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BEN GOLDYS AND SZYMON PESZAT

Abstract. We study inhomogeneous Dirichlet boundary value problems associated to
a linear parabolic equation du

dt = Au with strongly elliptic operator A on bounded and
unbounded domains with white noise boundary data. Our main assumption is that the
heat kernel of the corresponding homogeneous problem enjoys the Gaussian type esti-
mates taking into account the distance to the boundary. Under mild assumptions about
the domain, we show that A generates a C0-semigroup in weighted Lp-spaces where the
weight is a proper power of the distance from the boundary. We also prove some smooth-
ing properties and exponential stability of the semigroup. Finally, we reformulate the
Cauchy-Dirichlet problem with white noise boundary data as an evolution equation in
the weighted space and prove the existence of Markovian solutions.
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1. Introduction

The aim of this paper is to study the following linear stochastic boundary value problem

(1.1)



∂X

∂t
(t, x) = AX(t, x) , x ∈ O, t > 0 ,

X(t, x) =
∂W

∂t
(t, x) , x ∈ ∂O, t > 0 ,

X(0, x) = X0(x) x ∈ O .

where O ⊂ Rd is an open, possibly unobunded, domain, W is a Wiener process taking
values in a space of distributions on ∂O, andA is a second order, strongly elliptic operator
in O. Let us note that solutions to (1.1) are Markovian if and only if W is a process with
independent increments.

There exists vast literature on the non-homogeneous Dirichlet boundary value problem
for deterministic linear parabolic equations, for a classical exposition see the fundamental
monograph [24] or more recent [28]. Extension of the classical results to rough boundaries
and rough boundary conditions is still a subject of ongoing research, see for example [23]
and references therein. In this paper we study equation (1.1) in a relatively regular
domain, see Section 2 for details, but the boundary condition ∂W

∂t
can be very irregular,

including space-time white noise. Apart from purely mathematical motivations, such
an extension is important in non-equlibrium statistical mechanics and optimal control
theory, see for example [17], [26], [15] and a recent book [29].

Stochastic equations with boundary noise were usually studied in the case of Neu-
mann boundary conditions that are more tractable, see [18], [37], [30] and also aforemen-
tioned papers [26] and [15]. Much less is known about stochastic equations with Dirichlet
boundary noise. Equation (1.1) was proposed in the seminal work [11], where it was
shown that it has no L2(O, dx)-valued solutions. In [1] and [2] solutions to a nonlinear

equation in O = (0,+∞) for A = d2

dx2
are studied and proved to have trajectories in

L2
(
(0,+∞); x1+θdx

)
. In [4] a similar approach is used to consider a very general formu-

lation of the stochastic boundary value problem in multidimensional domains for a large
class of elliptic operators A and distribution-valued Gaussian noises, see also [6] for the
case of stochastic wave equation.

In [1, 2] the problem was not stated as an evolution equation in L2
(
(0,+∞); x1+θdx

)
.

Such a formulation was introduced and exploited in [17]. The main ingredient was a
result by Krylov [20], who proved that Laplacian generates a strongly continuous analytic
semigroup in the space L2

(
Rd

+; ρ1+θ(x) dx
)
, where ρ stands for the distance of a point

x ∈ Rd
+ to the boundary. It seems that the method used in [20] to prove this generation

result does not extend to more general domains and more general elliptic operators. One
of our goals in this paper is to show that equation (1.1) can be reformulated as a stochastic
evolution equation

(1.2) dX = AXdt+BdW, X(0) = X0,

on a state space E = Lp
(
O, ρθ(x) dx

)
with an appropriately chosen operator B. The

operator A is an abstract realisation of A as a generator of the C0-semigroup in E. This
will ensure the Markov property of the solution and since E is a function space, it will
open the way to study nonlinear perturbations of (1.1).
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2. Formulation of the problem

The boundary noise W is a Wiener process taking values in a space of distributions on
∂O. More precisely, we will assume that W can be represented as a formal series

(2.1) W (t, x) =
∑
k

ek(x)Wk(t),

where Wk are independent real-valued Wiener processes defined on a filtered probability
space (Ω,F, (Ft),P) and (ek) is a finite or infinite sequence of functions on ∂O. In order
to simplify the presentation we assume that {ek} ⊂ L2(∂O, ds), where s is the surface
measure and that∑

k

(∫
∂O
ek(y)ψ(y)ds(y)

)2

< +∞, ∀ψ ∈ L2(∂O, ds).

However, our framework can be easily adapted to the case where ek are distributions on
∂O, see however Remark 8.8.

Remark 2.1. Let us recall, see e.g. [12], that there exists a Hilbert space HW called the
Reproducing Kernel Hilbert Space of W such that

W (t, x) =
∑
k

ẽk(x)W̃k(t),

where W̃k are independent real-valued Wiener processes defined on a filtered probability
space (Ω,F, (Ft),P) and (ẽk) is an orthonormal basis of HW . It can be shown that
linspan {ek} is a dense subspace of HW . In a particular case of the so-called space white
noise HW = L2(∂O, ds).

In Section 3 we derive the concept of a formal mild solution to (1.1). Briefly it is given
by the formula

(2.2) X(t) = S(t)X(0) +

∫ t

0

(λ− A)S(t− s)DλdW (s), t ≥ 0,

where S is the semigroup generated by the realization A ofA with homogeneous boundary
conditions, and Dλ is the Dirichlet map. Let us recall that given λ ≥ 0 and a function
γ on ∂O, u = Dλγ is, the possibly weak, see Section 6, unique solution to the Poisson
equation

(2.3) Au(x) = λu(x), x ∈ O, u(x) = γ(x), x ∈ ∂O.
To the best of our knowledge, equation (1.1) with the solution defined by (2.2) has

been introduced in [11].

Remark 2.2. The stochastic integral appearing in (2.2) is not well defined in a space
Lp(O) but it does exist in a certain space E such that Lp(O) ↪→ E. In fact, see [11],
Example 2.3, Popositions 8.1, 8.2, 8.12, 8.17, the solution to the problem on a bounded
interval, or half line or half-space lives in a Sobolev space of negative order or on weighted
Lp(O, w(x)dx)-space.

It turns out, see [1, 2, 4], that under mild assumptions on O, A, and W , the solution
X to (1.1) is a smooth (C∞ in time and space variables) random field on (0,+∞) × O
and that there is a κ > 0 such that for t > 0,

E |X(t, x)|p ≤ C(t) (dist (x, ∂O))−κ .

Therefore, X(t) takes values in Lp(O, w)-space with an appropriate weight function w.
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One of our main goals is to show that the problem (1.1) can be written equivalently as
the stochastic partial differential equation

(2.4) dX = AXdt+BdW, X(0) = X0,

on an appropriately chosen state space E with B = (λ−A)Dλ. This ensures the Markov
property of the solution and if E is a function-valued space, it will enable us to study
nonlinear perturbations of (1.1). We have to face, however, the problem with the interpre-
tation of (λ−A)Dλ. In fact A, as the generator of the heat semigroup with homogeneous
Dirichlet boundary condition, is defined on regular functions vanishing on the boundary
∂O, whereas the restriction of Dλ

∂W
∂t

to ∂O equals ∂W
∂t

! Therefore one needs to consider
A as the generator of the extension of the semigroup S on a suitable Sobolev space of
negative-order (subspace of the space of distributions). The following example is taken
from [4].

Example 2.3. Assume that O = (0, 1), A = d2

dx2
, and λ = 0. Then any function

γ : ∂O = {0, 1} 7→ R can be identified with a pair (γ0, γ1) ∈ R2. We have

D0(γ0, γ1)(x) = γ0 + (γ1 − γ0)x, x ∈ (0, 1),

and
AD0(γ0, γ1) = γ0δ

′
0 − γ1δ

′
1,

where δ′a is the derivative of the Dirac delta distribution et a, and A is the generator of
the heat semigroup considered, for example, on the Sobolev space W 2,−2(0, 1).

Hypothesis 2.4. There are λ ≥ 0, p > 1 and s0 ≥ 0 such that the Dirichlet map Dλ

is a well defined bounded linear operator acting from linspan {ek} into the Sobolev space
W−s0,p(O).

Hypothesis 2.5. Operator A with homogeneous Dirichlet boundary conditions generates
an analytic C0-semigroup S on each W s,p(O)-spaces. For all s, s′ ∈ R, p > 1 and t > 0,
S(t) : W s,p(O) 7→ W s′,p(O). Moreover, if As,p

1 denotes the generator of S on W s,p(O),
then we assume that there is an s1 such that W−s0,p(O) ↪→ D(A−s1,p).

Remark 2.6. It is well known that Hypotheses 2.4 and 2.5 hold in a number of cases.
By Theorem 4.10 in [28] if O is a bounded Lipschitz domain and the operator A has
Lipschitz coefficients, then D0 : H1/2(∂O)→ H1(O) is well defined and bounded. In that
case it is enough to assume that linspan {ek} ⊂ H1/2(∂O).

If O is a bounded C∞ domain and the operator A has C∞ coefficients, then

D0 : H−s−
3
2 (∂O)→ H−s(O)

is well defined and bounded for any s ≥ 0, see Sections 6 and 7 in Chapter 2 of [24]. In

particular, if s ≤ − 3
2

then linspan {ek} ⊂ H−s−
3
2 (∂O) ⊂ L2(O).

Very general conditions given in terms of capacities of O can be found in Chapter 15.7
of [27].

Hypotheses 2.4 and 2.5 enable us to reformulate problem (2.2) into problem (2.4)
considered on the state space W−s1,p(O). In fact the map

B = (λ− A)Dλ := (λ− A−s1,p)Dλ

is a bounded linear operator from linspan {ek} into W−s1,p(O) and A = A−s1,p generates
a C0-semigroup S = S−s1,p on W−s1,p(O). Therefore, by our Proposition 7.2 we have the
following result.

1Later we will skip the subscripts s and p and we will write A instead of As,p.
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Theorem 2.7. Under Hypotheses 2.4 and 2.5, problem (2.4) has the mild solution solu-
tion

(2.5) X(t) = S(t)X0 +

∫ t

0

S(t− s)BdW (s)

in W−s1,p(O)-space if and only if

(2.6)

∫
O

[∑
k

∫ T

0

(
(I −∆)−s1/2 S(t)Bek

)2

(x)dt

]p/2
dx < +∞

for a certain or equivalently for any T ∈ (0,+∞). Moreover, if there is an α > 0 such
that ∫

O

[∑
k

∫ T

0

t−α
(

(I −∆)−s1/2 S(t)Bek

)2

(x)dt

]p/2
dx < +∞

then the mild solution has continuous trajectories2 in W−s1,p(O),

Remark 2.8. In Section 7 we will show that condition (2.6) guarantees that for any t ≥ 0,

stochastic integral
∫ t

0
S(t− s)BdW (s) is well defined in W−s1,p(O). Note that, if p = 2,

than W−s1,p(O) is Hilbert space, and (2.6) can be equivalently written as∫ T

0

‖S(t)B‖2
L(HS)(HW ,W−s1,2(O))dt < +∞,

where‖ · ‖L(HS)(HW ,W−s1,2(O)) is the Hilbert–Schmidt norm and HW is the Reproducing
Kernel Hilbert Space of W , see Remark 2.1.

Since
(λ− A0,p)S0,p(s)Dλ = S−s1,p(s) (λ− A−s1,p)Dλ

the formal mild solution and the mild solution defined by (2.5) coincide.

In order to obtain the function-valued solutions we need the following assumption.

Hypothesis 2.9. The semigroup S can be extended to a C0-semigroup on the weighted
space Lpθ,δ := Lp(O, wθ,δ(x)dx), where

(2.7) wθ,δ(x) = min
{

dist (x, ∂O)θ ,
(
1 + |x|2

)−δ}
,

p ∈ (1,+∞), θ ∈ [0, 2p− 1) and δ ≥ 0.

In Section 4 we will show that Hypothesis 2.9 is fulfilled under very mild assumptions
on O and A.

Under the above three hypotheses the operatorB acts from linspan {ek} intoW−s0,p(O).
For any t > 0, the C0-semigroup S(t) on Lpθ,δ has a unique continuous extension

S(t) : W−s0,p(O) 7→ W 0,p(O) = Lp(O, dx) ↪→ Lpθ,δ.

Therefore, as a consequence of our Proposition 7.2 and the classical theory of SPDEs (see
e.g. [11]) we have the following general result.

Theorem 2.10. Assume Hypotheses 2.4, 2.5, 2.9. Problem (2.4) has the mild solution
solution in Lpθ,δ if and only if

(2.8) JT ({ek}, p, θ, δ) :=

∫
O

[∑
k

∫ T

0

(S(t)Bek)
2 (x)dt

]p/2
wθ,δ(x)dx < +∞

2In fact Hölder continuous with arbitrary exponent < α/2.
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for a certain or equivalently for any T ∈ (0,+∞). Moreover, (2.8) guarantees that
problem (2.4) equivalently (1.1), defines a Markov family on the state space Lpθ,δ. If for a
certain α > 0,

(2.9) JT,α({ek}, p, θ, δ) :=

∫
O

[∑
k

∫ T

0

t−α (S(t)Bek)
2 (x)dt

]p/2
wθ,δ(x)dx < +∞,

then the mild solution has continuous trajectories in Lpθ,δ.
Finally, the existence of an invariant measure is equivalent to the integrability condition

(2.10) J+∞({ek}, p, θ, δ) :=

∫
O

[∑
k

∫ +∞

0

(S(t)Bek)
2 dt

]p/2
wθ,δ(x)dx < +∞.

