There exists a random variable (𝑀, 𝐸, 𝐵,𝑊ℎ) :

(Ω̃, F̃ , P̃) −→ [𝐿𝑝 (0, 𝑇 ;L𝑞) ∩ 𝐶 ( [0, 𝑇];X−𝑏)] × 𝐿2
𝑤 (0, 𝑇 ;L2(R3))

×𝐿2
𝑤 (0, 𝑇 ;L2(R3)) × 𝐶 ( [0, 𝑇];H),

such that

(i) On the product space

[𝐿𝑝 (0, 𝑇 ;L𝑞 (𝐷)) ∩ 𝐶 ( [0, 𝑇];X−𝑏)] × 𝐿2
𝑤 (0, 𝑇 ;L2(R3)) × 𝐿2

𝑤 (0, 𝑇 ;L2(R3)) × 𝐶 ( [0, 𝑇];H)

L(𝑀, 𝐸, 𝐵,𝑊ℎ) = 𝜇,
where 𝜇 is same as in Proposition 5.4. Moreover, the following convergence results hold P̃-a.s.
as 𝑛→ ∞,

(ii) 𝑀𝑛 −→ 𝑀 in 𝐿𝑝 (0, 𝑇 ;L𝑞 (𝐷)) ∩ 𝐶 ( [0, 𝑇];X−𝑏),
(iii) 𝐸𝑛 −→ 𝐸 in 𝐿2

𝑤 (0, 𝑇 ;L2(R3)),
(iv) 𝐵𝑛 −→ 𝐵 in 𝐿2

𝑤 (0, 𝑇 ;L2(R3)).
(v) 𝑊ℎ𝑛 −→ 𝑊ℎ in 𝐶 ( [0, 𝑇];H).

To prove Lemma 6.1, we need the standard Skorohod theorem [15, Thm 11.7.2] for separable
metric spaces as well as the following Jakubowski’s version of Skorohod theorem:

Lemma 6.2 ([22, 13], Thm A.1). Let 𝑋 be a topological space such that there exists a sequence
of continuous functions 𝑓𝑚 : 𝑋 −→ R, 𝑚 = 1, 2, . . . which separates points of 𝑋 . Let us denote
by 𝒮 the 𝜎-algebra generated by the maps { 𝑓𝑚}. Then

(i) every compact subset of 𝑋 is metrizable,
(ii) if {𝜇𝑚} is a tight sequence of probability measures on (𝑋,𝒮), then there exists a subsequence
(𝑚𝑘 ), a probability space (Ω, F , P) = ( [0, 1],B([0, 1]), 𝐿𝑒𝑏.) with 𝑋-valued random variables
𝜉𝑘 , 𝜉 such that 𝜇𝑚𝑘

is the law of 𝜉𝑘 and 𝜉𝑘 converges to 𝜉 almost surely. Moreover, the law of 𝜉
is a Radon measure.

Proof of Lemma 6.1. 𝐿𝑝 (0, 𝑇 ;L𝑞 (𝐷)) ∩ 𝐶 ( [0, 𝑇];X−𝑏) and 𝐶 ( [0, 𝑇];H) are separable metric
spaces, so by the Skorohod Theorem for the separable metric spaces [15, Thm 11.7.2], there
exists a probability space (Ω1, F1, P1) and corresponding random variables take values in[

𝐿𝑝 (0, 𝑇 ;L𝑞 (𝐷)) ∩ 𝐶 ( [0, 𝑇];X−𝑏)
]
× 𝐶 ( [0, 𝑇];H)
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such that the related results in Lemma 6.1 hold.
To prove the results relative to the space 𝐿2

𝑤 (0, 𝑇 ;L2) in Lemma 6.1, we will use the Proposition
5.4 and Lemma 6.2. Let us recall, that for any separable Hilbert space 𝐻, the elements of 𝐻∗

separate points in 𝐻, so the countable dense subset of 𝐻∗ also separate points in 𝐻. We also have
that the Borel 𝜎-algebras generated from strong and weak topologies are coincide, so {𝜇𝑚} is
tight on (𝐻,𝒮) equivalent to {𝜇𝑚} is tight on (𝐻,ℬ(𝐻)).
Then the product probability space and the corresponding random variables of above two related
results are the aims we are looking for and this completes the proof of Lemma 6.1. □

Remark 6.3. We set F̃ to be the filtration generated from𝑊ℎ and 𝑀 and 𝑀𝑛 for all 𝑛. i.e.

F̃ = 𝜎
{
𝑊ℎ (𝑡), 𝑀 (𝑡), 𝑀𝑛 (𝑡) : 𝑡 ∈ [0, 𝑇], 𝑛 = 1, 2, 3, . . . .

}
So now we have a filtered new probability space (Ω̃, F̃ , F̃, P̃). Since (𝑀𝑛,𝑊ℎ) and (𝑀𝑛,𝑊ℎ) have
same distribution, and the increment𝑊ℎ (𝑡) −𝑊ℎ (𝑠) is independent of 𝜎{𝑀𝑛 (𝑟) : 𝑟 ≤ 𝑠}, we can
see that𝑊ℎ (𝑡) −𝑊ℎ (𝑠) is independent of F̃𝑠 for all 𝑡 > 𝑠.
Remark 6.4. As stated in Lemma 6.1, 𝑊ℎ has same distribution on 𝐶 ( [0, 𝑇];H) as 𝑊ℎ. Hence
it can be proved that

{
𝑖𝑡 ◦𝑊ℎ

}
𝑡≥0 is also a F̃-Wiener process on H (See Lemma 11.8 in the

Appendix), where
𝑖𝑡 : 𝐶 ( [0, 𝑇];H) ∋ 𝑓 ↦→ 𝑓 (𝑡) ∈ H.

And for convenience, we will use𝑊ℎ (𝑡) to denote 𝑖𝑡 ◦𝑊ℎ.
Since we assumed that {ℎ 𝑗 } 𝑗 is an ONB ofH as in Remark 2.8,𝑊ℎ has the following representation:

𝑊ℎ (𝑡) =
∞∑︁
𝑗=1
𝑊 𝑗 (𝑡)ℎ 𝑗 , 𝑡 ∈ [0, 𝑇],

where

𝑊 𝑗 (𝑡) :=

〈
𝑊ℎ (𝑡), ℎ 𝑗

〉
H

∥ℎ 𝑗 ∥2
H

.

It can be shown that 𝑊 𝑗 (𝑡) is 𝑁 (0, 𝑡) distributed for each 𝑗 and form a Gaussian family and so
are independent for all 𝑗 = 1, 2, · · · .
The map:

𝑡 ↦→
〈
𝑊ℎ (𝑡), ℎ 𝑗

〉
H

∥ℎ 𝑗 ∥2
H

= 𝑊 𝑗 (𝑡)

is continuous almost surely. So𝑊 𝑗 has continuous trajectory almost surely for every 𝑗 .
The independence of increments of 𝑊 𝑗 for each 𝑗 follows from the independence of increments
of𝑊ℎ. Therefore𝑊 𝑗 , 𝑗 = 1, 2, · · · are independent 1-dimensional F̃-Brownian motions.
Similarly, we also have

𝑊ℎ𝑛 (𝑡) =
∞∑︁
𝑗=1
𝑊 𝑗𝑛 (𝑡)ℎ 𝑗 , 𝑡 ∈ [0, 𝑇],

for some independent 1-dimensional F̃-Brownian motions𝑊 𝑗𝑛, 𝑗 = 1, 2, · · · .
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Let 𝑀𝑛, 𝐵𝑛 and 𝐸𝑛 be as in Lemma 6.1, we have the following result:

Proposition 6.5. The processes 𝑀𝑛, 𝐵𝑛 and 𝐸𝑛 have the following properties:

(i) 𝑀𝑛 ∈ 𝐶 ( [0, 𝑇];H𝑛) almost surely and L(𝑀𝑛) = L(𝑀𝑛) on 𝐶 ( [0, 𝑇];H𝑛);
(ii) 𝐸𝑛 ∈ 𝐶 ( [0, 𝑇];Y𝑛) almost surely and L(𝐸𝑛) = L(𝐸𝑛) on 𝐶 ( [0, 𝑇];Y𝑛);
(iii) 𝐵𝑛 ∈ 𝐶 ( [0, 𝑇];Y𝑛) almost surely and L(𝐵𝑛) = L(𝐵𝑛) on 𝐶 ( [0, 𝑇];Y𝑛).

Proof of Proposition 6.5.(i) Since𝐶 ( [0, 𝑇];H𝑛) ⊂ 𝐿𝑝 (0, 𝑇 ;L1(D)) ∩𝐶 ( [0, 𝑇];X−𝑏), if we take
𝜑 to be the embedding map, then by the Kuratowski Theorem 11.9, the Borel sets in𝐶 ( [0, 𝑇];H𝑛)
are the Borel sets in 𝐿𝑝 (0, 𝑇 ;L1(D)) ∩ 𝐶 ( [0, 𝑇];X−𝑏). On the other hand, by Lemma 6.1,
L(𝑀𝑛) = L(𝑀𝑛) on 𝐿𝑝 (0, 𝑇 ;L1(D)) ∩ 𝐶 ( [0, 𝑇];X−𝑏), so L(𝑀𝑛) = L(𝑀𝑛) on 𝐶 ( [0, 𝑇];H𝑛).
By Lemma 3.6, P{𝑀𝑛 ∈ 𝐶 ( [0, 𝑇];H𝑛)} = 1. Hence P̃{𝑀𝑛 ∈ 𝐶 ( [0, 𝑇];H𝑛)} = 1.

(ii) By the Kuratowski Theorem 11.9, the Borel sets in𝐶 ( [0, 𝑇];Y𝑛) are Borel sets in 𝐿2(0, 𝑇 ;Y𝑛).
And since 𝐿2(0, 𝑇 ;Y𝑛) is closed in 𝐿2(0, 𝑇 ;L2(R3)), by the Lemma 11.10, 𝐿2(0, 𝑇 ;Y𝑛) is also
closed in the space 𝐿2

𝑤 (0, 𝑇 ;L2(R3)). Hence the Borel sets in 𝐿2(0, 𝑇 ;Y𝑛) are also Borel sets in
𝐿2
𝑤 (0, 𝑇 ;L2(R3)). Therefore the Borel sets in𝐶 ( [0, 𝑇];Y𝑛) are the Borel sets in 𝐿2

𝑤 (0, 𝑇 ;L2(R3)).
By Lemma 6.1, L(𝐸𝑛) = L(𝐸𝑛) on 𝐿2

𝑤 (0, 𝑇 ;L2(R3)), so L(𝐸𝑛) = L(𝐸𝑛) on 𝐶 ( [0, 𝑇];Y𝑛). By
Lemma 3.6, P{𝐸𝑛 ∈ 𝐶 ( [0, 𝑇];Y𝑛)} = 1. Hence P̃{𝐸𝑛 ∈ 𝐶 ( [0, 𝑇];Y𝑛)} = 1.

(iii) Exactly the same as the proof of (ii).
This complete the proof of Proposition 6.5. □

The next result shows that the sequence (𝑀𝑛, 𝐵𝑛, 𝐸𝑛) satisfies the similar a’priori estimates as
(𝑀𝑛, 𝐵𝑛, 𝐸𝑛) in Proposition 4.1.

Proposition 6.6. Let us define

𝜌̃𝑛 := 𝜋𝑛
[
− 𝜑′(𝑀𝑛) + 1D (𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛)

]
+ Δ𝑀𝑛,

Then for all 𝑝 ≥ 0, 𝑏 > 1
4 , there exists 𝐶 > 0 such that for all 𝑛 ∈ N,

∥𝑀𝑛∥𝐿∞ (0,𝑇 ;H) ≤ ∥𝑀0∥H, P̃ − 𝑎.𝑠., (6.1)

Ẽ∥𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛∥𝑝𝐿∞ (0,𝑇 ;L2 (R3)) ≤ 𝐶, (6.2)

Ẽ∥𝐸𝑛∥𝑝𝐿∞ (0,𝑇 ;L2 (R3)) ≤ 𝐶, (6.3)

Ẽ∥𝑀𝑛∥𝑝𝐿∞ (0,𝑇 ;V) ≤ 𝐶, (6.4)

Ẽ∥𝑀𝑛 × 𝜌̃𝑛∥𝑝𝐿2 (0,𝑇 ;H) ≤ 𝐶, (6.5)
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Ẽ∥𝐵𝑛∥𝑝𝐿∞ (0,𝑇 ;L2 (R3)) ≤ 𝐶, (6.6)

Ẽ
(∫ 𝑇

0




𝑀𝑛 (𝑡) ×
(
𝑀𝑛 (𝑡) × 𝜌̃𝑛 (𝑡)

)


2

L
3
2 (D)

d𝑡
) 𝑝

2

≤ 𝐶, (6.7)

Ẽ
∫ 𝑇

0




𝜋𝑛 [
𝑀𝑛 (𝑡) ×

(
𝑀𝑛 (𝑡) × 𝜌̃𝑛 (𝑡)

)]


2

X−𝑏
d𝑡 ≤ 𝐶, (6.8)

Ẽ






 d𝐸𝑛
d𝑡






𝑝
𝐿∞ (0,𝑇 ;Y∗)

≤ 𝐶. (6.9)

Ẽ






 d𝐵𝑛
d𝑡






𝑝
𝐿∞ (0,𝑇 ;Y∗)

≤ 𝐶. (6.10)

Proof. Note that all the maps, 𝜋𝑛 ◦ 𝜑′, 𝜋𝑛 ◦ 1D ◦ 𝜋Y𝑛 , Δ, all the cross products, the norms etc, are
measurable maps on the corresponding spaces. Therefore by the Proposition 6.5 and Proposition
4.1, we get the estimates (6.1)-(6.10). □

Remark 6.7. From now on we will set 𝑝 = 𝑞 = 4 and 𝑏 = 1
2 in Lemma 6.1. That will be enough

to show the existence of the solution of the Problem 2.7.

Proposition 6.8. As defined in Lemma 6.1, the 𝑀 satisfies the following estimates:

ess sup
𝑡∈[0,𝑇]

∥𝑀 (𝑡)∥H ≤ ∥𝑀0∥H, P̃ − 𝑎.𝑠., (6.11)

And for some constant 𝐶 > 0,

ess sup
𝑡∈[0,𝑇]

∥𝑀 (𝑡)∥X−𝑏 ≤ 𝐶∥𝑀0∥H, P̃ − 𝑎.𝑠.. (6.12)

Proof. The results follows from Lemma 6.1 (b) (ii), and L4 ↩→ H ↩→ X−𝑏 continuously and the
estimate (6.1). □

We continue to investigate properties of the process 𝑀 , the next result and it’s proof are related
to the estimate (6.4).

Lemma 6.9. The process 𝑀 defined in Lemma 6.1 satisfies the following estimate:

Ẽ
[

ess sup
𝑡∈[0,𝑇]

∥𝑀 (𝑡)∥2𝑟
V

]
< ∞, 𝑟 ≥ 0. (6.13)
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Proof. Since 𝐿2𝑟 (Ω̃; 𝐿∞(0, 𝑇 ;V)) is isomorphic to
[
𝐿

2𝑟
2𝑟−1 (Ω̃; 𝐿1(0, 𝑇 ;X− 1

2 ))
]∗, by the estimate

(6.4) and the Banach-Alaoglu Theorem we infer that the sequence {𝑀𝑛} contains a subsequence
(which will be denoted in the same way as the full sequence) and there exists an element
𝑣 ∈ 𝐿2𝑟 (Ω̃; 𝐿∞(0, 𝑇 ;V)) such that 𝑀𝑛 → 𝑣 weakly∗ in 𝐿2𝑟 (Ω̃; 𝐿∞(0, 𝑇 ;V)) as 𝑛 → ∞. So it
remains to show that 𝑀 = 𝑣.
We have

lim
𝑛→∞

〈
𝑀𝑛, 𝜑

〉
= ⟨𝑣, 𝜑⟩ , 𝜑 ∈ 𝐿 2𝑟

2𝑟−1 (Ω̃; (𝐿1(0, 𝑇 ;X− 1
2 ))),

which means that

lim
𝑛→∞

∫
Ω̃

∫ 𝑇

0

〈
𝑀𝑛 (𝑡, 𝜔), 𝜑(𝑡, 𝜔)

〉
d𝑡 dP̃(𝜔) =

∫
Ω̃

∫ 𝑇

0
⟨𝑣(𝑡, 𝜔), 𝜑(𝑡, 𝜔)⟩ d𝑡 dP̃(𝜔).

