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Abstract

We introduce a new family of affineW-algebrasW k(a) associated with the centralizers
of arbitrary nilpotent elements in glN . We define them by using a version of the BRST
complex of the quantum Drinfeld–Sokolov reduction. A family of free generators ofW k(a)
is produced in an explicit form. We also give an analogue of the Fateev–Lukyanov realization
for the newW-algebras by applying a Miura-type map.

1 Introduction
The affine W-algebra W k(g) at the level k ∈ C associated with a simple Lie algebra g is a
vertex algebra defined by a quantum Drinfeld–Sokolov reduction [8]. These algebras originate
in conformal field theory and first appeared in the work of Zamolodchikov [17] and Fateev and
Lukyanov [7]. They were intensively studied both in mathematics and physics literature; see e.g.
[1], [2], [5], [9, Ch. 15] for detailed reviews. More general W-algebras W k(g, f) were intro-
duced in [11], which depend on a simple Lie (super)algebra g and an (even) nilpotent element
f ∈ g so thatW k(g) corresponds to a principal nilpotent element f . Their counterparts for odd
nilpotent elements f were studied in [12] and [15] from the viewpoint of quantum hamiltonian
reduction.

Our goal in this paper is to introduce and describe some basic properties of W-algebras
W k(a), where the underlying Lie algebra a is the centralizer of a nilpotent element e in glN . In
the case e = 0 the corresponding algebra coincides with the principalW-algebraW k(glN).

We follow [4] to equip the Lie algebra a with an invariant symmetric bilinear form and
introduce the corresponding affine Kac–Moody algebra â. Its vacuum module V k(a) at the level
k is a vertex algebra. The Lie algebra a admits a triangular decomposition a = n− ⊕ h ⊕ n+
which gives rise to a Clifford algebra associated with n+ and we let F be its vacuum module.
As with the case of simple Lie algebras [9, Ch. 15], the vertex algebra Ck(a) = V k(a) ⊗ F
acquires a structure of a BRST complex of the quantum Drinfeld–Sokolov reduction. We show
that its cohomology Hk(a)i is zero for all degrees i 6= 0 and define the W-algebra by setting
W k(a) = Hk(a)0.

Furthermore, we give an explicit construction of free generators of the W-algebra W k(a).
In the particular case e = 0 they coincide with those previously found in [3]. Similar to this
particular case, by taking the limit k → ∞ we get a commutative algebra isomorphic to the
classicalW-algebraW(a) introduced in [14], which is also isomorphic to the center of the vertex
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algebra V k(a) at the critical level k = −N as described in [4] and [13]. On the other hand, the
quantum Miura map applied to the generators ofW k(a) yields its realization as a subalgebra of
the vertex algebra V k+N(h) associated with the diagonal subalgebra h of a. In the case e = 0 we
recover the corresponding realization [7] ofW k(glN) as in [3]; see also [2].

Note that in the particular case where all Jordan blocks of the nilpotent e are of the same
size, the Lie algebra a is isomorphic to a truncated polynomial current algebra of the form
gln[v]/(vp = 0), which is also known as the Takiff algebra. This leads to a natural generalization
of our definition of theW-algebras to the class of Takiff algebras g[v]/(vp = 0) associated with
an arbitrary simple Lie algebra g.

2 BRST cohomology for centralizers
Here we adapt the well-known BRST construction of vertex algebras to the case of centralizers in
type A. We generally follow [1, Sec. 4] and [9, Ch. 15] with some straightforward modifications.

Let e ∈ glN be a nilpotent matrix and let a be the centralizer of e in glN . Suppose that
the Jordan canonical form of e has Jordan blocks of sizes λ1, . . . , λn, where λ1 6 · · · 6 λn and
λ1 + · · ·+λn = N . The corresponding pyramid is a left-justified array of rows of unit boxes such
that the top row contains λ1 boxes, the next row contains λ2 boxes, etc. Denote by q1 > · · · > ql
the column lengths of the pyramid (with l = λn). The row-tableau is obtained by writing the
numbers 1, . . . , N into the boxes of the pyramid consecutively by rows from left to right. For
instance, the row-tableau

1 2
3 4 5
6 7 8 9

corresponds to the pyramid with the rows of lengths 2, 3, 4; its column lengths are 3, 3, 2, 1. We
let row(a) and col(a) denote the row and column number of the box containing the entry a. Let
eab be the standard basis elements of glN . For any 1 6 i, j 6 n and λj −min(λi, λj) 6 r < λj
set

E
(r)
ij =

∑
row(a)=i, row(b)=j

col(b)−col(a)=r

eab, (2.1)

summed over a, b ∈ {1, . . . , N}. It is well-known that the elements E(r)
ij form a basis of the Lie

algebra a; see e.g. [6] and [16]. The commutation relations are given by[
E

(r)
ij , E

(s)
hl

]
= δhj E

(r+s)
i l − δi lE(r+s)

hj ,

assuming that E(r)
ij = 0 for r > λj .