Remark 2.11. If the semigroup S is exponentially stable, i.e. for a certain α > 0,

‖S(t)‖L(Lpθ,δ ,L
p
θ,δ)
≤ Ce−αt, t ≥ 0,

then condition (2.10) follows from (2.8). In Theorem 5.2, we will show that the semigroup
S is exponential stable on Lpθ,δ if it is exponentially stable on Lp0,δ. Obviously if the domain

O is bounded then for all p, θ and δ, the spaces Lpθ,δ and Lpθ,0 are equivalent. Therefore,
if O is bounded then we can always take δ = 0. Note that if O is bounded and A equals
Laplace operator ∆, then the corresponding semigroup is exponentially stable on Lp0,0
and consequently on Lpθ,0 for any p > 1.

Remark 2.12. Assume (2.8), Then for any X0 ∈ Lpθ,δ and for any t > 0, X(t) is a gaussian

element in Lpθ,δ. Therefore, by the Fernique theorem there is a β > 0 such that

E exp
{
β |X(t)|2Lpθ,δ

}
< +∞.

If (2.9) is satisfied for an α > 0, then for any T ∈ (0,+∞), and for any X0 ∈ Lpθ,δ, X(·)
is a gaussian random element in C([0, T ];Lpθ,δ). Thus there is a β > 0 such that

E exp

{
β sup
t∈[0,T ]

|X(t)|2Lpθ,δ

}
< +∞.

Our framework enables us to study nonlinear problems.

Theorem 2.13. Assume (2.8), and Hypotheses 2.4, 2.5, 2.9. Then for any Lipschitz
continuous function f : R 7→ R, and any X0 ∈ Lpθ,δ, the boundary problem

∂X

∂t
(t, x) = AX(t, x) + f(X(t, x)) , x ∈ O, t > 0 ,

X(t, x) =
∂W

∂t
(t, x) , x ∈ ∂O, t > 0 ,

X(0, x) = X0(x), x ∈ O,
has a unique solution in Lpθ,δ, and

X(t) = S(t)X0 +

∫ t

0

S(t− s)F (X(s))ds+

∫ t

0

S(t− s)BdW (s),

where F (X(t))(x) = f(X(t, x)). Finally, if the semigroup is exponentially stable with
exponent L and the Lipschitz constant of f strictly less than L, then there is a unique
invariant measure on Lpθ,δ for the nonlinear problem.
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The paper is organized as follows. In the next section we will heuristically derive the
concept of the formal mild solution. Then, in Section 4, we will show that Hypothesis 2.9
about the C0-property of the semigroup on weighted Lp-spaces, is fulfilled under rather
mild assumptions. The main difficulty is that the weight of the above form is not an
A∗-excessive function. Therefore the semigroup is not of contraction type. In Section 5
we will study properties of the semigroup on weighted spaces. In our opinion the results
of Sections 4 and 5 are of independent interest.

In Section 6 we will derive some useful point estimates for S(t)Be for e ∈ L2(∂O, ds).
In Section 7 we outline the concept of stochastic integration in Lp-spaces. Section 8 is
devoted to particular examples. We relay on estimates established in Section 6 and on
results from the previous section.

In Section ??, we give a sufficient condition for the strong Feller property of the Markov
family X defined in Theorem 2.10.

3. Formal mild solution

In our derivation of the concept of the formal mild solution to (1.1) we follow [11].
Recall that Dλ denotes the Dirichlet map (see (2.3)). Assume Hypothesis 2.4 and 2.5.

Assume temporally that the boundary perturbation is of the form

W (t, x) =
∑
k

ek(x)βk(t),

where series is finite, ek are functions or distributions on ∂O, and βk ∈ C1([0,+∞)).
We assume that for any k, ek belongs to the domain of the Dirichlet map Dλ and that
Dλek ∈ W−s0,p(O).

Note that if X is a solution to (1.1) with W as above, then

Y (t, x) := X(t, x)−Dλ
∂W

∂t
(t, x)

satisfies the homogeneous Dirichlet boundary conditions. Moreover, at least formally, for
t > 0 and x ∈ O we have

∂Y

∂t
(t, x) = AX(t, x)− ∂

∂t
Dλ

∂W

∂t
(t, x)

= AY (t, x) + λDλ
∂W

∂t
(t, x)− ∂

∂t
Dλ

∂W

∂t
(t, x).

Therefore

Y (t, x) = S(t)Y (0, x) +

∫ t

0

S(t− s)
[
λDλ

∂W

∂s
(s, x)− ∂

∂s
Dλ

∂W

∂s
(s, x)

]
ds

= S(t)Y (0, x) +

∫ t

0

S(t− s)λDλ
∂W

∂s
(s, x)ds

−
[
Dλ

∂W

∂t
(t, x)− S(t)Dλ

∂W

∂t
(0, x) +

∫ t

0

AS(t− s)Dλ
∂W

∂s
(s, x)ds

]
= S(t)X(0, x)−Dλ

∂W

∂t
(t, x) +

∫ t

0

(λ− A)S(t− s)Dλ
∂W

∂s
(s, x)ds.

Hence we infer that

(3.1) X(t) = S(t)X(0) +

∫ t

0

(λ− A)S(t− s)DλdW (s).
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Let us recall that the space W−s1,p(O) appears in Hypotheses 2.5. Note that for any
k the stochastic integral∫ t

0

(λ− A)S(t− s)DλekdWk(s), t ≥ 0,

takes valued in W−s1,p(O).

Definition 3.1. Let X(0) ∈ W−s1,p(O), and let the noise W in (1.1) have the form (2.1).
If the series∑

k

∫ t

0

(λ− A)S(t− s)DλekdWk(s) =:

∫ t

0

(λ− A)S(t− s)DλdW (s)

converges in Lp(Ω,F,P;W−s1,p(O)), then we call the proces defined by formula (3.1) the
formal mild solution to (1.1) in W−s1,p(O).

4. Semigroup in weighted spaces

Let O ⊂ Rd, O 6= Rd, be an open connected domain. From now on the following two
assumptions will be satisfied.

Assumption 4.1. We will assume that O is a C1,α-domain with α ∈ (0, 1), satisfying
the connected line condition, see e.g. [8] for a precise definition. Let us recall here that
the connected line condition holds in many important cases including:

• bounded C1,α domain,
• graph above C1,α function,
• O = Rd

+ or

O =
{

(xi) ∈ Rd+1 : a < xd+1 < b
}
.

Let us consider the following second order differential operator

Aφ(x) =
d∑

i,j=1

∂

∂xi

(
aij(x)

∂φ

∂xj
(x)

)
+

d∑
i=1

µi(x)
∂φ

∂xi
(x).

Assumption 4.2. We assume that the homogeneous Dirichlet boundary problem

(4.1)



∂u

∂t
(t, x) = Au(t, x) , x ∈ O, t > 0 ,

u(t, x) = 0 , x ∈ ∂O, t > 0 ,

u(0, x) = f(x) x ∈ O ,

generates a C0-semigroup (S(t)) on L2(O, dx). The generator of this semigroup will be
denoted by A. Next, we assume that the semigroup can be represented by a Green kernel
G,

(4.2) S(t)ψ(x) =

∫
O
G(t, x, y)ψ(y)dy, x ∈ O.

Finally we assume that there exists a constant λ > 0 such that

λ|h|2 ≤ 〈a(x)aT (x)h, h〉 ≤ λ−1|h|2, x, h ∈ Rd,

(4.3) G(t, x, y) ≤ Cmt(y)gct(x− y), t ≤ 1, x, y ∈ O,
8



and

(4.4) |∇xG(t, x, y)| ≤ C
mt(y)√

t
gct(x− y), t ≤ 1, x, y ∈ O,

where

mt(z) := min

{
1,
ρ(z)√
t

}
, ρ(z) := dist (z, ∂O)

and

gt(z) = (2πt)−
d
2 e−

|z|2
2t .

Remark 4.3. Assumption 4.2 is fulfilled if Assumption 4.1 holds, the operator A is uni-
formly elliptic, the coefficients aij are Dini continuous, and µi are sign measures of the
parabolic Kato class. In general ai,j and µi may depend on t and x variables. For more
details see [8]. In fact in [8] the following stronger estimate has beed obtained

G(t, x, y) ≤ Cmt(x)mt(y)gct(x− y), t ≤ 1, x, y ∈ O.
In the main theorem of this section we require the following assumption

Assumption 4.4. For any c > 0 and α ∈ (−1, 0) there is a constant C < +∞ such that

sup
x∈O

∫
O
ρα(y)gct(x− y)dy ≤ Ct

α
2 , ∀ t ∈ (0, 1].

A proof of the following lemma is postponed to Appendix A.

Lemma 4.5. Assumption 4.4 is satisfied if O is a half space or if O is a bounded C1,α-
domain.

Recall that the family of weights wθ,δ, θ ≥ 0, δ ≥ 0, were introduced in (2.7). We will
use the notations

Lpθ,δ := Lp (O,B(O), wθ,δ(x)dx) , Lp := Lp0,0 = Lp(O, dx), p ≥ 1, θ, δ ≥ 0.

Let S = (S(t)) be the C0 semigroup on L2 corresponding to (4.1). By Assumption 4.2,
for each t > 0, S(t) is defined by (4.3) at least on compactly supported functions ψ.

The main result of this section is the following theorem. Its proof is given in Section
4.2.

Theorem 4.6. Let p ∈ [1,+∞), θ ∈ [0, 2p− 1) and δ ≥ 0. Under Assumptions 4.1, 4.2,
and 4.4 we have:

(i) For each t, S(t) defined on compactly supported functions by (4.2) has a unique
extension to a bounded linear operator, denoted still by S(t), acting from Lpθ,δ into

Lpθ,δ. Moreover, S = (S(t)) forms a C0-semigroup on Lpθ,δ.

(ii) There exists a constant C > 0 such that for all t ∈ (0, 1] and ψ ∈ Lpθ,δ, S(t)ψ(x)
is differentiable for each x ∈ O and∣∣∣∣ ∂∂xiS(t)ψ

∣∣∣∣
Lpθ,δ

≤ C√
t
|ψ|Lpθ,δ , i = 1, . . . , d.

Remark 4.7. If θ > 2p−1, then Lpθ contains functions f with growth ρ−2(y) at vicinity of
some point of ∂O. On the other hand, the integral

∫
OG(t, x, y)f(y)dy does not converge

as G(t, x, y) decays only at rate ρ(y) at the boundary. Therefore, for t > 0, S(t) cannot
be extended to Lpθ.

Remark 4.8. For 0 ≤ θ < p we are able to show the C0-property and gradient estimates
without Assumption 4.4, for details see Appendix B.
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4.1. Preliminaries. Let wi : O 7→ (0,+∞), i = 1, 2, be measurable weights. Let

Lpi := Lp
(
O,B(O), wi(x)dx

)
, i = 1, 2 ,

and let

Lp := Lp(O,B(O), w(x) dx),

where w(x) = min{w1(x), w2(x)}. We will need the following elementary result.

Lemma 4.9. Assume that T is a bounded linear operator from Lpi to Lpi for i = 1, 2.
Then it is bounded from Lp to Lp and the operator norm satisfies the estimate

‖T‖L(Lp) ≤ N := 2(p−1)/p max
{
‖T‖L(Lp1), ‖T‖L(Lp2)

}
.

Proof. Let ψ ∈ Lp1 ∩ L
p
2 and

D := {x ∈ O : w1(x) < w2(x)}, Dc := O \ D.
Then∫

O
|Tψ(x)|pw(x)dx =

∫
O
|T (χDψ)(x) + T (χDcψ)(x)|pw(x)dx

≤ 2p−1

[∫
O
|T (χDψ)(x)|pw(x)dx+

∫
O
|T (χDcψ)(x)|pw(x)dx

]
≤ 2p−1

[∫
O
|T (χDψ)(x)|pw1(x)dx+

∫
O
|T (χDcψ)(x)|pw2(x)dx

]
≤ Np

[∫
O
|χD(x)ψ(x)|pw1(x)dx+

∫
O
|χDc(x)ψ(x)|pw2(x)dx

]
.

Since ∫
O
|χD(x)ψ(x)|pw1(x)dx+

∫
O
|χDc(x)ψ(x)|pw2(x)dx = |ψ|pLp ,

we have the desired conclusion. �

4.2. Proof of Theorem 4.6. Let

Lpθ := Lp
(
O, ρθ(x)dx

)
and Lpδ := Lp

(
O,
(
1 + |x|2

)−δ
dx
)
.

By Lemma 4.9 it is enough to prove that S = (S(t)) extends to a C0-semigroup in the
spaces Lpδ and Lpθ separately. The C0-property of the semigroup (S(t)) in Lpδ can be shown
using the method from [33]. Therefore, it remains to prove the semigroup property in
Lpθ. We have∫

O
|S(t)ϕ(x)|p ρθ(x)dx =

∫
O

∣∣∣ρ θ+1
p (x)S(t)ϕ(x)

∣∣∣p dx

ρ(x)

=

∫
O

∣∣∣∣∫
O
ρ
θ+1
p (x)G(t, x, y)ρ(y)ϕ(y)

dy

ρ(y)

∣∣∣∣p dx

ρ(x)

=

∫
O

∣∣∣∣∫
O
ρ
θ+1
p (x)G(t, x, y)ρ1− θ+1

p (y)ρ
θ+1
p (y)ϕ(y)

dy

ρ(y)

∣∣∣∣p dx

ρ(x)

≤ C

∫
O

∣∣∣∣∫
O
ρ
θ+1
p (x)mt(y)gct(x− y)ρ1− θ+1

p (y)ψ(y)
dy

ρ(y)

∣∣∣∣p dx

ρ(x)
,

with ψ(y) = ρ
θ+1
p (y)ϕ(y). Note that the last inequality follows from (4.3). In other words

|S(t)ϕ|p
Lpθ
≤ C |Ktψ|pLp(O, dy

ρ(y))
,
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where

Ktψ(x) :=

∫
O
kt(x, y)ψ(y)

dy

ρ(y)
,

kt(x, y) :=

(
ρ(x)

ρ(y)

) θ+1
p

mt(y)gct(x− y)ρ(y),

and ψ is as above.

