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Abstract. We explain a direct topological proof for the multiplicativity of Duflo isomor-
phism for arbitrary finite dimensional Lie algebras, and derive the explicit formula for the
Duflo map. The proof follows a series of implications, starting with “the calculation 1+1=2
on a 4D abacus”, using the study of homomorphic expansions (aka universal finite type
invariants) for ribbon 2-knots, and the relationship between the corresponding associated
graded space of arrow diagrams and universal enveloping algebras. This complements the
results of the first author, Le and Thurston, where similar arguments using a “3D abacus”
and the Kontsevich Integral were used to deduce Duflo’s theorem for metrized Lie algebras;
and results of the first two authors on finite type invariants of w-knotted objects, which also
imply a relation of 2-knots with the Duflo theorem in full generality, though via a lengthier
path.

1. Introduction

1.1. Executive summary for experts. In [BLT], the first author, Thang Le and Dylan
Thurston tell a story of how a certain topological equality # = = ∆ (∆ for
“doubling”), or “1 + 1 = 2 as computed on an abacus”, leads via the Kontsevich integral to
an equality of chord diagrams, which, given a metrized Lie algebra g, can be interpreted as
an equality in (a completion of) S(g∗)g ⊗ S(g∗)g ⊗ U(g), which can be interpreted as “the
multiplicative property of the Duflo isomorphism”.

However, chord diagrams only describe tensors related to metrized Lie algebras, while the
Duflo isomorphism is multiplicative for all finite-dimensional Lie algebras. Hence, as told
in [BLT], the “1+1=2” story is less general than it could be.

This paper removes this blemish by raising “1+1=2” one dimension up to be an equality
# = ∆ (∆ for doubling) of 2-knots in R4, which then, using an appro-

priate replacement of the Kontsevich integral, becomes an equality of arrow diagrams, which
in itself can be interpreted as an equality in (a completion of) S(g∗)g ⊗ S(g∗)g ⊗ U(g) for an
arbitrary finite-dimensional Lie algebra g, proving the multiplicative property of the Duflo
isomorphism in full generality.

1.2. Introduction for all. For a finite dimensional Lie algebra g, the Duflo isomorphism
is an algebra isomorphism D : S(g)g → U(g)g, where U(g)g and S(g)g are the g invariant
subspaces for the adjoint action of g on the universal enveloping algebra and the symmetric
algebra. (Recall x is called invariant if g · x = 0 for every g ∈ g.) The map D is given by an
explicit formula. The difficulty is in showing that this formula represents a homomorphism,
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namely that it is multiplicative. We will henceforth refer to the problem of showing the
multiplicativity of the Duflo map as the Duflo problem.

The Duflo isomorphism was first described for semi-simple Lie algebras by Harish-Chandra
in 1951 [HC]. Kirillov conjectured that a formulation of Harish-Chandra’s map was an algebra
isomorphism for all finite dimensional Lie algebras. Duflo proved Kirillov’s conjecture in
1977 [D2], and it is now referred to as Duflo’s Theorem. Since then, there have been many
proofs of Duflo’s theorem using techniques outside the setting of the originally formulated
problem. For metrized Lie algebras, a topological proof was found by the first author, Le and
Thurston in 2009 [BLT] using the Kontsevich integral and a knot theoretic interpretation of
“1+1 = 2 on an abacus”. In this paper we give a new topological proof of Duflo’s theorem for
arbitrary finite dimensional Lie algebras using a “4-dimensional abacus” instead of an ordinary
3-dimensional one.

The Dulfo problem is also implied by the now-proven Kashiwara–Vergne (KV) conjecture
[KV]. The KV conjecture states that a certain set of equations has a solution in the group of
tangential automorphisms of the degree completed free Lie algebra on 2 generators. One can
extract the Duflo isomorphism from such a solution. The KV conjecture was proven by [AM] in
2006 using deformation quantization. New proofs exploiting the relationship between the KV
equations and Drinfeld associators were found by Alekseev, Torossian and Enriquez shortly
thereafter [AT,AET]. A topological context and solution in terms of the 4-dimensional knot
theory of w-foams was established by the first two authors in [BD2, BD3]. In this context,
the KV-conjecture is equivalent to the existence of a homomorphic expansion for w-foams. In
this paper, we directly address how such a homomorphic expansion gives rise to a solution
of the Duflo problem and a formula for D, and thus completing a topological solution of the
Duflo problem in full generality.

