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ABSTRACT. Since the pioneering works by Aronson & Bénilan [C. R. Acad.
Sci. Paris Sér., 1979], and Bénilan & Crandall [Johns Hopkins Univ. Press,
1981] it is well-known that first-order evolution problems governed by a non-
linear but homogeneous operator admit the smoothing effect that every corre-
sponding mild solution is Lipschitz continuous at every positive time. More-
over, if the underlying Banach space has the Radon-Nikodým property, then
these mild solution is a.e. differentiable, and the time-derivative satisfies glo-
bal and point-wise bounds.

In this paper, we show that these results remain true if the homogeneous
operator is perturbed by a Lipschitz continuous mapping. More precisely,
we establish global L1 Aronson-Bénilan type estimates and point-wise Aronson-
Bénilan type estimates. We apply our theory to derive global Lq-L∞-estimates
on the time-derivative of the perturbed diffusion problem governed by the
Dirichlet-to-Neumann operator associated with the p-Laplace-Beltrami oper-
ator and lower-order terms on a compact Riemannian manifold with a Lips-
chitz boundary.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we establish global regularity estimates on the time-derivative
du
dt of mild solutions u (see Definition 3.2) to the Cauchy problem associated
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with the perturbed operator A + F;

(1.1)

{
du
dt + A(u(t)) + F(u(t)) 3 f (t) for t ∈ (0, T),

u(0) = u0,

for sufficiently regular f : [0, T] → X and initial data u0. To ensure the well-
posedness of Cauchy problem (1.1), we assume that A is an m-accretive, pos-
sibly, multi-valued operator A : D(A) → 2X on a Banach space (X, ‖·‖X) (see
Definition 3.1) with effective domain D(A) := {u ∈ X | Au 6= ∅} and F : X → X
a Lipschitz continuous mapping with constant ω ≥ 0 satisfying F(0) = 0.

The crucial condition to obtain global regularity estimates of du
dt for mild

solutions u of (1.1) is that A is homogeneous of order α 6= 1; that is, (0, 0) ∈ A
and

(1.2) A(λu) = λα Au for all λ ≥ 0 and u ∈ D(A).

We emphasize that the governing operator A + F in Cauchy problem (1.1) is
not anymore homogeneous. Thus, our first main result can be understood as a
perturbation theorem.

Theorem 1.1 (L1 Aronson-Bénilan type estimates). For given α ∈ R \ {1}, let
A be an m-accretive operator in X which is homogeneous of order α and suppose, the
mapping F : X → X is Lipschitz continuous on X with constant ω ≥ 0, F(0) = 0,
and let f ∈ BV(0, T; X). Then for every u0 ∈ D(A), the mild solution u of (1.1)
satisfies

(1.3) lim sup
h→0+

‖u(t + h)− u(t)‖X

h
≤ 1

t

[
aω(t) + ω

∫ t

0
aω(s)eω(t−s)ds

]
for a.e. t ∈ (0, T), where

aω(t) := V0( f , t) +
1

|1− α|

[ (
1 + eωt) ‖u0‖X

+
∫ t

0
‖ f (s)‖X ds + ω

∫ t

0

∫ s

0
e−ωr‖ f (r)‖Xdr ds

]
.

(1.4)

and V0( f , ·) is given by (2.7) below. In particular, if for u0 ∈ D(A), the right-hand
side derivative du

dt+ exists, then

(1.5)
∥∥∥∥du

dt+
(t)
∥∥∥∥

X
≤ 1

t

[
a(t) + ω

∫ t

0
a(s)eω(t−s)ds

]
for a.e. t ∈ (0, T).

At the first view, it seems that in Theorem 1.1, the hypothesis u0 ∈ D(A)
merely provides a global point-wise estimate on the time-derivative du

dt (t), but
not a regularization effect. This hypothesis together with the condition f ∈
BV(0, T; X) imply that the mild solution u is Lipschitz continuous (see Propo-
sition 3.6), which is required to apply Gronwall’s lemma (see Lemma 2.7. But,
starting from this, a standard density argument combined with an appropri-
ate compactness result yield that estimate (1.3) holds for all mild solutions u of
Cauchy problem (1.1).

For example, under the additional hypothesis that the Banach space X is
reflexive, one has that the closed unit ball of X is weakly sequentially com-
pact. Now, for every given u0 ∈ D(A)

X , there is a sequence (u(0)
n )n≥1 in D(A)
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such that u(0)
n → u0 in X and by the ω-quasi contractivity of the semigroup

{Tt}T
t=0 generated by −(A + F) on D(A)

X × L1(0, T; X) (see Definition 3.3),
one has that Tt(u

(0)
n , f ) → Tt(u0, f ) in X as n → ∞. Thus, if for every n ≥ 1,

un(t) := Tt(u
(0)
n , f ), t ≥ 0, satisfies (1.5), then the sequence (dun

dt )n≥1 is bounded
L∞(δ, T; X) for every δ ∈ (0, T). From this, one can conclude the following
smoothing effect of such semigroups acting on reflexive Banach spaces (see
also Corollary 3.11 in Section 3).

Corollary 1.2. Let A be an m-accretive operator on a reflexive Banach space X, F :
X → X a Lipschitz continuous mapping with Lipschitz-constant ω ≥ 0 satisfy-
ing F(0) = 0, and {Tt}T

t=0 the semigroup generated by −(A + F) on D(A)
X ×

L1(0, T; X). If A is homogeneous of order α 6= 1, then for every u0 ∈ D(A)
X and

f ∈ BV(0, T; X), the unique mild solution u of Cauchy problem (1.1) is strong and
satisfies (1.5) for a.e. t ∈ (0, T).

We outline the proof of this corollary in Section 3.

Our second main result of this paper is concerned with a point-wise estimate
on the time-derivative du

dt of positive1 strong solutions u of the homogeneous
Cauchy problem

(1.6)

{
du
dt + A(u(t)) + F(u(t)) 3 0 for t ∈ (0, T),

u(0) = u0,

under the additional hypothesis that the underlaying Banach space X is equip-
ped with a partial ordering “≤′′ such that the triple (X, ‖·‖X,≤) defines an
Banach lattice, and if for this ordering “≤′′, every mild solution u of (1.6) is
order-preserving; that is, for every u0, û0 ∈ D(A)

X with corresponding mild
solutions u and û of (1.6), one has that u0 ≤ û0 implies u(t) ≤ û(t) for all
t ∈ (0, T].

Theorem 1.3 (Point-wise Aronson-Bénilan type estimates). Let A be an m-accre-
tive operator on X, (X, ‖·‖X,≤) a Banach lattice, and let F : X → X be a Lipschitz
continuous mapping on X with constant ω ≥ 0 satisfying F(0) = 0. Suppose, for
α ∈ R \ {1}, A is homogeneous of order α and every mild solution u of (1.6) is order-
preserving. For every positive u0 ∈ D(A)

X , the mild solution u of (1.6) satisfies

u(t + h)− u(t)
h

≥
(1 + h

t )
1

1−α − 1
h

u(t)
t

+ gh(t) if α > 1

and
u(t + h)− u(t)

h
≤

(1 + h
t )

1
1−α − 1

h
u(t)

t
+ gh(t) if α < 1,

for every t, h > 0, where gh : (0, ∞) → X is a continuous function. Further, for
positive u0 ∈ D(A)

X , if the right hand-side derivative du
dt+ belongs to L1

loc([0, ∞); X),
then

(1.7) (α− 1)
du
dt+

(t) ≥ −u(t)
t

+ (α− 1)g0(t),

for a.e. t > 0, where g0 : (0, ∞)→ X is a measurable function.

1That is, u ≥ 0 for the given partial ordering “≤′′ on X.
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Theorem 1.3 follows from the slightly more general statement provided in
Theorem 2.9 and by Corollary 2.11 in Section 2.

It is worth mentioning some words about the origin of the names assigned
to the estimates (1.3) (respectively, (1.5)) and (1.7). Even though the result was
already mentioned earlier in [4, p. 5] by Aronson, the point-wise estimate (1.7)
was first proved by Aronson & Bénilan [5] for (strong) solutions u of the porous
medium equation ut = ∆um in [0,+∞)×Rd for d ≥ 1 and m > [d− 2]+/d. In
the same paper [5, Théorème 2.], they also proved that (strong) solutions of this
porous media equation satisfy the L1-estimate (1.5). Shortly afterwards, Béni-
lan and Crandall [9] made available the two global inequalities (1.3) and (1.7)
for mild solutions u of the unperturbed Cauchy problem

(1.8)

{
du
dt + A(u(t)) 3 0 in (0, ∞),

u(0) = u0,

governed by nonlinear m-accretive operators A, which are homogeneous of
order α > 0, α 6= 0. This class of operators include the local p-Laplace operator
∆p, the local doubly nonlinear operator ∆pum, 1 < p < ∞, m > 0, as well
as the nonlocal fractional p-Laplace operator (−∆p)s, respectively equipped
with various boundary conditions (see, for instance, [18] for more details to the
analytic properties of these quasi-linear 2nd-order differential operators).

In the papers [19] and [20] Crandall and Pierre showed that every mild solu-
tion of the more general version of the porous medium equation ut = ∆ϕ(u),
where ϕ is an increasing function on R, also satisfy the point-wise Aronson-
Bénilan estimate (1.7). These two results by Crandall and Pierre were slightly
improved in a short paper by Casseigne [16]. Estimate (1.7) has been estab-
lished in various settings; on manifolds (see, e.g. [31, 14]), and with drift-term
(see, e.g, [30]), or with a linear perturbation (see, e.g., [15]). One important
reason among others, for the strong further development of the point-wise
estimate (1.7) is that it can be used, for example, to derive Harnack-type in-
equalities (see, e.g., [6], but also [22, 23]) and to study the regularity of the
free-boundaries (see, for instance, [34] or [39]). We refer the interested reader
to the book [40] by Vázquez (and more recently [12]) for a detailed exposition
concerning the development of the point-wise Aronson-Bénilan estimate (1.7)
satisfied by solutions to the porous media equation.

Recently, the author and Mazón showed in [27] that the two Aronson-Bénilan
type estimates (1.5) and (1.7) are satisfied by the mild solutions of the unper-
turbed Cauchy problem (1.8) for homogeneous operators of order zero (i.e., α =
0). This class of operators includes, for example, the (negative) total variational
flow operator Au = −div( Du

|Du| ), or the 1-fractional Laplacian A = (−∆1)
s for

s ∈ (0, 1) respectively equipped with some boundary conditions. By tackling
the the L1 Aronson-Bénilan inequality (1.5) for mild solutions of the perturbed
(homogeneous) Cauchy problem (1.6), their proof, unfortunately, contains a
slightly wrong argument in the application of Gronwall’s lemma. Thus, the
proof of Theorem 2.6 presented here corrects this flaw.

If the operator A in (1.8) is linear (and hence α = 1), then estimate

(1.9) ‖Au(t)‖X ≤ C
‖u(0)‖x

t
, (t ∈ (0, 1], u(0) ∈ D(A)),
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yields that the operator −A generates an analytic semigroup {Tt}t≥0 (cf., [2,
33]). Thus, it is interesting to see that a regularity inequality (1.5), which is
similar to (1.9), also holds for nonlinear operators of the type A + F, where A
is homogeneous of order α 6= 1. Further, if the norm ‖·‖X is induced by an
inner product (·, ·)X of a Hilbert space X and A = ∂ϕ is the sub-differential
operator ∂ϕ in X of a semi-convex, proper, lower semicontinuous function
ϕ : X → (−∞,+∞], then regularity inequality (1.9) is, in particular, satisfied
by solutions u of (1.8) (cf., [13, 17]). It is worth mentioning that inequality (1.9)
plays a crucial role in abstract 2nd-order problems of elliptic type involving ac-
cretive operators A (see, for example, [35, (2.22) on page 525] or, more recently,
[26, (1.8) on page 719]).

In many applications, the Banach space X is given by the classical Lebesgue
space (Lq := Lq(Σ, µ), ‖·‖q), (1 ≤ q ≤ ∞), for a given σ-finite measure space
(Σ, µ). If, in addition, the mild solutions u of Cauchy problem (1.6) satisfy a
global Lq-Lr regularity estimate (1 ≤ q, r ≤ ∞, cf., [18])

(1.10) ‖u(t)‖r ≤ C eωt ‖u(0)‖
γ
q

tδ
for all t > 0,

holding for some C > 0, γ, δ > 0, then by combining (1.5) with (1.10) leads to

(1.11) lim sup
h→0+

‖u(t + h)− u(t)‖r

h
≤ C 2δ+2 eω t ‖u0‖γ

q

tδ+1 .

We outline this result in full details in Corollary 2.8. Regularity estimates
similar to (1.10) have been studied recently by many authors (see, for exam-
ple, [21, 38, 24] and the references therein for the linear theory, and we refer
to [18] and the references therein for the nonlinear one). The idea to combine an
Lq-Lr regularity estimate (1.10) for q = 1 and r = ∞ with the estimate (1.5) was
already used by Alikakos and Rostamian [1] to obtain gradient decay estimates
for solutions of the parabolic p-Laplace equation on the Euclidean space Rd.
Thus, Corollary 2.8 improves this result to a more general abstract framework
with a Lipschitz perturbation. For further applications, we refer the interested
reader to the book [18].

The structure of this paper is as follows. In the subsequent section, we col-
lect some intermediate results to prove our main theorems (Theorem 1.1 and
Theorem 1.3).

In Section 3, we consider the class of quasi accretive operators A (see Defini-
tion 3.1) and outline how the property that A is homogeneous of order α 6= 1 is
passed on the nonlinear semigroup {Tt}t≥0 generated by −A (see the paragraph
after Definition 3.2). In particular, we discuss when solutions u of (1.1) are dif-
ferentiable with values in X at a.e. t > 0, and give the proofs of Theorem 1.1,
Corollary 1.2, and Theorem 1.3.

