PRO-p COMPLETIONS OF PD,-GROUPS

JONATHAN HILLMAN, DESSISLAVA H. KOCHLOUKOVA

AsBsTRACT. We sharpen earlier work on the pro-p completions of orientable PDs-groups. There are
four cases, and we give examples of aspherical 3-manifolds representing each case. In three of the
four cases the new results are best possible. We also consider the pro-p completion of some orientable
PD,, groups for n < 5, including surface-by-surface groups.

1. INTRODUCTION

There are two definitions of a profinite Poincaré duality group G of dimension n at a prime p
[21, 3.4.6], [30]. Both definitions differ on whether the profinite group G should be of type FP,
over Z, i.e. whether the trivial Z,[[G]]-module Z, has a projective resolution with all projectives
finitely generated Z,[[G]]-modules. The groups that satisfy the definition of [30] we call strong
profinite PD,, groups at p and the groups that satisfy the original definition of Tate from [21]], [27]
we call profinite PD,, groups at p. By [30] every strong profinite PD,, group at p is a profinite
PD,, group at p. By definition a group G which is a strong PD, group at p has cohomological
p-dimension cd,(G) = n, has type FP,, over Z, and Extizp[[c]](Zp,Zp[[G]]) = 0 fori # n and

" N : " P :
Ethp[[G]](G, Z,[[G]]) ~ Z,. If the action of G on Extzp[[c;]] (G, Z,[[G]]) ~ Z,, is trivial G is called

orientable. For pro-p groups the notions of strong profinite PD,, group at p and profinite PD,, group
at p coincide. We call such groups pro-p PD,, groups.

We are interested in pro-p and profinite completions of orientable PD,, groups. The casesn = 1 or 2
are well understood. The pro-p completions of orientable PD,-groups are pro-p PD,-groups. These
are also known as Demuskin groups, and were completely classified in terms of pro-p generators
and relations in [5], [6], [19], [26]. (Not all such groups are pro-p completions of PD,-groups.)
Profinite and pro-p completions of PD3 groups were studied by Kochloukova and Zalesski in
[18] and by Weigel in [32]. Some results on pro-p completions for arbitrary n were obtained by
Hillman, Kochloukova and Lima in [12]]. The notion of orientable profinite Poincaré duality pairs
(over IF,) was first suggested by Kochloukova in [16] and a more general notion of (in general
non-orientable) profinite Poincaré duality pairs was developed by Wilkes in [32].

Sections 2 and 3 contain some basic definitions, lemmas and results from earlier work. In Section
M we build upon the results of [18], and prove the following theorem.

Theorem A. Let G be an orientable Poincaré duality group of dimension 3 and let ép be the pro-p completion
of G. Then exactly one of the following conditions holds:

a) ép is cyclic or quaternionic;
b) ép is an orientable pro-p PD3-group;
c) there is no upper bound on the deficiency of the subgroups of finite index in ép;
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d) ép is Z, or 15;2.

The statements of cases (a) and (d) sharpen the corresponding statements in [18, Thm B]. We
also give simple criteria for when they arise. Here our results are essentially complete (except for
p = 2). Several equivalent criteria for case (b) were given in [18, Thm A]. We augment these criteria,

as a corollary of Theorem 4.4, This theorem also implies that G cannot have cohomological p-
dimension 2. However it is not yet clear what else might occur, and we do not have simple criteria
for recognizing case (c).

In §5| we give examples of geometric flavour for each of the four cases listed above. We give

an example of case (c) in which G is a free pro-p group of rank 2, for all primes p. (We do not

know whether there are examples of case (c) in which G has cohomological p-dimension at least
3.)

In [27] Serre called an abstract group G good if for every finite G-module M the map H!(G,M) —

H'(G,M), induced by the canonical map G — G, isan isomorphism, where G denotes the profinite
completion of G. The group B is called p-good if for every finite pro-p Z [[ p]]-module M we have
that the canonical map B — B induces an isomorphism HZ(BP,M) — H!(B,M), where B is the

pro-p completion of B. Groups that are p-good were previously studied in [14], [16], [18] In [8]
the term p-good group was used with a different (but related) meaning.

For a set 7 of normal subgroups of p-power index in a discrete group B we say that 7 is directed
if for every Uy, Uy € 7 we have that there is U = Uj n U such that U € 7. In the next section we
give criteria for groups of type FP,, and with additional structure to be good, or p-good, and we
prove the following theorem.

Theorem B. Let 1 — A — B — C — 1 be a short exact sequence of groups such that A is an orientable
surface group and C is an orientable PDs group, where s = 2 or s = 3. Let T be a directed set of normal

subgroups of p-power index in B that defines the pro-p topology of B. Suppose that imH,(U n A, F,) =0
UeT

and furthermore if s = 3, there is an upper bound on the deficiency of the subgroups of finite index in (Afp.
Then

a)ifs = 2, then §p is a pro-p PD4-group and B is p-good.

b) if s = 3, then ﬁp is virtually a pro-p PDy-group for some k € {2,3,5}. If k = 5 then B and C are
p-good.

If additionally B is orientable and p-good then §p is an orientable pro-p PDy s-group.

The case of profinite completions of orientable PD4-groups is easier and is considered in Proposition
6.6

It is an open problem whether there is an orientable PD,-group G such that ép is an orientable
pro-p PD,-group and G is not p-good.

The main result of Section [/]is the following theorem.

Theorem C. Let 1 — A — B — C — 1 be a short exact sequence of groups such that A ~ Z?, B is an
orientable PDy group and C is an orientable surface group. Then one of the following holds:

a) ﬁp is an orientable pro-p PDy-group and B is p-good;
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b) §p is an orientable pro-p PD, group and the image of A in ﬁp is trivial.

Remark. If B is not orientable, p # 2, then there is a third option for the closure A of the image of A
in B, to be virtually Z,,.

We show also that if B is an orientable PD, group and x(B) = 0 then ﬁp cannot be a pro-p PD3-
group, and we give examples of orientable PD4-groups which are fundamental groups of bundles
with base and fibre aspherical closed surfaces, and for which the projection to the base induces an
isomorphism on pro-p completions, for all primes p.

In [12] it was shown that under some conditions the pro-p completion of an orientable PD,, group
is virtually a pro-p PD,-group, for r < n,r # n — 1. In the final Section |8 we give an example
of an aspherical 5-manifold with perfect fundamental group, which completes the discussion of
examples with “dimension drop” n — r # 1 in [12]. We do not know of any orientable PD,,-group
G whose pro-p completion ép is virtually a pro-p PD,,_1-group. Note that if ép is virtually a pro-p
PD,,_1-group then G has a subgroup of p-power index H such that ﬁp is a pro-p PD,,_;-group and
by Theorem f.4] this is impossible for n = 3.

Acknowledgments The second named author was partially supported by Bolsa de produtividade
em pesquisa CNPq 305457/2021-7 and Projeto teméatico FAPESP 18/23690-6.

2. PRELIMINARIES

Let G be a group, and let {y;G} be its lower central series, with y1G = G and y;11G = [G, y;G] for
alli > 1. If p is a prime, let X”(G) be the subgroup generated by all pth powers of members of G.
Let Dy, = Z = (Z/2Z) be the infinite dihedral group.

Let G be a profinite group. By definition Z,[[G]] = lillr% [[G/U]], where the inverse limit is over

alli > 1 and U open subgroups of G. And IF,[[G]] = Z,[[G]]/pZ,[[G]] = imF,[[G/U]] where the
inverse limit is over all open subgroups U of G.

