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Abstract. We prove the existence of weak solutions for a general class of Dirichlet anisotropic
elliptic problems of the form

Au+ Φ(x, u,∇u) = Ψ(u,∇u) + Bu+ f

on a bounded open subset Ω ⊂ RN (N ≥ 2), where f ∈ L1(Ω) is arbitrary. Our models are

Au = −
∑N

j=1 ∂j(|∂ju|
pj−2∂ju) and Φ(u,∇u) =

(
1 +

∑N
j=1 aj |∂ju|

pj
)
|u|m−2u, with m, pj > 1,

aj ≥ 0 for 1 ≤ j ≤ N and
∑N

k=1(1/pk) > 1. The main novelty is the inclusion of a possibly

singular gradient-dependent term Ψ(u,∇u) =
∑N

j=1 |u|
θj−2u |∂ju|qj , where θj > 0 and 0 ≤

qj < pj for 1 ≤ j ≤ N . Under suitable conditions, we prove the existence of solutions by
distinguishing two cases: 1) for every 1 ≤ j ≤ N , we have θj > 1 and 2) there exists 1 ≤ j ≤ N
such that θj ≤ 1. In the latter situation, assuming that f ≥ 0 a.e. in Ω, we obtain non-negative
solutions for our problem.

1. Introduction and main results

This paper is a continuation of our study initiated in [16] to obtain existence of solutions for
general anisotropic elliptic equations in a bounded, open subset Ω ⊂ RN (N ≥ 2), subject to a
homogeneous Dirichlet boundary condition, u = 0 on ∂Ω. We impose no smoothness assump-
tions on the boundary of Ω. The equations under consideration feature a low summability data
f ∈ L1(Ω), a lower-order term Φ(x, u,∇u) satisfying a “good sign” condition, an “anisotropic
natural growth” in the gradient and no upper bound restriction in |u| (see (1.13) and (1.14)).
The novelty of our work here, compared with [16], consists in the introduction of a possibly sin-
gular gradient-dependent term Ψ(u,∇u) (as in (1.3)) which cannot be incorporated in Φ. The
main contribution in this paper is to show that, under suitable assumptions, our problem (1.11)

admits solutions u in the anisotropic Sobolev space W 1,−→p
0 (Ω) such that Φ(x, u,∇u) ∈ L1(Ω).

This answers a question we raised in [16].

Let W 1,−→p
0 (Ω) be the closure of C∞c (Ω) (the set of smooth functions with compact support in

Ω) with respect to the norm ‖u‖
W 1,−→p

0 (Ω)
=
∑N
j=1 ‖∂ju‖Lpj (Ω), where we assume that

1 < pj ≤ pj+1 <∞ for every 1 ≤ j ≤ N − 1 and p < N. (1.1)

Here, p is the harmonic mean of p1, . . . , pN , that is, p := N/
∑N
j=1(1/pj). We write ∂ju for

the partial derivative ∂u/∂xj . We use W−1,−→p ′(Ω) for the dual of W 1,−→p
0 (Ω) and 〈·, ·〉 for the

duality between W−1,−→p ′(Ω) and W 1,−→p
0 (Ω). Since p < N , the embedding W 1,−→p

0 (Ω) ↪→ Ls(Ω)
is continuous for every s ∈ [1, p∗] and compact for every s ∈ [1, p∗), where p∗ := Np/(N − p)
stands for the anisotropic Sobolev exponent (see Remark A.3 in the Appendix).
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Before introducing our general problem in Section 1.2 and the main results associated with
it (Theorems 1.3 and 1.4), we present a model. For every (t, ξ) ∈ R× RN , we define

Φ0(t, ξ) =

Ñ
a0 +

N∑
j=1

aj |ξj |pj
é
|t|m−2t with m > 1, a0 > 0, aj ≥ 0 for 1 ≤ j ≤ N, (1.2)

Ψ(t, ξ) =
N∑
j=1

|t|θj−2t |ξj |qj with θj > 0 and 0 ≤ qj < pj for all 1 ≤ j ≤ N. (1.3)

Let h ∈W−1,−→p ′(Ω) and f ∈ L1(Ω) be arbitrary. The model for our problem is as follows:
−

N∑
j=1

∂j(|∂ju|pj−2∂ju) + Φ0(u,∇u) = Ψ(u,∇u) + h+ f in Ω,

u ∈W 1,−→p
0 (Ω), Φ0(u,∇u) ∈ L1(Ω).

(1.4)

Regarding {θj}1≤j≤N , we distinguish two cases:

Case 1: (Non-singular) For every 1 ≤ j ≤ N , we have θj > 1.
Case 2: (Mildly singular) We have θj ≤ 1 for some 1 ≤ j ≤ N . In this case, we will impose

some restrictions, such as h = 0 and f ≥ 0 a.e. in Ω, to obtain non-negative solutions of (1.4).

To give the notion of solution of (1.4), for v ∈W 1,−→p
0 (Ω)∩L∞(Ω) and U0 ∈W 1,−→p

0 (Ω), we define

IU0(v) :=

∫
{|U0|>0}

Ψ(U0,∇U0) v dx. (1.5)

By a solution of (1.4) we mean a function U0 ∈W 1,−→p
0 (Ω), which is non-negative in Case 2, such

that Φ0(U0,∇U0) ∈ L1(Ω) and for every v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω), we have IU0(v) ∈ R and∫

Ω

N∑
j=1

|∂jU0|pj−2∂jU0 ∂jv dx+

∫
Ω

Φ0(U0,∇U0) v dx = IU0(v) + 〈h, v〉+

∫
Ω
fv dx. (1.6)

We leverage Φ0 to get the existence of solutions of (1.4) for every f ∈ L1(Ω). This is reflected
in a (lower bound) condition on m > 1. To be precise, we define

N−→a :=

®
1 ≤ j ≤ N : ajqj = 0,

θjpj
pj − qj

≥ p
´
,

P−→a := {1 ≤ j ≤ N : ajqj > 0, mj > 1} , where mj :=
pj − qj
qj

Ç
θjpj
pj − qj

− p
å
.

(1.7)

When either N−→a or P−→a is non-empty, we need m > 1 to satisfy

m > max
j∈N−→a

θjpj
pj − qj

and m > min {θj ,mj} for every j ∈ P−→a . (1.8)

We first illustrate our main results for the model problem in (1.4).

Theorem 1.1. Let (1.1)–(1.3) and (1.8) hold. Let h ∈W−1,−→p ′(Ω) and f ∈ L1(Ω) be arbitrary.
When f 6= 0, we assume that min1≤j≤N aj > 0. Assume Case 1 or Case 2 and, in the latter,

let h = 0 and f ≥ 0 a.e. in Ω. Then, (1.4) has a solution U0 ∈W 1,−→p
0 (Ω). Moreover, for f = 0,

we have that Φ0(U0,∇U0)U0 and Ψ(U0,∇U0)U0 belong to L1(Ω) and (1.6) holds for v = U0.

1.1. A brief history of the problem. To understand how our results fit within the literature,
we review what is known in the isotropic case, where the model problem is the following:

−∆pu+ λ|u|m−2u = c(u)|∇u|q + f in Ω,

u = 0 on ∂Ω.
(1.9)
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Here, −∆pu = −div
(
|∇u|p−2∇u

)
is the p-Laplacian operator with 1 < p < ∞, λ ≥ 0, m > 1,

q ≥ 0 and c(·) is a continuous, non-negative function. We start by considering λ = 0, c(·)
constant and f summable enough. The case 0 ≤ q < p− 1 is well-known. Indeed, the existence
of a solution u in W 1,p

0 (Ω) follows easily from a priori estimates, which are obtained using u as a
test function. This is part of the general theory of pseudo-monotone operators by J. Leray and
J.-L. Lions (see, for example, [35]). When f has low summability, the main questions appear to
be solved (see, for instance, [7], [10] and the references therein). The limiting case q = p− 1 is
more difficult since the operator −∆pu− c |∇u|q is not coercive for large c. This difficulty has
been first overcome by Bottaro and Marina in [14] when p = 2, and by various authors in the
nonlinear case (see, for example, [10, 22]).

We now focus our attention on the case p − 1 < q ≤ p. When q = p, the existence of a
bounded weak solution is proved in [12] when f ∈ Lr(Ω) with r > N/p. The case f ∈ LN/p(Ω)
is treated in [26], which shows that there exists a positive constant C = C(β,N, p) such that, if

‖f‖LN/p(Ω) < C, then a solution u ∈W 1,p
0 (Ω) of problem (1.9) exists such that exp

Ä
β
p−1 |u|

ä
−1 ∈

W 1,p
0 (Ω). Similar results are proved in the case p − 1 < q < p (see [25, 33] and the references

therein). The authors of [6] consider the case p− 1 < q ≤ p and look for sharp assumptions on
f in order to have a solution obtained as a limit of approximations (SOLA).

As far as we know, the more challenging case is q > p: it requires a completely different
approach and it appears to be largely open (see, for instance, [18] and the references therein).

The case λ = 0, c(u) = uα with α ≥ 0 and p = q = 2 is considered in the paper [1]. Among
other things, the authors prove that if α > 0 and f ≥ 0 is sufficiently small, then there exists
a positive solution in H1

0 (Ω). In [2] (see also [8, 19, 32]) any value of α ∈ R and 1 < q ≤ 2 is
allowed. The authors prove that: if α < −1/q and f ∈ L1(Ω), then there exists a distributional
solution; if −1/q ≤ α < 0 and f ∈ Lr(Ω) with r > N/2, then there exists a solution in H1

0 (Ω);
if α ≥ 0, then there exists a solution only if f is small enough. In [31] the presence of an
absorption term, which corresponds to λ > 0 and m = 2, is used to prove the existence of a
bounded solution in H1

loc(Ω) when α < 0, p = q = 2 and f is a bounded, non-negative function.
Sharp a priori estimates for solutions to anisotropic problems with λ = 0 and c ≡ 0 have

been proved by Cianchi [20] (see also [4,5]) by introducing a convenient notion of rearrangement
satisfying an anisotropic version of the Pólya-Szegö principle. For other results on anisotropic
problems we refer the interested reader to the recent papers [3, 21,23,24,27–29].

We end this section by recalling the paper [13] (see also [15,17,30] and [34] for the anisotropic
equivalent), where the Dirichlet homogeneous problem relative to the equation −∆u = f/uα is
considered. The authors distinguish three cases: 0 < α < 1, α = 1 and α > 1. The first two
cases can be treated using approximation techniques and providing the existence of a unique
solution in H1

0 (Ω). The validity of a strong comparison principle is a fundamental tool in order
to prove the monotonicity, and also a uniform bound far from zero, of the sequence of solutions
of the approximate problems. We stress that this kind of arguments cannot be generalized to
the anisotropic setting because of the lack of a strong maximum principle (see [37]).

1.2. Our general problem. We remark that the principal part in (1.4) is the anisotropic −→p -
Laplacian operator Au = −∑N

j=1 ∂j(|∂ju|pj−2∂ju). It is the prototype of a coercive, bounded,

continuous and pseudo-monotone operator A : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) in divergence form

Au = −
N∑
j=1

∂j(Aj(x, u,∇u)). (1.10)

In this paper, we give existence results for general singular anisotropic elliptic problems such as{
Au+ Φ(x, u,∇u) + Θ(x, u,∇u) = Ψ(u,∇u) + Bu+ f in Ω,

u ∈W 1,−→p
0 (Ω), Φ(x, u,∇u) ∈ L1(Ω),

(1.11)

where f ∈ L1(Ω) and A is as in (1.10) with Aj(x, t, ξ) : Ω × R × RN → R a Carathéodory
function for each 1 ≤ j ≤ N (that is, measurable on Ω for every (t, ξ) ∈ R×RN and continuous
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in t, ξ for a.e. x ∈ Ω). Moreover, Φ(x, t, ξ), Θ(x, t, ξ) : Ω× R× RN → R are also Carathéodory
functions. For any r > 1, let r′ = r/(r − 1) be the conjugate exponent of r.

The conditions on A, Φ and Θ are similar to those in [16]. We assume that there exist

constants ν0, ν > 0 and non-negative functions ηj ∈ Lp
′
j (Ω) for 1 ≤ j ≤ N such that for a.e.

x ∈ Ω, for all t ∈ R and every ξ, ξ̂ ∈ RN , we have

N∑
i=1

Ai(x, t, ξ) ξi ≥ ν0

N∑
i=1

|ξi|pi [coercivity],

N∑
i=1

Ä
Ai(x, t, ξ)−Ai(x, t, ξ̂)

ä Ä
ξi − ξ̂i

ä
> 0 if ξ 6= ξ̂ [monotonicity],

|Aj(x, t, ξ)| ≤ ν

ηj(x) + |t|p
∗/p′j +

(
N∑
i=1

|ξi|pi
)1/p′j

 [growth condition].


(1.12)

We note that in the growth condition in (1.12), we take the greatest exponent for |t| regarding
the anisotropic Sobolev inequalities. For the pseudo-monotonicity of A, see [16, Lemma 2.7].

Assume that there exist a constant CΘ > 0, a non-negative function c ∈ L1(Ω) and a
continuous non-decreasing function φ : R→ R+ such that for a.e. x ∈ Ω and all (t, ξ) ∈ R×RN ,

|Θ(x, t, ξ)| ≤ CΘ, tΦ(x, t, ξ) ≥ 0, |Φ(x, t, ξ)| ≤ φ(|t|)

Ñ
N∑
j=1

|ξj |pj + c(x)

é
, (1.13)

|Φ(x, t, ξ)| ≥ |Φ0(t, ξ)|, where Φ0 is as in (1.2). (1.14)

Compared with [16], we have the extra assumption (1.14) to deal with the new term Ψ in (1.3).
The operator B in (1.11) belongs to the general class BC introduced in [16]. By BC we

denote the class of bounded operators B : W 1,−→p
0 (Ω)→W−1,−→p ′(Ω) satisfying two properties:

(P1) The operator A−B from W 1,−→p
0 (Ω) into W−1,−→p ′(Ω) is coercive in the sense that

〈Au−Bu, u〉
‖u‖

W 1,−→p
0 (Ω)

→∞ as ‖u‖
W 1,−→p

0 (Ω)
→∞.

(P2) If u` ⇀ u and v` ⇀ v (weakly) in W 1,−→p
0 (Ω) as `→∞, then

lim
`→∞
〈Bu`, v`〉 = 〈Bu, v〉.

We recall from [16] that our assumption (P2) is somehow reminiscent of (iii) in the Hypothesis
(II) of Theorem 1 in the celebrated paper [35] by Leray and Lions. Every operator satisfying
(P2) is strongly continuous (see [16]) and thus pseudo-monotone (cf. [38, p. 586]). However,
unlike A, the operator −B is not necessarily coercive (see Example 1).

Let BC+ be the class of operators in BC satisfying the extra condition
(P3) For ν0 > 0 in the coercivity condition of (1.12) and each k > 0, it holds

ν0

N∑
j=1

‖∂ju‖
pj
Lpj (Ω)

− 〈Bu, Tku〉 → ∞ as ‖u‖
W 1,−→p

0 (Ω)
→∞.

We use Tk for the truncation at height k, see (1.19).
To indicate that the operator A is associated with the class BC and BC+, respectively, we

shall write BC(A) and BC+(A), respectively. We recall from [16] examples of B in BC(A).

Example 1. Let F ∈ L(p∗)′(Ω) and h, h̃ ∈W−1,−→p ′(Ω) be arbitrary. Let ρ, αk ∈ R for 0 ≤ k ≤ 4.

For every u ∈W 1,−→p
0 (Ω), we define

(1) Bu = h;
(2) Bu = F + ρ |u|ϑ−2u with 1 < ϑ < p if ρ > 0 and 1 < ϑ < p∗ if ρ < 0;
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(3) Bu =
(
α0 + α1‖u‖b1Lr(Ω) + α2|〈h̃, u〉|b2

)
(α3h+ α4F ), where r ∈ [1, p∗); we take b1 ∈

(0, p/p′1) and b2 ∈ (0, p1 − 1) if α3 6= 0; b1 ∈ (0, p− 1) and b2 ∈ (0, p1/p
′) if α3 = 0;

(4) Bu = −∑N
j=1 ∂j

(
βj + |u|σj−1u

)
, where βj ∈ Lp

′
j (Ω) and σj ∈ (0, p/p′j) for all 1 ≤ j ≤ N .

In each example, B belongs to the class BC((1− ε)A) for every ε ∈ [0, 1).

Definition 1.2. A function U0 ∈ W 1,−→p
0 (Ω), which is non-negative in Case 2, is said to be a

solution of (1.11) if Φ(x, U0,∇U0) ∈ L1(Ω) and for every v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω),

SU0,Θ,f (v) = 〈BU0, v〉 if Ψ = 0, (1.15)

SU0,Θ,f (v) = 〈BU0, v〉+ IU0(v) if Ψ 6= 0, (1.16)

where IU0(v) and SU0,Θ,f (v) are given respectively by (1.5) and

SU0,Θ,f (v) := 〈AU0, v〉+

∫
Ω

Φ(x, U0,∇U0) v dx+

∫
Ω

Θ(x, U0,∇U0) v dx−
∫

Ω
fv dx.

To simplify the notation, we have not included A and Φ in the symbol SU0,Θ,f (v). When
f = 0, we simply write SU0,Θ(v) instead of SU0,Θ,f (v).

Assuming (1.12) and (1.13), we have shown in [16, Theorem 1.3] that when Ψ = 0 and f = 0,
then (1.11) has a solution U0 for every B in the class BC(A). Moreover, Φ(x, U0,∇U0)U0 ∈
L1(Ω) and (1.15) holds for v = U0. If, in addition, there exist constants l, γ > 0 such that

|Φ(x, t, ξ)| ≥ γ
N∑
j=1

|ξj |pj for all |t| ≥ l, a.e. x ∈ Ω and all ξ ∈ RN , (1.17)

then (1.11) with Ψ = 0 has at least a solution for every f ∈ L1(Ω) and B in the class BC+(A).
In this paper, under suitable hypotheses, we prove the existence of solutions for (1.11) with

Ψ in (1.3) (see Theorems 1.3 and 1.4 below). Let v± = max{±v, 0} be the positive and negative
parts of v. In Case 2, we look for non-negative solutions of (1.11) and assume, in addition, that

〈Bv, v−〉 ≥ 0, 〈Bw, z〉 ≥ 0 for all v, w, z ∈W 1,−→p
0 (Ω) with w, z ≥ 0,

f(x) ≥ 0, Θ(x, t, ξ) ≤ 0 for a.e. x ∈ Ω and all (t, ξ) ∈ R× RN ,
Φ(x, 0, 0) = 0 and Aj(x, 0, 0) = 0 a.e. x ∈ Ω, for all 1 ≤ j ≤ N.