Section 4 focuses on the class of semigroups generated by a homogenous
quasi completely accretive operators A of order α 6= 1. The notion of completely
accretive operators A (see Definition 4.5) was introduced by Bénilan and Cran-
dall [8] and further extended by Jakubowski and Wittbold [29] to study non-
linear Volterra equations governed by this class of operators. More recently,
Coulhon and the author [18] introduced the class of quasi completely accretive
operators to study additional regularity properties of mild solutions to Cauchy
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problem (1.6) (respectively, (1.8)) when the infinitesimal generator satisfies a
functional inequality of Sobolev, Gagliardo-Nirenberg, or Nash type. We prove
in Section 5.4 a compactness result (see Lemma 4.13) and due to this, we obtain
in Theorem 4.14 that every mild solution u of the homogeneous Cauchy prob-
lem (1.8) governed by a homogenous quasi completely accretive operators A
of order α 6= 1 defined on also-called normal Banach space, is differentiable for
a.e. t > 0 and its right-hand side time-derivative satisfies point-wise Aronson-
Bénilan type estimates and global L1 Aronson-Bénilan type estimates.

We conclude this paper in Section 5 with an application; we derive in The-
orem 5.2 global Lq-L∞-regularity estimates of the time-derivative du

dt for solu-
tions u to the perturbed evolution problem (1.1) when A is the Dirichlet-to-
Neumann operator associated with the negative p-Laplacian −∆p plus lower
order terms on a compact, smooth, Riemannian manifold (M, g) with a Lips-
chitz continuous boundary.

2. PRELIMINARIES

In this section, we gather some intermediate results to prove the main theo-
rems of this paper.

Suppose X is a linear vector space and ‖·‖X a semi-norm on X. Then, the
main object of this paper is the following class of operators (cf., [9] and [27]).

Definition 2.1. An operator A on X is called homogeneous of order α ∈ R if
0 ∈ A0, and for every u ∈ D(A) and λ ≥ 0, one has that λu ∈ D(A) and A
satisfies (1.2).

For the rest of this section suppose that A denotes a homogeneous operator
on X of order α 6= 1. We begin by considering the inhomogeneous Cauchy
problem

(2.1)

{
du
dt + A(u(t)) 3 f (t) for a.e. t ∈ (0, T),

u(0) = u0,

and want to discuss the impact of the homogeneity of A on the solutions u
to (2.1). For this, suppose f ∈ C([0, T]; X), u0 ∈ X, and u ∈ C1([0, T]; X) be a
classical solution of (2.1). Further, for given λ > 0, set

vλ(t) = λ
1

α−1 u(λt), (t ∈
[
0, T

λ

]
).

Then, v satisfies

dvλ

dt
(t) = λ

1
α−1+1 du

dt
(λt) ∈ λ

α
α−1

[
f (λt)− A(u(λt))

]
= −A(vλ(t)) + λ

α
α−1 f (λt)

for every t ∈ (0, T/λ) with initial value vλ(0) = λ
1

α−1 u(0) = λ
1

α−1 u0.
Now, if we assume that the Cauchy problem (2.1) is well-posed for given

u0 ∈ D(A)
X and f ∈ L1(0, T; X) in the sense that there is a semigroup {Tt}T

t=0
of mappings Tt : D(A)

X × L1(0, T; X)→ D(A)
X given by

(2.2) Tt(u0, f ) := u(t) for every u0 ∈ D(A)
X and f ∈ L1(0, T; X),
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where u is the unique (mild) solution. Then, the previous reasoning can be
formulated in terms of this semigroup {Tt}T

t=0 as follows

(2.3) Tt(0, 0) = 0 for all t ∈ [0, T]

(i.e., u(t) ≡ 0 is the unique solution of (2.1) if u0 = 0 and f (t) ≡ 0), and

(2.4) λ
1

α−1 Tλt(u0, f ) = Tt(λ
1

α−1 u0, λ
α

α−1 f (λ·)) for every t ∈ [0, T/λ], λ > 0.

Property (2.4) together with the standard growth estimate

e−ωt‖Tt(u0, f )− Tt(û0, f̂ )‖X

≤ Le−ωs‖Ts(u0, f )− Ts(û0, f̂ )‖X + L
∫ t

s
e−ωr ‖ f (r)− f̂ (r)‖X dr

for every 0 ≤ s ≤ t ≤ T, u0 ∈ D(A)
X , f , f̂ ∈ L1(0, T; X),

(2.5)

holding for some ω ∈ R and L ≥ 1, are the main ingredients to obtain global
regularity estimates of the form (1.5). This leads to our first intermediate result.
This lemma also generalizes the case of homogeneous operators of order zero
(cf., [27, Theorem 2.3]), and the case ω = 0 treated in [9, Theorem 4].

Lemma 2.2. Let {Tt}T
t=0 be a family of mappings Tt : C× L1(0, T; X) → C defined

on a subset C ⊆ X, and suppose there are ω ∈ R, L ≥ 1, and α 6= 1 such that {Tt}T
t=0

satisfies (2.3)-(2.5). Then, the following statements hold.

(1) For every u0 ∈ C, f ∈ L1(0, T; X), t ∈ (0, T] and h > 0 such that t + h ∈
(0, T], one has that

‖Tt+h(u0, f )− Tt(u0, f )‖X

≤
∣∣∣∣(1 + h

t

)
−
(

1 + h
t

) 1
1−α

∣∣∣∣ L
∫ t

0
eω(t−s)‖ f (s + h

t s)‖X ds

+
(

1 + h
t

) 1
1−α L

∫ t

0
eω(t−s)‖ f (s + h

t s)− f (s)‖X ds

+ L eω t
∣∣∣∣(1 + h

t

) 1
1−α − 1

∣∣∣∣ (2 ‖u0‖X +
∫ t

0
e−ωs‖ f (s)‖X ds

)
.

(2.6)

(2) If one denotes

(2.7) Vω( f , t) := lim sup
h→0+

∫ t

0
e−ω s ‖ f (s + hs)− f (s)‖X

h
ds,

and {Tt}T
t=0 satisfies (2.5), then for every t > 0 and u0 ∈ C, one has that

lim sup
h→0+

∥∥∥∥Tt+h(u0, f )− Tt(u0, f )
h

∥∥∥∥
X

≤ L
t

eωt
[

2
‖u0‖X

|1− α| +
1

|1− α|

∫ t

0
e−ωs‖ f (s)‖X ds + Vω( f , t)

]
,

(2.8)
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and if f ∈W1,1(0, T; X), then

lim sup
h→0+

∥∥∥∥Tt+h(u0, f )− Tt(u0, f )
h

∥∥∥∥
X

≤ L
t

eωt
[

2
‖u0‖X

|1− α| +
1

|1− α|

∫ t

0
e−ωs‖ f (s)‖X ds

+
∫ t

0
e−ωs‖ f ′(s)‖X s ds

]
.

(2.9)

(3) If for given u0 ∈ C and f ∈ W1,1(0, T; X), d
dt+Tt(u0, f ) exists (in X) at a.e.

t ∈ (0, T), then∥∥∥∥ d
dt+

Tt(u0, f )
∥∥∥∥

X
≤ L

t
eωt
[

2
‖u0‖X

|1− α| +
1

|1− α|

∫ t

0
e−ωs‖ f (s)‖X ds

+
∫ t

0
e−ωs‖ f ′(s)‖X s ds

]
.

(2.10)

Our proof of Lemma 2.2 uses the same techniques as in [9].

Proof. Let u0 ∈ C, f ∈ L1(0, T; X), t > 0, and h > 0 satisfying t + h ≤ T. If we
choose λ = 1 + h

t in (2.4), then

Tt+h(u0, f )− Tt(u0, f )

= Tλt(u0, f )− Tt(u0, f )

= λ
1

1−α Tt

[
λ

1
α−1 u0, λ

α
α−1 f (λ·)

]
− Tt(u0, f )

(2.11)

and so,

Tt+h(u0, f )− Tt(u0, f )

= λ
1

1−α

[
Tt

[
λ

1
α−1 u0, λ

α
α−1 f (λ·)

]
− Tt(u0, f (λ·)

]
+ λ

1
1−α [Tt [u0, f (λ·)]− Tt(u0, f )]

+
[
λ

1
1−α − 1

]
Tt(u0, f ).

(2.12)

Applying to this (2.5) and by using (2.3), one sees that

‖Tt+h(u0, f )− Tt(u0, f )‖X

≤
(

1 + h
t

) 1
1−α
∥∥∥Tt

[
λ

1
α−1 u0, λ

α
α−1 f (λ·)

]
− Tt(u0, f (λ·)

∥∥∥
X

+
(

1 + h
t

) 1
1−α ‖Tt [u0, f (λ·)]− Tt(u0, f )‖X

+

∣∣∣∣(1 + h
t

) 1
1−α − 1

∣∣∣∣ ‖Tt(u0, f )‖X

≤
(

1 + h
t

) 1
1−α L eω t

∥∥∥∥(1 + h
t

) 1
α−1 u0 − u0

∥∥∥∥
X

+
(

1 + h
t

) 1
1−α L

∫ t

0
eω(t−s)

∥∥∥(1 + h
t )

α
α−1 f (s + h

t s)− f (s + h
t s)
∥∥∥

X
ds
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+
(

1 + h
t

) 1
1−α L

∫ t

0
eω(t−s)‖ f (s + h

t s)− f (s)‖X ds

+ L eω t
∣∣∣∣(1 + h

t

) 1
1−α − 1

∣∣∣∣ (‖u0‖X +
∫ t

0
e−ωs‖ f (s)‖X ds

)
=

∣∣∣∣(1 + h
t

)
−
(

1 + h
t

) 1
1−α

∣∣∣∣ L
∫ t

0
eω(t−s)‖ f (s + h

t s)‖X ds

+
(

1 + h
t

) 1
1−α L

∫ t

0
eω(t−s)‖ f (s + h

t s)− f (s)‖X ds

+ L eω t
∣∣∣∣(1 + h

t

) 1
1−α − 1

∣∣∣∣ (2 ‖u0‖X +
∫ t

0
e−ωs‖ f (s)‖X ds

)
,

which is (2.6). It is clear that (2.8)-(2.10) follow from (2.6). �

Examples of functions f : [0, T] → X for which Vω( f , t) defined by (2.7) is
finite at a.e. t and integrable on L1(0, T), are functions with bounded variation
(cf., [13, Appendice, Section 2.]).

Definition 2.3. For a function f : [0, T]→ X, one calls

Var( f ; [0, T]) := sup
{ N

∑
i=1
‖ f (ti)− f (ti−1)‖X

∣∣∣ all partitions :
0 = t0 < · · · < tN = T

}
the total variation of f . Each X-valued function f : [0, T] → X is said to have
bounded variation on [0, T] if Var( f ; [0, T]) is finite. We denote by BV(0, T; X) the
space of all functions f : [0, T] → X of bounded variation and to simplify the
notation, we set Vf (t) = Var( f ; [0, t]) for t ∈ (0, T].

Functions of bounded variation have the following properties.

Proposition 2.4. Let f ∈ BV(0, T; X). Then the following statements hold.

(1) f ∈ L∞(0, T; X);
(2) At every t ∈ [0, T], the left-hand side limit f (t−) := lims→t− f (s) and right-

hand side limit f (t+) := lims→t+ f (s) exist in X; and the set of discontinuity
points in [0, T] is at most countable;

(3) The mapping t 7→ Vf (t) is monotonically increasing on [0, T], and

(2.13) ‖ f (t)− f (s)‖X ≤ Vf (t)−Vf (s) for all 0 ≤ s ≤ t ≤ T;

(4) For ω ≥ 0, one has that∫ t

0
e−ωs ‖ f (s + hs)− f (s)‖X

h
ds ≤ t Vf (t) for all h ∈ (0, t], 0 < t ≤ T.

(5) For ω ≥ 0, let Vω( f , t) be given by (2.7). Then Vω( f , t) belongs to L∞(0, T)
satisfying

Vω( f , t) ≤ t Vf (t) for all t ∈ [0, T].

The first three statements are standard and can be found, for example, in [13,
Section 2., Lemme A.1]. Thus, we only outline the proof of statement (4) and
(5).



10 DANIEL HAUER

Proof. Obviously, (5) follows from (4). Thus, it remains to show that for given
f ∈ BV(0, T; X), (4) holds. To see this, let t ∈ (0, T), h ∈ (0, t] such that t + h ≤
T. Then, by (2.13) and since ω ≥ 0,∫ t

0
e−ωs ‖ f (s + hs)− f (s)‖X

h
ds ≤ 1

h

∫ t

0
e−ωs

(
Vf ((1 + h)s)−Vf (s)

)
ds

≤ 1
h

∫ t

0

(
Vf ((1 + h)s)−Vf (s)

)
ds.

By using the substitution r = (1 + h)s, we get

1
h

∫ t

0
Vf ((1 + h)s)ds− 1

h

∫ t

0
Vf (s)ds

= 1
h(1+h)

∫ (1+h)t

0
Vf (r)dr− 1

h

∫ t

0
Vf (s)ds

≤ 1
h

∫ t+ht

t
Vf (s)ds

and by the monotonicity of t 7→ Vf (t),

1
h

∫ t+ht

t
Vf (s)ds ≤ t Vf (t).

This shows that (4) holds. �

In the case f ≡ 0, we let T = ∞. Then the mapping Tt given by (2.2) only
depends on the initial value u0. In other words,

(2.14) Ttu0 = Tt(u0, 0) for every u0 ∈ C and t ≥ 0.

In this case Lemma 2.2 reads as follows (cf., [8]).

Corollary 2.5. Let {Tt}t≥0 be a family of mappings Tt : C → C defined on a subset
C ⊆ X, and suppose there are ω ∈ R, L ≥ 1, and α 6= 1 such that {Tt}t≥0 satisfies

‖Ttu0 − Ttû0‖X ≤ L eωt ‖u0 − û0‖X for all t ≥ 0, u, û ∈ C,(2.15)

λ
1

α−1 Tλtu0 = Tt[λ
1

α−1 u0] for all λ > 0, t ≥ 0 and u0 ∈ C.(2.16)

Further, suppose Tt0 ≡ 0 for all t ≥ 0. Then, for every u0 ∈ C,

(2.17) ‖Tt+hu0 − Ttu0‖X ≤ 2 L
∣∣∣∣1− (1 + h

t

) 1
1−α

∣∣∣∣ eω t‖u0‖X.

t > 0, h 6= 0 satisfying 1 + h
t > 0. In particular, the family {Tt}t≥0 satisfies

(2.18) lim sup
h→0+

‖Tt+hu0 − Ttu0‖X

h
≤ 2Leωt

|1− α|
‖u0‖X

t
for every t > 0, u0 ∈ C.

