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For the mean field induction equation ∂tB + η∇2B = ∇×F in a conducting volume V , where B is
the mean magnetic field, ∂t is rate of change, η is magnetic diffusivity, using the second order correlation
approximation (SOCA) the electromotive force F is F = α·B. The following antidynamo theorem (ADT)

is derived: if there is no generation of azimuthal F from azimuthal B, that is when 1φ·α·1φ = αφφ = 0,
where 1φ is the unit vector in the φ direction, (s, φ, z) cylindrical polar coordinates, then an axisymmetric
magnetic field will decay. This αφφ = 0 ADT is derived in two parts. Firstly, the magnetic field contained
in meridional planes (containing the axis of symmetry) is shown to decay to zero. Once the meridional field
has decayed, the azimuthal component of the magnetic field is shown to decay.

As a gauge of the magnetic energy, ‖b‖2 =
∫
V b

2dV , where V is a finite conductor, b = B·1φ/s, is con-

sidered. The resulting ‖b‖2 magnetic energy analysis demonstrates that; for α = α(s, z), and αφφ = 0, once
the meridional field has decayed, induction can contribute energy by increasing the Magnetic Reynolds num-
ber, however, diffusion detracts energy to more-than account for the inductive contributions and, consistent
with the ADT, the field decays. Numerical results and field plots using the model α = s1z1φ, illustrate the
interaction mechanisms responsible for the diffusive dominance as induction is increased.

Using the SOCA and Green’s-tensor analysis an explicit formulation for this critical αφφ is derived. It is
shown for a conductor filling all space, for zero mean flow using the SOCA, if ever member of the ensemble
of turbulent flows and the mean magnetic field are co-axisymmetric then αφφ = 0.

The analysis of Braginskii (1964), where the fields are analysed as perturbations from axisymmetry, is
extended to compressible velocity fields appropriate for the solar and stellar dynamos. This new analysis,
as well as the original incompressible treatment in Braginskii (1964), also produce an αφφ component for
a reformulation of the problem into ‘effective’ mean, magnetic and velocity fields. The work of Soward
(1972) which generalises that of Braginskii (1964) to higher orders and more general field decompositions
for incompressible flows, is analysed to provide a concise expression, and generation mechanism for αφφ.
Each of these disparate approaches provide insight into mechanisms for generating this critical αφφ regen-
erative component and produce remarkably similar generation mechanisms dependent on the helicity of the
meridional perturbation velocity field.

Conclusions for non-magnetic stars are proposed and implications for hidden dynamos are drawn.
For the mean field induction equation ∂tB + η∇2B = ∇ × F in a conducting volume V , where B is

the mean magnetic field, ∂t is rate of change, η is magnetic diffusivity, using the second order correlation
approximation (SOCA) the electromotive force F is F = α·B. The following antidynamo theorem (ADT)

is derived: if there is no generation of azimuthal F from azimuthal B, that is when 1φ·α·1φ = αφφ = 0,
where 1φ is the unit vector in the φ direction, (s, φ, z) cylindrical polar coordinates, then an axisymmetric
magnetic field will decay. This αφφ = 0 ADT is derived in two parts. Firstly, the magnetic field contained
in meridional planes (containing the axis of symmetry) is shown to decay to zero. Once the meridional field
has decayed, the azimuthal component of the magnetic field is shown to decay.

As a gauge of the magnetic energy, ‖b‖2 =
∫
V b

2dV , where V is a finite conductor, b = B·1φ/s, is con-

sidered. The resulting ‖b‖2 magnetic energy analysis demonstrates that; for α = α(s, z), and αφφ = 0, once
the meridional field has decayed, induction can contribute energy by increasing the Magnetic Reynolds num-
ber, however, diffusion detracts energy to more-than account for the inductive contributions and, consistent
with the ADT, the field decays. Numerical results and field plots using the model α = s1z1φ, illustrate the
interaction mechanisms responsible for the diffusive dominance as induction is increased.

Using the SOCA and Green’s-tensor analysis an explicit formulation for this critical αφφ is derived. It is
shown for a conductor filling all space, for zero mean flow using the SOCA, if ever member of the ensemble
of turbulent flows and the mean magnetic field are co-axisymmetric then αφφ = 0.

The analysis of Braginskii (1964), where the fields are analysed as perturbations from axisymmetry, is
extended to compressible velocity fields appropriate for the solar and stellar dynamos. This new analysis,
as well as the original incompressible treatment in Braginskii (1964), also produce an αφφ component for
a reformulation of the problem into ‘effective’ mean, magnetic and velocity fields. The work of Soward

∗ Corresponding author. Email: collin.phillips@sydney.edu.au



March 6, 2023 Geophysical and Astrophysical Fluid Dynamics gafdIV˙3˙3˙23

2 C.G. Phillips and D.J. Ivers

1972 which generalises that of Braginskii (1964) to higher orders and more general field decompositions for
incompressible flows, is analysed to provide a concise expression, and generation mechanism for αφφ. Each
of these disparate approaches provide insight into mechanisms for generating this critical αφφ regenera-
tive component and produce remarkably similar generation mechanisms dependent on the helicity of the
meridional perturbation velocity field.

Conclusions for non-magnetic stars are proposed and implications for hidden dynamos are drawn.

Keywords: αφφ = 0 antidynamo theory; Mean field electrodynamics; αφφ generation; alpha phi phi antidy-
namo theorem; non-magnetic stars

1. Introduction

This work derives the mean field counterpart of the axisymmetric antidynamo theorem (ADT)
originally established in Cowling (1934). A velocity can be said to act as a dynamo if a
magnetic field satisfying (4) does not decay to zero as t → ∞. For a self-excited dynamo, v
and B must satisfy further conditions. An ADT may establish conditions under which such an
interaction cannot perpetuate a dynamo. Thus an ADT is a collection of results that establish
necessary conditions for dynamo action (Ivers 1984).

Ivers and Phillips (2014) prove the separate mean-field, two-dimensional (2D) and planar
ADTs for homogeneous turbulence with zero mean flow. It is, however, possible to relax these
conditions. Ivers and Phillips (2014) show that for a turbulent ensemble of 2D flows of the
form v2D = vx(x, y, t)1x + vy(x, y, t)1y + vz(x, y, t)1z, where 1x is a Cartesian unit vector in
the direction of x etc., then α = α2D given by (1a). For a derivation and definition of α, see
subsection 2.1. The mean-field 2D ADT proves that for α = α2D, then a 2D mean magnetic
field will decay. Ivers and Phillips (2014) also show that for a turbulent ensemble of planar
flows, given by vP = vx(x, y, z, t)1x + vy(x, y, z, t)1y, then α = αP, (1b). The mean-field
planar ADT proves that for αP, then a general magnetic field will decay.

α2D =


αxx αxy αxz

αyx αyy αyz

αzx αzy 0

 , αP =


0 0 αxz

0 0 αyz

αzx αzy αzz

 , α2DP =


0 0 αxz

0 0 αyz

αzx αzy 0

 (1)

Krause and Rüdiger (1974) conflate these concepts and define turbulence to be ‘two-
dimensional’, if any velocity in the turbulent ensemble is 2D and planar, vTP = vx(x, y, t)1x+
vy(x, y, t)1y. This more restricted form of velocity, is a consequence of the Proudman-Taylor
theorem (Proudman 1916) for rapidly rotating fluids. Krause (1976) showed that for two-scale
isotropic ‘two-dimensional’ homogeneous turbulence then α = α2DP, (1c). Krause argued that
α = α2DP cannot produce dynamo action, even for three-dimensional mean magnetic fields
with space and time dependence eik·r+γt, if 0 < |k| � 1. However, the approximate argument
(Krause 1973, 1976) fails if α does not make a positive contribution to Re γ and thus does
not constitute a rigorous proof unless the alpha-effects, for which it is true, are characterized
independently of the argument (see Ivers and Phillips (2014)). The individual mean field 2D
and planar ADT are rigorously proven for all wave-vectors k 6= 0 in Ivers and Phillips (2014).

Rüdiger (1978) invoked the arguments of Krause to explain the observation that magnetic
[nonmagnetic] A-stars are mostly slow [fast] rotators. However, some care must be taken in
generalising the results for α given by (1) that are established for a infinite conducting region
E3, to finite conductors. The ADT established herein which proves that an axisymmetric
magnetic field cannot be sustained if αφφ = 0 ((r, θ, φ) spherical polar coordinates), can
however, be invoked in a finite conductor and may be used to preclude dynamo action under
such conditions.

In Moffatt (1970), an α of the form αM = a1(I −A1z1z), where I is the identity tensor, is
derived for a reflectionally-asymmetric random superposition of inertial waves, where A→ 1
in the rapid rotation limit. Again, here care needs to be taken in applying ADTs. As shown
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in Ivers and Phillips (2014), an ensemble of turbulent flows vTP in E3 will produce α2DP.
Thus, the Proudman-Taylor theorem and the combined 2D and Planar mean field ADT may
together preclude dynamo action in the rapid rotation limit. However, αM and α2DP are
consistent if and only if α = 0. Because αM, is derived in Moffatt (1970) and Busse (1970)
from higher order, ageostrophic terms the dynamo escapes these ADTs.

It is also tempting to use the mean field 2D ADT as, for A = 1, αzz = 0 as in α2D. However,
the arguments of Krause (1976) and the mean-field planar ADT of Ivers and Phillips (2014)
do not apply to models in a finite volumes, as they assume a uniform conductor filling all
space and cannot simply be applied to finite conductors. Thus this argument cannot be used
to explain the lack of steady axisymmetric solutions at A = 1 of Busse and Miin (1979).
Nor can they be used to explain the apparently asymptotic ADT behaviour near A = 1 for
the axisymmetric solutions of Rüdiger (1980). The results of Phillips (1993), Phillips (2013),
Phillips and Ivers (2014) provide counter examples for these apparent paradoxes and aim to
correct Kono and Roberts (1994).

As an extension to the model above for rapid rotation, Phillips and Ivers (2014) also explored
α = a1((1 − C)I + C1z1z). As C → 1, α → αzz = αzz1z1z. To explain the observed
antidynamo behaviour as C → 1, Phillips and Ivers (2014) prove that the axisymmetric
interaction equations are independent of αzz at C = 1 and thus the field decays. This αzz-
ADT is proven for a sphere and thus is distinct from the α2D and α2DP ADT results of Ivers
and Phillips (2014) proven in E3 and in turn can be applied to finite conductors. For this
αzz-ADT all components are zero except for αzz, and as such, is a special case of the ADT
proven herein where just one, αφφ, component is zero. The ADTs reviewed above are the mean
field counterparts to the laminar; axisymmetric ADT of Cowling, and the Planar ADT, and
many extensions thereof. Table 1 gives a selection of the most restricted laminar and mean
field ADTs and shows how they are related; noting the many generalisations through many
works.

Each of the ADTs in table 1 are closely related and share both analogous results and common
methods. In section 10 it is proven that, if every member of the ensemble of fluctuating
velocities is co-axisymmetric with the same axis of symmetry as the mean magnetic field in
E3, then αφφ = 0. The ADT derived herein uses an extension of the ADT of Cowling (1934).
In subsection 3.1, for αφφ = 0 the contribution from α is compared to a laminar flow (vα1).
The methods of Ivers and James (1984), used to prove an extension of Cowling’s theorem of
Ivers (1984) and for compressible flows that are not necessarily zero on the boundary, are then
adapted and extended to prove that the axisymmetric meridional field will decay to zero.

Once the meridional field has decayed, the azimuthal field is shown to decay in subsection 3.2
by using extensions and modification of Ivers (1984) and Ivers and James (1984). For other
variations of Cowling’s theorem see also Backus and Chandrasekhar (1956), Backus (1957),
Braginskii (1964), Lortz (1968), Hide (1979)

The laminar, Cartesian analogue of the Cowling (1934) axisymmetric ADT is the 2D ADT.
The 2D ADT proves that a 2D velocity, chosen to preserve 2D symmetry of the field, will result
in the decay of a 2D field; see table 1. Results of varying generality have been established by
Cowling (1957), Zel’dovich (1957), Lortz (1968), Vainshtein and Zel’dovich (1972), Lortz and
Meyer-Spasche (1982a), Lortz and Meyer-Spasche (1982b), Lortz and Meyer-Spasche (1984),
Lortz et al. (1984), Stredulinsky et al. (1986).

Just as Phillips and Ivers (2014) provide counter examples for the misuse of the mean
field 2D and planar turbulence ADT for finite conductors, the work of Bachtiar et al. (2006)
suggests a counter example for the misuse of the laminar planar velocity ADT, established in
E3, by modelling the interaction of a laminar planar velocity (vTP) in a finite conductor.

There are other examples of inappropriate uses of ADT to explain physical systems. The
ADT proven herein does provide an explanation of why a dynamo may fail in a finite con-
ducting fluid, such as non magnetic stars or planets. The work herein also has implications
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Table 1. Summary of a selection of antidynamo results showing the most restricted forms of the ADTs.

For the laminar ADTs, the ‘Velocity’ rows give the form that will preserve the symmetry of the decaying

field. For the mean field ADTs; the α is proven to result from the accompanying turbulent velocities in

E3. The ‘Field Decays’ rows give the form of the magnetic field that will decay from the accompanying;

v for laminar ADTs; and the α for the mean field ADTs. Each of; Cowling’s axisymmetric, the toroidal

velocity and the αφφ = 0, ADTs, are proven for finite conducting fluid volumes.