 (1.18)

Without further mention, we henceforth understand that (1.18) holds whenever Case 2 occurs.
Our main results are stated below.

Theorem 1.3. Let (1.1), (1.3), (1.8), and (1.12)–(1.14) hold. Let f = 0 in (1.11). Suppose
that B belongs to the class BC((1− ε)A) for some ε ∈ (0, 1). Assume Case 1 or Case 2. Then,

there exists a solution U0 ∈W 1,−→p
0 (Ω) ∩ Lm(Ω) of (1.11). Moreover, both Φ(x, U0,∇U0)U0 and

Ψ(U0,∇U0)U0 belong to L1(Ω) and (1.16) holds for v = U0.

When N−→a ∪ P−→a = ∅, then Theorem 1.3 gives that (1.11) admits a solution for every m > 1.
If in the framework of Theorem 1.3, we have min1≤j≤N aj > 0 (in relation to (1.14)), then we

obtain the existence of solutions for (1.11) for every f ∈ L1(Ω) and B in the class BC+((1−ε)A)
for some ε ∈ (0, 1). More precisely, we prove the following result.

Theorem 1.4. Let (1.1), (1.3), (1.8) and (1.12)–(1.14) hold and, in addition, min1≤j≤N aj > 0.
Let f ∈ L1(Ω). Suppose that B belongs to the class BC+((1− ε)A) for some ε ∈ (0, 1). Assume

Case 1 or Case 2. Then, (1.11) has at least a solution u0 ∈W 1,−→p
0 (Ω).

1.3. Notation. As usual, in the following sections, we will denote by C a positive constant,
the value of which can change from line to line. For k > 0, we let Tk : R → R stand for the
truncation at height k, that is,

Tk(s) = s if |s| ≤ k, Tk(s) = k
s

|s|
if |s| > k. (1.19)
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Moreover, we define Gk : R→ R by

Gk(s) = s− Tk(s) for every s ∈ R, (1.20)

so that Gk = 0 on [−k, k].

For every u ∈W 1,−→p
0 (Ω) and for a.e. x ∈ Ω, we define

Aj(u)(x) := Aj(x, u(x),∇u(x)) for every 1 ≤ j ≤ N,
Φ(u)(x) := Φ(x, u(x),∇u(x)), Φ0(u)(x) = Φ0(u(x),∇u(x)),

Θ(u)(x) := Θ(x, u(x),∇u(x)), Ψ(u)(x) := Ψ(u(x),∇u(x)).

For u, v, w ∈W 1,−→p
0 (Ω), we introduce Eu(v, w) as follows

Eu(v, w) :=
N∑
j=1

[Aj(x, u,∇v)−Aj(x, u,∇w)] ∂j(v − w). (1.21)

We set −→p = (p1, p2, . . . , pN ) and −→p ′ = (p′1, p
′
2, . . . , p

′
N ).

As usual, χω stands for the characteristic function of a set ω ⊂ RN .

1.4. Strategy for the proof of Theorems 1.3 and 1.4. We first take f = 0 in (1.11) and
in the framework of Theorem 1.3, we obtain a solution U0 (with additional properties that
Φ(U0)U0 ∈ L1(Ω) and Ψ(U0)U0 ∈ L1(Ω), allowing us to take v = U0 in (1.16)). The difficulty
in our analysis arises from the interaction of the absorption term Φ with the gradient-dependent
lower order term Ψ. We point out that Ψ cannot be integrated into Φ since they have the same
sign but appear in the opposite sides of (1.11). Moreover, Ψ(u) is not part of Bu either (except
in very special cases such as qj = 0 and 1 < θj < p for all 1 ≤ j ≤ N). Hence, we cannot tackle
Ψ(u) directly in the framework of our paper [16]. We overcome this obstacle by approximating
Ψ(u) by bounded functions Ψn(u) with ‖Ψn(u)‖L∞(Ω) ≤ Nn for every n ≥ 1 (see Section 2).

We consider a sequence of approximate problems corresponding to (1.11) with f = 0 and Ψ
replaced by {Ψn}n≥1. Then, for each n ≥ 1, by applying Theorem 1.3 in [16], we obtain the

existence of a solution Un ∈W 1,−→p
0 (Ω) ∩ Lm(Ω) for the approximate problem{

AU + Φ(U) + Θ(U) = Ψn(U) + BU in Ω,

U ∈W 1,−→p
0 (Ω), Φ(U) ∈ L1(Ω).

(1.22)

Moreover, Un is non-negative in Case 2 in view of the hypothesis (1.18) (see Lemma 2.1). We
capture the properties of Un in Proposition 2.3 to be proved in Section 4. We are able to get
a suitable upper bound for

∫
Ω Ψ(Un)Un dx via Lemma 4.1. To show that {Un}n is bounded

in W 1,−→p
0 (Ω) and also in Lm(Ω), we rely on (1.8) and the property (P1) of B in the class

BC((1 − ε)A). Hence, up to a subsequence, {Un}n≥1 converges weakly in both W 1,−→p
0 (Ω) and

Lm(Ω) to a function U0 ∈ W 1,−→p
0 (Ω) ∩ Lm(Ω). It turns out that U0 is a good candidate for a

solution of (1.11). In addition to Ψn(Un), we need to handle another gradient-dependent term,
namely, Φ(Un). To deal with these terms, we show in Proposition 2.4 that, up to a subsequence,

Un → U0 (strongly) in W 1,−→p
0 (Ω) as n→∞. (1.23)

To prove (1.23), it is enough to show that for a subsequence of {Un}n, we have

EUn(U±n , U
±
0 ) :=

N∑
j=1

[Aj(x, Un,∇U±n )−Aj(x, Un,∇U±0 )] ∂j(U
±
n − U±0 )→ 0 in L1(Ω) (1.24)

as n → ∞. Indeed, from (1.24) we obtain that, up to a subsequence, ∇U±n → ∇U±0 a.e. in Ω

and U±n → U±0 (strongly) in W 1,−→p
0 (Ω) as n→∞. For details, see Lemma A.4 in the Appendix.

Broadly speaking, the proof of (1.24) is inspired by the approach in the celebrated paper

[9] dealing with Leray–Lions operators from W 1,p
0 (Ω) into W−1,p′(Ω). We point out that, in

our case, the analysis becomes more technically involved given the anisotropic setting with the
modified growth condition in (1.12) and the inclusion of B and Ψ. Based on the property (P2) of
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B and a careful use of the absorption term, we show that lim supn→∞ ‖Gk(Un)‖
W 1,−→p

0 (Ω)
≤Wk,

where limk→∞Wk = 0, see Lemma 5.2. This is an essential tool not only in the proof of
(1.24) but also in that of Lemma A.4 (see Remark A.5). The technical details in the proof of
Proposition 2.4 are deferred to Section 6.

Then, by Propositions 2.3 and 2.4, we can apply Vitali’s Theorem to obtain that

Φ(Un)→ Φ(U0) in L1(Ω) as n→∞. (1.25)

We end the proof of Theorem 1.3 by showing that, up to a subsequence of Un, we have

IU0(v) = lim
n→∞

∫
Ω

Ψn(Un) v dx = SU0,Θ(v)− 〈BU0, v〉 (1.26)

for every v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω). For details see Section 3.

We remark that it is possible to make the proof of Theorem 1.3 work with only the strong

convergence in W 1,−→p
0 (Ω) for the truncations Tk(Un), namely, proving that up to a subsequence,

Tk(Un)→ Tk(U0) in W 1,−→p
0 (Ω) as n→∞, for every k ≥ 1. (1.27)

It is this latter strategy that we adopted in our paper [16] for Ψ = 0 (inspired by [11]), first
to obtain the existence of solutions for f = 0 and then building upon it also for f ∈ L1(Ω). But
unlike Theorem 1.3, the approximation argument for f = 0 in [16] concerned the absorption
term Φ.

For Theorem 1.4 dealing with a low summability term f ∈ L1(Ω), we use a well-known
approximation: we replace f in (1.11) by a sequence {fn}n≥1 of L∞(Ω)-functions such that
|fn| ≤ |f | for each n ≥ 1 and fn → f in L1(Ω) as n→∞. For the approximate problem, we use

Theorem 1.3 to gain a solution un ∈ W 1,−→p
0 (Ω). The additional assumption min1≤j≤N aj > 0

and the extra property (P3) for B in BC+((1 − ε)A) are needed to obtain in Proposition 7.3

that the solutions un are uniformly bounded in W 1,−→p
0 (Ω) with respect to n. Since here we test

the approximate problem with Tk(un) (and not un, which is potentially unbounded), we can
only derive that {Φ(un)}n (and not {Φ(un)un}n≥1) is uniformly bounded in L1(Ω) uniformly
with respect to n. However, this suffices to get that Φ(u0) ∈ L1(Ω), where u0 is the weak limit

in W 1,−→p
0 (Ω) of (a subsequence of) {un}n≥1. In Proposition 7.4, we establish the analogue of

(1.27). To this end, we use [16, Lemma A.5] (and a diagonal argument) to reduce the proof to
showing that for every k ≥ 1 and, up to subsequence,

Eun(Tk(un), Tk(u0))→ 0 in L1(Ω) as n→∞. (1.28)

(For the definition of Eu, see (1.21).) To prove (1.28), we adapt the approach in our paper [16]
by testing the approximate problem with

v = (Tk(un)− Tk(u0)) exp
Ä
λ (Tk(un)− Tk(u0))2

ä
for λ = λ(k) > 0 large enough. The new ingredient here corresponds to getting a good control
of Iun for this test function (see Lemma 7.6).

Bearing in mind the strong convergence of Tk(un) to Tk(u0) in W 1,−→p
0 (Ω) as n → ∞, we can

obtain the analogue of (1.25) and then pass to the limit in the approximate problem to obtain
suitable counterparts of (1.26) (see Lemma 7.7 for details). Putting together the above results,

we conclude that u0 ∈W 1,−→p
0 (Ω) is a solution of (1.11).

1.5. Structure of the paper. In Section 2 we consider the sequence of approximate problems
(1.22) and we establish the existence of solutions, which are non-negative in Case 2. We state

the a priori estimates and the strong convergence of such solutions in W 1,−→p
0 (Ω), deferring their

proofs to Section 4 and 6, respectively. Based on these properties, we complete the proof of
Theorem 1.3 in Section 3. In Section 5 we include several results that are invoked in Section 6.
Section 7 contains the proof of Theorem 1.4. For the reader’s convenience, in the Appendix we
present some details which are modifications of arguments known in the literature or already
contained in our recent paper [16].
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2. Approximate problems

We always assume that (1.1), (1.3), (1.12) and (1.13) hold. Unless otherwise stated, we also
understand that Φ satisfies (1.14) and B belongs to the class BC((1− ε)A) for some ε ∈ (0, 1)
(see Section 2.2 below for an exception). We first take f = 0 in (1.11).

2.1. Setting up the approximation. We introduce the sets

J1 := {1 ≤ j ≤ N : θj > 1}, J2 := {1 ≤ j ≤ N : 0 < θj ≤ 1}.
Case 1 (respectively, Case 2) in Theorem 1.3 corresponds to J2 = ∅ (respectively, J2 6= ∅).

Let n ≥ 1 be arbitrary. For each 1 ≤ j ≤ N , we define

Hj,n(t1, t2) =
|t1|θj−2t1 |t2|qj

1 + 1
n |t1|θj−1|t2|qj

for every (t1, t2) ∈ (0,∞)× R. (2.1)

In Case 1, for each 1 ≤ j ≤ N , we extend Hj,n(t1, t2) on (−∞, 0]×R with the same formula as
in (2.1). In Case 2, for each j ∈ J1 (when J1 is not empty), we extend Hj,n(t1, t2) on (−∞, 0]×R
so that it becomes an even function in the first variable.

In Case 1 or Case 2, we define Ψn from W 1,−→p
0 (Ω) into L∞(Ω) as follows

Ψn(u) := Ψn,J1(u) + Ψn,J2(u), (2.2)

where Ψn,J1(u) and Ψn,J2(u) are functions from Ω to R given by

Ψn,J1(u)(x) :=
∑
j∈J1

Hj,n(u(x), ∂ju(x)), Ψn,J2(u)(x) :=
∑
j∈J2

Hj,n (|u(x)|+ 1/n, ∂ju(x)) . (2.3)

Clearly, Ψn(u) ∈ L∞(Ω) for every u ∈W 1,−→p
0 (Ω) and ‖Ψn(u)‖L∞(Ω) ≤ Nn.

As explained in Section 1.4, we consider the approximate problem (1.22).

2.2. Existence of solutions for (1.22). We point out that for the existence of solutions of
(1.22), we do not need Φ to satisfy (1.14). Moreover, the operator B can be taken in the class
BC(A) (rather than BC((1− ε)A) for some ε ∈ (0, 1)).

Lemma 2.1. Let (1.1), (1.3), (1.12) and (1.13) hold. Suppose that B belongs to the class
BC(A). Assume Case 1 or Case 2. For every n ≥ 1, problem (1.22) admits a solution Un,
which in addition satisfies Φ(Un)Un ∈ L1(Ω) and

SUn,Θ(Un) =

∫
Ω

Ψn(Un)Un dx+ 〈BUn, Un〉. (2.4)

Moreover, in Case 2, we have Un ≥ 0 a.e. in Ω.

Proof. By applying Theorem 1.3 in [16], with Θ there replaced by Θ−Ψn, we obtain that (1.22)
has a solution Un (in the sense of Definition 1.2 with Ψ = 0), satisfying

SUn,Θ(v) =

∫
Ω

Ψn(Un) v dx+ 〈BUn, v〉 for all v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω). (2.5)

Moreover, Φ(Un)Un ∈ L1(Ω) and (2.4) holds. We now show that in Case 2, we have Un ≥ 0
a.e. in Ω. Since U−n may not be in L∞(Ω), we cannot directly use v = U−n in (2.5). However,

for every k > 0, we have Tk(U
−
n ) ∈ W 1,−→p

0 (Ω) ∩ L∞(Ω). Hence, by taking v = Tk(U
−
n ) in (2.5),

we obtain that

SUn,Θ(Tk(U
−
n )) =

∫
Ω

Ψn(Un)Tk(U
−
n ) dx+ 〈BUn, Tk(U−n )〉. (2.6)

Notice that ‖Tk(U−n )‖
W 1,−→p

0 (Ω)
≤ ‖U−n ‖W 1,−→p

0 (Ω)
for all k > 0. Moreover, ∂j(Tk(U

−
n ))→ ∂jU

−
n a.e.

in Ω as k → ∞, for every 1 ≤ j ≤ N , so that Tk(U
−
n ) ⇀ U−n (weakly) in W 1,−→p

0 (Ω) as k → ∞.
Since AUn and BUn belong to W−1,−→p ′(Ω), it follows that

lim
k→∞
〈AUn, Tk(U−n )〉 = 〈AUn, U−n 〉 and lim

k→∞
〈BUn, Tk(U−n )〉 = 〈BUn, U−n 〉.

8



Recalling that Φ(Un)Un ∈ L1(Ω), ‖Ψn(Un)‖L∞(Ω) ≤ Nn and (1.13) holds, from the Dominated
Convergence Theorem, we can pass to the limit k →∞ in (2.6) to find that

SUn,Θ(U−n ) =

∫
Ω

Ψn(Un)U−n dx+ 〈BUn, U−n 〉. (2.7)

In view of (1.18), we see that the right-hand side of (2.7) is non-negative. Using also the
coercivity condition in (1.12), we infer that the left-hand side of (2.7) is bounded above by

−

Ñ
ν0

N∑
j=1

∫
{Un<0}

|∂jUn|pj dx+

∫
{Un<0}

Φ(Un)Un dx+

∫
{Un<0}

Θ(Un)Un dx

é
. (2.8)

From the sign-conditions on Φ and Θ in (1.13) and (1.18), respectively, we see that all terms
contained in the round brackets of (2.8) are non-negative. Hence, meas ({Un < 0}) = 0 and so
Un ≥ 0 a.e. in Ω. �

Remark 2.2. If, in addition, Φ satisfies (1.14), then for the solution Un of (1.22) provided by
Lemma 2.1, we have Un ∈ Lm(Ω). This follows from the property Φ(Un)Un ∈ L1(Ω).

2.3. Strong convergence of Un. Throughout this section, we work in the framework of Theo-
rem 1.3. Then, Lemma 2.1 and Remark 2.2 give that for every n ≥ 1, the approximate problem

(1.22) has a solution Un ∈ W 1,−→p
0 (Ω) ∩ Lm(Ω). In Proposition 2.3 we derive essential a priori

estimates in W 1,−→p
0 (Ω) and in Lm(Ω) for the sequence of solutions {Un}n≥1, which up to a sub-

sequence, converges weakly to some U0 both in W 1,−→p
0 (Ω) and in Lm(Ω). In Proposition 2.4,

we show that, up to a subsequence, {Un}n≥1 converges strongly to U0 in W 1,−→p
0 (Ω) as n → ∞,

see (2.12). We aim to prove that U0 is a solution of (1.11) with f = 0. In Sections 4 and 6,
respectively, we prove Propositions 2.3 and 2.4, which are the crux of the proof of Theorem 1.3.

Proposition 2.3. Let (1.1), (1.3), (1.8) and (1.12)–(1.14) hold. Let f = 0. Suppose that B
belongs to the class BC((1− ε)A) for some ε ∈ (0, 1). Assume Case 1 or Case 2.