Moreover, if for u0 ∈ C, the right-hand side derivative dTtu0
dt +

exists (in X) at t > 0,
then

(2.19)
∥∥∥∥dTtu0

dt+

∥∥∥∥
X
≤ 2 L eωt

|1− α|
‖u0‖X

t
.
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Finally, we turn to the Cauchy problem governed by the operator A + F,

(2.20)

{
du
dt + A(u(t)) + F(u(t)) 3 f (t) on (0, T),

u(0) = u0,

for given u0 ∈ D(A)
X and f ∈ L1(0, T; X), involving a homogenous operator

A in X of order α 6= 1, and a Lipschitz continuous perturbation F : X → X
with Lipschitz constant ω ≥ 0 satisfying F(0) = 0. We assume that Cauchy
problem (2.20) is well-posed in X in the sense that for every u0 ∈ D(A)

X and
f ∈ L1(0, T; X), there is a unique function u ∈ C([0, T]; X) satisfying u(0) =

u0 in X and (2.2) generates a semigroup {Tt}T
t=0 of mappings Tt : D(A)

X ×
L1(0, T; X)→ D(A)

X satisfying (2.5) for every 0 ≤ s < t ≤ T.
One important idea to obtain global L1 Aronson-Bénilan type estimates for

the semigroup {Tt}T
t=0 associated with (2.20) is the assumption that for given

u0 ∈ D(A)
X and f ∈ L1(0, T; X), the unique solution t 7→ u(t) = Tt(u0, f ) of

Cauchy problem (2.20) is, in particular, the unique solution of the unperturbed
inhomogeneous Cauchy problem (2.1) for f̃ : [0, T]→ X given by

(2.21) f̃ (t) := f (t)− F(Tt(u0, f )), (t ∈ [0, T]).

This property can be expressed by the identity

(2.22) T̃t(u0, f̃ ) = Tt(u0, f ) holds for every t ∈ [0, T],

where {T̃t}T
t=0 denotes the semigroup associated with (2.1). The advantage of

equation (2.22) is that one can employ inequality (2.5) satisfied by the family
{T̃t(·, f̃ )}t≥0. Thus, by Lemma 2.2, the following estimate holds.

Theorem 2.6. Let F : X → X be a Lipschitz continuous mapping with Lipschitz
constant ωF ≥ 0 satisfying F(0) = 0. Given T > 0 and a subset C ⊆ X, assume
there are families {Tt}T

t=0 and {T̃t}T
t=0 of mappings Tt, T̃t : C × L1(0, T; X) → C

satisfying (2.3) and related through (2.22) for every u0 ∈ C and f ∈ L1(0, T; X) with
f̃ given by (2.21). Further suppose, {T̃t}T

t=0 satisfies (2.4) and (2.5) for some ω ≥ 0
and L ≥ 1, and {Tt}T

t=0 satisfies (2.5) with ω̃ = ω + ωF and L.
Then, if for u0 ∈ C and f ∈ BV(0, T; X), the function t 7→ Tt(u0, f ) is locally

Lipschitz continuous on [0, T), then one has that

(2.23) lim sup
h→0+

‖Tt+h(u0, f )− Tt(u0, f )‖
h

≤ eωt

t

[
a(t) + LωF

∫ t

0
a(s)eL ωF(t−s)ds

]
for a.e. t ∈ (0, T), where

a(t) := L Vω( f , t) +
L

|1− α|

[(
2 + ωF L

∫ t

0
eωFsds

)
‖u0‖X

+
∫ t

0
e−ωs‖ f (s)‖X ds + ωF L

∫ t

0

∫ s

0
e−ωFr‖ f (r)‖Xdr ds

]
.

(2.24)

and Vω( f , ·) is given by (2.7).

For the proof of this theorem, we still need the following version of Gron-
wall’s lemma.
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Lemma 2.7 ([37, Lemma D.2]). Suppose v ∈ L1
loc([0, T)) satisfies

(2.25) v(t) ≤ a(t) +
∫ t

0
v(s) b(s)ds for a.e. t ∈ (0, T),

where b ∈ C([0, T)) satisfying b(t) ≥ 0, and a ∈ L1
loc([0, T)). Then,

(2.26) v(t) ≤ a(t) +
∫ t

0
a(s) b(s) e

∫ t
s b(r)dr ds for a.e. t ∈ (0, T).

We are now ready to give the proof of Theorem 2.6.

Proof of Theorem 2.6. Let u0 ∈ C and f ∈ BV(0, T; X). Fix t > 0, and let h > 0
such that t + h < T. Then, by the assumption that there is a family {T̃t}T

t=0
of mappings T̃t satisfying (2.22) for every u0 ∈ C and f ∈ L1(0, T; X) with f̃
given by (2.21), and {T̃t}T

t=0 satisfies (2.3)-(2.5) for some ω ≥ 0, L, we can apply
Lemma 2.2 to T̃t(u0, f̃ ). Then by (2.6), since f̃ is given by (2.21), by (2.22), and
by the triangle inequality,

‖Tt+h(u0, f )− Tt(u0, f )‖X

= ‖T̃t+h(u0, f̃ )− T̃t(u0, f̃ )‖X

≤
∣∣∣∣(1 + h

t

)
−
(

1 + h
t

) 1
1−α

∣∣∣∣ L
∫ t

0
eω(t−s)‖ f (s + h

t s)− F(Ts+ h
t s(u0, f ))‖X ds

+
(

1 + h
t

) 1
1−α L

∫ t

0
eω(t−s)‖ f (s + h

t s)− f (s)‖X ds

+
(

1 + h
t

) 1
1−α L

∫ t

0
eω(t−s)‖F(T

s+ h
t s
(u0, f ))− F(Ts(u0, f ))‖X ds

+ L eω t
∣∣∣∣(1 + h

t

) 1
1−α − 1

∣∣∣∣ [2 ‖u0‖X +
∫ t

0
e−ωs

[
‖ f (s)‖X + ‖F(Ts(u0, f ))‖X

]
ds
]

Since F is globally Lipschitz continuous with constant ωF, F(0) = 0, and since
{Tt}T

t=0 satisfies (2.3) and (2.5) with ω̃ = ω + ωF and L, one has that

‖F(Ts(u0, f ))‖X ≤ ωF L
[
eω̃s‖u0‖X +

∫ s

0
eω̃(s−r)‖ f (r)‖X dr

]
.

We apply this to the last integral on the right-hand side of the previous esti-
mate, and substitute y = (1 + h/t)s into the first integral on the right-hand
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side of the previous estimate. Then, dividing by h > 0 both sides in the result-
ing inequality yields that

‖Tt+h(u0, f )− Tt(u0, f )‖X

h

≤
∣∣∣∣∣ (1 + h

t )− (1 + h
t )

1
1−α

1
t h

∣∣∣∣∣ 1 + h
t

t
Leωt×

×
∫ t+h

0
e−

ω
1+h/t y‖ f (y)− F(Ty(u0, f ))‖Xdy

+
(

1 + h
t

) 1
1−α L eωt

t

∫ t

0
e−ωs ‖ f (s + h

t s)− f (s)‖X
h
t

ds

+
(

1 + h
t

) 1
1−α L eωtωF

∫ t

0
e−ωs
‖T

s+ h
t s
(u0, f )− Ts(u0, f )‖X

s
t h

s
t ds

+ Leω t

t

∣∣∣∣∣ (1 + h
t )

1
1−α − 1

1
t h

∣∣∣∣∣
[(

2 + ωFL
∫ t

0
eωFsds

)
‖u0‖X

+
∫ t

0
e−ωs‖ f (s)‖X ds + ωF L

∫ t

0

∫ s

0
e−ωFr‖ f (r)‖Xdr ds

]
,

(2.27)

where we use twice that e−ωseω̃s = eωFs. Note that

lim sup
h→0+

∫ t

0
e−ωs ‖ f (s + h

t s)− f (s)‖X
h
t

ds = Vω( f , t)

and by Proposition 2.4, one has that Vω( f , ·) ∈ L∞([0, T)). Since t 7→ Tt(u0, f )
is locally Lipschitz continuous on [0, T), for every ε ∈ (0, T) there is a constant
Cε > 0 such that ∥∥∥∥T

s+ h
t s
(u0, f )− Ts(u0, f )

∥∥∥∥
X

s
t h

≤ C

for every s ∈ [0, T− ε] and h > 0 satisfying s+ h
t s < T− ε. Thus, by the reverse

version of Fatou’s lemma, taking in (2.27) the limit-superior as h→ 0+ gives

e−ωtt lim sup
h→0+

‖Tt+h(u0, f )− Tt(u0, f )‖
h

≤ L Vω( f , t) + L ωF

∫ t

0
e−ωss

[
lim sup

h→0+

‖Ts+h(u0, f )− Ts(u0, f )‖
h

]
ds

+
L

|1− α|

[(
2 + ωF L

∫ t

0
eωFsds

)
‖u0‖X

+
∫ t

0
e−ωs‖ f (s)‖X ds + ωF L

∫ t

0

∫ s

0
e−ωFr‖ f (r)‖Xdr ds

]
.

Now, applying Gronwall’s lemma (Lemma 2.7) to a(t) given by (2.24),

b(t) ≡ L ωF, and

v(t) = e−ωtt lim sup
h→0+

‖Tt+h(u0, f )− Tt(u0, f )‖
h

,
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then one obtains (2.23). This completes the proof. �

Next, we intend to extrapolate the regularity estimate (2.23) for f ≡ 0.

Corollary 2.8. Let {Tt}t≥0 be a semigroup of mappings Tt : C → C defined on a
subset C ⊆ X and suppose, there is a second vector space Y with semi-norm ‖·‖Y
and constants M, γ, δ > 0 and ω̂ ∈ R such that {Tt}t≥0 satisfies the following
Y-X-regularity estimate

(2.28) ‖Ttu0‖X ≤ M eω̂t ‖u0‖γ
Y

tδ
for every t > 0 and u0 ∈ C ∩Y.

If for α 6= 1, ω, ωF ∈ R and L ≥ 1, {Tt}t≥0 satisfies

lim sup
h→0+

‖Tt+hu0 − Ttu0‖X

h

≤ eωt

t
L

|1− α|

[
b(t) + LωF

∫ t

0
b(s) eL ωF(t−s)ds

]
‖u0‖X

(2.29)

for a.e. t > 0 and u0 ∈ C, with b(t) := 2 + ωF L
∫ t

0 eωFsds, then

lim sup
h→0+

‖Tt+hu0 − Ttu0‖X

h

≤ 2δ+1 e
ω+ω̂

2 t

tδ+1
L M
|1− α|

[
b( t

2 ) + LωF

∫ t
2

0
b(s) eL ωF(

t
2−s)ds

]
‖u0‖γ

Y.
(2.30)

In particular, if the right-hand side derivative d
dt+ Ttu0 exists (in X) at t > 0, then∥∥∥∥dTtu0

dt+

∥∥∥∥
X
≤ 2δ+1 e

ω+ω̂
2 t

tδ+1
L M
|1− α|

[
b( t

2 ) + LωF

∫ t
2

0
b(s) eL ωF(

t
2−s)ds

]
‖u0‖γ

Y.

Proof. Let u0 ∈ C and t > 0. Note, if u0 /∈ Y then (2.30) trivially holds. Thus,
it is sufficient to consider the case u0 ∈ C ∩ Y. By the semigroup property of
{Tt}t≥0 and by (2.29) and (2.28), one sees that

lim sup
h→0+

‖Tt+hu0 − Ttu0‖X

h

= lim sup
h→0+

‖T t
2+h(T t

2
u0)− T t

2
(T t

2
u0)‖X

h

≤ 2 eω t
2

t
L

|1− α|

[
b( t

2 ) + LωF

∫ t
2

0
b(s) eL ωF(

t
2−s)ds

]
‖T t

2
u0‖X

≤ 2δ+1 e
ω+ω̂

2 t

tδ+1
L M
|1− α|

[
b( t

2 ) + LωF

∫ t
2

0
b(s) eL ωF(

t
2−s)ds

]
‖u0‖γ

Y.

�

Now, we suppose, there is a partial ordering “≤” on X such that (X,≤) is an
ordered vector space. Then, we can state the following theorem.
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Theorem 2.9. Let (X,≤) be an ordered vector space and F : X → X a Lipschitz con-
tinuous mapping satisfying F(0) = 0. Suppose, there is a subset C ⊆ X and two fam-
ilies {Tt}t≥0 and {T̃t}t≥0 of mappings Tt : C → C and T̃t : C× L1

loc([0, ∞); X)→ C
related by the equation

(2.31) Ttu0 = T̃t(u0, f̃ ) for all t ≥ 0, u0 ∈ C,

where f̃ is given by f̃ (t) = −F(Ttu0). Further, suppose

(2.32) for every u0, û0 ∈ C satisfying u0 ≤ û0, one has Ttu0 ≤ Ttû0 for all t ≥ 0

and {T̃t}t≥0 satisfies (2.3)-(2.5) for some ω ≥ 0 and L ≥ 1. Then for every u0 ∈ C
satisfying u0 ≥ 0, one has that

(2.33)
Tt+hu0 − Ttu0

h
≥

(1 + h
t )

1
1−α − 1

h
Ttu0

t
+ gh(t)

for every t, h > 0 if α > 1 and

(2.34)
Tt+hu0 − Ttu0

h
≤

(1 + h
t )

1
1−α − 1

h
Ttu0

t
+ gh(t)

for every t, h > 0 if α < 1, where for every h > 0, gh : (0, ∞) → X is a continuous
function satisfies

‖gh(t)‖X ≤
(

1 + h
t

) 1
1−α L×

×
∫ t

0
eω(t−r)

∥∥∥∥∥∥∥
F(Tru0)−

(
1 + h

t

) α
α−1 F(Tr+ h

t ru0)

h

∥∥∥∥∥∥∥
X

dr
(2.35)

for every t > 0.

Before giving the proof of Theorem 2.9, we need to recall the following defi-
nition.