On the other hand, if we fix 𝜑 ∈ 𝐿4(Ω̃; 𝐿
4
3 (0, 𝑇 ;L

4
3 )), we have

sup
𝑛

∫
Ω̃

����∫ 𝑇

0
L4

〈
𝑀𝑛 (𝑡), 𝜑(𝑡)

〉
L

4
3

d𝑡
����2 dP̃(𝜔) ≤ sup

𝑛

∫
Ω̃

����∫ 𝑇

0
∥𝑀𝑛∥L4 ∥𝜑∥

L
4
3

d𝑡
����2 dP̃(𝜔)

≤ sup
𝑛

∫
Ω̃

∥𝑀𝑛∥2
𝐿∞ (0,𝑇 ;L4) ∥𝜑∥

2
𝐿1 (0,𝑇 ;L

4
3 )

dP̃(𝜔) ≤ sup
𝑛

∥𝑀𝑛∥2
𝐿4 (Ω̃;𝐿∞ (0,𝑇 ;L4)) ∥𝜑∥

2
𝐿4 (Ω̃;𝐿1 (0,𝑇 ;L

4
3 ))
< ∞.

So the sequence
∫ 𝑇

0 L4
〈
𝑀𝑛 (𝑡), 𝜑(𝑡)

〉
L

4
3

d𝑡 is uniformly integrable on Ω̃. Moreover, by the P̃

almost surely convergence of 𝑀𝑛 to 𝑀 in 𝐿4(0, 𝑇 ;L4), we infer that
∫ 𝑇

0 L4
〈
𝑀𝑛 (𝑡), 𝜑(𝑡)

〉
L

4
3

d𝑡

converges to
∫ 𝑇

0 L4
〈
𝑀 (𝑡), 𝜑(𝑡)

〉
L

4
3

d𝑡 P̃ almost surely. Thus for 𝑛→ ∞, we have∫
Ω̃

∫ 𝑇

0
L4

〈
𝑀𝑛 (𝑡, 𝜔), 𝜑(𝑡, 𝜔)

〉
L

4
3

d𝑡 dP̃(𝜔) →
∫
Ω̃

∫ 𝑇

0
L4

〈
𝑀 (𝑡, 𝜔), 𝜑(𝑡, 𝜔)

〉
L

4
3

d𝑡 dP̃(𝜔).

Hence we deduce that∫
Ω̃

∫ 𝑇

0
L4 ⟨𝑣(𝑡, 𝜔), 𝜑(𝑡, 𝜔)⟩

L
4
3

d𝑡 dP̃(𝜔) =
∫
Ω̃

∫ 𝑇

0
L4

〈
𝑀 (𝑡, 𝜔), 𝜑(𝑡, 𝜔)

〉
L

4
3

d𝑡 dP̃(𝜔)

By the arbitrariness of 𝜑 and densness of 𝐿4(Ω̃; 𝐿
4
3 (0, 𝑇 ;L

4
3 )) in 𝐿

2𝑟
2𝑟−1 (Ω̃; 𝐿1(0, 𝑇 ;X− 1

2 )), we
infer that 𝑀 = 𝑣 and since 𝑣 satisfies (6.13) we infer that 𝑀 also satisfies (6.13). In this way the
proof of (6.13) is complete. □

We also investigate the following property of 𝐵 and 𝐸 .

Lemma 6.10. The processes 𝐵, 𝐸 defined in Lemma 6.1 have following regularities:

Ẽ
∫ 𝑇

0
∥𝐵(𝑡)∥2

L2 (R3) d𝑡 < ∞. (6.14)

Ẽ
∫ 𝑇

0
∥𝐸 (𝑡)∥2

L2 (R3) d𝑡 < ∞. (6.15)
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Proof. The proof of (6.14) and (6.15) are similar to the proof of (6.13). □

Next we will strengthen part (ii) and (iv) of Lemma 6.1 (b) about the convergence.

Proposition 6.11.

lim
𝑛→∞

Ẽ
∫ 𝑇

0
∥𝑀𝑛 (𝑡) − 𝑀 (𝑡)∥4

L4 d𝑡 = 0. (6.16)

Proof of (6.16). By the Lemma 6.1, 𝑀𝑛 (𝑡) −→ 𝑀 (𝑡) in 𝐿4(0, 𝑇 ;L4) ∩ 𝐶 ( [0, 𝑇];X−𝑏) P̃-almost
surely, 𝑀𝑛 (𝑡) −→ 𝑀 (𝑡) in 𝐿4(0, 𝑇 ;L4) P̃-almost surely, that is

lim
𝑛→∞

∫ 𝑇

0
∥𝑀𝑛 (𝑡) − 𝑀 (𝑡)∥4

L4 d𝑡 = 0, P̃ − 𝑎.𝑠.,

and by (6.4) and (6.13),

sup
𝑛

Ẽ
(∫ 𝑇

0
∥𝑀𝑛 (𝑡) − 𝑀 (𝑡)∥4

L4 d𝑡
)2

≤ 27 sup
𝑛

(
∥𝑀𝑛∥8

𝐿4 (0,𝑇 ;L4) + ∥𝑀 ∥8
𝐿4 (0,𝑇 ;L4)

)
< ∞,

hence,

lim
𝑛→∞

Ẽ
∫ 𝑇

0
∥𝑀𝑛 (𝑡) − 𝑀 (𝑡)∥4

L4 d𝑡 = Ẽ
(

lim
𝑛→∞

∫ 𝑇

0
∥𝑀𝑛 (𝑡) − 𝑀 (𝑡)∥4

L4 d𝑡
)
= 0.

This completes the proof. □

Corollary 6.12. There is a subsequence {𝑀𝑛𝑘 } ⊂ {𝑀𝑛} such that 𝑀𝑛𝑘 −→ 𝑀 almost everywhere
in Ω̃ × [0, 𝑇] × D as 𝑘 → ∞.

Remark 6.13. For convenience, we will still denote the {𝑀𝑛𝑘 } as in Corollary 6.12 by {𝑀𝑛} in
the rest part of this paper.

Proposition 6.14.

lim
𝑛→∞

Ẽ
∫ 𝑇

0
∥𝜋𝑛𝜑′(𝑀𝑛 (𝑠)) − 𝜑′(𝑀 (𝑠))∥2

H d𝑠 = 0. (6.17)

Proof of (6.17). By Corollary 6.12, 𝑀𝑛 −→ 𝑀 almost everywhere in Ω̃× [0, 𝑇] × 𝐷. And since
𝜑′ is continuous,

lim
𝑛→∞

���𝜑′(𝑀𝑛) − 𝜑′(𝑀)
���2 = 0,

almost everywhere in Ω̃ × [0, 𝑇] × 𝐷. Moreover, 𝜑′ is bounded, so there exists some constant
𝐶 > 0 such that |𝜑′(𝑥) | ≤ 𝐶 for all 𝑥 ∈ R3. Therefore for almost every (𝜔, 𝑠) ∈ Ω̃ × [0, 𝑇],∫

D

���𝜑′(𝑀𝑛 (𝜔, 𝑠, 𝑥)) − 𝜑′(𝑀 (𝜔, 𝑠, 𝑥))
���4 d𝑥 ≤ 16𝐶4𝑚(𝐷) < ∞.
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Hence
���𝜑′(𝑀𝑛 (𝜔, 𝑠)) − 𝜑′(𝑀 (𝜔, 𝑠))

���2 is uniformly integrable on 𝐷, so

lim
𝑛→∞




𝜑′(𝑀𝑛 (𝜔, 𝑠)) − 𝜑′(𝑀 (𝜔, 𝑠))



2

H
= 0, Ω̃ × [0, 𝑇] − 𝑎.𝑒..

Therefore for almost every (𝜔, 𝑠) ∈ Ω̃ × [0, 𝑇],


𝜋𝑛𝜑′(𝑀𝑛 (𝜔, 𝑠)) − 𝜑′(𝑀 (𝜔, 𝑠))



2

H

≤ 2



𝜑′(𝑀𝑛 (𝜔, 𝑠)) − 𝜑′(𝑀 (𝜔, 𝑠))




2

H
+ 2




𝜋𝑛𝜑′(𝑀 (𝜔, 𝑠)) − 𝜑′(𝑀 (𝜔, 𝑠))



2

H
→ 0.

Moreover since

Ẽ
∫ 𝑇

0




𝜋𝑛𝜑′(𝑀𝑛 (𝜔, 𝑠)) − 𝜑′(𝑀 (𝜔, 𝑠))



4

H
d𝑠 ≤ 16𝑇𝐶4𝑚(𝐷) < ∞,


𝜋𝑛𝜑′(𝑀𝑛) − 𝜑′(𝑀)




2

H
is uniformly integrable on Ω̃ × [0, 𝑇]. Hence

lim
𝑛→∞

Ẽ
∫ 𝑇

0
∥𝜋𝑛𝜑′(𝑀𝑛 (𝑠)) − 𝜑′(𝑀 (𝑠))∥2

L2 d𝑠 = 0.

This completes the proof of (6.17). □

Proposition 6.15. For any 𝑢 ∈ 𝐿2(0, 𝑇 ;H), we have

lim
𝑛→∞

Ẽ

����∫ 𝑇

0

〈
𝑢(𝑠), 𝜋𝑛1D (𝐵𝑛 − 𝐵) (𝑠)

〉
H d𝑠

���� = 0. (6.18)

Proof of (6.18). By (iv) of Lemma 6.1, we have

lim
𝑛→∞

����∫ 𝑇

0

〈
𝑢(𝑠), 𝜋𝑛1D (𝐵𝑛 − 𝐵) (𝑠)

〉
H d𝑠

���� = 0, P̃ − 𝑎.𝑠..

Moreover, by (6.6) and (6.14) we have

Ẽ

����∫ 𝑇

0

〈
𝑢(𝑠), 𝜋𝑛1D (𝐵𝑛 − 𝐵) (𝑠)

〉
H d𝑠

����2
≤ 2∥𝑢∥2

𝐿2 (0,𝑇 ;H)Ẽ
(∫ 𝑇

0
∥1D𝐵𝑛 (𝑠)∥2

H d𝑠 +
∫ 𝑇

0
∥1D𝐵(𝑠)∥2

H d𝑠
)
< ∞.

Hence
���∫ 𝑇0 〈

𝑢(𝑠), 𝜋𝑛1D (𝐵𝑛 − 𝐵) (𝑠)
〉
H d𝑠

��� is uniformly integrable on Ω̃, so

lim
𝑛→∞

Ẽ

����∫ 𝑇

0

〈
𝑢(𝑠), 𝜋𝑛1D (𝐵𝑛 − 𝐵) (𝑠)

〉
H d𝑠

���� = 0.

The proof of (6.18) has been complete. □
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Proposition 6.16.

∇𝑖𝑀𝑛 −→ ∇𝑖𝑀 weakly in 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L2)), 𝑖 = 1, 2, 3. (6.19)

Proof. Let us fix 𝜑 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;V)), by (6.16) 𝑀𝑛 −→ 𝑀 in 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;H)), so we
have:

Ẽ
∫ 𝑇

0

〈
𝑀,∇𝑖𝜑

〉
H d𝑥 = lim

𝑛→∞
Ẽ

∫ 𝑇

0

〈
𝑀𝑛,∇𝑖𝜑

〉
H d𝑥 = − lim

𝑛→∞
Ẽ

∫ 𝑇

0

〈
∇𝑖𝑀𝑛, 𝜑

〉
H d𝑥.

By the estimate (6.4), {𝑀𝑛}∞𝑛=1 is bounded in 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;V)), so the limit of the right hand
side of above equation exists. Hence the result follows. □

Next we will define𝑀× 𝜌̃ and show that the limits of the sequences {𝑀𝑛× 𝜌̃𝑛}𝑛, {𝑀𝑛×(𝑀𝑛× 𝜌̃𝑛)}𝑛
and

{
𝜋𝑛

(
𝑀𝑛 × (𝑀𝑛 × 𝜌̃𝑛)

)}
𝑛

are actually 𝑀 × 𝜌̃, 𝑀 × (𝑀 × 𝜌̃) and 𝑀 × (𝑀 × 𝜌̃).

Proposition 6.17. For 𝑝 ≥ 1 and 𝑏 > 1
4 , there exist 𝑍1 ∈ 𝐿2𝑝 (Ω̃; 𝐿2(0, 𝑇 ;H)), 𝑍2 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L

3
2 ))

and 𝑍3 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;X−𝑏)), such that

𝑀𝑛 × 𝜌̃𝑛 −→ 𝑍1 weakly in 𝐿2𝑝 (Ω̃; 𝐿2(0, 𝑇 ;H)), (6.20)

𝑀𝑛 × (𝑀𝑛 × 𝜌̃𝑛) −→ 𝑍2 weakly in 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L
3
2 )), (6.21)

𝜋𝑛 (𝑀𝑛 × (𝑀𝑛 × 𝜌̃𝑛)) −→ 𝑍3 weakly in 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;X−𝑏)). (6.22)

Proof. The spaces 𝐿2𝑝 (Ω̃; 𝐿2(0, 𝑇 ;H)), 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L
3
2 )) and 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;X−𝑏)) are reflexive.

Then by equations (6.5), (6.7), (6.8) and by the Banach-Alaoglu Theorem, we get equations (6.20),
(6.21) and (6.22). □

Proposition 6.18.
𝑍2 = 𝑍3 in the space 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;X−𝑏)).

Proof. Notice that (𝐿 3
2 )∗ = 𝐿3, and 𝑋𝑏 = H2𝑏. 𝑋𝑏 ⊂ 𝐿3 for 𝑏 > 1

4 , hence 𝐿
3
2 ⊂ X−𝑏, so

𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L
3
2 )) ⊂ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;X−𝑏)).

Therefore 𝑍2 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;X−𝑏)) as well as 𝑍3.
Since by definition 𝑋𝑏 = 𝐷 (𝐴𝑏) and 𝐴 is self-adjoint, we can define

𝑋𝑏𝑛 :=
𝜋𝑛𝑥 =

𝑛∑︁
𝑗=1

〈
𝑥, 𝑒 𝑗

〉
H 𝑒 𝑗 : 𝑥 ∈ H,

∞∑︁
𝑗=1
𝜆2𝑏
𝑗

〈
𝑥, 𝑒 𝑗

〉2
H < ∞

 .
Then 𝑋𝑏 =

⋃∞
𝑛=1 𝑋

𝑏
𝑛 , 𝐿2(Ω̃; 𝐿2(0, 𝑇 ; 𝑋𝑏)) = ⋃∞

𝑛=1 𝐿
2(Ω̃; 𝐿2(0, 𝑇 ; 𝑋𝑏𝑛 )).
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Firstly, we prove the result for each 𝑢𝑛 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ; 𝑋𝑏𝑛 )). To do this, let us fix 𝑛 and take
𝑢𝑛 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ; 𝑋𝑏𝑛 )), then for any 𝑚 ≥ 𝑛, we have

𝐿2 (Ω̃;𝐿2 (0,𝑇 ;X−𝑏))
〈
𝜋𝑚 (𝑀𝑚 × (𝑀𝑚 × 𝜌̃𝑚)), 𝑢𝑛

〉
𝐿2 (Ω̃;𝐿2 (0,𝑇 ;𝑋𝑏))

= Ẽ
∫ 𝑇

0
X−𝑏

〈
𝜋𝑚 (𝑀𝑚 (𝑡) × (𝑀𝑚 (𝑡) × 𝜌̃𝑚 (𝑡))), 𝑢𝑛 (𝑡)

〉
𝑋𝑏 d𝑡

= Ẽ
∫ 𝑇

0

〈
𝜋𝑚 (𝑀𝑚 (𝑡) × (𝑀𝑚 (𝑡) × 𝜌̃𝑚 (𝑡))), 𝑢𝑛 (𝑡)

〉
H d𝑡

= Ẽ
∫ 𝑇

0

〈
𝑀𝑚 (𝑡) × (𝑀𝑚 (𝑡) × 𝜌̃𝑚 (𝑡)), 𝑢𝑛 (𝑡)

〉
H d𝑡

= Ẽ
∫ 𝑇

0
X−𝑏

〈
𝑀𝑚 (𝑡) × (𝑀𝑚 (𝑡) × 𝜌̃𝑚 (𝑡)), 𝑢𝑛 (𝑡)

〉
𝑋𝑏 d𝑡

=
𝐿2 (Ω̃;𝐿2 (0,𝑇 ;X−𝑏))

〈
𝑀𝑚 × (𝑀𝑚 × 𝜌̃𝑚), 𝑢𝑛

〉
𝐿2 (Ω̃;𝐿2 (0,𝑇 ;𝑋𝑏)) .