When G is a group, H;(G, V) denotes the ith homology of G in the respective category. Thus if G is
an abstract group V is a ZG-module, if G is a pro-p group V is a pro-p Z,[[G]]-module and if G is a

profinite group V is a profinite Z[[G]]-module. Furthermore H(G, W) denotes the ith cohomology
of G in the respective category. If G is an abstract group W is a ZG-module, if G is a pro-p group
or more generally a profinite group W is a discrete G-module and so W = UWY where the union
is over all open subgroups U of G. In our applications V and W will be finite.

Since the pro-P completions of Z and of surface groups (PD;-groups) are well understood, the first
interesting case is in dimension 3.

Theorem 2.1. [18, Thm B] Let G be an orientable Poincaré duality group of dimension 3 and let @p be the
pro-p completion of G. Then exactly one of the following conditions holds

a) ép is finite;
b) ép is an orientable pro-p PD3-group;
c) there is no upper bound on the deficiency of the subgroups of finite index in ép;

d) @p is virtually Z,.



By the proof of Theorem2.1/if lim H (U, IF,) = 0 then case b) from Theoremholds. Furthermore
UeT
if a), b), ¢) do not hold ( and so d) holds) then limH>(U, IFy) ~ [F,.
UeT

Theorem 2.2. [14, Thm. 4] Let G be an abstract Poincaré duality group of dimension m and let C be a
directed set of normal subgroups of finite index in G. Suppose further that there is a subgroup Gy of finite
index in G such that Gy is orientable, that there is some Uy € C such that Uy < Go and that, forall i > 1,

lim H;(U, Fp) = 0.
UeC

Then G is a strong profinite Poincaré duality group of dimension m at p, (/Go\)c is a strong profinite
Poincaré duality group of dimension m at p and x,(Gc) = x(G).

3. SOME AUXILIARY RESULTS

We will need the following simple lemmas.

Lemma 3.1. Let S be an orientable PDy-group with a subnormal subgroup D of index p*, where p is prime,
and let j: D — S be the inclusion. Then Hy(j;F,) = 0 and H*(j; F,) = 0.

Proof. Since D is subnormal there is a chain D = Dy < --- < D, = S, where D; is normal in D; 4
and [Dj;1 : D] = p, for all i < m. It shall suffice to show that H>(D;;[F,) — Hz(D;y1;F,) is the zero
map. Thus we can assume that D is a normal subgroup of S of index p.

Let j. = Hy(j;Fp) and j* = H*(j; IF,), for simplicity of notation. Let x € H'(S;F,) = Hom(S, Z/pZ.)
be an epimorphism with kernel D. Since S is an orientable PDy-group and x # 0 there is a
y € H'(S;F,) such that x U y generates H*(S;F,). If we evaluate x U y on the image of a class
0 € Hy(D;Fy) we get (x U y)(j20) = j*(xuy)(0) = (j*xu j*¥)(6) = 0, since j*x = 0 is the restriction
of x to D. Hence j»6 = 0, for all 6, and so Hy(j;[F,) = 0. The dual result H*(j;F,) = 0 follows
immediately. O

For an abstract group U denote by ﬁp the pro-p completion of U.

Lemma 3.2. Let G be an abstract group, M be a directed set of normal subgroups of p-power index in G
that define the pro-p topology on G . Then lim Hy(M,TF,) = 0.
MeM

Proof. Let M be the closure of M € M in ép. Then since M ~ 2\71,[J and (yemM = 1 we have

lim Hy(M,F,) ~ lim Hy (M, F,) ~ Hi(lim M, F,) = Hi( [ | M,F,) =0.
MeM MeM MeM MeM
O

Proposition 3.3. Let 1 - A — B — C — 1 be a short exact sequence of abstract groups. Let T be a

directed set of subgroups in B. Suppose that each H;j(U N A, Fy) is finite and limH;(U n A, Fy) = 0. Then
UeT

LimH;(U/(U n A),Hj(U A, F,)) =0fori > 0.

UeT



Proof. Set My = H;j(U n A,TF,) and Vi = U/(U n A) a subgroup of C. Let
ﬂ:...—>Ri—>Ri_1—>...—>R0—>Z—>O

be a free resolution of the trivial ZC-module Z. Then H;(Vi, Mu) = H;(Ru), where Ry = Ry, Mu.

The maps of the inverse system {H;(Viy, My) | U € 7} can be described as follows: if Uy, Up € T,

where U; < Uy the map ¢y, u, : Hi(Vu,, Mu,) — Hi(Vu,, My, ) is induced by the map idg @ dy, i1, :

R ®vy, My, — R@VUZ My, that sends r; ® m to r; ® dy,,u, (m) for r; € R; and dy, 11, : My, — My, is

induced by the inclusion map Uy n A — Uy N A.

Since limMy; = 0 and each My is finite, then for every U, € 7 there is U; as above such that dyy, i1,
Ue7T

is the zero map. Then @y, u, is the zero map and hence lim H;(Vy, Mu) = 0. m]
UeT

Lemma 3.4. Let A be an orientable surface group. Let S be a directed set of normal subgroups of p-power

index in A. Suppose that imH; (U, F,) = 0. Then the completion A= limA/U of A with respect to S is
UeS R UeS
isomorphic to the pro-p completion Ap.

Proof. Consider the cellular chain complex associated to the standard Cayley complex of 4, i.e.
R:0— ZA — (ZA) - ZA -~ Z — 0
Consider the complexes R = p[[ ]] ®z4 R and R = F [[ p]] ®z4 R. By [18, Lemma 2.1]

H;(R) = lim H;(U, F,). Thus H; (R) = 0.
UeS
Note that R is a free resolution of the trivial F [[Ap]]—module IF,. Let 7" be the directed set of all

normal subgroups of p-power index in A. Let K = Ker(A — A)and Ap = limA/U — A= limA/U
UeT LIeS

~

is the epimorphism induced by the identity maps id4,;; for U € S < 7. Thus R ~ Ep ®g,[1x]) R-
Then

Hi(K, Fy) = H1(F, ®g, k) R) ~ H1(R) = 0
Hence K = 1 and /Tp ~ A. m]

Lemma 3.5. Let G be a group with pro-p completion ép. Denote i Hi(ép, F,) — H(G,F,) the map
induced by the canonical map G — ép. Then we have a commutative diagram

Hi(ép/ IFP) X H](ép/ IFP) % Hi+j(ép’ IFP)

' ufl l#"“

H(G,F,) x H/(G,F,) —— H''I(G,F,)

where the horizontal maps are the cup products in the categories of pro-p and abstract groups.

Proof. Following [27] consider the set C”(ép, IF,) of all continuous maps ég — IF,. Then there is a

map u : Ci(@p,]F )fo(ép,lF ) — C1+7(Gp,]F )deflnedby (fuh)(gl, o Givj) = f(g1,-- -, 90)R(Giv1, -, Givj)
that induces the cup product u : H' (GP,IF ) x H](Gp,]F ) —> HZ“(G ).



Similarly we can consider the set Cj(G,IF,) of all maps G" — IF,. Then there is a map v :

Ci(G,F,) x CJ(G,F,) — C;T/(G, F,) defined by (f U h)(g1, .-, gi+j) = f(g1,---, g)1(Gist, -, Gi )
that induces the cup product u : H(G,F,) x H(G,F,) — H*/(G,F,).