2.1 Affine vertex algebra
The Lie algebra g = glN gets a Z-gradation g = ⊕

r∈Z gr determined by e such that the degree
of the basis element eab equals col(b)−col(a). We thus get an induced Z-gradation a = ⊕

r∈Z ar
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on the Lie algebra a, where ar = a ∩ gr. Note that the element (2.1) is homogeneous of degree
r. The subalgebra g0 is isomorphic to the direct sum

g0 ∼= glq1
⊕ · · · ⊕ glq

l
. (2.2)

Equip this subalgebra with the normalized Killing form

〈X, Y 〉 = 1
2N tr(adX adY ), X, Y ∈ g0. (2.3)

Now define an invariant symmetric bilinear form on a following [4]. The value 〈X, Y 〉 for
homogeneous elementsX, Y ∈ a is found by (2.3) forX, Y ∈ a0, and is zero otherwise. Writing
X = X1 + · · ·+Xl and Y = Y1 + · · ·+ Yl in accordance with the decomposition (2.2), we get

〈X, Y 〉 = 1
N

l∑
i=1

(
qi trXiYi − trXi trYi

)
.

Therefore, if λi = λj for some i 6= j then〈
E

(0)
ij , E

(0)
ji

〉
= 1
N

(q1 + · · ·+ qλi
) = 1

N

(
λ1 + · · ·+ λi−1 + (n− i+ 1)λi

)
,

and for all i and j we have〈
E

(0)
ii , E

(0)
jj

〉
= 1
N

(
δij(λ1 + · · ·+ λi−1 + (n− i+ 1)λi)−min(λi, λj)

)
,

whereas all remaining values of the form on the basis vectors are zero.
The affine Kac–Moody algebra â is the central extension â = a [t, t−1]⊕CK, where a[t, t−1]

is the Lie algebra of Laurent polynomials in t with coefficients in a. For any r ∈ Z and X ∈ g
we will write X[m] = X tm. The commutation relations of the Lie algebra â have the form[

X[m], Y [p]
]

= [X, Y ][m+ p] +mδm,−p〈X, Y 〉K, X, Y ∈ a,

and the element K is central in â. The vacuum module at the level k ∈ C over â is the quotient

V k(a) = U(â)/I,
where I is the left ideal of U(â) generated by a[t] and the elementK−k. This module is equipped
with a vertex algebra structure and is known as the (universal) affine vertex algebra associated
with a; see [9], [10]. The vacuum vector is the image of the element 1 in the quotient and we
will denote it by |0〉. Furthermore, introduce the fields

E
(r)
ij (z) =

∑
m∈Z

E
(r)
ij [m] z−m−1 ∈ EndV k(a)[[z, z−1]]

so that under the state-field correspondence map we have

Y : E(r)
ij [−1]|0〉 7→ E

(r)
ij (z).

The map Y extends to the whole of V k(a) with the use of normal ordering. The translation
operator T on V k(a) is determined by the properties

T : |0〉 7→ 0 and
[
T,X[m]

]
= −mX[m− 1], X ∈ a, m < 0, (2.4)

where X[m] is understood as the operator of left multiplication by X[m].
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2.2 Affine Clifford algebra
Consider the following triangular decomposition of the Lie algebra a,

a = n− ⊕ h⊕ n+, (2.5)

where the subalgebras are defined by

n− = span of {E(r)
ij | i > j}, n+ = span of {E(r)

ij | i < j} and h = span of {E(r)
ii },

with the superscript r ranging over all admissible values. Denote by Cl the Clifford algebra
associated with n+[t, t−1], so it is generated by odd elements ψ(r)

ij [m] and ψ
(r)∗
ij [m] with the

parameters satisfying the conditions 1 6 i < j 6 n together with λj − λi 6 r 6 λj − 1 and
m ∈ Z . The defining relations are given by the anti-commutation relations[

ψ
(r)
ij [m], ψ(r)∗

ij [−m]
]

= 1,

while all other pairs of generators anti-commute. Let F be the Fock representation of Cl gener-
ated by a vector 1 such that

ψ
(r)
ij [m]1 = 0 for m > 0 and ψ

(r)∗
ij [m]1 = 0 for m > 0.