Hence let 𝑚 → ∞ on both sides of above equality, we have

𝐿2 (Ω̃;𝐿2 (0,𝑇 ;X−𝑏)) ⟨𝑍3, 𝑢𝑛⟩𝐿2 (Ω̃;𝐿2 (0,𝑇 ;𝑋𝑏)) =𝐿2 (Ω̃;𝐿2 (0,𝑇 ;X−𝑏)) ⟨𝑍2, 𝑢𝑛⟩𝐿2 (Ω̃;𝐿2 (0,𝑇 ;𝑋𝑏)) ,

∀𝑢𝑛 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ; 𝑋𝑏𝑛 )).
Secondly, for any 𝑢 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ; 𝑋𝑏), there exists 𝐿2(Ω̃; 𝐿2(0, 𝑇 ; 𝑋𝑏𝑛 )) ∋ 𝑢𝑛 −→ 𝑢 as
𝑛 −→ ∞, hence for all 𝑢 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ; 𝑋𝑏), we have

𝐿2 (Ω̃;𝐿2 (0,𝑇 ;X−𝑏)) ⟨𝑍3, 𝑢⟩𝐿2 (Ω̃;𝐿2 (0,𝑇 ;𝑋𝑏)) = lim
𝑛→∞ 𝐿2 (Ω̃;𝐿2 (0,𝑇 ;X−𝑏)) ⟨𝑍3, 𝑢𝑛⟩𝐿2 (Ω̃;𝐿2 (0,𝑇 ;𝑋𝑏))

= lim
𝑛→∞ 𝐿2 (Ω̃;𝐿2 (0,𝑇 ;X−𝑏)) ⟨𝑍2, 𝑢𝑛⟩𝐿2 (Ω̃;𝐿2 (0,𝑇 ;𝑋𝑏)) =𝐿2 (Ω̃;𝐿2 (0,𝑇 ;X−𝑏)) ⟨𝑍2, 𝑢⟩𝐿2 (Ω̃;𝐿2 (0,𝑇 ;𝑋𝑏))

Therefore 𝑍2 = 𝑍3 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;X−𝑏)) and this concludes the proof. □

In next Lemma, we look into 𝑍1.

Lemma 6.19. 𝑍1 is the unique element in 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;H)) such that for any𝑢 ∈ 𝐿4(Ω̃; 𝐿4(0, 𝑇 ;W1,4)),
the following equality holds

lim
𝑛→∞

Ẽ
∫ 𝑇

0

〈
𝑀𝑛 (𝑠) × 𝜌̃𝑛 (𝑠), 𝑢(𝑠)

〉
H d𝑠 = Ẽ

∫ 𝑇

0
⟨𝑍1(𝑠), 𝑢(𝑠)⟩H d𝑠

= Ẽ
∫ 𝑇

0

〈
𝑀 (𝑡) ×

(
𝜑′(𝑀 (𝑡)) + 1D (𝐵 − 𝑀̃) (𝑡)

)
, 𝑢(𝑡)

〉
H

d𝑡 +
3∑︁
𝑖=1

Ẽ
∫ 𝑇

0

〈
∇𝑖𝑀 (𝑡), 𝑀 (𝑡) × ∇𝑖𝑢(𝑡)

〉
H d𝑡.

Proof. Let us recall that

𝜌̃𝑛 := 𝜋𝑛
[
− 𝜑′(𝑀𝑛) + 1D (𝐵𝑛 − 𝜋Y𝑛 𝑀𝑛)

]
+ Δ𝑀𝑛,

so we take three parts to prove the desired result.
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Firstly we show that

lim
𝑛→∞

Ẽ
∫ 𝑇

0

〈
𝑀𝑛 (𝑡) × Δ𝑀𝑛 (𝑡), 𝑢(𝑡)

〉
H d𝑡 =

3∑︁
𝑖=1

Ẽ
∫ 𝑇

0

〈
∇𝑖𝑀 (𝑡), 𝑀 (𝑡) × ∇𝑖𝑢(𝑡)

〉
H d𝑡.

Proof of above equality: for each 𝑛 ∈ N, we have

〈
𝑀𝑛 (𝑡) × Δ𝑀𝑛 (𝑡), 𝑢(𝑡)

〉
L2 =

3∑︁
𝑖=1

〈
∇𝑖𝑀𝑛 (𝑡), 𝑀𝑛 (𝑡) × ∇𝑖𝑢(𝑡)

〉
L2 (6.23)

for almost every 𝑡 ∈ [0, 𝑇] and P̃ almost surely. Moreover, by the results: (6.19), (6.4) and (6.16),
we have for 𝑖 = 1, 2, 3,����Ẽ∫ 𝑇

0

〈
∇𝑖𝑀, 𝑀 × ∇𝑖𝑣

〉
H d𝑡 − Ẽ

∫ 𝑇

0

〈
∇𝑖𝑀𝑛, 𝑀𝑛 × ∇𝑖𝑣

〉
H d𝑡

����
≤

����Ẽ∫ 𝑇

0

〈
∇𝑖𝑀 − ∇𝑖𝑀𝑛, 𝑀 × ∇𝑖𝑣

〉
H d𝑡

���� + ����Ẽ∫ 𝑇

0

〈
∇𝑖𝑀𝑛, (𝑀 − 𝑀𝑛) × ∇𝑖𝑣

〉
H d𝑡

����
≤

(
Ẽ

∫ 𝑇

0
∥∇𝑖𝑀𝑛∥2

H d𝑡
) 1

2
(
Ẽ

∫ 𝑇

0
∥𝑀 − 𝑀𝑛∥4

L4 d𝑡
) 1

4
(
Ẽ

∫ 𝑇

0
∥∇𝑖𝑣∥4

L4 d𝑡
) 1

4

+
����Ẽ∫ 𝑇

0

〈
∇𝑖𝑀 − ∇𝑖𝑀𝑛, 𝑀 × ∇𝑖𝑣

〉
H d𝑡

���� → 0, as 𝑛→ ∞.

Secondly we show that

lim
𝑛→∞

Ẽ
∫ 𝑇

0

〈
𝑀𝑛 (𝑡) × 𝜋𝑛𝜑′(𝑀𝑛 (𝑡)), 𝑢(𝑡)

〉
L2 d𝑡 = Ẽ

∫ 𝑇

0

〈
𝑀 (𝑡) × 𝜑′(𝑀 (𝑡)), 𝑢(𝑡)

〉
L2 d𝑡.

Proof of the above equality: By (6.16) and (6.17), we have����Ẽ∫ 𝑇

0

〈
𝑀𝑛 (𝑠) × 𝜋𝑛𝜑′(𝑀𝑛 (𝑠)) − 𝑀 (𝑠) × 𝜑′(𝑀 (𝑠)), 𝑢(𝑠)

〉
H d𝑠

����
≤ Ẽ

∫ 𝑇

0

���〈 [𝑀𝑛 (𝑠) − 𝑀 (𝑠)
]
× 𝑢(𝑠), 𝜋𝑛𝜑′(𝑀𝑛 (𝑠))

〉
H

��� d𝑠

+Ẽ
∫ 𝑇

0

���〈𝑀 (𝑠) × 𝑢(𝑠), 𝜋𝑛𝜑′(𝑀𝑛 (𝑠)) − 𝜑′(𝑀 (𝑠))
〉
H

��� d𝑠

≤
(
Ẽ

∫ 𝑇

0
∥𝑀𝑛 (𝑠) − 𝑀 (𝑠)∥4

L4 d𝑠
) 1

4
(
Ẽ

∫ 𝑇

0
∥𝑢(𝑠)∥4

L4 d𝑠
) 1

4
(
Ẽ

∫ 𝑇

0
∥𝜑′(𝑀𝑛 (𝑠))∥2

L2 d𝑠
) 1

2

+
(
Ẽ

∫ 𝑇

0
∥𝑀 (𝑠)∥4

L4 d𝑠
) 1

4
(
Ẽ

∫ 𝑇

0
∥𝑢(𝑠)∥4

L4 d𝑠
) 1

4
(
Ẽ

∫ 𝑇

0
∥𝜋𝑛𝜑′(𝑀𝑛 (𝑠)) − 𝜑′(𝑀 (𝑠))∥2

L2 d𝑠
) 1

2

→ 0,

as 𝑛→ ∞.
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Finally, we will show that

lim
𝑛→∞

Ẽ
∫ 𝑇

0

〈
𝑀𝑛 (𝑡) × 𝜋𝑛1D (𝐵𝑛 − 𝜋Y𝑛 𝑀̃𝑛) (𝑡), 𝑢(𝑡)

〉
L2

d𝑡 = Ẽ
∫ 𝑇

0

〈
𝑀 (𝑡) × 1D (𝐵 − 𝑀̃) (𝑡), 𝑢(𝑡)

〉
L2

d𝑡.

Proof of the above equality: By (6.16) and (6.18), we have����Ẽ∫ 𝑇

0

〈
𝑀𝑛 (𝑠) × 𝜋𝑛1D (𝐵𝑛 − 𝜋Y𝑛 𝑀̃𝑛) (𝑠) − 𝑀 (𝑠) × 1D (𝐵 − 𝑀̃) (𝑠), 𝑢(𝑠)

〉
H

d𝑠
����

≤ Ẽ
∫ 𝑇

0

���〈 [𝑀𝑛 (𝑠) − 𝑀 (𝑠)
]
× 𝑢(𝑠), 𝜋𝑛1D (𝐵𝑛 − 𝜋Y𝑛 𝑀̃𝑛) (𝑠)

〉
H

��� d𝑠

+Ẽ
����∫ 𝑇

0

〈
𝑀 (𝑠) × 𝑢(𝑠), 𝜋𝑛1D (𝐵𝑛 − 𝜋Y𝑛 𝑀̃𝑛) (𝑠) − 1D (𝐵 − 𝑀̃) (𝑠)

〉
H

d𝑠
����

≤
(
Ẽ

∫ 𝑇

0
∥𝑀𝑛 (𝑠) − 𝑀 (𝑠)∥4

L4 d𝑠
) 1

4
(
Ẽ

∫ 𝑇

0
∥𝑢(𝑠)∥4

L4 d𝑠
) 1

4
(
Ẽ

∫ 𝑇

0
∥1D (𝐵𝑛 − 𝜋Y𝑛 𝑀̃𝑛) (𝑠)∥2

L2 d𝑠
) 1

2

+
(
Ẽ

∫ 𝑇

0
∥𝑀 (𝑠)∥4

L4 d𝑠
) 1

4
(
Ẽ

∫ 𝑇

0
∥𝑢(𝑠)∥4

L4 d𝑠
) 1

4
(
Ẽ

∫ 𝑇

0
∥𝜋𝑛1D𝜋Y𝑛 𝑀̃𝑛 (𝑠) − 1D 𝑀̃ (𝑠)∥2

L2 d𝑠
) 1

2

+Ẽ
����∫ 𝑇

0

〈
𝑀 (𝑠) × 𝑢(𝑠), 𝜋𝑛1D (𝐵𝑛 − 𝐵) (𝑠)

〉
H d𝑠

���� −→ 0, as 𝑛→ ∞.

So far we have shown that

lim
𝑛→∞

Ẽ
∫ 𝑇

0

〈
𝑀𝑛 (𝑠) × 𝜌̃𝑛 (𝑠), 𝑢(𝑠)

〉
H d𝑠

= Ẽ
∫ 𝑇

0

〈
𝑀 (𝑡) ×

(
𝜑′(𝑀 (𝑡)) + 1D (𝐵 − 𝑀̃) (𝑡)

)
, 𝑢(𝑡)

〉
H

d𝑡 +
3∑︁
𝑖=1

〈
∇𝑖𝑀𝑛 (𝑡), 𝑀𝑛 (𝑡) × ∇𝑖𝑢(𝑡)

〉
H ,

for all 𝑢 ∈ 𝐿4(Ω̃; 𝐿4(0, 𝑇 ;W1,4)). Since 𝐿4(Ω̃; 𝐿4(0, 𝑇 ;W1,4)) is dense in 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;H)),
we also have

lim
𝑛→∞

Ẽ
∫ 𝑇

0

〈
𝑀𝑛 (𝑠) × 𝜌̃𝑛 (𝑠), 𝑢(𝑠)

〉
H d𝑠 = Ẽ

∫ 𝑇

0
⟨𝑍1(𝑠), 𝑢(𝑠)⟩H d𝑠, 𝑢 ∈ 𝐿4(Ω̃; 𝐿4(0, 𝑇 ;W1,4)),

and such 𝑍1 is unique in 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;H)).
This completes the proof. □

Notation 6.20. We will denote 𝑀 × 𝜌̃ := 𝑍1.
Remark 6.21. By the Notation 6.20, the Lemma 6.19 shows that 𝑀 × 𝜌̃ ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;H)) and

lim
𝑛→∞

Ẽ
∫ 𝑇

0

〈
𝑀𝑛 (𝑠) × 𝜌̃𝑛 (𝑠), 𝑢(𝑠)

〉
H d𝑠 = Ẽ

∫ 𝑇

0

〈
𝑀 (𝑠) × 𝜌̃(𝑠), 𝑢(𝑠)

〉
H d𝑠,

for all 𝑢 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;H)). By (6.13), we also have

𝑀 × (𝑀 × 𝜌̃) ∈ 𝐿 4
3 (Ω̃; 𝐿2(0, 𝑇 ;L

3
2 (D))).
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Lemma 6.22. For any 𝜂 ∈ 𝐿4(Ω̃; 𝐿4(0, 𝑇 ;L4) we have

lim
𝑛→∞

Ẽ
∫ 𝑇

0 L
3
2

〈
𝑀𝑛 (𝑠) × (𝑀𝑛 (𝑠) × 𝜌̃𝑛 (𝑠)), 𝜂(𝑠)

〉
L3 (𝐷) d𝑠

= Ẽ
∫ 𝑇

0 L
3
2
⟨𝑍2(𝑠), 𝜂(𝑠)⟩L3 (𝐷) d𝑠 (6.24)

= Ẽ
∫ 𝑇

0 L
3
2

〈
𝑀 (𝑠) × 𝑍1(𝑠), 𝜂(𝑠)

〉
L3 (𝐷) d𝑠 (6.25)

Proof. Let us denote 𝑍1𝑛 := 𝑀𝑛 × 𝜌̃𝑛 for each 𝑛 ∈ N. 𝐿4(Ω̃; 𝐿4(0, 𝑇 ;L4)) ⊂ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L3))
which is the dual space of 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L

3
2 )). Hence (6.21) implies that (6.24) holds.

Next we are going to prove (6.25).
By (6.16), 𝑀 ∈ 𝐿4(Ω̃; 𝐿4(0, 𝑇 ;L4)), hence by the H¥older inequality, we have

Ẽ
∫ 𝑇

0
∥𝜂 × 𝑀 ∥2

L2 d𝑡 ≤ Ẽ
∫ 𝑇

0
∥𝜂∥2

L4 ∥𝑀 ∥2
L4 d𝑡

≤ Ẽ
∫ 𝑇

0
∥𝜂∥4

L4 d𝑡 + Ẽ
∫ 𝑇

0
∥𝑀 ∥4

L4 d𝑡 < ∞.