(a) There exists a constant C > 0 such that for every n ≥ 1, the solution Un given by
Lemma 2.1 satisfies

‖Un‖W 1,−→p
0 (Ω)

+ ‖Un‖Lm(Ω) +

∫
Ω

Φ(Un)Un dx+

∫
Ω

Ψ(Un)Un dx ≤ C. (2.9)

(b) There exists U0 ∈W 1,−→p
0 (Ω) ∩ Lm(Ω) such that, up to a subsequence,

Un ⇀ U0 (weakly) both in W 1,−→p
0 (Ω) and in Lm(Ω) as n→∞,

Un → U0 a.e. in Ω as n→∞.
(2.10)

Proposition 2.4. In the framework of Proposition 2.3, up to a subsequence, we have

∇Un → ∇U0 a.e. in Ω as n→∞, (2.11)

Un → U0 (strongly) in W 1,−→p
0 (Ω) as n→∞. (2.12)

Remark 2.5. Under the same assumptions as in Proposition 2.3, by Fatou’s Lemma we im-
mediately infer that Φ(U0) ∈ L1(Ω). Furthermore, using Fatou’s Lemma and (2.9)–(2.11), we
find that Φ(U0)U0 and Ψ(U0)U0 belong to L1(Ω).

3. Proof of Theorem 1.3 completed

Let m satisfy (1.8) and f = 0. We show that the function U0 in Proposition 2.4 is a solution
of (1.11). Once this is established, we readily obtain that (1.16) holds for v = U0 in both Case 1
and Case 2 with a reasoning similar to Lemma 2.1. Indeed, by taking v = Tk(U0) in (1.16) and
letting k go to infinity, we get the claim.
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We now prove (1.16). As already pointed out in Section 1.4, we just need to check (1.26) for

every v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω). We first establish the second identity in (1.26), that is

lim
n→∞

∫
Ω

Ψn(Un) v dx = SU0,Θ(v)− 〈BU0, v〉. (3.1)

Proof of (3.1). Since Un → U0 and ∇Un → ∇U0 a.e. in Ω as n→∞, we have

Θ(Un)→ Θ(U0) and Aj(Un)→ Aj(U0) a.e. in Ω for 1 ≤ j ≤ N. (3.2)

Let v ∈W 1,−→p
0 (Ω)∩L∞(Ω) be arbitrary. Now, Θ satisfies (1.13). Thus, by the Dominated Con-

vergence Theorem, we obtain that Θ(Un) v → Θ(U0) v in L1(Ω) as n→∞. Since {Aj(Un)}n≥1

is uniformly bounded in Lp
′
j (Ω) with respect to n, from (3.2) we get that, up to a subsequence,

Aj(Un) ⇀ Aj(U0) (weakly) in Lp
′
j (Ω) as n→∞ (3.3)

for every 1 ≤ j ≤ N . It follows that limn→∞〈AUn, v〉 = 〈AU0, v〉. Using that Un ⇀ U0 (weakly)

in W 1,−→p
0 (Ω) as n → ∞, the property (P2) for the operator B yields that limn→∞〈BUn, v〉 =

〈BU0, v〉. Thus, by passing to the limit as n→∞ in (2.5), we gain (3.1) whenever

Φ(Un)→ Φ(U0) (strongly) in L1(Ω) as n→∞. (3.4)

Since Φ(Un) → Φ(U0) a.e. in Ω as n → ∞ and Φ(U0) ∈ L1(Ω) (see Remark 2.5), by Vitali’s
Theorem, it is enough to show that {Φ(Un)}n is uniformly integrable over Ω. Let ω be any
measurable subset of Ω and M > 0 be arbitrary. By the growth condition of Φ in (1.13), we
have ∫

ω∩{|Un|≤M}
|Φ(Un)| dx ≤ φ(M)

Ñ
N∑
j=1

‖∂jTM (Un)‖pj
Lpj (ω)

+

∫
ω
c(x) dx

é
. (3.5)

On the other hand, using (2.9) and the sign-condition on Φ in (1.13), we see that∫
ω∩{|Un|>M}

|Φ(Un)| dx ≤ 1

M

∫
ω

Φ(Un)Un dx ≤
C

M
, (3.6)

where C > 0 is a constant independent of n and ω. Since c ∈ L1(Ω) and ∂jTM (Un)→ ∂jTM (U0)
in Lpj (Ω) as n → ∞ for all 1 ≤ j ≤ N (see (2.12)), from (3.5) and (3.6) we get the equi-
integrability of {Φ(Un)}n over Ω. By Vitali’s Theorem, we end the proof of (3.4). �

It remains to show the first identity in (1.26), that is

lim
n→∞

∫
Ω

Ψn(Un) v dx =

∫
{|U0|>0}

Ψ(U0) v dx (3.7)

for every v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω).

Recall that N−→a and P−→a are given in (1.7). We define

N c−→a :=

®
1 ≤ j ≤ N : ajqj = 0,

θjpj
pj − qj

< p

´
,

P c−→a := {1 ≤ j ≤ N : ajqj > 0, mj ≤ 1} .
(3.8)

It follows that

{1 ≤ j ≤ N : ajqj = 0} = N−→a ∪N
c−→a , {1 ≤ j ≤ N : ajqj > 0} = P−→a ∪ P

c−→a . (3.9)

For every 1 ≤ j ≤ N , we introduce the notation

Im,pj (Un) :=

∫
Ω
|Un|m|∂jUn|pj dx, Iθj ,qj (Un) :=

∫
Ω
|Un|θj |∂jUn|qj dx. (3.10)

To prove (3.7), we treat Case 1 in Subsection 3.1 and Case 2 in Subsection 3.2.
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3.1. Proof of (3.7) in Case 1. Here, θj > 1 for each 1 ≤ j ≤ N . Since J2 = ∅, from (2.2) and

(2.3), we find that Ψn(Un) = Ψn,J1(Un) =
∑N
j=1Hj,n(Un, ∂jUn), with Hj,n(·, ·) defined in (2.1).

So, to prove (3.7), it suffices to show that (up to a subsequence)

lim
n→∞

∫
Ω
Hj,n (Un, ∂jUn) v dx =

∫
Ω
|U0|θj−2U0 |∂jU0|qj v dx (3.11)

for every 1 ≤ j ≤ N and all v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω).

Let 1 ≤ j ≤ N be arbitrary. By Proposition 2.4, we have

Hj,n(Un, ∂jUn)→ |U0|θj−2U0 |∂jU0|qj a.e. in Ω as n→∞. (3.12)

We next show that there exists s > 1 (depending on j) such that

‖Hj,n(Un, ∂jUn)‖Ls(Ω) ≤ C (3.13)

for a positive constant C independent of n. We distinguish the following two situations.

(a) Let j ∈ N−→a ∪N c−→a (when ajqj = 0). We define s as follows

s = m′ if j ∈ N−→a and s = p′ if j ∈ N c−→a .

Let cj be given by

cj := (meas (Ω))1/λj , where
1

λj
:= 1− θj

s′
− qj
pj
. (3.14)

By Hölder’s inequality and Proposition 2.3, we infer that

‖Hj,n(Un, ∂jUn)‖Ls(Ω) ≤ cj ‖Un‖
θj−1

Ls′ (Ω)
‖∂jUn‖

qj
Lpj (Ω)

≤ C,

where C is a positive constant independent of n.

(b) Let j ∈ P−→a ∪ P c−→a (when ajqj > 0). Let Im,pj (Un) be as in (3.10). In each of the situations
below, we use Hölder’s inequality and Proposition 2.3 to obtain (3.13) for suitable s > 1.

(b1) If m ≥ (θj − 1)pj/qj , then by choosing 1 < s < pj/qj , we see that

‖Hj,n(Un, ∂jUn)‖Ls(Ω) ≤ (meas (Ω))
1
s
−
qj
pj

Ä
Im,pj (Un)

ä θj−1

m ‖∂jUn‖
qj−

(θj−1)pj
m

Lpj (Ω)
.

(b2) If θj − 1 < m < (θj − 1)pj/qj , then for 1 < s < m/(θj − 1), we have

‖Hj,n(Un, ∂jUn)‖Ls(Ω) ≤ (meas (Ω))
1
s
−
θj−1

m

Ä
Im,pj (Un)

ä qj
pj ‖Un‖

θj−1−
qjm

pj

Lm(Ω) .

(b3) If 1 < m ≤ θj−1, then we always have m > mj . Indeed, if j ∈ P−→a , then the assumption
(1.8) gives that m > min{θj ,mj} = mj . If, in turn, j ∈ P c−→a , then mj ≤ 1 < m. Hence,
m > mj for j ∈ P−→a ∪ P c−→a leads to

‖Hj,n(Un, ∂jUn)‖Lp′ (Ω) ≤ (meas (Ω))
qj(m−mj)

ppj

Ä
Im,pj (Un)

ä qj
pj ‖Un‖

θj−1−
qjm

pj

Lp(Ω) .

Thus, (3.13) holds with s = p′.

This proves (3.13) for every 1 ≤ j ≤ N . Then, using (3.12), we have, up to a subsequence,

Hj,n (Un, ∂jUn) ⇀ |U0|θj−2U0 |∂jU0|qj (weakly) in Ls(Ω) as n→∞,

where s > 1 is chosen according to (a), (b1), (b2) or (b3) (for the latter, we take s = p′). Thus,

(3.11) follows for every 1 ≤ j ≤ N and all v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω).
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3.2. Proof of (3.7) in Case 2. Let v be any non-negative function in W 1,−→p
0 (Ω) ∩L∞(Ω). By

Lemma 2.1, for each n ≥ 1, we have Un ≥ 0 a.e. in Ω and the same applies to U0. Hence,
proving (3.7) amounts to showing that

lim
n→∞

∫
Ω

(Ψn,J1(Un) + Ψn,J2(Un)) v dx =
N∑
j=1

∫
{U0>0}

|∂jU0|qj

U
1−θj
0

v dx, (3.15)

where Ψn,J1(Un) and Ψn,J2(Un) can be obtained from (2.3) replacing u by Un.

From U0 ∈W 1,−→p
0 (Ω), it follows that ∇U0 = 0 a.e. in {U0 = 0}. For every j ∈ J1 we have θj > 1

so that with the same argument given for Case 1 in Section 3.1, we find that

lim
n→∞

∫
Ω

Ψn,J1(Un) v dx = lim
n→∞

∑
j∈J1

∫
Ω
Hj,n (Un, ∂jUn) v dx =

∑
j∈J1

∫
{U0>0}

U
θj−1
0 |∂jU0|qj v dx.

Hence, using (3.7), we infer that there exists limn→∞
∫

Ω Ψn,J2(Un) v dx. To reach (3.15), it
remains to show that

lim
n→∞

∫
Ω

Ψn,J2(Un) v dx =
∑
j∈J2

∫
{U0>0}

|∂jU0|qj

U
1−θj
0

v dx. (3.16)

To this aim, let us notice that, for every σ > 0, we have∫
Ω

Ψn,J2(Un) v dx =

∫
{Un>σ}

Ψn,J2(Un) v dx+

∫
{Un≤σ}

Ψn,J2(Un) v dx. (3.17)

Fix σ > 0 such that σ 6∈ E, where we define

E := {σ > 0 : meas ({U0 = σ}) > 0}. (3.18)

We show that

(i) lim
n→∞

∫
{Un>σ}

Ψn,J2 (Un) v dx =
∑
j∈J2

∫
{U0>σ}

|∂jU0|qj

U
1−θj
0

v dx,

(ii) lim
σ→0

lim
n→∞

∫
{Un≤σ}

Ψn,J2 (Un) v dx = 0.

(3.19)

Assuming that the assertions in (3.19) have been proved, we end the proof of (3.16) as follows.
We have χ{U0>σ2} ≤ χ{U0>σ1} for 0 < σ1 < σ2, and the set E in (3.18) is at most countable.
Moreover, from (3.17) and (3.19), we see that∑

j∈J2

∫
{U0>σ}

|∂jU0|qj

U
1−θj
0

v dx ≤ lim
n→∞

∫
Ω

Ψn,J2(Un) v dx <∞.

Hence, by the Monotone Convergence Theorem, we deduce that

lim
σ→0, σ /∈E

lim
n→∞

∫
{Un>σ}

Ψn,J2 (Un) v dx =
∑
j∈J2

∫
{U0>0}

|∂jU0|qj

U
1−θj
0

v dx <∞. (3.20)

Using (3.19) and (3.20) in (3.17), we obtain (3.16). It remains to show (3.19).
(i) Let j ∈ J2 be arbitrary. We conclude (i) by proving that

lim
n→∞

∫
{Un>σ}

Hj,n

Å
Un +

1

n
, ∂jUn

ã
v dx =

∫
{U0>σ}

|∂jU0|qj

U
1−θj
0

v dx. (3.21)

For every measurable subset ω of Ω, we have∫
ω∩{Un>σ}

Hj,n

Å
Un +

1

n
, ∂jUn

ã
v dx ≤

‖v‖L∞(Ω)

σ1−θj ‖∂jUn‖
qj
Lpj (Ω)

(meas (ω))
1−

qj
pj .

From Proposition 2.3, using that σ /∈ E, we obtain that χ{Un>σ} → χ{U0>σ} a.e. in the set
{U0 6= σ}, as well as

Hj,n

Å
Un +

1

n
, ∂jUn

ã
χ{Un>σ} v →

|∂jU0|qj

U
1−θj
0

χ{U0>σ} v a.e. in Ω as n→∞.
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By Vitali’s Theorem, we conclude the proof of (3.21).

(ii) Let Zσ : [0,∞)→ [0, 1] be the following function

Zσ(s) =


1 if 0 ≤ s ≤ σ,
2− s/σ if σ ≤ s ≤ 2σ,
0 if 2σ ≤ s.

For w ∈W 1,−→p
0 (Ω), we define

Lσ,v(w) :=
N∑
j=1

∫
Ω
Aj(w)Zσ(w) ∂jv dx+

∫
Ω

Φ(w)Zσ(w) v dx. (3.22)

Observe that Zσ(U0) → χ{U0=0} a.e. in Ω as σ → 0 and U0 ∈ W 1,−→p
0 (Ω) implies that ∇U0 = 0

a.e. in {U0 = 0}. From (1.18), we have Φ(x, 0, 0) = 0 and Aj(x, 0, 0) = 0 a.e. in Ω, for every
1 ≤ j ≤ N . It follows that Lσ,v(U0)→ 0 as σ → 0. Hence, we conclude the assertion of (ii) in
(3.19) by showing that

0 ≤
∫
{Un≤σ}

Ψn,J2 (Un) v dx ≤ Lσ,v(Un) for every n ≥ 1, (3.23)

lim
n→∞

Lσ,v(Un) = Lσ,v(U0). (3.24)

From (1.18), we have 〈BUn, Zσ (Un) v〉 ≥ 0 and Θ(Un) ≤ 0 for every n ≥ 1. Thus, by taking
v Zσ(Un) ≥ 0 as a test function in (2.5) and using the coercivity condition in (1.12), we see that

Lσ,v(Un) ≥ ν0

σ

N∑
j=1

∫
{σ<Un<2σ}

|∂jUn|pj v dx+

∫
Ω
Zσ(Un) Ψn(Un) v dx. (3.25)

Since Zσ(Un) = 1 in {Un ≤ σ}, from (3.25), we derive (3.23).
Using that Zσ(Un) → Zσ(U0) a.e. in Ω as n → ∞, by Lebesgue’s Dominated Convergence
Theorem, for each 1 ≤ j ≤ N , we find that Zσ(Un) ∂jv → Zσ(U0) ∂jv (strongly) in Lpj (Ω) as
n→∞. This, jointly with (3.3), implies that

lim
n→∞

N∑
j=1

∫
Ω
Aj(Un)Zσ(Un) ∂jv dx =

N∑
j=1

∫
Ω
Aj(U0)Zσ(U0) ∂jv dx.

Similar to the proof of (3.4), we have Φ(Un)Zσ(Un)→ Φ(U0)Zσ(U0) in L1(Ω) as n→∞. Then,
using w = Un in (3.22) and letting n→∞, we obtain (3.24).

The proof of (3.16), and hence of (3.15), is now complete.

This ends the proof of Theorem 1.3. �

4. Proof of Proposition 2.3

For each n ≥ 1, the solution Un ∈W 1,−→p
0 (Ω) ∩ Lm(Ω) of (1.22) given in Lemma 2.1 satisfies

〈AUn, Un〉 − 〈BUn, Un〉+

∫
Ω

Φ(Un)Un dx = −
∫

Ω
Θ(Un)Un dx+

∫
Ω

Ψn(Un)Un dx. (4.1)

(a) We prove that there exists a constant C > 0 such that (2.9) holds for all n ≥ 1.

We first show that {Un}n≥1 is bounded in W 1,−→p
0 (Ω). We have assumed that B belongs to

the class BC((1 − ε)A) for some ε > 0. Using the coercivity condition in (1.12), (1.14) and
(3.10), we find that the left-hand side of (4.1) is bounded below by

εν0

N∑
k=1

‖∂kUn‖pkLpk (Ω) + 〈[(1− ε)A−B]Un, Un〉+ a0‖Un‖mLm(Ω) +
∑

j∈P−→a ∪P c−→a

ajIm,pj (Un). (4.2)
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We observe that aj > 0 for every j ∈ P−→a ∪ P c−→a . We now consider the right-hand side of (4.1).
Using (1.13) and the anisotropic Sobolev inequality (A.2) in the Appendix, we find a positive
constant C, independent of n, such that∣∣∣∣∫

Ω
Θ(Un)Un dx

∣∣∣∣ ≤ CΘ‖Un‖L1(Ω) ≤ C‖Un‖W 1,−→p
0 (Ω)

.

By Young’s inequality, for each δ > 0, there exists a constant Cδ > 0, depending on δ, such that∣∣∣∣∫
Ω

Θ(Un)Un dx

∣∣∣∣ ≤ C N∑
k=1

‖∂kUn‖Lpk (Ω) ≤ δ
N∑
k=1

‖∂kUn‖pkLpk (Ω) + Cδ for all n ≥ 1. (4.3)

By (3.10), we have ∫
Ω

Ψn(Un)Un dx ≤
∫

Ω
Ψ(Un)Un dx ≤

N∑
j=1

Iθj ,qj (Un). (4.4)

In Lemma 4.1 below, we obtain a suitable upper bound for
∑N
j=1 Iθj ,qj (Un). To this end, we

need to distinguish the case m ≥ θjpj/qj from m < θjpj/qj whenever j ∈ P−→a ∪P c−→a . We observe
that P−→a ∪ P c−→a = {1 ≤ j ≤ N : ajqj > 0} is a union of three sets:

P−→a ∪ P
c−→a = “P−→a ,1 ∪ “P−→a ,2 ∪ P−→a ,3, (4.5)

where we define“P−→a ,1 :=
¶
j ∈ P−→a ∪ P

c−→a : m ≥ θjpj/qj
©
,“P−→a ,2 := {j ∈ P−→a : θj < p, m < θjpj/qj} ∪

¶
j ∈ P c−→a : m < θjpj/qj

©
,

P−→a ,3 := {j ∈ P−→a : θj ≥ p, m < θjpj/qj} .