Antidynamo

theorems
Independent of one direction No component in one direction

Laminar antidynamo theorems

Two dimensional Planar velocity

Velocity v=vx(x, y)1x+vy(x, y)1y+vz(x, y)1z v=vx(x, y, z)1x+vy(x, y, z)1y

Field decays B=Bx(x, y)1x+By(x, y)1y+Bz(x, y)1z

Cowling’s Toroidal velocity

Velocity v=vr(r, θ)1r+vθ(r, θ)1θ+vφ(r, θ)1φ v=vθ(r, θ, φ)1θ+vφ(r, θ, φ)1φ

Field decays B=Br(r, θ)1r+Bθ(r, θ)1θ+Bφ(r, θ)1φ

Mean field antidynamo theorems

Two dimensional turbulence Planar turbulence

Velocity v′=v′x(x, y)1x+v′y(x, y)1y+v′z(x, y)1z v′=v′x(x, y, z)1x+v′y(x, y, z)1y

α v′
inE3

−→


αxx αxy αxz

αyx αyy αyz

αzx αzy 0

 v′
inE3

−→


0 0 αxz

0 0 αyz

αzx αzy αzz


Field decays B=Bx(x, y)1x+By(x, y)1y+Bz(x, y)1z

The αφφ = 0 ADT

Velocity v′=v′r(r, θ)1r+v′θ(r, θ)1θ+v′φ(r, θ)1φ

α v′
inE3

−→


αrr αrθ αrφ

αθr αθθ αθφ

αφr αφθ 0


Field decays B=Br(r, θ)1r+Bθ(r, θ)1θ+Bφ(r, θ)1φ

for proposed hidden dynamos where the field is proposed to be wholly contained within the
conductor; see for example Ivers and James (1984), Kaiser et al. (1994).

In section 2 the governing equations are derived. In section 3 the axisymmetric, αφφ = 0

ADT is proven. In section 4 the weighted energy analysis for
∫
V (Bφ/s)

2dV is conducted. In
section 5 the energy analysis is applied to a hidden dynamo model. In section 6 the spectral
methods for the investigation of the hidden dynamo model are given. In section 7 the numer-
ical methods for solving the hidden dynamo model are outlined. In section 8 the numerical
methods for solving the energy analysis are derived. In section 9 the numerical results of the
linear stability analysis and the magnetic energy analysis are presented. An explicit expression
for αφφ using the second order correlation approximation and the Green’s tensor is derived
in section 10. This analysis is also used to show that axisymmetric turbulence in E3 leads to
αφφ = 0. In section 11 an alternate expression for αφφ is produced using the methods of Bra-
ginskii (1964) extended to compressible flows as appropriate in stellar interiors. In section 12
the work of Soward (1972) is examined as it produces a concise and informative insight for
generating αφφ. Discussion and conclusions are presented in section 13.
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2. Governing equations

For an electrically conducting fluid, with prescribed velocity v, using Ampere’s Law ∇×B =
µJ in Ohm’s Law J/σ = E + v ×B yields

E = η∇×B − v ×B, (2)

where B is the magnetic induction field, E is the electric field, and J is the electric current
density. The permeability of free space µ, The electrical conductivity σ and the magnetic
diffusivity η = 1/(µσ), are uniform.

The magnetic vector potential A, where∇×A = B and E are related by E = −∂tA−∇Φ,
where Φ is the electric scalar potential and ∂t is the derivative with respect to t etc. Eliminating
E yields,

∂tA = −η∇×B + v ×B −∇Φ. (3)

Using Faraday’s Law of induction ∇×E = −∂tB and Gauss’ Law ∇·B = 0 in the curl of
(2) gives the induction equation

∂tB − η∇2B =∇×(v ×B). (4)

2.1. The second-order correlation approximation and the Green’s tensor solution

To produce mean field counterparts of (3) and (4), used herein, the velocity and magnetic
fields are decomposed into mean and fluctuating parts v = v + v′, B = B +B′, where the

overline denotes an ensemble average. Taking the mean of (4), using F ′ = 0, F ′ ×G = 0,
F +G = F +G, etc. gives

DB :=
(
∂t − η∇2

)
B −∇×(v ×B) =∇× E. (5)

where the mean turbulent emf E := v′ ×B′. Subtracting (5) from (4) yields

DB′ =∇×
(
v′ ×B +G

)
. (6)

where G := v′×B′−v′ ×B′. If the second order correlation approximation (SOCA) is used,
in which ∇×G is neglected compared to the other terms, then

DB′ =∇×
(
v′ ×B

)
=∇×F . (7)

The solution of (7) is expressed in terms of the Green’s tensor G(r, t; ξ, τ)† solution to

DG(r, t; ξ, τ) =
(
∂t − η∇2

)
G−∇×(v ×G) = δ3(ξ − r)δ(τ − t)I, (8)

where δ3 and δ are Dirac delta distributions and I is the identity tensor, subject to the
conditions G(r, t; ξ, τ) = 0 for t < τ and G(r, t; ξ, τ)→ 0 as |ξ − r| → ∞ (Bräuer 1973).

Contracting (8) with ∇×F (ξ, t) and integrating over ξ and τ gives

D
∫∫

IR3×IR
G(r, t; ξ, τ)·∇ξ×F (ξ, τ)d3ξdτ =∇×F (ξ, t). (9)

Thus from (9) a particular solution of (7) is

B′p(r, t) =

∫∫
IR3×IR

G(r, t; ξ, τ)·∇ξ×F (ξ, τ)d3ξdτ. (10)

The solution of (7) is B′(r, t) = B′h(r, t) + B′p(r, t), where B′h is the solution to (7) for
∇×F = 0.

†The upright Green’s tensor G is distinguished from the vector G.
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For B′h = 0, (10) yields

B′(r, t) =

∫∫
IR3×IR

G(r, t; ξ, τ)·∇ξ×
[
v′(ξ, τ)×B(ξ, τ)

]
d3ξdτ. (11)

Integration by parts in (11) shifts the derivative to G

B′(r, t) =

∫∫
IR3×IR

B(ξ, τ)·
[
v′(ξ, τ)×∇ξ ×GT(r, t; ξ, τ)

]
d3ξdτ. (12)

The mean electromotive force (emf) E is the ensemble mean, of the vector product of v′(r, t)
with (12), thus

E = −
∫∫

IR3×IR
v′(r, t)× [∇ξ ×GT(r, t; ξ, τ)]T× v′(ξ, τ) · B(ξ, τ) d3ξdτ. (13)

Expanding B(ξ, τ) in a Taylor series about r and t,

B(ξ, τ) = B(r, t) + (ξ − r)·∇rB(r, t) +O(|ξ − r|2) + (τ − t)∂tB(r, t) +O(|τ − t|2). (14)

Using (14) in (13) and neglecting terms O(|ξ− r|2), O(|t− τ |) then the mean field induction
equation (5) becomes

∂tB = η∇2B +∇×
(
α·B + β··∇B + v ×B

)
, (15)

where, in coordinate-independent form

α = −
∫∫

IR3×IR
v′(r, t)× [∇ξ ×GT(r, t; ξ, τ)]T× v′(ξ, τ) d3ξdτ, (16)

β = −
∫∫

IR3×IR
v′(r, t)× [∇ξ ×GT(r, t; ξ, τ)]T× v′(ξ, τ)⊗ (ξ − r) d3ξ dτ. (17)

For v = 0 and a conductor filling all space then the Green’s tensor is isotropic and given by
G(r, t; ξ, τ) = G(r − ξ, t− τ)I, where

G(r, t) =

0, t ≤ 0;

exp(−|r|2/4ηt)
(4πηt)3/2

, t > 0.
(18)

For this specialisation [∇ξ×GT(r, t; ξ, τ)]T = [I×∇ξG(r−ξ, t−τ)]. Changing the variables
of integration to ξ′ = r − ξ, τ ′ = t− τ and then dropping the primes in (16) and (17) gives

α =

∫∫
IR3×IR

v′(r, t)× [I ×∇ξG(ξ, τ)]× v′(r − ξ, t− τ) d3ξ dτ, (19)

β = −
∫∫

IR3×IR
v′(r, t)× [I ×∇ξG(ξ, τ)]× v′(r − ξ, t− τ)⊗ ξ d3ξ dτ.

The analysis above can be applied to magnetic vector potential equation (3). Alternatively,
‘uncurling’ the mean field induction equation yields

∂tA = −η∇×B +α·B + β··∇B + v ×B −∇Φ . (20)

Henceforth, the Taylor series (14) is truncated at the first term. Thus β is omitted.
The following scaling is adopted

r/r0 → r, v/v0 → v, tη/r2
0 → t, r0α0/η → Rαr0v0/η → Rv, Φ/η → Φ, (21)
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where the r0 denotes a typical dimension of the conducting volume V and the subscript 0

denotes a typical value. Using (21), (15) and (20) become

∂tB = ∇2B +∇×
(
Rαα·B +Rvv ×B

)
, (22)

∂tA = −∇×B +Rαα·B +Rvv ×B −∇Φ . (23)

3. The axisymmetric αφφ = 0 antidynamo theorem

A field F is axisymmetric in E3 if there is a cylindrical polar coordinate system (s, φ, z),
such that the cylindrical polar components of F are independent of φ. Thus,

F = F (s, z, t) = Fs(s, z, t)1s + Fφ(s, z, t)1φ + Fz(s, z, t)1z.

A meridional field is given by Fm := F − F ·1φ. Here B is axisymmetric. Using ∇·B = 0,

then∇·Bm = 0, thus the mean magnetic field B can be represented in terms of the azimuthal
magnetic field Bφ1φ and the meridional flux function χ;

B = Bφ +Bm = Bφ1φ +∇×
(χ
s

1φ

)
. (24)

There is no imposition on either α or v to be axisymmetric. However, without loss of generality
α and v are taken to be axisymmetric because departures from axisymmetry will generate
non-axisymmetric B. The axisymmetric αφφ = 0 ADT is proven in two parts. Firstly in
subsection 3.1 |χ| is shown to decay to zero. Then in subsection 3.2, once χ has decayed,∫
V |Bφ/s|dV is shown to decay.

3.1. Decay of χ

Theorem 3.1 Axisymmetric αφφ = 0, |χ| → 0 ADT:

For a conducting volume V with non-conducting exterior V̂ , where V and V̂ are individually
connected †, for B = B(s, z, t), αφφ = 0 in V and |B| = O(r−3) as r → ∞, then |χ|, decays
to zero ‡.

The φ component of (23) in V is

1

s
∂tχ =

[
−∇×B +Rαα·

(
Bφ1φ +∇×

(χ
s

1φ

))
+Rvv ×

(
Bφ1φ +∇×

(χ
s

1φ

))]
·1φ.

(25)
Using ∇×(1φ/s) = 0, then[

α·∇×
(χ
s

1φ

)]
·1φ =

1

s
1φ·(α×∇χ)·1φ = −1

s
(1φ·α× 1φ)·∇χ. (26)

The last term in (25) produces[
v ×∇×

(χ
s

1φ

)]
·1φ =

1

s
[v × (∇χ× 1φ)] ·1φ = −1

s
v·∇χ. (27)

Using (26) and (27) in (25) yields

∂tχ− s2∇·(s−2∇χ) = sRααφφBφ −Rα(1φ·α× 1φ)·∇χ−Rvv·∇χ. (28)

†V connected, means that any two points in V are associated with a curve that lies wholly in V ; likewise for V̂ .
‡It is not necessary to state the conditions α = α(s, z), v = v(s, z), V = V (s, z) as part of theorem 3.1 as, if they

were not satisfied, then B would not remain axisymmetric
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By comparing the last two terms of (28) the action of α through

1φ·α× 1φ = αφz1s − αφs1z := vα1 (29)

is equivalent to the analogue laminar velocity vα1. Thus, for αφφ = 0, (28) is transformed into
the φ component of the scaled (3) for Rv := Rvv+Rαvα1, where v = v(s, z) is an equivalent
‘laminar’ velocity. Because vα1 and hence v are not necessarily incompressible and may flow
across conductor boundaries then extensions to the Cowling (1934) ADT are required. To
this end, the proof that |χ| decays to zero of Ivers (1984) and Ivers and James (1984) are is
extended to include α and adapted below.

The φ component of the scaled (3) gives§

P{χ} := ∇2χ− 2

s
1s·∇χ−Rv·∇χ− ∂tχ = 0 in V . (30)

The φ component of ∇×B = 0 is

E{χ} = ∇2χ− 2

s
∂sχ = 0 in V̂ . (31)

The P and E operators are parabolic and elliptic, respectively.
Ivers and James (1984) (section 4.1) use theorem 5 and 7 of Protter and Weinberger (1967)

to prove the following theorem, where V∞ = V ∪ V̂ , stated here for uniform η.

Theorem 3.2 Comparison theorem for χ:
For P and E as in (30), (31), if

P{u} ≤ 0 in V ; E{u} ≤ 0 in V̂ ; (32)

|χ| ≤ u at t = 0; u ≥ 0 as s→ 0 or r →∞; (33)

then |χ| ≤ u in V∞ for t ≥ 0.