The space F is a vertex algebra with the vacuum vector 1, and the translation operator T is
determined by the properties T : 1 7→ 0 and[

T, ψ
(r)
ij [m]

]
= −mψ(r)

ij [m− 1],
[
T, ψ

(r)∗
ij [m]

]
= −(m− 1)ψ(r)∗

ij [m− 1].

The fields are defined by

ψ
(r)
ij (z) =

∑
m∈Z

ψ
(r)
ij [m] z−m−1 and ψ

(r)∗
ij (z) =

∑
m∈Z

ψ
(r)∗
ij [m] z−m

so that
Y : ψ(r)

ij [−1]1 7→ ψ
(r)
ij (z) and Y : ψ(r)∗

ij [0]1 7→ ψ
(r)∗
ij (z).

The vertex algebra F has a Z-gradation F = ⊕
i∈Z F i, defined by

deg 1 = 0, degψ(r)
ij [m] = −1 and degψ(r)∗

ij [m] = 1.

2.3 BRST complex
Introduce the vertex algebra Ck(a) as the tensor product

Ck(a) = V k(a)⊗F .

We will use notation |0〉 for its vacuum vector |0〉⊗ 1. The vertex algebra Ck(a) is Z-graded, its
i-th component has the form

Ck(a)i = V k(a)⊗F i.
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Consider the fields Q(z) and χ(z) defined by

Q(z) =
∑
i<j

E
(a)
ij (z)ψ(a)∗

ij (z)−
∑
i<j<h

ψ
(a)∗
ij (z)ψ(b)∗

jh (z)ψ(a+b)
ih (z), (2.6)

and

χ(z) =
n−1∑
i=1

ψ
(λi+1−1)∗
i i+1 (z). (2.7)

To simplify the formulas, here and throughout the paper we use the convention that summation
over all admissible values of repeated superscripts of the form a, b, c is assumed. For instance,
summation over a running over the values λj − λi, . . . , λj − 1 is assumed within the first sum in
(2.6). Define the odd endomorphisms dst and χ of Ck(a) as the residues (coefficients of z−1) of
the fields (2.6) and (2.7),

dst = Q(0) and χ =
n−1∑
i=1

ψ
(λi+1−1)∗
i i+1 [1].

Lemma 2.1. We have the relations

d2
st = χ2 = [dst, χ] = 0.

Proof. The relations are verified by the standard OPE calculus with the use of the Taylor formula
and Wick theorem [10]. Using the basic OPEs

E
(r)
ij (z)E(s)

hl (w) ∼ 1
z − w

(
δhj E

(r+s)
i l (w)− δi lE(r+s)

hj (w)
)

+
k 〈E(r)

ij , E
(s)
hl 〉

(z − w)2 , (2.8)

and
ψ

(r)
ij (z)ψ(r)∗

ij (w) ∼ 1
z − w

, ψ
(r)∗
ij (z)ψ(r)

ij (w) ∼ 1
z − w

, (2.9)

we find that the OPE Q(z)Q(w) is regular, thus implying that d2
st = 0. The remaining relations

are straightforward to verify.

By Lemma 2.1, the odd endomorphism d = dst + χ of Ck(a) has the properties d2 = 0
and d : Ck(a)i → Ck(a)i+1. We thus get an analogue (Ck(a)•, d) of the BRST complex of the
quantum Drinfeld–Sokolov reduction, associated with the Lie algebra a; cf. [9, Ch. 15]. Since
d is a residue of a vertex operator, the cohomology Hk(a)• of the complex is a vertex algebra
which we will use to define and describe theW-algebrasW k(a).

3 W-algebrasW k(a)
Introduce another Z-gradation on Ck(a)• by defining the (conformal) degrees by

deg′E(r)
ij [m] = deg′ ψ(r)

ij [m] = −m+ i− j and deg′ ψ(r)∗
ij [m] = −m+ j − i.

Observe that the differential d has degree 0 and so it preserves this gradation thus defining a
Z-gradation on the cohomology Hk(a)•.
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Definition 3.1. The Z-graded vertex algebraHk(a)0 is called theW-algebra associated with the
centralizer a at the level k and denoted byW k(a).

Our next goal is to prove the following analogue of [9, Thm 15.1.9] describing the structure
of principalW-algebras associated with simple Lie algebras.