So 𝜂 × 𝑀 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L2)) and similarly 𝜂 × 𝑀𝑛 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L2)).
By (6.20), 𝑍1𝑛 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L2)). And 𝜂 × 𝑀𝑛 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L2)). Hence

L
3
2

〈
𝑀𝑛 × 𝑍1𝑛, 𝜂

〉
L3 =

∫
D

〈
𝑀𝑛 (𝑥) × 𝑍1𝑛 (𝑥), 𝜂(𝑥)

〉
d𝑥

=

∫
D

〈
𝑍1𝑛 (𝑥), 𝜂(𝑥) × 𝑀𝑛 (𝑥)

〉
d𝑥 =

〈
𝑍1𝑛, 𝜂 × 𝑀𝑛

〉
L2 (6.26)

By (6.20), 𝑍1 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L2)). And 𝜂 × 𝑀 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L2)). So

L
3
2

〈
𝑀 × 𝑍1, 𝜂

〉
L3 =

∫
D

〈
𝑀 (𝑥) × 𝑍1(𝑥), 𝜂(𝑥)

〉
d𝑥

=

∫
D

〈
𝑍1(𝑥), 𝜂(𝑥) × 𝑀 (𝑥)

〉
d𝑥 =

〈
𝑍1, 𝜂 × 𝑀

〉
L2 (6.27)

By (6.26) and (6.27),

L
3
2

〈
𝑀𝑛 × 𝑍1𝑛, 𝜂

〉
L3 − L

3
2

〈
𝑀 × 𝑍1, 𝜂

〉
L3 =

〈
𝑍1𝑛, 𝜂 × 𝑀𝑛

〉
L2 −

〈
𝑍1, 𝜂 × 𝑀

〉
L2

=
〈
𝑍1𝑛 − 𝑍1, 𝜂 × 𝑀

〉
L2 +

〈
𝑍1𝑛, 𝜂 × (𝑀𝑛 − 𝑀)

〉
L2 .

By (6.20), and since 𝜂 × 𝑀 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L2)),

lim
𝑛→∞

Ẽ
∫ 𝑇

0

〈
𝑍1𝑛 (𝑠) − 𝑍1(𝑠), 𝜂(𝑠) × 𝑀 (𝑠)

〉
L2 d𝑠 = 0.
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By the Cauchy-Schwartz inequality,〈
𝑍1𝑛, 𝜂 × (𝑀𝑛 − 𝑀)

〉2
L2 ≤ ∥𝑍1𝑛∥2

L2 ∥𝜂 × (𝑀𝑛 − 𝑀)∥2
L2

≤ ∥𝑍1𝑛∥2
L2 (∥𝜂∥4

L4 + ∥𝑀𝑛 − 𝑀 ∥4
L4) → 0, as 𝑛 −→ ∞.

Hence

lim
𝑛→∞

Ẽ
∫ 𝑇

0

〈
𝑍1𝑛 (𝑠), 𝜂 × (𝑀𝑛 − 𝑀) (𝑠)

〉
L2 d𝑠 = 0.

Therefore,

lim
𝑛→∞

Ẽ
∫ 𝑇

0 L
3
2

〈
𝑀𝑛 (𝑠) × (𝑀𝑛 (𝑠) × 𝜌̃𝑛 (𝑠)), 𝜂(𝑠)

〉
L3 d𝑠 = Ẽ

∫ 𝑇

0 L
3
2

〈
𝑀 (𝑠) × 𝑍1(𝑠), 𝜂(𝑠)

〉
L3 d𝑠.

This completes the proof of the Lemma 6.22. □

Remark 6.23. By the notation 6.20, the Lemma 6.22 has proved that

𝑍2 = 𝑀 × (𝑀 × 𝜌̃)

in 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L
3
2 )). So

𝑀𝑛 × (𝑀𝑛 × 𝜌̃𝑛) −→ 𝑀 × (𝑀 × 𝜌̃) weakly in 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L
3
2 )).

The next result will be used to show that the process 𝑀 satisfies the condition |𝑀 (𝑡, 𝑥) | = 1 for
all 𝑡 ∈ [0, 𝑇], 𝑥 ∈ D and P̃-almost surely.

Lemma 6.24. For any bounded measurable function 𝜑 : D −→ R, we have〈
𝑍1(𝑠, 𝜔), 𝜑𝑀 (𝑠, 𝜔)

〉
H = 0,

for almost every (𝑠, 𝜔) ∈ [0, 𝑇] × Ω̃.

Proof. Let 𝐵 ⊂ [0, 𝑇] × Ω̃ be a measurable set and 1𝐵 be the indicator function of 𝐵. Then

Ẽ
∫ 𝑇

0
∥1𝐵𝜑𝑀𝑛 (𝑡) − 1𝐵𝜑𝑀 (𝑡)∥L2 d𝑡 = Ẽ

∫ 𝑇

0
∥1𝐵𝜑[𝑀𝑛 (𝑡) − 𝑀 (𝑡)] ∥L2 d𝑡

≤ ∥𝜑∥L∞Ẽ
∫ 𝑇

0
∥𝑀𝑛 (𝑡) − 𝑀 (𝑡)∥L2 d𝑡 ≤ 𝐶∥𝜑∥L∞Ẽ

∫ 𝑇

0
∥𝑀𝑛 (𝑡) − 𝑀 (𝑡)∥L4 d𝑡,

for some constant 𝐶 > 0. Hence by (6.16), we have

lim
𝑛→∞

Ẽ
∫ 𝑇

0
∥1𝐵𝜑𝑀𝑛 (𝑡) − 1𝐵𝜑𝑀 (𝑡)∥L2 d𝑡 = 0.

Together with the fact that 𝑀𝑛 × 𝜌̃𝑛 converges to 𝑍1 weakly in 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;L2)) we can infer
that

0 = lim
𝑛→∞

Ẽ
∫ 𝑇

0
1𝐵 (𝑠)

〈
𝑀𝑛 (𝑠) × 𝜌̃𝑛 (𝑠), 𝜑𝑀𝑛 (𝑠)

〉
L2 d𝑠 = Ẽ

∫ 𝑇

0
1𝐵 (𝑠)

〈
𝑍1(𝑠), 𝜑𝑀 (𝑠)

〉
L2 d𝑠.

This complete the proof. □
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7. The existence of a weak solution

In this section, we will prove that the process (𝑀, 𝐵, 𝐸) from Lemma 6.1 is a weak solution of
the Problem 2.7.
To explain how we will prove the result, let us define

𝜉𝑛 (𝑡) := 𝑀𝑛 (𝑡) − 𝑀𝑛 (0)

−
∫ 𝑡

0

{
𝜆1𝜋𝑛 [𝑀𝑛 × 𝜌𝑛] − 𝜆2𝜋𝑛 [𝑀𝑛 × (𝑀𝑛 × 𝜌𝑛)] +

1
2

∞∑︁
𝑗=1
𝐺′
𝑗𝑛 (𝑀𝑛)

[
𝐺 𝑗𝑛 (𝑀𝑛)

] }
d𝑠

(7.1)
Because 𝑀𝑛 satisfies (3.12), we have

𝜉𝑛 (𝑡) =
∞∑︁
𝑗=1

∫ 𝑡

0
𝐺 𝑗𝑛 (𝑀𝑛) d𝑊 𝑗 (𝑠).

Then the proof will consists in three steps:

Step 1 : We are going to find some 𝜉 as a limit of 𝜉𝑛 which are similar to 𝜉𝑛 defined in (7.1) as
𝑛→ ∞.

Step 2 : We will show the second "=" in (7.1) holds for the limit process 𝜉, but with 𝑀 instead of
𝑀𝑛 and𝑊 𝑗 instead of𝑊 𝑗 , etc.

Step 3 : We will get rid of the auxiliary function 𝜓 and finish the proof.

7.1. Step 1
Let us denote

𝜉𝑛 (𝑡) := 𝑀𝑛 (𝑡) − 𝑀𝑛 (0) −
∫ 𝑡

0

{
𝜋𝑛

[
𝜆1𝑀𝑛 × 𝜌̃𝑛

]
− 𝜆2𝜋𝑛

[
𝑀𝑛 × (𝑀𝑛 × 𝜌̃𝑛)

]
+1

2

∞∑︁
𝑗=1
𝐺′
𝑗𝑛

(
𝑀𝑛

) [
𝐺 𝑗𝑛

(
𝑀𝑛

)] }
d𝑠.

Lemma 7.1. For each 𝑡 ∈ [0, 𝑇] the sequence of random variables 𝜉𝑛 (𝑡) converges weakly in
𝐿2(Ω̃;X−𝑏) to the limit

𝜉 (𝑡) := 𝑀 (𝑡) − 𝑀0 −
∫ 𝑡

0

{ [
𝜆1𝑀 × 𝜌̃

]
− 𝜆2

[
𝑀 × (𝑀 × 𝜌̃)

]
+1

2

∞∑︁
𝑗=1

(
𝐺
𝜓

𝑗

)′ (
𝑀

) [
𝐺
𝜓

𝑗

(
𝑀

)] }
d𝑠.

as 𝑛→ ∞.
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Proof. The dual space of 𝐿2(Ω̃;X−𝑏) is 𝐿2(Ω̃; 𝑋𝑏). Let 𝑡 ∈ (0, 𝑇] and𝑈 ∈ 𝐿2(Ω̃; 𝑋𝑏). We have

𝐿2 (Ω̃;X−𝑏)
〈
𝜉𝑛 (𝑡),𝑈

〉
𝐿2 (Ω̃;𝑋𝑏) = Ẽ

[
X−𝑏

〈
𝜉𝑛 (𝑡),𝑈

〉
𝑋𝑏

]
= Ẽ

{ 〈
𝑀𝑛 (𝑡),𝑈

〉
H − ⟨𝑀𝑛 (0),𝑈⟩H − 𝜆1

∫ 𝑡

0

〈
𝑀𝑛 (𝑠) × 𝜌̃𝑛 (𝑠), 𝜋𝑛𝑈

〉
H d𝑠

+𝜆2

∫ 𝑡

0

〈
(𝑀𝑛 (𝑠) × (𝑀𝑛 (𝑠) × 𝜌̃𝑛 (𝑠))), 𝜋𝑛𝑈

〉
H d𝑠 − 1

2

∞∑︁
𝑗=1

∫ 𝑡

0

〈
𝐺′
𝑗𝑛

(
𝑀𝑛

) [
𝐺 𝑗𝑛

(
𝑀𝑛

)]
, 𝜋𝑛𝑈

〉
d𝑠

}
Next we are going to consider the right hand side of above equality term by term.
By the Lemma 6.1, 𝑀𝑛 −→ 𝑀 in 𝐶 ( [0, 𝑇];X−𝑏) P̃-a.s., so

sup
𝑡∈[0,𝑇]

∥𝑀𝑛 (𝑡) − 𝑀 (𝑡)∥X−𝑏 −→ 0, P̃ − 𝑎.𝑠.

and X−𝑏 ⟨·,𝑈⟩𝑋𝑏 is a continuous function on X−𝑏, hence

lim
𝑛→∞ X−𝑏

〈
𝑀𝑛 (𝑡),𝑈

〉
𝑋𝑏 = X−𝑏

〈
𝑀 (𝑡),𝑈

〉
𝑋𝑏 , P̃ − 𝑎.𝑠.

By (6.1), sup𝑡∈[0,𝑇] |𝑀𝑛 (𝑡) |H ≤ |𝑀0 |H, so that we can find a constant 𝐶 such that

sup
𝑛

Ẽ
[���X−𝑏

〈
𝑀𝑛 (𝑡),𝑈

〉
𝑋𝑏

���2] ≤ sup
𝑛

Ẽ∥𝑈∥2
𝑋𝑏 Ẽ∥𝑀𝑛 (𝑡)∥2

X−𝑏

≤ 𝐶Ẽ∥𝑈∥2
𝑋𝑏 Ẽ sup

𝑛

∥𝑀𝑛 (𝑡)∥2
H ≤ 𝐶Ẽ∥𝑈∥2

𝑋𝑏 Ẽ∥𝑀0∥2
H < ∞.

Therefore, the sequence X−𝑏
〈
𝑀𝑛 (𝑡),𝑈

〉
𝑋𝑏 is uniformly integrable. So the almost surely

convergence and uniform integrability implies that

lim
𝑛→∞

Ẽ[X−𝑏
〈
𝑀𝑛 (𝑡),𝑈

〉
𝑋𝑏] = Ẽ[X−𝑏

〈
𝑀 (𝑡),𝑈

〉
𝑋𝑏] .

By (6.20),

lim
𝑛→∞

Ẽ
∫ 𝑡

0

〈
𝑀𝑛 (𝑠) × 𝜌̃𝑛 (𝑠), 𝜋𝑛𝑈

〉
H d𝑠 = Ẽ

∫ 𝑡

0
⟨𝑍1(𝑠),𝑈⟩H .

By (6.22)

lim
𝑛→∞

Ẽ
∫ 𝑡

0
X−𝑏

〈
𝜋𝑛 (𝑀𝑛 (𝑠) × (𝑀𝑛 (𝑠) × 𝜌̃𝑛 (𝑠))),𝑈

〉
𝑋𝑏 d𝑠 = Ẽ

∫ 𝑡

0
⟨𝑍2(𝑠),𝑈⟩𝑋𝑏 d𝑠.

By the H¥older’s inequality,

∥𝑀𝑛 (𝑡) − 𝑀 (𝑡)∥2
L2 ≤ ∥𝑀𝑛 (𝑡) − 𝑀 (𝑡)∥2

L4 .
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We will show that for any𝑈 ∈ 𝐿2
(
Ω̃; 𝐿2(0, 𝑇 ;H

)
lim
𝑛→∞

E
∞∑︁
𝑗=1

∫ 𝑡

0

〈
𝐺′
𝑗𝑛

(
𝑀𝑛

) [
𝐺 𝑗𝑛

(
𝑀𝑛

)]
, 𝜋𝑛𝑈

〉
H

d𝑠 = E
∞∑︁
𝑗=1

∫ 𝑡

0

〈(
𝐺
𝜓

𝑗

)′ (
𝑀

) [
𝐺
𝜓

𝑗

(
𝑀

)]
,𝑈

〉
H

d𝑠 .

(7.2)
Using (6.1) we can prove���〈𝐺′

𝑗𝑛

(
𝑀𝑛

) [
𝐺 𝑗𝑛

(
𝑀𝑛

)]
, 𝜋𝑛𝑈

〉
H

���2 ≤ 𝐶


ℎ 𝑗

4

L∞ ∥𝑈∥2
H ,

it remains to show that

lim
𝑛→∞

〈
𝐺′
𝑗𝑛

(
𝑀𝑛

) [
𝐺 𝑗𝑛

(
𝑀𝑛

)]
, 𝜋𝑛𝑈

〉
H
=

〈(
𝐺
𝜓

𝑗

)′ (
𝑀

) [
𝐺
𝜓

𝑗

(
𝑀

)]
,𝑈

〉
H
.

This follows imediately from the convergence of 𝑀𝑛 (𝑡) to 𝑀 (𝑡) for every 𝑡 ∈ [0, 𝑇] P-a.s.
Hence

lim
𝑛→∞ 𝐿2 (Ω̃;X−𝑏)

〈
𝜉𝑛 (𝑡),𝑈

〉
𝐿2 (Ω̃;𝑋𝑏)

= Ẽ
[
X−𝑏

〈
𝑀 (𝑡),𝑈

〉
𝑋𝑏 − 𝑋−𝛽 ⟨𝑀0,𝑈⟩𝑋𝑏 − 𝜆1

∫ 𝑡

0
⟨𝑍1(𝑠),𝑈⟩H d𝑠

+𝜆2

∫ 𝑡

0
X−𝑏 ⟨𝑍2(𝑠),𝑈⟩𝑋𝑏 d𝑠 − 1

2

∞∑︁
𝑗=1

〈
𝐺′
𝑗

(
𝑀

) [
𝐺 𝑗

(
𝑀

)]
,𝑈

〉
d𝑠

Since by Lemma 6.19 and Lemma 6.22, we have 𝑍1 = 𝑀 × 𝜌̃ and 𝑍2 = 𝑀 × (𝑀 × 𝜌̃). Therefore
for any𝑈 ∈ 𝐿2(Ω̃; 𝑋𝑏),

lim
𝑛→∞ 𝐿2 (Ω̃;X−𝑏)

〈
𝜉𝑛 (𝑡),𝑈

〉
𝐿2 (Ω̃;𝑋𝑏) = 𝐿2 (Ω̃;X−𝑏)

〈
𝜉 (𝑡),𝑈

〉
𝐿2 (Ω̃;𝑋𝑏) .