Thus, if a comparison function u can be found that decays and satisfies conditions (32),
(33), then, by theorem 3.2, |χ| will decay.

To establish a decaying u, Ivers and James (1984) section 4.2 considers the trial function

u(s, z, t) :=

{
u0F (s)e−pt, s ≤ 1;

u0F (1)e−pt, s ≥ 1;
(34)

where u0 > 0, F (s) ≥ 0, p > 0 are determined from the conditions of theorem 3.2.
Using (34) in (30) and introducing κ and λ to aid in the solution for F then

P{u} = e−ptu0

{(
∂2
sF −

1

s
∂sF + κ∂sF + λ

)
− (κ+Rvs∂s)F + pF − λ

}
.

Equation (32) is satisfied if, for s ≤ 0, κ = supV {−Rvs, 0}, p = infV {λ/F}, ∂sF ≥ 0, λ > 0,

∂2
sF −

1

s
∂sF + κ∂sF = −λ. (35)

The solution of (35) is F (s) = F0 + λF1(s), where

F1(s) =

∫ s

0
ρe−κρ

∫ 1

ρ

1

ζ
eκζ dζ dρ. (36)

Also (33) is satisfied if u0 = max{|χ|/F (s)} at t = 0.
The maximum of F1(s) occurs at s = 1, thus max{p} = λ/F (1) > 0. From theorem 3.2

|χ| ≤ u0F (s)e−λt/F (1) ≤ u0F (1)e−λt/F (1) = u0F0 [1 + aτ ] e−t/(a
−1+τ) = u0F0H(t, τ, a), (37)

§The discussion of Ivers and James (1984) and Ivers (1984) is simplified here because η is uniform herein.
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where τ = F1(1), a = λ/F0.
For each value of t and τ , H(t, τ, a) will have an optimum value of a. Using ∂aH(t, τ, a) = 0

gives a = (t − τ)/τ2. Because a = λ/F0 ≥ 0 then this analysis is valid for a ≥ 0, i.e. t ≥ τ .
For t ≤ τ the optimum for H is a→ 0 giving H(t, τ, 0) = 1. Thus from (37)

|χ| ≤ u0F0E(t; τ), (38)

where the optimum envelope is

E(t; τ) =

{
1, t ≤ τ ;
t
τ e1−t/τ , t ≤ τ .

(39)

From (38), (39) the bounding function u0F0E(t; τ) decays monotonically to 0. For t� τ the
decay time is approximately τ . From (38), the flux function will decay to zero, however, not
necessarily monotonically. For details see section 4.2.1 of Ivers and James (1984).

Here it is noted from (36) the ‘eventual’ decay time τ = F (1) is dependent on κ =
sup{−Rvs, 0} and thus dependent on Rvs. So even though the envelope u0F0E(t; τ) will
decay, the decay rate is dependent on R and vs. This may have the effect of extending the
decay of |χ|. For example, Ivers and James (1984) (pp:180) observe that: τ ≥ 1017 diffusion
time units when R ≈ 102.

This proof that |χ| decays to zero is independent of compressibility.† It is also noted that
the behaviour of v at the boundary does not affect the conclusions. Thus the proof holds for
Rv = Rvv +Rαvα1 given by (29). This concludes the proof of theorem 3.1.

3.2. Decay of
∫
V
|Bφ/s|dV

Here the meridional field is assume to have decayed to zero. Thus χ ≡ 0.

Theorem 3.3 Axisymmetric αφφ = 0, decay of
∫
V |Bφ/s|dV ADT:

For a conducting volume V with non-conducting exterior V̂ , where V and V̂ are individually
connected, for for B = B(s, z, t), χ = 0, αφφ = 0 in V and |B| = O(r−3) as r → ∞, then∫
V |Bφ/s|dV , decays.‡

Using 1φ·∇×E = s∇·
(
E × 1φ/s

)
on the φ component of the right hand side (22) yields

∂tBφ = s∇·
{(
−∇×(Bφ1φ) +Rαα·(Bφ1φ) +Rvv × (Bφ1φ)

)
× 1φ/s

}
. (40)

The diffusion term is simplified using ∇×(1φ/s) = 0,

∇×
(
Bφ1φ

)
× 1φ =

(
∇(Bφs)× 1φ

)
× 1

s
1φ = −s∇

(
Bφ/s

)
− 2Bφ1s/s. (41)

Using (41) in (40) and b := Bφ/s gives

∂tb =∇· (∇b+ 2b1s/s−Rα1φ ×α·1φb−Rvvb) . (42)

From here the working of Ivers and James (1984) section 5.4 is extended and modified to
accomodate the mean field α effect. The volume V (t) is partitioned into component volumes
Vi (i = 1, 2, . . .), where for each Vi, Bφ does not change sign. Because of the behaviour of

Bφ/s
2 as s → 0, each Vi is considered to exclude the region inside a cylinder radius s = ε.

The limit as ε→ 0 is subsequently considered. Thus the surface of Vi is decomposed into the

†The proof of Ivers and James (1984) is also independent of variable conductivity.
‡As for theorem 3.1, it is not necessary to state the conditions α = α(s, z), v = v(s, z), V = V (s, z) as part of

theorem 3.3 as, if they were not satisfied, then B would not remain axisymmetric.
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surface on the cylinder Siε = V ∩ {s = ε} and Si. Integrating (42) over Vi, and using the
divergence theorem gives∫

Vi

∂t|b|dVi = lim
ε→0

∫
Si+Siε

{∇|b|+ 2|b|1s/s−Rα1φ ×α·1φb−Rvv|b|} ·dSi. (43)

By comparing the last two terms of (43) the action of

1φ ×α·1φ = αzφ1s − αsφ1z := vα2 (44)

is compared to an analogue lamina velocity vα2.
Using |b| = 0 on Si, and ∇|b|·dSi = ∂n|b|n·dSi, then (43) becomes∫
Vi

∂t|b|dVi =

∫
Si

∂n|b|dS − lim
s→0

∫
Ii

{∇|b|+ 2|b|1s/s−Rαvα2b−Rvv|b|} ·2πs1sdz.

=

∫
Si

∂n|b|dS − 4π

∫
Ii

|b|dz + 2π lim
s→0

∫
Ii

s {−∂s|b|+Rvvs|b|+Rααzφ|b|}dz,

(45)

where Ii = limε→0 Siε. As B is differentiable and axisymmetric in V then Bφ = O(s) as
s → 0. Thus the first term in the last integral of (45) is zero. Because v is axisymmetric
then vs → 0 as s→ 0 and the second term in the last integral of (45) is zero. Similarly, α is
axisymmetric i.e. all the polar components have αzφ = αzφ(s, z) etc. Expressing αzφ in terms
of the Cartesian components gives αzφ = αzy cosφ − αzx sinφ. Thus αzφ → 0 as s → 0 and
the last term in the last integral of (45) is zero. The s factor in the last two terms of (45)
mean that they are zero for relatively well behaved v and α. Likewise b = 0 on Si results in
(46) being independent of v and α on S.

Summing (45) over all Vi and using ∂t
∫
V |b|dV =

∫
V ∂t|b|dV +

∫
S |b|vS·dS, where the

velocity of S, vS = 0 here, then (45) yields

∂t

∫
V
|b|dVi =

∫
S
∂n|b|dS − 4π

∫
I
|b|dz, (46)

where I = V ∩ {s = 0} and S is the surface of V .
The decay of

∫
V |b|dV is guaranteed unless there exists a speculative non-trivial solution

b = b0(s, z, t) to the φ component of (22), (L+ C){b0} = 0, where

L := ∇2 +
2

s
1s·∇−Rvv·∇− ∂t

C := −Rv∇·v −Rα∇·vα2 = −Rv∇·v −Rα(∂s(sαzφ)/s− ∂zαsφ), (47)

such that the RHS of (46) is zero. That is, at any time t0 > 0 (i) ∂nb0 ≡ 0 on Si, ∀i and (ii)
b0 ≡ 0 on a I, given I is not empty.

To dismiss such a b0 Ivers and James (1984) (pp. 205, 206) is adapted by considering the
pre-constructed function Z(s, z, t) = −|b0|e−cαt, where cα is an upper bound on C of (47)†.
Thus (L+C − cα){Z} = 0.‡ Because Z takes its maximum of zero on the exterior Si∪ Ii, then
Protter and Weinberger (1967) theorem 7 implies that either (iii) ∂nZ > 0 on Si ∪ Ii, or (iv)
Z is constant for t ≤ t0. Because (i) and (iii) are inconsistent, as observed by Ivers and James
(1984) (p. 206), then the only solution is b0 ≡ 0 ∀t. Thus no such non-trivial b0 exists.

Noting that, as |b| ≥ 0 in V then ∂n|b| ≤ 0 on S, where n increases from in V to S, then for
b 6≡ 0 the RHS of (46) is negative. Thus

∫
V |b|dV must be strictly monotonically decreasing

for all t. This concludes the proof of theorem 3.3.

†It is reasonable to assert that αzφ/s+ ∂sαzφ − ∂zαsφ is finite for well behaved, differentiable, axisymmetric α.
‡Because cα is an upper bound on C, then the undifferentiated term C − cα ≤ 0 and theorem 7 of Protter and

Weinberger (1967) can be utilised.
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Ivers and James (1984) section 5.2 and 5.3 provides a proof for the decay of b = Bφ/s under
restrictive conditions. This proof uses analogous methods to those outlined in section 3.1 above
for χ, but for b. The Comparison theorem for b is proven using ‘fortuitous’ extensions and
observation of theorems 5, 6, 7, and remarks of Protter and Weinberger (1967). A comparison
function b is then established using similar separation of variable methods as in section 3.1
above. This comparison function can be shown to decay monotonically to zero under the
condition csτ1(κb) < 1, where cs is an upper bound on Cv = −R∇·v,

τ1(κb) =

∫ 1

0

1

ζ3
eκbζ

∫ ζ

0
ρ3e−κbρ dρdζ (48)

is the counterpart to τ = F1(1) (36), and κb = sup{Rvs, 0} in V for t ≥ 0.
However, to use this comparison theorem/function method for theorem 3.3 the analogous

lamina velocity vα2 (44) is identified, and vα2 has no predetermined bound on the dilatation
rate ∇·vα2. Thus this method proves ineffective for the purposes of establishing theorem 3.3.

4. Magnetic energy analysis

It is instructive to consider the magnetic energy budget for the magnetic field Bφ1φ once χ
has decayed to examine the interaction of inductive and diffusive contributions. An alternate
form of (42) with v = 0, obtained by using (44) and ∇·(b1s/s) =∇(b) · 1s/s, is

∂tb = ∇2b+ 2∇b · 1s/s−Rα∇· (bvα2) . (49)

The integral of b2 over V is considered here as a weighted gauge of the magnetic energy∫
V B

2
φdV/2. Multiplying (49) by b and using ∇(b2) · (1s/s) =∇·(b21s/s), gives

∂t
1

2
b2 = b∇2b+∇·

(
b2

s
1s

)
−Rαb∇· (bvα2) . (50)

Because of the behaviour of the first term on the RHS of (50) as s→ 0, V here, as in section
3.2, is considered to exclude the region inside a cylinder radius s = ε. The surface of V is
partitioned into the surface on the cylinder Sε = V ∩ {s = ε} and S. The limit as ε → 0 is
then considered. Thus, using V = V (s, z) the integral over V of (50) becomes

∂t

∫
V

1

2
b2dV =

∫
V
b∇2bdV +

∫
V
∇·
(
b2

s
1s

)
dV −Rα

∫
V
b∇· (bvα2) dV. (51)

Using ∇·(b∇b) =∇b ·∇b+ b∇2b, and b = 0 on S, the first term on the RHS of (51) is∫
V
b∇2bdV =

lim

ε→ 0

∫
S+Sε

b∇b · dS −
∫
V
∇b ·∇bdV = −

∫
V

(∇b)2 dV. (52)

Using the divergence theorem on the second term on the RHS of (51), gives∫
V
∇·
(
b2

s
1s

)
dV = lim

ε→0

{∫
S

b2

s
1s · dS +

∫
Sε

b2

s
1s · dS

}
. (53)

For b = 0 on S the first term on the RHS of (53) vanishes. The last term in (53) becomes

lim
ε→0

∫
Sε

b2

s
1s · dS = −2π lim

s→0
s

∫
I

b2(s, z)

s
dz = −2π

∫
I
b2(0, z)dz, (54)

where b(0, z) := lims→0 b(s, z) and I = V ∩{s = 0}. The last term in (51) is transformed using

∇·(b2 vα2) = b∇·(bvα2) +∇(b) · (bvα2) = b2∇·vα2 +∇(b2) · vα2,
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the divergence theorem, and b = 0 on S, to give∫
V
b∇· (bvα2) dV = lim

ε→0

∫
S+Sε

b2 vα2 · dS −
∫
V
b∇(b) · vα2 dV =

1

2

∫
V
b2∇·vα2 dV. (55)

Thus using (53)–(55) in (51) produces the b2 ‘energy’ equation for α,

∂t

∫
V

1

2
b2dV = −

∫
V

(∇b)2 dV − 2π

∫
I
b2(0, z)dz − Rα

2

∫
V
b2∇·(1φ ×α·1φ) dV. (56)

It is possible to increase the magnitude of the last induction term of (56) by choosing, for
instance,∇·(1φ×α·1φ) to be negative throughout the sphere and increase Rα. The subsequent
contribution of induction to the rate of change of

∫
V b

2/2 dV would increase. Because the first
two terms on the right hand side of (56) do not include Rα explicitly, it is tempting to imagine
that simply increasing Rα would sustain a working dynamo. Indeed, if the contribution from
the diffusion terms in (56) where not to counteract a positive increase from induction then
the resulting energy would grow. Such a dynamo would satisfy the conditions for a so-called
hidden dynamo because the resulting magnetic field Bφ1φ would be invisible from outside
V . However, such a dynamo would contradict the antidynamo theorem proved herein. Thus
the energy analysis indicates that the diffusion terms in (56) must detract more than the
induction term contributes for all such models.