This paper is structured to follow the implications shown in the Figure 1. We start with
an intuitive topological statement “1 + 1 = 2” and interpret this in the setting of w-foams.
Using the homomorphic expansion Z and the tensor interpretation map T , we can re-interpret
“1 + 1 = 2” as an equality in Ŝ(g∗)g⊗ Û(g). This will imply that our formulation of the Duflo
isomorphism is an algebra homomorphism. The essential ingredient in this process is the
homomorphic expansion Z of [BD2, BD3]. Finally, we derive the explicit formula for the
Duflo map from Z.

This paper builds on the setup and results of [BD2]. While we provide brief reviews of
concepts, we assume some familiarity with finite type invariants and virtual/welded knots.
The reader who is new to the subject may wish to have a copy of [BD2] on hand for reference:
throughout the paper we will refer to specific sections for background details.

1.3. Acknowledgements. We thank the anonymous referee for their comments and for ask-
ing an insightful question, answered in Remark 3.1.

2. Understanding the Topological Statement and w-foams

2.1. “4D Abacus Arithmetic”. We begin by introducing the “threaded sphere” or “abacus
bead” shown in Figure 2: this is a knotted object in R4, and an element of the space of
w-foams studied in [BD3]. To understand this 4D object, we describe it as a sequence of 3D
slices, or “frames of a 3D movie”. The movie starts with two points A and B. Point B opens
up to a circle, A flies through the circle, and B closes to a point again. In 4 dimensions this
is a line threaded through a sphere with no intersections; an embedded pair. We depict this
object as ; this is a broken line/surface diagram in the sense of [CS].
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“1 + 1 = 2” Topological Statement in w-foams

or

⇓Z homomorphic expansion

Diagrammatic Statement
Z(1)#Z(1) = ∆Z(1) in “arrow diagrams”

⇓T tensor interpretation map

Tensor Statement
T (Z(1)#Z(1)) = T (∆Z(1)) in Ŝ(g∗)g ⊗ Û(g)

⇓
Duflo isomorphism

# = =∆
# = =∆

Figure 1. The rough sketch of the proof.

:=

Figure 2. The threaded sphere as a movie of a circle and a point in R3.

We can interpret “addition on the 4D abacus” by iteratively threading embedded spheres on
a single thread, or in other words, connecting along the threads, as shown in Figure 3. There
are two ways to obtain the number 2 from the number 1: by addition – which is represented
by iterative threading on the “abacus” thread as above, or by doubling, as explained below.

Assuming the sphere is equipped with a normal vector field (a.k.a. framing, and we will
define such a framing later), it makes sense to double the sphere along its framing. This

operation will be denoted by ∆ . For example, given the outward-pointing normal
vector field, doubling the sphere results in two concentric spheres. In R4 two concentric
spheres can be separated without intersecting each other. E.g, assume the coordinates are
called x, y, z and t, and two concentric spheres lie in the hyperplane {z = 0}. Then one can
continuously move the inner sphere into the hyperplane z = 1, followed by moving it to a
disjoint t-position from the outer sphere and then back to the {z = 0} hyperplane.

Combining this with threading, we see that doubling a threaded sphere is the same as the
connected sum of two threaded spheres, as shown in Figure 3. To simplify notation, we will
denote the threaded sphere by 1, and write 1#1 = ∆ 1.
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# = = ∆

Figure 3. “1 + 1 = 2” on the 4D abacus.

Figure 4. A circuit algebra connection diagram applied to two crossings, a
vertex and a cap produces a larger w-foam when the inner circles are deleted.

2.2. w-Foams. In order to introduce the main ingredient Z, the homomorphic expansion,
we need to place the threaded sphere in the more complex space of w-foams. We will briefly
describe this space here and for more detail refer to [BD3, Section 2] or [BD2, Section 4.1].