This concludes the proof. □

7.2. Step 2
In this step we are going to show that

𝜉 (𝑡) =
∞∑︁
𝑗=1

∫ 𝑡

0
𝐺
𝜓

𝑗
(𝑀 (𝑠)) d𝑊 𝑗 (𝑠). (7.3)

We will finish this step by the approximation method. To do this, we need the next Lemma for
preparation. Let us define, for each 𝑚 ∈ N, a partition

{
𝑠𝑚
𝑖

:= 𝑖𝑇
𝑚
, 𝑖 = 0, . . . , 𝑚

}
of [0, 𝑇]. It will

be convenient to define on [0, 𝑇] processes

𝜎𝑗𝑛 (𝑠) = 𝐺 𝑗𝑛

(
𝑀𝑛 (𝑠)

)
, (7.4)

and

𝜎𝑚𝑗𝑛 (𝑠) =
𝑚−1∑︁
𝑖=0

𝐺 𝑗𝑛

(
𝑀𝑛

(
𝑠𝑚𝑖

) )
1(𝑠𝑚

𝑖
,𝑠𝑚
𝑖+1] (𝑠) =

𝑚−1∑︁
𝑖=0

𝜎𝑗𝑛
(
𝑠𝑚𝑖

)
1(𝑠𝑚

𝑖
,𝑠𝑚
𝑖+1] (𝑠) . (7.5)
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Lemma 7.2. For any 𝜀 > 0, We can choose 𝑚 ∈ N sufficiently large such that:

(i)

lim sup
𝑛→∞

Ẽ






 ∞∑︁
𝑗=1

∫ 𝑡

0

[
𝜎𝑗𝑛 (𝑠) − 𝜎𝑚𝑗𝑛 (𝑠)

]
d𝑊 𝑗𝑛 (𝑠)






2

X−𝑏

<
𝜀2

4
;

(ii)

lim
𝑛→∞

Ẽ







 ∞∑︁
𝑗=1

∫ 𝑡

0
𝜎𝑚𝑗𝑛 (𝑠) d𝑊 𝑗𝑛 (𝑠) −

∞∑︁
𝑗=1

∫ 𝑡

0
𝜎𝑚𝑗𝑛 (𝑠) d𝑊 𝑗 (𝑠)








2

X−𝑏

= 0 ,

(iii)

lim sup
𝑛→∞

Ẽ







 ∞∑︁
𝑗=1

(
𝜎𝑚𝑗𝑛 (𝑠) − 𝜎𝑗𝑛 (𝑠)

)
d𝑊 𝑗 (𝑠)








2

X−𝑏

<
𝜀2

4
,

(iv)

lim
𝑛→∞

Ẽ








∫ 𝑡

0

∞∑︁
𝑗=1

(
𝜎𝑗𝑛 (𝑠) − 𝐺𝜓

𝑗

(
𝑀 (𝑠)

))
d𝑊 𝑗 (𝑠)








2

X−𝑏

= 0 .

Proof.(i) By Itô isometry, our assumptions on 𝜓 and ℎ 𝑗 , there exists some constants 𝐶 > 0, such
that

Ẽ






 ∞∑︁
𝑗=1

∫ 𝑡

0

[
𝜎𝑗𝑛 (𝑠) − 𝜎𝑚𝑗𝑛 (𝑠)

]
d𝑊 𝑗𝑛 (𝑠)






2

X−𝑏

=

∞∑︁
𝑗=1

Ẽ
∫ 𝑡

0




𝜎𝑗𝑛 (𝑠) − 𝜎𝑚𝑗𝑛 (𝑠)


2

X−𝑏
d𝑠 =

∞∑︁
𝑗=1

𝑚−1∑︁
𝑖=1

Ẽ
∫ 𝑠𝑚

𝑖+1

𝑠𝑚
𝑖




𝐺 𝑗𝑛

(
𝑀𝑛 (𝑠)

)
− 𝐺 𝑗𝑛

(
𝑀𝑛

(
𝑠𝑚𝑖

) )


2

X−𝑏
d𝑠

≤𝐶 ©­«
∞∑︁
𝑗=1



ℎ 𝑗

2
L∞

ª®¬
(
𝑚−1∑︁
𝑖=1

Ẽ
∫ 𝑠𝑚

𝑖+1

𝑠𝑚
𝑖




𝑀𝑛 (𝑠) − 𝑀𝑛

(
𝑠𝑚𝑖

)


2

X−𝑏
d𝑠

)
≤𝐶

𝑚−1∑︁
𝑖=1

Ẽ
∫ 𝑠𝑚

𝑖+1

𝑠𝑚
𝑖




𝑀𝑛 (𝑠) − 𝑀 (𝑠)



2

X−𝑏
d𝑠 + 𝐶

𝑚−1∑︁
𝑖=1

Ẽ
∫ 𝑠𝑚

𝑖+1

𝑠𝑚
𝑖




𝑀 (𝑠) − 𝑀
(
𝑠𝑚𝑖

)


2

X−𝑏
d𝑠

+ 𝐶
𝑚−1∑︁
𝑖=1

Ẽ
∫ 𝑠𝑚

𝑖+1

𝑠𝑚
𝑖




𝑀 (
𝑠𝑚𝑖

)
− 𝑀𝑛

(
𝑠𝑚𝑖

)


2

X−𝑏
d𝑠

=𝐶 (𝐼1(𝑛) + 𝐼2(𝑚) + 𝐼3(𝑛, 𝑚)) .

By the estimate (6.16), lim𝑛→∞ 𝐼1(𝑛) = 0.
Since 𝑀 ∈ 𝐶 ( [0, 𝑇];X−𝑏), for every 𝜀 > 0 we can find 𝑚0 such that

𝐼2(𝑚) <
𝜀2

4𝐶
, for 𝑚 > 𝑚0 .
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For any 𝑚 ≥ 1

𝐼3(𝑛, 𝑚) ≤ 𝑇E sup
𝑠∈[0,𝑇]




𝑀 (𝑠) − 𝑀𝑛 (𝑠)



2

X−𝑏
.

By Lemma 6.1 (ii),

lim
𝑛→∞

sup
𝑠∈[0,𝑇]




𝑀 (𝑠) − 𝑀𝑛 (𝑠)



2

X−𝑏
= 0, P̃ − 𝑎.𝑠.,

so by the dominated convergence theorem, lim𝑛→∞ 𝐼3(𝑚, 𝑛) = 0 for every 𝑚. Finally, combining
these facts together we obtain (i).
(ii) By the estimate (6.1), remark 6.4 and Jensen inequality we have

Ẽ







 ∞∑︁
𝑗=1

∫ 𝑡

0
𝜎𝑚𝑗𝑛 (𝑠) d𝑊 𝑗𝑛 (𝑠) −

∞∑︁
𝑗=1

∫ 𝑡

0
𝜎𝑚𝑗𝑛 (𝑠) d𝑊 𝑗 (𝑠)








2

X−𝑏

≤E

∞∑︁
𝑗=1

𝑚−1∑︁
𝑖=1




𝐺 𝑗𝑛

(
𝑀𝑛

(
𝑠𝑚𝑖

) )



X−𝑏

���𝑊 𝑗𝑛

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗𝑛

(
𝑡 ∧ 𝑠𝑚𝑖

)
−

(
𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖

) )���
2

≤𝐶E

∞∑︁
𝑗=1



ℎ 𝑗

L∞

𝑚−1∑︁
𝑖=1

���𝑊 𝑗𝑛

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗𝑛

(
𝑡 ∧ 𝑠𝑚𝑖

)
−

(
𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖

) )���
2

≤𝐶
∞∑︁
𝑗=1



ℎ 𝑗

2
L∞ E

(
𝑚−1∑︁
𝑖=1

���𝑊 𝑗𝑛

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗𝑛

(
𝑡 ∧ 𝑠𝑚𝑖

)
−

(
𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖

) )���)2

≤𝐶𝑚
∞∑︁
𝑗=1



ℎ 𝑗

2
L∞ E

𝑚−1∑︁
𝑖=1

���𝑊 𝑗𝑛

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗𝑛

(
𝑡 ∧ 𝑠𝑚𝑖

)
−

(
𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖

) )���2
For 𝑚 fixed we have

sup
𝑛, 𝑗

E

(
𝑚−1∑︁
𝑖=1

���𝑊 𝑗𝑛

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗𝑛

(
𝑡 ∧ 𝑠𝑚𝑖

)
−

(
𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖

) )���2)2

< ∞ .

Therefore, we can pass with 𝑛 to the limit under the sum and expectation above and since 𝑊𝑛

converges to𝑊 in 𝐶
(
[0, 𝑇];RN)

we obtain

lim
𝑛→∞

Ẽ







 ∞∑︁
𝑗=1

∫ 𝑡

0
𝜎𝑚𝑗𝑛 (𝑠) d𝑊 𝑗𝑛 (𝑠) −

∞∑︁
𝑗=1

∫ 𝑡

0
𝜎𝑚𝑗𝑛 (𝑠) d𝑊 𝑗 (𝑠)








2

X−𝑏

= 0 .

(iii) The proof of (iii) is same as the proof of (i).
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(iv) By Itô isometry, we have

Ẽ








∫ 𝑡

0

∞∑︁
𝑗=1

(
𝜎𝑗𝑛 (𝑠) − 𝐺𝜓

𝑗

(
𝑀 (𝑠)

))
d𝑊 𝑗 (𝑠)








2

X−𝑏

=

∞∑︁
𝑗=1

E
∫ 𝑡

0




𝐺 𝑗𝑛

(
𝑀𝑛 (𝑠)

)
− 𝐺𝜓

𝑗

(
𝑀 (𝑠)

)


2

X−𝑏
d𝑠.

By our assumption on ℎ 𝑗 , the estimates (6.1) and (6.12), we have

sup
𝑛

∞∑︁
𝑗=1

E
∫ 𝑡

0




𝐺 𝑗𝑛

(
𝑀𝑛 (𝑠)

)
− 𝐺𝜓

𝑗

(
𝑀 (𝑠)

)


4

X−𝑏
≤ sup

𝑛

∞∑︁
𝑗=1
𝐶



ℎ 𝑗

4
L∞ E

∫ 𝑡

0

(


𝑀𝑛 (𝑠)



4

X−𝑏
+




𝑀 (𝑠)



4

X−𝑏

)
d𝑠 < ∞

and


𝐺 𝑗𝑛

(
𝑀𝑛 (𝑠)

)
− 𝐺𝜓

𝑗

(
𝑀 (𝑠)

)


2

X−𝑏
≤ 2




𝐺 𝑗𝑛

(
𝑀𝑛 (𝑠)

)
− 𝐺 𝑗𝑛

(
𝑀 (𝑠)

)


2

X−𝑏
+ 2




𝐺 𝑗𝑛

(
𝑀 (𝑠)

)
− 𝐺𝜓

𝑗

(
𝑀 (𝑠)

)


2

X−𝑏

≤ 𝐶


ℎ 𝑗

2

L∞




𝑀𝑛 (𝑠) − 𝑀 (𝑠)



2

X−𝑏
+ 2




𝐺 𝑗𝑛

(
𝑀 (𝑠)

)
− 𝐺𝜓

𝑗

(
𝑀 (𝑠)

)


2

X−𝑏
.

By the Lemma 6.1, 𝑀𝑛 −→ 𝑀 in 𝐶 ( [0, 𝑇];X−𝑏) P̃-a.s., therefore

lim
𝑛→∞




𝐺 𝑗𝑛

(
𝑀𝑛 (𝑠)

)
− 𝐺𝜓

𝑗

(
𝑀 (𝑠)

)


2

X−𝑏
= 0 , P̃ − 𝑎.𝑠..

and (iv) follows by the uniform integrability.
□

After the above preparation, now we can finish the Step 2 by the following Lemma.

Lemma 7.3. For each 𝑡 ∈ [0, 𝑇], we have

𝜉 (𝑡) =
∞∑︁
𝑗=1

∫ 𝑡

0
𝐺
𝜓

𝑗

(
𝑀

)
d𝑊 𝑗 (𝑠),

in 𝐿2(Ω̃;X−𝑏).

Proof. Firstly, we show that

𝜉𝑛 (𝑡) =
∞∑︁
𝑗=1

∫ 𝑡

0
𝐺 𝑗𝑛

(
𝑀

)
d𝑊 𝑗𝑛 (𝑠)

P̃ almost surely for each 𝑡 ∈ [0, 𝑇] and 𝑛 ∈ N.
Let us fix that 𝑡 ∈ [0, 𝑇] and 𝑛 ∈ N. For each𝑚 ∈ Nwe define the partition

{
𝑠𝑚
𝑖

:= 𝑖𝑇
𝑚
, 𝑖 = 0, . . . , 𝑚

}
of [0, 𝑇]. By Lemma 6.1 and Propositon 6.5, (𝑀𝑛, 𝐵𝑛, 𝐸𝑛𝑊ℎ𝑛) and (𝑀𝑛, 𝐵𝑛, 𝐸𝑛,𝑊ℎ) have same
distribution on 𝐶 ( [0, 𝑇];H𝑛) ×𝐶 ( [0, 𝑇];Y𝑛) ×𝐶 ( [0, 𝑇];Y𝑛) ×𝐶 ( [0, 𝑇];H), so for each 𝑚, the
H-valued random variables:

𝜉𝑛 (𝑡) −
∞∑︁
𝑗=1

𝑚−1∑︁
𝑖=0

𝐺 𝑗𝑛

(
𝑀𝑛

(
𝑠𝑚𝑖

) ) (
𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖

) )
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and

𝜉𝑛 (𝑡) −
∞∑︁
𝑗=1

𝑚−1∑︁
𝑖=0

𝐺 𝑗𝑛

(
𝑀𝑛

(
𝑠𝑚𝑖

) ) (
𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖

) )
have the same distribution. For each 𝑗 , we have

lim
𝑚→∞

E






𝑚−1∑︁
𝑖=0

𝐺 𝑗𝑛

(
𝑀𝑛

(
𝑠𝑚𝑖

) ) (
𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗

(
(𝑡 ∧ 𝑠𝑚𝑖

) )
−

∫ 𝑡

0
𝐺 𝑗𝑛 (𝑀𝑛 (𝑠)) d𝑊 𝑗 (𝑠)






2

H

= 0

and

lim
𝑚→∞

E






𝑚−1∑︁
𝑖=0

𝐺 𝑗𝑛

(
𝑀𝑛

(
𝑠𝑚𝑖

) ) (
𝑊 𝑗

(
𝑡 ∧ 𝑠𝑚𝑖+1

)
−𝑊 𝑗

(
(𝑡 ∧ 𝑠𝑚𝑖

) )
−

∫ 𝑡

0
𝐺 𝑗𝑛

(
𝑀𝑛 (𝑠)

)
d𝑊 𝑗𝑛 (𝑠)






2

H

= 0,

so ∫ 𝑡

0
𝐺 𝑗𝑛 (𝑀𝑛 (𝑠)) d𝑊 𝑗 (𝑠) and

∫ 𝑡

0
𝐺 𝑗𝑛

(
𝑀𝑛 (𝑠)

)
d𝑊 𝑗𝑛 (𝑠)

have the same distribution. Hence
∞∑︁
𝑗=1

∫ 𝑡

0
𝐺 𝑗𝑛 (𝑀𝑛 (𝑠)) d𝑊 𝑗 (𝑠) and

∞∑︁
𝑗=1

∫ 𝑡

0
𝐺 𝑗𝑛

(
𝑀𝑛 (𝑠)

)
d𝑊 𝑗𝑛 (𝑠)

have the same distribution. Therefore

𝜉𝑛 (𝑡) −
∞∑︁
𝑗=1

∫ 𝑡

0
𝐺 𝑗𝑛 (𝑀𝑛 (𝑠)) d𝑊 𝑗 (𝑠)

and

𝜉𝑛 (𝑡) −
∞∑︁
𝑗=1

∫ 𝑡

0
𝐺 𝑗𝑛

(
𝑀𝑛 (𝑠)

)
d𝑊 𝑗𝑛 (𝑠)

have the same distribution. But

𝜉𝑛 (𝑡) =
∞∑︁
𝑗=1

∫ 𝑡

0
𝐺 𝑗𝑛 (𝑀𝑛 (𝑠)) d𝑊 𝑗 (𝑠), P − 𝑎.𝑠.

and thereby

𝜉𝑛 (𝑡) =
∞∑︁
𝑗=1

∫ 𝑡

0
𝐺 𝑗𝑛

(
𝑀𝑛 (𝑠)

)
d𝑊 𝑗𝑛 (𝑠), P̃ − 𝑎.𝑠.