Since ϕ 7→ ψ = ρ
θ+1
p ϕ is an isometry between Lpθ and Lp

(
O, dy

ρ(y)

)
, the proof of a C0-

property will be completed as soon as we show that for each 0 < t ≤ 1, Kt is a bounded

linear operator from Lp
(
O, dy

ρ(y)

)
into Lp

(
O, dy

ρ(y)

)
and that sup0<t≤1 ‖Kt‖ < +∞, where

‖ · ‖ is the operator norm on L
(
Lp
(
O, dy

ρ(y)

)
, Lp

(
O, dy

ρ(y)

))
. The second part of the

theorem follows since, by (4.4),∣∣∣∣∂S(t)ϕ

∂xi

∣∣∣∣p
Lpθ

≤ Ct−
p
2 |Ktψ|pLp(O, dy

ρ(y))
.

Taking into account the Schur test, see e.g. Theorem 5.9.2 in [19], it is enough to show
that

sup
0<t≤1

sup
x∈O

∫
O
kt(x, y)

dy

ρ(y)
+ sup

0<t≤1
sup
y∈O

∫
O
kt(x, y)

dx

ρ(x)
< +∞ .

Note that our assumption θ < 2p− 1 is necessary for the application of the Schur test.
Given t ∈ (0, 1], let Ot :=

{
x ∈ O : ρ(x) <

√
t
}

and (Ot)c := O \ Ot. Write

k1 := sup
0<t≤1

sup
x∈Ot

∫
Ot
kt(x, y)

dy

ρ(y)
, k2 := sup

0<t≤1
sup
y∈Ot

∫
Ot
kt(x, y)

dx

ρ(x)
,

k3 := sup
0<t≤1

sup
x∈(Ot)c

∫
Ot
kt(x, y)

dy

ρ(y)
, k4 := sup

0<t≤1
sup
y∈Ot

∫
(Ot)c

kt(x, y)
dx

ρ(x)
,

k5 := sup
0<t≤1

sup
x∈Ot

∫
(Ot)c

kt(x, y)
dy

ρ(y)
, k6 := sup

0<t≤1
sup

y∈(Ot)c

∫
Ot
kt(x, y)

dx

ρ(x)
,

k7 := sup
0<t≤1

sup
x∈(Ot)c

∫
(Ot)c

kt(x, y)
dy

ρ(y)
, k8 := sup

0<t≤1
sup

y∈(Ot)c

∫
(Ot)c

kt(x, y)
dx

ρ(x)
.

Note that the proof will be completed as soon as we show that all kj are finite.
To estimate k5 to k8 where y ∈ (Ot)c we use the Lipchitz continuity of the distance

function ρ and the estimate ρ(y) ≥
√
t for y ∈ (Ot)c. Namely, for any α ≥ 0, we have(

ρ(x)

ρ(y)

)α
≤
(
|ρ(x)− ρ(y)|

ρ(y)
+ 1

)α
≤ C

(
|x− y|√

t
+ 1

)α
.

Since mt(y) ≤ 1, we have

k5 ≤ sup
0<t≤1

sup
x∈Ot

∫
(Ot)c

(
ρ(x)

ρ(y)

) θ+1
p

gct(x− y)dy

≤ sup
0<t≤1

sup
x∈O

∫
(Ot)c

(
|x− y|√

t
+ 1

) θ+1
p

gct(x− y)dy

≤ sup
0<t≤1

∫
Rd

(
|z|√
t

+ 1

) θ+1
p

gct(z)dz ≤
∫
Rd

(|z|+ 1)
θ+1
p
−1 gc(z)dz < +∞.
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To estimate k7 note that

k7 ≤ sup
0<t≤1

sup
x∈(Ot)c

∫
(Ot)c

(
ρ(x)

ρ(y)

) θ+1
p

gct(x− y)dy ≤ C

∫
Rd

(|z|+ 1)
θ+1
p gc(z)dz < +∞.

In the case of θ+1
p
− 1 > 0, equivalently of θ > p− 1, one can use the same arguments to

evaluate k6 and k8. Namely, we have

k6 ≤ sup
0<t≤1

sup
y∈(Ot)c

∫
Ot

(
ρ(x)

ρ(y)

) θ+1
p

gct(x− y)

(
ρ(x)

ρ(y)

)−1

dx

≤ C sup
0<t≤1

sup
y∈(Ot)c

∫
Ot

(
|x− y|√

t
+ 1

) θ+1
p
−1

(x)gct(x− y)dx < +∞

and

k8 ≤ sup
0<t≤1

sup
y∈(Ot)c

∫
(Ot)c

(
ρ(x)

ρ(y)

) θ+1
p

gct(x− y)

(
ρ(x)

ρ(y)

)−1

dx

≤ C sup
0<t≤1

sup
y∈(Ot)c

∫
(Ot)c

(
|x− y|√

t
+ 1

) θ+1
p
−1

(x)gct(x− y)dx < +∞

The case of θ+1
p
− 1 < 0 can be treated as follows

k6 ≤ sup
0<t≤1

sup
y∈(Ot)c

∫
Ot

(
ρ(x)

ρ(y)

) θ+1
p

gct(x− y)

(
ρ(x)

ρ(y)

)−1

dx

≤ sup
0<t≤1

sup√
t≤u≤1

sup
y : ρ(y)=u

u1− θ+1
p

∫
Ot
ρ
θ+1
p
−1(x)gct(x− y)dx.

Note that for any
√
t ≤ u ≤ 1, we have

inf
{
|x− y|2 : y ∈ (Ot)c , ρ(y) = u, x ∈ Ot

}
= |u−

√
t|2.

Thus, by Assumption 4.4,

k6 ≤ (2πc)
d
2 sup

0<t≤1
sup√
t≤u≤1

sup
y : ρ(y)=u

u1− θ+1
p e−

|u−
√
t|

4ct

∫
Ot
ρ
θ+1
p
−1(x)g2ct(x− y)dx

≤ (2πc)
d
2 sup

0<t≤1
sup√
t≤u≤1

sup
y : ρ(y)=u

u1− θ+1
p e−

|u−
√
t|

4ct t
θ+1
2p
− 1

2 < +∞.

In the same way, if θ+1
p
− 1 < 0, then

k8 ≤ sup
0<t≤1

sup√
t≤u≤1

sup
y : ρ(y)=u

∫
(Ot)c

(
ρ(x)

ρ(y)

) θ+1
p

gct(x− y)

(
ρ(x)

ρ(y)

)−1

dx

≤ (2πc)
d
2 sup

0<t≤1
sup√
t≤u≤1

sup
y : ρ(y)=u

u1− θ+1
p e−

|u−
√
t|

4ct

∫
O
ρ
θ+1
p
−1(x)g2ct(x− y)dx < +∞.

We use Assumption 4.4 to evaluate k4. Namely, since 2− θ+1
p
> 0, we have

k4 = sup
0<t≤1

sup
y∈Ot

ρ2− θ+1
p (y)t−

1
2

∫
(Ot)c

ρ
θ+1
p
−1(x)gct(x− y) dx

≤ sup
0<t≤1

t
1
2
− θ+1

2p sup
y∈Ot

∫
(Ot)c

ρ
θ+1
p
−1(x)gct(x− y) dx < +∞.
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The same argument can be used to evaluate k1. Namely since for x ∈ Ot, ρ(x) ≤
√
t, we

have

k1 = sup
0<t≤1

sup
x∈Ot

∫
Ot
ρ
θ+1
p (x)

ρ(y)√
t
gct(x− y)ρ−

θ+1
p (y) dy

≤ C1 sup
0<t≤1

t
θ+1
2p
− 1

2 sup
x∈Ot

∫
Ot
ρ1− θ+1

p (y)gct(x− y)dy < +∞.

Above we used Assumption 4.4 and the fact that 1− θ+1
p
> −1 as θ < 2p− 1.

To estimate k2 we need 2− θ+1
p
> 0, that is θ < 2p−1. Since ρ(x) ≤

√
t and ρ(y) ≤

√
t

for x, y ∈ Ot, we have

k2 = sup
0<t≤1

sup
y∈Ot

∫
Ot
ρ
θ+1
p (x)t−1gct(x− y)ρ2− θ+1

p (y) dx

≤ sup
0<t≤1

t
θ+1
2p
−1+1− θ+1

2p sup
y∈Ot

∫
Ot
gct(x− y)dx < +∞.

It remains to evaluate k3. We have

k3 = sup
0<t≤1

sup
x∈(Ot)c

ρ
θ+1
p (x)t−

1
2

∫
Bdt
gct(x− y)ρ1− θ+1

p (y) dy.

Note that for any
√
t ≤ u ≤ 1, we have

inf
{
|x− y|2 : x ∈ (Ot)c , ρ(x) = u, y ∈ Ot

}
= |u−

√
t|2.

Thus, by Assumption 4.4,

k3 ≤ C1 sup
0<t≤1

sup√
t0≤u≤1

sup
x∈Ot : ρ(x)=u

u
θ+1
p t−

1
2 e−

|u−
√
t|2

4ct

∫
Ot
ρ1− θ+1

p (y)g2ct(x− y)dy

≤ C2 sup
0<t≤1

sup√
0≤u≤1

u
θ+1
p t−

1
2 e−

|u−
√
t|2

4ct t
1
2
− θ+1

2p < +∞.

�

4.3. Analiticity.

Remark 4.10. Assume that the derivatives ∂
∂xi

commute with the semigroup in the fol-
lowing sense

∂

∂xi
S(t) = S(t/2)

∂

∂xi
S(t/2) +Ri(t)S(t/2),

where Ri(t), t > 0 are bounded linear operator satisfying

‖Ri(t)‖L(Lpθ,δ ,L
p
θ,δ)
≤ C1t

−1/2.

Then, by second part of Theorem 4.6,∣∣∣∣ ∂2

∂x2
i

S(t)ψ

∣∣∣∣
Lpθ,δ

=

∣∣∣∣ ∂∂xiS(t/2)
∂

∂xi
S(t/2)ψ +

∂

∂xi
S(t/2)Ri(t)S(t/2)ψ

∣∣∣∣
Lpθ,δ

≤ C2

t
|ψ|Lpθ,δ .

This leads to the analiticity of S on Lpθ,δ in the case of A of the form
∑

i,j ai,j
∂2

∂xi∂xj
+∑

i bi
∂
∂xi

with bounded ai,j and bj.
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The classical Aronson estimates for the Green kernel, see e.g. [16, 36, 31] for required
assumptions on A and O, yield that G is of class C∞((0,+∞) × O × O) and for any
non-negative integer n, multi-indices α, β, and time T > 0, there are constants C, c > 0
such that for all t ∈ (0, T ] and x, y ∈ O,∣∣∣∣ ∂n∂tn ∂|α|∂xα

∂|β|

∂yβ
G(t, x, y)

∣∣∣∣ ≤ Ct−
|α|+|β|+2n

2 gct(x− y).

In our proofs of the C0-property and gradient estimate we needed something different,
namely estimates (4.3) and (4.4) which guarantee that G(t, x, y) and ∇xG(t, x, y) decay
for y near the boundary of O at rate ρ(y)/

√
t uniformly in x. Clearly, our proof yelds

the following.

Proposition 4.11. If for a certain multi index α, there are constants C, c > 0 such that

(4.5)

∣∣∣∣∂|α|G∂xα
(t, x, y)

∣∣∣∣ ≤ Ct−
|α|
2 mt(y)gct(x− y), ∀x, y ∈ O, ∀ t ∈ (0, 1],

then, for all p ≥ 1, θ ∈ [0, 2p− 1), δ ≥ 0, and T > 0, there is a constant C1 such that∣∣∣∣ ∂|α|∂xα
S(t)ψ

∣∣∣∣
Lpθ,δ

≤ C1t
− |α|

2 |ψ|Lpθ,δ , ∀ψ ∈ Lpθ,δ, t ∈ (0, T ].

Corollary 4.12. If A = ∆ and O is a half space, then for all 1 ≤ p < +∞, θ ∈ [0, 2p−1)
and δ ≥ 0, the semigroup S is analytical on Lpθ,δ.

Proof. We need to show that there is a constant C such that

|∆S(t)ψ|Lpθ,δ ≤
C

t
|ψ|Lpθ,δ , ∀ψ ∈ Lpθ,δ, t ∈ (0, 1].

We may assume that O = {x ∈ Rd : x1 > 0}. Then mt(y) = (y1/
√
t) ∧ 1, and the Green

kernel in known, namely

(4.6) G(t, x, y) = g2t(x− y)− g2t(x− y),

where

(4.7) x = (x1, x2, . . . , xd) = (x1,x) = (−x0,x).