Definition 2.10. If (X,≤) is an ordered vector space then a family {Tt}t≥0 of
mappings Tt : C → C defined on a subset C ⊆ X is called order preserving if
{Tt}t≥0 satisfies (2.32).

With this in mind, we can now give the proof above the preceding theorem.

Proof of Theorem 2.9. First, let {T̃t}t≥0 be the family of operators related to {Tt}t≥0

by (2.31), and for t, h > 0, let λ :=
(

1 + h
t

)
. Since λ > 1, λ

1
α−1 u0 ≤ u0 if α < 1

and λ
1

α−1 u0 ≥ u0 if α > 1. Thus, if α < 1, then by (2.11) and (2.32), one has that

T̃t+h(u0, f̃ )− T̃t(u0, f̃ ) = λ
1

1−α T̃t

[
λ

1
α−1 u0, λ

α
α−1 f̃ (λ·)

]
− T̃t(u0, f̃ )

= λ
1

1−α

[
T̃t

[
λ

1
α−1 u0, λ

α
α−1 f̃ (λ·)

]
− T̃t

[
u0, λ

α
α−1 f̃ (λ·)

]]
+ λ

1
1−α T̃t

[
u0, λ

α
α−1 f̃ (λ·)

]
− T̃t(u0, f̃ )

≤ λ
1

1−α

[
T̃t

[
u0, λ

α
α−1 f̃ (λ·)

]
− T̃t

[
u0, f̃

]]
+
[
λ

1
1−α − 1

]
T̃t(u0, f̃ )
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and, similarly, if α > 1, then

T̃t+h(u0, f̃ )− T̃t(u0, f̃ ) ≥ λ
1

1−α

[
T̃t

[
u0, λ

α
α−1 f̃ (λ·)

]
− T̃t

[
u0, f̃

]]
+
[
λ

1
1−α − 1

]
T̃t(u0, f̃ ).

Now, by replacing f̃ (t) by −F(Ttu0) and by (2.22), we can rewrite the above
two inequalities and arrive to (2.33) and (2.34), where g(t) is given by

gh(t) =
(

1 + h
t

) 1
1−α

T̃t

[
u0, λ

α
α−1 f̃ (λ·)

]
− T̃t

[
u0, f̃

]
h

.

Note, by (2.5), one has that g satisfies (2.35). �

By Theorem 2.9, if the derivative d
dt+Ttu0 belongs to L1

loc(0, T; X) for T > 0,
then we can state the following.

Corollary 2.11. Under the hypotheses of Theorem 2.9, suppose that for u0 ∈ C satis-
fying u0 ≥ 0, the right hand-side derivative dTtu0

dt +
∈ L1

loc([0, T); X) for some T > 0.
Then, one has that

(α− 1)
dTtu0

dt +
≥ −Ttu0

t
+ (α− 1)g0(t),

for a.e. t ∈ (0, T), where g0 : (0, T)→ X is a measurable function satisfying

(2.36) ‖g0(t)‖X ≤
L
t

∫ t

0
eω(t−r)

[
ω

∥∥∥∥dTru0

dr +

∥∥∥∥
X
+
|α|
|α− 1| ‖Tru‖X

]
dr

for a.e. t ∈ (0, T).

3. HOMOGENEOUS ACCRETIVE OPERATORS

We begin this section with the following definition. Throughout this section,
suppose X is a Banach space with norm ‖·‖X.

Definition 3.1. An operator A on X is called accretive in X if for every (u, v),
(û, v̂) ∈ A and every λ ≥ 0,

‖u− û‖X ≤ ‖u− û + λ(v− v̂)‖X.

and A is called m-accretive in X if A is accretive and satisfies the range condition

(3.1) Rg(I + λA) = X for some (or equivalently, for all) λ > 0, λ ω < 1,

More generally, an operator A on X is called quasi (m-)accretive in X if there is
an ω ∈ R such that A + ωI is (m-)accretive in X.

If A is quasi m-accretive in X, then the classical existence theorem [10, The-
orem 6.5] (cf., [7, Corollary 4.2]) yields that for every u0 ∈ D(A)

X and f ∈
L1(0, T; X), there is a unique mild solution u ∈ C([0, T]; X) of (2.1).

Definition 3.2. For given u0 ∈ D(A)
X and f ∈ L1(0, T; X), a function u ∈

C([0, T]; X) is called a mild solution of the inhomogeneous differential inclu-
sion (2.1) with initial value u0 if u(0) = u0 and for every ε > 0, there is a
partition τε : 0 = t0 < t1 < · · · < tN = T and a step function

uε,N(t) = u0 1{t=0}(t) +
N

∑
i=1

ui 1(ti−1,ti ](t) for every t ∈ [0, T]
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satisfying

ti − ti−1 < ε for all i = 1, . . . , N,
N

∑
N=1

∫ ti

ti−1

‖ f (t)− f i‖dt < ε where f i :=
1

ti − ti−1

∫ ti

ti−1

f (t)dt,

ui − ui−1

ti − ti−1
+ Aui 3 f i for all i = 1, . . . , N,

and
sup

t∈[0,T]
‖u(t)− uε,N(t)‖X < ε.

Further, if A is quasi m-accretive, then the family {Tt}T
t=0 of mappings Tt :

D(A)
X × L1(0, T; X) → D(A)

X defined by (2.2) through the unique mild solu-
tion u of Cauchy problem (2.1) belongs to the following class.

Definition 3.3. Given a subset C of X, a family {Tt}T
t=0 of mapping Tt : C ×

L1(0, T; X)→ C is called a strongly continuous semigroup of quasi-contractive map-
pings Tt if {Tt}T

t=0 satisfies the following three properties:

• (semigroup property) for every (u0, f ) ∈ D(A)
X × L1(0, T; X),

(3.2) Tt+s(u0, f ) = Tt(Ts(u0, f ), f (s + ·))
for every t, s ∈ [0, T] with t + s ≤ T;
• (strong continuity) for every (u0, f ) ∈ D(A)

X × L1(0, T; X),

t 7→ Tt(u0, f ) belongs to C([0, T]; X);

• (ω-quasi contractivity) Tt satisfies (2.5) with L = 1.

Taking f ≡ 0 and only varying u0 ∈ D(A)
X , defines by

(2.14) Ttu0 = Tt(u0, 0) for every t ≥ 0,

a strongly continuous semigroup {Tt}t≥0 on D(A)
X of ω-quasi contractions

Tt : D(A)
X → D(A)

X . Given a family {Tt}t≥0 of ω-quasi contractions Tt on
D(A)

X , then the operator

(3.3) A0 :=

{
(u0, v) ∈ X× X

∣∣∣∣∣ lim
h↓0

Th(u0, 0)− u0

h
= v in X

}
is an ω-quasi accretive well-defined mapping A0 : D(A0) → X and called the
infinitesimal generator of {Tt}t≥0. If the Banach space X and its dual space X∗
are both uniformly convex (see [7, Proposition 4.3]), then one has that

−A0 = A0,

where A◦ is the minimal selection of A defined by

(3.4) A◦ :=
{
(u, v) ∈ A

∣∣∣‖v‖X = inf
v̂∈Au
‖v̂‖X

}
.

For simplicity, we ignore the additional geometric assumptions on the Banach
space X, and refer to the two families {Tt}T

t=0 defined by (2.2) on D(A)
X ×

L1(0, T; X) and {Tt}t≥0 defined by (2.14) on D(A)
X as the semigroup generated

by −A.
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Further, for every u0 ∈ D(A)
X , if f ∈ L1(0, T; X) is given by the step function

f = ∑N
i=1 fi 1(ti−1,ti ], then the corresponding mild solution u : [0, T] → X of

Cauchy problem (2.1) is given by

(3.5) u(t) = u0 1{t=0}(t) +
N

∑
i=1

ui(t)1(ti−1,ti ](t)

where each ui is the unique mild solution of the Cauchy problem (for constant
f ≡ fi)

(3.6)
dui

dt
+ A(ui(t)) 3 fi on (ti−1, ti), and ui(ti−1) = ui−1(ti−1)

for every i = 1, . . . , N (cf., [10, Chapter 4.3]). In particular, the semigroup
{Tt}T

t=0 is obtained by the exponential formula

(3.7) Tt(u(ti−1), fi) = ui(t) = lim
n→∞

[
JA− fi

t−ti−1
n

]n

u(ti−1) in C([ti−1, ti]; X)

iteratively for every i = 1, . . . , N, where for µ > 0, JA− fi
µ = (I + µ(A− fi))

−1 is
the resolvent operator of A− fi.

As for classical solutions, the fact that A is homogeneous of order α 6= 1, is
also reflected in the notion of mild solution and, in particular, in the semigroup
{Tt}T

t=0 as demonstrated in our next proposition.

Proposition 3.4 (Homogeneous accretive operators). Let A be a quasi m-accretive
operator on X and {Tt}T

t=0 the semigroup generated by −A on D(A)
X × L1(0, T; X).

If A is homogeneous of order α 6= 1, then for every λ > 0, {Tt}T
t=0 satisfies equation

(2.4) λ
1

α−1 Tλt(u0, f ) = Tt(λ
1

α−1 u0, λ
α

α−1 f (λ·)) for all t ∈
[
0, T

λ

]
,

for every (u0, f ) ∈ D(A)
X × L1(0, T; X).

Proof. Let λ > 0 and f ∈ X. Then, for every u, v ∈ X and µ > 0,

JA−λ
α

α−1 f
µ

[
λ

1
α−1 v

]
= u if and only if u + µ(Au− λ

α
α−1 f ) 3 λ

1
α−1 v.

Now, the hypothesis that A is homogeneous of order α 6= 1 implies that the right-
hand side in the previous characterization is equivalent to

λ
1

1−α u + λµ(A(λ
1

1−α u)− f ) 3 v, or JA− f
λµ v = λ

1
1−α u.

Therefore, one has that

(3.8) λ
1

α−1 JA− f
λµ v = JA−λ

α
α−1 f

µ

[
λ

1
α−1 v

]
for all λ, µ > 0, and v ∈ X.

Now, let u0 ∈ D(A)
X , π : 0 = t0 < t1 < · · · < tN = T be a partition of [0, T],

and f = ∑N
i=1 fi1(ti−1,ti ] ∈ L1(0, T; X) a step function. If u denotes the unique

mild solution of (2.1) for this step function f , then u is given by (3.5), were on
each subinterval (ti−1, ti], ui is the unique mild solution of (3.6).

Next, let λ > 0 and set

vλ(t) := λ
1

α−1 u(λt) for every t ∈
[
0, T

λ

]
.
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Then,

vλ(t) = λ
1

α−1 u0 1{t=0}(t) +
N

∑
i=1

λ
1

α−1 ui(λt)1( ti−1
λ , ti

λ

](t)
for every t ∈

[
0, T

λ

]
. Obviously, vλ(0) = λ

1
α−1 u0. Thus, to show that (2.4) holds,

it remains to verify that vλ is a mild solution of

dvλ
dt + A(vλ(t)) 3 λ

α
α−1 f (λt) on

(
0, T

λ

)
or, in other words,

(3.9) vλ(t) = Tt(λ
1

α−1 u0, λ
α

α−1 f (λ·))

for every t ∈
[
0, T

λ

]
. Let t ∈ (0, t1/λ] and n ∈N. We apply (3.8) to

µ =
t
n

and v = JA−λ
α

α−1 f1
λt
n

[λ
1

α−1 u0].

Then, one finds that[
JA−λ

α
α−1 f1

t
n

]2

[λ
1

α−1 u0] = JA−λ
α

α−1 f1
t
n

[
λ

1
α−1 JA− f1

λt
n

u0

]
= λ

1
α−1

[
JA− f1

λt
n

]2

u0.

Applying (3.8) to λ
1

α−1

[
JA− f1

λt
n

]i

u0 iteratively for i = 2, . . . , n yields

(3.10) λ
1

α−1

[
JA− f1

λt
n

]n

u0 =

[
JA−λ

α
α−1 f1

t
n

]n [
λ

1
α−1 u0

]
.

By (3.7), sending n→ +∞ in (3.10) yields on the one side

lim
n→+∞

λ
1

α−1

[
JA− f1

λt
n

]n

u0 = λ
1

α−1 u1(λt) = vλ(t),

and on the other side

lim
n→+∞

[
JA−λ

α
α−1 f1

t
n

]n [
λ

1
α−1 u0

]
= Tt(λ

1
α−1 u0, λ

α
α−1 f1),

showing that (3.9) holds for every t ∈ [0, t1
λ ]. Repeating this argument on each

subinterval ( ti−1
λ , ti

λ ] for i = 2, . . . , N, where one replaces in (3.10) u0 by u(ti−1),
and f1 by fi, then one sees that vλ satisfies (3.9) on the whole interval [0, T

λ ]. �

By the preceding proposition and by Lemma 2.2, we can now state the fol-
lowing result.

Corollary 3.5. Let A be a quasi m-accretive operator on a Banach space X and {Tt}T
t=0

the semigroup generated by −A on L1(0, T; X) × D(A)
X . If A is homogeneous of

order α 6= 1, then for every (u0, f ) ∈ D(A)
X × L1(0, T; X), t 7→ Tt(u0, f ) satisfies

lim sup
h→0+

∥∥∥∥Tt+h(u0, f )− Tt(u0, f )
h

∥∥∥∥
X

≤ 1
t

eωt
[

2
‖u0‖X

|1− α| +
1

|1− α|

∫ t

0
e−ωs‖ f (s)‖X ds + Vω( f , t)

]
,

(3.11)
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for a.e. t ∈ (0, T], where Vω( f , t) is defined by (2.7). In particular, if f ∈W1,1(0, T; X)
and d

dt Tt(u0, f ) exists in X at a.e. t ∈ (0, T), then Tt(u0, f ) satisfies∥∥∥∥ d
dt+

Tt(u0, f )
∥∥∥∥

X
≤ L

t
eωt
[

2
‖u0‖X

|1− α| +
1

|1− α|

∫ t

0
e−ωs‖ f (s)‖X ds

+
∫ t

0
e−ωs‖ f ′(s)‖X s ds

](3.12)

for a.e. t ∈ (0, T).

To consider the regularizing effect of mild solutions to the Cauchy prob-
lem (2.20) for the perturbed operator A+ F, we recall the following well-known
result from the literature.