Theorem 3.2. The W-algebra W k(a) is strongly generated by elements w1, . . . , wN of the re-
spective degrees

1, . . . , 1︸ ︷︷ ︸
λn

, 2, . . . , 2︸ ︷︷ ︸
λn−1

, . . . , n, . . . , n︸ ︷︷ ︸
λ1

.

Moreover, Hk(a)i = 0 for all i 6= 0.

The proof relies on essentially the same arguments as in [9, Ch. 15] (see also [1, Sec. 4])
which we will outline in the rest of this section. A family of generators w1, . . . , wN will be
produced in Sec. 4.

For all 1 6 i < j 6 n and r = λj − λi, . . . , λj − 1 introduce the fields

e
(r)
ij (z) = E

(r)
ij (z) +

∑
h>j

ψ
(a)
ih (z)ψ(a−r)∗

jh (z)−
∑
h<i

ψ
(a)
hj (z)ψ(a−r)∗

hi (z), (3.1)

where we keep using the convention on the summation over a as in (2.6). Similarly, for i > j
and r = 0, 1, . . . , λj − 1 set

e
(r)
ij (z) = E

(r)
ij (z) +

∑
h>i

: ψ(a)
ih (z)ψ(a−r)∗

jh (z) : −
∑
h<j

: ψ(a)
hj (z)ψ(a−r)∗

hi (z) : . (3.2)

Note that by the defining relations in the Clifford algebra Cl, the normal ordering is necessary
only for the case where i = j and r = 0. Introduce Fourier coefficients e(r)

ij [m] of the fields (3.1)
and (3.2) by setting

e
(r)
ij (z) =

∑
m∈Z

e
(r)
ij [m] z−m−1.

In the formulas of the next lemmas we assume that the fields with out-of-range parameters
are equal to zero.

Lemma 3.3. (i) For i > j and h < l we have[
e

(r)
ij [m], ψ(s)∗

hl [p]
]

= δlj ψ
(s−r)∗
hi [m+ p]− δhi ψ(s−r)∗

jl [m+ p]. (3.3)

Moreover, if i > j and h > l then[
e

(r)
ij [m], e(s)

hl [p]
]

= δhj e
(r+s)
i l [m+ p]− δi l e(r+s)

hj [m+ p] +mδm,−p (k +N)〈E(r)
ij , E

(s)
hl 〉.

(ii) For i < j and h < l we have[
e

(r)
ij [m], ψ(s)

hl [p]
]

= δhj ψ
(r+s)
i l [m+ p]− δi l ψ(r+s)

kj [m+ p]

and [
e

(r)
ij [m], e(s)

hl [p]
]

= δhj e
(r+s)
i l [m+ p]− δi l e(r+s)

hj [m+ p].
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Proof. All relations are easily verified with the use of the OPEs (2.8) and (2.9).

For all i = 1, . . . , n set

αi = −λi + k +N

N

(
λ1 + · · ·+ λi−1 + (n− i+ 1)λi

)
. (3.4)

Lemma 3.4. The following relations hold for all i > j:

[
dst, e

(r)
ij (z)

]
=

i−1∑
h=j

: e(a+r)
hj (z)ψ(a)∗

hi (z) : −
i∑

h=j+1
: ψ(a)∗

jh (z)e(a+r)
ih (z) : + αj δr0∂zψ

(0)∗
ji (z),

[
χ, e

(r)
ij (z)

]
= ψ

(λi+1−r−1)∗
j i+1 (z)− ψ(λj−r−1)∗

j−1 i (z). (3.5)

Moreover, for all i < j we have[
dst, e

(r)
ij (z)

]
= 0,

[
χ, e

(r)
ij (z)

]
= 0,[

dst, ψ
(r)
ij (z)

]
= e

(r)
ij (z),

[
χ, ψ

(r)
ij (z)

]
= δi j−1δr λj−1,

and [
dst, ψ

(r)∗
ij (z)

]
= −

∑
i<h<j

ψ
(a)∗
ih (z)ψ(r−a)∗

hj (z),
[
χ, ψ

(r)∗
ij (z)

]
= 0.