The space of w-foams, denoted w̃TF , is a circuit algebra, as defined in [BD2, Section 2.4]. In
short, circuit algebras are similar to the planar algebras of Jones [J] but without the planarity
requirement for the connection diagrams. In other words, a circuit algebra operation is to
take some number of w-foams and connect their ends in an arbitrary (not necessarily planar)
way, but respecting colour and orientation. For an example of a circuit algebra connection
diagram, see Figure 4. Circuit algebras are also close relatives of modular operads [DHR].

Each generator and relation of w̃TF has a local topological interpretation in terms of certain
ribbon knotted tubes with foam vertices and strings in R4. Note that one dimensional strands
cannot be knotted in R4, however, they can be knotted with two-dimensional tubes. In the
diagrams, two-dimensional tubes will be denoted by thick lines and one dimensional strings
by thin red lines.

With this in mind, we define w̃TF as a circuit algebra given in terms of generators and
relations, and with some extra operations beyond circuit algebra composition. The genera-
tors, relations and operations are explained in detail in Sections 2.2.1 and 2.2.2. The local
topological interpretation of the generators and relations provides much of the intuition for
this paper.

w̃TF = CA

〈
1 , 2 , 3, 4 , 5 , 6 , 7 , 8 , 9︸ ︷︷ ︸

generators

∣∣∣∣∣∣∣∣
R1s , R2, R3,
R4, OC, CP︸ ︷︷ ︸

relations

∣∣∣∣∣∣∣∣ ue︸︷︷︸
extra operation

〉

In [BD3], w̃TF appears in its larger unoriented version (includes a wen and relations describ-
ing its behaviour) and it is equipped with more auxiliary operations (eg punctures, orientation
switches). The expansion Z constructed there is homomorphic with respect to all of the oper-
ations in the appropriate sense. Here we focus only on orientable surfaces and the operations
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= = =

Figure 5. The trivalent vertices of w̃TF .

strictly needed for the Duflo problem – the restriction of the Z of [BD3] is a homomorphic
expansion for this structure. In the following sections we will provide brief descriptions of
w̃TF , its associated graded space of arrow diagrams, and the homomorphic expansion, to
make this paper more self-contained.

2.2.1. The generators of w̃TF . We begin by discussing the local topological meaning of each
generator shown above. For more detail, see [BD2, Sections 4.1.1 and 4.5]

Knotted (more precisely, braided) tubes in R4 can equivalently be thought of as movies
of flying circles in R3. The two crossings – generators 1 and 2 – stand for movies where
two circles trade places as the circle corresponding to the under strand flies through the
circle corresponding to the over strand entering from below. Note that our “time” flows from
bottom to top. The bulleted end in generator 3 represents a tube “capped off” by a disk, or
alternatively the movie where a circle shrinks to a point and disappears.

Generators 4 and 5 stand for singular “foam vertices”, and will be referred to as the positive
and negative vertex, respectively. The positive vertex represents the movie shown in Figure 5:
the right circle approaches the left circle from below, flies inside it and merges with it. The
negative vertex represents a circle splitting and the inner circle flying out below and to the
right.

The thin red strands denote one dimensional strings in R4, or “flying points in R3”. The
crossings between the two types of strands (generators 6 and 7) represent “points flying through
circles”. For example, generator 6, , stands for “the point on the right approaches the
circle on the left from below, flies through the circle and out to the left above it”. This explains
why there are no generators with a thick strand crossing under a thin red strand: a circle
cannot fly through a point.

Generator 8 is a trivalent vertex of 1-dimensional strings in R4. Finally, generator 9 is a
“mixed vertex”, in other words a one-dimensional string attached to the wall of a 2-dimensional
tube. This is shown in Figure 5.

An important notion for later use is the skeleton of a w-foam. We give an intuitive definition
here that is is sufficient for this paper; for a formal definition see [BD2, Section 2.4]. In general,
viewing knotted objects as embeddings of circles, manifolds, graphs, etc, the skeleton is the
embedded object without its embedding. In other words, the skeleton of a knotted object
is obtained by allowing arbitrary crossing changes, or equivalently by replacing all crossings
with “virtual” (or circuit) crossings. For example, the skeleton of an ordinary knot is a circle.
The skeleton of the threaded sphere described above is the union of a sphere and an interval.