Proposition 3.6 ([10, Lemma 7.8]). If A+ωI is accretive in X and f ∈ BV(0, T; X),
then for every u0 ∈ D(A), the mild solution u(t) := Tt(u0, f ), (t ∈ [0, T]), of Cauchy
problem (2.1) is Lipschitz continuous on [0, T] satisfying

lim sup
h→0+

‖u(t + h)− u(t)‖X

h

≤ eωt‖ f (0+)− y‖X + Ṽ( f , t+) + ω
∫ t

0
eω(t−s)Ṽ( f , s+)ds

for every t ∈ [0, T] and v ∈ Au0, where

Ṽ( f , t+) := lim sup
h→0+

∫ t

0

‖ f (s + h)− f (s)‖X

h
ds.

With the preceding Theorem 2.6, Proposition 3.4, and Proposition 3.6 in
mind, we are now in the position to outline the proof of our main Theorem 1.1.

Proof of Theorem 1.1. We begin by noting that if A is m-accretive in X and F is
a Lipschitz continuous mapping with Lipschitz constant ω, then the operator
A + F is ω-quasi m-accretive in X; or in other words, A + F + ωI is m-accretive
in X. Hence, for every T > 0, there is a semigroup {Tt}T

t=0 of mappings Tt :
D(A)

X × L1(0, T; X) → D(A)
X satisfying (2.3) and (2.5) with ω and L = 1.

Further, the semigroup {T̃t}T
t=0 generated by −A satisfies (2.3) and (2.5) with

ω = 0 and L = 1, (2.22) for every u0 ∈ D(A)
X and f ∈ L1(0, T; X) with f̃ given

by (2.21), and by Proposition 3.4, {T̃t}T
t=0 satisfies (2.4). Now, let u0 ∈ D(A) and

f ∈ BV(0, T; X). Then by Proposition 3.6, the mild solution u(t) := Tt(u0, f ),
(t ∈ [0, T]), of Cauchy problem (2.1) is Lipschitz continuous on [0, T]. Thus, we
can apply Theorem 2.6 and obtain that u satisfies (1.3). �

In order the semigroup {Tt}T
t=0 generated by −A satisfies regularity esti-

mate (2.10) (respectively, (2.19)), one requires that each mild solution u of (2.1)
(respectively, of (1.8)) is differentiable at a.e. t ∈ (0, T), or in other words, u is
a strong solution of (2.1). The next definition is taken from [10, Definition 1.2]
(cf [7, Chapter 4]).

Definition 3.7. A locally absolutely continuous function u[0, T] :→ X is called
a strong solution of the differential inclusion

(3.13)
du
dt

(t) + A(u(t)) 3 f (t) for a.e. t ∈ (0, T),
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if u is differentiable a.e. on (0, T), and for a.e. t ∈ (0, T), u(t) ∈ D(A) and
f (t) − du

dt (t) ∈ A(u(t)). Further, for given u0 ∈ X and f ∈ L1(0, T; X), a
function u is called a strong solution of Cauchy problem (2.1) if u ∈ C([0, T]; X),
u is strong solution of (3.13) and u(0) = u0.

The next characterization of strong solutions of (3.13) highlights the impor-
tant point of a.e. differentiability.

Proposition 3.8 ([10, Theorem 7.1]). Let X be a Banach space, f ∈ L1(0, T; X)
and A be quasi m-accretive in X. Then u is a strong solution of the differential inclu-
sion (3.13) on [0, T] if and only if u is a mild solution on [0, T] and u is “absolutely
continuous” on [0, T] and differentiable a.e. on (0, T).

Of course, every strong solution u of (3.13) is a mild solution of (3.13), and
u is absolutely continuous and differentiable a.e. on [0, T]. The differential in-
clusion (3.13) admits mild and Lipschitz continuous solutions if A is ω-quasi
m-accretive in X (cf [10, Lemma 7.8]). But, in general, an absolutely continuous
functions u : [0, T] → X is not necessarily differentiable a.e. on (0, T). Only
if one assumes additional geometric properties on X, then the latter implica-
tion holds true. Our next definition is taken from [10, Definition 7.6] (cf [3,
Chapter 1]).

Definition 3.9. A Banach space X is said to have the Radon-Nikodým property
if every absolutely continuous function F : [a, b] → X, (a, b ∈ R, a < b), is
differentiable almost everywhere on (a, b).

Known examples of Banach spaces X admitting the Radon-Nikodým prop-
erty are:

• (Dunford-Pettis) if X = Y∗ is separable, where Y∗ is the dual space of a
Banach space Y;
• if X is reflexive.

We emphasize that X1 = L1(Σ, µ), X2 = L∞(Σ, µ), or X3 = C(M) for a σ-
finite measure space (Σ, µ), or respectively, for a compact metric space (M, d)
don’t have, in general, the Radon-Nikodým property (cf [3]). Thus, it is quite
surprising that there is a class of operators A (namely, the class of completely
accretive operators, see Section 4 below), for which the differential inclusion (2.1)
nevertheless admits strong solutions (with values in L1(Σ, µ) or L∞(Σ, µ)).

Now, by Corollary 3.5 and Proposition 3.8, we can conclude the following
results. We emphasize that one crucial point in the statement of Corollary 3.10
below is that due to the uniform estimate (2.9), one has that for all initial values
u0 ∈ D(A)

X , the unique mild solution u of (2.1) is strong.

Corollary 3.10. Suppose A is a quasi m-accretive operator on a Banach space X
admitting the Radon-Nikodým property, and {Tt}T

t=0 is the semigroup generated by
−A on D(A)

X × L1(0, T; X). If A is homogeneous of order α 6= 1, then for every
u0 ∈ D(A)

X and f ∈ W1,1(0, T; X), the unique mild solution u(t) := Tt(u0, f )
of (2.1) is strong and {Tt}T

t=0 satisfies (3.12) for a.e. t ∈ (0, T).

We omit the proof of Corollary 3.10 since it is straightforward. Now, we are
ready to show that the statement of Corollary 1.2 holds.
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Proof of Corollary 1.2. First, let u0 ∈ D(A). Then by Proposition 3.6, the mild
solution u(t) = Tt(u0, f ) of Cauchy problem (1.1) is Lipschitz continuous on
[0, T), and since every reflexive Banach space X admits the Radon-Nikodým
property, u is differentiable a.e. on (0, T). Thus, by Theorem 1.1, there is a
function ψ ∈ L∞(0, T) such that u satisfies∥∥∥∥du

dt+
(t)
∥∥∥∥

X
≤ 1

t

[
eωt + 1
|1− α| ‖u0‖X + ψ(t) + ω

∫ t

0

[
eωs + 1
|1− α| ‖u0‖X + ψ(s)

]
eω(t−s)ds

]
for a.e. t ∈ (0, T). Next, we square both sides of the last inequality and subse-
quently integrate over (a, b) for given 0 < a < b ≤ T. Then, one finds that∫ b

a

∥∥∥∥du
dt

(t)
∥∥∥∥2

X
dt ≤

∫ b

a

1
t2

{
eωt + 1
|1− α| ‖u0‖X + ψ(t)

+ω
∫ t

0

[
eωs + 1
|1− α| ‖u0‖X + ψ(s)

]
eω(t−s)ds

}2

dt

(3.14)

Due to this estimate, we can now show that also for u0 ∈ D(A)
X , the corre-

sponding mild solution u of (1.1) is strong. To see this let (u0,n)n≥1 ⊆ D(A)
such that u0,n → u0 in X as n → ∞ and set un = Ttu0,n for all n ≥ 1. By (2.5)
(which is satisfied with L = 1 by all un), (un)n≥1 is a Cauchy sequence in
C([0, T]; X). Hence, there is a function u ∈ C([0, T]; X) satisfying u(0) = u0
and un → u in C([0, T]; X). In particular, one can show that u is the unique
mild solution of Cauchy problem (1.1). Now, by inequality (3.14), (dun/dt)n≥1
is bounded in L2(a, b; X) for any 0 < a < b ≤ T. Since X is reflexive, also
L2(a, b; X) is reflexive and hence, there is a v ∈ L2(a, b; X) and a subsequence of
(u0,n)n≥1, which, for simplicity, we denote again by (u0,n)n≥1, such that dun

dt ⇀ v
weakly in L2(a, b; X) as n → +∞. Since un → u in C([a, b]; X), it follows
by a standard argument that v = du

dt in the sense of vector-valued distribu-
tions D′((a, b); X). Since du

dt ∈ L2(a, b; X), the mild solution u of Cauchy prob-
lem (1.1) is absolutely continuous on (a, b), and since X is reflexive, u is differ-
entiable a.e. on (a, b). Since 0 < a < b < ∞ were arbitrary, du

dt ∈ L1
loc((0, ∞); X).

To see that u satisfies inequality (1.5), note that for ε > 0, the function t 7→
ũ(t) := u(t + ε) on [0, T − ε] satisfies the hypotheses of Theorem 1.1 with dũ

dt ∈
L1([0, T − ε); X) and so, we find that∥∥∥∥dũ

dt+
(t)
∥∥∥∥

X
≤ 1

t

[
eωt + 1
|1− α| ‖u(ε)‖X + ψ(t)

+ω
∫ t

0

[
eωs + 1
|1− α| ‖u(ε)‖X + ψ(s)

]
eω(t−s)ds

]
for every t ∈ (0, T − ε] and ε ∈ (0, t). Sending ε → 0+ shows that u sat-
isfies (1.5). Since u0 ∈ D(A)

X was arbitrary, this completes the proof of this
corollary. �

If the Banach space X and its dual space X∗ are uniformly convex and A + F
is quasi m-accretive in X, then (cf., [7, Theorem 4.6]) for every u0 ∈ D(A),
f ∈ W1,1(0, T; X), the mild solution u(t) = Tt(u0, f ), (t ∈ [0, T]), of Cauchy
problem (1.1) is a strong one, u is everywhere differentiable from the right, du

dt+
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is right continuous, and

du
dt+

(t) + (A + F− f (t))◦u(t) = 0 for every t ≥ 0,

where for every t ∈ [0, T], (A + F − f (t))◦ denotes the minimal selection of
A + F − f (t) defined by (3.4). Thus, under those assumptions on X and by
Corollary 1.2, we can conclude the following two corollaries. We begin by stat-
ing the inhomogeneous case.

Corollary 3.11. Suppose X and its dual space X∗ are uniformly convex, for ω ∈ R, A
is an ω-quasi m-accretive operator on X, and {Tt}T

t=0 is the semigroup on D(A)
X ×

L1(0, T; X) generated by −A. If A is homogeneous of order α 6= 1, then for every
u0 ∈ D(A)

X and f ∈ W1,1(0, T; X), the mild solution u(t) = Tt(u0, f ), (t ∈ [0, T])
of Cauchy problem (2.1) is strong and

‖(A + F− f (t))◦Tt(u0, f )‖X ≤
1
t

[
a(t) + ω

∫ t

0
a(s)eω(t−s)ds

]
for every t ∈ (0, T], where a(t) is defined by (1.4).

Our next corollary considers the homogeneous case of Cauchy problem (2.1).

Corollary 3.12. Suppose X and its dual space X∗ are uniformly convex, for ω ∈ R,
A is an ω-quasi m-accretive operator on X, and {Tt}t≥0 is the semigroup on D(A)

X

generated by −A. If A is homogeneous of order α 6= 1, then for every u0 ∈ D(A)
X ,

the mild solution u(t) = Ttu0, (t ≥ 0) of Cauchy problem (1.8) (for f ≡ 0) is a strong
solution satisfying

‖(A + F− f (t))◦Ttu0‖X ≤
eωt + 1
|1− α| t

[
1 + ω

∫ t

0
eω(t−s) ds

]
‖u0‖X

for every t > 0.

To conclude this section, we briefly outline the proof of Theorem 1.3.

Proof of Theorem 1.3. In the case A is an m-accretive operator on a Banach lat-
tice X and F a Lipschitz continuous perturbation with constant ω ≥ 0, then
the statement of Theorem 1.3 immediately follow from Theorem 2.9 and Corol-
lary 2.11 with constants L = 1. �

4. HOMOGENEOUS COMPLETELY ACCRETIVE OPERATORS

In [8], Bénilan and Crandall introduced the class of completely accretive opera-
tors A and showed: even though the underlying Banach spaces does not admit
the Radon-Nikodým property, but if A is completely accretive and homoge-
neous of order α > 0 with α 6= 1, then the mild solutions of differential inclu-
sion (1.8) involving A are strong. This was extended in [27] to the zero-order
case. Here, we provide a generalization to the case of completely accretive op-
erators which are homogeneous of order α 6= 1 and perturbed by a Lipschitz
nonlinearity.
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4.1. General framework. In order to keep this paper self-contained, we pro-
vide a brief introduction to the class of completely accretive operators, where
we mainly follow [8] and the monograph [18].

For the rest of this paper, suppose (Σ,B, µ) is a σ-finite measure space, and
M(Σ, µ) the space of µ-a.e. equivalent classes of measurable functions u :
Σ → R. For u ∈ M(Σ, µ), we write [u]+ to denote max{u, 0} and [u]− =
−min{u, 0}. We denote by Lq(Σ, µ), 1 ≤ q ≤ ∞, the corresponding standard
Lebesgue space with norm

‖·‖q =


(∫

Σ
|u|q dµ

)1/q

if 1 ≤ q < ∞,

inf
{

k ∈ [0,+∞]
∣∣∣ |u| ≤ k µ-a.e. on Σ

}
if q = ∞.

For 1 ≤ q < ∞, we identify the dual space (Lq(Σ, µ))′ with Lq′ (Σ, µ), where q′
is the conjugate exponent of q given by 1 = 1

q +
1
q′ .

Next, we first briefly recall the notion of Orlicz spaces (cf [36, Chapter 3]).
A continuous function ψ : [0,+∞) → [0,+∞) is an N-function if it is convex,
ψ(s) = 0 if and only if s = 0, lims→0+ ψ(s)/s = 0, and lims→∞ ψ(s)/s = ∞.
Given an N-function ψ, the Orlicz space is defined as follows

Lψ(Σ, µ) :=

{
u ∈ M(Σ, µ)

∣∣∣∣∣
∫

Σ
ψ

(
|u|
α

)
dµ < ∞ for some α > 0

}
and equipped with the Orlicz-Minkowski norm

‖u‖ψ := inf

{
α > 0

∣∣∣∣∣
∫

Σ
ψ

(
|u|
α

)
dµ ≤ 1

}
.