Proof. All relations are verified by using the OPEs (2.8) and (2.9). We give some details for
the proof of the first relation. As a first step, by a direct computation with the use of the Wick
theorem we get the OPE

Q(z)e(r)
ij (w) ∼ 1

z − w

( i−1∑
h=j

: e(a+r)
hj (w)ψ(a)∗

hi (w) : −
i∑

h=j+1
: e(a+r)

ih (w)ψ(a)∗
jh (w) :

)

+ 1
(z − w)2 δr0

(
k〈E(0)

ij , E
(0)
ji 〉+ λ1 + · · ·+ λj−1 + (n− i)λj

)
ψ

(0)∗
ji (z),

where the term ψ
(0)∗
ji (z) is nonzero only if j < i and λi = λj . Relation (3.3) of Lemma 3.3

implies (assuming summation over a) that

: e(a+r)
ih (w)ψ(a)∗

jh (w) : = :ψ(a)∗
jh (w)e(a+r)

ih (w) : + δr0λj ∂wψ
(0)∗
ji (w).

The required relation now follows by applying the Taylor formula to ψ(0)∗
ji (z) to write

ψ
(0)∗
ji (z) = ψ

(0)∗
ji (w) + (z − w)∂wψ(0)∗

ji (w) + . . . ,

and then by taking the residue over z in the resulting expressions.
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Denote by Ck(a)0 the subspace of Ck(a) spanned by all vectors of the form

e
(r1)
i1j1 [m1] . . . e(rq)

iqjq [mq]ψ(s1)∗
h1l1 [p1] . . . ψ(st)∗

htlt
[pt] |0〉, ia > ja, ha < la,

and by Ck(a)+ the subspace of Ck(a) spanned by all vectors of the form

e
(r1)
i1j1 [m1] . . . e(rq)

iqjq [mq]ψ(s1)
h1l1 [p1] . . . ψ(st)

htlt
[pt] |0〉, ia < ja, ha < la.

By Lemma 3.3, both Ck(a)0 and Ck(a)+ are vertex subalgebras of Ck(a). Furthermore, by
Lemma 3.4 each of the subalgebras is preserved by the differential d = dst + χ. This implies the
tensor product decomposition of complexes

Ck(a)• ∼= Ck(a)•0 ⊗ Ck(a)•+.

Hence the cohomology of Ck(a)• is isomorphic to the tensor product of the cohomologies of
Ck(a)•0 and Ck(a)•+.

By Lemma 3.4, for i < j we have[
d, e

(r)
ij [m]

]
= 0,

[
d, ψ

(r)
ij [m]

]
= e

(r)
ij [m] + δi j−1δr λj−1δm,−1.

Therefore, the complexCk(a)•+ has no higher cohomologies, while its zeroth cohomology is one-
dimensional; see [9, Sec 15.2.6]. So the cohomology of Ck(a)• is isomorphic to the cohomology
of the complex Ck(a)•0. To calculate the latter, equip this complex with a double gradation by
setting

bideg e(r)
ij [m] = (i− j, j − i), bidegψ(r)∗

ij [m] = (j − i, i− j + 1).
Then Ck(a)•0 acquires a structure of bicomplex with bidegχ = (1, 0) and bideg dst = (0, 1).
Take χ as the zeroth differential of the associated spectral sequence and dst as the first. Next we
compute the cohomology of Ck(a)•0 with respect to χ.

Consider the linear span of all fields e(r)
ij (z) with i > j and r = 0, 1, . . . , λj − 1. We will

choose a new basis of this vector space which is formed by the fields

P
(r)
l (z) = e

(r)
nn−l+1(z) + e

(r+λn−λ2)
n−1n−l (z) + · · ·+ e

(r+λn+···+λl+1−λn−l+1−···−λ2)
l1 (z)

for l = 1, . . . , n and r = 0, 1, . . . , λn−l+1 − 1 together with

I
(r)
ij (z) =

i∑
h=1

e
(r+λj−1+···+λj−h+1−λi−···−λi−h+2)
j−h i−h+1 (z)

for i < j and r = 0, 1, . . . , λi − 1. The following properties of the new basis vectors are
immediate from (3.5).

Lemma 3.5. We have the relations[
χ, P

(r)
l (z)

]
= 0 and

[
χ, I

(r)
ij (z)] = ψ

(λj−r−1)∗
i j (z).
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Lemma 3.5 allows us to apply the arguments of [9, Sec. 15.2.9] to conclude that all higher
cohomologies of the complex Ck(a)•0 with respect to χ vanish, while the zeroth cohomology is
the commutative vertex subalgebra of Ck(a)•0 spanned by all monomials

P
(r1)
l1 [m1] . . . P (rq)

lq
[mq] |0〉, (3.6)

where we use the Fourier coefficients P (r)
l [m] defined by

P
(r)
l (z) =

∑
m∈Z

P
(r)
l [m]z−m−1. (3.7)

By a standard procedure outlined in [9, Sec. 15.2.11], each element of this subalgebra gives
rise to a cocycle in the complex Ck(a)•0 with the differential d. Moreover, the cocycles W (r)

l

corresponding to the vectors P (r)
l [−1]|0〉 with l = 1, . . . , n and r = 0, 1, . . . , λn−l+1−1 strongly

generate theW-algebraW k(a). The proof of Theorem 3.2 is completed by the observation that
the conformal degree of the generator W (r)

l equals l.