5. Decay of axisymmetric B for αφφ = 0: No hidden dynamo

To demonstrate the decay and energy budget of an αφφ = 0 model, consider:

Model 1 α = s1z1φ, (57)

in an electrically conducting sphere r ≤ 1. The magnetic field is axisymmetric and the merid-
ional component has decayed (χ = 0). The exterior is electrically insulating and there are no
sources at infinity, thus Bφ = 0 at r ≥ 1.

Model 1 has αφφ = 0, and thus satisfies the ADT established herein. The contribution of (57)
to (56) is given by ∇· (1φ ×α·1φ) = ∂s(sαzφ)/s− ∂zαsφ = 2. Also, from s1z1φ = −x1z1x +
y1z1y, the model is analytic at the origin. Thus (57) avoids unbounded (Cartesian) derivative
at the origin that could produce numerical convergence problems and unphysical contributions.
The differentiability of scalar and vector spherical harmonics is given in subsection 6.2.

For a single uncoupled eigenmode where b(s, z, t)→ eγtb(s, z), then (56), (57) reduces to

γ

∫
V
b2dV = −

∫
V

(∇b)2 dV − 2π

∫
I
b2(0, z)dz −Rα

∫
V
b2dV. (58)

Using the p-norm notation with p = 2,

‖∇b‖2 :=

∫
V

(∇b)2 dV, |b|2 := 2π

∫
I
b2(0, z)dz, ‖b‖2 :=

∫
V
b2 dV, (59)

then (58) becomes

γ‖b‖2 = −‖∇b‖2 − |b|2 −Rα‖b‖2. (60)

It will be demonstrated that for model 1, as the contribution to induction is increased,
through increasing −Rα, the contribution to diffusion through −|b|2 and −‖∇b‖2 will decrease
to counteract induction. Thus, even though the contribution from −Rα‖b‖2 in (60) may be
regenerative, γ remains negative through the counteractive, depleting effects of diffusion and
the dynamo eventually fails.
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6. Spectral representation of the linear stability eigenvalue problem

6.1. Vector spectral equations

Solutions to (22) are sought in the form

∂tB −∇2B = Rα∇× F . (61)

Here, B and F are represented as vector spherical harmonics, see Jones (1970), James (1976),

B =

∞∑
m=−∞

∞∑
n=max(|m|,1)

n+1∑
n1=n−1

Bm
n,n1

Y m
n,n1

, (62)

where Y m
n,n1

(θ, φ) = (−1)n−mΛ(n)
∑

ξ=−1,0,1

(
n

m

n1

ξ −m
1

−ξ

)
Y m−µ
n1

eξ, (63)

e−1 = (1x − i1y)/2
1/2, e0 = 1z, e1 = −(1x + i1y)/2

1/2, Λ(n) = (2n+ 1)1/2, the 2× 3 array is
a Wigner 3J coefficient (see, e.g. Brink and Satchler 1968),

Y m
n (θ, φ) = (−1)mΛ(n)(1− µ2)m/2

[
(n−m)!

(n+m)!

]1/2

∂mµ Pn(µ) eimφ, for m ≥ 0;

Y m
n = (−1)mY −mn for, m < 0; and Pn(µ) = ∂nµ(µ2 − 1)n/(2nn!), µ = cos θ.

From 1/4π
∮
Y m
n,n1
·Y M

N,N1
dΩ = δnNδn1N1

δmM ; where δij = 1, if i = j; δij = 0, if i 6= j; and

Y (or Y ) indicates complex conjugation, the Y M
N,N1

components of B and F are given by,

FMN,N1
=

1

4π

∮
F ·Y M

N,N1
dΩ. (64)

To incorporate ∇·B = 0 the toroidal, poloidal representation is used

B = T + S =∇×(Tr) +∇×∇×(rS),

where r = r1r. The potential functions T , S are represented as scalar spherical harmonics as,
[T, S] =

∑∞
m=−∞

∑∞
n=|m|[T

m
n (r, t), Smn (r, t)]Y m

n (θ, φ)eγt. The Bm
n,n1

are related to Tmn and Smn
by

Bm
n,n−1 =

(n+ 1)n1/2

Λ(n)
∂n−1
n Smn , B

m
n,n = −i[n(n+ 1)]1/2Tmn , B

m
n,n+1 =

n(n+ 1)1/2

Λ(n)
∂n+1
n Smn ,

(65)
where ∂n−1

n := ∂r + (n+ 1)/r and ∂n+1
n := ∂r − n/r.

By inverting (65) the toroidal, poloidal spectral forms of the induction equation are

(γ −DN )TMN = − Rα
Λ(N)

[
∂NN−1

N1/2
−

∂NN+1

(N + 1)1/2

]
FMN,N−1 , (γ −DN )SMN =

iRFMN,N

[N(N + 1)]1/2
,

(66)
where Dn := ∂nn−1∂

n−1
n .

Here, the general spectral equations are derived for F = a sin θ1z1φ·B, where a = a(r). For
model 1, (57) a(r) = r. From Phillips (1993) or the polar forms of Y m

n,n1
(see, James 1976),

1z = Y 0
1,0 and 1φ = − 1

sin θ

√
2

3
iY 0

1,1 . (67)



March 6, 2023 Geophysical and Astrophysical Fluid Dynamics gafdIV˙3˙3˙23

14 C.G. Phillips and D.J. Ivers

Thus by representing a as, a =
∑∞

ma=−∞
∑∞

na=|ma| a
ma
na Y

ma
na , (64) and (67) yield

FMN,N1
=

1

4π

∮
a sin θ 1z·B 1φ·Y

M
N,N1

dΩ

= −
√

2

3
i
∑
na,ma

∑
n,n1,m

ama
na B

m
n,n1

1

4π

∮
Y ma
na Y

0
1,0·Y m

n,n1
Y 0

1,1·Y
M
N,N1

dΩ. (68)

The integral of five scalar and vector spherical harmonics in (68) may be reduced
by expressing the product of two harmonics as one. For example, Y 0

1,1·Y m
N,N1

=∑
N ′,N ′1,M

′ 1/4π
∮
Y 0

1,1·Y M
N,N1

Y
M ′

N ′,N ′1
dΩ YM ′

N ′,N ′1
. To evaluate such integrals the following result

of Jones (1970) is used

1

4π

∮
Y ma
na,n1a

·Y mb
nb,n1b

Y mc
nc dΩ

= (−1)na+n1aΛ(na, n1a, nb, n1b, nc)

{
na
n1b

n1a

nb

1

nc

}(
n1a

0

n1b

0

nc
0

)(
na
ma

nb
mb

nc
mc

)
, (69)

where the 2 × 3 array in brasses is a Wigner 6J coefficient and Λ(n, n1) = Λ(n)Λ(n1) etc.
From Brink and Satchler (1968) useful special cases of 3J and 6J coefficients are(

na
ma

nb
mb

0

0

)
=

(−1)na−maδnanbδma−mb

Λ(na)
and

{
na
nd

nb
nc

0

nf

}
=

(−1)nb+nd−nf δnanbδncnd
Λ(na, nc)

, (70)

where orders and degrees take only integer values for the formulæ herein.
Using (67a), (69), (70), the symmetry of 3J and 6J coefficients, and the complex conjugate

relations Y
m
n = (−1)mY −mn , Y

M
N,N1

= (−1)N+N1+1+M Y −MN,N1
then

1z·Y m
n,n1

= (−1)n+mΛ(n)

(
n

m

n1

−m
1

0

)
Y m
n1
. (71)

Similarly, using (67b), (69) to reduce Y 0
1,1·Y M

N,N1
to a sum of scalar Y ’s and (71) in (64)

results in an integral of three scalar Y ’s. The remaining integral has been evaluated by Adams
(1900) as

1

4π

∮
Y ma
na Y

mb
nb Y

mc
nc dΩ = Λ(na, nb, nc)

(
na
0

nb
0

nc
0

)(
na
ma

nb
mb

nc
mc

)
.

Thus the vector spherical harmonic components of F = a sin θ1φ·B 1z are given by

FMN,N1
=
∑
na,ma

∑
n,n1,m

∑
N ′,M ′

ama
na B

m
n,n1

√
6 i (−1)N+1+mΛ(na, n, n1, N,N1, N

′, N ′)×

{
n1

1

n

1

1

N ′

}(
n1

0

N ′

0

1

0

)(
N

M

N1

−M
1

0

)(
n

m

N ′

−m
1

0

)(
N ′

0

N1

0

na
0

)(
N ′

m

N1

−M
na
ma

)
. (72)

For model 1, from the result of subsection 3.1 and χ = 0, only the toroidal equation
(66a) is required. The FMN,N1

contributions to (66a) are calculating using (72) directly. The

Bm
n,n1

contributions are converted to Tmn contributions using (65b). Here, for α = s1z1φ,

a = r, a0
0 = r, and all other amn are zero. This method of using the Y N,N1

formalism has
the advantage that the spectral forms are summarised in (72) and any errors at this level
are usually catastrophic and immediately evident. This same method has been utilised for a
wide spectrum of problems from laminar velocity models to models of anisotropic diffusion
and other mean field α models. Thus many, common components for these problems in the
numerical program have been benchmarked. The method also avoids errors in converting back
to interaction-type spectral equations.
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6.2. Behaviour of α at the origin

From the Herglotzian definition of the spherical harmonics, for any integer k ≥ 0,
rn+2kY m

n (θ, φ) is a homogeneous polynomial in x, y, z, and thus, an analytic function of x, y, z
at the origin. However, rn+2k+1Y m

n (θ, φ) has singular Cartesian derivatives in x, y, z of order
n + 2k + 1 at the origin. Thus, the scalar function f , is an analytic function of x, y, z at the
origin, if the coefficients of its spherical harmonic expansion f =

∑
n,m f

m
n (r)Y m

n (θ, φ) are

of the form, fmn (r) = rn
∑∞

k=0 f
m,k
n r2k , where the fm,kn are independent of r. Likewise, from

(63), Y m
n,n1

is a linear combination of Yn1
(θ, φ) of order n1, and complex cartesian unit vectors

eξ. Thus F =
∑

n,n1,m
Fmn,n1

(r)Y m
n,n1

(θ, φ) is an analytic function of x, y, z at the origin, if

Fmn,n1
(r) = rn1

∑∞
k=0 F

m,k
n,n1r

2k, where the Fm,kn,n1 are independent of r. As an example for model 1

α = s1z1φ = i
√

2/3 r0Y 0
10 r

1Y 0
11 will be analytic at the origin.

7. Formulation of the eigen-problem for model 1

For model 1, from the result of subsection 3.1 (or 3J and 6J selection rules), χ = 0, (66a), (72)
and (65b), then the radial functions Tn(r) always occur in one of the forms Tn(r), ∂nn1

Tn(r),
DnTn(r), where Tn(r) = T 0

n(r) etc. These specific forms are discretised using second-order
finite-differences on a uniform grid, rj = jh, j = 1, 2, . . . , Jmax, h = 1/Jmax. This programming
technique adds extra levels of redundancy. An analytic extension of the radial functions across
the origin is used to fold-back the differencing scheme at r = 0 to r > 0 (see Ivers and Phillips
2003). From subsection 6.2, if

Tn = O(rn + rn+2 + rn+4 + . . .), (73)

then T is a polynomial in (x, y, z) and thus analytic at the origin. To satisfy Bφ = 0 at r = 1
and (73), Tn(0) = Tn(1) = 0 and the Tn equations are omitted at r = 0 and r = 1.

For a single mode Bm
n,n1

(r, t) = Bmλ
n,n1

(r)eλt of (62), the original problem is represented by
the eigenvalue problem [A + RαB] e = γ e, for the eigenvalue–eigenvector pair (γ, e) where
the magnetic Reynolds number Rα is prescribed, and A, B, are matrices discretising; the
diffusion, and the induction term with F = a sin θ1z·B1φ of (61).

The eigensolutions (γ, e) were sought using inverse iteration with partial pivoting, for a
single eigenvalue or with quadratic root-finding to determine the two eigenvalues closest to a
shift, and the implicitly restarted Arnoldi method (Sorensen 1992).