With these preliminaries in mind, we are now in the position to recall the no-
tation of completely accretive operators introduced in [8] and further developed
to the ω-quasi case in [18].

Let J0 be the set given by

J0 =
{

j : R→ [0,+∞]
∣∣∣j is convex, lower semicontinuous, j(0) = 0

}
.

Then, for every u, v ∈ M(Σ, µ), we write

u� v if and only if
∫

Σ
j(u)dµ ≤

∫
Σ

j(v)dµ for all j ∈ J0.

Remark 4.1. Due to the interpolation result [8, Proposition 1.2], for given u,
v ∈ M(Σ, µ), the relation u� v is equivalent to the two conditions

∫
Σ
[u− k]+ dµ ≤

∫
Σ[v− k]+ dµ for all k > 0 and∫

Σ
[u + k]− dµ ≤

∫
Σ[v + k]− dµ for all k > 0.

By this characterization, it is clear that for every u, v, w ∈ M(Σ, µ),

(4.1) if u� v and 0 ≤ w ≤ u then w� v.
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Thus, the relation� is closely related to the theory of rearrangement-invariant
function spaces (cf [11]). Another, useful characterization of the relation � is
the following (cf [8, Remark 1.5]): for every u, v ∈ M(Σ, µ), one has that

u� v if and only if u+ � v+ and u− � v−.

Further, the relation � on M(Σ, µ) has the following properties. We omit
the easy proof of this proposition.

Proposition 4.2. For every u, v, w ∈ M(Σ, µ), one has that
(1) u+ � u, u− � −u;
(2) u� v if and only if u+ � v+ and u− � v−;
(3) (positive homogeneity) if u� v then αu� αv for all α > 0;
(4) (transitivity) if u� v and v� w then u� w;
(5) if u� v then |u| � |v|;
(6) (convexity) for every u ∈ M(Σ, µ), the set {w |w� u} is convex.

With these preliminaries in mind, we can now state the following definitions.

Definition 4.3. A mapping S : D(S)→ M(Σ, µ) with domain D(S) ⊆ M(Σ, µ)
is called a complete contraction if

Su− Sû� u− û for every u, û ∈ D(S).

More generally, for L ≥ 1, we call S to be an L-complete contraction if

L−1Su− L−1Sû� u− û for every u, û ∈ D(S),

and for some ω ∈ R, S is called to be ω-quasi completely contractive if S is an
L-complete contraction with L = eωt for some t ≥ 0.

Remark 4.4. Note, for every 1 ≤ q < ∞, jq(·) = |[·]+|q ∈ J0, j∞(·) = [[·]+ −
k]+ ∈ J0 for every k ≥ 0 (and for large enough k > 0 if q = ∞), and for every
N-function ψ and α > 0, jψ,α(·) = ψ( [·]

+

α ) ∈ J0. This shows that for every
L-complete contraction S : D(S) → M(Σ, µ) with domain D(S) ⊆ M(Σ, µ),
the mapping L−1S is order-preserving and contractive respectively for every
Lq-norm (1 ≤ q ≤ ∞), and every Lψ-norm with N-function ψ.

Now, we can state the definition of completely accretive operators.

Definition 4.5. An operator A on M(Σ, µ) is called completely accretive if for
every λ > 0, the resolvent operator Jλ of A is a complete contraction, or equiv-
alently, if for every (u1, v1), (u2, v2) ∈ A and λ > 0, one has that

u1 − u2 � u1 − u2 + λ(v1 − v2).

If X is a linear subspace of M(Σ, µ) and A an operator on X, then A is said
to be m-completely accretive on X if A is completely accretive and satisfies the
range condition (3.1). Further, for ω ∈ R, an operator A on a linear subspace
X ⊆ M(Σ, µ) is called ω-quasi (m)-completely accretive in X if A + ωI is (m)-
completely accretive in X. Finally, an operator A on a linear subspace X ⊆
M(Σ, µ) is called quasi (m-)completely accretive if there is an ω ∈ R such that
A + ωI is (m-)completely accretive in X.

Remark 4.6. For ω ∈ R, the fact that A is ω-quasi (m)-completely accretive in
X implies that the resolvent operator JA

λ of A is L-completely contractive for
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L = (1− λω)−1 for every λ > 0 satisfying λω < 1. Indeed, if A is ω-quasi
(m)-completely accretive in X then by taking L = (1− λω)−1, one sees that∫

Σ
j
(

L−1(u1 − u2)
)

dµ =
∫

Σ
jL−1(u1 − u2)dµ

≤
∫

Σ
jL−1

(
u1 − u2 +

λ
1−λω (ω(u1 − u2) + v1 − v2)

)
dµ

=
∫

Σ
j(u1 − u2 + λ(v1 − v2))dµ

for every (u1, v1), (u1, v1) ∈ A and λ > 0 satisfying λω < 1, where we used
that jL−1(s) := j((1− λw)s) belongs to J0.

This property transfers as follows to the semigroup {Tt}t≥0
Before stating a useful characterization of quasi completely accretive opera-

tors, we first need to introduce the following function spaces. Let

L1+∞(Σ, µ) := L1(Σ, µ) + L∞(Σ, µ) and L1∩∞(Σ, µ) := L1(Σ, µ) ∩ L∞(Σ, µ)

be the sum and the intersection space of L1(Σ, µ) and L∞(Σ, µ), which are equip-
ped, respectively, with the norms

‖u‖1+∞ := inf
{
‖u1‖1 + ‖u2‖∞

∣∣∣u = u1 + u2, u1 ∈ L1(Σ, µ), u2 ∈ L∞(Σ, µ)
}

,

‖u‖1∩∞ := max
{
‖u‖1, ‖u‖∞

}
are Banach spaces. In fact, L1+∞(Σ, µ) and and L1∩∞(Σ, µ) are respectively the
largest and the smallest of the rearrangement-invariant Banach function spaces
(cf., [11, Chapter 3.1]). If µ(Σ) is finite, then L1+∞(Σ, µ) = L1(Σ, µ) with equiva-
lent norms, but if µ(Σ) = ∞ then L1+∞(Σ, µ) contains

⋃
1≤q≤∞ Lq(Σ, µ). Further,

we will employ the space

L0(Σ, µ) :=
{

u ∈ M(Σ, µ)
∣∣∣ ∫

Σ

[
|u| − k

]+ dµ < ∞ for all k > 0
}

,

which equipped with the L1+∞-norm is a closed subspace of L1+∞(Σ, µ). In fact,
one has (cf., [8]) that L0(Σ, µ) = L1(Σ, µ) ∩ L∞(Σ, µ)

1+∞ . Since for every k ≥ 0,
Tk(s) := [|s| − k]+ is a Lipschitz mapping Tk : R → R and by Chebyshev’s
inequality, one sees that Lq(Σ, µ) ↪→ L0(Σ, µ) for every 1 ≤ q < ∞ (and q = ∞
if µ(Σ) < +∞), and Lψ(Σ, µ) ↪→ L0(Σ, µ) for every N-function ψ.

Proposition 4.7 ([18]). Let P0 denote the set of all functions T ∈ C∞(R) satisfying
0 ≤ T′ ≤ 1 such that T′ is compactly supported, and x = 0 is not contained in the
support supp(T) of T. Then for ω ∈ R, an operator A ⊆ L0(Σ, µ) × L0(Σ, µ) is
ω-quasi completely accretive if and only if∫

Σ
T(u− û)(v− v̂)dµ + ω

∫
Σ

T(u− û)(u− û)dµ ≥ 0

for every T ∈ P0 and every (u, v), (û, v̂) ∈ A.

Remark 4.8. For convenience, we denote the unique extension of {Tt}t≥0 on
Lψ(Σ, µ) or L1(Σ, µ) again by {Tt}t≥0.
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Definition 4.9. A Banach space X ⊆ M(Σ, µ) with norm ‖·‖X is called normal
if the norm ‖·‖X has the following property:{

for every u ∈ X, v ∈ M(Σ, µ) satisfying v� u,
one has that v ∈ X and ‖v‖X ≤ ‖u‖X.

Typical examples of normal Banach spaces X ⊆ M(Σ, µ) are Orlicz-spaces
Lψ(Σ, µ) for every N-function ψ, Lq(Σ, µ), (1 ≤ q ≤ ∞), L1∩∞(Σ, µ), L0(Σ, µ),
and L1+∞(Σ, µ).

Remark 4.10. It is important to point out that if X is a normal Banach space,
then for every u ∈ X, one always has that u+, u− and |u| ∈ X. To see this, recall
that by (1) Proposition 4.2, if u ∈ X, then u+ � u and u− � −u. Thus, u+ and
u− ∈ X and since |u| = u+ + u−, one also has that |u| ∈ X.

The dual space (L0(Σ, µ))′ of L0(Σ, µ) is isometrically isomorphic to the space
L1∩∞(Σ, µ). Thus, a sequence (un)n≥1 in L0(Σ, µ) is said to be weakly convergent
to u in L0(Σ, µ) if

〈v, un〉 :=
∫

Σ
v un dµ→

∫
Σ

v u dµ for every v ∈ L1∩∞(Σ, µ).

For the rest of this paper, we write σ(L0, L1∩∞) to denote the weak topology on
L0(Σ, µ). For this weak topology, we have the following compactness result.

Proposition 4.11 ([8, Proposition 2.11]). Let u ∈ L0(Σ, µ). Then, the following
statements hold.

(1) The set
{

v ∈ M(Σ, µ)
∣∣∣ v� u

}
is σ(L0, L1∩∞)-sequentially compact in L0(Σ, µ);

(2) Let X ⊆ M(Σ, µ) be a normal Banach space satisfying X ⊆ L0(Σ, µ) and

(4.2)

 for every u ∈ X, (un)n≥1 ⊆ M(Σ, µ) with un � u for all n ≥ 1

and lim
n→+∞

un(x) = u(x) µ-a.e. on Σ, yields lim
n→+∞

un = u in X.

Then for every u ∈ X and sequence (un)n≥1 ⊆ M(Σ, µ) satisfying

un � u for all n ≥ 1 and lim
n→+∞

un = u σ(L0, L1∩∞)-weakly in X,

one has that
lim

n→+∞
un = u in X.

Note, examples of normal Banach spaces X ⊆ L0(Σ, µ) satisfying (4.2) are
X = Lp(Σ, µ) for 1 ≤ p < ∞ and L0(Σ, µ).

To complete this preliminary section, we state the following Proposition
summarizing statements from [18], which we will need in the sequel (cf., [8]
for the case ω = 0).

Proposition 4.12. For ω ∈ R, let A be ω-quasi completely accretive in L0(Σ, µ).
(1.) If there is a λ0 > 0 such that Rg(I +λA) is dense in L0(Σ, µ), then for the closure

AL0 of A in L0(Σ, µ) and every normal Banach space with X ⊆ L0(Σ, µ), the
restriction AL0

X := AL0 ∩ (X× X) of A on X is the unique ω-quasi m-completely
accretive extension of the part AX = A ∩ (X× X) of A in X.
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(2.) For a given normal Banach space X ⊆ L0(Σ, µ), and ω ∈ R, suppose A is ω-
quasi m-completely accretive in X, and {Tt}t≥0 be the semigroup generated by
−A on D(A)

X . Further, let {St}t≥0 be the semigroup generated by −AL0 , where
AL0 denotes the closure of A in XL0 . Then, the following statements hold.
(a) The semigroup {St}t≥0 is ω-quasi completely contractive on D(A)

L0 , Tt is
the restriction of St on D(A)

X , St is the closure of Tt in L0(Σ, µ), and

(4.3) Stu0 = L0 − lim
n→+∞

(
I +

t
n

A
)−n

u0 for all u0 ∈ D(A)
L0 ∩ X;

(b) If there exists u ∈ L1∩∞(Σ, µ) such that the orbit {Ttu | t ≥ 0} is locally
bounded on R+ with values in L1∩∞(Σ, µ), then, for every N-function ψ,
the semigroup {Tt}t≥0 can be extrapolated to a strongly continuous, order-
preserving semigroup of ω-quasi contractions on D(A)

X ∩ L1∩∞(Σ, µ)
Lψ

(re-
spectively, on D(A)

X ∩ L1∩∞(Σ, µ)
L1

), and to an order-preserving semigroup
of ω-quasi contractions on D(A)

X ∩ L1∩∞(Σ, µ)
L∞

. We denote each exten-
sion of Tt on on those spaces again by Tt.

(c) The restriction AX := AL0 ∩ (X × X) of AL0 on X is the unique ω-quasi
m-complete extension of A in X; that is, A = AX.

(d) The operator A is sequentially closed in X× X equipped with the relative
(L0(Σ, µ)× (X, σ(L0, L1∩∞)))-topology.

(e) The domain of A is characterized by

D(A) =

{
u ∈ D(A)

L0 ∩ X

∣∣∣∣∣ ∃ v ∈ X such that
e−ωt Stu−u

t � v for all small t > 0

}
;

(f) For every u ∈ D(A), one has that

(4.4) lim
t→0+

Stu− u
t

= −A◦u strongly in L0(Σ, µ).

4.2. Regularizing effect of the associated semigroup. It is worth recalling that
the Banach space L1(Σ, µ) does not admit the Radon-Nikodým property. Thus,
the time-derivative d

dt+ Ttu0(t), u0 ∈ L1(Σ, µ), of a given semigroup {Tt}t≥0 on
L1(Σ, µ) does not need to exist in L1(Σ, µ). But, in this section, we show that
even though the underlying Banach space X is not reflexive, if the infinitesimal
generator −A is homogeneous of order α 6= 1 and A is quasi-completely ac-
cretive, then the time-derivative du

dt+ (t) exists in X. This fact follows from the
following compactness result generalizing the one in [8] for ω = 0.

Here, the partial ordering “≤” is the standard one defined by u ≤ v for u,
v ∈ M(Σ, µ) if u(x) ≤ v(x) for µ-a.e. x ∈ Σ, and we writeX ↪→ Y for indicating
that the space X is continuously embedded into the space Y.