The canonical map G — ép induces maps V' : Ci(ép,IFp) — CB(G, IF,), that induce the maps p'.
Then by the definition of the cup product we have a commutative diagram

C/(Gp, By) x CI(Gp, By) —Z C*i(G,, )

v"xvfl \Lv’*f
C\(G,F,) x CL(G,F,) —== C//(G, F,)

and this commutative diagram induces the commutative diagram from the statement of the lemma.
o

4. PRO-p COMPLETIONS OF PD3-GROUPS

In this section we shall sharpen some of the results of [18]. Cases (a), (b), (c) and (d) shall refer to
the four possibilities in the statement of Theorem

We begin by refining the statements of cases (a) and (d). Theorem A of the introduction is then an
immediate consequence.

Lemma 4.1. Let G be a finitely generated group and p be a prime, and let K be the kernel of the natural

homomorphism from G to Gp. Suppose that Gy, is virtually Z,,. Then G/K has a finite normal subgroup F
which is a p-group, and such that G/K = F < Z if p is odd, while the quotient of G/K by F is Z or Dy, if
p=2

Proof. Since ép is virtually Zp, there is a short exact sequence
0—2Zy,—G,—>T—0,

where T is a finite p-group. Hence there is a short exact sequence 1 - A — G/K — T — 1, where
A = Z. Therefore G/K has two ends, and so it has a maximal finite normal subgroup F with
quotient Z or D,,. The subgroup F maps injectively to T, and so is a p-group. If p is odd then A is
central, since Aut(A) = {+1} has order 2. Since [G/K : A] is finite, (G/K)' is finite, by a lemma of
Schur. Hence G/K = F = Z, with F finite. ]

Theorem 4.2. Let G be an orientable PD3-group and p be a prime. Then
(1) if ép is finite then it is cyclic or quaternionic;

(2) if@p is virtually 2,7 then either @p = 2;7 orp = 2and Gy = Doy

Proof. Let Kbe the kernel of the natural homomorphism from G to ép. Suppose first that ép is finite.
Then P = G/K = G, is a finite p-group, and K has no quotient which is a finite p-group. Hence
Hi(K; Z) is finite, of order prime to p, and H! (K;Z) = 0. Consider the LHS spectral sequence

E}" = HY(P;HY(K; Z)) = H"™(G; Z)
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for the cohomology of G. The group P acts trivially on H(K; Z) and H*(K; Z.), since G is orientable,
while H(K; Z) = 0 and H*(K; Z) = H; (K; Z). Therefore E)'7 = 0if p > 0and g # 0 or 3, orif p = 0
and g #0,2or 3.

A slight extension of the argument of [1, Lemma IV.6.2] shows that P has periodic cohomology
(with period dividing 4). Since P is a p-group, it must be either cyclic (of prime power order) or
quaternionic (of order a power of 2). (Note that a finite group has periodic cohomology if and only
if every abelian subgroup is cyclic.)

Suppose now that ép is virtually 2p. It follows from Lemma 4.1/ that G has normal subgroups
K < Lsuch that G/L = Z or Dy, and | = L/K is a finite p-group, while K has no non-trivial quotient
which is a p-group. On passing to a subgroup of index 2 in G, if necessary, we may assume that
G/L=Z.

Let A = F,[G/K]. Then H;(K;IF,) = H;(G; A), for all i. Clearly Ho(K;F,) = [F, and H{(K;[F,) = 0,
while H;(K;IF,) = 0 for i > 2, since K has infinite index in G and so cd(K) < 3 [29]. We also have
H,(K;F,) = H2(G; A) = H'(G; A), by Shapiro’s Lemma and Poincaré duality. Now Ho(G; A) = F,
and H(G; A) = Hi(K; ;) = 0. Hence H'(G; A) = Ext) (F,, A), by the Universal Coefficient spectral
sequence (or by an ad hoclow-degree argument). Since G/K has two ends, Ext} (F,, A) = IF,. Thus
we conclude that Hy(K; F,) = HY(G; A) = FF,..

The LHS spectral sequence for the IF,-cohomology of L associated to the extension1 — K — L —
T — 1 may be identified with the Leray-Serre spectral sequence for the fibration of K(L,1) over
K(T,1). The fibre K(K, 1) is a IF,-homology 2-sphere. Since T is a p-group it acts trivially on [F,, and
therefore acts trivially on H, (K;IF,). Hence this spectral sequence reduces to a Gysin sequence

- — H"(L;F,) — HYT; F,) —» H(T;F,) —» H'B3(LEF,) — ...,

where the middle homomorphism is given by cup-product with a class z € H*(T;F,), as in [20),
Example 5.C]. Since H'(L; IF,) = 0 for i > 3 it follows that these cup products induce isomorphisms
H(T;F,) — H*3(T;F,), for all i > 0. Hence T has cohomological period (dividing) 3. But a non-
trivial finite group with periodic cohomology has even cohomological period [3, Exercise VI1.9.1].
Hence T must be trivial. O

Theorem A now follows immediately from Theorems [2.1and

We may easily identify the orientable PD3-groups with pro-p completion of type (a) or (d), when
pis odd. (We do not yet have a comparably simple characterization when p = 2.)

Corollary 4.3. If p is an odd prime then ép is finite if and only if G/G’ is finite and has cyclic p-torsion,
while ép = Zp ifand only if G/G' = Z @ T, where T is finite and (p,|T|) = 1. ]

The criteria for recognizing when case (b) or (c) occurs are less complete.

Theorem 4.4. Let G be an orientable PD3-group. If the restriction from H3((§p; IF,) to H(G; ) is trivial
then ép is a free pro-p group. In particular, cdp(@p) # 2, and so @p cannot be a Demuskin group.

Proof. Letj: G — ép be the canonical homomorphism. Then Hj (j; F,) and H'(j;IF,) are isomor-
phisms, while H>(j;F,) is an epimorphism and HZ( J;Fp) is a monomorphism, for any group G If

y e Hz(ép; IF,) is non-zero then there is an a € Hl(@p; IF,) such that j*(a uy) = j*a U j*y #0, by
7



the non-degeneracy of Poincaré duality for G. Hence if H>(j) = 0 then Hz(ép; F,) = 0, and so ép
is a free pro-p group [27, Prop. 21]. m]

Proofs of much of the following corollary can be found in [18], but the arguments here differ in
some respects. Condition (3) is closely related to one of the hypotheses in [18, Theorem 3.1], while
(2) and the implication (4) = (1) appear to be new. We recall that Hi(ép;]Fp) = li_r)nHi(G/ U;Fy),
for all i, the limit being taken over the directed system of normal subgroups U of p-power index in
G.

Corollary 4.5. Let G be an orientable PD3-group and p be a prime. Then the following are equivalent.
(1) ép is a pro-p PD3-group;

(2) G has a normal subgroup U of p-power index such that inflation from H*(G/U;F,) to H*(G; Fy)
is an epimorphism, and each such U has a proper subgroup V < U which is normal and of p-power
index in G and such that inflation from H3(G/U;F,) to H3(G/V;F,) has rank 1;

(3) every subgroup U < G of p-power index has a proper subgroup V < U of p-power index which is
normal in U and such that inflation from H*(U/V;F,) to H*(U;F,) is an epimorphism;

(4) ép has cohomological p-dimension 3 and X(ép) =0.

Proof. Letj:G — ép be the canonical homomorphism. If ép is a pro-p PDs-group then

ﬁZ(Gp? ]Fp) = .Bl(Gp; IFp) = ﬁl(G? ]Fp) = ﬁZ(G? ]F'p)r
and so H?(j;F,) is an isomorphism. Therefore G has a normal subgroup U such that [G : U] is a
power of p, H/(G/U; F,) = H'(G;F,) and inflation from H*(G/U;F,) to H*(G;F,) is onto. Since
H! (ép ;Fp) # 0 it follows that inflation from H*(G/U;IF,) to H*(G;F,) is an epimorphism, by the
non-degeneracy of Poincaré duality for G. Since h_r)nH3(G/ WE,) = H3((§p; F,) = [F,, there is in
turn a subgroup V < U which is normal and of p-power index in G and such that inflation from
H3(G/U;F,) to H*(G/V;F,) has rank 1, i.e, the image is IF,. Hence (1) = (2).