7.1. Decoupling the magnetic field interactions

Herein a vector field F (r) at the point r is denoted as symmetric [anti-symmetric] in the
equatorial plane (θ = π/2) if its planar reflection F ref(r) is equal to positive [negative] the
un-reflected quantity at the reflected point F (rref), that is F ref(r) = F (rref) [F ref(r) =
−F (rref)]. Likewise, a scalar function f is symmetric [anti-symmetric], if f(r, π − θ, φ) =
f(r, θ, φ) [f(r, π − θ, φ) = −f(r, θ, φ)].

For α = s1z1φ the scalar function s is symmetric, the vector fields 1z is anti-symmetric and
1φ is symmetric. Hence, the tensor s1z1φ is antisymmetric. The symmetric [antisymmetric]

part of (61) with F = α·B and α = s1z1φ (noting × is antisymmetric) reveals that symmetric

[antisymmetric] B will decouple and evolve independently. By the same argument symmetric
α will destroy this decoupling. Thus for χ = 0, m = 0, B decouples into the symmetric
(T1, T3, T5, T7, . . .) and antisymmetric (T2, T4, T6, T8, . . .) classes.
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8. Energy budget analysis: spectral methods for evaluating ‖b‖2, ‖∇b‖2 and |b|2

For B axisymmetric and χ = 0, then B = −∂θT 1φ. Here T =
∑∞

n=1 TnΛ(n)Pn(cos θ), thus

B = −
∞∑
n=1

TnΛ(n)∂θPn(cos θ)1φ. (74)

The Tn from the eigen solutions e and γ could be used directly in (74) to calculate B, which
in turn can be used to calculate ‖b‖2, ‖∇b‖2 and |b|2 for the energy analysis of (60). However,
it proves simpler and less error prone, to use a spectral representation of b directly as

b(r, θ) =

∞∑
n=0

bn(r)Pn(cos θ), (75)

calculate the bn from the Tn obtained from the eigensolution (λ, e) (using (79)) below, and
then use bn directly for ‖b‖2, ‖∇b‖2 and |b|2. Thus an expression for bn in terms of the Tn is
required.

Using the identity, ∂µ (Pn+1(µ)− Pn−1(µ)) = Λ2(n)Pn(µ) recursively in the form ∂µPn(µ) =
Λ2(n− 1)Pµ−1(µ) + ∂µPµ−2(µ) yields

∂µPn(µ) = Λ2(n− 1)Pn−1(µ) + Λ2(n− 3)Pn−3(µ) + . . . =

i≥0∑
i=n−1,−2

Λ2(i)Pi(µ), (76)

where Λ2(n) = (Λ(n))2 etc. and
∑b

i=a,c denotes a sum from a to b in steps of c. For (76) the

upper limit for the sum is to the least non-negative integer. Thus, from (74) with µ = cos θ

b =
Bφ

s
= − 1

r sin θ
∂θT = −1

r

∞∑
n=1

TnΛ(n)
1

sin θ
∂θPn(cos θ) =

1

r

∞∑
n=1

TnΛ(n)∂µPn(µ). (77)

Using (76) in (77) then b = r−1
∑∞

n=0 Λ
2(n)Pn(µ)

∑∞
i=n+1,2 Λ(i)Ti. The orthogonality of

Legendre polynomials, ∫ 1

−1
Pi(µ)Pj(µ)dµ = 2δij/Λ

2(n), (78)

is then used with (75) to give

bn =
Λ2(n)

r

∞∑
i=n+1,2

Λ(i)Ti. (79)

8.1. Evaluating
∫
V
b2dV

Thus using (78),∫
V
b2dV =

∫ 2π

0

∫ π

0

∫ 1

0

∞∑
i=0

biPi(µ)

∞∑
j=0

bjPj(µ) r2 sin θdrdθdφ = 4π

∫ 1

0

∞∑
n=0

b2n
Λ2(n)

r2dr.

8.2. Evaluating
∫
V

(∇b)2dV

From ∇f = ∂rf1r + ∂θ(f)1θ/r, ∇b =
∑∞

n=0 ∂rbnPn(µ)1r − sin θ
r

∑∞
n=0 bn∂µPn(µ)1θ. Thus∫

V (∇b)2dV = I1 + I2, where, using (78),

I1 =

∫
V

∞∑
l=0

∂rblPl(µ)

∞∑
n=0

∂rbnPn(µ)dV = 4π

∫ 1

0
r2
∞∑
n=0

(∂rbn)2

Λ2(n)
dr, (80)
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I2 =

∫
V

sin2 θ

r2

∞∑
l=0

bl∂µPl(µ)

∞∑
n=0

bn∂µPn(µ)dV. (81)

To evaluate I2 the orthogonality of the θ derivatives of the Legendre Polynomials is estab-
lished using integration by parts, ∂µ

(
(1− µ2)∂µPl(µ)

)
= −l(l + 1)Pl(µ), and (78). Thus∫ π

0
∂θ(Pn(µ))∂θ(Pl(µ)) sin θ dθ = −

∫ π

0
Pn(µ)

1

sin θ
∂θ(sin θ∂θPl(µ)) sin θ dθ

=

∫ π

0
Pn(µ)l(l + 1)Pl(µ) sin θ dθ =

2l(l + 1)

Λ2(l)
δnl. (82)

Using (82) in (81)

I2 = 2π

∫ 1

0

∫ 1

−1

∞∑
l=0

bl∂θPl(µ)

∞∑
n=0

bn∂θPn(µ)dµdr = 4π

∫ 1

0

∞∑
n=0

b2n
n(n+ 1)

Λ2(n)
dr. (83)

Combining (80) and (83) gives∫
V

(∇b)2dV = 4π

∫ 1

0
r2
∞∑
n=0

(∂rbn)2

Λ2(n)
dr + 4π

∫ 1

0

∞∑
l=0

b2l
l(l + 1)

Λ2(l)
dr.

8.3. Evaluating
∫
I
b2(0, z)dz.

If the volume V is the unit sphere, then I = [−1, 1] thus∫
I
b2(0, z)dz =

∫ 0

z=−1
b2(0, z)dz +

∫ 1

z=0
b2(0, z)dz =

∫ 1

z=0
b2(0,−z)dz +

∫ 1

z=0
b2(0, z)dz. (84)

To calculate (84), the limit as δ → 0 is considered for

I3 :=

∫ 1

r=0
b2(r, π − δ)dr +

∫ 1

r=0
b2(r, δ)dr.

=

∫ 1

r=0

[ ∞∑
n=0

bn(r)Pn(cos(π − δ))

]2

dr +

∫ 1

r=0

[ ∞∑
l=0

bl(r)Pl(cos δ)

]2

dr.

Now Pn(cos 0) = 1 and Pn(cosπ) = (−1)n thus

lim
δ→0

I3 =

∫ 1

r=0

[ ∞∑
n=0

bn(r)(−1)n

]2

dr +

∫ 1

r=0

[ ∞∑
l=0

bl(r)

]2

dr. (85)

It is noted for n and l either odd or even, the integrals in (85) will sum to twice the second.

8.4. Boundary conditions for bn,j

Using (79), and (73), then bn = O(rn+rn+2 +rn+4 + . . .) at the origin. Thus, at r = 0, bn = 0
for all n ≥ 1. However, using (79), and L’Hopital’s rule

b0,0 = Λ(1) lim
r→0

(T1/r) = Λ(1) lim
r→0

∂rT1,

where bn,j is bn at the jth gridpoint; likewise for Tn,j . From T1 = O(r1 + r3 . . .) an odd
extension of T1 is used across the origin. Thus by using central differencing across r = 0,
∂rT1 ≈ (T1,1 − T1,−1)/2h = T1,1/h. Thus b0,0 ≈ Λ(1)T1,1/h.
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From (79), (73) then ∂rbn,0 = 0, for n = 0, n ≥ 2. However, for n = 1 using L’Hopital’s rule

∂rb1,0 = Λ(1, 1, 2) lim
r→0

∂r (T2/r) = Λ(1, 1, 2)∂2
rT2,0/2.

By using an even extension of T2 across the origin and central differencing, ∂2
rT2,0 ≈ (T2,−1 −

2T2,0 + T2,1)/h2 = T2,1/h
2. Thus ∂rb1,0 ≈ Λ(1, 1, 2)T2,1/h

2.
At r = 1, left sided differencing is used, thus ∂rbn,Maxj ≈ (bn,Maxj−2−4bn,Maxj−1+3bn,Maxj)/2h.

9. Numerical results

To simplify the discussion of the results it is useful to normalise (60) by ‖b‖2, thus

γ = −‖∇b‖2/‖b‖2 − |b|2/‖b‖2 −Rα = −DV −DZ −Rα. (86)

Here the contributions to γ from diffusion are quantified by; DZ = |b|2/‖b‖2, along the z axis;
and DV = ‖∇b‖2/‖b‖2, from the gradients of b throughout the volume V . The contributions
to γ from induction are quantified by −Rα.

From (86) a benchmark of the convergence of the numerical code is the relative error

εrel := (γ +DV +DZ +Rα) /|Rα|. (87)

Table 2 shows the least negative growth rate γ, the effects of DV , DZ and the relative error
εrel given by (87), for Rα = −100, 100 for model 1.

Table 2. Numerical results for model 1, α = s1z1φ, magnetic Reynolds numbers Rα, decay rates (γ), DV , DZ and

the relative error εrel. All solutions are steady (Im{γ} = 0). The truncation is nmax = 40, Jmax = 800.

Symmetric T1, T3, T5 . . . Antisymmetric T2, T4, T6 . . .

Rα γ DV DZ εrel γ DV DZ εrel

−100 -202.595 102.535 200.057 -7.682 E-06 -210.356 110.129 200.225 -1.626 E-05

−80 -162.629 82.554 160.075 -2.206 E-06 -170.498 90.206 160.292 -3.339 E-06

−60 -122.693 62.589 120.104 -1.610 E-06 -130.755 70.343 120.412 -2.640 E-06

−40 -82.849 42.672 80.177 -1.546 E-06 -91.350 50.655 80.695 -3.409 E-06

−20 -43.732 23.094 40.638 -1.748 E-06 -53.830 31.854 41.976 -5.633 E-06

0 -20.191 10.043 10.147 ∞ -33.217 20.416 12.801 ∞
20 -43.732 20.570 3.166 2.112 E-04 -53.830 29.329 4.503 1.339 E-04

40 -82.848 40.296 2.597 1.119 E-03 -91.350 47.980 3.401 7.825 E-04

60 -122.691 60.376 2.476 2.682 E-03 -130.754 67.733 3.137 1.940 E-03

80 -162.625 80.588 2.424 4.835 E-03 -170.497 87.753 3.028 3.553 E-03

100 -202.589 100.945 2.396 7.523 E-03 -210.35 107.943 2.970 5.583 E-03

To discuss these results it is useful to observe the corresponding field configuration and
geometries. Figure 1 shows the level contours of Bφ in the meridional half plane, of the slowest

decaying mode for; (a) Rα = −100, (b) Rα = 100, B equatorially symmetric (Tn, n odd); (c)
Rα = −100, (d) Rα = 100, B equatorially antisymmetric (Tn, n even). For the symmetric
mode at Rα = −100 the resulting field rolls are distributed principally within the North and
South hemispheres. However, for Rα = 100 the field rolls are expelled outward toward the
boundary of the sphere and the resulting toroidal field gradients are principally concentrated in
narrow regions closer to r = 1. For the corresponding antisymmetric modes, the field gradients
are likewise concentrated toward r = 1 for Rα = 100. Additionally, this antisymmetric mode
must have Bφ = 0 on the equatorial plane.
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Figure 1. Level contours of Bφ (B = Bφ1φ) of the slowest decaying mode for, from left to right; (a) Rα = −100,

(b) Rα = 100, B equatorially symmetric (Tn, n odd); (c) Rα = −100, (d) Rα = 100, B equatorially antisymmetric

(Tn, n even). Because (61) with F = rθ1z1φ·B is invariant for Bφ → −Bφ (χ = 0), the light contours levels of Bφ are
negative the dark contour levels in (c) and (d).

Figure 2. Graphs of numerical solutions for the equatorially symmetric mean magnetic field B (Tn, n odd) for model 1;
α = s1z1φ in a sphere with insulating exterior. The results are for the modes with greatest γ; all solutions are steady

(Im{γ} = 0). The graphs show −γ blue (top at Rα = 100), DV = ‖∇b‖2/‖b‖2 red (middle at Rα = 100) and
DZ = |b|2/‖b‖2 yellow (bottom at Rα = 100) vs Rα. The results demonstrate the inductive and diffusive contributions
to equation (60). As the induction contribution to (56) is increased through increasing −Rα, diffusion counteracts this
and the growth rate γ remains negative.

Figure 2 demonstrates how γ, DV and DZ respond to differing inductive effects characterised
by −Rα, for the symmetric mode with greatest γ of model 1. All solutions are steady. For
increasing |Rα| the dynamo decays more rapidly.

For Rα increasing from zero, induction detracts more energy from the system. The diffusion
due to the field along the z axis (−DZ) reduces in magnitude. The DZ contribution originates
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from the ∇s component of the diffusive part of E × 1φ/s (see (40) and (41)). The resulting
∇·(b21s/s) term in (50) results in the integral along z through the divergence theorem. To
evaluate

∫
I b

2(0, z)∂z the limit as ε→ 0 is taken for b2(ε, z) as in (54). Using L’Hopital’s rule

limε→0 b
2(ε, z) = ∂sBφ(s, z)s=0. Thus, DZ is a measure of the s gradients of Bφ as s→ 0. From

figure 1 (b), the expulsion of the fields towards r = 1 results in lower field gradients along
s = 0 over the interval z = [−1, 1]. This, in turn, progressively reduces |DZ | as Rα → 100. In
this Rα interval the diffusive effects of the gradients in V and induction, through −DV −Rα,
almost completely account for the decay rate γ.