Lemma 4.13. Let X ⊆ L0(Σ, µ) be a normal Banach space satisfying (4.2). For
ω ∈ R, let {Tt}t≥0 be a family of mappings Tt : C → C defined on a subset C ⊆ X
of ω-quasi complete contractions satisfying (2.16) and Tt0 = 0 for all t ≥ 0. Then, for
every u0 ∈ C and t > 0, the set

(4.5)

{
Tt+hu0 − Ttu0

h

∣∣∣∣∣ h 6= 0, t + h > 0

}
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is σ(L0, L1∩∞)-weakly sequentially compact in L0(Σ, µ).

The proof of this lemma is essentially the same as in the case ω = 0 (cf., [8]).
For the convenience of the reader, we include here the proof.

Proof. Let u0 ∈ C, t > 0, and h 6= 0 such that t + h > 0. Then by taking
λ = 1 + h

t in (2.16), one sees that

|Tt+hu0 − Ttu0| = |λ
1

1−α Tt

[
λ

1
α−1 u0

]
− Ttu0|

≤ λ
1

1−α

∣∣∣Tt

[
λ

1
α−1 u0

]
− Ttu0

∣∣∣+ |λ 1
1−α − 1| |Ttu0|.

Since Tt is an ω-quasi complete contraction and since Tt0 = 0, (t ≥ 0), claim (3)
and (5) of Proposition 4.2 imply that

λ
1

1−α e−ωt
∣∣∣Tt

[
λ

1
α−1 u0

]
− Ttu0

∣∣∣� |1− λ
1

1−α | |u0|

and
|λ 1

1−α − 1| e−ωt|Ttu0| � |λ
1

1−α − 1| |u0|.

Since the set {w |w � |λ 1
1−α − 1| |u0|} is convex (cf., (6) of Proposition 4.2), the

previous inequalities imply that

1
2

e−ωt|Tt+hu0 − Ttu0| � |λ
1

1−α − 1| |u0|.

Using again (3) of Proposition 4.2, gives

(4.6)
|Tt+hu0 − Ttu0|
|λ 1

1−α − 1|
� 2 eωt |u0|.

Since for every u ∈ M(Σ, µ), one always has that u+ � |u|, the transitivity of
“�” ((4) of Proposition 4.2) implies that

fh :=
Tt+hu0 − Ttu0

λ
1

1−α − 1
satisfies f+h � 2 eωt |u0|.

Therefore and since |u0| ∈ X, (1) of Proposition 4.11 yields that the two sets
{ f+h | h 6= 0, t + h > 0} and {| fh|| h 6= 0, t + h > 0} are σ(L0, L1∩∞)- weakly
sequentially compact in L0(Σ, µ). Since f−h = | fh| − f+h and fh = f+h − f−h , and
since (λ

1
1−α − 1)/h = ((1 + h

t )
1

1−α − 1)/h → 1/t(1− α) 6= 0 as h → 0, we can
conclude that the claim of this lemma holds. �

With these preliminaries in mind, we can now state the regularization ef-
fect of the semigroup {Tt}t≥0 generated by a ω-quasi m-completely accretive
operator of homogeneous order α 6= 1.

Theorem 4.14. Let X ⊆ L0(Σ, µ) be a normal Banach space satisfying (4.2), and ‖·‖
denote the norm on X. For ω ∈ R, let A be ω-quasi m-completely accretive in X, and
{Tt}t≥0 be the semigroup generated by −A on D(A)

X . If A is homogeneous of order
α 6= 1, then for every u0 ∈ D(A)

X and t > 0, dTtu0
dt exists in X and

(4.7) |A◦Ttu0| ≤
2eωt

|α− 1|
|u0|

t
µ-a.e. on Σ.
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In particular, for every u0 ∈ D(A)
X ,

(4.8)
∥∥∥∥dTtu0

dt +

∥∥∥∥ ≤ 2eωt

|α− 1|
‖u0‖

t
for every t > 0,

and

(4.9)
dTtu0

dt +
� 2eωt

|α− 1|
|u0|

t
for every t > 0.

Proof. Let u0 ∈ D(A)
X , t > 0, and (hn)n≥1 ⊆ R be a zero sequence such that

t+ hn > 0 for all n ≥ 1. Then, by Proposition 3.4, we can apply the compactness
result stated in Lemma 4.13. Thus, there is a z ∈ L0(Σ, µ) and a subsequence
(hkn)n≥1 of (hn)n≥1 such that

(4.10) lim
n→∞

Tt+hkn
u0 − Ttu0

hkn

= z weakly in L0(Σ, µ).

By (2e) of Proposition 4.12, one has that (Ttu0,−z) ∈ A. Thus (2f) of Proposi-
tion 4.12 yields that z = −A◦Ttu0 and

(4.11) lim
n→∞

Tt+hkn
u0 − Ttu0

hkn

= −A◦Ttu0 strongly in L0(Σ, µ).

After possibly passing to another subsequence, the limit (4.11) also holds µ-a.e.
on Σ. The argument shows that the limit (4.11) is independent of the choice of
the initial zero sequence (hn)n≥1. Thus

(4.12) lim
h→0

Tt+hu0 − Ttu0

h
= −A◦Ttu0 exists µ-a.e. on Σ.

Since 2e−ωt |u0| ∈ X, by (4.6), and since (λ
1

1−α − 1)/h = ((1 + h
t )

1
1−α − 1)/h →

1/t(1− α) 6= 0 as h→ 0, it follows from (2) of Proposition 4.11 that

(4.13) lim
h→0

Tt+hu0 − Ttu0

h
= −A◦Ttu0 exists in X

and with λ = 1 + h
t ,

|Tt+hu0 − Ttu0|
|λ 1

1−α − 1|
≤ 2 e−ωt |u0|

for all h 6= 0 satisfying t + h > 0. Sending h → 0 in the last inequality and
applying (4.13) gives (4.7). In particular, by Corollary 2.5, one has that (4.8)
holds for the norm ‖·‖X on X. Moreover, (4.6) is equivalent to

(4.14)
∫

Σ
j

(
|Tt+hu0 − Ttu0|
|λ 1

1−α − 1|

)
dµ ≤

∫
Σ

j
(
2 e−ωt |u0|

)
dµ

for all h 6= 0 satisfying t + h > 0, and every j ∈ J0. By the lower semicontinuity
of j ∈ J0 and by the µ-a.e. limit (4.12), we have that

j
(

dTtu0

dt
(x) |α− 1| t

)
≤ lim inf

h→0
j

(
|Tt+hu0(x)− Ttu0(x)|

|λ 1
1−α − 1|

)
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for µ-a.e. x ∈ Σ. Thus, taking the limit inferior as h → 0+ in (4.14) and
applying Fatou’s lemma yields∫

Σ
j
(

dTtu0

dt
(x) |α− 1| t

)
dµ ≤

∫
Σ

j
(
2 e−ωt |u0|

)
dµ

Since j ∈ J0 was arbitrary and by (3) of Proposition 4.2, this shows that (4.9)
holds and thereby completes the proof of this theorem. �

5. APPLICATION

5.1. An elliptic-parabolic boundary-value problem. Our aim in this section
is to derive global L1 Aronson-Bénilan estimate (1.5) for X = Lq(∂M), (1 ≤ q ≤
∞), and point-wise Aronson-Bénilan estimate (1.7) on the time-derivative du

dt of
any solutions u to the elliptic-parabolic boundary-value problem

(5.1)


−∆pu + m |u|p−2u = 0 in M× (0, ∞),

∂tu + |∇u|p−2
g ∇u · ν + f (x, u) = 0 on ∂M× (0, ∞),

u(0) = u0 on ∂M.

Here, we assume that 1 < p < ∞, ∆p denotes the celebrated p-Laplace-Beltrami
operator

(5.2) ∆pu := div
(
|∇u|p−2

g ∇u
)

in D′(M)

for u ∈ W1,p(M) on a compact, smooth, N-dimensional Riemannian manifold
(M, g) with a Lipschitz continuous boundary ∂M, m > 0 and f : ∂M×R→ R

a Lipschitz-continuous Carathéodory function (see (5.7)-(5.9) below).
For applying the theory developed in the previous sections of this paper, it

is worth noting that the elliptic-parabolic problem (5.1) can be rewritten in the
form of the perturbed Cauchy problem (1.6) in the Banach space X = Lq(∂M),
(1 ≤ q ≤ ∞), where the operator A is the Dirichlet-to-Neumann operator realized
in X associated with the operator −∆p + m |·|p−2·; that is, A assigns Dirichlet
data ϕ on ∂M to the co-normal derivative |∇u|p−2

g ∇u · ν on ∂M, where u is the
unique weak solution of the Dirichlet problem

(5.3)

{
−∆pu + m |u|p−2u = 0 in M,

u = ϕ on ∂M.

In the (flat) case M = Ω is a bounded domain in RN with a Lipschitz-continuous
boundary ∂Ω, the Dirichlet-to-Neumann operator A associated with the p-
Laplace-Beltrami operator ∆p and its semigroup {Tt}t≥0 were studied in the
past by several authors (see, for instance, in [25, 17, 18] and the references
therein).

5.2. Framework. Throughout this section, let (M, g) denote a compact, smooth,
(orientable), N-dimensional Riemannian manifold with a Lipschitz continuous
boundary ∂M. Let g = {g(x)}x∈M denote the corresponding Riemannian met-
ric tensor and for every x ∈ M, Tx be the tangent space and TM the tangent

bundle of M. We write |ξ|g =
√
〈ξ, ξ〉g(x), (ξ ∈ Tx), to denote the induced norm

of the inner product 〈·, ·〉g(x) on the tangent space Tx. If for given f ∈ C∞(M),
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d f is the differential at x ∈ M and for every chart (Ω, φ), g = (gij)
N
i,j=1 is the ma-

trix of the Riemannian metric g on Ω with inverse g−1, then the corresponding
gradient of f at x is given by ∇ f (x) = g−1(x)d f (x), and for every C1-vector
field X = (X1, . . . , XN) on M, the divergence

div (X) := 1√
det(g)

∂
∂xi

(√
det(g)Xi

)
.

For given C1-curve κ with parametrization γκ : [0, 1] → M, the length L(κ) of
κ is defined by

L(κ) =
∫ 1

0

∣∣∣dγκ

dt (t)
∣∣∣

g(γκ(t))
dt.

If we denote by C1
x,y the space of all piecewise C1-curves κ with starting point

γκ(0) = x ∈ M and end point γκ(1) = y ∈ M, then dg(x, y) := infκ∈C1
x,y

L(κ)
defines a distance (called Riemannian distance) whose induced topology τg
coincides with the original one by M. There exists a unique Borel measure µg
defined on the Borel σ-Algebra σ(τg) such that on any chart (Ω, φ) of M, one
has that dµg =

√
det(g)dx, where dx refers to the Lebesgue measure in Ω.

For the measure space (M, µg), and 1 ≤ q ≤ ∞, we denote by Lq(M) =

Lq(M, µg) (respectively, Lq
loc(M) = Lq

loc(M, µg)) the classical Lebesgue space of
(locally) q-integrable functions, and we denote by ‖·‖q its standard norm on
Lq(M). Since a vector field v on M is measurable if and only if every component
of v is measurable on all charts U of M, one defines similarly for every 1 ≤
q ≤ ∞, the space ~Lq(M) = ~Lq(M, µg) (respectively, ~Lq

loc(M) = ~Lq
loc(M, µg))

of all measurable vector fields v on M such that |v| ∈ Lq(M, µg) (respectively,
|v| ∈ Lq

loc(M, µg)).
The space of test functions D(M) be the set C∞

c (M) of smooth compactly sup-
ported functions equipped with the following type of convergence: given a
sequence (ϕn)n≥1 in C∞

c (M) and ϕ ∈ C∞
c (M), we say ϕn → ϕ in D(M) if

there is a compact subset K of M such that the support supp(ϕn) ⊆ K for all n,
and for every chart U, and all multi-index α, one has Dα ϕn → Dα ϕ uniformly
on U. Then the space of distributions D′(M) is the topological dual space of
D(M). Similarly, one defines the space of test vector fields ~D(M) on M and cor-
responding dual space ~D′(M) of distributional vector fields. Given a distribution
T ∈ D′(M), the distributional gradient ∇T ∈ ~D′(M) is defined by

〈∇T, ψ〉~D′(M),~D(M) = −〈T, div ψ〉D′(M),D(M) for every ψ ∈ ~D(M).

For given u ∈ L1
loc(M),

〈u, ϕ〉D′(M),D(M) :=
∫

M
u ϕdµg, ϕ ∈ D(M),

defines a distribution (called regular distribution) on M. If the distributional
gradient ∇u of the distribution u belongs to~L1

loc(M), then ∇u is called a weak
gradient of u. The first Sobolev space W1,q(M) = W1,q(M, µg) is the space of all
u ∈ Lq(M) such that for the weak gradient ∇u of u belongs to ~Lq(M). The
space W1,q(M) is a Banach space equipped with the norm

(5.4) ‖u‖W1,q(M) :=
(
‖u‖q + ‖|∇u|g‖q

)1/q , (u ∈W1,q(M)),
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and W1,q(M) is reflexive if 1 < q < ∞ (cf., [28, Proposition 2.4]). Further, we
denote by W1,q

0 (M) = W1,q
0 (M, µg) the closure of C∞

c (M) in W1,q(M). Since
we have assumed that (M, g) is compact, the volume µg(M) is finite. Hence
by the compactness result of Rellich-Kondrakov (see, e.g., [28, Corollary 3.7]),
we know that a Poincaré inequality on W1,q

0 (M) is available. Thus, ‖|∇·|g‖q

defines an equivalent norm to (5.4) on W1,q
0 (M).

Further, let sg denote the surface measure on ∂M induced by the outward
pointing unit normal on ∂M. Then for 1 ≤ q < ∞ and 0 < s < 1, let
Ws,q(∂M) := Ws,q(∂M, sg) be the Sobolev-Slobodečki space given by all mea-
surable functions u ∈ Lq(∂M) = Lq(∂M, sg) with finite Gagliardo semi-norm

[u]qWs,q(∂M)
:=
∫

∂M

∫
∂M

|u(x)−u(y)|q

dN−2+sq
g (x,y)

dsg(x)dsg(y).