(4.6)

Lemma 4.1. For any δ > 0, there exists a positive constant Cδ such that, for every n ≥ 1,

N∑
j=1

Iθj ,qj (Un) ≤ Nδ‖Un‖mLm(Ω) + δ
∑

j∈P−→a ∪P c−→a

Im,pj (Un) + (1 +N)δ
N∑
k=1

‖∂kUn‖pkLpk (Ω) +Cδ. (4.7)

Proof. For the inequalities in (4.8), (4.9), (4.11)–(4.13) below, we use Hölder’s inequality, then
Young’s inequality (see Lemma A.1 in the Appendix). In what follows, we understand that
δ > 0 is arbitrary and Cδ > 0 is a suitable constant depending on δ.

(I) We first estimate Iθj ,qj (Un) for every j ∈ N−→a ∪N c−→a when we let cj and λj be as in (3.14).
• Let j ∈ N−→a . Condition (1.8) gives that λj > 1 so that

Iθj ,qj (Un) ≤ cj‖Un‖
θj
Lm(Ω)‖∂jUn‖

qj
Lpj (Ω)

≤ δ‖Un‖mLm(Ω) + δ‖∂jUn‖
pj
Lpj (Ω)

+ Cδ. (4.8)

• Let j ∈ N c−→a . Using Lemma A.1 and the anisotropic Sobolev inequality (A.2) in the Appendix,

we find a positive constant C, depending on N , −→p , qj , θj and meas (Ω), such that

Iθj ,qj (Un) ≤ cj ‖Un‖
θj
Lp(Ω)‖∂jUn‖

qj
Lpj (Ω)

≤ C‖∂jUn‖
θj
N

+qj

Lpj (Ω)

∏
k∈{1,...,N}\{j}

‖∂kUn‖
θj
N

Lpk (Ω)

≤ δ
N∑
k=1

‖∂kUn‖pkLpk (Ω) + Cδ.

(4.9)

(II) We now estimate Iθj ,qj (Un) for every j ∈ P−→a ∪ P c−→a when we define

cj := (meas (Ω))1/λj and
1

λj
:=



1− qj
pj

if j ∈ “P−→a ,1,
1− θj

m
if j ∈ P−→a ,3,

qj(m−mj)

pjp
if j ∈ “P−→a ,2. (4.10)
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Recall that P−→a := {1 ≤ j ≤ N : ajqj > 0, mj > 1}. Condition (1.8) implies that
m > min{θj ,mj} whenever j ∈ P−→a and, moreover, min{θj ,mj} = θj if and only if θj ≥ p.
• For every j ∈ “P−→a ,1, we obtain that

Iθj ,qj (Un) ≤ cj ‖∂jUn‖
qj−

pjθj
m

Lpj (Ω)

Ä
Im,pj (Un)

ä θj
m ≤ δ Im,pj (Un) + δ‖∂jUn‖

pj
Lpj (Ω)

+ Cδ. (4.11)

• Let j ∈ P−→a ,3. In this case, we have m > θj so that

Iθj ,qj (Un) ≤ cj ‖Un‖
θj−

mqj
pj

Lm(Ω) (Im,pj (Un))
qj
pj ≤ δ Im,pj (Un) + δ‖Un‖mLm(Ω) + Cδ. (4.12)

• Let j ∈ “P−→a ,2. Then m > mj . By Hölder’s inequality, Lemma A.1 and the anisotropic Sobolev

inequality (A.2) in the Appendix, we find a positive constant C = C(N,−→p , qj , θj ,m,meas (Ω))
such that

Iθj ,qj (Un) ≤ cj ‖Un‖
θj−

mqj
pj

Lp(Ω)

Ä
Im,pj (Un)

ä qj
pj ≤ C

Ä
Im,pj (Un)

ä qj
pj

N∏
k=1

‖∂kUn‖

Ä
θj−

mqj
pj

ä
1
N

Lpk (Ω)

≤ δ Im,pj (Un) + δ
N∑
k=1

‖∂kUn‖pkLpk (Ω) + Cδ.

(4.13)

By adding the inequalities in (4.8), (4.9), (4.11)–(4.13), we complete the proof of (4.7). �

Proof of Proposition 2.3 completed. From (1.14) and the definition of P−→a and P c−→a , we
have a0 > 0 and minj∈P−→a ∪P c−→a

aj > 0. We choose δ > 0 small such that

εν0 > (N + 2)δ, a0 > Nδ and min
j∈P−→a ∪P c−→a

aj > δ. (4.14)

By (4.3), (4.4) and Lemma 4.1, there exists a positive constant Cδ such that for each n ≥ 1,
the right-hand side of (4.1) is bounded above by

(N + 2)δ
N∑
k=1

‖∂kUn‖pkLpk (Ω) +Nδ‖Un‖mLm(Ω) + δ
∑

j∈P−→a ∪P c−→a

Im,pj (Un) + Cδ. (4.15)

For ease of reference, we introduce Sn as follows

Sn := ‖Un‖mLm(Ω) +
∑

j∈P−→a ∪P c−→a

Im,pj (Un) ≥ 0.

In view of (4.1), the quantity in (4.2) is bounded above by that in (4.15). Hence, using the
inequalities in (4.14), we infer that for some small constant ε1 > 0, we have

ε1

(
N∑
k=1

‖∂kUn‖pkLpk (Ω) + Sn

)
+ 〈[(1− ε)A−B]Un, Un〉 ≤ Cδ (4.16)

for every n ≥ 1. Now, from the hypothesis that B belongs to the class BC((1 − ε)A) with

ε ∈ (0, 1), we have the coercivity of the operator (1− ε)A−B from W 1,−→p
0 (Ω) into W−1,−→p ′(Ω).

Hence, (4.16) implies that {Un}n≥1 is bounded in W 1,−→p
0 (Ω). Since B : W 1,−→p

0 (Ω)→W−1,−→p ′(Ω)
is bounded, we find a constant C > 0 such that |〈BUn, Un〉| ≤ C for every n ≥ 1. Using also
the coercivity assumption in (1.12), the inequality in (4.16) gives the boundedness of {Sn}n≥1.
Using this fact into (4.4) and (4.7), we conclude from (4.4) that

0 ≤
∫

Ω
Ψn(Un)Un dx ≤

∫
Ω

Ψ(Un)Un dx ≤ C,

where C > 0 is a constant independent of n ≥ 1. Returning to (4.1) and using (4.3), we obtain
that the sequence of positive functions {Φ(Un)Un}n≥1 is bounded in L1(Ω). The proof of (2.9)
is now complete. �
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(b) From (2.9), there exists a function U0 ∈W 1,−→p
0 (Ω)∩Lm(Ω) such that, up to a subsequence,

(2.10) holds. This completes the proof of Proposition 2.3. �

Remark 4.2. From (2.10), we have U±n ⇀ U±0 (weakly) in W 1,−→p
0 (Ω) as n → ∞, which yields

that limn→∞〈AU±0 , U±n − U
±
0 〉 = 0.

5. Applications of Proposition 2.3

Throughout this section, the assumptions of Proposition 2.3 hold. For each n ≥ 1 let Un be
the solution of (1.22) provided by Lemma 2.1.

Lemma 5.1. Let ω be a measurable subset of Ω. Assume that {Vn}n≥1 is a sequence in

W 1,−→p
0 (Ω) ∩ Lm(Ω) satisfying |Vn| ≤ |Un| on ω for all n ≥ 1. Then, for every τ ∈ (0, 1)

small enough and β ∈ (1/τ,m/τ) fixed, there exists a positive constant C, independent of ω,
such that

N∑
j=1

∫
ω
|Un|θj−1|∂jUn|qj |Vn| dx ≤ C

Ä
‖Vn‖τLp(Ω) + ‖Vn‖τLτβ(Ω)

ä
for all n ≥ 1. (5.1)

Proof. Fix τ small satisfying 0 < τ < min{m− 1,min1≤j≤N{θj}, 1}. Since |Vn| ≤ |Un| on ω for
all n ≥ 1, we have |Un|τ−1 ≤ |Vn|τ−1 on ω so that∫

ω
|Un|θj−1|∂jUn|qj |Vn| dx ≤

∫
Ω
|Un|θj−τ |∂jUn|qj |Vn|τ dx (5.2)

for every 1 ≤ j ≤ N . Recall from (3.8), (3.9), and (4.5) that

{1 ≤ j ≤ N} = N−→a ∪N
c−→a ∪ “P−→a ,1 ∪ “P−→a ,2 ∪ P−→a ,3.

By Hölder’s inequality, with cj given (3.14), for every j ∈ N c−→a , we have∫
Ω
|Un|θj−τ |∂jUn|qj |Vn|τ dx ≤ cj ‖Un‖

θj−τ
Lp(Ω)‖∂jUn‖

qj
Lpj (Ω)

‖Vn‖τLp(Ω). (5.3)

By the definition of “P−→a ,2 in (4.6), we can take τ small such that

0 < τ < θj −
mqj
pj

for every j ∈ “P−→a ,2.
Using cj given by (4.10), for every j ∈ “P−→a ,2, we derive that∫

Ω
|Un|θj−τ |∂jUn|qj |Vn|τ dx ≤ cj

Ä
Im,pj

ä qj
pj ‖Un‖

θj−τ−
mqj
pj

Lp(Ω) ‖Vn‖τLp(Ω). (5.4)

We fix β ∈ (1/τ,m/τ). From (1.8), we have λj > 1 for every j ∈ N−→a , where λj is given by
(3.14). We choose τ > 0 small such that (m − 1) τ < m/λj for every j ∈ N−→a , which implies

that λjm/(m + τλj) < β. Hence, for every j ∈ N−→a , by defining cj,N−→a = (meas (Ω))
1
λj

+ τ
m
− 1
β ,

we obtain that∫
Ω
|Un|θj−τ |∂jUn|qj |Vn|τ dx ≤ cj,N−→a ‖Un‖

θj−τ
Lm(Ω)‖∂jUn‖

qj
Lpj (Ω)

‖Vn‖τLτβ(Ω). (5.5)

We diminish τ such that 0 < τ < (pj − qj)/pj for every j ∈ “P−→a ,1. Using that m ≥ pjθj/qj for

every j ∈ “P−→a ,1, by Hölder’s inequality, we infer that∫
Ω
|Un|θj−τ |∂jUn|qj |Vn|τ dx ≤ cj,P̂−→a ,1

Ä
Im,pj

ä θj−τ
m ‖∂jUn‖

qj−
pj(θj−τ)

m

Lpj (Ω)
‖Vn‖τLτβ(Ω) (5.6)

for every j ∈ “P−→a ,1, where c
j,P̂−→a ,1

= (meas (Ω))
pj−qj
pj
− 1
β .
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Finally, for every j ∈ P−→a ,3, we have p ≤ θj < m < θjpj/qj in view of (1.8). We let τ > 0 small

such that τ < (m− θj)/(m− 1) for every j ∈ P−→a ,3. Then, Hölder’s inequality yields that∫
Ω
|Un|θj−τ |∂jUn|qj |Vn|τ dx ≤ cj,P−→a ,3

Ä
Im,pj

ä qj
pj ‖Un‖

θj−τ−
mqj
pj

Lm(Ω) ‖Vn‖τLτβ(Ω) (5.7)

for every j ∈ P−→a ,3, where we define cj,P−→a ,3 := (meas (Ω))
m−θj+τ

m
− 1
β .

From (5.2)–(5.7), jointly with the a priori estimates in (2.9), we derive (5.1). �

We remark that

Gk(Un) ⇀ Gk(U0) (weakly) in W 1,−→p
0 (Ω) and in Lm(Ω) as n→∞

||Gk(Un)||Lr(Ω) → ||Gk(U0)||Lr(Ω) as n→∞, where 1 ≤ r < m,
(5.8)

and

Gk(U
+
0 ) ⇀ 0 (weakly) in W 1,−→p

0 (Ω) as k →∞. (5.9)

For every k ≥ 1, we define

zn,k := U+
n − Tk(U+

0 ). (5.10)

In the proof of Lemma 5.2 below, we need several properties of {z±n,k}n, which we summarise
next.

Properties of {z±n,k}n. From (2.9) and (5.10), we see that {z±n,k}n is bounded in W 1,−→p
0 (Ω) and

also in Lm(Ω) and, up to a subsequence,

z+
n,k → (U+

0 − Tk(U
+
0 ))+ = Gk(U

+
0 ) a.e. in Ω as n→∞,

z−n,k → (U+
0 − Tk(U

+
0 ))− = 0 a.e. in Ω as n→∞.

(5.11)

Hence, up to a subsequence, using also Remark A.3 in the Appendix, as n→∞, we have

z+
n,k ⇀ Gk(U

+
0 ) (weakly) in W 1,−→p

0 (Ω) and in Lm(Ω),

z+
n,k → Gk(U

+
0 ) (strongly) in Lp(Ω),

z−n,k ⇀ 0 (weakly) in W 1,−→p
0 (Ω) and in Lm(Ω),

z−n,k → 0 (strongly) in Lp(Ω).

(5.12)

From (5.9) and (5.12), by passing to a subsequence, we deduce that

lim
n→∞

‖z+
n,k‖Lp(Ω) = ‖Gk(U+

0 )‖Lp(Ω) → 0 as k →∞,

lim
n→∞

‖z−n,k‖Lp(Ω) = 0.
(5.13)

Let r ∈ (1,m) be arbitrary. By Vitali’s Theorem and (5.11), up to a subsequence, we get that

lim
n→∞

‖z+
n,k‖Lr(Ω) = ‖Gk(U+

0 )‖Lr(Ω) → 0 as k →∞,

lim
n→∞

‖z−n,k‖Lr(Ω) = 0.
(5.14)

Since B satisfies the property (P2), from (5.12) we have, up to a subsequence,

lim
n→∞

〈BUn, z+
n,k〉 = 〈BU0, Gk(U

+
0 )〉 and lim

n→∞
〈BUn, z−n,k〉 = 0.

By applying Lemma 5.1, we obtain Lemma 5.2 to be used in the proof of Proposition 2.4.

Lemma 5.2. There exist {Wk}k≥1 and {Zk}k≥1 with limk→∞Wk = limk→∞ Zk = 0 such that,
up to a subsequence of {Un}, we have for each k ≥ 1

lim supn→∞ ‖Gk(Un)‖
W 1,−→p

0 (Ω)
≤Wk, (5.15)

lim supn→∞〈AUn, z+
n,k〉 ≤ Zk. (5.16)
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Proof. By a well-known diagonal argument, it suffices to show that for every k ≥ 1, there exists
a subsequence of {Un} such that (5.15) and (5.16) hold. Let k ≥ 1 be arbitrary.

We prove (5.15). Since Gk(Un) = Un−Tk(Un) and ∂jTk(Un) = ∂jUn χ{|Un|≤k} for 1 ≤ j ≤ N ,
by the coercivity assumption in (1.12), we have

〈AUn, Gk(Un)〉 =
N∑
j=1

∫
{|Un|>k}

Aj(Un) ∂jUn dx

≥ ν0

N∑
j=1

∫
{|Un|>k}

|∂jUn|pj dx = ν0

N∑
j=1

‖∂jGk(Un)‖pj
Lpj (Ω)

.

(5.17)

Since tGk(t) ≥ 0 for every t ∈ R, by the sign-condition in (1.13), we find that Gk(Un) Φ(Un) ≥ 0
for all n ≥ 1. Then, by Lemma 2.1, we can test (2.5) with v = Gk(Un) and using (1.13), we get

〈AUn, Gk(Un)〉 ≤ 〈AUn, Gk(Un)〉+

∫
Ω
Gk(Un) Φ(Un) dx

≤
∫

Ω
Ψn(Un)Gk(Un) dx+ |〈BUn, Gk(Un)〉|+ CΘ

∫
Ω
|Gk(Un)| dx.

(5.18)

Since B satisfies the property (P2), using (5.8) we infer that

|〈BUn, Gk(Un)〉|+CΘ

∫
Ω
|Gk(Un)| dx→ |〈BU0, Gk(U0)〉|+CΘ‖Gk(U0)‖L1(Ω) as n→∞. (5.19)

By (2.2), we see that∫
Ω

Ψn(Un)Gk(Un) dx ≤
N∑
j=1

∫
{|Un|>k}

|Un|θj−1|∂jUn|qj |Gk(Un)| dx. (5.20)

Observe that 0 < |Gk(Un)| ≤ |Un| on {|Un| > k}. Hence, by Lemma 5.1, for small τ > 0 and
β ∈ (1/τ,m/τ) fixed, there exists a positive constant C, independent of n and k, such that

N∑
j=1

∫
{|Un|>k}

|Un|θj−1|∂jUn|qj |Gk(Un)| dx ≤ C
Ä
‖Gk(Un)‖τLp(Ω) + ‖Gk(Un)‖τLτβ(Ω)

ä
. (5.21)

From (5.20) and (5.21), using (5.8) it follows that

lim sup
n→∞

∫
Ω

Ψn(Un)Gk(Un) dx ≤ C
Ä
‖Gk(U0)‖τLp(Ω) + ‖Gk(U0)‖τLτβ(Ω)

ä
:= Rk.

Using this fact, jointly with (5.17), (5.18) and (5.19), we arrive at

ν0 lim sup
n→∞

N∑
j=1

‖∂jGk(Un)‖pj
Lpj (Ω)

≤ Rk + |〈BU0, Gk(U0)〉|+ CΘ‖Gk(U0)‖L1(Ω). (5.22)

Since Gk(U0) ⇀ 0 (weakly) in W 1,−→p
0 (Ω) and in Lm(Ω) as k → ∞, using that τβ ∈ (1,m), we

find that (up to a subsequence), Gk(U0) → 0 (strongly) in Lp(Ω) and in Lτβ(Ω) as k → ∞.
Hence, limk→∞Rk = 0 and, moreover, the right-hand side of (5.22) converges to 0 as k → ∞.
The proof of (5.15) is complete.