Conversely, if these conditions hold then ép is infinite, since G has subgroups of unbounded
p-power index, and H?(j;F,) is an isomorphism. (In particular, ép is not a free pro-p group.)
Moreover, there is a sequence U;;1 < U; of normal subgroups of p-power index such that the
inflation from H?(G/U; IF,) to H*G; F,) is an epimorphism and the inflation from H*(G/Uj; F,) to
H3(G/Uj;1;Fy) has rank 1. This together with Theoremimplies that H?(j; F,) is an isomorphism
and that H3((§p;IFp) = [F,. Hence H3( j;IFy) is also an isomorphism, by the Theorem, and so
(2) = (1), by [27, Sect. 4.5, Prop. 32], together with Lemma

A similar argument applies for each subgroup of finite index in G, since such subgroups are also
orientable PD3-groups. Hence (1) = (3).

If(3)holdsand ji; : U — lAIp is the canonical map then H?(ji;; IF,) is an isomorphism, so > (ép ;) =
B2(G; Fp). Hence Hs(ju;IFy) is also an isomorphism, and so (3) = (4), by [18, Theorem 3.1].

If (4) holds then H>(j; F,) # 0, since @p has cohomological p-dimension > 1, by Theorem Since
B3(Gp; Fy) = 1 = B3(G; Fp) and x(Gy) = x(G) = 0, we have

B2(Gpi ) = B1(Gpi Fy) = B1(G; Ey) = Ba(G ).
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On the other hand Ha(j;F,) is surjective, hence ﬁz(ép; F,) < B2(G;F,). Hence ﬁz(ép; F,) =
B2(G;F,) and ﬁ3(ép; F,) = B3(G; ) = 1, and so H.(j;F,) and H*(j;IF,) are isomorphisms in all

degrees. It then follows from Lemma [3.5|that ép is a pro-p PDs-group. (See also [31, Prop. 3.2].)
Thus (4) = (1). m]

~

We note that whether there is a PD3-group G with 3 < cd,(G,) < o remains open.

We remark finally that if G is finitely generated then the order of the torsion subgroup of G/G’ is
divisible by only finitely many primes. Hence if G is an orientable PD3-group then ép is finite for
all primes p if and only if either G/G’ is finite cyclic or G/G’ is the direct sum of a finite cyclic group
with a cyclic 2-group, and the 2-lower central series of G terminates after finitely many steps. If ép
is of type (b) or (c) for all primes p then ;(G; Q) > 2. Every pro-p completion of G is of type (d) if
and only if G/G" = Z.

5. EXAMPLES ILLUSTRATING THEOREM

In this section we shall gives examples of aspherical 3-manifolds whose fundamental groups
represent each of the four cases of Theorem 2.1}

Examples with @p cyclic are easily found. If M is an aspherical Seifert fibred homology 3-sphere
then it admits a natural S'-action with finitely many exceptional orbits with nontrivial finite
isotropy subgroups. If n is prime to the orders of these isotropy subgroups then the subgroup of
nth roots of unity in S! acts freely on M, with quotient M, say. Hence G = 711(M) is an orientable
PD3-group with perfect commutator subgroup G’ = G” and G/G’ = Z/nZ. In particular, if n = p
for some prime p and k > 1 then ép =~ 7/p*Z. (For example, if g, 7,5 are pairwise relative prime
and % + 1+ 1 <1 then the Brieskorn manifold M(q,r,s) is an aspherical Z-homology 3-sphere,
and we may take p relatively prime to grs.)

Since the quaternionic groups Q(2") act freely on S° (for all n > 3), the Dehn surgery argument of
[4, Theorem 2.6] may be used to show that these groups act freely on hyperbolic Q-homology 3-
spheres. By taking the Dehn surgery slope to be a large enough odd number we may ensure
that H;(M; Z) has odd order, where M is the resulting Q-homology 3-sphere. The quotient

M = M/(Q(2")) is then an aspherical orientable 3-manifold, and G = 71;(M) is an orientable
PDs-group with G, = Q(2"). However we do not have explicit examples of this type.

The simplest example of case (b) of Theorem 2.1/is G = Z3, the fundamental group of the 3-torus.
More generally, every finitely generated, torsion free nilpotent group is residually a finite p-group
for all p, by Theorem 4 of [25, Chapter 1]. Thus the pro-p completion of a nilpotent PDs-group is a
pro-p Poincaré duality group of dimension 3. (This does not extend to the virtually nilpotent case.

The group G = 71(M(31)) mentioned below is virtually Z3, but ép = Zp, for all primes p.)

Examples of aspherical 3-manifolds whose fundamental groups illustrate cases (c) and (d) may be
constructed by surgery on links. Let M(L) be the closed orientable 3-manifold obtained by 0-framed
surgery on the components of an m-component link L in S®. The fundamental group 7; (M(L)) is
the quotient of the link group nL by the normal subgroup generated by the longitudes of L. The
inclusion of a set of meridians determines a homomorphism from the free group F(m) to the link
group 1L which induces an isomorphism on abelianization. If L is a boundary link (in particular,
if m = 1 and so L is a knot) this homomorphism is split by an epimorphism from 7L to F(m), and
the longitudes of L are in the kernel of any such epimorphism. The induced homomorphisms
between the quotients of the lower central series iL/yxnL — F(m)/yF(m) are isomorphisms, for
9



all k > 1 [28]. Hence | = m1(M(L)) is an extension of F(m) by y,] = nkenViJ, and fp = I@p, for
all primes p. In our first such example we shall show that M(L) is aspherical; in the second we
show that M(L) must have an aspherical summand with the requisite properties.

For the first such example we shall let L be the link obtained by replacing each component of the
Hopf link 2% by an untwisted Whitehead double [10, Figure 1.6]. (There is a choice involved, but
that is irrelevant for our purposes.) This is a boundary link, since each component of L bounds
a punctured torus inside a tubular neighbourhood of the corresponding component of the Hopf
link.

The components of L are separated by a torus T = S°. Each component of S?\T is homeomorphic
to X(Wh), the exterior of the Whitehead link Wh = 5%. (The notation 5% refers to the tables of knots
and links in [24].) Then M(L) = N u¢ N, where f is a homeomorphism between the boundaries of
the two copies of the 3-manifold N obtained by attaching a solid torus to the boundary of X(Wh)
so that dD? is a longitude. We shall show that N is aspherical and the inclusion of 7t1(0N into
v = m1(N) is injective. Hence M(L) is aspherical and so G = m1(M(L)) is a PD3-group.

The link group mWh has a presentation

1

{a,b,w,x,y | axa~ ! = bwb™! = Yy, waw " = xax~ ' =b, yxy_1 = W),

and the longitudes for a and x are represented by A, = x'w and A, = a~byx~!, respectively. We
may assume that N is obtained by attaching D? x S! to the component with meridian x, so that
the image of A, in v = 71(N) is trivial. We have A, = a~lbab—1, since y= axa—'. Hence v has the
presentation

{a,b,A, x| axa~ ' = bxAb™Y, al = Aa, xax" ! = b,

axa ‘xax la~! = xA, ab = ba).