By elementary calculation one can verified estimate (4.5) for any second order derivative
∂2

∂x2j
. Indeed, given a > 0, z ∈ R and z ∈ Rd−1 write

g1
a(z) := (2πa)−

1
2 e−

z2

2a , gd−1
a (z) := (2πa)−

d−1
2 e−

|z|2
2a .

Note that there is a constant C such that for all x1, y1 ≥ 0, t ∈ (0, 1],

(4.8)
∣∣g1

2t(x1 − y1)− g1
2t(x1 + y1)

∣∣ ≤ Cmt(y)g1
4t(x1 − y1).

For, (4.8) can be reformulated equivalently as∣∣∣e−z2 − e−(z+v)2
∣∣∣ ≤ C v ∧ 1 e−

z2

2 , ∀ z ∈ R, v ≥ 0.

or

e−
z2

2

∣∣∣1− e−(z+v)2+z2
∣∣∣ ≤ C v ∧ 1, ∀ z ∈ R, v ≥ 0.

We have∣∣∣∣∂2G

∂x2
1

(t, x, y)

∣∣∣∣ =

∣∣∣∣[(x1 − y1)2

4t2
− 1

2t

]
g2t(x− y) +

[
−(x1 + y1)2

4t2
+

1

2t

]
g2t(x− y)

∣∣∣∣ .
14



Therefore, by (4.8), it is enough to show that for all u, v ≥ 0,∣∣∣∣(u− v)2e−
(u−v)2

4 − (u+ v)2e−
(u+v)2

4

∣∣∣∣ ≤ C v ∧ 1 e−
(u−v)2

8 .

For j > 1 we have∣∣∣∣∂2G

∂x2
j

(t, x, y)

∣∣∣∣ =
∣∣g1

2t(x1 − y1)− g1
2t(x1 + y1)

∣∣ ∣∣∣∣(xj − yj)2

4t2
− 1

2t

∣∣∣∣ gd−1
2t (x− y)

≤ C1

t

∣∣g1
2t(x1 − y1)− g1

2t(x1 + y1)
∣∣ gd−1

4t (x− y)

≤ CC1

t
mt(y)g4t(x− y).

�

4.4. Related results. In this section we comment some recent results of Krylov [20] and
[20] and Lindemulder and Veraar [23] concerning heat semigroup on weighted spaces.

4.4.1. Krylov’s result. Let P =
{
x ∈ Rd : x1 > 0

}
be a half space in Rd. Let ρ(x) = x1

be the distance of x ∈ P from the boundary. Let S be the semigroup generated by the
Laplace operator A = ∆ on P with homogeneous Dirichlet boundary conditions. By∇ we
denote the gradient operator and by ∇2 the Hessian. Given θ ∈ R let Lpθ = Lp(P, xθ1dx).
The following result follows directly from the Krylov Theorem 2.5 ([20]). In the original
Krylov theorem p = q, α = 2 = α̂ = a+, γ = γ = 0.

Theorem 4.13. Let p ∈ (1,+∞). Then for every θ ∈ (−2p, p), S is a C0-semigroup on
Lpθ. Moreover, there is a constant N such that for any t > 0,

‖S(t)u‖Lpθ ≤ N‖u‖Lpθ and ‖∇2S(t)u‖Lpθ ≤ Nt−1‖u‖Lpθ .

Given a vector a ∈ Rd and a number δ ∈ R let us denote by P (a, δ) the half space

P (a, δ) :=
{
x ∈ Rd : 〈x, a〉 > δ

}
.

Let ρP (a,δ)(x) be the distances of x ∈ Rd from the boundary ∂P (a, δ). Obviously the
Krylov result can be extended to any of half space P (a, δ). The Lpθ space should be
replaced by

Lpθ(P (a, δ)) := Lp(P (a, δ), ρθP (a,δ)(x)dx).

Note that the constant N appearing in the theorem is universal for any half space.
Let O be a not necessarily bounded domain in Rd. Let ρO(x) be the distance of x ∈ O

from the boundary ∂O. Given θ ∈ R write Lpθ = Lp(O, ρθO(x)dx). Let S be the heat
semigroup on O with homogeneous Dirichlet boundary conditions.

Theorem 4.14. Assume that O is a convex domain in Rd. Let p ∈ (1,+∞). Then for
every θ ∈ (−2p, p), S is a C0-semigroup on Lpθ. Moreover, there is an independent of O
constant N such that for any t > 0,

(4.9) |S(t)ψ|Lpθ ≤ N |ψ|Lpθ , ψ ∈ Lpθ.

Proof. Since O is convex then there is a family of subspaces P (aj, δj), j ∈ J , such that

(4.10) O =
⋂
j∈J

P (aj, δj).

Let j ∈ J , and let ψ ∈ C∞0 (O). Let Taj ,δj be the heat semigroup on P (aj, δj) with
homogeneous Dirichlet boundary conditions. Let us observe that

(4.11) |S(t)ψ(x)| ≤ Taj ,δj(t)|ψ|(x), x ∈ O.
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For, (4.11) follows immediately for example from the following probabilistic representa-
tions

S(t)ψ(x) = E (ψ(x+W (t)); t < τx(O)) ,

Taj ,δj(t)ψ(x) = E (ψ(x+W (t)); t < τx (P (aj, δj))) ,

where τx(O) and τx (P (aj, δj)) are exit times

τx(O) := inf{s > 0: x+W (s) 6∈ O}, τx (P (aj, δj)) := inf{s > 0: x+W (s) 6∈ P (aj, δj)}.

Thus

|S(t)ψ(x)|p ρθO(x) ≤
∣∣Taj ,δj(t)ψ(x)

∣∣p ρθP (aj ,δj)
(x), ∀x ∈ O.

Therefore after integration we obtain

|S(t)ψ|Lpθ ≤ |Taj ,δj(t)ψ|Lpθ(P (aj ,δj)) ≤ N |ψ|Lpθ(P (aj ,δj)),

where the constant N does not depend on j. Hence

|S(t)ψ|Lpθ ≤ N inf
j∈J
|ψ|Lpθ(P (aj ,δj)).

Taking into account (4.10) we have

inf
j∈J
|ψ|Lpθ(P (aj ,δj)) = |ψ|Lpθ ,

which gives (4.9) and obviously C0-property of S. �

Remark 4.15. Unfortunately, since we do not have the estimate for the gradient

|∇S(t)ψ(x)| ≤ |∇Taj ,δj(t)ψ(x)|, x ∈ O.

the derivation of the estimate |∇S(t)ψ|Lpθ ≤ Nt−1/2|ψ|Lpθ needs some different arguments!

4.4.2. Lindemulder and Veraar results. As in the Krylov papers, paper [23] of Lindemul-
der and Veraar deals with the Laplace operator A = ∆. It is shown that ∆ with
Dirichlet boundary conditions admits a bounded H∞-calculus on weighted spaces Lpθ :=
Lp
(
O, ρθ(x)dx

)
, where ρ(x) = dist (x, ∂O), p ∈ (1,+∞) and θ ∈ (−1, 2p− 1) \ {p− 1}.

Therefore, the corresponding heat semigroup is not only C0 but also analytical on Lpθ. In
[23], O is a halfspace or a bounded C2-domain.

5. Properties of the semigroup on weighted spaces

In this section, Assumptions 4.1 and 4.2 are satisfied.

Lemma 5.1. There exists a C > 0 such that

|S(t)ψ|Lpδ ≤ Ct−
θ
2p |ψ|Lpθ,δ for t ∈ (0, 1].

Proof. Let

(5.1) wδ(x) = w0,δ(x) =
(
1 + |x|2

)−δ
be the weight on Lpδ . Then, by Assumption 4.2, we have

|S(t)ψ|pLpδ ≤ Cp

∫
O
wδ(x)

(∫
O
mt(y)gct(x− y) |ψ(y)| dy

)p
dx

≤ C̃td/2(I1 + I2),
16



where

I1 :=

∫
O/
√
t

wδ(x
√
t)

(∫
(O/
√
t)

1

mt(y
√
t)gc(x− y) |φ(y)| dy

)p

dx,

I2 :=

∫
O/
√
t

wδ(x
√
t)

(∫
(O/
√
t)
c

1

mt(y
√
t)gc(x− y) |φ(y)| dy

)p

dx,

φ(z) = ψ(z
√
t), and

(O/
√
t)1 :=

{
x ∈ O/

√
t : mt(x

√
t) = ρ(x

√
t)/
√
t < 1

}
,

and
(O/
√
t)c1 :=

{
x ∈ O/

√
t : mt(x

√
t) = 1

}
.

We have

I1 ≤
∫
O/
√
t

wδ(x
√
t)

∫
(O/
√
t)

1

mp
t (y
√
t)gc(x− y)|φ(y)|pdydx

≤
∫

(O/
√
t)

1

(∫
O/
√
t

wδ(x
√
t)
mp
t (y
√
t)

wθ,δ(y
√
t)
gc(x− y)dx

)
|φ(y)|pwθ,δ(y

√
t)dy

≤
∫

(O/
√
t)

1

F (t, y) |φ(y)|pwθ,δ(y
√
t)dy,

where

F (t, y) =

∫
O/
√
t

wδ(x
√
t)
mp
t (y
√
t)

wθ,δ(y
√
t)
gc(x− y)dx,

=

∫
O/
√
t

wδ(x
√
t)

ρp(y
√
t)

tp/2wθ,δ(y
√
t)
gc(x− y)dx, y ∈

(
O/
√
t
)

1
.

Recall that wθ,δ(z) = min
{
ρθ(z), wδ(z)

}
. Thus, if ρθ(y

√
t) ≤ wδ(y

√
t) then since

ρp−θ(y
√
t) ≤ t(p−θ)/2 for y ∈

(
O/
√
t
)

1
,

we have

F (t, y) ≤
∫
O/
√
t

ρp−θ(y
√
t)

tp/2
gc(x− y)wδ(x

√
t)dx ≤ C1

tθ/2
.

If wδ(y
√
t) < ρθ(y

√
t) then

F (t, y) ≤
∫
O/
√
t

wδ(x
√
t)

wδ(y
√
t)
gc(x− y)dx .

Putting a =
√
t we find that

1 + a|y|2

1 + a|x|2
≤ 1 + 2a|y − x|2 + 2a|x|2

1 + a|x|2

≤ 1 + 2a|x− y|2 +
2a|x|2

1 + a|x|2

≤ 3 + 2a|x− y|2.
Therefore

sup
y∈(O/

√
t)

1

F (t, y) ≤ C2

tθ/2
,

17



and hence

t
d
2 I1 ≤ C2t

−θ/2|ψ|p
Lpθ,δ

.

For I2 we obtain

I2 =

∫
O/
√
t

wδ(x
√
t)

(∫
(O/
√
t)
c

1

mt(y
√
t)gc(x− y)φ(y)dy

)p

dx

≤
∫
O/
√
t

wδ(x
√
t)

∫
(O/
√
t)
c

1

gc(x− y)

wθ,δ(y
√
t)
|φ(y)|pwθ,δ(y

√
t)dydx

≤
∫

(O/
√
t)
c

1

H(t, y)|φ(y)|pwθ,δ(y
√
t)dy,

where

H(t, y) :=

∫
O/
√
t

wδ(x
√
t)
gc(x− y)

wθ,δ(y
√
t)

dx, y ∈
(
O/
√
t
)c

1
.

Note that

ρθ(y
√
t)

tθ/2
≥ 1.

Thus

1 ≥ wθ,δ(y
√
t) = min

{
ρθ(y
√
t), wδ(y

√
t)
}
≥ min

{
tθ/2, wδ(y

√
t)
}
.

Therefore

H(t, y) ≤
∫
O/
√
t

[
wδ(x

√
t)

wδ(y
√
t)

+ wδ(x
√
t)t−θ/2

]
gc(x− y)dx

≤
∫
O/
√
t

[
wδ(x

√
t)

wδ(y
√
t)

+ t−θ/2
]
gc(x− y)dx

≤ Ct−θ/2.

�

In what follows we denote by L(E, V ) the space of all linear bounded operators from
a Banach space E to a Banach space V , equipped with the operator norm ‖ · ‖L(E,V ).

Theorem 5.2. Assume that there are positive constants M,α such that for every t > 0,

‖S(t)‖L(Lpδ ,L
p
δ) ≤Me−αt .

Then there exist C > 0, such that for every t > 0,

‖S(t)‖L(Lpθ,δ ,L
p
θ,δ)
≤ Ce−αt .

Proof. Clearly

‖S(t)ψ‖Lpθ,δ ≤ ‖S(t)ψ‖Lpδ = ‖S(t− 1)S(1)ψ‖Lpδ ≤Me−α(t−1)‖S(1)ψ‖Lpδ .

By Lemma 5.1,

‖S(1)ψ‖Lpδ ≤ C2‖ψ‖Lpθ,δ .

�
18



6. Dirichlet map

In this section we derive useful estimates for

(λ− A)S(t)Dλe = S(t)Be, t ≥ 0, e ∈ L2(∂O, ds).

We will need Assumptions 4.1 and 4.2, and additionally the following assumption, which
is satisfied, see Remark 4.3 if the drift coefficients νi of A are of the class C1

b .

Assumption 6.1. Assume that the coefficients ai,j are bounded, and that for any T > 0
there is a constant C such that

|∇yG(t, x, y)| ≤ C√
t
gct(x− y), t ≤ T, x, y ∈ O.