We now establish (5.16). Let ` > 0 be arbitrary. We take v = T`(z
+
n,k) ∈ W

1,−→p
0 (Ω) ∩ L∞(Ω)

as a test function in (2.5) and, proceeding as in the proof of Lemma 2.1, by letting `→∞, we

get that (2.5) holds for v = z+
n,k ∈W

1,−→p
0 (Ω) ∩ Lm(Ω). This, jointly with (1.13), implies that

〈AUn, z+
n,k〉 ≤

∫
Ω

Ψn(Un) z+
n,k dx+ |〈BUn, z+

n,k〉|+ CΘ

∫
Ω
z+
n,k dx. (5.23)

From the definition of Ψn in (2.2), we have∫
Ω

Ψn(Un) z+
n,k dx ≤

N∑
j=1

∫
{z+
n,k

>0}
|Un|θj−1|∂jUn|qjz+

n,k dx. (5.24)
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Observe that z+
n,k ≤ Un on {z+

n,k > 0}. Then, from Lemma 5.1, for sufficiently small τ > 0 and

β ∈ (1/τ,m/τ) fixed, there exists a positive constant C, independent of n and k, such that

N∑
j=1

∫
{z+
n,k

>0}
|Un|θj−1|∂jUn|qjz+

n,k dx ≤ C
Ä
‖z+
n,k‖

τ
Lp(Ω) + ‖z+

n,k‖
τ
Lτβ(Ω)

ä
. (5.25)

By using (5.23), (5.24), (5.25), (5.13) and (5.14), we conclude (5.16) with Zk given by

Zk := C
Ä
‖Gk(U+

0 )‖τLp(Ω) + ‖Gk(U+
0 )‖τLτβ(Ω)

ä
+ |〈BU0, Gk(U

+
0 )〉|+ CΘ‖Gk(U+

0 )‖L1(Ω).

From (5.9), (5.13) and (5.14), we have limk→∞ Zk = 0 since τβ ∈ (1,m).
This ends the proof of Lemma 5.2. �

For λ > 0, we define ϕλ : R→ R as follows

ϕλ(t) = t exp (λt2) for every t ∈ R. (5.26)

We define I0(n, k) by

I0(n, k) := CΘ‖ϕλ(z−n,k)‖L1(Ω) −
∫

Ω
Ψn(Un)ϕλ(z−n,k) dx− 〈BUn, ϕλ(z−n,k)〉. (5.27)

Lemma 5.3. Up to a subsequence of {Un}n, we have lim supn→∞ I0(n, k) ≤ 0 for each k ≥ 1.

Proof. It suffices to show that for each k ≥ 1, by passing to a subsequence of {Un}, we have

lim supn→∞ I0(n, k) ≤ 0. Since Un ⇀ U0 and ϕλ(z−n,k) ⇀ 0 (weakly) in W 1,−→p
0 (Ω) as n→∞, by

the property (P2) for B, we have limn→∞〈BUn,−ϕλ(z−n,k)〉 = 0. Moreover, up to a subsequence,

ϕλ(z−n,k)→ 0 (strongly) in L1(Ω) as n→∞. Thus, it remains to show that

lim sup
n→∞

Å
−
∫

Ω
Ψn(Un)ϕλ(z−n,k) dx

ã
≤ 0. (5.28)

From (2.2), we have

−
∫

Ω
Ψn(Un)ϕλ(z−n,k) dx ≤

∑
j∈J1

∫
{Un≤0}

|Un|θj−1|∂jUn|qjϕλ(z−n,k) dx

≤ eλk2
∑
j∈J1

∫
Ω
|Un|θj−1|∂jUn|qj z−n,k dx.

(5.29)

Let j ∈ J1 be arbitrary. In view of Lemma 5.1, for sufficiently small τ > 0 and β ∈ (1/τ,m/τ)
fixed, there exists a positive constant C, independent of n and k, such that∫

{|Un|≥z−n,k}
|Un|θj−1|∂jUn|qj z−n,k dx ≤ C

Ä
‖z−n,k‖

τ
Lp(Ω) + ‖z−n,k‖

τ
Lτβ(Ω)

ä
. (5.30)

We write Ω as the union of {|Un| < z−n,k} and {|Un| ≥ z−n,k}. Since θj ≥ 1, we see that

|Un|θj−1 ≤ (z−n,k)
θj−1 on {|Un| < z−n,k}. This and (5.30) imply that∫

Ω
|Un|θj−1|∂jUn|qj z−n,k dx ≤ C

Ä
‖z−n,k‖

τ
Lp(Ω) + ‖z−n,k‖

τ
Lτβ(Ω)

ä
+

∫
Ω
|∂jUn|qj (z−n,k)

θj dx. (5.31)

With (5.29) and (5.31) in mind, to conclude (5.28), it suffices to show that for each j ∈ J1, each
term in the right-hand side of (5.31) converges to zero as n→∞.

In light of (5.13) and (5.14), we see that the right-hand side of (5.30) converges to 0 as
n→∞ using here that τβ ∈ (1,m). For every j ∈ J1, let αj ∈ (0, θj) satisfy 1 < ϑj < m, where
we define ϑj = (θj − αj)pj/(pj − qj). Since z−n,k ≤ k, by Hölder’s inequality, we have∫

Ω
|∂jUn|qj (z−n,k)

θj dx ≤ kαj
∫

Ω
|∂jUn|qj (z−n,k)

θj−αj dx ≤ kαj‖∂jUn‖
qj
Lpj (Ω)

‖z−n,k‖
θj−αj
Lϑj (Ω)

.

The choice of αj yields that limn→∞ ‖z−n,k‖Lϑj (Ω)
= 0. Then, for every j ∈ J1, the last term in

the right-hand side of (5.31) converges to 0 as n→∞. This completes the proof of (5.28). �
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6. Proof of Proposition 2.4

As explained in Section 1.4, we conclude (2.11) and (2.12) by showing that (1.24) holds.
We observe that in Case 2, we need only prove that EUn(U+

n , U
+
0 ) → 0 in L1(Ω) as n → ∞

since all Un and, hence, U0 are non-negative functions. Similarly, we can establish the other
convergence claim in (1.24). We thus show the details only for EUn(U+

n , U
+
0 ) in (1.24) and leave

the modifications for EUn(U−n , U
−
0 ) to the reader noting that instead of zn,k in (5.10), one needs

to work with yn,k defined by yn,k := U−n − Tk(U−0 ).

In light of the monotonicity assumption in (1.12), we have EUn(U+
n , U

+
0 ) ≥ 0 a.e. in Ω. Hence,

to attain (1.24) for EUn(U+
n , U

+
0 ), it remains to show that

lim sup
n→∞

∫
Ω
EUn(U+

n , U
+
0 ) dx ≤ 0. (6.1)

Notation. Let ω be a measurable subset of Ω and v, w, z ∈W 1,−→p
0 (Ω). We introduce

Ej,Un(v, w) := Aj(x, Un(x),∇v(x))−Aj(x, Un(x),∇w(x)),

En,ω(v, w, z) :=
N∑
j=1

∫
ω
Ej,Un(v, w) ∂jz dx.

(6.2)

If either of the variables v, w and z or ω depends on n, we drop the subscript n in En,ω(v, w, z).

Fix k > 0. We define zn,k as in (5.10). From (1.20), we see that Gk(U
+
0 ) ≥ 0 a.e. in Ω. Since

U+
n − U+

0 = z+
n,k − z

−
n,k −Gk(U

+
0 ),

we infer that∫
Ω
EUn(U+

n , U
+
0 ) dx =EΩ(Tk(U

+
0 ), U+

0 , U
+
n − U+

0 ) + EΩ(U+
n , Tk(U

+
0 ), z+

n,k)

+ EΩ(U+
n , Tk(U

+
0 ),−z−n,k) + EΩ(Tk(U

+
0 ), U+

n , Gk(U
+
0 )).

(6.3)

We show that, up to a subsequence of {Un}, there exist µj ∈ Lp
′
j (Ω) for 1 ≤ j ≤ N such that

lim
n→∞

EΩ(Tk(U
+
0 ), U+

n , Gk(U
+
0 )) =

N∑
j=1

∫
Ω
µj ∂jGk(U

+
0 ) dx. (6.4)

Indeed, by the growth condition in (1.12), there exists a positive constant C, independent of n
and k such that, for 1 ≤ j ≤ N , it holds

‖Aj(x, Un,∇Tk(U+
0 ))‖

L
p′
j (Ω)

+ ‖Aj(x, Un,∇U+
0 )‖

L
p′
j (Ω)

+ ‖Aj(x, Un,∇U+
n )‖

L
p′
j (Ω)
≤ C. (6.5)

Hence, passing to a subsequence of {Un}, we can find µj ∈ Lp
′
j (Ω) for 1 ≤ j ≤ N such that

Ej,Un(Tk(U
+
0 ), U+

n ) ⇀ µj (weakly) in Lp
′
j (Ω) as n→∞. (6.6)

This proves the claim in (6.4).
We complete the proof of (6.1) assuming that the next two results hold.

Lemma 6.1. For every k ≥ 1, there exist R1(k) and R2(k) such that, up to a subsequence of
{Un}n≥1, we have

lim sup
n→∞

EΩ(Tk(U
+
0 ), U+

0 , U
+
n − U+

0 ) ≤ R1(k),

lim sup
n→∞

EΩ(U+
n , Tk(U

+
0 ), z+

n,k) ≤ R2(k),

where limk→∞R1(k) = limk→∞R2(k) = 0.

Lemma 6.2. For every k ≥ 1, by passing to a subsequence of {Un}n≥1, we have

lim sup
n→∞

EΩ(U+
n , Tk(U

+
0 ),−z−n,k) ≤ 0. (6.7)
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For the proof of Lemmata 6.1 and 6.2, we refer to Sections 6.1 and 6.2, respectively.
Hence, by using a diagonal argument, there exists a subsequence of {Un}n≥1 such that for every
k ≥ 1 (6.4) holds and Lemmata 6.1 and 6.2 apply.

Consequently, using also (6.3), we deduce that

lim sup
n→∞

∫
Ω
EUn(U+

n , U
+
0 ) dx ≤ R1(k) +R2(k) +

N∑
j=1

∫
Ω
µj ∂jGk(U

+
0 ) dx (6.8)

for every integer k ≥ 1.
Hence, by using (5.9) and letting k →∞ in (6.8), we conclude the proof of (6.1).

6.1. Proof of Lemma 6.1. Let k ≥ 1. By Lemma 5.2, it suffices to show that there exist a
positive constant C, independent of k, and R0(k) with limk→∞R0(k) = 0 such that

lim sup
n→∞

EΩ(Tk(U
+
0 ), U+

0 , U
+
n − U+

0 ) ≤ C lim sup
n→∞

‖Gk(Un)‖
W 1,−→p

0 (Ω)
−R0(k), (6.9)

lim sup
n→∞

EΩ(U+
n , Tk(U

+
0 ), z+

n,k) ≤ lim sup
n→∞

〈AUn, z+
n,k〉+ C lim sup

n→∞
‖Gk(Un)‖

W 1,−→p
0 (Ω)

. (6.10)

Proof of (6.9). We define L1(n, k), L2(n, k) and L3(n, k) by

L1(n, k) := E{|Un|<k}(Tk(U
+
0 ), U+

0 , U
+
n − U+

0 ),

L2(n, k) := E{|Un|≥k}(Tk(U
+
0 ), U+

0 , U
+
n ),

L3(n, k) := E{|Un|≥k}(Tk(U
+
0 ), U+

0 , U
+
0 ) =

N∑
j=1

∫
{|Un|≥k}

Ej,Un(Tk(U
+
0 ), U+

0 ) ∂jU
+
0 dx.

It follows that

EΩ(Tk(U
+
0 ), U+

0 , U
+
n − U+

0 ) =L1(n, k) + L2(n, k)− L3(n, k). (6.11)

Remark that χ{|Un|≥k}∂jU
+
n = χ{Un≥k}∂jGk(Un) for every 1 ≤ j ≤ N . Hence, by Hölder’s

inequality and (6.5), we obtain that∣∣∣L2(n, k)
∣∣∣ =

∣∣∣E{Un≥k}(Tk(U+
0 ), U+

0 , Gk(Un))
∣∣∣ ≤ C‖Gk(Un)‖

W 1,−→p
0 (Ω)

, (6.12)

where C > 0 is a constant independent of n and k.
By the Dominated Convergence Theorem, we see that limk→∞R0(k) = 0, where we define

R0(k) :=
N∑
j=1

∫
{U0≥k}

Ej,U0(0, U0) ∂jU0 dx. (6.13)

Using (6.11) and (6.12), we conclude the proof of (6.9) by showing that

lim
n→∞

L3(n, k) = R0(k) and lim
n→∞

L1(n, k) = 0. (6.14)

Let 1 ≤ j ≤ N be arbitrary. We have

χ{|Un|≥k}∂jU
+
0 → χ{U0≥k}∂jU0 (strongly) in Lpj (Ω) as n→∞. (6.15)

Since Ej,Un(Tk(U
+
0 ), U+

0 )→ Ej,U0(Tk(U
+
0 ), U+

0 ) a.e. in Ω as n→∞, using (6.5) and passing to
a subsequence of {Un}, we find that

Ej,Un(Tk(U
+
0 ), U+

0 ) ⇀ Ej,U0(Tk(U
+
0 ), U+

0 ) (weakly) in Lp
′
j (Ω) as n→∞. (6.16)

Hence, from (6.15) and (6.16), we infer that as n→∞

Ej,Un(Tk(U
+
0 ), U+

0 )χ{|Un|≥k}∂jU
+
0 → Ej,U0(Tk(U

+
0 ), U+

0 )χ{U0≥k}∂jU0 (strongly) in L1(Ω).

This proves the first limit in (6.14) since Ej,U0(Tk(U
+
0 ), U+

0 ) = Ej,U0(0, U0) on {U0 ≥ k}.
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Let 1 ≤ j ≤ N be arbitrary. We note that the sequences {Ej,Un(Tk(U
+
0 ), U+

0 )χ{|Un|≤k}}n≥1

and {Aj(x, Un,∇Tk(U+
0 ))χ{|Un|≤k}}n≥1 are uniformly integrable in Lp

′
j (Ω) with respect to n.

Since Un → U0 a.e. in Ω as n→∞, by Vitali’s Theorem, we obtain that as n→∞

Ej,Un(Tk(U
+
0 ), U+

0 )χ{|Un|≤k} → Ej,U0(Tk(U
+
0 ), U+

0 )χ{|U0|≤k} in Lp
′
j (Ω), (6.17)

Aj(x, Un,∇Tk(U+
0 ))χ{|Un|≤k} → Aj(x, U0,∇Tk(U+

0 ))χ{|U0|≤k} in Lp
′
j (Ω). (6.18)

Recall that ∂jU
+
n ⇀ ∂jU

+
0 and ∂jz

+
n,k ⇀ ∂jGk(U

+
0 ) (weakly) in Lpj (Ω) as n → ∞. Since

χ{|U0|≤k} ∂jGk(U
+
0 ) = 0, using (6.17) and (6.18), we conclude that as n→∞

Ej,Un(Tk(U
+
0 ), U+

0 )χ{|Un|≤k} ∂j(U
+
n − U+

0 )→ 0 in L1(Ω), (6.19)

Aj(x, Un,∇Tk(U+
0 ))χ{|Un|≤k} ∂jz

+
n,k → 0 in L1(Ω). (6.20)

Moreover, from (6.19) and the squeeze law, we get the second limit in (6.14).

Proof of (6.10). We define P1(n, k) and P2(n, k) as follows

P1(n, k) :=
N∑
j=1

∫
{|Un|<k}

Aj(x, Un,∇Tk(U+
0 )) ∂jz

+
n,k dx,

P2(n, k) :=
N∑
j=1

∫
{Un≥k}

Aj(x, Un,∇Tk(U+
0 )) ∂j(−z+

n,k) dx.

Since on the set {Un ≥ k} we have z+
n,k = Un − Tk(U+

0 ) and ∂jUn = ∂jGk(Un) for 1 ≤ j ≤ N ,

the definition of P2(n, k) yields that P2(n, k) = P2,1(n, k) + P2,2(n, k), where

P2,1(n, k) := −
N∑
j=1

∫
{Un≥k}

Aj(x, Un,∇Tk(U+
0 )) ∂jGk(Un) dx,

P2,2(n, k) :=
N∑
j=1

∫
{Un≥k}∩{0<U0<k}

Aj(x, Un,∇U0) ∂jU0 dx.

From (6.20), we get limn→∞ P1(n, k) = 0. When z+
n,k > 0, then U+

n > 0 so that

Un = U+
n on {z+

n,k > 0} and 〈AU+
n , z

+
n,k〉 = 〈AUn, z+

n,k〉.
Hence, we arrive at

EΩ(U+
n , Tk(U

+
0 ), z+

n,k) = 〈AUn, z+
n,k〉 − P1(n, k) + P2(n, k).

Consequently, we end the proof of (6.10) once we show that

lim sup
n→∞

P2(n, k) ≤ C lim sup
n→∞

‖Gk(Un)‖
W 1,−→p

0 (Ω)
, (6.21)

where C is a positive constant independent of k.
As for (6.12), we find a positive constant C, independent of n and k such that

|P2,1(n, k)| ≤ C‖Gk(Un)‖
W 1,−→p

0 (Ω)
. (6.22)

For 1 ≤ j ≤ N , by the Dominated Convergence Theorem, we get χ{Un≥k}χ{0<U0<k}∂jU0 → 0

(strongly) in Lpj (Ω) as n→∞. Since Aj(x, Un,∇U0) ⇀ Aj(x, U0,∇U0) (weakly) in Lp
′
j (Ω) as

n→∞, we infer that limn→∞ P2,2(n, k) = 0. This, together with (6.22), proves (6.21).

The proof of Lemma 6.1 is now complete. �

Remark 6.3. We point out that the reasoning in the proof of limn→∞ L1(n, k) = 0 cannot be
extended to get limn→∞EΩ(Tk(U

+
0 ), U+

0 , U
+
n − U+

0 ) = 0. Indeed, in the growth condition in
(1.12), we have taken the greatest exponent for |t| regarding the anisotropic Sobolev inequalities

so that we don’t have the compactness of the embedding W 1,−→p
0 (Ω) ↪→ Lp

∗
(Ω). Hence, we cannot

infer that {Ej,Un(Tk(U
+
0 ), U+

0 )}n≥1 is uniformly integrable in Lp
′
j (Ω) with respect to n.