We will show that 𝜉𝑛 (𝑡) converges in 𝐿2(Ω̃;X−𝑏) to

∞∑︁
𝑗=1

∫ 𝑡

0
𝐺
𝜓

𝑗

(
𝑀 (𝑠)

)
d𝑊 𝑗 (𝑠)
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as 𝑛→ ∞. Indeed, using notation (7.4), and (7.5) we obtain for a certain 𝐶 > 0

𝐶 Ẽ







𝜉𝑛 (𝑡) − ∞∑︁
𝑗=1

∫ 𝑡

0
𝐺
𝜓

𝑗

(
𝑀 (𝑠)

)
d𝑊 𝑗 (𝑠)








2

X−𝑏

=Ẽ






 ∞∑︁
𝑗=1

∫ 𝑡

0
𝜎𝑗𝑛 (𝑠) d𝑊 𝑗𝑛 (𝑠) −

∞∑︁
𝑗=1

∫ 𝑡

0
𝐺
𝜓

𝑗

(
𝑀 (𝑠)

)
d𝑊 𝑗 (𝑠)






2

X−𝑏

≤Ẽ







 ∞∑︁
𝑗=1

∫ 𝑡

0

(
𝜎𝑗𝑛 (𝑠) − 𝜎𝑚𝑗𝑛 (𝑠)

)
d𝑊 𝑗𝑛 (𝑠)








2

X−𝑏

+ Ẽ







 ∞∑︁
𝑗=1

∫ 𝑡

0
𝜎𝑚𝑗𝑛 (𝑠) d𝑊 𝑗𝑛 (𝑠) −

∞∑︁
𝑗=1

∫ 𝑡

0
𝜎𝑚𝑗𝑛 (𝑠) d𝑊 𝑗 (𝑠)








2

X−𝑏

+ Ẽ







 ∞∑︁
𝑗=1

∫ 𝑡

0

(
𝜎𝑚𝑗𝑛 (𝑠) − 𝜎𝑗𝑛 (𝑠)

)
d𝑊 𝑗 (𝑠)








2

X−𝑏

+ Ẽ







 ∞∑︁
𝑗=1

∫ 𝑡

0

(
𝜎𝑗𝑛 (𝑠) − 𝐺𝜓

𝑗

(
𝑀 (𝑠)

))
d𝑊 𝑗 (𝑠)








2

X−𝑏

,

and invoking Lemma 7.2, we conclude the proof. □

Corollary 7.4.

𝑀 (𝑡) = 𝑀0 +
∫ 𝑡

0

{ [
𝜆1𝑀 × 𝜌̃

]
− 𝜆2

[
𝑀 × (𝑀 × 𝜌̃)

]
+ 1

2

∞∑︁
𝑗=1

(
𝐺
𝜓

𝑗

(
𝑀

))′ [
𝐺
𝜓

𝑗

(
𝑀

)] }
d𝑠

+
∞∑︁
𝑗=1

∫ 𝑡

0
𝐺
𝜓

𝑗

(
𝑀

)
d𝑊 𝑗 (𝑠), (7.6)

in 𝐿2(Ω̃;X−𝑏).

Proof. The corollary follows immediately from Lemma 7.1 and Lemma 7.3. □

7.3. Step 3
In order to get rid of the auxiliary function 𝜓 from the equation (7.6) and finish the proof of the
existence of the weak solution, now we need to prove the constraint condition of 𝑀 , i.e. condition
(iii) of the main Theorem 2.10.

Lemma 7.5. Let 𝑀 be a process defined in Lemma 6.1. Then for each 𝑡 ∈ [0, 𝑇], we have
P̃-almost surely

|𝑀 (𝑡, 𝑥) | = 1, for a.e. 𝑥 ∈ D . (7.7)
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Proof. We will use a version of the Itô formula proved in Pardoux’s paper [27], see Lemma 11.11.
Let 𝜂 ∈ 𝐶∞

0 (𝐷,R) and let 𝛾 denote a function

𝛾 : H ∋ 𝑀 ↦−→ ⟨𝑀, 𝜂𝑀⟩H ∈ R .

Then 𝛾 ∈ 𝐶2H), 𝛾′(𝑀) = 2𝜂𝑀 and 𝛾′′(𝑀) (𝑣) = 2𝜂𝑣 for 𝑀, 𝑣 ∈ H.
In view of definition of the problem and (6.4), (6.5) and (6.8), all the assumptions of Lemma
11.11 are satisfied. Therefore,
Lemma 11.11 yields for 𝑡 ∈ [0, 𝑇] P̃-a.s.〈

𝑀 (𝑡), 𝜂𝑀 (𝑡)
〉
H − ⟨𝑀0, 𝜂𝑀0⟩H

=

∫ 𝑡

0
X−𝑏

〈
𝜆1𝑀 × 𝜌̃ − 𝜆2𝑀 × (𝑀 × 𝜌̃) + 1

2

∞∑︁
𝑗=1

(
𝐺
𝜓

𝑗

)′ (
𝑀

) [
𝐺
𝜓

𝑗

(
𝑀

)]
, 2𝜂𝑀 (𝑠)

〉
𝑋𝑏

d𝑠

+
∞∑︁
𝑗=1

∫ 𝑡

0

〈
2𝜂𝑀 (𝑠), 𝐺𝜓

𝑗

(
𝑀

)〉
H

d𝑊 𝑗 (𝑠) +
∞∑︁
𝑗=1

∫ 𝑡

0

〈
𝜂𝐺

𝜓

𝑗

(
𝑀

)
, 𝐺

𝜓

𝑗

(
𝑀

)〉
H

d𝑠 = 0.

Hence we have〈
𝜂, |𝑀 (𝑡) |2 − |𝑀0 |2

〉
𝐿2 (D;R) =

〈
𝑀 (𝑡), 𝜂𝑀 (𝑡)

〉
H −

〈
𝑀0, 𝜂𝑀0

〉
H = 0.

Since 𝜂 is arbitrary and |𝑀0(𝑥) | = 1 for almost every 𝑥 ∈ D, we infer that |𝑀 (𝑡, 𝑥) | = 1 for
almost every 𝑥 ∈ D as well. □

Note that, if
���𝑀 (𝑡, 𝑥)

��� = 1 then 𝜓
(
𝑀 (𝑡, 𝑥)

)
= 1, so we can get rid of it, which means that now we

have the following equalities:

𝐺
𝜓

𝑗

(
𝑀 (𝑡, 𝑥)

)
= 𝐺 𝑗

(
𝑀 (𝑡, 𝑥)

)
,

(
𝐺
𝜓

𝑗

)′ (
𝑀 (𝑡, 𝑥)

) [
𝐺
𝜓

𝑗

(
𝑀 (𝑡, 𝑥)

)]
= 𝐺′

𝑗

(
𝑀 (𝑡, 𝑥)

) [
𝐺 𝑗

(
𝑀 (𝑡, 𝑥)

)]
.

Hence we have the following result.

Lemma 7.6. The process (𝑀, 𝐸, 𝐵) is a weak martingale solution of Problem 2.7, that is,
(𝑀, 𝐸, 𝐵) satisfies (2.14), (2.20) and (2.21).

Proof of (2.14). By Lemma 7.3 and Lemma 7.5, we have 𝜓(𝑀 (𝑡)) ≡ 1 for 𝑡 ∈ [0, 𝑇]. Hence we
deduce that for 𝑡 ∈ [0, 𝑇], the following equation holds in 𝐿2(Ω̃;X−𝑏).

𝑀 (𝑡) = 𝑀0 +
∫ 𝑡

0

{ [
𝜆1𝑀 × 𝜌̃

]
− 𝜆2

[
𝑀 × (𝑀 × 𝜌̃)

]
+ 1

2

∞∑︁
𝑗=1
𝐺′
𝑗

(
𝑀

)
𝐺 𝑗

(
𝑀

) }
d𝑠

+
∞∑︁
𝑗=1

∫ 𝑡

0
𝐺 𝑗

(
𝑀

)
d𝑊 𝑗 (𝑠)

= 𝑀0 +
∫ 𝑡

0

[
𝜆1𝑀 × 𝜌̃ − 𝜆2𝑀 × (𝑀 × 𝜌̃)

]
d𝑠 +

∞∑︁
𝑗=1

{∫ 𝑡

0
𝐺 𝑗

(
𝑀

)
◦ d𝑊 𝑗 (𝑠)

}
.

Then (2.14) follows from our explaination of 𝑀 × 𝜌̃, see Lemma 6.19. □
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Proof of (2.20). By Lemma 6.1 and the equation (3.12), we have

𝐵𝑛 (𝑡) − 𝐵𝑛 (0) = −
∫ 𝑡

0
𝜋Y𝑛 [∇ × 𝐸𝑛 (𝑠)] d𝑠, P̃ − 𝑎.𝑠. (7.8)

We also have

(a) 𝐸𝑛 −→ 𝐸 in 𝐿2
𝑤 (0, 𝑇 ;L2(R3)) P̃ almost surely, and

(b) 𝐵𝑛 −→ 𝐵 in 𝐿2
𝑤 (0, 𝑇 ;L2(R3)) P̃ almost surely.

Hence for any 𝑢 ∈ 𝐻1(0, 𝑇 ;Y),∫ 𝑡

0

〈
𝐵(𝑠), d𝑢(𝑠)

d𝑠

〉
L2 (R3)

d𝑠 = lim
𝑛→∞

∫ 𝑡

0

〈
𝐵𝑛 (𝑠),

d𝑢(𝑠)
d𝑠

〉
L2 (R3)

d𝑠

= − lim
𝑛→∞

∫ 𝑡

0

〈
d𝐵𝑛 (𝑠)

d𝑠
, 𝑢(𝑠)

〉
L2 (R3)

d𝑠 = lim
𝑛→∞

∫ 𝑡

0

〈
𝜋Y𝑛

[
∇ × 𝐸𝑛 (𝑠)

]
, 𝑢(𝑠)

〉
L2 (R3) d𝑠

= lim
𝑛→∞

∫ 𝑡

0

〈
∇ × 𝐸𝑛 (𝑠), 𝜋Y𝑛 𝑢(𝑠)

〉
L2 (R3) d𝑠 = lim

𝑛→∞

∫ 𝑡

0

〈
𝐸𝑛 (𝑠),∇ × 𝜋Y𝑛 𝑢(𝑠)

〉
L2 (R3) d𝑠

Since

lim
𝑛→∞

����∫ 𝑡

0

〈
𝐸𝑛 (𝑠),∇ × 𝜋Y𝑛 𝑢(𝑠)

〉
L2 (R3) −

〈
𝐸 (𝑠),∇ × 𝑢(𝑠)

〉
L2 (R3) d𝑠

����
≤ lim

𝑛→∞

∫ 𝑡

0

����〈𝐸𝑛 (𝑠),∇ ×
(
𝜋Y𝑛 𝑢(𝑠) − 𝑢(𝑠)

)〉
L2 (R3)

���� d𝑠 + lim
𝑛→∞

����∫ 𝑡

0

〈
𝐸𝑛 (𝑠) − 𝐸 (𝑠),∇ × 𝑢(𝑠)

〉
L2 (R3) d𝑠

����
≤ lim

𝑛→∞

(∫ 𝑡

0
∥𝐸𝑛 (𝑠)∥2

L2 (R3) d𝑠
) 1

2
(∫ 𝑡

0
∥𝜋Y𝑛 𝑢(𝑠) − 𝑢(𝑠)∥2

Y d𝑠
) 1

2

+ 0 = 0, P̃ − 𝑎.𝑠.,

we have

lim
𝑛→∞

∫ 𝑡

0

〈
𝐸𝑛 (𝑠),∇ × 𝜋Y𝑛 𝑢(𝑠)

〉
L2 (R3) d𝑠 =

∫ 𝑡

0

〈
𝐸 (𝑠),∇ × 𝑢(𝑠)

〉
L2 (R3) d𝑠.

Therefore ∫ 𝑡

0

〈
𝐵(𝑠), d𝑢(𝑠)

d𝑠

〉
L2 (R3)

d𝑠 =
∫ 𝑡

0

〈
𝐸 (𝑠),∇ × 𝑢(𝑠)

〉
L2 (R3) d𝑠,

for all 𝑢 ∈ 𝐻1(0, 𝑇 ;Y).
Hence for 𝑡 ∈ [0, 𝑇],

𝐵(𝑡) = 𝐵0 −
∫ 𝑡

0
∇ × 𝐸 (𝑠) d𝑠, ∈ Y∗, P̃ − 𝑎.𝑠..

□

Proof of (2.21). Similar as in the proof of (2.20). Let 𝑝 = 𝑞 = 2 in Lemma 6.1, we have
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(a) 𝑀𝑛 −→ 𝑀 in 𝐿2(0, 𝑇 ;H) P̃ almost surely,
(b) 𝐸𝑛 −→ 𝐸 in 𝐿2

𝑤 (0, 𝑇 ;L2(R3)) P̃ almost surely, and
(c) 𝐵𝑛 −→ 𝐵 in 𝐿2

𝑤 (0, 𝑇 ;L2(R3)) P̃ almost surely.

Hence by (3.12) we have for all 𝑢 ∈ 𝐻1(0, 𝑇 ;Y),∫ 𝑡

0

〈
𝐸 (𝑠), d𝑢(𝑠)

d𝑠

〉
L2 (R3)

d𝑠 = lim
𝑛→∞

∫ 𝑡

0

〈
𝐸𝑛 (𝑠),

d𝑢(𝑠)
d𝑠

〉
L2 (R3)

d𝑠

= − lim
𝑛→∞

∫ 𝑡

0

〈
𝜋Y𝑛 [1D (𝐸𝑛 (𝑠)) + 𝑓 (𝑠)] − 𝜋Y𝑛 [∇ × (𝐵𝑛 (𝑠) − 𝜋Y𝑛 (𝑀𝑛 (𝑠)))], 𝑢(𝑠)

〉
L2 (R3)

d𝑠

=

∫ 𝑡

0

〈
𝐵(𝑠) − 𝑀 (𝑠),∇ × 𝑢(𝑠)

〉
L2 (R3)

−
〈
1D𝐸 (𝑠) + 𝑓 (𝑠), 𝑢(𝑠)

〉
L2 (R3) d𝑠.

Hence for 𝑡 ∈ [0, 𝑇],

𝐸 (𝑡) = 𝐸0 +
∫ 𝑡

0
∇ × [𝐵(𝑠) − 𝑀 (𝑠)] d𝑠 −

∫ 𝑡

0
[1D𝐸 (𝑠) + 𝑓 (𝑠)] d𝑠, ∈ Y∗, P̃ − 𝑎.𝑠.

Therefore the proof of Lemma 7.6 is complete. □

8. Some further regularities of the weak solution

Next we will show some further regularity of 𝑀 .

Lemma 8.1. For 𝑡 ∈ [0, 𝑇] the following equation holds in 𝐿2(Ω̃;H).

𝑀 (𝑡) = 𝑀0 +
∫ 𝑡

0

{ [
𝜆1𝑀 × 𝜌̃

]
− 𝜆2

[
𝑀 × (𝑀 × 𝜌̃)

]
+1

2

∞∑︁
𝑗=1
𝐺′
𝑗

(
𝑀

) [
𝐺 𝑗

(
𝑀

)] }
d𝑠 +

∞∑︁
𝑗=1
𝐺 𝑗

(
𝑀

)
d𝑊 𝑗 (𝑠) (8.1)

= 𝑀0 +
∫ 𝑡

0

{
𝜆1𝑀 × 𝜌̃ − 𝜆2𝑀 × (𝑀 × 𝜌̃)

}
d𝑠 +

∞∑︁
𝑗=1

{∫ 𝑡

0
𝐺 𝑗

(
𝑀

)
◦ d𝑊 𝑗 (𝑠)

}
.