(Here we have written A for A, and replaced w by xA and y by axa—!.) This presentation simplifies
P y y by p P
to
{a,b,A,x | al = Aa, ab = ba, xax ' =b, xAb lax~! = b*1a>,

since the relation A = xlaxa—1xax—1a—! follows from the others. Thus v is an HNN extension with

base the group {a,b,A) = Z x F(2), associated subgroups {a, Ab—') and {(a,b), and stable letter x.
Hence v has one end. The image of 711 (9N) is the subgroup {a, 1) = Z2, and so 0N is incompressible
in N. It follows from the exact sequence of (N, N) with coefficients Z[v], Poincaré-Lefshetz duality
and the facts that v has one end and the components of 0N are aspherical that N is aspherical. (See
[11, Lemma 3.1].)

In our second example the PD3-group G does not map onto a nonabelian free group, although
the pro-p completions of G are free pro-p groups. Let L = L; u L, be the 2-component link of
[10, Figure 8.1]. The homomorphism from F(2) to mL determined by a pair of meridians induces
isomorphisms F(2)/y,F(2) = nL/y)nnL, for all n > 1, and the longitudes of L lie in ny,>1y,mL.
Hence 111(M(L))/ynmt1(M(L)) = nL)/y,niL, for all n > 1. The link L is not an homology boundary
link: there is no epimorphism from 7L to F(2), and so m;(M(L)) does not map onto F(2). Thus if
M(L) = §_,M; is a factorization of M(L) as a connected sum of indecomposables all but one of the
summands must be homology 3-spheres. We may assume that M; is not an homology 3-sphere,
and so H;(My; Z) = Z?. Hence M is aspherical, since it is indecomposable, and 71 (M) is infinite
and not virtually Z. (It is likely that M(L) is itself aspherical, but we do not need to know this.)
Thus G = 71(M) is an orientable PD3-group. The natural epimorphism from 71 (M) to G induces
isomorphisms 11 (M(L))/ynm1(M(L)) = G/y4G, for all n > 1, since the fundamental groups of the
other summands of M(L) are all perfect. Hence F(2)/y,F(2) = G/y,G, for all n > 1. On passing
10



to the p-lower central series and pro-p completion, we conclude that @p = ép, for all primes
p.

The fundamental groups of orientable closed 3-manifolds which fibre over non-orientable aspher-
ical surfaces give further examples of type (c). The simplest such are the semidirect products
G = Z > C, where C is a PD>-group with orientation character w : C — Z*. Such groups G are

orientable PD3-groups. If C is orientable then ép is a pro-p PD3-group, for all primes p. If C is

non-orientable then G, is again a pro-2 PDs-group, but if p is odd then @p = ép, by Lemma
and this is a finitely generated free pro-p group, by Lemma

We have not yet found any examples of case (c) for which the pro-p completion is not a free pro-p
group.

The simplest examples of case (d) of Theorem are semidirect products G = 7% x, Z, where
A € SL(2,Z). All such groups are solvable PD3-groups. If p is a prime such that (det(A —I),p) =1
then ép = Z,, butif p divides det(A —I) then ép is a pro-p PDs-group. (Note that if one eigenvalue
of A is congruent to 1 mod (p) then so is the other, since they are mutually inverse.)

We may construct further examples of case (d) by O-framed surgery on knots. If K is a nontrivial
fibred knot then M(K) fibres over S!, with fibre F a closed orientable surface of genus > 1. Taking
K to be the trefoil knot 3; or the figure-eight knot 4; gives examples with fibre the torus T, and
1 (M(K)) = Z* x4 Z, where A = (1 ') or (21), respectively. The knots K = 6, and 63 give
examples with fibre of genus 2. Thus if K is a non-trivial fibred knot then G = m;(M(K)) is a
PD3-group which is an extension of Z by the PD;-group ¢ = 71 (F), and G’ = ¢. Hence G/G’' = Z,
and so the lower central series for G stabilizes at y,G = y2G = ¢. Therefore ép = Zp, for all primes
p, and so G is in case (d).

Examples of dihedral type for case (d) may also be constructed in terms of knot theory, but require a
little more work. Let K be a knot which is carried onto itself by an orientation-reversing involution h
of 3 which also reverses the orientation of K. (Such knots are said to be “strongly -amphicheiral”.)
We may assume that 1(X) = X, where X is the exterior of K. Suppose also that  has just two fixed
points. Then Fix(h) < K, and so h restricts to a fixed-point free involution of X which inverts the
generator of H(X; Z).

Let X1 and X5 be two copies of X, with a fixed homeomorphism j : X; — X5, and let DX = Xj usx Xo
be the double of X along its boundary, obtained by setting x = j(x) for all x € 0X;. Then
H3(DX;Z) = Z and so X is an orientable closed 3-manifold. We may define an involution ¢ by
¢(x) = j(h(x)) for x € X3 and ¢(j(x)) = h(x) for j(x) € X,. This involution clearly acts freely on
DX, and is orientation-preserving, so M = DX/{¢) is a closed orientable 3-manifold. However ¢
inverts the generator of H1(DX;Z) = Z, and so G = m1(M) maps onto D, with kernel m; (DX)’.
The abelianization 711 (DX)’ /1 (DX)” is annihilated by the Alexander polynomial Ak(f).

If K is the unknot then X = S! x D?, DX = S! x §2 and M = RP*#RIP?, and so G = D,. If K
is non-trivial then X is aspherical and 0X — X is mj-injective, and so DX is aspherical. Hence
M is aspherical . If Ag(t) = 1 mod (2) then 7;1(DX)’/m1(DX)” is a torsion abelian group of odd
exponent. It then follows easily that éz ~ 15;2. The simplest example of such a knot is 83, which

has Alexander polynomial 4t — 9¢ + 4.
1



6. GOODNESS AND THEOREM B

In this section we shall consider the profinite completion, as well as pro-p completions. We call G
homologically good if for every finite G-module M the map H;(G, M) — H;(G, M), induced by the
canonical map G — G, is an isomorphism.

Lemma 6.1. Let G be an abstract group of type FP, and T be a directed set of finite index normal subgroups
in G that defines the profinite topology of G. Then the following conditions are equivalent :

a) G is homologically good;

b) for every finite G-module M we have that imH;(U,M) = 0 fori > 1;
UeT

¢) for every prime p for the trivial G-module I, we have that imH;(U,F,) = 0 fori > 1;
UeT

d) G is good.

Proof. a) implies b) Suppose first that G is homologically good. Then

UimH;(U, M) ~ UimH;(U, M) ~ H;(limU, M) = Hi(nyer U, M) = Hi(1,M) = 0
UeT UeT UeT

b) implies c) is obvious.

c) implies a) and d) Let M be a finite G-module. By substituting U with a subgroup of finite index
we can assume that U acts trivially on M. Then by decomposing M as a direct sum of its p-primary
components we can assume that M is p-primary for p prime.

Let R be a projective resolution of the trivial ZG-module Z, where all projectives are finitely
generated and since by [18, Thm. 2.5] after moving from right to left modules ToriZG (Z,[[G]],Z2) =
0fori > 1, we obtain that R = Zp[[é]] ®zc R is exact, hence is a projective resolution of the
trivial pro-p Zp[[é]]—module Zy. Note that for every finite p-primary G-module M we have that
Homzc(R¥!, M) ~ Homzp[[é]] (R%!, M) and Z\{ Rzc R ~ M ®2 1161] Riel where RY! R denote
the deleted complexes obtained from R and R i.e. we substitute the modules Z and Z,, that are in
dimension —1 with the zero module. Hence

H'(G,M) ~ H'(Homzg(R™,M)) ~ H'(Hom &) (R*, M) ~ H'(G, M)

and the composition of the above isomorphisms is the map H!(G,M) — H!(G,M) induced by the
canonical map G — G. Thus G is good.