22



6.2. Proof of Lemma 6.2. We need to show that, up to a subsequence, (6.7) holds, namely,

lim sup
n→∞

∫
Ω
D(n, k) dx ≤ 0, (6.23)

where we define D(n, k) by

D(n, k) :=
N∑
j=1

î
Aj(x, Un,∇U+

n )−Aj(x, Un,∇Tk(U+
0 ))
ó
∂j(−z−n,k). (6.24)

We choose λ = λ(k) > 0 large such that 4ν2
0 λ > φ2(k), where φ appears in the growth

assumption on Φ in (1.13), while ν0 > 0 is given by the coercivity condition in (1.12). We define
ϕλ as in (5.26). Our choice of λ ensures that for every t ∈ R

λt2 − φ(k)

2ν0
|t|+ 1

4
> 0 and, hence, ϕ′λ(t)− φ(k)

ν0
|ϕλ(t)| > 1

2
. (6.25)

Recall that I0(n, k) is defined in (5.27). For convenience, we set

I1(n, k) :=
N∑
j=1

∫
Ω
Aj(x, Un,∇Tk(U+

0 )) ∂j(ϕλ(z−n,k)) dx+ EΩ(Un, U
+
n , ϕλ(z−n,k)),

I2(n, k) :=
N∑
j=1

∫
Ω

î
Aj(x, Un,∇U+

n ) ∂jTk(U
+
0 ) +Aj(x, Un,∇Tk(U+

0 )) ∂jzn,k
ó
ϕλ(z−n,k) dx.

(6.26)

We divide the proof of (6.23) into two steps.

Step 1. Let ν0 and c, φ be as in (1.12) and (1.13), respectively. We have

1

2

∫
Ω
D(n, k) dx ≤ I0(n, k) + I1(n, k) + φ(k)

ñ
I2(n, k)

ν0
+

∫
Ω
c(x)ϕλ(z−n,k) dx

ô
. (6.27)

Proof of STEP 1. On the set {Un > Tk(U
+
0 )}, we have D(n, k) = 0 since z−n,k = 0 and, hence,

∂jz
−
n,k = 0 for 1 ≤ j ≤ N . In turn, on the set {Un ≤ Tk(U+

0 )}, we find that z−n,k = Tk(U
+
0 )−U+

n

and, by the monotonicity condition in (1.12), it follows that D(n, k) ≥ 0. Hence, we have

D(n, k) ≥ 0, z−n,k ∈ [0, k], ϕλ(z−n,k) ∂j(−z
−
n,k) = ϕλ(z−n,k) ∂j(U

+
n − Tk(U+

0 )) a.e. in Ω (6.28)

for each 1 ≤ j ≤ N . Then, using (6.25), we find that

1

2

∫
Ω
D(n, k) dx ≤

∫
Ω
D(n, k)ϕ′λ(z−n,k) dx−

φ(k)

ν0

∫
Ω
D(n, k)ϕλ(z−n,k) dx. (6.29)

From (6.24) and (6.26), we observe that∫
Ω
D(n, k)ϕ′λ(z−n,k) dx = EΩ(U+

n , Tk(U
+
0 ),−ϕλ(z−n,k)) = I1(n, k) + 〈AUn,−ϕλ(z−n,k)〉. (6.30)

Since z−n,k ∈W
1,−→p
0 (Ω) ∩ L∞(Ω), we have ϕλ(z−n,k) ∈W

1,−→p
0 (Ω) ∩ L∞(Ω) so that ϕλ(z−n,k) can be

taken as a test function in (2.5). Hence, using (1.13) and I0(n, k) given by (5.27), we find that

〈AUn,−ϕλ(z−n,k)〉 ≤
∫

Ω
Φ(Un)ϕλ(z−n,k) dx+ I0(n, k). (6.31)

In view of (6.29)–(6.31), we conclude (6.27) by showing that∫
Ω

Φ(Un)ϕλ(z−n,k) dx ≤ φ(k)

[∫
ΩD(n, k)ϕλ(z−n,k) dx+ I2(n, k)

ν0
+

∫
Ω
c(x)ϕλ(z−n,k) dx

]
. (6.32)

To this end, we next prove that∫
Ω

Φ(Un)ϕλ(z−n,k) dx ≤
φ(k)

ν0
I3(n, k) + φ(k)

∫
Ω
c(x)ϕλ(z−n,k) dx, (6.33)
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where I3(n, k) is defined by

I3(n, k) :=
N∑
j=1

∫
{0<Un≤Tk(U+

0 )}
Aj(x, Un,∇Un) ∂jUn ϕλ(z−n,k) dx. (6.34)

Indeed, since z−n,k = 0 on {U+
n > Tk(U

+
0 )} and Φ(Un) ≤ 0 ≤ ϕλ(z−n,k) on {Un ≤ 0}, we have∫

Ω
Φ(Un)ϕλ(z−n,k) dx =

∫
{U+

n ≤Tk(U+
0 )}

Φ(Un)ϕλ(z−n,k) dx ≤
∫
{0<Un≤Tk(U+

0 )}
Φ(Un)ϕλ(z−n,k) dx.

Next, from the growth condition on Φ in (1.13) and the coercivity condition in (1.12), we get∫
{0<Un≤Tk(U+

0 )}
Φ(Un)ϕλ(z−n,k) dx ≤ φ(k)

∫
{0<Un≤Tk(U+

0 )}

Ñ
N∑
j=1

|∂jUn|pj + c(x)

é
ϕλ(z−n,k) dx

≤ φ(k)

ν0
I3(n, k) + φ(k)

∫
Ω
c(x)ϕλ(z−n,k) dx.

Consequently, the assertion of (6.33) is proved.
Since ϕ(z−n,k) = 0 on {Un > Tk(U

+
0 )}, we have

I3(n, k) =
N∑
j=1

∫
Ω
Aj(x, Un,∇U+

n ) ∂jU
+
n ϕλ(z−n,k) dx =

∫
Ω
D(n, k)ϕλ(z−n,k) dx+ I2(n, k), (6.35)

where I2(n, k) is given in (6.26). From (6.33) and (6.35), we attain (6.32). This ends the proof
of (6.27) and of Step 1. �

Step 2. Proof of (6.23) concluded.

Proof of STEP 2. Since 0 ≤ c(x)ϕλ(z−n,k) ≤ k eλk
2
c(x) a.e. in Ω and c(x)ϕλ(z−n,k)→ 0 a.e. in

Ω as n→∞, by the Dominated Convergence Theorem, we have limn→∞
∫

Ω c(x)ϕλ(z−n,k) dx = 0.
In view of Step 1 and Lemma 5.3, we conclude Step 2 by showing that, up to a subsequence,

lim
n→∞

I1(n, k) = 0 and lim
n→∞

I2(n, k) = 0. (6.36)

From (5.12), we have that both z−n,k and ϕλ(z−n,k) converge to 0 weakly in W 1,−→p
0 (Ω) as n→∞.

In particular, for each 1 ≤ j ≤ N , it holds

∂j(ϕλ(z−n,k)) ⇀ 0 (weakly) in Lpj (Ω) as n→∞. (6.37)

We recall that z−n,k = Tk(U
+
0 ) on {Un ≤ 0} and ϕλ(z−n,k) = 0 on {Un > Tk(U

+
0 )}.

1) We show that limn→∞ I1(n, k) = 0. If I1,1(n, k) is the first term in I1(n, k) in (6.26), then

I1,1(n, k) =
N∑
j=1

∫
{Un<0}

Aj(x, Un,∇Tk(U+
0 )) ∂j(ϕλ(Tk(U

+
0 )) dx

+
N∑
j=1

∫
{0≤Un≤Tk(U+

0 )}
Aj(x, Un,∇Tk(U+

0 )) ∂j(ϕλ(z−n,k)) dx.

(6.38)

Let 1 ≤ j ≤ N be arbitrary. By the Dominated Convergence Theorem, we get

χ{Un≤0} ∂j(ϕλ(Tk(U
+
0 )))→ 0 (strongly) in Lpj (Ω) as n→∞. (6.39)

Hence, using that Aj(x, Un,∇Tk(U+
0 )) ⇀ Aj(x, U0,∇Tk(U+

0 )) (weakly) in Lp
′
j (Ω) as n→∞, we

obtain that the first term in the right-hand side of (6.38) converges to 0 as n→∞. Furthermore,

on the set {0 ≤ Un ≤ Tk(U+
0 )}, we have Un ≤ k and the family {|Aj(x, Un,∇Tk(U+

0 ))|p
′
j}n≥1 is

uniformly integrable. Then, based on Aj(x, Un,∇Tk(U+
0 )) → Aj(x, U0,∇Tk(U+

0 )) a.e. in Ω as
n→∞, by Vitali’s Theorem, we infer the strong convergence as n→∞

Aj(x, Un,∇Tk(U+
0 ))χ{0≤Un≤Tk(U+

0 )} → Aj(x, U0,∇Tk(U+
0 ))χ{0≤U0≤Tk(U+

0 )} in Lp
′
j (Ω). (6.40)
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This, jointly with (6.37), implies that the second term in the right-hand side of (6.38) converges
to 0 as n→∞. This proves that limn→∞ I1,1(n, k) = 0.

We now show that the remaining term in the definition of I1(n, k) in (6.26) converges to 0
as n → ∞, that is, limn→∞EΩ(Un, U

+
n , ϕλ(z−n,k)) = 0. By the definition of En,ω(·, ·, ·) in (6.2),

since z−n,k = Tk(U
+
0 ) = −zn,k on {Un ≤ 0}, we get

EΩ(Un, U
+
n , ϕλ(z−n,k)) =

N∑
j=1

∫
{Un≤0}

î
Aj(x, Un,∇Un)−Aj(x, Un,∇U+

n )
ó
∂j(ϕλ(Tk(U

+
0 )) dx.

As for (6.6), by passing to a subsequence of {Un}, we get that

{Aj(x, Un,∇Un)}n, {Aj(x, Un,∇U+
n )}n and {Aj(x, Un,∇Tk(U+

0 ))}n

converge weakly in Lp
′
j (Ω) as n→∞. This and (6.39) yield limn→∞EΩ(Un, U

+
n , ϕλ(z−n,k)) = 0.

2) We show that limn→∞ I2(n, k) = 0. From (5.11) and 0 ≤ z−n,k ≤ k a.e in Ω, we have

ϕλ(z−n,k)→ 0 a.e. in Ω as n→∞ and 0 ≤ ϕλ(z−n,k) ≤ k eλk
2

a.e. in Ω. Thus, by the Dominated
Convergence Theorem, for each 1 ≤ j ≤ N , we find that as n→∞

ϕλ(z−n,k) ∂jTk(U
+
0 )→ 0 and χ{Un≤0} ϕλ(Tk(U

+
0 )) ∂jzn,k → 0 (strongly) in Lpj (Ω).

Consequently, we get

N∑
j=1

∫
Ω
Aj(x, Un,∇U+

n )ϕλ(z−n,k) ∂jTk(U
+
0 ) dx→ 0 as n→∞,

N∑
j=1

∫
{Un<0}

Aj(x, Un,∇Tk(U+
0 ))ϕλ(Tk(U

+
0 )) ∂jzn,k dx→ 0 as n→∞.

(6.41)

For 1 ≤ j ≤ N , we have zn,k = −z−n,k on {0 ≤ Un ≤ Tk(U
+
0 )} so that using (6.40) and the

weak convergence ∂jz
−
n,k ⇀ 0 in Lpj (Ω) as n→∞, we arrive at

Aj(x, Un,∇Tk(U+
0 ))χ{0≤Un≤Tk(U+

0 )} ∂jzn,k → 0 in L1(Ω) as n→∞.

It follows that

N∑
j=1

∫
{0≤Un≤Tk(U+

0 )}
Aj(x, Un,∇Tk(U+

0 ))ϕλ(z−n,k) ∂jzn,k dx→ 0 as n→∞. (6.42)

Since ϕλ(z−n,k) = 0 on {Un > Tk(U
+
0 )}, from (6.41) and (6.42), we find that limn→∞ I2(n, k) = 0,

completing the proof of (6.36) and of Step 2. �
This finishes the proof of Lemma 6.2. �

7. Proof of Theorem 1.4

Let (1.1), (1.3), (1.8) and (1.12)–(1.14) hold and, in addition, min1≤j≤N aj > 0. Here, we
suppose that the function f in (1.11) is not identically 0. In Case 2, we assume that f ≥ 0 a.e.
in Ω. We approximate f by a sequence of functions fn ∈ L∞(Ω), taking for instance

fn(x) :=
f(x)

1 + |f(x)|/n
for a.e. x ∈ Ω.

In particular, in Case 2, we have fn ≥ 0 a.e. in Ω. We remark the following properties

|fn| ≤ |f | a.e. in Ω, fn → f a.e. in Ω and fn → f (strongly) in L1(Ω) as n→∞. (7.1)

With this approximation, assuming that B belongs to BC((1 − ε)A) for some ε ∈ (0, 1), in
either Case 1 or Case 2, we can apply Theorem 1.3 for the problem generated by (1.11) with
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fn instead of f . Then such an approximate problem admits at least a solution un, namely,{
Aun + Φ(un) + Θ(un) = Ψ(un) + Bun + fn in Ω,

un ∈W 1,−→p
0 (Ω), Φ(un) ∈ L1(Ω).

(7.2)

Moreover, Φ(un)un and Ψ(un)un belong to L1(Ω), Iun(v) :=
∫
{|un|>0}Ψ(un) v dx ∈ R and

Sun,Θ,fn(v) = Iun(v) + 〈Bun, v〉 for every v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω). (7.3)

Furthermore, (7.3) holds for v = un.
In the rest of the paper, we understand that un is a solution of (7.2) with the above-mentioned

properties that we obtain from Theorem 1.3.

But, unlike Theorem 1.3, to prove that {un}n≥1 is uniformly bounded in W 1,−→p
0 (Ω), we need

B to satisfy the extra condition (P3) associated with (1− ε)A, namely, for every k > 0,

(1− ε) ν0

N∑
j=1

||∂ju||
pj
Lpj (Ω)

− 〈Bu, Tk(u)〉 → ∞ as ‖u‖
W 1,−→p

0 (Ω)
→∞. (7.4)

Thus, B belongs to the class BC+((1−ε)A). This assumption is made throughout this section.
All the results in this section are derived in the framework of Theorem 1.4.

7.1. A priori estimates. In order to obtain a priori estimates for un solving (7.2) we need
the following result, which is in the spirit of Lemma 4.1.

Lemma 7.1. Let k ≥ 1 be arbitrary and Φ0 be given by (1.2). Then, for every ρ > 0, there
exists a constant Cρ > 0 such that for all n ≥ 1, we have

Iun(Tk(un)) ≤ ρ
N∑
j=1

‖∂jun‖
pj
Lpj (Ω)

+ ρ

∫
{|un|≥k}

|Φ0(un)| dx+ Cρ. (7.5)

Remark 7.2. The property Φ(un)un ∈ L1(Ω) and (1.14) ensure that
∫
{|un|≥k} |Φ0(un)| dx <∞

for all k ≥ 1 and n ≥ 1.

We define

Im−1(k, un) =

∫
{|un|>k}

|un|m−1 dx, Im−1,pj (k, un) :=

∫
{|un|>k}

|un|m−1|∂jun|pj dx.

If in the definition of Im−1,pj (k, un), we replace m − 1 and pj by θj − 1 and qj , respectively,
then we obtain Iθj−1,qj (k, un).

Proof of Lemma 7.1. We observe that

Im−1(k, un) +
N∑
j=1

Im−1,pj (k, un) ≤ 1

min0≤k≤N ak

∫
{|un|≥k}

|Φ0(un)| dx <∞.

Using the definition of Iun(v), we see that

Iun(Tk(un)) =
N∑
j=1

∫
{0<|un|≤k}

|un|θj |∂jun|qj dx+ k
N∑
j=1

Iθj−1,qj (k, un)

≤ 2
N∑
j=1

kθj
∫

Ω
|∂jun|qj dx+ k

∑
j∈J1

Iθj−1,qj (k, un).

(7.6)

Let δ > 0 be arbitrary. By Hölder’s inequality and Young’s inequality, there exists a constant
Cδ > 0 such that for every n ≥ 1,

N∑
j=1

∫
Ω
|∂jun|qj dx ≤

N∑
j=1

(meas (Ω))
1−

qj
pj ‖∂jun‖

qj
Lpj (Ω)

≤ δ
N∑
j=1

‖∂jun‖
pj
Lpj (Ω)

+ Cδ. (7.7)

Let j ∈ J1 be arbitrary. To estimate Iθj−1,qj (k, un), we distinguish several cases:
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Case (a) Let qj = 0 and θj ≥ p+ 1. Then, j ∈ N−→a and from (1.8), we have m > θj . Hence,
by Young’s inequality, there exists a constant Cδ > 0 such that for all n ≥ 1,

Iθj−1,qj (k, un) =

∫
{|un|>k}

|un|θj−1 dx ≤ δ Im−1(k, un) + Cδ. (7.8)

Case (b) Let qj = 0 and θj < p + 1. We set γj = 1 − (θj − 1)/p and Cj = (meas (Ω))γj .
By Hölder’s inequality, Remark A.3 and Lemma A.1 in the Appendix, we find constants C > 0
(depending on N , −→p , θj and meas (Ω)) and Cδ > 0 such that for all n ≥ 1,

Iθj−1,qj (k, un) ≤ Cj ‖un‖
θj−1
Lp(Ω) ≤ C

N∏
i=1

‖∂iun‖
θj−1

N

Lpi (Ω) ≤ δ
N∑
i=1

‖∂iun‖piLpi (Ω) + Cδ. (7.9)

When qj > 0, we define ζj as follows

ζj := θj − 1− (m− 1) qj
pj

. (7.10)

Case (c) Let qj > 0 and ζj ≤ 0. We set γj = 1 − qj/pj and Cj = (meas (Ω))γj . Then, by
Hölder’s inequality and Lemma A.1, there exists Cδ > 0 such that

Iθj−1,qj (k, un) ≤ Cj ‖∂jun‖
−
pjζj
m−1

Lpj (Ω)

Ä
Im−1,pj (k, un)

ä θj−1

m−1

≤ δIm−1,pj (k, un) + δ‖∂jun‖
pj
Lpj (Ω)

+ Cδ.
(7.11)

Case (d) Let qj > 0 and ζj > 0. We distinguish three sub-cases:

(d1) Let mj > 1 and θj ≥ p. Then, j ∈ P−→a and from (1.8), we have m > θj = min{mj , θj}.
We set γj := (m− θj)/(m− 1) and Cj := (meas (Ω))γj . It follows that

Iθj−1,qj (k, un) ≤ Cj (Im−1(k, un))
ζj
m−1

Ä
Im−1,pj (k, un)

ä qj
pj

≤ δ Im−1(k, un) + δ Im−1,pj (k, un) + Cδ,
(7.12)

where Cδ > 0 is a suitable constant depending on δ.
(d2) Let mj > 1 and θj < p. Then, from (1.8), we see that m > mj = min{mj , θj}.
(d3) Let mj ≤ 1. Here, we have m > 1 ≥ mj .