Let S0(O) be the set of all ψ of tempered test functions such that ψ(x) = 0 for x ∈ ∂O.
Let γ be a continuous compactly supported function on ∂O. Recall that u = Dλγ is the
solution to the non-homogeneous Poisson problem (2.2). Let ψ ∈ S0(O). Then applying
Gauss–Green integration by parts formula we obtain∫

O
Au(x)ψ(x)dx =

∫
O
u(x)A∗ψ(x)dx−

∫
∂O
γ(x)

∑
i,j

aij(x)
∂ψ

∂xi
(x)nj(x)ds(x),

where A∗ is the formal adjoint operator;

A∗ψ(x) =
∑
i,j

∂

∂xj

(
ai,j(x)

∂ψ

∂xi
(x)

)
−
∑
i

∂

∂xi

(
µi(x)ψ(x)

)
,

n =
(
n1, . . . ,nd

)
is the outward pointing unit normal vector to the boundary ∂O, and s

is the surface measure.
Therefore we have

(6.1)

∫
O
u(x)A∗ψ(x)dx = λ

∫
O
u(x)ψ(x)dx+

∫
∂O
γ(x)

∑
i,j

aij(x)
∂ψ

∂xi
(x)nj(x)ds(x).

In fact (6.1) can be treated as the definition of the weak solution to (2.3), see e.g. [4, 24].
Let

na =

(∑
j

a1,jn
j, . . . ,

∑
j

ad,jn
j

)
.

Then ∑
i,j

aij(x)
∂ψ

∂xi
(x)nj(x) =

∂ψ

∂na
(x),

and (6.1) has the form∫
O
Dλγ(x) (A∗ − λ)ψ(x)dx =

∫
∂O
γ(x)

∂ψ

∂na
(x)ds(x).

In what follows A is the generator of the semigroup S on L2(O), S∗ is the adjoint
semigroup and A∗ is its generator. Note that A∗ ⊂ A∗.

Proposition 6.2. Let λ be in the resolvent of A∗. Then the Dirichlet map is uniquely
characterized by the relation

(6.2)

∫
O
Dλγ(x)ψ(x)dx =

∫
∂O
γ(x)

∂

∂na
(A∗ − λ)−1 ψ(x)ds(x), ψ ∈ S0(O).
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Proof. Assume (6.2). Let ψ ∈ S0(O). Then∫
O
Dλγ(x) (A∗ − λ)ψ(x)dx =

∫
∂O
γ(x)

∂

∂na
(A∗ − λ)−1 (A∗ − λ)ψ(x)ds(x)

=

∫
∂O
γ(x)

∂

∂na
ψ(x)ds(x).

�

Corollary 6.3. We have

(6.3)

∫
O

(λ− A)S(t)Dλγ(x)ψ(x)dx = −
∫
∂O
γ(x)

∂

∂na
[S∗(t)ψ(x)] ds(x).

Let G be the Green kernel corresponding to the heat semigroup S generated by A with
homogeneous boundary conditions. Let

(6.4) Gλ(x, y) =

∫ +∞

0

e−λtG(t, x, y)dt,

where λ is from the resolvent set.

Theorem 6.4. We have:

(6.5) Dλγ(x) =

∫
∂O
γ(y)

∂

∂na(y)
Gλ(x, y)ds(y)

and

(6.6) (λ− A)S(t)Dλγ(x) = −
∫
∂O
γ(y)

∂

∂na(y)
G(t, x, y)ds(y).

Proof. Let ψ ∈ S0(O). Then, by (6.1),∫
O
Dλγ(x)ψ(x)dx =

∫
∂O
γ(x)

∂

∂na
(A∗ − λ)−1 ψ(x)ds(x)

=

∫
∂O
γ(x)

∂

∂na(x)

∫
O
Gλ(y, x)ψ(y)dyds(x)

=

∫
O

∫
∂O
γ(x)

∂

∂na(x)
Gλ(y, x)ds(x)ψ(y)dy

=

∫
O

∫
∂O
γ(y)

∂

∂na(y)
Gλ(x, y)ds(y)ψ(x)dx.

To see (6.6) note that∫
O

(λ− A)S(t)Dλγ(x)ψ(x)dx =

∫
O
Dλγ(x) (λ− A∗)S∗(t)ψ(x)dx

=

∫
∂O
γ(x)

∂

∂na
(A∗ − λ)−1 (λ− A∗)S∗(t)ψ(x)ds(x)

= −
∫
∂O
γ(x)

∂

∂na
S∗(t)ψ(x)ds(x)

= −
∫
∂O
γ(x)

∂

∂na(x)

∫
O
G(t, y, x)ψ(y)dyds(x)

= −
∫
O

∫
∂O
γ(x)

∂

∂na(x)
G(t, y, x)ds(x)ψ(y)dy

= −
∫
O

∫
∂O
γ(y)

∂

∂na(y)
G(t, x, y)ds(y)ψ(x)dx.
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Note that by Assumption 6.1, the coefficients ai,j are bounded. Therefore we have the
following consequence of the theorem above.

Corollary 6.5. Under Assumptions 4.1, 4.2, and 6.1, for any T > 0 there is a constant
C > 0, such that for t ∈ (0, T ], ψ ∈ L2(∂O, ds), and x ∈ O,

|S(t)Bψ(x)| = |(λ− A)S(t)Dλψ(x)| ≤ C√
t

∣∣∣∣∫
∂O
gct(x− y)ψ(y)ds(y)

∣∣∣∣ .
7. Stochastic integration in Lp-spaces

In this paper we need only very naive theory of stochastic integration in Lp-spaces.
Namely, for B := (λ− A)Dλ set

ψk(t, x) := (S(t)Bek)(x), x ∈ O.
By Theorem 6.4,

ψk(t, x) = −
∫
∂O

∂

∂na(y)
G(t, x, y)ek(y)ds(y).

We need to define

M(t, x) :=
∑
k

∫ t

0

ψk(t− s, x)dWk(s), x ∈ O, t ∈ [0, T ] ,

and

Mα(t, x) :=
∑
k

∫ t

0

(t− s)−αψk(t− s, x)dWk(s), x ∈ O, t ∈ [0, T ] ,

as Lpθ,δ-valued provesses.
The following result from [7] stated there as Proposition A.1, enables us to define

rigorously each component of the sums above. Below W is a real valued Wiener process
defined on a filtered probability space (Ω,F, (Ft),P).

Proposition 7.1. Let (O,G, ν) be a σ-finite measurable space. Let p, q ∈ (1,+∞),
T ∈ (0,+∞). For any adapted and strongly measurable process φ : [0, T ] × Ω 7→ Lp(O)
the following there assertions are equivalent.

(1) There exists a sequence of adapted step processes (φn) such that

lim
n→+∞

‖φ− φn‖Lq(Ω,Lp(O,L2(0,T ))) = 0,(∫ T

0

φn(t)dW (t)

)
is a Cauchy sequence in Lq(Ω;Lp(O)).

(2) There exists a random variable η ∈ Lq(Ω;Lp(O)) such that for all sets A ∈ G
with finite measure one has (t, ω) 7→

∫
A
φ(t, ω)dν ∈ Lq(Ω;L2(0, T )), and∫

A

ηdν =

∫ T

0

∫
A

φ(t)dνdW (t) in Lq(Ω).

(3) ‖φ‖Lq(Ω;Lp(O;L2(0,T ))) < +∞.

Moreover, in this situation one has

lim
N→+∞

∫ T

0

φn(t)dW (t) = η,
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and there is a constant Cp,q ∈ (0,+∞) such that

C−1
p,q‖φ‖Lq(Ω;Lp(O;L2(0,T ))) ≤ ‖η‖Lq(Ω;Lp(O)) ≤ Cp,q‖φ‖Lq(Ω;Lp(O;L2(0,T ))).

Process φ which satisfies ony of these conditions is called Lq-stochastically integrable
in Lp(O) on [0, T ] and we write ∫ T

0

φ(t)dW (t) := η.

Given α ≥ 0 let

(7.1) JT,α({ek}, p, θ, δ) :=

∫
O

(∑
k

∫ T

0

t−αψ2
k(t, x)dt

)p/2

wθ,δ(x)dx.

By the Burkholder–Davis–Gundy inequality, for every p ∈ [1,+∞) there exist positive
constants cp and Cp such that for all t ∈ [0, T ]

cpJT,0({ek}, p, θ, δ) ≤ E
∫
O
|M(t, x)|pwθ,δ(x)dx ≤ CpJT,0({ek}, p, θ, δ) ,

see for example [39]. We have thus the following result.

Proposition 7.2. Given T , p, θ and δ, the process∑
k

∫ T

0

S(T − t)BekdWk(t)

takes values in Lpθ,δ if and only if JT,0({ek}, p, θ, δ) < +∞. Moreover, if for a certain

α > 0, JT,α({ek}, p, θ, δ) < +∞, then the process has continuous trajectories in Lpθ,δ.

The simple idea above can be made rigorous and much more general (see e.g. [5, 7]).

8. Examples

Let in the whole section Assumptions 4.1, 4.2, and 6.1 be satisfied.

8.1. One dimensional case. Consider the simplest cases of O = (0, 1) and O =
(0,+∞). In the first case the surface measure s = δ0 + δ1 and L2(∂O, ds) ≡ R2, whereas
in the second case s = δ0 and L2(∂O, ds) ≡ R1.

Proposition 8.1. Let p ∈ (1,+∞) and θ ∈ (p− 1, 2p− 1). Then the boundary problem

∂X

∂t
(t, x) = AX(t, x), x ∈ (0, 1),

X(t, 0) =
dW0

dt
(t),

X(t, 1) =
dW1

dt
(t),

defines Markov family with continuous trajectories in the space Lpθ,0.

Proof. We are in a framework of Theorem 2.10. By Theorem 4.6 the heat semigroup
can be extended to Lpθ,0 for θ ∈ [0, 2p − 1). Clearly HW is 2-dimensional with e1 = χ{0}
and e2 = χ{1}. Taking into account Proposition 7.2, it is enough to verify whether for
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θ ∈ (p−1, 2p−1) and T ∈ (0,+∞), there is an α > 0 such that J := JT,α(χ0, χ1, p, θ, 0) <
+∞. Let α > 0. By Corollary 6.5, we have

J ≤ c1

∫ 1

0

[∫ T

0

t−1−α (g2
ct(x) + g2

ct(x− 1)
)

dt

]p/2
min{xθ, (1− x)θ}dx

≤ c2

∫ 1

0

[∫ T

0

t−1−αg2
ct(t)(x)dt

]p/2
xθdx

≤ c3

∫ 1

0

[∫ T

0

t−2−αe−
x2

2ctdt

]p/2
xθdx = c3

∫ 1

0

[∫ T/x2

0

t−2−αe−
1

2ctdtx−2−2α

]p/2
xθdx

≤ c3

∫ 1

0

xθ−p−αpdx.

�

Similar calculation can be done in the case of half-line O = (0,+∞).

Proposition 8.2. Assume that δ > 1/2 and p ∈ (1,+∞) and θ ∈ (p− 1, 2p− 1). Let A
be a second order defined as above. Then the boundary problem

∂X

∂t
(t, x) = AX(t, x), x ∈ (0,+∞),

X(t, 0) =
dW0

dt
(t),

defines Markov family with continuous trajectories in the space Lpθ,δ.

Proof. We have∫ +∞

0

[∫ T

0

t−2−αe−
x2

ct dt

]p/2
xθ(1 + |x|2)−δdx ≤ c1

∫ +∞

0

xθ−p−αp(1 + |x|2)−δdx.

�

Remark 8.3. Assume that A is equal to the Laplace operator ∆. Let p ∈ (1,+∞) and
θ ∈ (p − 1, 2p − 1). Then the Markov family defined by boundary problem on (0, 1) or
(0,+∞) has a unique invariant measure. For, in the case of interval we can use Theorem
5.2, whereas in the case of problem on half-line we can use a direct approach. Namely,
we have, see Remark 8.13 of Section 8.4,

∂G

∂ny
(t, x, 0) = −x

t
g2t(x) = − x

2t
√
πt

e−
x2

4t .

Clearly, there are constant C, c such that for all t, x ≥ 0,∣∣∣∣ ∂G∂ny
(t, x, 0)

∣∣∣∣ ≤ C√
t
gct(x).

Therefore, from the proof of the proposition it follows that supT>0 JT (χ0, p, θ, 0) < +∞,
and the desired conclusion holds, see Theorem 2.10.

8.2. Equation on a ball. Let O = Bd be a unite ball in Rd with center at 0. We assume
that d ≥ 2, otherwise we have the case of equations on an interval studied in the previous
section. Then ∂O = Sd−1. Assume that the boundary noise has the form

(8.1) W (t, y) =
∑
k

ek(y)Wk(t), t ≥ 0, y ∈ Sd−1,
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where (ek) is a sequence of functions on Sd−1 and (Wk) are independent real-valued Wiener
processes.

Proposition 8.4. If

(8.2) A :=
∑
k

sup
y∈Sd−1

e2
k(y) < +∞.

then for any 1 < p and θ ∈ (p − 1, 2p − 1), boundary problem (1.1) defines a Markov
family with continuous trajectories in Lpθ,0.