Proof. We will only show the following two terms of (8.1) are in 𝐿2(Ω̃;H), the other terms can
be dealt with similarly.
Firstly, we consider the term

∫ 𝑡

0 𝑀 × (𝑀 × 𝜌̃) d𝑠. Making use of Jensen’s inequality, (7.7) and
Remark 6.21, we have



∫ 𝑡

0
𝑀 × (𝑀 × 𝜌̃) d𝑠





2

𝐿2 (Ω̃;H)
= Ẽ





∫ 𝑡

0
𝑀 × (𝑀 × 𝜌̃) d𝑠





2

H

≤ 𝐶Ẽ
∫ 𝑡

0

∫
D
|𝑀 × (𝑀 × 𝜌̃) |2 d𝑥 d𝑠 ≤ 𝐶Ẽ∥𝑀 × 𝜌̃∥2

𝐿2 (0,𝑇 ;H) < ∞.
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So for all 𝑡 ∈ [0, 𝑇],
∫ 𝑡

0 𝑀 × (𝑀 × 𝜌̃) d𝑠 ∈ 𝐿2(Ω̃;H).
Secondly, we consider the term

∑∞
𝑗=1

∫ 𝑡

0 𝑀 × (𝑀 × ℎ 𝑗 ) d𝑊 𝑗 . Making use of Burkholder-Davis-
Gundy inequality, Jensen’s inequality, (7.7) and our assumption on ℎ 𝑗 , we have





 ∞∑︁

𝑗=1

∫ 𝑡

0
𝑀 × (𝑀 × ℎ 𝑗 ) d𝑊 𝑗








𝐿2 (Ω̃;H)

≤
∞∑︁
𝑗=1





∫ 𝑡

0
𝑀 × (𝑀 × ℎ 𝑗 ) d𝑊 𝑗






𝐿2 (Ω̃;H)

=

∞∑︁
𝑗=1

(
Ẽ

∫
D

����∫ 𝑡

0
𝑀 × (𝑀 × ℎ 𝑗 ) d𝑊 𝑗

����2 d𝑥

) 1
2

≤ 𝐶
∞∑︁
𝑗=1

(∫
D
Ẽ

∫ 𝑡

0
|𝑀 × (𝑀 × ℎ 𝑗 ) |2 d𝑠 d𝑥

) 1
2

≤ 𝐶

∞∑︁
𝑗=1

∥ℎ 𝑗 ∥H < ∞.

So for all 𝑡 ∈ [0, 𝑇], ∑∞
𝑗=1

∫ 𝑡

0 𝑀 × (𝑀 × ℎ 𝑗 ) d𝑊 𝑗 ∈ 𝐿2(Ω̃;H). The proof is complete. □

Lemma 8.2. The process 𝑀 introduced in Lemma 6.1 satisfies:

𝑀 ∈ 𝐶𝜃 (0, 𝑇 ;H), P̃ − 𝑎.𝑠., 𝜃 ∈ [0, 1
2
).

Proof. By Lemma 8.1, we have

𝑀 (𝑡) − 𝑀 (𝑠) =
∫ 𝑡

𝑠

{
𝜆1𝑀 × 𝜌̃ − 𝜆2𝑀 × (𝑀 × 𝜌̃) + 1

2

∞∑︁
𝑗=1
𝐺′
𝑗

(
𝑀

) [
𝐺 𝑗

(
𝑀

)] }
d𝜏

+
∞∑︁
𝑗=1

∫ 𝑡

𝑠

𝐺 𝑗

(
𝑀

)
d𝑊 𝑗 (𝜏)

=

∫ 𝑡

𝑠

𝐹 (𝑠) d𝑠 +
∞∑︁
𝑗=1

∫ 𝑡

𝑠

𝐺 𝑗

(
𝑀

)
d𝑊 𝑗 (𝜏)

for 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 . By the constraint (7.7), the estimate (6.11) and the regularity of 𝑀 × 𝜌̃ as in
(6.20), we have ∫ 𝑇

0
∥𝐹 (𝑡)∥2

H d𝑡 < ∞, P̃ − 𝑎.𝑠.,

hence the process

𝑉 (𝑡) =
∫ 𝑡

0
𝐹 (𝑠) d𝑠 ∈ H

has trajectories in 𝐶1/2( [0, 𝑇];H). Putting

𝑁 (𝑡) =
∞∑︁
𝑗=1

∫ 𝑡

0
𝐺 𝑗

(
𝑀

)
d𝑊 𝑗 (𝜏)
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and invoking the Burkholder-Davis-Gundy inequalities we obtain for any 𝑝 ≥ 2

E ∥𝑁 (𝑡) − 𝑁 (𝑠)∥2𝑝 ≤ 𝐶𝑝E ©­«
∞∑︁
𝑗=1

∫ 𝑡

𝑠




𝐺 𝑗

(
𝑀

)


2

H
d𝜏ª®¬

𝑝

≤ 𝐶 ©­«
∞∑︁
𝑗=1



ℎ 𝑗

2
L∞

ª®¬
𝑝

(𝑡 − 𝑠)𝑝 .

Then the Kolmogorov continuity test, see Lemma 11.12, yields

𝑁 ∈ 𝐶𝜃 ( [0, 𝑇];H), 𝜃 ∈
(
0,

1
2

)
.

since 𝑀 (𝑡) = 𝑉 (𝑡) + 𝑁 (𝑡), the lemma follows. □

We can also prove that Δ𝑀 ∈ 𝐿1(Ω̃; 𝐿1(0, 𝑇 ;L1)). To do that, we need the following Corollary
of Lemma 7.5.

Corollary 8.3.

∇𝑖𝑀 (𝑡, 𝑥) ⊥ 𝑀 (𝑡, 𝑥), 𝑎.𝑒.(𝑡, 𝑥) ∈ [0, 𝑇] × D, P̃ − 𝑎.𝑠., 𝑖 = 1, 2, 3. (8.2)

Proof. By the equation (7.7) and by the chain rule of weak derivatives, we have

0 =
1
2
∇𝑖 |𝑀 (𝑡, 𝑥) |2 =

〈
∇𝑖𝑀 (𝑡, 𝑥), 𝑀 (𝑡, 𝑥)

〉
,

for almost every (𝑡, 𝑥) ∈ [0, 𝑇] ×D, P̃-almost surely and 𝑖 = 1, 2, 3. Hence the proof is complete.
□

We will also need the following results.

Proposition 8.4.

𝑀 × Δ𝑀𝑛 −→ 𝑀 × Δ𝑀 weakly star in 𝐿2(Ω̃; 𝐿2(0, 𝑇 ; (V ∩ L∞)∗)) as 𝑛→ ∞. (8.3)

Proof. For any 𝑢 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ; (V ∩ L∞))), note that by the equation (7.7) and (6.13), we
also have 𝑀 × 𝑢 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ; (V ∩ L∞))). Hence by (6.19) we have����Ẽ∫ 𝑇

0

〈
𝑀 × Δ𝑀𝑛 − 𝑀 × Δ𝑀, 𝑢

〉
H d𝑡

����
=

����Ẽ∫ 𝑇

0
(V∩L∞)∗

〈
Δ𝑀𝑛 − Δ𝑀, 𝑀 × 𝑢

〉
V∩L∞

d𝑡
����

≤
3∑︁
𝑖=1

Ẽ
∫ 𝑇

0

���〈∇𝑖𝑀𝑛 − ∇𝑖𝑀,∇𝑖𝑀 × 𝑢 + 𝑀 × ∇𝑖𝑢
〉
H

��� −→ 0, as 𝑛→ ∞.

The proof is complete. □
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Proposition 8.5. We have

−𝑀 × (𝑀 × Δ𝑀) = 𝑀
3∑︁
𝑖=1

|∇𝑖𝑀 |2 + Δ𝑀 in the space 𝐿2(Ω̃; 𝐿2(0, 𝑇 ; (V ∩ L∞)∗)). (8.4)

Proof. Let us arbitrarily fix 𝑢 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ; (V∩L∞))). Similar as in the proof of Proposition
8.4, we also have 𝑀 × 𝑢 ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ; (V ∩ L∞))). By (8.3), (8.2) and by (6.19) we have the
following equality:

𝐿2 (Ω̃;𝐿2 (0,𝑇 ;(V∩L∞)∗))
〈
−𝑀 × (𝑀 × Δ𝑀), 𝑢

〉
𝐿2 (Ω̃;𝐿2 (0,𝑇 ;(V∩L∞)))

= lim
𝑛→∞

〈
𝑀 × Δ𝑀𝑛, 𝑀 × 𝑢

〉
𝐿2

= lim
𝑛→∞

3∑︁
𝑖=1

〈
∇𝑖𝑀𝑛,∇𝑖𝑀 × (𝑀 × 𝑢) + 𝑀 × (∇𝑖𝑀 × 𝑢) + 𝑀 × (𝑀 × ∇𝑖𝑢)

〉
𝐿2

= lim
𝑛→∞

3∑︁
𝑖=1

〈
∇𝑖𝑀𝑛, 𝑀 ⟨∇𝑖𝑀, 𝑢⟩ + ∇𝑖𝑀 ⟨𝑀, 𝑢⟩ + 𝑀 ⟨𝑀,∇𝑖𝑢⟩ − ∇𝑖𝑢

〉
𝐿2

=

3∑︁
𝑖=1

〈
∇𝑖𝑀,∇𝑖𝑀 ⟨𝑀, 𝑢⟩ − ∇𝑖𝑢

〉
𝐿2 = 𝐿2 (Ω̃;𝐿2 (0,𝑇 ;(V∩L∞)∗))

〈
𝑀

3∑︁
𝑖=1

|∇𝑖𝑀 |2 + Δ𝑀, 𝑢

〉
𝐿2 (Ω̃;𝐿2 (0,𝑇 ;(V∩L∞)))

The proof is complete. □

Lemma 8.6. We have the following regularity result about Δ𝑀 ,

Δ𝑀 ∈ 𝐿1(Ω̃; 𝐿1(0, 𝑇 ;L1)). (8.5)

Proof. By the proof of Lemma 8.1, we have 𝑀 × (𝑀 × Δ𝑀) ∈ 𝐿2(Ω̃; 𝐿2(0, 𝑇 ;H)). And by
(6.13), it is easy to check that 𝑀

∑3
𝑖=1 |∇𝑖𝑀 |2 ∈ 𝐿1(Ω̃; 𝐿1(0, 𝑇 ;L1)). Hence by (8.4), we have

Δ𝑀 ∈ 𝐿1(Ω̃; 𝐿1(0, 𝑇 ;L1)). □

9. Proof of the main result

Finally we are ready to finish the proof the main result (Theorem 2.10) of this paper.

Proof of Theorem 2.10.(i) The results follows from Lemma 6.9, Lemma 6.10, Lemma 6.19 and
Lemma 8.6.

(ii) The results follows from Lemma 8.1 and Lemma 7.6.
(iii) The result follows from Lemma 7.5.
(iv) The result follows from Lemma 8.2.

□
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11. Appendix: Proofs of some auxiliary results

Here are some auxiliary results and their proofs.

Proposition 11.1. The sequence {∑𝑛
𝑗=1𝑊 𝑗ℎ 𝑗 }𝑛 introduced in the Remark 2.8 is a Cauchy

sequence in 𝐿2(Ω;𝐶 ( [0, 𝑇];H)).

Proof. Let us introduce the notation 𝑎𝑛 := {∑𝑛
𝑗=1𝑊 𝑗ℎ 𝑗 }𝑛, and consider 𝑎𝑛+𝑘 − 𝑎𝑛.

∥𝑎𝑛+𝑘 − 𝑎𝑛∥𝐿2 (Ω;𝐶 ( [0,𝑇];H)) =







 𝑛+𝑘∑︁
𝑗=𝑛+1

𝑊 𝑗ℎ 𝑗








𝐿2 (Ω;𝐶 ( [0,𝑇];H))

≤
𝑛+𝑘∑︁
𝑗=𝑛+1



𝑊 𝑗ℎ 𝑗



𝐿2 (Ω;𝐶 ( [0,𝑇];H)) =

𝑛+𝑘∑︁
𝑗=𝑛+1

[
E

(
sup
𝑡∈[0,𝑇]

∥𝑊 𝑗 (𝑡)ℎ 𝑗 ∥2
H

)] 1
2

.

By the Doob’s maximal inequality, we have

E

(
sup
𝑡∈[0,𝑇]

∥𝑊 𝑗 (𝑡)ℎ 𝑗 ∥2
H

)
≤ 4𝑇 ∥ℎ 𝑗 ∥2

H.

Hence we have

∥𝑎𝑛+𝑘 − 𝑎𝑛∥𝐿2 (Ω;𝐶 ( [0,𝑇];H)) ≤ 2
√
𝑇

𝑛+𝑘∑︁
𝑗=𝑛+1

∥ℎ 𝑗 ∥H.

Therefore by our assumption on ℎ 𝑗 in the statement of Problem 2.7 (the equation (2.11)), {𝑎𝑛} is
Cauchy in the space 𝐿2(Ω;𝐶 ( [0, 𝑇];H)). □

The next result used in the proof of Lemma 4.2.

Lemma 11.2. [17] Let 𝑝 ≥ 2 and 𝑎 ∈ [0, 1
2 ) be given. There exists a constant 𝐶 (𝑝, 𝑎) > 0

such that for any progressively measurable process 𝜉 =
∑∞
𝑗=1 𝜉 𝑗 ∈ 𝐿𝑝 (Ω × [0, 𝑇];H) with∑∞

𝑗=1 ∥𝜉 𝑗 ∥2
H < ∞, we have

E







 ∞∑︁
𝑗=1

∫ ·

0
𝜉 𝑗 (𝑡) d𝑊 𝑗 (𝑡)








𝑝

𝑊𝑎,𝑝 (0,𝑇 ;H)

≤ 𝐶 (𝑝, 𝑎)E
∫ 𝑇

0

©­«
∞∑︁
𝑗=1



𝜉 𝑗 (𝑡)

2
H
ª®¬

𝑝

2

d𝑡.
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The next two results used in the proof of Lemma 5.2.

Lemma 11.3. [17] Let 𝐵0 ⊂ 𝐵 ⊂ 𝐵1 be Banach spaces, 𝐵0 and 𝐵1 being reflexive and the
embedding 𝐵0 ↩→ 𝐵 to be compact. Let 𝑝 ∈ (1,∞) and 𝑎 ∈ (0, 1) be given. Then the embedding

𝐿𝑝 (0, 𝑇 ; 𝐵0) ∩𝑊𝑎,𝑝 (0, 𝑇 ; 𝐵1) ↩→ 𝐿𝑝 (0, 𝑇 ; 𝐵)

is compact.

Lemma 11.4. [17] Assume that 𝐵1 ⊂ 𝐵2 are two Banach spaces with compact embedding, and
𝑎 ∈ (0, 1), 𝑝 > 1 satisfying 𝑎 > 1

𝑝
. Then the space 𝑊𝑎,𝑝 (0, 𝑇 ; 𝐵1) is compactly embedded into

𝐶 ( [0, 𝑇]; 𝐵2).

The Lemma 11.5 and Definition 11.6 and Lemma 11.7 are used in the proof of Lemma 5.3.

Lemma 11.5. The Hilbert space

𝑈 = 𝐻2(R3;R3) ∩ 𝑌 (𝑥2)

is compactly and densely embedded into Y, where the space 𝑌 (𝑥2) is defined as

𝑌 (𝑥2) :=
{
𝑓 ∈ Y :

∫
R3

| 𝑓 (𝑥) |2 |𝑥 |2 d𝑥 +
∫
R3

|∇ × 𝑓 (𝑥) |2 |𝑥 |2 d𝑥 < ∞
}
.

Proof of that𝑈 is compactly and densely embedded into Y. The embedding is dense follows from
that 𝐶∞

0 (R3;R3) is dense in Y. So we only need to prove the embedding is compact.
Let us take an arbitrary bounded set 𝑉 ⊂ 𝑈. We want to show that for any 𝜀 > 0, there exists
𝑛(𝜀) ∈ N and 𝑦1, . . . , 𝑦𝑛(𝜀) ∈ Y such that

𝑉 ⊂
𝑛(𝜀)⋃
𝑖=1

𝐵𝜀 (𝑦𝑖).

Now let us arbitrary fix an 𝜀 > 0, we claim that there exists 𝑅 > 0, such that for all 𝑣 ∈ 𝑉 , we
have ∫

𝐵𝑐
𝑅

(
|𝑣(𝑥) |2 + |∇ × 𝑣(𝑥) |2

)
d𝑥 <

𝜀

2
.

In fact if it is not the case, then for any 𝑅 > 0, there exists 𝑣 ∈ 𝑉 such that∫
𝐵𝑐
𝑅

(
|𝑣(𝑥) |2 + |∇ × 𝑣(𝑥) |2

)
d𝑥 ≥ 𝜀

2
.

Then
∥𝑣∥2

𝑈 ≥
∫
𝐵𝑐
𝑅

(
|𝑣(𝑥) |2 + |∇ × 𝑣(𝑥) |2

)
|𝑥 |2 d𝑥 ≥ 𝜀

2
𝑅2,

which contradict to the boundness of 𝑉 in𝑈.
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By the Rellich-Kondrachov Theorem, 𝐻2(𝐵𝑅;R3) compactly embedded into 𝐻1(𝐵𝑅;R3), so the
embedding 𝐻2(𝐵𝑅;R3) ↩→ Y𝑅 is also compact, where

Y𝑅 := {𝑦 ∈ Y : 𝑦(𝑥) = 0 for |𝑥 | > 𝑅}.