We next treat sub-cases (d2) and (d3) together to get (7.14) below. Using that m > mj , we
define

γj := 1− ζj
p
− qj
pj

=
1

p

ñ
qj
pj

(m−mj) + 1− qj
pj

ô
∈ (0, 1). (7.13)

We let Cj = (meas (Ω))γj . By Hölder’s inequality, the anisotropic Sobolev inequality (A.2) in
the Appendix and Lemma A.1, we find constants C > 0 (depending on N , −→p , θj , qj , m and
meas (Ω)) and Cδ > 0 such that for all n ≥ 1, we have

Iθj−1,qj (k, un) ≤ Cj‖un‖
ζj
Lp(Ω)

Ä
Im−1,pj (k, un)

ä qj
pj

≤ C
Ä
Im−1,pj (k, un)

ä qj
pj

N∏
i=1

‖∂iun‖
ζj
N

Lpi (Ω)

≤ δ Im−1,pj (k, un) + δ
N∑
i=1

‖∂iun‖piLpi (Ω) + Cδ.

(7.14)

Since δ > 0 is arbitrary, the conclusion of Lemma 7.1 follows from (7.6) based on the inequal-
ities in (7.7)–(7.9), (7.11), (7.12) and (7.14). �

We can now proceed with the proof of the a priori estimates of un.

Proposition 7.3. The following hold.
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(a) There exists a positive constant C such that for all n ≥ 1, we have

‖un‖W 1,−→p
0 (Ω)

+

∫
Ω
|Φ(un)| dx ≤ C. (7.15)

(b) There exists u0 ∈W 1,−→p
0 (Ω) such that, up to a subsequence of {un}n≥1,

un ⇀ u0 (weakly) in W 1,−→p
0 (Ω), un → u0 a.e. in Ω as n→∞. (7.16)

Proof. (a) We fix k ≥ 1 large such that km−1(k − 1) min1≤j≤N aj ≥ ν0. We define

Kn,k :=
N∑
j=1

∫
{|un|<k}

Aj(un) ∂jun dx− 〈Bun, Tk(un)〉. (7.17)

We have ∂jTk(un) = χ{|un|<k} ∂jun a.e. in Ω for 1 ≤ j ≤ N . By the sign-condition of Φ in
(1.13), we see that Φ(un)Tk(un) = Φ(un)un ≥ 0 on {|un| < k}. Since ‖fn‖L1(Ω) ≤ ‖f‖L1(Ω), by

taking v = Tk(un) ∈W 1,−→p
0 (Ω) ∩ L∞(Ω) in (7.3), we find that

Kn,k + k

∫
{|un|≥k}

|Φ(un)| dx ≤ C0 + Iun(Tk(un)), (7.18)

where C0 := k
Ä
‖f‖L1(Ω) + CΘ meas (Ω)

ä
. Lemma 7.1 gives that for every ρ > 0, there exists a

constant Cρ > 0 such that (7.5) holds for all n ≥ 1. Using (7.5) into (7.18), we find that

Kn,k + (k − ρ)

∫
{|un|≥k}

|Φ(un)| dx ≤ C0 + ρ
N∑
j=1

‖∂jun‖
pj
Lpj (Ω)

+ Cρ. (7.19)

We fix 0 < ρ < min {1, εν0}. Hence, using (7.17), (1.14), our choice of k and the coercivity
condition in (1.12), we derive that

ν0

N∑
j=1

‖∂jun‖
pj
Lpj (Ω)

− 〈Bun, Tk(un)〉 ≤ C0 + ρ
N∑
j=1

‖∂jun‖
pj
Lpj (Ω)

+ Cρ.

By the choice of ρ and (7.4), we conclude the boundedness of {un}n≥1 in W 1,−→p
0 (Ω). Since B

is a bounded operator from W 1,−→p
0 (Ω) into its dual, we have |〈Bun, Tk(un)〉| ≤ C, where C is a

positive constant independent of n. Thus, from (7.19), we readily deduce that∫
{|un|≥k}

|Φ(un)| dx ≤ C.

Using the growth condition of Φ in (1.13), we find that
∫
{|un|<k} |Φ(un)| dx ≤ C for all n ≥ 1.

This completes the proof of (7.15).

(b) Up to a subsequence, the assertion in (7.16) follows from (7.15). �

7.2. Strong convergence of Tk(un). Our aim in this section is to prove the following Propo-
sition 7.4.

Proposition 7.4. Up to a subsequence of {un}n, we have

∇un → ∇u0 a.e. in Ω and Tk(un)→ Tk(u0) (strongly) in W 1,−→p
0 (Ω) as n→∞ (7.20)

for every positive integer k.

Remark 7.5. We have Φ(u0) ∈ L1(Ω). Indeed, using the a.e. convergences of {un} and {∇un}
in (7.16) and (7.20), respectively, we obtain that |Φ(un)| → |Φ(u0)| a.e. in Ω as n→∞. Then,
the claim follows from (7.15) and Fatou’s Lemma.
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To derive (7.20), we can proceed as in the proof of Lemma 4.2 in [16]. However, the new
ingredient here is Lemma 7.6, which is due to the introduction of Ψ in (1.11).

We define Qj(n, k), Rj(n, k), Vj(n, k) and Wj(n, k) as follows

Qj(n, k) :=

∫
{un≥k}

|un|θj−1|∂jun|qj (k − Tk(u0)) dx for 1 ≤ j ≤ N,

Rj(n, k) :=

∫
{un≤−k}

|un|θj−1|∂jun|qj (k + Tk(u0)) dx for 1 ≤ j ≤ N,

Vj(n, k) :=

∫
{0<|un|<k}

|∂jun|qj |un − Tk(u0)| dx if j ∈ J1,

Wj(n, k) :=

∫
{Tk(u0)<un<k}

|un|θj−1|∂jun|qj (un − Tk(u0)) dx if j ∈ J2.

(7.21)

Let ϕλ be as in the proof of Lemma 6.2 (see (5.26)). For every n, k ≥ 1, we set

Zn,k := Tk(un)− Tk(u0). (7.22)

Lemma 7.6. We have

lim sup
n→∞

Iun(ϕλ(Zn,k)) ≤ 0. (7.23)

Proof. Since ϕλ(Zn,k) = Zn,k e
λ(Zn,k)2 , from (1.3) we find that

Iun(ϕλ(Zn,k)) =
N∑
j=1

∫
{un≥k}

|un|θj−1|∂jun|qj (k − Tk(u0)) eλ(Zn,k)2 dx

+
N∑
j=1

∫
{un≤−k}

|un|θj−1|∂jun|qj (k + Tk(u0)) eλ(Zn,k)2 dx

+
N∑
j=1

∫
{0<|un|<k}

|un|θj−2un|∂jun|qj (un − Tk(u0)) eλ(Zn,k)2 dx.

Since |Zn,k| ≤ 2k a.e. in Ω, using (7.21), we infer that

Iun(ϕλ(Zn,k))

e4λk2
≤

N∑
j=1

(Qj(n, k) +Rj(n, k)) +
∑
j∈J1

kθj−1Vj(n, k) +
∑
j∈J2

Wj(n, k). (7.24)

We separate the case j ∈ J2 from j ∈ J1.

(I) Let j ∈ J2, which pertains to Case 2 when un ≥ 0 a.e. in Ω and, hence, u0 ≥ 0 a.e. in

Ω. We remark that (k − Tk(u0))χ{un≥k} → 0 in L(pj/qj)
′
(Ω) as n → ∞. Since {∂jun}n≥1 is

bounded in Lpj (Ω), by Hölder’s inequality, we infer that

0 ≤ Qj(n, k) ≤ kθj−1‖∂jun‖
qj
Lpj (Ω)

‖(k − Tk(u0))χ{un≥k}‖L(pj/qj)
′
(Ω)
→ 0 as n→∞.

With a similar argument, we obtain that limn→∞Rj(n, k) = 0.

Let 0 < τ < mini∈J2 θi. Hence, τ ∈ (0, 1) and |un|θj−1(un−Tk(u0)) ≤ kθj−τ (un−Tk(u0))τ on

the set {Tk(u0) ≤ un ≤ k}. Since (un − Tk(u0))τχ{Tk(u0)≤un≤k} → 0 in L(pj/qj)
′
(Ω) as n → ∞,

proceeding as above, we obtain that

0 ≤Wj(n, k) ≤ kθj−τ‖∂jun‖
qj
Lpj (Ω)

‖(un − Tk(u0))τχ{Tk(u0)≤un≤k}‖L(pj/qj)
′
(Ω)
→ 0 as n→∞.

(II) We now assume that j ∈ J1 and we show that

Qj(n, k)→ 0 as n→∞. (7.25)

As in the proof of Lemma 7.1, we distinguish several situations:

Case (a). Let qj = 0 and θj ≥ p+1. In this case, j ∈ N−→a and hence, (1.8) yields that m > θj .
Case (b). Let qj = 0 and θj < p+ 1.
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In Cases (a) and (b) above, we define γj = 1− (θj − 1)/r, where r = m− 1 in Case (a) and
r = p in Case (b). Then, by Hölder’s inequality and (7.15), we have

0 ≤ Qj(n, k) ≤ ‖un‖
θj−1
Lr(Ω)‖(k − Tk(u0))χ{un≥k}‖L1/γj (Ω)

→ 0 as n→∞.

For Cases (c) and (d) below, we define ζj as in (7.10).
Case (c) Let qj > 0 and ζj ≤ 0. Defining γj = 1− qj/pj , similar to (7.11), we get

Qj(n, k) ≤ ‖∂jun‖
−
pjζj
m−1

Lpj (Ω)

Ä
Im−1,pj (un)

ä θj−1

m−1 ‖(k − Tk(u0))χ{un≥k}‖L1/γj (Ω)
. (7.26)

Case (d) Let qj > 0 and ζj > 0. We have three sub-cases, see (d1)–(d3) in Lemma 7.1.

(d1) Let mj > 1 and θj ≥ p. Defining γj = (m− θj)/(m− 1), similar to (7.12), we see that

Qj(n, k) ≤ (Im−1(un))
ζj
m−1

Ä
Im−1,pj (un)

ä qj
pj ‖(k − Tk(u0))χ{un≥k}‖L1/γj (Ω)

. (7.27)

We treat the remaining sub-cases (d2) and (d3) together and define γj as in (7.13). Analogous
to (7.14), we find that

Qj(n, k) ≤ ‖un‖
ζj
Lp(Ω)

Ä
Im−1,pj (un)

ä qj
pj ‖(k − Tk(u0))χ{un≥k}‖L1/γj (Ω)

. (7.28)

By (7.15), the right-hand side of each of the inequalities in (7.26), (7.27) and (7.28) con-
verges to 0 as n → ∞. So, in any of the Cases (a)–(d), we get (7.25) for j ∈ J1. With
the same reasoning, we obtain that limn→∞Rj(n, k) = 0 for every j ∈ J1. Using that

(un − Tk(u0))χ{0<|un|<k} → 0 in L(pj/qj)
′
(Ω) as n → ∞, we find that Vj(n, k) → 0 as n → ∞.

Thus, the right-hand side of (7.24) converges to 0 as n→∞. The proof of (7.23) is complete. �

Proof of Proposition 7.4. Using Lemma A.5 in [16], to obtain (7.20), it suffices to show that
for every integer k ≥ 1, there exists a subsequence of {un} (depending on k and relabeled {un})
such that (1.28) holds. We first note that

Eun(Tk(un), Tk(u0))χ{|un|≥k} → 0 (strongly) in L1(Ω) as n→∞. (7.29)

Indeed, from (6.2) and (7.22), we have

Eun(Tk(un), Tk(u0)) =
N∑
j=1

Ej,un(Tk(un), Tk(u0)) ∂jZn,k.

For all 1 ≤ j ≤ N , since ∂jTk(un) = χ{|un|<k}∂jun, the Dominated Convergence Theorem yields

∂jZn,k χ{|un|≥k} = −∂ju0 χ{|un|≥k}χ{|u0|<k} → 0 (strongly) in Lpj (Ω) as n→∞. (7.30)

Similar to (6.6), by passing to a subsequence of {un}, for each 1 ≤ j ≤ N , we see that

{Ej,un(Tk(un), Tk(u0))}n converges weakly in Lp
′
j (Ω) as n→∞. Hence, we obtain (7.29).

Using the monotonicity assumption in (1.12), we get that Eun(Tk(un), Tk(u0)) ≥ 0 a.e. in Ω.
Hence, in view of (7.29), to conclude (1.28), it remains to show that, up to a subsequence,

lim sup
n→∞

∫
{|un|<k}

Eun(Tk(un), Tk(u0)) dx ≤ 0. (7.31)

We set

fλ(n, k) := ϕ′λ(Zn,k)−
φ(k)

ν0
|ϕλ(Zn,k)|,

Fn,k(v) :=
N∑
j=1

∫
{|un|<k}

Aj(x, un,∇v) fλ(n, k) ∂jZn,k dx, where v ∈W 1,−→p
0 (Ω).

(7.32)

Since Tk(un) = un on {|un| < k}, from (6.25) and the definition of Eu in (1.21), we infer that

1

2

∫
{|un|<k}

Eun(Tk(un), Tk(u0)) dx ≤ Fn,k(un)− Fn,k(Tk(u0)).
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The proof of (7.31) follows now by establishing that

(i) lim
n→∞

Fn,k(Tk(u0)) = 0, (ii) lim sup
n→∞

Fn,k(un) ≤ 0. (7.33)

Since |Zn,k| ≤ 2k, we find a constant Ck > 0 such that |fλ(n, k)| ≤ Ck for all n ≥ 1. For arbitrary
1 ≤ j ≤ N , with the same reasoning as for (6.18), we have that Aj(x, un,∇Tk(u0))χ{|un|≤k}

converges to Aj(x, u0,∇Tk(u0))χ{|u0|≤k} (strongly) in Lp
′
j (Ω) as n → ∞. Hence, using that

∂jZn,k ⇀ 0 (weakly) in Lpj (Ω) as n→∞, we find that Aj(x, un,∇Tk(u0))χ{|un|≤k} ∂jZn,k → 0

in L1(Ω) as n→∞. Thus, by the squeeze law, we obtain the first limit in (7.33).
To prove (ii) in (7.33), we take as a test function in (7.3) the function

v = ϕλ(Zn,k) ∈W 1,−→p
0 (Ω) ∩ L∞(Ω). (7.34)

Compared with [16], we have the extra term Iun(v) in the right-hand side of (7.3). Then,
Iun(ϕλ(Zn,k)) is the additional term which appears when bounding from above Fn,k(un). By
following the ideas in the proof of Lemmata 3.2 and 4.2 in [16] (see Lemma A.6 in the Appendix
for details), we arrive at

Fn,k(un) ≤ Sk(n) + Iun(ϕλ(Zn,k)), (7.35)

where, up to a subsequence of {un}, limn→∞ Sk(n) = 0. From Lemma 7.6 and (7.35), we
conclude (ii) in (7.33). This ends the proof of Proposition 7.4. �

7.3. Proof of Theorem 1.4 concluded. Here, we obtain that u0 ∈W 1,−→p
0 (Ω) is a solution of

(1.11) by combining Propositions 7.3 and 7.4 with Lemma 7.7 below.

Lemma 7.7. Let un and u0 be as in Proposition 7.3. Then, up to a subsequence, we have

Iu0(v) = lim
n→∞

Iun(v) = Su0,Θ,f (v)− 〈Bu0, v〉 (7.36)

for every v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω).

Proof. We start by proving the second equality in (7.36). Let v ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω) be

arbitrary. From (7.1), we have limn→∞
∫

Ω fnv dx =
∫

Ω fv dx. Reasoning as in the proof of
(3.1), we obtain Θ(un) v → Θ(u0) v in L1(Ω) as n → ∞, limn→∞〈A(un), v〉 = 〈A(u0), v〉 and
limn→∞〈Bun, v〉 = 〈Bu0, v〉. Since Φ(u0) ∈ L1(Ω) (see Remark 7.5), it is enough to show that

Φ(un)→ Φ(u0) (strongly) in L1(Ω) as n→∞. (7.37)

By Vitali’s Theorem, it suffices to show the uniform integrability of {Φ(un)}n≥1 over Ω.
Fix M > 2 arbitrary. Let ω be any measurable subset of Ω. We regain (3.5) with un instead

of Un. However, the proof of (3.6) does not translate here since from Proposition 7.3 we only
have the uniform boundedness in L1(Ω) for {Φ(un)}n≥1 (rather than for {Φ(un)un}n≥1). The
case Ψ = 0 is treated in [16, Lemma 4.3] by adapting and extending to the anisotropic case an
approach from [11]. We give the details since compared with [16] we need to deal with the new
term Ψ in (1.3). In (7.3), we take

v = T1(GM−1(un)) ∈W 1,−→p
0 (Ω) ∩ L∞(Ω).

Then, using the coercivity condition in (1.12) and (1.13), we obtain the estimate∫
{|un|>M}

|Φ(un)| dx ≤
∫
{|un|≥M−1}

(|fn|+ CΘ) dx+ |〈Bun, T1(GM−1(un))〉|

+ Iun(T1(GM−1(un))).

(7.38)

Now, up to a subsequence of {un}, from (7.16), we have

T1(GM−1(un)) ⇀ T1(GM−1(u0)) (weakly) in W 1,−→p
0 (Ω) as n→∞.
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Using this in (7.38), jointly with (7.1) and the property (P2) for B, we find that

lim sup
n→∞

∫
{|un|>M}

|Φ(un)| dx ≤
∫
{|u0|≥M−1}

(|f |+ CΘ) dx+ |〈Bu0, T1(GM−1(u0))〉|

+ lim sup
n→∞

|Iun(T1(GM−1(un)))|.
(7.39)

Since T1(GM−1(un)) = 0 on {|un| ≤M − 1}, we have

|Iun(T1(GM−1(un)))| ≤
N∑
j=1

∫
{|un|≥M−1}

|un|θj−1|∂jun|qj dx. (7.40)

Let µM−1(v) := meas {|v| ≥M − 1}. We next bound from above the right-hand side of (7.40).