4 Generators ofW k(a)
For an n × n matrix A = [aij] with entries in a ring we will consider its column-determinant
defined by

cdetA =
∑
σ∈Sn

sgn σ · aσ(1) 1 . . . aσ(n)n.

We will produce generators of the W-algebra W k(a) as elements of the vertex algebra
Ck(a)0. Combine the Fourier coefficients e(r)

ij [−1] ∈ EndCk(a)0 into polynomials in a vari-
able u by setting

eij(u) =
λj−1∑
r=0

e
(r)
ij [−1]ur, i > j.

Let x be another variable and consider the matrix

E =



x+ α1T + e11(u) −uλ2−1 0 . . . 0
e21(u) x+ α2T + e22(u) −uλ3−1 . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . −uλn−1

en1(u) en2(u) . . . . . . x+ αnT + enn(u)


,

where the constants αi are defined in (3.4). Its column-determinant is a polynomial in x of the
form

cdet E = xn + w1(u)xn−1 + · · ·+ wn(u), wl(u) =
∑
r

w
(r)
l ur, (4.1)

so that the coefficients w(r)
l are endomorphisms of Ck(a)0.

The particular case e = 0 of the following theorem (that is, with λ1 = · · · = λn = 1) is
contained in [3, Thm 2.1].
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Theorem 4.1. All elements w(r)
l |0〉 with l = 1, . . . , n and

λn−l+2 + · · ·+ λn < r + l 6 λn−l+1 + · · ·+ λn (4.2)

belong to theW-algebraW k(a). Moreover, theW-algebra is strongly generated by these ele-
ments.

Proof. The first part of the theorem will follow if we show that the elements w(r)
l |0〉 ∈ Ck(a)0

are annihilated by the differential d. To verify this property, it will be convenient to identify
Ck(a)0 with an isomorphic vertex algebra Ṽ k(a) defined as follows; cf. [3]. Consider the Lie
superalgebra (

b[t, t−1]⊕ CK
)
⊕m[t, t−1], (4.3)

where the Lie algebra b is spanned by the vectors e(r)
ij with i > j and r = 0, 1, . . . , λj − 1

understood as basis elements of the low triangular part n− ⊕ h in the decomposition (2.5) via
the identification e(r)

ij  E
(r)
ij , the even element K is central and m is the supercommutative Lie

superalgebra spanned by (abstract) odd elements ψ(r)∗
ij with i < j and r = λj − λi, . . . , λj − 1.

The even component of the Lie superalgebra (4.3) is the Kac–Moody affinization b[t, t−1]⊕CK
of b with the commutation relations given by[

e
(r)
ij [m], e(s)

hl [p]
]

= δhj e
(r+s)
i l [m+ p]− δi l e(r+s)

hj [m+ p] +mδm,−pK 〈E(r)
ij , E

(s)
hl 〉,

where the element e(r)
ij [m] is now understood as the vector e(r)

ij t
m. The remaining commutation

relations coincide with those in (3.3), where ψ(r)∗
ij [m] is understood as the vector ψ(r)∗

ij tm−1.
Now define Ṽ k(a) as the representation of the Lie superalgebra (4.3) induced from the one-
dimensional representation of (b[t]⊕CK)⊕m[t] on which b[t] and m[t] act trivially and K acts
as k + N . Then Ṽ k(a) is a vertex algebra isomorphic to Ck(a)0 so that the fields with the same
names respectively correspond to each other. Moreover, the cyclic span of the vacuum vector
over the Lie algebra b[t, t−1] ⊕ CK is a subalgebra of the vertex algebra Ṽ k(a) isomorphic to
the vacuum module V k+N(b).

Observe that the coefficients w(r)
l defined in (4.1) can now be understood as elements of

the universal enveloping algebra U(t−1b[t−1]). As a vertex algebra, Ṽ k(a) is equipped with the
(−1)-product, and each Fourier coefficient e(r)

ij [m] withm < 0 can be regarded as the operator of
left (−1)-multiplication by the vector e(r)

ij [m]|0〉, and which is the same as the left multiplication
by the element e(r)

ij [m] in the algebra U(t−1b[t−1]). Therefore, the monomials in the elements
e

(r)
ij [m] which occur in the expansion of the column-determinant cdet E can be regarded as the

corresponding (−1)-products calculated consecutively from right to left, starting from the vac-
uum vector.