Similarly

Hi(G,M) ~ Hi(M ®zc R™) ~ HiM®,, Ry ~ H(G, M)

[en
and the composition of the above isomorphisms is the map H;(G, M) — Hi(é, M) induced by the
canonical map G — G. Thus G is homologically good.

d) implies c) Fix a prime p and consider the Pontrygin duality given by M* = Homz,(M, Q,/Z,)
that induces a functorial isomorphism H'(G, M*) ~ H;(G, M)* for a finite G-module M. Then
(HmH, (U F,))* ~ limHy(U, Fy)* ~ limH (U, F}) = lim /(U F,) = 0

Ue7T UeT UeT UeT
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where the last equality follows from [27, Ch. 1, sec. 2, ex.1a)]. O

A group B is called homologically p-good if for every finite pro-p Z, [[Bp]]—module M we have that
the canonical map B — Bp induces an isomorphism H;(B, M) — H; (BP,M)

Lemma 6.2. Let G be a abstract group of type FP, p be a fixed prime number and T be a directed set of
p-power index normal subgroups in G that defines the pro-p topology of G. Then the following conditions
are equivalent :

a) G is homologically p-good;
b) for every finite pro-p Zp[[@p]]—module M we have that im H;(U, M) = 0 fori > 1,

Ue7T
¢) for the trivial G-module IF, we have that limH;(U,F,) = 0 for i > 1
UeT
d) G is p-good.
Proof. The proof is an obvious modification of the proof of Lemma m|

Lemma 6.3. Let1 — A — B — C — 1 be a short exact sequence of abstract groups such that both A and

C are p-good, H'(A, M) is finite for any finite pro-p F [[ p]]-module M and 1 — A - B — C — 1is
exact. Then B is p-good.

Proof. Consider the LHS spectral sequence EZZ] = Hi(ép, H (AP,M)) that converges to H't/ (ﬁp,M),
where M s a finite pro-p Z, [[gp]]-module. Consider the LHS spectral sequence Ef,]. = H'(C,H/(A,M))
that converges to H'*/(B, M). By the p-goodness of A and C the map B — B, induces an isomor-
phism 1212] — E%j. By the naturality of the spectral sequence we conclude by induction on k > 2
that the map B — 1§p induces an isomorphism Ef] — Eii]., hence an isomorphism Ef‘; — Eloi Then

the convergence of the spectral sequence implies that the map B — Ep induces an isomorphism
H*i(B,, M) — Hi*i(B,M). O

Lemma 6.4. Any orientable surface group is good and p-good.

Proof. The goodness is a particular case of [9, Thm. 1.3] and the p-goodness is a particular case
of [15, Thm. A]. Alternatively both statements have elementary proofs using the results from the
previous and this section. O

In particular, the pro-p completion of an orientable PD>-group is a pro-p PD>-group. The situation
is somewhat different in the non-orientable case.

Lemma 6.5. Let C be a non-orientable PD,-group. Then Crisa pro-2 PD;-group but ép is a free pro-p
group, for every odd prime p.

Proof. Let C* be the kernel of the orientation character w : C — Z*. Then [C : C*| = 2, since C is
non-orientable, and so C*5 has index 2 in C,. Since C™ is an orientable PD;-group it follows that

Crisa pro-2 Poincaré duality group of dimension 2.
13



Assume now that p is an odd prime,. Then H(C; [F,) = ]Fr forsomer > 1,and H>(C;F,) = 0. Let F
be the free group of rankrand f : F — Ca homomorphlsm such that Hy (f;IF,) is an isomorphism.
Since Hy(f;IF,) is also an isomorphism, f induces 1somorphlsms on all correspondmg quotients of

the p-lower central series of these groups [28]. Hence Fp = C m]
We return briefly to consider profinite completion, rather than pro-p completions.

Proposition 6.6. Let1 — A — B — C — 1 be a short exact sequence of groups such that A is an orientable
surface group, B is an orientable PD; 1 ,-group and C is a good PD,, group. Then B is a strong orientable

profinite PD; . ,-group at p. In particular, if C is an orientable surface group (so m = 2) then Bisa strong
orientable profinite PD4-group.

Proof. By Lemma|6.4surface groups are good and by [27, Ch. 1, Sec. 2.6, Ex. 2c)] so are extensions
of good groups where the bottom group is FP,. In particular, B is good. Let 7 be a directed set of
normal subgroups of finite index in B that defines the profinite topology of B. Then by Lemma

limH;(U, IFy) = 0 for i > 1. Then we can apply Theorem m]
UeT

There is a subtle point here; a “good” group need not be p-good for any prime p. The simplest
example is perhaps the group m71(M(31)) of §4 mentioned above. There is an exact sequence
1>A—>B—C—1withA=2Z,B=mn(M@3;))and C = Z, and so B is good, by Proposition|[6.6}

However, Bp =C, = Zp, and so B is not p-good, for any prime p.

We may now prove Theorem B.

Theorem 6.7. Let 1 - A — B — C — 1 be a short exact sequence of groups such that A is an orientable

surface group, B is an orientable PD; >-group and C is an orientable PDg group, where s = 2 or s = 3. Let

T be a directed set of normal subgroups of p-power index in B that defines the pro-p topology of B. Suppose

that UmH, (U n A, F,) = 0 and furthermore if s = 3, there is an upper bound on the deficiency of the
Ue7T

subgroups of finite index in (A:p. Then
a)if s = 2, then ﬁp is a pro-p PDy group and B is p-good.
b)ifs = 3, then EP is virtually a pro-p PDy-group for some k € {2,3,5}. If k = 5 then B and C are p-good.

If additionally B is orientable and p-good then l§p is an orientable pro-p PDo s group.

Proof. Note that Bis a PD;.»-group. Let A be closure of the image of A in §p i.e. Aisthe completion
of A with respect {U n A | U € 7 }. Then we have a short exact sequence of pro-p groups

1>A—B,—Cp—1
By Lemma we see that A ~ /Tp is an orientable pro-p PD,-group.
If s = 2 then ép is an orientable pro-p PD;-group. Hence Ep is a pro-p PDy-group.
Ifs = 3and (Afp isinfinite then by the remark after Theorem we have two options: LLnH 2(Vu, Fy) =

UeT
0 or limH,(Vy, Fy) = IFy. In the former C,, is an orientable pro-p PD3-group and in the latter C, is
Ue7
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virtually Z,,. Since A= /Yp is a pro-p PD;-group we conclude that if (Afp is infinite then ﬁp is a pro-p
PDs-group or virtually a pro-p PD3-group.

The p-goodness follows from Lemma H We need that in the case s = 3, if ép is an orientable
pro-p PDs-group then C is p-good, that follows from [18, Thm. A].

If B is p-good and B is orientable then by Theorem ﬁp is orientable pro-p PD», s group. m]

Lemma 6.8. Let1 — K — G — D — 1 be a short exact sequence of groups, where G is a PD,,-group, D is
a PD,,_1-group and K ~ Z.. Then G is an orientable PD,,-group if and only if K is the dualizing module of
D.

Proof. Consider the LHS spectral sequence E?j = H;(D,H;(K,Z)) that converges to H;, j(G,Z).
Since E2] = 0ifi > norj > 2, by the convergence we conclude that H,(G, Z) ~ H,_1(D, H1(K, Z)).