Proof. Let J := JT,α({ek}, p, θ, 0). Using, Corollary 6.5, (7.1), (8.2), we obtain

(8.3)

J ≤ c1

∫
Bd

[∑
k

∫ T

0

t−1−α
(∫

Sd−1

gct(x− y)|ek(y)|ds(y)

)2

dt

]p/2
wθ,0(x)dx

≤ c1A
p/2

∫
Bd

[∫ T

0

t−1−α
(∫

Sd−1

gct(x− y)ds(y)

)2

dt

]p/2
wθ,0(x)dx

≤ c2

∫
Bd

[∫ T

0

t−1−α−d
(∫

Sd−1

e−
|x−y|2
ct ds(y)

)2

dt

]p/2
wθ,0(x)dx.

We have to evaluate

I(t, x) :=

∫
Sd−1

e−
|x−y|2
ct ds(y).

Let ρ(x) := dist
(
x,Sd−1

)
. We are showing that there is a constant C1 > 0 such that

(8.4) I(t, x) ≤ C1e
− ρ

2(x)
C1t t

d−1
2 , ∀ t ∈ (0, T ], x ∈ Bd.

In fact our method leads also to the following lower bound estimate

C2e
− ρ2

C3t t
d−1
2 ≤ I(t, x).

Our proof of (8.4) is elementary. In Lemma 8.9 from Section 8.3 we will establish estimate
(8.4) for an arbitrary bounded region in Rd. In the proof of Lemma 8.9 we use the
Laplace method. To see (8.4), note that we may assume that x = (x1, 0, 0, . . . , 0) =
(1− ρ(x), 0, . . . , 0). Note that for ρ, r ∈ [0, 1] we have

1 +
√

1− r2 − ρ ≥
∣∣∣1−√1− r2 − ρ

∣∣∣ .
Therefore

I(t, x) =

∫
Sd−1

exp

{
−
|1− ρ(x)− y1|2 +

∑d
j=2 y

2
j

ct

}
ds(y)

≤ 2

∫
Bd−1

exp

−
∣∣∣1− ρ(x)−

√
1− |z|2

∣∣∣2 + |z|2

ct


(

1 +
d−1∑
j=1

z2
j

1− |z|2

)1/2

dz

≤ c3

∫ 1

0

exp

{
−
∣∣1− ρ(x)−

√
1− r2

∣∣2 + r2

ct

}(
1− r2

)−1/2
rd−2dr.

Note that that for all r ∈ [0, 1] we have

1

2
r2 ≤ 1−

√
1− r2 ≤ r2.
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For, let f(r) = (1−
√

1− r)/r. Then f(0) = 1/2, f(1) = 1 and

f ′(r) =
(
√

1− r − 1)2

2r2
√

1− r
≥ 0.

Therefore there is a c4 > 0 such that for all r, ρ ∈ [0, 1] we have∣∣∣1− ρ−√1− r2

∣∣∣2 + r2 ≥ c4(ρ2 + r2).

For, we have∣∣∣1− ρ−√1− r2

∣∣∣2 + r2 = ρ2 + (1−
√

1− r2)2 − 2ρ(1−
√

1− r2) + r2

≥ ρ2 +
r4

4
− 2ρr2 + r2

≥ ρ2 +
r4

4
− ρ2κ− r4

κ
+ r2 = ρ2(1− κ) + r2

(
1− r2

κ
+
r2

4

)
.

Let κ ∈ (4/5, 1). Then∣∣∣1− ρ−√1− r2

∣∣∣2 + r2 ≥ (1− κ)ρ2 + r2

(
5

4
− 1

κ

)
,

which gives the desired estimate.
Summing up we have

I(t, x) ≤ c3

∫ 1

0

exp

{
−c4(ρ2(x) + r2)

ct

}(
1− r2

)−1/2
rd−2dr ≤ e−

c4ρ
2(x)
ct C(t),

where

C(t) = c3

∫ 1

0

exp

{
−c4r

2

ct

}(
1− r2

)−1/2
rd−2dr

≤ c3e−
c4
4ct

∫ 1

1/2

(
1− r2

)−1/2
dr + c3

2√
5

∫ 1/2

0

exp

{
−c4r

2

ct

}
rd−2dr

≤ C1t
d−1
2 ,

which gives (8.4).
Combining (8.3) with (8.4) we obtain

J ≤ c2

∫
Bd

[∫ T

0

t−1−α−d
(∫

Sd−1

e−
|x−y|2
ct ds(y)

)2

dt

]p/2
wθ,0(x)dx

≤ c5

∫
Bd

[∫ T

0

t−2−αe
− 2ρ2(x)

C1t dt

]p/2
wθ,0(x)dx

≤ c6

∫
Bd
ρ−p−αp+θ(x)dx ≤ c7

∫ 1

0

r−p+θ−αpdr.

�

Remark 8.5. Assume that A is equal to the Laplace operator ∆. Since the semigroup is
exponentially stable on Lp, 1 < p < +∞, then by Theorem 5.2, it is exponentially stable
on Lpθ,δ. Therefore the Markov family defined by the boundary problem (1.1) on Lpθ,0 for
p− 1 < θ < 2p− 1, p ∈ (1,+∞) has a unique invariant measure.
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Assumption (8.2) ensures that W is a random field on [0,+∞)×Sd−1. Below we present
a natural example of the process satisfying the above assumptions.

Example 8.6. Let (Wk) and (W̃k) be sequences of independent Wiener processes. Let
(ak) and (bk) be sequences of real numbers such that

∑
k a

2
k < +∞. Then

W (t, y) =
∑
k

ak

(
cos〈y, bk〉Wk(t) + sin〈y, bk〉W̃k(t)

)
can obviously be written in the form (8.1). Moreover, condition (8.2) is satisfied.

For each t ≥ 0, W (t, ·) is rotational invariant random field on Sd−1. Indeed we have

EW (t, y)W (t, z) =
∑
k

a2
kt (cos〈y, bk〉 cos〈z, bk〉+ sin〈y, bk〉 sin〈z, bk〉)

=
∑
k

a2
k cos〈bk, y − z〉t.

In the case of the so-called white noise on Sd−1, W is formally defined by (8.1) with
{ek} being an orthonormal basis of L2(Sd−1, ds).

Proposition 8.7. Assume that W is a white noise on S1. Let p > 1 and θ ∈
(

3p
2
− 1, 2p− 1

)
.

Then the boundary problem (1.1) defines a Markov family with continuous trajectories in
Lpθ,0. If A is equal to Laplace operator, then the Markov family defined by the boundary

problem (1.1) on Lpθ,0 for p ∈ (1,+∞) and θ ∈
(

3p
2
− 1, 2p− 1

)
has a unique invariant

measure.

Proof. Assume that d > 1. Let J := JT,α({ek}, p, θ, 0). Using (7.1) and then Corollary
6.5, we obtain

J =

∫
Bd

[∑
k

∫ T

0

t−α
(
−
∫
Sd−1

∂

∂na(y)
G(t, x, y)ek(y)ds(y)

)2

dt

]p/2
wθ,0(x)dx

=

∫
Bd

[∫ T

0

t−α
∫
Sd−1

∣∣∣∣ ∂

∂na(y)
G(t, x, y)

∣∣∣∣2 ds(y)dt

]p/2
wθ,0(x)dx

≤ c1

∫
Bd

[∫ T

0

t−1−α
∫
Sd−1

g2
ct(x− y)ds(y)dt

]p/2
wθ,0(x)dx

≤ c2

∫
Bd

[∫ T

0

t−1−d−α
∫
Sd−1

e−
2|x−y|2

ct ds(y)dt

]p/2
wθ,0(x)dx.

By (8.4) there is a constant C > 0 such that

J ≤ C

∫
Bd

[∫ T

0

t−1−α−d+ d−1
2 e−

ρ2(x)
Ct dt

]p/2
wθ,0(x)dx

≤ C

∫
Bd

[∫ T

0

t−
d+3
2
−αe−

ρ2(x)
Ct dt

]p/2
wθ,0(x)dx

≤ C1

∫
Bd
ρ
p
2

(2−(d+3))−pα(x)wθ,0(x)dx ≤ C2

∫ 1

0

r−
p
2

(d+1)+θ−pαdr.

Therefore J < +∞ if −1 < −p
2
(d+ 1) + θ− pα. In general case we need θ < 2p− 1 and

p > 1. This requires

−1 +
p

2
(d+ 1) + pα < θ < 2p− 1 and p > 1.
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Consequently, it is required that d = 1 or d = 2. However the case d = 1 has been already
excluded. �

Remark 8.8. Let us drop the assumption that ek ∈ L2(∂O, ds(y)). Namely, assume that
W (t, x) = B(t)δŷ, where B is a real valued Wiener process and δŷ is the Dirac delta
function at ŷ ∈ S1. Then, using (7.1) and then Corollary 6.5, we obtain

JT,α(δŷ, p, θ, 0) =

∫
B2

[∑
k

∫ T

0

t−α
(

∂

∂na(y)
G(t, x, ŷ)

)2

dt

]p/2
wθ,0(x)dx

≤ c1

∫
B2

[∫ T

0

t−1−2−αe−
2|x−ŷ|2

ct dt

]p/2
wθ,0(x)dx

≤ c2

∫
B2

|x− ŷ|−2p−αpρθ(x)dx ≤ c3

∫ 1

0

r−2p+θ−αpdr.

We need −2p + θ − αp > −1, which is in contradiction with θ < 2p − 1. Therefore, we
cannot treat this case.

8.3. The case of a bounded region in Rd. Let O be a bounded C1,α region in Rd,
d ≥ 2. Set

I(t, x) :=

∫
∂O

e−
|x−y|2
ct ds(y), t ∈ (0, T ], x ∈ O.

Recall that ρ(x) := dist (x, ∂O). We have the following generalization of (8.4) established
for O = Bd.

Lemma 8.9. There exist constants C1, C2 > 0 such that

I(t, x) ≤ C1t
d−1
2 e
− ρ

2(x)
C2t , ∀ t ∈ (0, T ], x ∈ O.

Proof. Fix ε > 0 and x ∈ O. Let ε > 0 be fixed. Since O is a bounded C1,α-domain,
there exist open sets Oi ⊂ Rd, i = 1, 2, . . . , n, such that for every i:

(1) for every i there exists, up to a shift and a rotation, a C1,α function ai such that
x ∈ O ∩Oi if and only if x = (x̄, xd − ai (x̄)) with xd − ai (x̄) > 0.

(2) ∂O ⊂
⋃
iOi ,

(3) if x ∈ O \
⋃
iOi then ρ(x) > ε,

(4) for each i ≤ n there exists a C1,α-diffeomorphism

gi : Oi → Cd :=
{
z ∈ Rd : − 1 < zk < 1, k = 1, . . . d

}
such that hi := (gi)

−1
: Cd → Oi is of class C1,α as well and

gi (Oi ∩ ∂O) = Cd−1 =
{
z ∈ Cd : zd = 0

}
,

Oi ∩ O =
{
z ∈ Cd : zd > 0

}
,

Oi ∩ O
c

=
{
z ∈ Cd : zd < 0

}
.

Assume that x ∈ Oi ∩ O for certain i ≤ n. Then for y = (ȳ, 0) ∈ Oi ∩ ∂O

|x− y|2 = |(x̄, xd − ai (x̄))− (ȳ, 0)|2 ≥ |x̄− ȳ|2 + ρ2(x) ,

hence

I(t, x) ≤ Ct
d−1
2 e−

ρ2(x)
ct

∫
Oi∩∂O

gct (x̄− ȳ) ds(y)

= Ct
d−1
2 e−

ρ2(x)
ct

∫
Cd−1

gct
(
hi(u)− hi(v)

)
J
(
hi
)

(v)dv .
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Since hi : Cd → Oi, there exists a constant c1 > 0 such that∣∣hi(u)− hi(v)
∣∣ ≥ c1|u− v|, u, v ∈ Cd .

Therefore,

I(t, x) ≤ Ct
d−1
2 e−

ρ2(x)
ct

∫
Cd−1

gct(u− v)dv ≤ Ct
d−1
2 e−

ρ2(x)
ct ,

and the lemma follows for x ∈ O ∩Oi for every i ≤ n.
If x ∈ O \

⋃
iOi, then ρ(x) ≥ ε and the lemma trivially follows. �

Recall that

W (t, y) =
∑
k

ek(y)Wk(t), t ≥ 0, y ∈ ∂O,

where (ek) is a sequence of functions on ∂O and (Wk) are independent real-valued Wiener
processes.

Proposition 8.10. (i) Assume that
∑

k supy∈∂O e
2
k(y) < +∞. Then for any 1 < p and

θ ∈ (p− 1, 2p− 1), the boundary problem (1.1) defines a Markov family with continuous
trajectories in Lpθ,0.
(ii) Assume that d = 2 and W is a white-noise on ∂O. Then for 1 < p and θ ∈(

3p
2
− 1, 2p− 1

)
the boundary problem (1.1) defines a Markov family with continuous

trajectories in Lpθ,0.

Proof of (i). Using the calculations from the proof of Proposition 8.4, and then our
Lemma 8.9 we obtain

JT,α({ek}, p, θ, 0) ≤ c1

∫
O

[∫ T

0

t−1−d−α (I(t, x))2 dt

]p/2
wθ,0(x)dx

≤ c2

∫
O

[∫ T

0

t−1−d+d−1−αe
−2

ρ2(x)
C1t dt

]p/2
wθ,0(x)dx

≤ c3

∫
O
ρ(x)−p+θ−pα(x)dx.

It is easy to show, see the proof of Lemma 4.5, that the integral is finite if and only if
−p+ θ − pα > −1.