(I) For every j ∈ J2, using that M > 2 and θj ≤ 1, we find that∫
{|un|≥M−1}

|un|θj−1|∂jun|qj dx ≤ (M − 1)θj−1‖∂jun‖
qj
Lpj (Ω)

(µM−1(un))1−qj/pj . (7.41)

(II) Let j ∈ J1 corresponding to θj > 1. We are guided by the reasoning in Lemma 7.6. In
relation to the upper bound for Qj(n, k) in the proof of (7.25), we replace (k − Tk(u0))χ{un≥k}
by χ{|un|≥M−1}. Hence, using also (7.15), we obtain a positive constant C, independent of n
and M , such that ∫

{|un|≥M−1}
|un|θj−1|∂jun|qj dx ≤ C (µM−1(un))γj , (7.42)

where γj ∈ (0, 1) is defined according to (a)–(d) in the proof of (7.25).

In light of (7.41) and (7.42), we infer from (7.40) that

lim sup
n→∞

|Iun(T1(GM−1(un)))| ≤ C

Ñ∑
j∈J2

(µM−1(u0))1−qj/pj +
∑
j∈J1

(µM−1(u0))γj

é
,

where C > 0 is a constant independent of M . As µM−1(u0) → 0 as M → ∞, by choosing
M > 2 large, we can make lim supn→∞ |Iun(T1(GM−1(un)))| as small as desired. Using this fact
in (7.39), we conclude that

∫
ω |Φ(un)|χ{|un|>M} dx is small uniformly in n and ω. This finishes

the proof of (7.37).

We now establish the first equality in (7.36) for every v ∈W 1,−→p
0 (Ω) ∩ L∞(Ω). We follow the

ideas in the proof of (3.7), working here with Ψ, un and u0 instead of Ψn, Un and U0, respectively.
Hence, for every j ∈ J1, the reader should replace Hj,n(Un, ∂jUn) by |un|θj−2un|∂jun|qj .
For every j ∈ J1, corresponding to (3.13), we want to show that there exists sj > 1 such that

‖|un|θj−2un|∂jun|qj‖Lsj (Ω) ≤ C (7.43)

for a positive constant C independent of n. We need to adjust the argument given in Section 3.1.
The reason is that instead of {‖un‖Lm(Ω)}n≥1 and {Im,pj (un)}n≥1 being uniformly bounded in

n, we only have that {
∫

Ω |un|m−1 dx}n≥1 and {Im−1,pj (un)}n≥1 are uniformly bounded (see
Proposition 7.3 (a)). With similar ideas to those given in the proof of (7.25), based on Hölder’s
inequality, we obtain (7.43) by taking sj = 1/(1− γj), where γj ∈ (0, 1) is defined as for (7.42).
Now, we use Proposition 7.3 (b) and (7.20) to deduce that

|un|θj−2un|∂jun|qj → |u0|θj−2u0|∂ju0|qj a.e. in Ω as n→∞.

Using (7.43), we infer that, up to a subsequence, |un|θj−2un|∂jun|qj ⇀ |u0|θj−2u0|∂ju0|qj (weakly)
in Lsj (Ω) as n→∞, proving that∑

j∈J1

∫
Ω
|un|θj−2un|∂jun|qjv dx =

∑
j∈J1

∫
Ω
|u0|θj−2u0|∂ju0|qjv dx. (7.44)
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As mentioned before, for w ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω), we have ∇w = 0 a.e. in {w = 0}. Hence,

the above identity holds if instead of Ω we put {|un| > 0} in the left-hand side of (7.44) and
{|u0| > 0} in the right-hand side. This completes the proof of (7.36) in Case 1.

In Case 2, the proof of (7.36) adapts almost verbatim from Section 3.2 remembering to work
with Ψ instead of Ψn. This ends the proof of Lemma 7.7. �

Appendix A.

In this paper, we need the following version of Young’s inequality.

Lemma A.1 (Young’s inequality). Let N ≥ 2 be an integer. Assume that β1, . . . , βN are

positive numbers and 1 < Rk <∞ for each 1 ≤ k ≤ N − 1. If
∑N−1
k=1 (1/Rk) < 1, then for every

δ > 0, there exists a positive constant Cδ (depending on δ) such that

N∏
k=1

βk ≤ δ
N−1∑
k=1

βRkk + Cδ β
RN
N ,

where we define RN =
î
1−∑N−1

k=1 (1/Rk)
ó−1

.

We recall the anisotropic Sobolev inequality in [36, Theorem 1.2].

Lemma A.2. Let N ≥ 2 be an integer. If 1 < pj < ∞ for every 1 ≤ j ≤ N and p < N , then
there exists a positive constant S = S(N,−→p ), such that

‖u‖Lp∗ (RN ) ≤ S
N∏
j=1

‖∂ju‖1/NLpj (RN )
for all u ∈ C∞c (RN ), (A.1)

where, as usual, p∗ := Np/(N − p).

Remark A.3. Let Ω be a bounded, open subset of RN with N ≥ 2. If 1 < pj < ∞ for every

1 ≤ j ≤ N and p < N , then by a density argument, (A.1) extends to all u ∈ W 1,−→p
0 (Ω) so that

the arithmetic-geometric mean inequality yields

‖u‖Lp∗ (Ω) ≤ S
N∏
j=1

‖∂ju‖1/NLpj (Ω)
≤ S

N

N∑
j=1

‖∂ju‖Lpj (Ω) =
S

N
‖u‖

W 1,−→p
0 (Ω)

(A.2)

for all u ∈W 1,−→p
0 (Ω). Moreover, using Hölder’s inequality, the embedding W 1,−→p

0 (Ω) ↪→ Ls(Ω) is
continuous for every s ∈ [1, p∗] and compact for every s ∈ [1, p∗).

Lemma A.4. Let the assumptions of Proposition 2.3 hold. Suppose that

EUn(U±n , U
±
0 )→ 0 in L1(Ω) as n→∞. (A.3)

Then, up to a subsequence, we have

∇U±n → ∇U±0 a.e. in Ω as n→∞, (A.4)

U±n → U±0 (strongly) in W 1,−→p
0 (Ω) as n→∞. (A.5)

Proof. From (A.3), we see that, up to a subsequence, EUn(U±n , U
±
0 )→ 0 a.e. in Ω as n→∞.

We prove (A.4). Recall from Proposition 2.3 that (2.10) holds. Let Z be a subset of Ω with
meas (Z) = 0 such that for every x ∈ Ω \Z, we have |U±0 (x)| <∞, |∇U±0 (x)| <∞, |ηj(x)| <∞
for all 1 ≤ j ≤ N , as well as

Un(x)± → U±0 (x), EUn(U±n , U
±
0 )(x)→ 0 as n→∞. (A.6)

We fix x ∈ Ω \ Z. By the monotonicity and coercivity assumptions in (1.12), we find that

EUn(U±n , U
±
0 ) ≥ ν0

N∑
j=1

|∂jU±n (x)|pj −
N∑
j=1

|Aj(x, Un,∇U±n ) ∂jU
±
0 +Aj(x, Un,∇U±0 ) ∂jU

±
n |. (A.7)
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By Young’s inequality, for every δ > 0, there exists Cδ > 0 such that

|Aj(x, Un,∇U±n ) ∂jU
±
0 | ≤ δ |Aj(x, Un,∇U

±
n )|p

′
j + Cδ|∂jU±0 (x)|pj

|Aj(x, Un,∇U±0 ) ∂jU
±
n | ≤ δ |∂jU±n (x)|pj + Cδ|Aj(x, Un,∇U±0 )|p

′
j

(A.8)

for every 1 ≤ j ≤ N . We use the growth condition in (1.12) to bound from above the right-
hand side of each inequality in (A.8). Then, there exist positive constants C and C ′δ, both
independent of n (only C ′δ depends on δ) such that EUn(U±n , U

±
0 )(x) is bounded below by

(ν0 − Cδ)
N∑
j=1

|∂jU±n (x)|pj − C ′δ

Ñ
N∑
j=1

η
p′j
j (x) + |Un(x)|p∗ +

N∑
j=1

|∂jU±0 (x)|pj
é
.

Using (A.6) and choosing δ ∈ (0, ν0/C), we conclude that

{|∇U±n (x)|}n is uniformly bounded with respect to n. (A.9)

Let x ∈ Ω \ Z be arbitrary. To prove that ∇U+
n (x) → ∇U+

0 (x) as n → ∞, we show that any
accumulation point Ξ of {∇U+

n (x)}n coincides with ∇U+
0 (x). From (A.9), we have |Ξ| < ∞.

By (A.6) and the continuity of Aj(x, ·, ·) with respect to the last two variables, we get

EUn(U+
n , U

+
0 )(x)→

N∑
j=1

î
Aj(x, U0(x),Ξ)−Aj(x, U0(x),∇U+

0 (x))
ó

(Ξj − ∂jU+
0 (x)) as n→∞.

This, jointly with (A.6) and the monotonicity condition in (1.12), gives that Ξ = ∇U+
0 (x).

Similarly, we obtain that ∇U−n (x)→ ∇U−0 (x) as n→∞. The proof of (A.4) is complete since
x ∈ Ω \ Z is arbitrary and meas (Z) = 0.

In order to prove (A.5), we use (A.4), (A.7), Lemma 5.2 and Vitali’s Theorem. We see that
{|∂jU±n − ∂jU±0 |pj}n is a sequence of non-negative integrable functions, converging to 0 a.e. on

Ω as n → ∞. So, we conclude (A.5) by showing that, up to a subsequence,
¶∑N

j=1 |∂jU±n |pj
©
n

is uniformly integrable over Ω. Now, up to a subsequence, we have for each 1 ≤ j ≤ N ,

Aj(x, Un,∇U±n ) ⇀ Aj(x, U0,∇U±0 ) (weakly) in Lp
′
j (Ω) as n→∞. (A.10)

Indeed, {Aj(x, Un,∇U±n )}n is bounded in Lp
′
j (Ω) from the growth condition in (1.12) and the

boundedness of {Un}n in W 1,−→p
0 (Ω) and, hence, in Lp

∗
(Ω). Moreover, {Aj(x, Un,∇U±n )}n con-

verges to Aj(x, U0,∇U±0 ) a.e. in Ω as n → ∞ using (A.4), the convergence Un → U0 a.e.
in Ω (from (2.10)) and the continuity of Aj(x, ·, ·) in the last two variables. Hence, up to a
subsequence, we have (A.10). Consequently, for each 1 ≤ j ≤ N , we get

Aj(x, Un,∇U±n ) ∂jU
±
0 → Aj(x, U0,∇U±0 ) ∂jU

±
0 in L1(Ω) as n→∞. (A.11)

Let k ≥ 1 be arbitrary. For each 1 ≤ j ≤ N , we next prove that, as n→∞,

Aj(x, Un,∇U±0 )χ{|Un|≤k} ∂jU
±
n → Aj(x, U0,∇U±0 )χ{|U0|≤k} ∂jU

±
0 in L1(Ω). (A.12)

Let 1 ≤ j ≤ N be arbitrary. Note that {|Aj(x, Un,∇U±0 )|p
′
jχ{|Un|≤k}}n is uniformly integrable

over Ω and Aj(x, Un,∇U±0 )χ{|Un|≤k} → Aj(x, U0,∇U±0 )χ{|U0|≤k} a.e. in Ω as n→∞. Thus, by

Vitali’s Theorem, Aj(x, Un,∇U±0 )χ{|Un|≤k} → Aj(x, U0,∇U±0 )χ{|U0|≤k} in Lp
′
j (Ω) as n → ∞.

This proves (A.12) since ∂jU
±
n ⇀ ∂jU

±
0 (weakly) in Lpj (Ω) as n→∞ (see Remark 4.2).

By Hölder’s inequality, we get a constant C > 0 (independent of k) such that for all n ≥ 1,

N∑
j=1

∫
{|Un|>k}

|Aj(x, Un,∇U±0 ) ∂jU
±
n | dx =

N∑
j=1

∫
{U±n >k}

|Aj(x, Un,∇U±0 ) ∂jGk(Un)| dx

≤ C
N∑
j=1

‖∂jGk(Un)‖Lpj (Ω).

(A.13)
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Using (A.13), jointly with Lemma 5.2, we get that, up to a subsequence,

lim sup
n→∞

N∑
j=1

∫
{|Un|>k}

|Aj(x, Un,∇U±0 ) ∂jU
±
n | dx ≤ CWk, (A.14)

for each k ≥ 1, where limk→∞Wk = 0. Using (A.3), (A.11), (A.12) and (A.14), from (A.7), we

get that
¶∑N

j=1 |∂jU±n |pj
©
n

is uniformly integrable over Ω. This ends the proof of (A.5). �

Remark A.5. We need Lemma 5.2 to control the integral in the left-hand side of (A.13).
Indeed, we cannot conclude that Aj(x, Un,∇U±0 ) ∂jU

±
n → Aj(x, U0,∇U±0 ) ∂jU

±
0 in L1(Ω) as

n→∞ for the same reason as in Remark 6.3.

Lemma A.6. In the framework of Theorem 1.4, we have (7.35).

Proof. Recall that Zn,k = Tk(un)− Tk(u0). From (7.16), we have Zn,k → 0 a.e. in Ω as n→∞
and Zn,k ⇀ 0 (weakly) in W 1,−→p

0 (Ω) as n→∞. Moreover, we find that

ϕλ(Zn,k)→ 0 a.e. in Ω and ϕλ(Zn,k) ⇀ 0 (weakly) in W 1,−→p
0 (Ω) as n→∞. (A.15)

Observe that un Zn,k ≥ 0 on the set {|un| ≥ k}, which gives that Φ(un)ϕλ(Zn,k)χ{|un|≥k} ≥ 0.

Thus, by testing (7.3) with v = ϕλ(Zn,k) ∈W 1,−→p
0 (Ω) ∩ L∞(Ω), we obtain that

〈Aun, ϕλ(Zn,k)〉+

∫
{|un|<k}

Φ(un)ϕλ(Zn,k) dx ≤ `n,k + Iun(ϕλ(Zn,k)), (A.16)

where `n,k is defined by

`n,k := 〈Bun, ϕλ(Zn,k)〉 −
∫

Ω
Θ(un)ϕλ(Zn,k) dx+

∫
Ω
fn ϕλ(Zn,k) dx.

The first term in `n,k converges to 0 as n→∞ from (7.16), (A.15) and the property (P2) of B.
Since |Θ(un)| ≤ CΘ and (7.1) holds, by the Dominated Convergence Theorem, we get that the
second, as well as the third term in `n,k, converges to 0 as n→∞. Hence, limn→∞ `n,k = 0.

To simplify exposition, we now introduce some notation:

Xk(n) := φ(k)

∫
{|un|<k}

 1

ν0

N∑
j=1

Aj(un) ∂jTk(u0) + c(x)

 |ϕλ(Zn,k)| dx,

Yk(n) :=
N∑
j=1

∫
Ω
Aj(un) ϕ′λ(Zn,k)χ{|u0|<k} χ{|un|≥k} ∂ju0 dx.

We rewrite the first term in the left-hand side of (A.16) as follows

〈Aun, ϕλ(Zn,k)〉 =
N∑
j=1

∫
{|un|<k}

Aj(un)ϕ′λ(Zn,k) ∂jZn,k dx− Yk(n). (A.17)

The coercivity condition in (1.12) and the growth condition of Φ in (1.13) imply that

|Φ(un)|χ{|un|<k} ≤ φ(k)

 1

ν0

N∑
j=1

Aj(un) ∂jun + c(x)

 χ{|un|<k}. (A.18)

In the right-hand side of (A.18) we replace ∂jun by ∂jZn,k + ∂jTk(u0), then we multiply the
inequality by |ϕλ(Zn,k)| and integrate over Ω with respect to x. It follows that the second term
in the left-hand side of (A.16) is at least

−φ(k)

ν0

N∑
j=1

∫
{|un|<k}

Aj(un) |ϕλ(Zn,k)| ∂jZn,k dx−Xk(n).

Using this fact, as well as (A.17), in (A.16), we see that Fn,k(un) (defined in (7.32)) satisfies

Fn,k(un) ≤ Xk(n) + Yk(n) + `n,k + Iun(ϕλ(Zn,k)). (A.19)
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Since limn→∞ `n,k = 0, by showing that limn→∞Xk(n) = limn→∞ Yk(n) = 0, we conclude
(7.35). Using (A.15) and c ∈ L1(Ω), we infer from the Dominated Convergence Theorem that

c(x)|ϕλ(Zn,k)|χ{|un|<k} → 0 in L1(Ω) as n→∞. (A.20)

Next, up to a subsequence of {un}, Aj(un) converges weakly in Lp
′
j (Ω) as n → ∞ for all

1 ≤ j ≤ N . Hence,
∑N
j=1Aj(un) ∂ju0 converges in L1(Ω) as n → ∞. Then, there exists a

non-negative function F ∈ L1(Ω) (independent of n) such that, up to a subsequence of {un},∣∣∣∑N
j=1Aj(un) ∂ju0

∣∣∣ ≤ F a.e. in Ω for every n ≥ 1. By the Dominated Convergence Theorem,

N∑
j=1

Aj(un) ∂jTk(u0) |ϕλ(Zn,k)|χ{|un|<k} → 0 in L1(Ω) as n→∞. (A.21)

From (A.20) and (A.21), we find that limn→∞Xk(n) = 0. Remark that |ϕ′λ(Zn,k)| is bounded
above by a constant independent of n and χ{|u0|<k} χ{|un|≥k} → 0 a.e. in Ω as n→∞. Hence,
we can use a similar argument as for Xk(n), to obtain that, up to a subsequence of {un},
limn→∞ Yk(n) = 0. From (A.19), we conclude (7.35) with Sk(n) = Xk(n) + Yk(n) + `n,k. �
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[18] I. Capuzzo Dolcetta, F. Leoni, and A. Porretta, Hölder estimates for degenerate elliptic equations with
coercive Hamiltonians, Trans. Amer. Math. Soc. 362 (2010), no. 9, 4511–4536.
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via Archirafi 34, 90123 Palermo, Italy

E-mail address: barbara.brandolini@unipa.it
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