Hence there exist 𝑛(𝜀) ∈ N and 𝑦1, . . . , 𝑦𝑛(𝜀) ∈ Y𝑅 such that for any 𝑣 ∈ 𝑉 there is some
𝑗 ∈ {1, 2, . . . , 𝑛(𝜀)} such that∫

𝐵𝑅

(
|𝑣(𝑥) − 𝑦 𝑗 (𝑥) |2 + |∇ × (𝑣(𝑥) − 𝑦 𝑗 (𝑥)) |2

)
d𝑥 <

𝜀

2
.

Since 𝑦 𝑗 = 0 outside 𝐵𝑅, we actually have

∥𝑣 − 𝑦 𝑗 ∥2
Y =

∫
R3

(
|𝑣(𝑥) − 𝑦 𝑗 (𝑥) |2 + |∇ × (𝑣(𝑥) − 𝑦 𝑗 (𝑥)) |2

)
d𝑥

=

∫
𝐵𝑅

(
|𝑣(𝑥) − 𝑦 𝑗 (𝑥) |2 + |∇ × (𝑣(𝑥) − 𝑦 𝑗 (𝑥)) |2

)
d𝑥

+
∫
𝐵𝑐
𝑅

(
|𝑣(𝑥) |2 + |∇ × 𝑣(𝑥) |2

)
d𝑥 < 𝜀.

Therefore the embedding𝑈 ↩→ Y is compact and the proof is complete. □

Definition 11.6 (Aldous condition). Let (Ω, F , P) be a probability space with a filtration F. Let
(𝑆, 𝜌) be a separable metric space with the metric 𝜌. We say that {𝑋𝑛 (𝑡)}, 𝑡 ∈ [0, 𝑇], of 𝑆-valued
processes satisfies the Aldous condition iff ∀𝜀 > 0, ∀𝜂 > 0, ∃𝛿 > 0 such that for every sequence
{𝜏𝑛} of F-stopping times with 𝜏𝑛 ≤ 𝑇 a.s. one has:

sup
𝑛∈N

sup
0≤𝜃≤𝛿

P{𝜌(𝑋𝑛 (𝜏𝑛 + 𝜃), 𝑋𝑛 (𝜏𝑛)) ≥ 𝜂} ≤ 𝜀. (11.1)

We will also need the following Tightness Criterion.

Lemma 11.7 (Tightness Criterion). ([12], Cor 3.10) Let (Ω, F , P) be a probability space with
the filtration F. Let 𝐻 be a separable Hilbert space, 𝑈 be another Hilbert space such that the
embedding𝑈 ↩→ 𝐻 is compact and dense,𝑈∗ be the dual space of𝑈. Let {𝑋𝑛 (𝑡)}𝑛∈N, 𝑡 ∈ [0, 𝑇]
be a sequence of continuous F-adapted𝑈∗ valued process such that

(a) there exists a positive constant 𝐶 such that

sup
𝑛∈N

E

[
sup
𝑠∈[0,𝑇]

∥𝑋𝑛 (𝑠)∥𝐻

]
≤ 𝐶.

(b) {𝑋𝑛}𝑛∈N satisfies the Aldous condition (11.1) in𝑈∗.

Then the laws of 𝑋𝑛 on 𝐶 ( [0, 𝑇];𝑈∗) ∩ 𝐿2
𝑤 ( [0, 𝑇];𝐻) are tight.

The next Lemma states that the𝑊ℎ introduced in Lemma 6.1 is a 𝑄-Wiener process.
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Lemma 11.8. Let H be a separable Hilbert space. Let (Ω, F , P) be a probability space and𝑊ℎ

is a H-valued 𝑄-Wiener process on it for some covariance operator 𝑄. Let (Ω̃, F̃ , P̃) be another
probability space and𝑊ℎ is a H-valued adapted stochastic process on it. 𝑊ℎ and𝑊ℎ have same
distribution on 𝐶 ( [0, 𝑇];H) for some 𝑇 > 0. Then𝑊ℎ is also a 𝑄-Wiener process.

Proof. To show 𝑊ℎ is a Wiener process, we will show that the following four conditions are
satisfied:

(i) 𝑊ℎ (0) = 0, P̃-a.s.;
(ii) 𝑊ℎ has continuous trajectories, P̃-a.s.;
(iii) 𝑊ℎ has independent increments;
(iv) ℒ(𝑊ℎ (𝑡) −𝑊ℎ (𝑠)) = 𝑁 (0, (𝑡 − 𝑠)𝑄).
Now let us prove them one by one. We will repeatedly use the fact that all the cylindrical sets
in 𝐶 ( [0, 𝑇];H) are Borel sets and the assumption that 𝑊ℎ and 𝑊ℎ have same distribution on
𝐶 ( [0, 𝑇];H).

(i) 𝑊ℎ (0) = 0, P̃-a.s.;
Note that {𝑥 ∈ 𝐶 ( [0, 𝑇];H) : 𝑥0 = 0} is a cylindrical set, so it is a Borel set, therefore we have
the following equalities:

P̃(𝑊ℎ (0) = 0)
= P̃

{
𝜔 ∈ Ω̃ : 𝑊ℎ (·, 𝜔) ∈ {𝑥 ∈ 𝐶 ( [0, 𝑇];H) : 𝑥0 = 0}

}
= P

{
𝜔 ∈ Ω : 𝑊 (·, 𝜔) ∈ {𝑥 ∈ 𝐶 ( [0, 𝑇];H) : 𝑥0 = 0}

}
= P(𝑊ℎ (0) = 0) = 1.

Hence the condition (i) is proved.
(ii) 𝑊ℎ has continuous trajectories, P̃-a.s.;
Since𝑊ℎ and𝑊ℎ have same distribution on 𝐶 ( [0, 𝑇];H), we have

P̃{𝑊ℎ ∈ 𝐶 ( [0, 𝑇];H)} = P{𝑊ℎ ∈ 𝐶 ( [0, 𝑇];H)} = 1.

Hence the condition (ii) is proved.
(iii) 𝑊ℎ has independent increments;
For 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑡3 < 𝑡4 ≤ 𝑇 , any 𝐴, 𝐵 ∈ B(H), we have the following equality:

{𝑊ℎ (𝑡2) −𝑊ℎ (𝑡1) ∈ 𝐴} ∩ {𝑊ℎ (𝑡4) −𝑊ℎ (𝑡3) ∈ 𝐵}
=

{
𝜔 ∈ Ω̃ : 𝑊ℎ (·, 𝜔) ∈ {𝑥 : 𝑥𝑡2 − 𝑥𝑡1 ∈ 𝐴} ∩ {𝑥 : 𝑥𝑡4 − 𝑥43 ∈ 𝐵}

}
.

𝐴, 𝐵 ∈ B(H), so {𝑥 : 𝑥𝑡2 − 𝑥𝑡1 ∈ 𝐴}, {𝑥 : 𝑥𝑡4 − 𝑥43 ∈ 𝐵} are cylindrical sets and hence they are
Borel sets, so {𝑥 : 𝑥𝑡2 − 𝑥𝑡1 ∈ 𝐴} ∩ {𝑥 : 𝑥𝑡4 − 𝑥43 ∈ 𝐵} is also a Borel set in 𝐶 ( [0, 𝑇];H). Since
𝑊ℎ and𝑊ℎ have same law and𝑊ℎ has independent increments, we have

P̃
({
𝜔 ∈ Ω̃ : 𝑊ℎ (·, 𝜔) ∈ {𝑥 : 𝑥𝑡2 − 𝑥𝑡1 ∈ 𝐴} ∩ {𝑥 : 𝑥𝑡4 − 𝑥𝑡3 ∈ 𝐵}

})
= P

({
𝜔 ∈ Ω : 𝑊ℎ (·, 𝜔) ∈ {𝑥 : 𝑥𝑡2 − 𝑥𝑡1 ∈ 𝐴} ∩ {𝑥 : 𝑥𝑡4 − 𝑥43 ∈ 𝐵}

})
.
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Hence

P̃
(
{𝑊ℎ (𝑡2) −𝑊ℎ (𝑡1) ∈ 𝐴} ∩ {𝑊ℎ (𝑡4) −𝑊ℎ (𝑡3) ∈ 𝐵}

)
= P

({
𝜔 ∈ Ω : 𝑊ℎ (·, 𝜔) ∈ {𝑥 : 𝑥𝑡2 − 𝑥𝑡1 ∈ 𝐴} ∩ {𝑥 : 𝑥𝑡4 − 𝑥43 ∈ 𝐵}

})
= P

(
{𝑊ℎ (𝑡2) −𝑊ℎ (𝑡1) ∈ 𝐴} ∩ {𝑊ℎ (𝑡4) −𝑊ℎ (𝑡3) ∈ 𝐵}

)
= P

(
{𝑊ℎ (𝑡2) −𝑊ℎ (𝑡1) ∈ 𝐴}

)
P
(
{𝑊ℎ (𝑡4) −𝑊ℎ (𝑡3) ∈ 𝐵}

)
= P

(
𝑊ℎ ∈ {𝑥 ∈ 𝐶 ( [0, 𝑇];H) : 𝑥𝑡2 − 𝑥𝑡1 ∈ 𝐴}

)
P(𝑊ℎ ∈ {𝑥 ∈ 𝐶 ( [0, 𝑇];H) : 𝑥𝑡4 − 𝑥𝑡3 ∈ 𝐵}

)
= P̃

(
𝑊ℎ ∈ {𝑥 ∈ 𝐶 ( [0, 𝑇];H) : 𝑥𝑡2 − 𝑥𝑡1 ∈ 𝐴}

)
P̃(𝑊ℎ ∈ {𝑥 ∈ 𝐶 ( [0, 𝑇];H) : 𝑥𝑡4 − 𝑥𝑡3 ∈ 𝐵}

)
= P̃

(
{𝑊ℎ (𝑡2) −𝑊ℎ (𝑡1) ∈ 𝐴}

)
P
(
{𝑊ℎ (𝑡4) −𝑊ℎ (𝑡3) ∈ 𝐵}

)
Hence𝑊ℎ (𝑡2) −𝑊ℎ (𝑡1) and𝑊ℎ (𝑡4) −𝑊ℎ (𝑡3) are independent, so the condition (iii) is proved.

(iv) ℒ(𝑊ℎ (𝑡) −𝑊ℎ (𝑠)) = 𝑁 (0, (𝑡 − 𝑠)𝑄) for all 𝑠, 𝑡 ∈ [0, 𝑇].
Similarly as before, since𝑊ℎ and𝑊ℎ have same law, we have

P̃{𝑊ℎ (𝑡) −𝑊ℎ (𝑠) ∈ 𝐴} = P̃
{
𝜔 ∈ Ω̃ : 𝑊ℎ (·, 𝜔) ∈ {𝑥 : 𝑥𝑡 − 𝑥𝑠 ∈ 𝐴}

}
=P

{
𝜔 ∈ Ω : 𝑊ℎ (·, 𝜔) ∈ {𝑥 : 𝑥𝑡 − 𝑥𝑠 ∈ 𝐴}

}
= P{𝑊ℎ (𝑡) −𝑊ℎ (𝑠) ∈ 𝐴}.

for all 𝐴 ∈ B(H) and 𝑠, 𝑡 ∈ [0, 𝑇]. Therefore since𝑊ℎ is a Wiener process, we have ℒ(𝑊ℎ (𝑡) −
𝑊ℎ (𝑠)) = ℒ(𝑊ℎ (𝑡) −𝑊ℎ (𝑠)) = 𝑁 (0, (𝑡 − 𝑠)𝑄) for all 𝑠, 𝑡 ∈ [0, 𝑇]. Hence the condition (iv) is
proved.

Therefore the proof of Lemma 11.8 is complete. □

The next two results are used in the proof of Proposition 6.5.

Lemma 11.9 (Kuratowski Theorem). [28] Let 𝑋1, 𝑋2 be Polish spaces equipped with their Borel
𝜎-field ℬ(𝑋1),ℬ(𝑋2), and 𝜑 : 𝑋1 −→ 𝑋2 be a one to one Borel measurable map, then for any
𝐸 ∈ ℬ(𝑋1), 𝜑(𝐸) ∈ ℬ(𝑋2).

Lemma 11.10 ([29], Page 66, Thm 3.12). Suppose 𝐸 is a convex subset of a locally convex space
𝑋 . Then the weak closure 𝐸𝑤 of 𝐸 is equal to its original closure 𝐸 .

The next result is a version of Itô formula, which is used in the proof of Lemma 7.5.

Lemma 11.11. [27](Th. 1.2) Let 𝑉 and 𝐻 be two separable Hilbert spaces, such that 𝑉 ↩→ 𝐻

continuously and densely. We identify 𝐻 with it’s dual space. And let 𝑀2(0, 𝑇 ;H) denote the
space of 𝐻-valued measurable process with the filtered probability space (Ω, (F𝑡)𝑡∈[0,𝑇] , P) which
satisfy: 𝜑 ∈ 𝑀2(0, 𝑇 ;H) if and only if

(i) 𝜑(𝑡) is F𝑡 measurable for almost every 𝑡;
(ii) E

∫ 𝑡

0 |𝜑(𝑡) |2 d𝑡 < ∞.
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We suppose that

𝑢 ∈ 𝑀2(0, 𝑇 ;𝑉), 𝑢0 ∈ H, 𝑣 ∈ 𝑀2(0, 𝑇 ;𝑉 ′),

E
∫ 𝑇

0

∞∑︁
𝑗=1

∥𝑧 𝑗 (𝑡)∥2
H d𝑡 < ∞,

with

𝑢(𝑡) = 𝑢0 +
∫ 𝑡

0
𝑣(𝑠) d𝑠 +

∞∑︁
𝑗=1

∫ 𝑡

0
𝑧 𝑗 (𝑠) d𝑊 𝑗 (𝑠).

Let 𝛾 be a twice differentiable functional on 𝐻, which satisfies:

(i) 𝛾, 𝛾′ and 𝛾′′ are locally bounded.
(ii) 𝛾 and 𝛾′ are continuous on 𝐻.
(iii) Let ℒ1(𝐻) be the Banach space of all the trace class operators on 𝐻. Then ∀𝑄 ∈ ℒ

1(𝐻),
𝑇𝑟 [𝑄 ◦ 𝛾′′] is a continuous functional on 𝐻.

(iv) If 𝑢 ∈ 𝑉 , 𝜓′(𝑢) ∈ 𝑉; 𝑢 ↦→ 𝛾′(𝑢) is continuous from 𝑉 (with the strong topology) into 𝑉
endowed with the weak topology.

(v) ∃𝑘 such that ∥𝛾′(𝑢)∥𝑉 ≤ 𝑘 (1 + ∥𝑢∥𝑉 ), ∀𝑢 ∈ 𝑉 .

Then P almost surely,

𝛾(𝑢(𝑡)) = 𝛾(𝑢0) +
∫ 𝑡

0
𝑉 ′ ⟨𝑣(𝑠), 𝛾′(𝑢(𝑠))⟩𝑉 d𝑠 +

∞∑︁
𝑗=1

∫ 𝑡

0
𝐻

〈
𝛾′(𝑢(𝑠)), 𝑧 𝑗 (𝑠)

〉
𝐻

d𝑊 𝑗 (𝑠)

+1
2

∞∑︁
𝑗=1

∫ 𝑡

0
𝐻

〈
𝛾′′(𝑢(𝑠))𝑧 𝑗 (𝑠), 𝑧 𝑗 (𝑠)

〉
𝐻

d𝑠.

The last Lemma is used in the proof of Lemma 8.2.

Lemma 11.12 (Kolmogorov continuity). Let {𝑢(𝑡)}𝑡∈[0,𝑇] be a stochastic process with values in
a separable Banach space X, such that for some 𝐶 > 0, 𝜀 > 0, 𝛿 > 1 and all 𝑡, 𝑠 ∈ [0, 𝑇],

E


𝑢(𝑡) − 𝑢(𝑠)

𝛿X ≤ 𝐶 |𝑡 − 𝑠 |1+𝜀 .

Then there exists a version of 𝑢withP almost surely trajectories being H¥older continuous functions
with an arbitrary exponent smaller than 𝜀

𝛿
.
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