Let W be the dualizing module of D and V be the dualizing module of G. Both V and W are infinite
cyclic as abelian groups but in general the corresponding actions of D and G need not be trivial.
Then

H°(G,V) ~ Hy(G,Z) ~ H,_1(D,H,(K,Z)) ~ H,_1(D,K) ~ H(D,K ® W).
Since V and K ® W are infinite cyclic as abelian groups, we have that G is orientable <= G acts

triviallyon V <= H%(G,V) #0 < H°(D,K® W) #0 <= K® W is the trivial D-module (via
the diagonal action) <= K ~ W as D-module. m]

Lemma 6.9. Suppose p # 2and 1 — K — G — C — 1 is a short exact sequence of groups, where the
action of C via conjugation on K = Z is non-trivial. Then Gp ~ C

Proof. Suppose that U is a normal subgroup of p-power index in G. Then for some i we have that
K* = [K,G,...,G] < 7i41(G) = U, hence K* = U n K < K. Since [K : U n K] is a p-power that
divides 2 = [K : K?], we conclude that K = U n K < U. Hence G, ~ C,.. O

7. PD4-Grouprs WiTH EULER CHARACTERISTIC 0

In this section we shall prove Theorem C of the Introduction. (This is Theorem below.)

Lemma 7.1. Let G be an orientable PDy-group. If the pro-p completion @p is a pro-p PD3-group then
X(G) = 2.

Proof. We have ﬁl(@p; F,) = B1(G;Fy) and ﬁz(Gp,lF ) < p2(G; IEy), for any group G [27, §2.6]. Since
Gy is a pro-p PDs-group, p1(Gy;F,) = ﬁz(Gp, IF,), and since the image of H? (Gp,]Fp) in H*(G;F,)
is self-annihilating under cup product, f2(G;F,) > 281(G;IF,), by the non-singularity of Poincaré
duality. Hence x(G) = X o<i<s(—1)'Bi(G;Fp) = 2 — 261(G; Fp) + 2(G; Fp) = 2. ]

Let G be a group with a normal subgroup A = Z2. If we fix a basis for A we may identify Aut(A)
with GL(2,Z), and conjugation in G then determines an action 6 : G/A — GL(2,Z). We shall say
that the action is orientable if its image lies in SL(2,Z). (Thus G acts orientably if and only if the
induced action by det@ on A A A = Z is trivial.)

15



Theorem 7.2. Let 1 — A — B — C — 1 be a short exact sequence of groups such that A ~ Z?, B is an
orientable PDy group and C is an orientable PD-group. Then one of the following holds:

a) 1§p is an orientable pro-p PDy-group and B is p-good;

S

) Ep = ép, and the image of A in Ep is trivial.

Proof. Let [B, A] be the normal subgroup generated by commutators gag—'a=! for g € Band a € A.
Let T'A = [B,A] + pA and T**1A = [B,T*A] + pF*1A4, for all k > 1. These subgroups have finite
index in A and are normal in B. The quotient A/T'A is central in B/T'A, and B acts on the finite
p-group A/TFA through a finite p-group, for all k > 1. Hence B has a normal subgroup U of
p-power index such that A < U and A/T*A is central in U/T*A. The quotient U/A is an orientable
PDy-group and A/T*A is a finite abelian group of exponent dividing p*. On applying Lemma
several times, we see that the class in H?(U/A; A/T¥A) of the central extension

0— A/TFA — U/TFA - U/A — 1

restricts to 0 in a normal subgroup V/A of p-power index. Hence V/T*A = (V/A) x (A/T¥A). An
argument by induction on nilpotency class shows that ny~;T¥A has trivial image in every finite
quotient of G which is a p-group. It follows that ny>1T*A is the kernel of the pro-p completion
homomorphism from B to ﬁp.

Fix an isomorphism A = Z2, and let 0 : B — GL(2,Z) be the action of B an A induced by
conjugation in G. Let 6, : B — GL(2,IF,) be the mod-p reduction of 0.

If 0,(g) — I is not invertible (for some g € B) then 0,(g) has 1 as an eigenvalue. Since B and C are
orientable the action of B on A is orientable. Hence both eigenvalues of 6,(g) are 1, since they are
mutually inverse, and so (6,(g) — I)* = 0.

Suppose first that this holds for all g € B. Then we may assume that 0,(B) < U(2,[F,), the subgroup
of upper unitriangular matrices [23} 8.1.10]. Thus A has a basis {e;, e} such that [B,e;] < pA and
[B,e2] + pA < Zey + pA. Hence IMA < Ze; + pA. Define subgroups [B,s,e;1]| inductively by
setting [B,1e1] = [B,e1] and [B,s11e1] = [B,[B,se1]] for s = 1. Then by induction on k we have
T*A < p*A + Sy jk1Zp"[B,jer], [Bar—1e1] < p*A and [B,ycer] < Zpkey + pF1A < p*A. Thus
I2kA < p*A, for all k > 1, and s0 Mj=1T¥A = 1. In this case A = Zg and so ]§p is a pro-p PDy-group.
Since ﬁl(gp;IFp) = B1(B;F,) and )((Ep) = 0 = x(B), it follows that ﬁz(ﬁ;IFp) = B2(B;IFp). It then
follows easily from Lemma 3.5(and the nonsingularity of Poincaré duality that B is p-good.

If 6,(g) —Iis invertible in GL(2, IF,) for some g € C then A = [B, A]+pA. Hence A = [B, A] + p*A for
all k > 1, by the Burnside Basis theorem [23} 5.3.2] (equivalently, by Nakayama’s Lemma), applied
to the finite p-group A/p*A. Hence ny=1I"A = A,s0 A = 1 and B, = C, is a pro-p PD,-group. O

If C is a non-orientable PD;-group then B is orientable if and only if the determinant of the action
is the orientation character of C). In this case the above argument goes through with little change
forp = 2.

Remark Supposep # 2and 1 - K — G — C — 1 be a short exact sequence of groups, where C
is an orientable surface group and the action of C via conjugation on K = Z is non-trivial. Thus
G is a non-orientable PDs-group. Consider B = S x G, where S = Z. Then for A = S x K we
have the short exact sequence of groups 1 — A — B — C — 1 with A and C orientable surface
B is not orientable. Then by Lemma ﬁp o~ §p X ép =7y x ép is an
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orientable pro-p PD3-group and A ~ Z,. This is an example of a group that is not orientable and
does not satisfy the conclusions of Theorem C but the only assumption of Theorem C it fails is the
orientability one.

Taking products of aspherical 3-manifolds exemplifying case (d) of Theorem [2.1| with the circle
gives examples illustrating part (b) of Theorem C. Let M = M(K), where K is a non-trivial fibred
knot. Then E = M x S! is an aspherical 4-manifold with fundamental group G x Z, and E fibres
over the torus T with fibre F. If B is a surface of genus & > 1 and f : B — T is a degree-1 map
then the total space Ef = N x1 B of the pullback of the fibration N — T over f is aspherical, and
n = m1(Ef) is an extension of p = 711(B) by ¢. It is easy to see that ¢ < y7 for allk, and so 7, = p,
for all primes p.

If L is the 2-component boundary link obtained by Whitehead doubling each component of the
Hopf link then M(L) x S! is an aspherical orientable 4-manifold, but does not fibre over a surface.

The pro-p completion of G x Z is F/(\Z)p X Zp, which has cohomological p-dimension 2, but is not a
Demuskin group.

Note that the hypothesis ”@Hl(u n A, ;) = 07 of Theorem B does not hold for these exam-

UeT
ples.

8. DIMENSION DROP

An orientable PD,-group G has dimension drop k on pro-p completion if ép isa pro-p PD,,_-group.
There are aspherical closed orientable n-manifolds N such that 711(N) has dimension drop k (for
all primes p), for all n > 2 and 2 < k < n, except when n = k = 5 [12]. This exception reflects the
fact that 5 is not in the additive semigroup generated by 3 and 4, dimensions in which aspherical
homology spheres are known. We shall fill this gap below. However, whether there are any
examples of dimension drop 1 remains an open question.