In contrast, for Rα decreasing from zero, induction will contribute energy to the system. As
indicated above, it is tempting to infer that the dynamo may be driven by this induction. How-
ever, as −Rα increases, both DV and DZ increase to counteract the inductive contributions
and each dynamo remains decaying. It is interesting that, as induction increases (Rα → −100),
DV alone closely counteracts the energy contributions from induction as −Rα−DV = O(−3).
As a result, γ closely follows −DZ as Rα → −100. Thus, as Rα → −100, the increase in DZ

almost completely accounts for the increasing decay rate†.

Figure 3. Graphs of −γ, ‖∇b‖2/‖b‖2 and |b|2/‖b‖2 vs Rα as in figure 3, except the mean magnetic fieldB is equatorially
antisymmetric (Tn, n even).

Figure 3 shows γ, DV and DZ vs Rα, for the symmetric mode with greatest γ of model 1.
Again, for this antisymmetric mode the field is expelled toward r = 1, at Rα = 100, as
indicated in figure 1 (d). Thus, the s field gradient is reduced along s = 0 in z = [−1, 1], and
again DZ → 0, for Rα → 100. For Rα < 0, the DZ component of diffusion is close to that
of the symmetric mode. However, the DV diffusive component for the antisymmetric mode is
greater than for the symmetric mode over the full range of Rα. This is due to greater field
gradients throughout the sphere for the antisymmetric model as is apparent in figure 1 (c), (d).
The fact that this antisymmetric mode must be zero on the equatorial plane also contributes
to greater DV for this model. As a result of the greater contribution from DV , the decay rate
is significantly different than DZ (γ +DZ = O(−10)).

†This observation exemplifies how care must be taken in analysing the behaviour of diffusion as s→ 0, as DZ may
play a critical part in the dynamo behaviour.
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The values of εrel, (table 2), generally increase for |Rα| increasing from zero. It is proposed
that this is due to the fields exhibiting greater structure as |Rα| increases, thus requiring
higher truncation levels to resolve. This hypothesis is reinforced by the greater field structure
and localised field gradients for Rα = 100 than for Rα = −100 (see figure 1) which results in
a larger |εrel|. The values of εrel, however, lie within satisfactory limits.

For both symmetry modes of model 1, the inductive contributions, through increasing −Rα,
are more than counteracted by the energy depleting effects of diffusion, through decreasing
−DV −DZ , and the dynamos continue to fail.

10. Derivation of αφφ using the second-order correlation approximation and the
Green’s tensor solution

Here the analysis of section 2.1 is used to find αφφ, where α is derived using the emf E :=

v′ ×B′ with B′ given by (11). To find αφφ the B = Bφ1φ contribution to B′ is used to

calculate 1φ·E. Here the B = Bφ1φ contribution to B′, is denoted by B′φ(r, t). Using (11)

B′φ(r, t) =

∫∫
IR3×IR

G(r, t; ξ, τ)·∇ξ×
[
v′(ξ, τ)×Bφ(ξ, τ)1φ

]
d3ξdτ. (88)

From

1φ·E(r, t) = 1φ·v′(r, t)×B′(r, t) = v′zB
′
s − v′sB′z, (89)

to calculate αφφ the components B′φs := B′φ·1s and B′φz := B′φ·1z are required. For v = 0
then, the Green’s tensor is isotropic G(r, t, ξ, τ) = G(r− ξ, t− τ)I, where G is given by (18).
Thus (88) gives

B′φs (r, t) =

∫∫
IR3×IR

G(r − ξ, t− τ)s−1
ξ ∂φξ(v

′
s(ξ, τ)Bφ(ξ, τ)) d3ξdτ, (90)

B′φz (r, t) =

∫∫
IR3×IR

G(r − ξ, t− τ)s−1
ξ ∂φξ(v

′
z(ξ, τ)Bφ(ξ, τ)) d3ξdτ. (91)

Using ∂φBφ = 0, changing the variables of integration to ξ′ = r−ξ, τ ′ = t− τ , then dropping
the primes, (90), (91) become

B′φs (r, t) =

∫∫
IR3×IR

G(ξ, τ)s−1
r−ξ∂φr−ξ(v

′
s(r − ξ, t− τ))Bφ(r − ξ, t− τ) d3ξdτ, (92)

B′φz (r, t) =

∫∫
IR3×IR

G(ξ, τ)s−1
r−ξ∂φr−ξ(v

′
z(r − ξ, t− τ))Bφ(r − ξ, t− τ) d3ξdτ. (93)

Expanding Bφ(r−ξ, t−τ) in a Taylor series, Bφ(r−ξ, t−τ) = Bφ(r, t)−ξ·∇Bφ(r, t)+O(|ξ|2),
neglecting terms of order ξ, in (92), (93) then using these in (89) yields

αφφ(r, t) =

∫∫
IR3×IR

G(ξ, τ)s−1
r−ξ v

′
z(r, t)∂φr−ξv

′
s(r − ξ, t− τ) d3ξ dτ

−
∫∫

IR3×IR
G(ξ, τ)s−1

r−ξ v
′
s(r, t)∂φr−ξv

′
z(r − ξ, t− τ) d3ξ dτ. (94)

If every member of the ensemble of fluctuating velocities is co-axisymmetric with the same axis
of symmetry as the mean magnetic field, then ∂φv

′
z(r, t) = ∂φv

′
s(r, t) = 0. Using ∂φv

′
z(r, t) =

∂φv
′
s(r, t) = 0 in (94) yields αφφ = 0. This concludes the proof of theorem 10.1 below.

Theorem 10.1 αφφ = 0 for co-axisymmetric v′ and B:
If every member of the ensemble of fluctuating velocity fields v′ is co-axisymmetric with the
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mean magnetic field B and v = 0 in E3, then αφφ = 0.

An alternative approach of producing an expression for αφφ is to expand (7) as

∂tB
′ − η∇2B′ = B·∇v′ − v′·∇B + v′∇·B −B∇·v′. (95)

By using ∇·B = 0, assuming ∇·v′ = 0, and imposing v′·∇B = 0 then only the first term on
the RHS of (95) is retained, as used in Jones (2011). The result of imposing these assumptions

is that an extra term is produced in B′φs , where ∂φv
′
s is replaced by ∂φv

′
s − v′φ in (92). To

proceed it would be necessary to impose assumptions about the comparative magnitude of
v′φ. However, this extra −v′φ term is a result of the derivative of the coordinate vector, 1φ

and as such, is an artefact of the coordinate system. Indeed, if the −v′·∇B term in (95) is
retained, another term, which again results from the derivative of 1φ, will cancel with the

extra −v′φ in (92). Thus, care must be taken here because the term −v′·∇B includes terms

proportional to Bφ from ∂φ1φ and as such, cannot be discarded as only including derivatives

of B. Hence, the term −v′·∇B contributes to α. The result of not discarding terms in (95)
and thus producing (94) means that the result applies to a greater range of problems because
it uses fewer assumptions in the derivation†.

The proof of theorem 10.1, applies to a conductor filling all space. To extend this analysis to
a finite conducting region, the Green’s function for this problem would have to be investigated
in greater detail and is beyond the scope of the present study.

To obtain a simplified physical interpretation of this αφφ interaction, consider the asymptotic
limit G(ξ, τ) = δ3(ξ)δ(τ). For this zero-distance-of-influence regime, (94) reduces to

αφφ(r, t) = s−1[v′z(r, t)∂φv
′
s(r, t)− v′s(r, t)∂φv′z(r, t)]. (96)

Thus (96) demonstrates that a departure from axisymmetric v′m can generate αφφ. Section 3

proves that this αφφ mechanism for generating meridional B from azimuthal B, is critical
for axisymmetric dynamo maintenance. In this sense, the departure from axisymmetry in
v′m mitigates Cowling’s axisymmetric antidynamo theorem through this αφφ interaction. The
work of Jones (2011) which follows Olson et al. (1999) also provides and informative insight
into αφφ under different assumptions.

11. Derivation of αφφ with compressible velocity using the methods of Braginskii

An alternative derivation an αφφ component is produced in Braginskii (1964) using the analysis
of nearly axisymmetric dynamos for highly conducting fluids. Here the analysis of Braginskii
(1964) is reviewed and extended to compressible fluids for applications in stellar interiors.

The analysis of Braginskii (1964) uses an azimuthal average given by

〈F 〉 = F :=
1

2π

∫ 2π

0
F (s, φ, z) dφ.

Herein, the overline or angled brackets are used alternatively, depending on context and con-
venience. The mean of a vector is defined as the mean of the cylindrical polar coordinates,

v := vs1s + vφ1φ + vz1z etc.

The magnetic and velocity fields are progressively decomposed as mean,B, v; and perturba-
tion B′, v′’ components, where the mean components are axisymmetric and the perturbation

†Indeed this alternative approach does not lead to the proof of theorem 10.1 without the imposition of further
assumptions.
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components have no axisymmetric part (B′ = 0, etc). These components are then decomposed
into, mean and perturbation; azimuthal and meridional parts;

B = B +B′ = Bφ1φ +Bm +B′ = Bφ1φ +∇×(A1φ) +B′φ1φ +B′m, (97)

v = v + v′ = vφ1φ + vm + v′ = vφ1φ + vm + v′φ1φ + v′m, (98)

where meridional (m subscript) indicates no azimuthal component. The analysis of Braginskii
(1964) assumes

∇·v =∇·v =∇·(vφ1φ) =∇·vm =∇·v′ =∇·(v′φ1φ) =∇·v′m = 0. (99)

Herein all of these conditions are relaxed and all of the velocity components (98) are compress-
ible. The effect of relaxing the incompressible conditions extend the analysis considerably.

The mean of, the φ components of, (3) and (4), noting ∂φΦ = 0 gives

∂tA+
1

s
vm ·∇(sA) = η∆1A+ E · 1φ, (100)

∂tBφ + svm ·∇
(
Bφ

s

)
= η∆1Bφ +∇

(
vφ
s

)
×∇(sA) · 1φ +∇×(E) · 1φ − (∇·vm)Bφ,

(101)

where E = 〈v′ ×B′〉 and

∆1f(s, z) = −1φ ·∇×∇×(f1φ) = ∇2f − f

s2
= s∇·

(
1

s2
∇(sf)

)
=

1

s
∇·
(
s2∇

(
f

s

))
.

To find an expression for B′ to use in (101), the mean of (4) is subtracted from (4), yielding

∂tB
′ − η∇2B′ =∇×

(
v ×B′ + v′ ×B +G

)
, (102)

where again G = v′×B′− v′ ×B′. Equation (102) compares with (6) for different averaging
operations. However, Braginskii (1964) refrains from setting G = 0 (as used in the SOCA). A
useful way to proceed is to find an expression for B′m and then assume∇·B′ = 0 to determine
B′φ. To this end, using the full decomposition of (97), (98), subtracting the φ projection of

(102) from (102) gives

∂tB
′
m − η

[
∇2B′

]
m

= −
vφ
s
∂1φB

′
m +B′m ·∇vm − vm ·∇B′m +

Bφ

s
∂1φv

′
m

+
[
∇×

(
v′ ×Bm +G

)]
m
− (∇·vm)B′m, (103)

where, for a vector v, ∂1φv = ∂φ(vs)1s + ∂φ(vφ)1φ + ∂φ(vz)1z.

To solve for B′m, an antiderivative of ∂1φ is used. For f ′, where 〈f ′〉 = 0, then f̂ ′ :=
∫
f ′dφ

such that 〈f̂ ′〉 = 0. For a perturbation vector v′, then

v̂′ :=

∫
v′sdφ1s +

∫
v′φdφ1φ +

∫
v′zdφ1z such that 〈v̂′〉 = 0. (104)

Thus integrating ∇·B = 0, gives Bφ = − ̂s∇·Bm and by assuming ∇·B′ = 0 [∇·B = 0],

then B′φ = − ̂s∇·B′m [Bφ = − ̂s∇·Bm].