�

Proof of (ii). Using the calculations from the proof of Proposition 8.7, and then our
Lemma 8.9 we obtain

JT,α({ek}, p, θ, 0) ≤ c1

∫
O

[∫ T

0

t−1−d−α
∫
∂O

e−
2|x−y|2

ct ds(y)dt

]p/2
wθ,0(x)dx

≤ c2

∫
O

[∫ T

0

t−1−d+ d−1
2
−αe

−2
ρ2(x)
C1t dt

]p/2
wθ,0(x)dx

≤ c3

∫
O
ρ−

p
2

(d+1)+θ−αp(x)dx.

�
28



8.4. Half-space with spatially homogeneous Wiener process. In this section O =
(0,+∞) × Rm, and W is the so-called spatially homogeneous Wiener process on Rm ≡
{0} × Rm = ∂O. We adopt the notation x = (x0, x1, . . . , xn) = (x0,x).

Definition 8.11. A process W taking values in the space of tempered distributions
S ′(Rm) is called a spatially homogeneous Wiener process if and only if:

(i) It is Gaussian process with continuous trajectories in S ′(Rm).
(ii) For each ψ ∈ S(Rm), t 7→ (W (t), ψ) is a one dimensional Wiener process.

(iii) For each fixed t ≥ 0 the law of W (t) is invariant with respect to all translations
τ ′h : S ′(Rm)→ S ′(Rm), h ∈ Rm, where τh : S(Rm)→ S(Rm), τhψ(·) = ψ(·+ h) for
ψ ∈ S(Rm).

The law of a spatially homogeneous Wiener process W on Rm is characterized by its
spectral measure µ on (Rm,B(Rm)). Recall, see [33] that µ is a positive symmetric Radon
tempered measure on Rm, and for any test functions ψ, φ ∈ S(Rm),

E〈W (t), ψ〉〈W (s), φ〉 = t ∧ s
∫
Rm
Fψ(x)Fφ(x)µ(dx),

where F denotes the Fourier transform. Note, see e.g. [33] that if the spectral measure is
finite, then W is a random field, such that for any x, W (·,x) is a one dimensional Wiener
process. Moreover, for fixed t, the field W (t,x) is stationary in x.

Let

L2
(s)(µ) :=

{
ψ ∈ L2(Rd 7→ C,B(Rm), µ) : ψ(−x) = ψ(x)

}
.

Then, see [33], the Reproducing Kernel Hilbert Space HW of W is given by

HW =
{
Fψ : ψ ∈ L2

(s)(µ)
}

and

〈Fψ,Fφ〉HW =

∫
Rd
ψ(x)φ(x)µ(dx).

Thus any orthonormal basis {ek} of HW is of the form ek = F(fkµ), where {fk} is an
orthonormal basis of L2

(s)(µ). We will identify Rm with ∂(0,+∞)× Rm = {0} × Rm.
We have

JT,α({ek}, p, θ, δ) :=

∫
O

[
t−α
∫ T

0

∑
k

(∫
Rm

∂G

∂ny

(t, x, (0,y))ek(y)dy

)2

dt

]p/2
wθ,δ(x)dx

=

∫
O

[∫ T

0

t−α
∑
k

(∫
Rm

∂G

∂ny

(t, x, (0,y))F(fkµ)(y)dy

)2

dt

]p/2
wθ,δ(x)dx

≤
∫
O

[∫ T

0

t−α
∫
Rm

∣∣∣∣F−1
y

∂G

∂ny

(t, x, (0,y))

∣∣∣∣2 µ(dy)dt

]p/2
wθ,δ(x)dx.(8.5)

Proposition 8.12. Assume that: the spectral measure of W is finite, δ > (m + 1)/2,
p ∈ (1,+∞) and θ ∈ (p− 1, 2p− 1). Then boundary problem (1.1) defines Markov family
with continuous trajectories in Lpθ,δ.
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Proof. If the measure µ is finite, then∫
Rm

∣∣∣∣F−1
y

∂G

∂ny

(t, x, (0,y))

∣∣∣∣2 µ(dy) ≤ µ(Rm) sup
y∈Rm

∣∣∣∣F−1
y

∂G

∂ny

(t, x, (0,y))

∣∣∣∣2
≤ µ(Rm)

[∫
Rm

∣∣∣∣ ∂G∂ny

(t, x, (0,y))

∣∣∣∣ dy

]2

≤ ct−2e−
x20
ct ,

where in the last estimate we use (7.1). We have∫ T

0

t−2−αe−
x20
ct dt ≤

∫ +∞

0

s−2−αe−
1
2sdsx−2−2α

0 ≤ c1x
−2
0 .

Therefore, by (8.5), we have

JT,α({ek}, p, θ, δ) ≤ c1

∫ +∞

0

∫
Rm

min{x0, 1}θx−p−αp0

(
1 + |x0|2 + |x|2

)−δ
dx0dx

≤ c2 + c2

∫ 1

0

xθ−p−αp0 dx0.

�

Remark 8.13. If A = ∆ then G is given by (4.6). Then, with x defined by (4.7),

∂G

∂ny
(t, x, y) = −∂G

∂y0

(t, x, y) =
y0 − x0

2t
g2t(x− y) +

−y0 − x0

2t
g2t(x− y).

Remark 8.14. (7.1) gives estimates for ∂G
∂ny

(t, x, (0,y)). Unfortunately, we are not able to

use them to compare the Fourier transforms of ∂G
∂ny

(t, x, (0,y)) and g̃ct. This problem can

be solved under a certain technical assumption on the spectral measure µ, see the lemma
below. For a measure for which this assumption is violated see [32].

Write

Kα(r) :=

∫ +∞

0

s−2−αe−
1
s
−r2sds, r ≥ 0,

Lemma 8.15. Assume that either A = ∆ or there is a finite symmetric measure µ0

on Rm such that Fµ + Fµ0 is a non-negative measure. Let δ > (m + 1)/2, p > 1 and
θ ∈ (p− 1, 2p− 1). Then for any T > 0, there is a constant C > 0 such that

JT,α({ek}, p, θ, δ) ≤ C+C

∫
Rm

∫ +∞

0

[∫
Rm

Kα

(
x0|y|
C

)
µ(dy)

]p/2
x−p−αp0 wθ,δ((x0,y))dx0dy.

Proof. Taking into account (8.5) and Proposition 8.12 we can assume that Fµ is a non-
negative measure. Then∫

Rm

∣∣∣∣F−1
y

∂G

∂ny

(t, x, (0,y))

∣∣∣∣2 µ(dy)

=

∫
Rm

∫
Rm

∂G

∂nu

(t, x, (0,u))
∂G

∂nv

(t, x, (0,v))Fµ(u− v)dudv

≤ c2
1t
−1

∫
Rm

∫
Rm

gct(x− (0,u))gct(x− (0,v))Fµ(u− v)dudv

≤ c2t
−2e
− x20
c2t

∫
Rm

e
− t|z|

2

c2 µ(dz).
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Therefore, by (8.5),

JT,α({ek}, p, θ, δ) ≤
∫
Rm

∫ +∞

0

[∫
Rm

∫ T

0

c2t
−2−αe

− x20
c2t e

− t|z|
2

c2 dtµ(dz)

]p/2
wθ,δ((x0,y))dx0dy.

Since∫ T

0

c2t
−2−αe

− x20
c2t e

− t|z|
2

c2 dt ≤ x−2−2α
0

∫ +∞

0

s−2e
− 1
s
−x

2
0|z|

2s

c22 ds = x−2−α
0 Kα

(
x0|z|
c2

)
,

the desire conclusion follows. �

If µ(dy) = dy, then W is the co-called cylindrical Wiener process on L2(Rm) or
equivalently ∂W

∂t
(t,y), t ≥ 0, y ∈ Rm, is the space-time white noise. Then Fµ is the

Dirac delta measure. We have the following consequence of Lemma 8.15 and our general
Theorem 2.10. Note that our results on heat semigroups on weighted spaces do not allow
m > 1.

Proposition 8.16. Let m = 1, δ > 1, and let W be a cylindrical Wiener process on
L2(R). Then the boundary problem (1.1) defines a Markov family with continuous trajec-
tories in the space Lpθ,δ for p > 1 and θ ∈

(
3p
2
− 1, 2p− 1

)
.

Proof. We have∫
Rm

Kα

(
x0|z|
C

)
µ(dz) =

∫ +∞

0

s−2−αe−
1
s

∫
Rm

e−
x20|z|

2

C2 sdzds

=

∫ +∞

0

s−2−αe−
1
s

(
2π

C2

2x2
0s

)m/2
ds = C̃x−m0 .

Then, by Lemma 8.15, JT,α({ek}, p, θ, δ) is finite if∫ 1

0

r−
mp
2
−p+θ−αpdr < +∞.

This requires θ > −1 + mp
2

+ p. Since we need 2p − 1 > θ we arrive at the condition
p > mp

2
. Since p ≥ 1 we are able to deal with the boundary problem only in the case of

m = 1. �

In many interesting cases, see e.g. [10], the spectral measure µ of W is absolutely
continuous and its density is the so-called Bessel potential. Namely for a parameter
κ > 0 let

µκ(dy) :=
(
1 + |y|2

)−κ/2
dy.

Then the space correlation Γκ(y) := Fµκ(y) is a non-negative continuous function on
Rm \ {0}. Moreover, asymptotically as |y| → 0,

(8.6) Γκ(y) ≈


Cm,κ|y|κ−m for 0 < κ < m,

Cm,κ log 1
|y| for κ = m,

Cm,κ for κ > m.

Finally

(8.7) Γκ(y) ≈ Cm,κe
−|y|, as |y| → +∞.

Note that in the limit κ ↓ 0 we obtain Lebesgue measure corresponding to the cylin-
drical Wiener process on L2(Rm) treated in Proposition 8.16.
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Proposition 8.17. Let W be a Wiener process on Rm with the spectral measure µκ,
0 < κ ≤ m. (i) If κ ≥ m, then boundary problem (1.1) defines a Markov family with
continuous trajectories in the space Lpθ,δ for p > 1 and θ ∈ (p− 1, 2p− 1).
(ii) If m − 2 < κ < m, then boundary problem (1.1) defines a Markov family with
continuous trajectories in the space Lpθ,δ for

1 < p < +∞, p+
p

2
(m− κ)− 1 < θ < 2p− 1.

Proof. Note that if κ > m then µκ is finite and we may apply our Proposition 8.12.
Therefore we restrict our attention to the case of 0 < κ ≤ m. We have∫

Rm
Kα

(
x0|z|
C

)
µκ(dz) =

∫ +∞

0

s−2−αe−
1
s

∫
Rm

e−
x20|z|

2

C
s
(
1 + |z|2

)−κ/2
dz ds

=

∫ +∞

0

s−2−αe−
1
s

∫
Rm

[
F−1

z e−
x20s

C
|z|2
]

Γκ(z)dz ds

=

∫ +∞

0

s−2−αe−
1
s

∫
Rm

(
2πσ2

)−m/2
e−
|z|2

2σ2 Γκ(z)dz ds,

where σ2 :=
x20s

2C
. Then by (8.7),∫

{|z|≥1}
(2πσ2)−m/2e−

|z|2

2σ2 Γκ(z)dz ≤ C

∫
{|z|≥1}

(2πσ2)−m/2e−
|z|2

2σ2
− |z|
C dz ≤ C1 < +∞,

where C1 < +∞ does not depend on σ.
Next, by (8.6), if κ = m, then∫

{|z|<1}
(2πσ2)−m/2e−

|z|2

2σ2 Γκ(z)dz ≤ C

∫
{|z|<1}

(2πσ2)−m/2e−
|z|2

2σ2 log
1

C|z|
dz

≤ C1

∫ 1

0

(2πσ2)−m/2e−
r2

2σ2 |logCr| rm−1dr.

If m > 1, then r 7→ |logCr| rm−1 is a continuous function on a closed interval [0, 1].
Therefore ∫

{|z|<1}
(2πσ2)−m/2e−

|z|2

2σ2 Γ1(z)dz ≤ C̃1,

where again C̃1 < +∞ does not depend on σ.
If κ = m = 1 then r 7→ | logCr| in integrable on [0, 1] with any power > 1. Therefore,

using the Hölder inequality we obtain that for any q > 1 there is an independent of σ
constant C(q) such that∫

{|z|<1}
(2πσ2)−1/2e−

|z|2

2σ2 Γ1(z)dz ≤ C(q)

(∫ 1

0

(2πσ2)−q/2e−q
r2

2σ2 dr

)1/q

≤ C(q)σ
1−q
2q .

Taking q > 1 small enough we conclude that for any ε > 0 there is an independent of σ
constant Cε such that ∫

{|z|<1}
(2πσ2)−1/2e−

|z|2

2σ2 Γ1(z)dz ≤ Cεσ
−ε.
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Finally if 0 < κ < m, then∫
{|z|<1}

(2πσ2)−m/2e−
|z|2

2σ2 Γκ(z)dz ≤ C2

∫ 1

0

(2πσ2)−m/2e−
r2

2σ2 rκ−m+m−1dr

≤ C2

∫ 1

0

(2πσ2)−m/2e−
r2

2σ2 rκ−1dr

≤ C3σ
−m+1+κ−1

∫ +∞

0

e−
u2

2 uκ−1dr

≤ C4σ
κ−m.

Summing up, we see that there is an independent of x0 constant c1 such that∫
Rm

Kα

(
x0|z|
C

)
µκ(dz) ≤ c1, if κ = m > 1,

and ∫
Rm

Kα

(
x0|z|
C

)
µκ(dz) ≤ c1 + c1x

κ−m
0 , if κ < m.