The space Ws,q(∂M) equipped with the norm

‖u‖Ws,q(∂M) :=
(
‖u‖q

Lq(∂M)
+ [u]qWs,q(∂M)

)1/q

is a Banach space, which is reflexive if 1 < q < ∞.
Since M is compact, M can be covered by a finite family ((Ωl , φl))

K
l=1 of

charts (Ωl , φl) such that for every l ∈ {1, . . . , K}, each component gij of the
matrix g of the Riemannian metric g satisfies

(5.5)
cl

2
δij ≤ gij ≤ 2cl δij on Ωl

as bilinear forms, for some constant cl > 0. By using (5.5) together with a
partition of unity, one can conclude from the Euclidean case (see, e.g., [32,
Théorème 5.5 & Théorème 5.7]) that for 1 < q < ∞, there is a linear bounded
trace operator T : W1,q(M) → W1−1/q,q(∂M) with kernel ker(T) = W1,q

0 (M)

with bounded right inverse Z : W1−1/q,q(∂M) → W1,q(M). For simplicity,
we also write u|∂M for the trace T(u) of u ∈ W1,q(M) and ‖u|∂M‖q instead of
‖T(u)‖q

Lq(∂M)
.

Similarly, one transfers from the Euclidean case (cf., [32, Théorème 4.2]) the
Sobolev-trace inequality

(5.6) ‖u|∂M‖ q(N−1)
(N−q)

. ‖u‖W1,q(M), u ∈W1,q(M).

5.3. Construction of the Dirichlet-to-Neumann operator. Let 1 < p < ∞ and
m ≥ 0. Then, by the classical theory of convex minimization (see, e.g., [25]),
for every boundary data ϕ ∈ W1−1/p,p(∂M), there is a unique weak solution
u ∈ (M) of the Dirichlet problem (5.3) (cf., [25]).

Definition 5.1. For given boundary data ϕ ∈W1−1/p,p, a function u ∈W1,p(M)

is called a weak solution of Dirichlet problem (5.3) if Zϕ− u ∈W1,p
0 and∫

M
|∇u|p−2

g ∇u∇ψ + m |u|p−2uψdµg = 0

for every ψ ∈ C∞
c (M).
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Now, we are in the position to define the nonlocal Dirichlet-to-Neumann op-
erator A in L2 := L2(∂M) associated with the p-Laplace Beltrami operator ∆p
by

A =

(ϕ, h) ∈ L2×L2

∣∣∣∣∣
∃ u ∈ Vp,2(M, ∂M) with trace u|∂M = ϕ
satisfying ∀ψ ∈ Vp,2(M, ∂M) :∫

M
|∇u|p−2

g ∇u∇ψ + m |u|p−2uψ dµg =
∫

∂M
h ψ|∂M dsg

 .

In the operator A, we denote by Vp,2(M, ∂M) the set of all u ∈ W1,p(M) with
trace u|∂M ∈ L2(∂M). Note, the space Vp,2(M, ∂M) contains the function space
C∞(M). It follows from the theory developed in [17] that A is the T-sub-
differential operator ∂TE in L2 (cf., [17]) of the convex, continuously differen-
tiable, and T-elliptic functional E : W1,p(M)→ [0,+∞) defined by

E(u) := 1
p

∫
M

(
|∇u|pg + m |u|p

)
dµg

for every u ∈ Vp,2(M, ∂M). Thus, A is a maximal monotone operator with
dense domain in the Hilbert space L2(∂M). One immediately sees that A is
homogeneous of order α = p− 1.

Next, suppose f : ∂M×R→ R is a Lipschitz-continuous Carathéodory func-
tion, that is, f satisfies the following three properties:

• f (·, u) : ∂M→ R is measurable on ∂M for every u ∈ R,(5.7)

• f (x, 0) = 0 for a.e. x ∈ ∂M, and(5.8)
• there is a constant ω ≥ 0 such that

| f (x, u)− f (x, û)| ≤ ω |u− û| for all u, û ∈ R, a.e. x ∈ ∂M.(5.9)

Then, for every 1 ≤ q ≤ ∞, F : Lq(∂M)→ Lq(∂M) defined by

F(u)(x) := f (x, u(x)) for every u ∈ Lq(∂M)

is the associated Nemytskii operator on Lq := Lq(∂M). Moreover, by (5.9), F is
globally Lipschitz continuous on Lq(∂M) with constant ω ≥ 0 and F(0)(x) = 0
for a.e. x ∈ ∂M.

Under these assumptions, it follows from Proposition 4.7 that the perturbed
operator A + F in L2(∂M) is an ω-quasi m-completely accretive operator with
dense domain D(A + F) = D(A) in L2(∂M) (see [25] or [18] for the details
in the Euclidean case). Thus, −(A + F) generates a strongly continuous semi-
group {Tt}t≥0 of Lipschitz-continuous mappings Tt on L2(∂M) with Lipschitz
constant eωt. For every 1 ≤ q < ∞, each Tt admits a unique Lipschitz-continu-
ous extension T(q)

t on Lq(∂M) with Lipschitz constant eωt such that {T(q)
t }t≥0

is a strongly continuous semigroup on Lq(∂M), and each T(q)
t is Lipschitz-

continuous on L2(∂M) ∩ L∞(∂M)
L∞

with respect to the L∞-norm. According
to Proposition 4.12, for

AL0
Lq(∂M)

:= AL0 ∩ (Lq(∂M)× Lq(∂M))
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with L0 := L0(∂M, sg), the operator −(AL0
Lq(∂M)

+ F) is the unique infinitesimal

generator of {T(q)
t }t≥0 in Lq. Since

(5.10) AL0
Lq(∂M)

u = Au ∩ Lq(∂M)

for every u ∈ D(A) ∩ Lq(∂M), we call AL0
Lq(∂M)

the realization in Lq(∂M) of the
Dirichlet-to-Neumann operator A associated with the p-Laplace Beltrami opera-
tor ∆p.

For simplicity, we denote the extension T(q)
t on Lq(∂M) of Tt again by Tt.

It is worth noting that for 1 < p < N, the semigroup {Tt}t≥0 generated by
−(A + F) has an immediate regularization effect. Indeed, by the Sobolev-trace
inequality (5.6), the operator A + F satisfies the inequality

[
u|∂M, (A + F)u|∂M

]
2
+ ω ‖u|∂M‖2

2 =
∫

Ω
|∇u|pg + m |u|p dµg

+
∫

∂M
f (x, u)u + ω |u|2 dsg

≥
∫

Ω
|∇u|pg + m |u|p dµg

≥ min{1, m} ‖u‖p
W1,p(M)

≥ C ‖u|∂M‖
p
p(N−1)
(N−p)

for every u ∈ D(A), where [·, ·]2 denotes the duality brackets on L2(∂M), and
C > 0 is a constant including min{1, m} and the constant of the Sobolev-trance
inequality. By [18, Theorem 1.2], the semigroup {Tt}t≥0 satisfies

(5.11) ‖Ttu0‖
L

p(N−1)
(N−p) (∂M)

≤
(C

2

) 1
p t

1
p eω( 2

p+1)t‖u0‖
2
p

L2(∂M)

for all t > 0 and u0 ∈ L2(∂M). Moreover, by (5.11) and since {Tt}t≥0 has unique
Lipschitz-continuous extension on L1(∂M), the same theorem infers that the
semigroup {Tt}t≥0 satisfies for every 1 ≤ q ≤ (N − 1) q0/(N − p) satisfying
q > (2− p)(N − 1)/(p− 1) the following Lq-L∞-regularity estimate

(5.12) ‖Ttu0‖L∞(∂M) . t−αq eωβqt ‖u0‖
γq

Lq(∂M)

for every t > 0, u0 ∈ Lq(∂M), with exponents

αq =
α∗

1− γ∗
(

1− q(N−p)
(N−1)q0

) , βq =

β∗

2 + γ∗ q(N−p)
(d−1)q0

1− γ∗
(

1− q(N−p)
(N−1)q0

) ,

γq =
γ∗ q(N − p)

(N − 1)q0

(
1− γ∗

(
1− q(N−p)

(N−1)q0

)) ,
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where q0 ≥ p is chosen (minimal) such that
(

N−1
N−p − 1

)
q0 + p− 2 > 0 and

α∗ :=
N − p

(p− 1) q0 + (N − p)(p− 2)
, β∗ :=

( 2
p − 1)N + p− 2

p

(p− 1)q0 + (N − p)(p− 2)
+ 1,

γ∗ :=
(p− 1) q0

(p− 1) q0 + (N − p)(p− 2)
.

5.4. Global regularity estimates on du
dt . Throughout this subsection, let p ∈

(1, ∞) \ {2}. Since, the Dirichlet-to-Neumann operator A in L2(∂M) is homo-
geneous of order α = p − 1, identity (5.10) yields that for every 1 ≤ q < ∞,
the realization AL0

Lq(∂M)
of A in Lq(∂M) is also homogeneous of order p − 1.

Thus, by Corollary 1.2, for every 1 < q < ∞ and u0 ∈ Lq(∂M), the function
u(t) = Ttu0is differentiable a.e. on (0, ∞) and satisfies∥∥∥∥dTtu0

dt +

∥∥∥∥
Lq(∂M)

≤
‖u0‖Lq(∂M)

|p− 2| t

[
1 + eωt + ω

∫ t

0
(1 + eωs) eω(t−s)ds

]
for every t > 0. Note, the right hand side of this estimate can be rearranged as
follows

(5.13)
∥∥∥∥dTtu0

dt +

∥∥∥∥
Lq(∂M)

≤ [2 + ω t] eωt

|p− 2| t ‖u0‖Lq(∂M)

for every t > 0. Since the boundary ∂M is compact, Hölder’s inequality gives∥∥∥∥dTtu0

dt +

∥∥∥∥
L1(∂M)

≤ s1/q′
g (∂M)

[2 + ω t] eωt

|p− 2| t ‖u0‖Lq(∂M)

for every q > 1 and hence, if we fix u0 ∈ L2(∂M), then sending q → 1+ in the
above inequality shows that (5.13), in particular, holds for q = 1. By (5.12), for
either p > 2 or (2N − 1)/N < p < 2, one has that u0 ∈ L1(∂M) yields that
Ttu0 ∈ L∞(∂M) ↪→ L2(∂M) for all t > 0. Hence, for this range of p, we get that
(5.13) hold for q = 1 and u0 ∈ L1(∂M).

Next, let u0 ∈ L∞(∂M) and t > 0. We assume ‖dTtu0
dt +
‖L∞(∂M) > 0 (otherwise,

there is nothing to show). Then, for every s ∈ (0, ‖dTtu0
dt +
‖L∞(∂M)) and 2 ≤ q <

∞, Chebyshev’s inequality yields

sg

({ ∣∣∣∣dTtu0

dt +

∣∣∣∣ ≥ s

})1/q

≤

∥∥∥dTtu0
dt +

∥∥∥
Lq(∂M)

s

and so, by (5.13),

s sg

({ ∣∣∣∣dTtu0

dt

∣∣∣∣ ≥ s

})1/q

≤ [2 + ω t] eωt

|p− 2| t ‖u0‖Lq(∂M)

Thus and since limq→∞‖u0‖Lq(∂M) = ‖u0‖L∞(∂M), sending q → +∞ in the last
inequality, yields

s ≤ [2 + ω t] eωt

|p− 2| t ‖u0‖L∞(∂M)
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and since s ∈ (0,
∥∥∥dTtu0

dt +

∥∥∥
L∞(∂M)

) was arbitrary, we have thereby shown that (5.13)

also holds for q = ∞.

Finally, for p ∈ (1, N) \ {2}, we can apply Corollary 2.8 or, alternatively,
combine (5.12) with (5.13) for q = ∞. Then, we find that

(5.14)
∥∥∥∥dTtu0

dt +

∥∥∥∥
L∞(∂M)

.
2
[
2 + ω

2 t
]

eω (1+
βq
2 )t

|p− 2| tαq+1 ‖u0‖
γq

Lq(∂M)

for every t > 0, u0 ∈ Lq(∂M), and 1 ≤ q ≤ (N − 1) q0/(N − p) satisfying
q > (2− p)(N − 1)/(p− 1).

By this computation together with Theorem 1.3, we can state the following
regularity result on mild solutions to the elliptic-parabolic problem (5.1).

Theorem 5.2. Let N ≥ 2 and 1 < p < ∞. Then every mild solution u of the
elliptic-parabolic problem (5.1) admits the following additional regularity.

(1) (L1 Aronson-Bénilan type estimates) If either (2N − 1)/N < p < 2 or
p > 2, then for every 1 ≤ q ≤ ∞ and u0 ∈ Lq(∂Ω), the mild solution
u(t) := Ttu0 of the elliptic-parabolic problem (5.1) is differentiable for a.e.
t > 0, is a strong solution in Lq(∂Ω) of (5.1), and satisfies∥∥∥∥du

dt+
(t)
∥∥∥∥

Lq(∂M)

≤ [2 + ω t] eωt

|p− 2| t ‖u0‖Lq(∂M) for every t > 0.

(2) (Extrapolated L1 Aronson-Bénilan type estimates) Let p ∈ (1, N) \ {2}.
Then, in addition to statement (1), for every 1 ≤ q ≤ (N − 1) q0/(N − p)
satisfying q > (2− p)(N − 1)/(p− 1) and u0 ∈ Lq(∂Ω), the mild solution
u(t) := Ttu0 of the elliptic-parabolic problem (5.1) satisfies∥∥∥∥du

dt+
(t)
∥∥∥∥

L∞(∂M)

.
2
[
2 + ω

2 t
]

eω (1+
βq
2 )t

|p− 2| tαq+1 ‖u0‖
γq

Lq(∂M)
for every t > 0.

(3) (Point-wise Aronson-Bénilan type estimates) If either (2N − 1)/N <
p < 2 or p > 2, then for every 1 ≤ q ≤ ∞ and positive u0 ∈ Lq(∂Ω),
the strong solution u of problem (5.1) satisfies

(p− 2)
du
dt+

(t) ≥ −u(t)
t

+ (p− 2) g0(t),

for a.e. t > 0, where g0 : (0, ∞)→ Lq(∂Ω) is a measurable function.
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