Let X be a compact 4-manifold whose boundary components are diffeomorphic to the 3-torus T°.
A Dehn filling of a component Y of ¢X is the adjunction of T? x D? to X via a diffeomorphism
o(T? x D?) = Y. If the interior of X has a complete hyperbolic metric then “most” systems of Dehn
fillings on some or all of the boundary components give manifolds which admit metrics of non-
positive curvature, and the fundamental groups of the cores of the solid tori T? x D?> map injectively
to the fundamental group of the filling of X, by the Gromov-Thurston 27-Theorem. (Here “most”
means “excluding finitely many fillings of each boundary component”. See [2].)

Theorem 8.1. There are aspherical closed 5-manifolds with perfect fundamental group.

Proof. Let M = S*\5T? be the complete hyperbolic 4-manifold with finite volume and five cusps
considered in [13] and [22], and let M be a compact core, with interior diffeomorphic to M. Then
Hy(M;Z) = Z°, x(M) = 2 and the boundary components of M are all diffeomorphic to the 3-torus
T3. There are infinitely many quintuples of Dehn fillings of the components of 0M such that the
resulting closed 4-manifold is an aspherical homology 4-sphere [22]. Let M be one such closed 4-

manifold, and let N M be the compact 4-manifold obtained by leaving one boundary component
of X unfilled. We may assume that the interior of N has a non-positively curved metric, and so N
is aspherical. The Mayer-Vietoris sequence for M = N u T? x D? gives an isomorphism

H(T%Z) = H(N; Z) ® H|(T? Z).
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Let {x, y,z} be a basis for H;(T%; Z) compatible with this splitting. Thus x represents a generator
of H1(N;Z) and maps to 0 in the second summand, while {y,z} has image 0 in H;(N;Z) but
generates the second summand. Since the subgroup generated by {y, z} maps injectively to m; (Z\//I\)
[2], the inclusion of ON into N is rtj-injective. Let ¢ be the automorphism of ON = T° which swaps
the generators x and y, and let P = N uy N. Then P is aspherical and x(P) = 2x(N) = 4. A
Mayer-Vietoris calculation gives H; (P; Z) = 0, and so 7t = 11 (P) is perfect and H?(P; Z) = Z>.

Let e generate a direct summand of H?(r; Z) = H?(P;Z), and let E be the total space of the S!-
bundle over P with Euler class e. Then E is an aspherical 5-manifold, and G = m; (E) is the central
extension of 711(P) by Z corresponding to e € H?(wt1(P); Z). The Gysin sequence for the bundle
(with coefficients in IF,) has a subsequence

0 — H'(E;F,) —» H(P;F,) — H*(P;[F,) - H*(E;Fy) — ...

in which the mod-p reduction of e generates the image of H(P; F,). Since e is indivisible this image
is nonzero, for all primes p. Therefore H'(G;F,) = H'(E; F,) = 0, for all p, and so G is perfect. O

We may use such groups to complete the results of [12].

Theorem 8.2. For each r > 0 and n > max{r + 2,3} there is an aspherical closed n-manifold with
fundamental group 7 such that n/n’ = 7" and 7’ = 7".

Proof. Let L be an aspherical homology 3-sphere (such as the Brieskorn 3-manifold X(2,3,7)) and
let P and E be as in Theorem Taking suitable products of copies of &, P, E and S! with each
other realizes all the possibilities with n > r + 3, for all » > 0.

Let M = M(K) be the 3-manifold obtained by 0-framed surgery on a nontrivial prime knot K with
Alexander polynomial A(K) = 1 (such as the Kinoshita-Terasaka knot 11,47). Then M is aspherical,
since K is nontrivial [7], and if p = m1(M) then u/u’ = Z and 1’ is perfect, since A(K) = 1. Hence
products M x (S')"~! give examples with n = r + 2, for all r > 1. ]

In particular, the dimension hypotheses in Theorem 6.3 of [12] may be simplified, so that it now
asserts:

Let m > 3 and r > 0. Then there is an aspherical closed (m + r)-manifold M with fundamental group
G = K x Z", where K = K'. If m # 4 we may assume that x(M) = 0, and if r > 0 this must be so.

This is best possible, as no PD1- or PD;-group is perfect, and no perfect PDs-group H has x(H) =
0.

As observed above, there are no known examples of dimension drop 1. No PD,,-group withn < 3
has such a dimension drop on any p-profinite completion. (This is clear if n < 2, and follows from
Theorem [.4if n = 3.) Hence we may focus on the first undecided case, n = 4.

In seeking possible examples of dimension drop 1 in the pro-p completion of a PD,,-group, the most
convenient candidates are groups whose lower central series terminates after finitely many steps.
A finitely generated nilpotent group v of Hirsch length & has a maximal finite normal subgroup
T(v), with quotient a PDj-group. Moreover, v/T(v) has nilpotency class < h, and is residually a
finite p-group for all p, by Theorem 4 of [25, Chapter 1]. Thus the pro-p completion of v is a pro-p
PDy-group. for all p prime to the order of T(v).

If yxG/yk+1G is finite, of exponent ¢, say, then so are all subsequent subquotients of the lower
central series, by Proposition 11 of Chapter 1 of [25]. Thus if G is a PD4-group such that G/y3G
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has Hirsch length 3 and y3G/y4G is finite then, setting v = G/y3G, the canonical projection to
v/T(v) induces isomorphisms on pro-p completions, for almost all primes p. Taking products of
one such group with copies of Z would give similar examples with dimension drop 1 in all higher
dimensions.

Let G be the fundamental group of a closed orientable 4-manifold which s the total space of abundle
with base and fibre aspherical closed orientable surfaces. Thus there is an epimorphism f : G — C
with kernel A, where A and C are orientable PD;-groups. The projection f induces an epimorphism

f G - C of pro-p Completlons Let K be the kernel of the canonical homomorphism from G
to G The kernel of f is the closure of the image of A, and so is topologically finitely generated.

If G,, is a pro-p PD3-group then Ker( f ) = Z, [17, Cor. 4]. Hence A/K is finitely generated and
abelian of rank 1. An immediate consequence is that §1(G;IF,) = p1(C;IF,) or f1(C; IF,) + 1. This
condition is not satisfied by most such surface bundle groups G, as 1(G; ]Fp) may be as large as
B1(A;Fp) + B1(C; IFy). There are no such bundles with base or fibre the torus, by Lemma

We make one further observation, related to Lemma If G is an orientable PDy-group and ép is
a pro-p Poincaré duality group of dimension 3 then the canonical homomorphism from H* (ép ;)
to H3(G;F,) is trivial. For Hl(ép,]F ) # 0 and so there are classes a € Hl(ép;IFp) = H'(F;Fy)
and f € H? (ép,lF ) < H?(G;F,) such that a U B generates H° (G,,,]F ), by Poincaré duality for
G If this has nonzero image in H3(G;F,) then there is a y € H! (Gp,]F ) = H'(F;F,) such that
aupuy #0in HYG;F,). But this cup product is in the image of H* (Gp; IF,), which is 0. An
equivalent formulation of this condition is that inflation from H*(G/U;F,) to H*(G;F,) is trivial
for every normal subgroup U of p-power index in G. In particular, taking U = G'X?(G) (where
XP(G) is the verbal subgroup generated by all pth powers) we see that the image of A*H(G; F,)
in H3(G; F,) must be 0.
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