If κ = m = 1 then for any ε > 0 then there is an independent of x0 constant c(ε) such
that ∫

Rm
Kα

(
x0|z|
C

)
µκ(dz) ≤ c1 + c(ε)x−ε0 .

Thus, by Lemma 8.15, JT,α({ek}, p, θ, δ) is finite if∫ 1

0

x−p+θ−pα0 dx0 < +∞, if κ = m ≥ 1

and ∫ 1

0

x
−p+ p

2
(κ−m)+θ−pα

0 dx0 < +∞, if κ < m.

�

Remark 8.18. Note that, we are not able to treat the case of m > 2 and κ ≤ m− 2.

Appendix A. Proof of Lemma 4.5

Assume that O is a half space. Without any loss of generality we may assume that
O = {x = (x1,x) ∈ Rd : x1 > 0}. We also assume that d > 1. Then∫

O
gct(x− y)ρα(y) dy =

∫ +∞

0

∫
Rd−1

gct(x− y)yα dy

=

∫ +∞

0

(2πct)−1/2 e−
(x1−y1)

2

2ct yα1 dy1

≤ t
α
2

∫
R

(2πc)−1/2 e−
(t
− 1

2 x1−z)
2

2c |z|αdz.

Since

sup
r∈R

∫
R
(2πc)−1/2e−

(r−z)2
2c |z|αdz

≤
∫
|z|≤1

(2πc)−1/2|z|αdz + sup
r∈R

∫
R
(2πc)−1/2e−

(z−r)2
2c dz < +∞,

the desired conclusion follows. �
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Assume that O is a bounded C1,α-domain. For y ∈ Rd we will write y = (y1,y) ∈
Rd−1×R and gct(y) = g

(1)
ct (y1) g

(d−1)
ct (y). Since O is a bounded C1,α-domain, its boundary

∂O can be covered with a finite number of open sets Oi, such that for every i there exists
a C1,α function hi such that (up to a shift and rotation of the domain)

O ∩Oi =
{
y ∈ Rd : y1 > hi (y)

}
.

Moreover, for t small enough we have

Ot ⊂
⋃
i

Oi .

For each i we can define a C1-diffeomorphism

gi : Oi → gi (Oi) , gi (y1,y) =
(
y1 − hi (y) ,y

)
Clearly, the Jacobian J i of gi satisfies the condition |J i(x)| = 1. Therefore, for z =
(z1, z) ∈ gi (Oi) we have

z1 = y1 − hi (y) = inf
v∈Oi∩∂O

∣∣gi (y)− gi (v)
∣∣ .

Since

c1|y − v| ≤
∣∣gi (y)− gi (v)

∣∣ ≤ c2|y − v|, y, v ∈ Oi ∩ O
we find that

c1zd ≤ ρ(y) = ρ (ȳ, yd) ≤ c2zd, y ∈ Ot .
We have ∫

Ot
ρα(y)gct(x− y)dy =

∑
i

∫
Ot∩Oi

ρα(y)gct(x− y)dy =:
∑
i

Ji(t, x) ,

and it is enough to show that for every i

sup
t≤1

sup
x∈O

t−
α
2 Ji(t, x) < +∞ .

Changing variables we obtain

Ji(t, x) ≤ C

∫
Rd
|z1|αgct(z − x)dz = Ct

α
2

∫
R
|y|αg(1)

c

(
xdt
−1/2 − y

)
dy

≤ Ct
α
2 (2πc)−

1
2

∫ 1

−1

|y|αdy + Ct
α
2

∫
{|y|≥1}

g(1)
c

(
xdt
−1/2 − y

)
dy

≤ Ct
α
2 (2πc)−

1
2

∫ 1

−1

|y|αdy + Ct
α
2 . �

Appendix B. C0-property without Assumption 4.4

We are showing that for any p ∈ [1,+∞) and θ ∈ [0, p) there exists a constant Mp,θ

such that

(B.1) |S(t)ψ|Lpθ ≤Mp,θ|ψ|Lpθ , ∀ t ∈ (0, 1], ∀ψ ∈ Lp.

By (4.3) and the Jensen inequality we have

|S(t)ψ|p
Lpθ
≤ Cp

∫
O
ρθ(x)

∫
O
mp
t (y)gct(x− y)|ψ(y)|p dy dx.
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Changing variables we obtain

(B.2)

|S(t)ψ|p
Lpθ

≤ Cptd/2
∫
O/
√
t

ρθ(x
√
t)

∫
O/
√
t

mp
t (y
√
t)gc(x− y)|ψ(y

√
t)|p dy dx

≤ Cptd/2
∫
O/
√
t

ρθ(x
√
t)

∫
O/
√
t

mp
t (y
√
t)gc(x− y)|ψ(y

√
t)|p dy dx.

Recall that ρ(x) = dist (x, ∂O). Define

(O/
√
t)1 :=

{
x ∈ O/

√
t : mt(x

√
t) = ρ(x

√
t)/
√
t < 1

}
and

(O/
√
t)c1 :=

{
x ∈ O/

√
t : mt(x

√
t) = 1

}
.

Then we have

|S(t)ψ|p
Lpθ
≤ Cptd/2 (I1 + I2 + I3 + I4) ,

where

I1 :=

∫
(O/
√
t)1

dx ρθ(x
√
t)

∫
(O/
√
t)1

dy mp
t (y
√
t)gc(x− y)|ψ(y

√
t)|p,

I2 :=

∫
(O/
√
t)1

dx ρθ(x
√
t)

∫
(O/
√
t)c1

dy mp
t (y
√
t)gc(x− y)|ψ(y

√
t)|p,

I3 :=

∫
(O/
√
t)c1

dx ρθ(x
√
t)

∫
(O/
√
t)c1

dy mp
t (y
√
t)gc(x− y)|ψ(y

√
t)|p,

I4 :=

∫
(O/
√
t)c1

dx ρθ(x
√
t)

∫
(O/
√
t)1

dy mp
t (y
√
t)gc(x− y)|ψ(y

√
t)|p.

Set φ(y) = ψ(y
√
t). Taking into account that ρ(z

√
t)/
√
t ≤ 1 for z ∈ (O/

√
t)1, and the

fact that since θ < p

ρp(y
√
t)

tp/2
≤ ρθ(y

√
t)

tθ/2
, y ∈ (O/

√
t)1,

we have

I1 =

∫
(O/
√
t)1

dx ρθ(x
√
t)

∫
(O/
√
t)1

dy
ρp(y
√
t)

tp/2
gc(x− y)|φ(y)|p

≤
∫

(O/
√
t)1

dx
ρθ(x
√
t)

tθ/2

∫
(O/
√
t)1

dy ρθ(y
√
t)gc(x− y)|φ(y)|p

≤
∫

(O/
√
t)1

gc(x− y)dx

∫
(O/
√
t)1

dy ρθ(y
√
t)|φ(y)|p

≤
∫
Rd
gc(x− y)dx

∫
(O/
√
t)1

dy ρθ(y
√
t)|φ(y)|p

≤ C1

∫
(O/
√
t)1

dy ρθ(y
√
t)|φ(y)|p ≤ C1|φ|pLpθ(O/

√
t)
.
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Taking into account that (O/
√
t)c1, 1 ≤ ρ(z

√
t)/
√
t we find that

I2 =

∫
(O/
√
t)1

dx ρθ(x
√
t)

∫
(O/
√
t)c1

dy gc(x− y)|φ(y)|p

≤
∫
Rd
gc(x− y)dxtθ/2

∫
(O/
√
t)c1

dy|φ(y)|p

≤ C1

∫
(O/
√
t)c1

dy
ρθ(y
√
t)

tθ/2
tθ/2|φ(y)|p

≤ C1|φ|pLpθ(O/
√
t)

and

I3 =

∫
(O/
√
t)c1

dx ρθ(x
√
t)

∫
(O/
√
t)c1

dy gc(x− y)|φ(y)|p

=

∫
(O/
√
t)c1

dx
ρθ(x
√
t)

ρθ(y
√
t)
gc(x− y)

∫
(O/
√
t)c1

dy ρθ(y
√
t)|φ(y)|p

≤ sup
y∈(O/

√
t)c1

∫
(O/
√
t)c1

dx
ρθ(x
√
t)

ρθ(y
√
t)
gc(x− y)|φ|p

Lpθ(O/
√
t)
,

and finally, as

ρp(y
√
t)

tp/2
≤ ρθ(y

√
t)

tθ/2
, y ∈ (O/

√
t)1,

we have

I4 =

∫
(O/
√
t)c1

dx ρθ(x
√
t)

∫
(O/
√
t)1

dy
ρp(y
√
t)

tp/2
gc(x− y)|φ(y)|p

≤
∫

(O/
√
t)c1

dx ρθ(x
√
t)

∫
(O/
√
t)1

dy
ρθ(y
√
t)

tθ/2
gc(x− y)|φ(y)|p

≤
∫

(O/
√
t)c1

dx
ρθ(y
√
t)

tθ/2
gc(x− y)

∫
(O/
√
t)1

dy ρθ(x
√
t)|φ(y)|p

≤ sup
y∈(O/

√
t)1

∫
(O/
√
t)c1

dx
ρθ(y
√
t)

tθ/2
gc(x− y)|φ|p

Lpθ(O/
√
t)
.

Note that

|φ|p
Lpθ(O/

√
t)

= t−d/2|ψ|p
Lpθ
.

Therefore the proof will be completed as soon as we show that

A1 := sup
t∈(0,1]

sup
y∈(O/

√
t)c1

∫
(O/
√
t)c1

ρθ(x
√
t)

ρθ(y
√
t)
gc(x− y)dx < +∞

and

A2 := sup
t∈(0,1]

sup
y∈(O/

√
t)1

∫
(O/
√
t)c1

ρθ(x
√
t)

tθ/2
gc(x− y)dx < +∞.

To do this note that

ρ(z
√
t) = dist

(
z
√
t, ∂O

)
=
√
t dist

(
z, ∂O/

√
t
)
.
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Therefore

A1 = sup
t∈(0,1]

sup
y∈(O/

√
t)c1

∫
(O/
√
t)c1

(
dist

(
x, ∂O/

√
t
)

dist
(
y, ∂O/

√
t
))θ

gc(x− y)dx

and

A2 = sup
t∈(0,1]

sup
y∈(O/

√
t)1

∫
(O/
√
t)c1

dist
(
x, ∂O/

√
t
)θ
gc(x− y)dx.

Given a domain D ⊂ Rd, D 6= Rd, set

D1 = {x ∈ D : dist (x, ∂D) < 1} ,
Dc1 = {x ∈ D : dist (x, ∂D) ≥ 1} ,

A1(D) = sup
y∈Dc1

∫
Dc1

(
dist (x, ∂D)

dist (y, ∂D)

)θ
exp

{
−|x− y|

2

c

}
dx,

A2(D) = sup
y∈D1

∫
Dc1

dist (x, ∂D)θ exp

{
−|x− y|

2

c

}
dx.

We have to show that there is a constant N (independent of D but it can depend on d,
θ and c) such that

(B.3) A1(D) + A2(D) ≤ N.

We note first that for any x, y ∈ Rd

|dist (x, ∂D)− dist (y, ∂D)| ≤ |x− y| .
We will consider A1(D) first. For every y ∈ Dc1 we obtain(

dist (x, ∂D)

dist (y, ∂D)

)θ
=

(
dist (x, ∂D)− dist (y, ∂D)

dist (y, ∂D)
+ 1

)θ
≤ (|x− y|+ 1)θ .

Therefore,

A1(D) ≤ sup
y∈Dc1

∫
Dc1

(|x− y|+ 1)θ exp

{
−|x− y|

2

c

}
dx

≤ sup
y∈Dc1

∫
Rd

(|x− y|+ 1)θ exp

{
−|x− y|

2

c

}
dx

=

∫
Rd

(1 + |z|)θ exp

{
−|z|

2

c

}
dx < +∞.

Consider now A2(D). Then, by similar arguments for every y ∈ D1 we obtain

dist (x, ∂D)θ ≤ (dist (x, ∂D)− dist (y, ∂D) + dist (y, ∂D))θ

≤ (|x− y|+ 1)θ

and again

A2(D) ≤
∫
Rd

(1 + |z|)θ exp

{
−|z|

2

c

}
dz < +∞ .

Combining the two estimates above we obtain (B.3) with

N = 2

∫
Rd

(1 + |z|)θ exp

{
−|z|

2

c

}
dz < +∞ . �
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We are showing now the the gradient estimates. Using Assumption 4.2 ((4.2) and (4.3))
and the Jensen inequality we obtain∣∣∣∣∂S(t)ψ

∂xj

∣∣∣∣p
Lpθ

=

∫
O
ρθ(x)

∣∣∣∣∫
O

∂

∂xj
G(t, x, y)ψ(y)dy

∣∣∣∣p dx

≤ Cp

tp/2

∫
O
ρθ(x)

∫
O
mp
t (y)gct(x− y)|ψ(y)|pdydx

=
Cptd/2

tp/2

∫
O/
√
t

ρθ(x
√
t)

∫
O/
√
t

mp
t (y
√
t)gc(x− y)|ψ(y

√
t)|pdydx

=
Cptd/2

tp/2
(I1 + I2 + I3 + I4) ,

where Ii, i = 1, 2, 3, 4 are defined in the previous section. Therefore we can use the
estimates for Ii and the desired conclusion follows. �
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