Using the operator (104) on (103) and the material derivative Dt := ∂t + vm ·∇ gives

vφ
s
B′m =

Bφ

s
v′m + [∇×(v̂′ ×Bm + Ĝ)]m + η[∇2B̂′]m

+B̂′m ·∇vm −DtB̂′m − (∇·vm) B̂′m. (105)
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11.1. Expansion of perturbation magnetic field components as a series in R−1/2

The perturbation magnetic field is then expanded in a power series in ε = (η/LV)1/2 = R−1/2,
where L is a characteristic length and V ∼ vφ thus, inferred from (B3.6) (equation (3.6) of
Braginskii (1964) etc.) is

B′m =

∞∑
n=1

B′(n)
m , B′φ =

∞∑
n=1

B
′(n)
φ , B′(n)

m ,B
′(n)
φ ∼ Bφε

n. (106)

From Braginskii (1964) (p:729) we also infer that:

B′m,B
′
φ ∼ Bφε, v′m,v

′
φ ∼ vφε, vm ∼ vφε2, Bm ∼ Bφε

2, ∂t ∼ η/L2. (107)

Terms of order ε in (105) give

B′(1)
m =

Bφ

vφ
v′m. (108)

Additionally, assuming ∇·
(
B
′(1)
m +B

′(1)
φ

)
= 0 then B

′(1)
φ = − ̂

s∇·B′(1)
m . Thus from (108)

B
′(1)
φ = −s∇·

(
Bφ

vφ
v̂′m

)
1φ = −s

(
Bφ

vφ
∇·v̂′m +∇

(
Bφ

vφ

)
· v̂′m

)
1φ. (109)

For compressible flow the ∇·v̂′m in (109) does not vanish and the analysis diverges more
significantly from Braginskii (1964). Here ∇·v̂′ = ∇·v̂′m + v′φ/s, is used in (109), because

this produces a term proportional to v′ in B′(1). This, in turn, simplifies E(2) = v′ ×B′(1) as
follows. Equation (109) then becomes

B
′(1)
φ =

Bφ

vφ
v′φ1φ − s∇

(
Bφ

vφ

)
· v̂′m1φ − s

Bφ

vφ
(∇·v̂′)1φ. (110)

Combining (108) and (110)

B′(1) =
Bφ

vφ
v′ − s∇

(
Bφ

vφ

)
· v̂′m1φ − s

Bφ

vφ
(∇·v̂′)1φ. (111)

From (108), E(2)
φ = 〈v′m × B

′(1)
m 〉 = 0 because v′m and B

′(1)
m are parallel. Using (111), the

vector triple product and integration by parts

E(2)
m = 〈v′ ×B′(1)〉 = −s

[
∇
(
Bφ

vφ

)
·
〈
v̂′m v

′
m

〉]
× 1φ − s

Bφ

vφ

〈
(∇·v̂′)v′m

〉
× 1φ

=
s

2

[〈
v′m × v̂

′
m

〉
×∇

(
Bφ

vφ

)]
× 1φ − s

Bφ

vφ

〈
(∇·v̂′)v′m

〉
× 1φ

= v2
φw∇

(
Bφ

vφ

)
− s

Bφ

vφ

〈
(∇·v̂′)v′m

〉
× 1φ, (112)

where w = 〈[u′m × û
′
m]φ〉s/2, u′m = v′m/vφ. The last term in (112) extends (B3.13).

To find B
′(2)
m , terms of order ε2 in (105) yield

B′(2)
m =

s

vφ
[∇×Ĝ

(2)
]m. (113)
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Using [∇×(fvm × 1φ)]m = ∂1φ(fvm)/s and [∇×Ê
(2)

m ]m = 1φ × E
(2)
m /s then from (113)

B′(2)
m =

s

vφ
[∇×( v̂′ ×B′(1))]m −

s

vφ
[∇×Ê

(2)

m ]m

= − s

vφ
∇
(
Bφ

vφ

)
· v̂′m v′m − vφw1φ ×∇

(
Bφ

vφ

)
−
sBφ

v2
φ

∇·v̂′ v′m +
sBφ

v2
φ

〈(∇·v̂′)v′m〉.

(114)

The last two terms in (114) extend (B3.15). From (114) and 〈v′〉 = 0, despite the new terms,

E(3)
φ = 0 and thus the next term to generate Bm is E(4)

φ .

To find E(4)
φ = 〈v′m ×B

′(3)
m 〉, (105) is again used with the appropriate terms for B

′(3)
m . The

new compressible term in (105) now contributes together with terms arising from∇·v̂′. Using
vector calculus, integration by parts and some algebra I/we???? obtain

E(4)
φ = vφ

−1〈∇·
(
s[v′m ×B′m]φv̂

′
m

)
〉 − vφ−1〈s

[
v′m ×B′m

]
φ
∇·v̂′〉

+vφ
−1〈∇·(s

[
v′m ×Bm

]
φ
v̂′m)〉 − vφ−1〈s[v′m ×Bm]φ∇·v̂′〉

+vφ
−1〈s[v′m × (B̂′ ·∇vm)]φ〉 − vφ−1(∇·vm)〈s[v′m × B̂′m]φ〉

+η vφ
−1〈s[v′m × [∇2B̂′]m]φ〉 − vφ−1〈s[v′m ×DtB̂′m]φ〉. (115)

Terms 2, 4, 6 in (115) extend (B3.17), the v̂′m in term 3 differs by a possible typo.
The last term in (115) simplifies using (108), and 〈Dt(v × v̂)〉 = 2〈v ×Dtv̂〉, thus

−vφ−1〈s[v′m ×DtB̂′m]φ〉 = −swDt

(
Bφs

−1
)
− s−1Dt

(
swBφ

)
+ s−1vsBφw. (116)

The Dt(Bφs
−1) in (116) is eliminated using (101). Using (116), (101) in (115) yields

E(4)
φ = vφ

−1〈∇·
(
[sv′m ×B′m]φv̂

′
m

)
〉 − vφ−1〈s

[
v′m ×B′m

]
φ
∇·v̂′〉

+vφ
−1〈∇·(s

[
v′m ×Bm

]
φ
v̂′m)〉 − vφ−1〈s[v′m ×Bm]φ∇·v̂′〉

+vφ
−1〈s[v′m × (B̂′ ·∇vm)]φ〉 − vφ−1(∇·vm)〈s[v′m × B̂′m]φ〉

+η vφ
−1〈s[v′m × [∇2B̂′]m]φ〉 − wη∆1Bφ − w[∇(vφs

−1)×∇(sA)]φ

−w[∇×E(2)]φ − s−1Dt(swBφ) + s−1vsBφw + w(∇·vm)Bφ. (117)

To complete the calculation for E(4)
φ , B′(2) is used in terms 1 and 2, E(2) is used in term 10

and B′(1) is used in the remaining terms. New, compressible terms will result from; term 1
using (114), term 7 using (111), term 10 using (112). The new terms 2, 4, 6 will also produce
new contributions using B′(1), B′(2), together with the new term 13. After using extensive
vector calculus and algebra, together with integration by parts I/we???? obtain

E(4)
φ = −s−1Dt(swBφ)− s−1∇×(wvφ1φ) ·∇(sA)− s−1∇×(wvφ1φ) ·∇(swBφ)

−ηw∆1Bφ + ηvφ
−1〈s[v′m × [∇2B̂′0]m]φ〉+ 2η vφ

−1ρ · 1zBφ

+〈vφ−1∇·[s2[u′m × ρ]φv̂
′
m]〉Bφ − s−1(−sρ ·∇(swBφ))− ρ ·∇(sw)Bφ

−swvφ−1ρ ·∇vφBφ + ρ ·∇(sA) + w[∇×(sρ× 1φ)]φBφ − w(∇·vm)Bφ, (118)

where ρ(s, z) =
〈
(∇·v̂′)u′m

〉
. The notation B′0 corresponds to B′(1) (111) with ∇·v̂′ = 0,

for comparison with Braginskii (1964), thus the last eight terms in (118) are the compressible
extensions to (B3.18). The following mapping summarises the extensive algebra: 3 + 9 → 2,
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1 + 10→ 3 + 7 + 12, 7→ 5 + 6, 2→ 8 + 9 + 10, 4→ 11, 6 + 13→ 13, 12 + 5 = 0, where i→ j
indicates the ith term(s) of (117) produce the jth term(s) of (118).

Using (118) in (100), yields the effective azimuthal mean field vector potential equation,

∂tAe + s−1 veρ ·∇(sAe) = η∆1Ae + ΓeBφ, (119)

where the new effective vector potential and mean velocity are

Ae := A+ wBφ, veρ := vm +∇×(wvφ 1φ)− sρ, (120)

Γe := ηΓBrag + 2η vφ
−1ρ · 1z + Γρ, (121)

ΓBrag = s−1〈[u′m × û
′
m]φ〉+ s−1〈[u′m × ∂1

φu
′
m]φ〉+ 2〈∇m(zu′z + su′s) ·∇mûz〉, (122)

∇m = 1s∂s + 1z∂z, u
′
m = u′s1s + u′z1z, and

Γρ = 〈∇(s2[u′m × ρ]φ)·û′m〉 − ρ ·∇ (sw)− swvφ−1ρ ·∇vφ − w∇m·(sρ)− w∇·vm.(123)

Using (112) in (101) yields the effective azimuthal mean field induction equation.

∂tBφ + sveρ ·∇(Bφs
−1) = η∆1Bφ +∇(vφs

−1)×∇(sAe) · 1φ + ΨBφ, (124)

where Ψ = s−1∇m·(s2ρ)−∇·vm. (125)

Equation (119) may be regarded as the azimuthal component of

∂tAe = −η∇×Be +αe·Be + veρ ×Be −∇Φe, (126)

where the effective axisymmetric magnetic field is given by

Be := Bφ 1φ +∇×(Ae) = Bφ 1φ +∇×(Ae 1φ). (127)

Likewise, (124) may be regarded as the azimuthal component of

∂tBe − η∇2Be =∇×(αe ·Be) +∇×(veρ ×Be). (128)

Equations (126)–(128), represent a reformulation of the physical problem into an effective
model.

For Ψ = 0, the ΓeBφ term in (119) generates an azimuthal component of the effective

emf through ∂tAe from Bφ. In this context, the Γe of (119) represents an alpha effect from
αφφ1φ⊗1φ. Below, for simplicity, the tensor product will be dropped 1φ1φ := 1φ⊗1φ etc. It is

also significant that the ΓeB term is the only ‘mean-field’† term beyond the effective-laminar
terms involving veρ in (119) and (124)‡. Thus no other components of αe are generated. As
a consequence, for the effective model (126)–(128), for Ψ = 0, then αe = αφφ1φ1φ = Γe1φ1φ.

For Ψ 6= 0, however, the ΨBφ term of (124) generates Bφ (through ∂tBφ) from Bφ. An

alpha effect of the form αΨ = αsφ1s1φ + αzφ1z1φ will generate Bφ (and its derivatives)

from Bφ. However, such an αΨ will also result in Ψ-dependent terms in (119), which are not
generated with the present analysis. Thus the compressible Ψ contribution to (124) is not
readily expressed in terms of an analogous αe–effect and as such constitutes an effect beyond
that produced by conventional mean-field analysis.

Because the ΨBφ term in (124) represents an interaction that generated Bφ from Bφ, it is
tempting to consider this Ψ effect as a possible mechanism to perpetuate a hidden dynamo.
However, in general for v′ 6= 0, then Γe 6= 0 and Ae will also be generated through (119).

Alternatively, consider Γe = 0 and Ψ 6= 0, which could result from, (i) v′m = 0 but v′φ 6= 0

and ∇·vm 6= 0, or (ii) v′ ≡ 0, but ∇·vm 6= 0. For (i) or (ii), then (124) and (125) indicate

†Acknowledging that veρ, Be and Ae are generated through v′.
‡To leading order in ε, for Ψ = 0.
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that Bφ is generated from Bφ. However, for (i), (119) and (124) are equivalent to equations
governing compressible laminar flow. For (ii) the flow is compressible and laminar. Thus for
(i) or (ii) the analysis of Ivers and James (1984) proves that an axisymmetric field will decay.
As indicated above, it is noted that the decay time of such a compressible laminar model may
be many free times. Interestingly the inclusion of v′φ 6= 0 in (i) does not affect the antidynamo
result.

Of course, (124)–(128) represent Ae and Bφ as independent, however, Ae = A + wBφ and

hence the generation of Ae from ΓeBφ in (119) may result in generation of both meridional

∇×(A1φ) and azimuthal Bφ1φ, components of the original field. Thus, this Γe contribution
is not confined to an α = αφφ1φ1φ contribution in the original (un-effective), formulation of
the model. However, even though this analysis does not lead to an αφφ–effect of the original
problem the analysis of section 3 equally applies to equations (124)–(128) for the effective
model. Thus for Γe = 0, then 1φ·αe·1φ = 0 and section 3 proves that Be will decay

12. Derivation of αφφ with reference to Soward 1972

Soward (1972) greatly extends the results of Braginskii (1964) to encompass different ordering
of the field components and extending the analysis to higher orders of ε. This work also derives
expressions for αφφ in more generality and provides a valuable insight into the generation of
this component. In Soward (1972) the different axisymmetric, perturbation, azimuthal and
meridional components of B and v are re-partitioned to explain and extend the analysis of
Braginskii (1964). In Soward (1971) it is shown that given vφ1φ and v′, then an axisymmetric

velocity V could be found so that vφ1φ + v′ + V has closed stream lines. Soward (1972) is
restricted to ∇·v = 0.

As an example of the analysis of Soward (1972) applied to the ordering of Braginskii (1964)
the velocity is re-partitioned as

v = vφ1φ + v′ + vm (129)

v = vφ1φ + v′ + V + vem = v0 + vem, (130)

where v′ ∼ O(ε), vm,vem,V ∼ O(ε2) and v0 = v0(s, φ, z). By comparing (129) and (130),
V = vm − vem = −∇×(vφw1φ), discovered in Braginskii (1964).