By Lemma 3.4, for i > j we have the relations

[
d, e

(r)
ij [−1]

]
=

i−1∑
h=j

e
(a+r)
hj [−1]ψ(a)∗

hi [0]−
i∑

h=j+1
ψ

(a)∗
jh [0]e(a+r)

ih [−1]

+ ψ
(λi+1−r−1)∗
j i+1 [0]− ψ(λj−r−1)∗

j−1 i [0] + αj δr0ψ
(0)∗
ji [−1].
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Introducing the Laurent polynomials

φij =
λi−1∑

r=λi−λj

ψ
(r)∗
ji [0]u−r, i > j,

we can write the relations in the form

[
d, eij(u)

]
=
{ i−1∑
h=j

ehj(u)φih −
i∑

h=j+1
φhj eih(u) + φi+1 ju

λi+1−1 − φi j−1u
λj−1 + αjT φij

}
+
,

where the symbol {. . . }+ indicates the component of a Laurent polynomial containing only
nonnegative powers of u, {∑

i

ciu
i
}

+
=
∑
i>0

ciu
i.

Let Eij denote the (i, j) entry of the matrix E . Since d commutes with the translation operator
T , we come to the commutation relations

[
d, Eij

]
=
{ i−1∑
h=j
Ehj φih −

i∑
h=j+1

φhj Eih + φi+1 ju
λi+1−1 − φi j−1u

λj−1
}

+
, (4.4)

which hold for i > j. The column-determinant of E can be written explicitly in the form1

cdet E =
n−1∑
p=0

∑
0=i0<i1<···<ip<ip+1=n

Ei1i0+1 Ei2 i1+1 . . . Eip+1 ip+1 u
λj1−1+···+λjq−1,

where {j1, . . . , jq} is the complement to the subset {i0+1, . . . , ip+1} in the set {1, . . . , n}. Since
d is the residue of a vertex operator, d is a derivation of the (−1)-product on Ṽ k(a). Hence, using
(4.4), we get

[
d, cdet E

]
=

n−1∑
p=0

∑
0=i0<i1<···<ip<ip+1=n

p∑
s=0
Ei1i0+1 . . . Eis is−1+1

×
{ ∑
is<i

′
s+1<is+1

Ei′s+1 is+1 φis+1 i
′
s+1
−

∑
is<i

′
s<is+1

φi′s+1 is+1 Eis+1 i′s+1

+ φis+1+1 is+1u
λis+1+1−1 − φis+1 isu

λis+1−1
}

+

× Eis+2 is+1+1 . . . Eip+1 ip+1 u
λj1−1+···+λjq−1.

Now apply the quasi-associativity property of the (−1)-product [10, Ch. 4],

(a(−1)b)(−1)c = a(−1)(b(−1)c) +
∑
j>0

a(−j−2)(b(j)c) +
∑
j>0

b(−j−2)(a(j)c),

1This also shows that it coincides with the row-determinant of E defined in a similar way.
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to bring the expression to the right-normalized form, where the consecutive (−1)-products are
calculated from right to left. Note that by Lemma 3.3(i) the additional terms coming from the
sums over j > 0 annihilate the vacuum vector because all arising commutators involve elements
with distinct subscripts.

Regarding the above expansion of [d, cdet E ] as being written in the right-normalized form,
observe that if we ignore all symbols {. . . }+, then it would turn into a telescoping sum and so
would be identically zero.

As a next step, for a fixed value l ∈ {1, . . . , n} consider the terms in the expansion of
[d, cdet E ] containing the variable x with the powers at least n − l. Such terms can occur only
in those summands where the cardinality of the subset {i0 + 1, . . . , ip + 1} is at least n− l + 1.
Therefore, the maximum value of the powers λj1−1+ · · ·+λjq−1 of the variable u which occur
in these terms in the expansion, equals λn−l+2 + · · ·+λn− l+1. This means that the coefficients
of the powers of u exceeding λn−l+2+· · ·+λn−l can be calculated from the expansion [d, cdet E ]
with all symbols {. . . }+ omitted. However, as we observed above, this expansion is identically
zero. It is clear from (4.1) that the degree of the polynomial wl(u) equals λn−l+1 + · · ·+ λn − l
so that the relations dw(r)

l |0〉 = 0 hold for the parameters r and l satisfying the conditions of the
theorem.

To show that the vectors w(r)
l |0〉 are strong generators ofW k(a), consider the gradation on

U(t−1b[t−1]) defined by setting the degree of e(r)
ij [m] equal to j − i. It is clear from the formulas

for the column-determinant cdet E that the lowest degree component of the vector w(r)
l |0〉 with

r = r′ + λn−l+2 + · · ·+ λn − l+ 1 coincides with P (r′)
l [−1]|0〉 for all r′ = 0, 1, . . . , λn−l+1 − 1,

as defined in (3.7). Therefore, by the argument completing the proof of Theorem 3.2 at the end
of Sec. 3, the vector w(r)

l |0〉 coincides with the respective cocycle W (r′)
l .

As was observed in the proof of Theorem 4.1, the lowest degree components of the generators
w

(r)
l |0〉 generate a commutative vertex subalgebra of Ck(a)•0 spanned by all monomials (3.6).

Hence, using the terminology of [1, Sec. 3.6], we come to the following; cf. [1, Prop. 4.12.1].

Corollary 4.2. The linear span of vectors w(r)
l |0〉 satisfying (4.2) generates a PBW basis of the

W-algebraW k(a).

5 Miura map and Fateev–Lukyanov realization

Consider the affine Kac–Moody algebra ĥ = h[t, t−1] ⊕ CK associated with h and the bilinear
form defined in Sec. 2.1. Its generators are elements e(r)

ii [m] with i = 1, . . . , n, where r runs
over the set 0, 1, . . . , λi − 1 and m runs over Z . The element K is central and the commutation
relations are given by the OPEs

e
(r)
ii (z)e(s)

jj (w) ∼
K 〈E(r)

ii , E
(s)
jj 〉

(z − w)2 ,

where we set
e

(r)
ii (z) =

∑
m∈Z

e
(r)
ii [m] z−m−1.
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Define the vacuum module V k+N(h) over ĥ as the representation induced from the one-dimensional
representation of h[t] ⊕ CK on which h[t] acts trivially and K acts as k + N . Then V k+N(h)
is a vertex algebra with the vacuum vector |0〉 and translation operator T defined as in (2.4) for
X ∈ h. Recalling the constants αi introduced in (3.4), expand the product(

x+ α1T + e11(u)
)
. . .
(
x+ αnT + enn(u)

)
= xn + v1(u)xn−1 + · · ·+ vn(u)

and define the coefficients v(r)
l by writing vl(u) = ∑

r v
(r)
l ur.

The particular case e = 0 of the following proposition is the realization of the W-algebra
W k(gln) given by Fateev and Lukyanov [7]; see also [3].

Proposition 5.1. The elements v(r)
l |0〉 with l = 1, . . . , n and r satisfying (4.2) generate a subal-

gebra of the vertex algebra V k+N(h), isomorphic to theW-algebraW k(a).

Proof. The Lie algebra projection b → h with the kernel n− induces the vertex algebra ho-
momorphism V k+N(b) → V k+N(h). As we have seen in the previous section, the W-algebra
W k(a) can be regarded a subalgebra of the vertex algebra V k+N(b). Hence, we get a vertex
algebra homomorphism

Υ :W k(a)→ V k+N(h),
obtained by restriction, which we can call the Miura map; cf. [2, Sec. 5.9], [9, Sec. 15.4]. For
the image of the column-determinant we have

Υ : cdet E 7→
(
x+ α1T + e11(u)

)
. . .
(
x+ αnT + enn(u)

)
.

Therefore, the images of the generators ofW k(a) under the Miura map are found by

Υ : w(r)
l |0〉 7→ v

(r)
l |0〉.

It was shown in the proof of [14, Prop. 4.3] that all elements T sv(r)
l ∈ U(t−1h[t−1]), where

s > 0 and l = 1, . . . , n with r satisfying conditions (4.2), are algebraically independent. In
view of Corollary 4.2, this implies that the Miura map is injective. Therefore, its image is a
vertex subalgebra of V k+N(b) isomorphic toW k(a) which is strongly generated by the elements
v

(r)
l |0〉 satisfying conditions (4.2).

After re-scaling the elements e(r)
ij [m] 7→ k−1e

(r)
ij [m] and letting k → ∞ the W-algebra

W k(a) turns into a commutative vertex algebra isomorphic to the classicalW-algebra introduced
in [14].
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