The process then is to take the leading term in the expansion of v to be the closed-streamline
velocity v0 = vφ1φ + v′ −∇×(vφw1φ), rather than vφ1φ. This approach has the advantage
that the perturbation field v′ is absorbed into the leading v0 term, however it produces the
added complication of integrating along the closed-streamline paths of v0. To address the
analysis, a transformation is considered from axisymmetric circles with position vector x to
the the closed streamline loops with position vector X,

X = X(x, t). (131)

Figure 4 illustrates the transformation (131). The process is to consider that the real magnetic
and velocity fields on the closed loops B(X, t) and v(X, t) are transformed from imagined
magnetic and velocity fields b(x, t) and u(x, t) on the axisymmetric circles.

Restricting X to preserve volume is equivalent to the Jacobian determinant condition,
(132a)

|J(X)| = |∇xX| = 1, ∇X ·(∂tX) = 0, (132)

where ∇x is the gradient with respect to x, etc.
Using (132a) and the imposition (132b), then the transformation given by

B(X, t) = b(x, t)·∇xX, v(X, t) = ∂tX + u(x, t)·∇xX, (133)
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Figure 4. The (blue) ‘loop’ is helically wound around the (red) axisymmetric circle. The position vector to the loop
[circle] is X [x]. The transformation to the real magnetic [velocity] field on the loop B(X, t) [v(X, t)] from the imagined
magnetic [velocity] field on the circle b(X, t) [u(X, t)] is given by (133a) [(133b)]. The (black) vector from the circle to
the loop represents η = X − x.

preserves the solenoidal magnetic field and the incompressible velocity conditions as,

∇X ·B(X, t) =∇x·b(x, t) and ∇X ·v(X, t) =∇x·u(x, t).

Conditions (132) with the transformation (133) are also shown to preserve the advection
part of the induction equation as

[∂tb−∇x × (u× b)]·∇xX =∇X × [∂tB −∇X× (v ×B)]. (134)

The result of tailoring the transformation (133) and using (132) is that the order v′ com-
ponents of order ε = R−1/2, in Braginskii (1964) will appear in the transformed diffusion
term.

To investigate the resulting diffusion operating on b(x, t) the imagined fields are decomposed
into axisymmetric and perturbation components as b(x, t) = b + b′, u(x, t) = u + u′ where
b′, u′ ∼ O(ε2). With this less restrictive condition on the ordering of the component fields,
the transformed diffusion operator produces a wide range of effects as given by Γ and A in
(S2.46)† and (S2.47). In particular, using αφφ = RΓ22, (S2.44), (S2.45) and (S2.31b), produces
new expressions for αφφ for more general, and higher (ε) order models.

In view of absorbing v′ ∼ O(ε) into X, the transformation (SC1) is considered as

X(x, t) = x+ εη(R,x, t). (135)

To considerably restrict the analysis and reproduce the results of Braginskii (1964) the real
field representation of Braginskii (1964) on the loops X needs to be related to the imagined
fields on the circles x. To this end the real velocity field at x is Taylor expanded about X as

v(x, t) = v(X, t)− εη·∇Xv(X, t) +O(ε2). (136)

The real field v(X, t) is then related to the imagined field at x, u(x, t) by (133b) and (135)

v(X, t) = u(x, t) + ε{∂tη + u(x, t)·∇xη}. (137)

Using (137) twice in (136) relates the real field to the imagined field and η, thus

v(x, t) = u(x, t) + ε{∂tη + u(x, t)·∇xη − η·∇xu(x, t)}+O(ε2). (138)

Comparing the representation (138) with the ordering of Braginskii (1964), v = vφ+v′+O(ε2)
provides a relationship between v′, vφ and η to O(ε) as

sv′m =
(
s∂t + vφ∂

1
φ

)
ηm sv′φ = (s∂t + vφ∂φ) ηφ + ηsvφ − sη·∇vφ. (139)

Using (139), s∇·v′ = vφ∂φ (∇·η) . Thus, using∇·η = 0 reproduces the∇·v′ = 0 condition of
Braginkii. The condition (132a), used extensively throughout the analysis, produces∇·η = 0,
to leading order.

†Equation (2.46) in Soward (1972) etc.
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To reproduce ΓBrag (122), using (S C10) for |∂tη| � |∂xη| and ∇·η = 0 then I/we obtain

RΓ22 =
2

s3
〈ηs∂φηz + ∂φ(ηz)∂

2
φηs〉

+
2

s
〈∂s(∂φηs)∂s(ηz) + ∂z(∂φηs)∂zηz +

1

s
(∂zηz + ∂sηs)∂φηz〉+O(ε). (140)

Only by including the extra ∂sηs term in (140) and using (139a) with |∂tη| � |∂xη|, do we
recover the ΓBrag, (122), of Braginkii.

Soward (1972) produces the most concise and possibly the most intuitive representation
for general αφφ = RΓ22. For X(x, t) given by (133) and (132), using (S2.45) gives γ22(X) =
µ22(X). Then using (S2.31b) for µ22(X) and Γij(s, z, t) = 〈γij(X)〉 yields

αφφ = RΓ22(X) = − R
2π

∫ 2π

0

1

s
∂φ(X)·[∇X × (

1

s
∂φX)]dφ. (141)

Equation (141) demonstrates that αφφ is an azimuthal average of the helicity of ∂φ(X)/s,
and as such is a measure of the rate that the path of X wraps around the path of x as
represented in figure 4. This helicity in X represents the departure of the magnetic field from
axisymmetry and is responsible, through diffusion, for generating εφ and Bm, and thus can
provide a means of circumventing the αφφ = 0 ADT proven herein and Cowlings theorem.

The extension of the Braginkii analysis to compressible flow, given by (119)-(125), produces
a new effective velocity field veρ (120b), which includes a compressible component due to ρ.
Thus an extension of the work of Soward (1972) to incorporate compressible flow would need
to accomodate the new veρ. To do so would require a new, more general transformation that
would need to encompass a new compressible v′. As such the volume preserving properties of
a new transformation would also require new analysis to ensure the solenoidal condition for
the magnetic field is preserved. The extension of Soward (1972) to compressible flow, which
would reproduce (119)-(125) as a byproduct, would provide generalised, compressible results
to higher order and is the subject of current investigation.

13. Discussions and conclusions

The mean field counterpart to the theorem of Cowling (1934) is proven in section 3. This
αφφ = 0 antidynamo theorem proves that an axisymetric field will fail in a finite conducting
volume V, if just one of the components of α, namely αφφ, is zero†. By comparing the emf, in
(23) then the emf arising from v can be expressed as v ×B = αv·B, where

αv =


αss αsφ αsz

αφs αφφ αφz

αzs αzφ αzz

 =


0 −vz vφ

vz 0 −vs
−vφ vs 0

 . (142)

Thus, stated in terms of αv, Cowling’s theorem requires the six conditions,

αφs = −αsφ, αsz = −αzs, αzφ = −αφz, αss = 0, αzz = 0, (143)

and αφφ = 0. The αφφ = 0 ADT reduces these six conditions to just one; αφφ = 0.
Indeed once the αφφ = 0 ADT is established then Cowlings theorem can be proven by

simply identifying that for laminar v, the αφφ component of αv is zero (142) and Cowling’s
theorem is thus proven.

†Again, it is not necessary to specify that α be axisymmetric as violation of this condition would destroy the
axisymmetric magnetic field condition.
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Of course, subsections 3.1 and 3.2 use theory that has been specifically developed, in the
present work and Ivers and James (1984), to demonstrate the decay of χ for (30) in V and

(31) in V̂ , and for the decay of b = Bφ/s in (42). However, this theory can be established
independently of Cowling’s theorem.

Because the theory developed herein demonstrates that all of the five conditions of (143)
are redundant for the proof of the αφφ = 0 ADT. And because Cowling’s theorem can be
proven using the αφφ = 0 ADT, then the conditions (143) are superfluous, even irrelevant for
the proof Cowling’s Theory and many of its extensions.

Furthermore, if just this one αφφ = 0 condition is satisfied then none of the remaining αss,
αsφ, αsz, αφs, αφz, αzs, αzφ, αzz, components can prevent the eventual decay of an axisymetric
field. For instance, even though the αφs and αφz components can reproduce meridional field
from meridional field (see (28) and (29)), this is insufficient to sustain the dynamo. Likewise,
αsφ and αzφ can reproduce azimuthal field from azimuthal field (see (42) and (44)). However
again, this alone will not indefinitely sustain an axisymmetric dynamo (see, for instance,
section 9 for model 1). Also none of the αss, αsz, αzs αzz components appear in (28) or (42)
and hence do not provide regenerative maintenance in axisymmetry. The spectral interaction
equations for the αφφ component and all others were first derived in Phillips (1993).

From the discussion above, the physical interactions that generate αφφ provide valuable
insight into the critical mechanisms for axisymmetric dynamo maintenance. To examine these
mechanisms a number of different analyses that produce αφφ are explored.

The derivation of αφφ using the second order correlation approximation and the Green’s
function analysis in section 10, shows that αφφ is generated through the interactions of the
fluctuating meridional velocity v′m and gradients of v′m, (see, for instance, (94)). Moreover, for
the conditions of (94), it is the cross-correlation between the orthogonal, s and z components
and gradients, which generate αφφ. Of course αφφ can also be generated from other mechanisms
such as from v through the green’s function for non-zero mean flow (see, (8) and (10)) or from
∇·vm.

This analysis also demonstrates circumstances under which this αφφ vanishes. One such case

is when all members of the ensemble of perturbation v′ are co-axisymmetric with B in E3,
then αφφ = 0 (see table 1).

New αφφ expressions are derived in section 11 using the methods of Braginskii (1964). This
independent method of using a decomposition of B and v into axisymmetric and ‘purely
variable in φ’ components, and an expansion of order ε = (η/LV)1/2, produces different
αφφ expression and regenerative mechanism. For the assumption that all components of the
velocity are incompressible (99) then αφφ = ΓBrag

†, (122) for the effective fields (120) with
ρ = 0.

To extend this analysis to the compressible plasmas of stelar interiors the work of Braginskii
(1964) is generalised by relaxing the conditions of incompressibility (99) for all components
of v. For the present analysis the stellar interactions would need to be nearly axisymmetric.
However, the extension of this work to different ordering of field components using the methods
of Soward (1972) could relax this condition. For this extension of the analysis, an αφφ is again

generated where αφφ = Γe (121), together with a new regenerative mechanism for Bφ given

by ΨBφ; see (124), (125).
This independent method of producing αφφ = Γe demonstrates that this effect can be gener-

ated by contributions from many sources such as∇·vm,∇·v̂′,∇vφ. However, one dominating
generation mechanism is the interaction of u′m = v′m/vφ with the primitives (antiderivatives),
means and gradients of u′m (see (122)).

These two different approaches demonstrate that a common generation mechanism for this

†To simplify discussion the Γe and ΓBrag in section 13 are the scaled counterparts using (21).
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critical αφφ component is the interaction of the meridional perturbation velocities‡ with their
gradients and antiderivatives.

The core mechanisms that generate these αφφ interactions for these different approaches can
be more clearly demonstrated for specific physical conditions. For instance, using the SOCA,
and the Green’s function in the asymptotic limit G(ξ, τ) = δ3(ξ)δ(τ), (96) is

αφφ =
1

s
[v′s∂φv

′
z − v′z∂φv′s] = v′m·∇×v′m. (144)

Using the alternative approach of an azimuthal average, expansion in order ε, assumptions
(99), (106), (107), as in Braginskii (1964), then the first two terms of (122) give

αφφ =
1

s
〈[u′m × û

′
m]φ〉+

1

s
〈[u′m × ∂1

φu
′
m]φ〉 = 〈û′m·∇×û

′
m〉 − 〈u′m·∇×u′m〉. (145)

The most concise insight into the generation mechanism for this αφφ is given using Soward
(1972) as

αφφ = −R〈1
s
∂φ(X)·∇X×(

1

s
∂φX)〉. (146)

Equations (144), (145) and (146) demonstrate that, whether we use; an ensemble mean, the
SOCA, and a Greens function analysis; an azimuthal average, expansion of order ε and adopt
‘effective fields; or we use a transformation X to incorporate the perturbation fields, this
critical αφφ can be generated by the mean helicity of meridional perturbation velocities, that
is either v′m in (144), or û′m or u′m in (145) or the transformationX as a means of representing
non-axisymmetric perturbation components of the field and flow. The different derivations
of αφφ demonstrates the critical importance of the helicities of the meridional perturbation
velocities for circumventing either Cowling’s ADT or the αφφ = 0 ADT derived herein.

The derivation of the αφφ = 0 ADT is the first mean field ADT which derives conditions for
α under which an axisymmetric dynamo will fail within a finite conductor. All other mean
field ADT’s are proven for infinite conductors filling all space (see table 1). Thus this αφφ = 0
ADT establishes the first conditions for a finite conductor where the magnetohydrodynamic
interactions may produce no axisymmetric field. Thus this is the first mean field ADT that
give mechanism where a turbulent conducting fluid may have no accompanying axisymmet-
ric magnetic field. And as such may provide an insight into the physical mechanism within
conducting fluids that produce no observable magnetic fields such as non-magnetic stars.

Conversely the analysis of the generating mechanisms for producing αφφ may provide an
insight into the physical mechanisms that save a mean field axisymmetric dynamo from failing.
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