2.2.2. The relations for w̃TF . This section is a quick overview of the relations for w̃TF , which
are described in detail in [BD2, Section 4.5]. The list of relations for w̃TF is {R1s, R2, R3, R4,
OC, CP}; Figure 6 shows R1s and OC, and explains CP. All relations have local 4-dimensional
topological meaning, it is an instructive exercise to verify them. R1s stands for the weak
(framed) version of the Reidemeister 1 move; R2 and R3 are the usual Reidemeister moves;
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R1s OC

CP CP CP

Figure 6. The relations R1s and OC are shown. CP is explained with broken
surface diagrams and as a movie of flying circles.

=OC

Figure 7. The OC relation written as a circuit algebra relation between two
crossings.

and R4 allows moving a strand over or under a vertex. OC stands forOver-corssings Commute,
and CP for Cap Pullout. All relations should be interpreted in all sensible combinations of
strand types: tube or string, and all orientations.

Note that all relations are circuit algebra relations. For example, the relation OC is under-
stood as a relationship between two specific circuit diagram compositions of and ,
as shown in Figure 7.

The circuit algebra w̃TF is conjectured to be a Reidemeister theory for ribbon knotted tubes
in R4 with caps, singular foam vertices and strings. Here ribbon means that the tubes have
“filling” in R4 with only restricted types of singularities, for details see [BD1, Section 2.2.2].
All the relations represent local topological statements: for example, Reidemeister 2 with a
thin red bottom strand holds because the movie consisting of a point flying in through a circle
and then immediately flying back out is isotopic to the movie in which the point and circle
stay in place. However, it is an open question whether the known relations are sufficient. A
similar Reidemeister theory has been proven for w-braids, which exhibits a simpler structure
than w̃TF : [BH, Proposition 3.3] and [Gol,Sa]. For an explanation of the difficulties that arise
for knots and tangles, see [BD2, Introduction].

2.2.3. The operations on w̃TF . In addition to the circuit algebra structure, w̃TF is equipped
with a set of auxiliary operations. Of these, in this paper we only use disc unzip.
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ue ue u

Figure 8. Disc unzip on the left and middle, strand unzip on the right.

The disc unzip operation ue is defined for a capped strand labeled by e. Using the black-
board framing, ue doubles the capped strand e and then attaches the ends of the doubled
strand to the connecting ones, as shown Figure 8.

Topologically, the blackboard framing of the diagram induces a framing of the corresponding
tubes and discs in R4 via Satoh’s tubing map [BD1, Section 3.1.1] and [Sa]. Briefly, each point
of a (thick black) strand represents a circle in R4 via the tubing map, and the blackboard
framing induces a "companion circle" (not linked with the original circle). A framed tube
in R4 can be understood as a movie of flying circles in R4 with companions. Unzip is the
operation “pushing each circle off of itself slightly in the direction of the companion circles”.
See also [BD2, Section 4.1.3] for details on framings and unzips.

A related operation not strictly necessary for this paper, strand unzip, is defined for strands
which end in two vertices of opposite signs, as shown in the right of Figure 8. For the interested
reader a detailed definition of crossing and vertex signs is in [BD2, Sections 3.4 and 4.1]. Strand
unzip doubles the strand in the direction of the blackboard framing, and connects the ends
of the doubled strands to the corresponding edge strands. Topologically, strand unzip pushes
the tube off in the direction of the blackboard framing, as before.

2.3. Interpreting “1 + 1 = 2” in w-foams. The threaded sphere of Section 2.1 can be
described in w̃TF by the diagram , since a doubly capped tube is in fact a sphere. Recall
that the “4D abacus” interpretation of “1 + 1 = 2” is 1#1 = ∆ 1, where 1 is the threaded
sphere, and ∆ is the doubling of the sphere along a framing.

The connected sum # operation for the threaded sphere is the circuit algebra composition
given by . Doubling strands is realized in w̃TF using the unzip operation. However, since

the unzip operations in w̃TF require an unzipped strand to end in either a vertex and a cap,
or two vertices, we need to define a new sphere unzip operation, which doubles a twice-capped
strand along the blackboard framing, which is shown later in Figure 18. In Section 3 we
will need to show that the homomorphic expansion of w̃TF also respects this operation. To
summarize, the topological statement “1 + 1 = 2” expressed in w̃TF is shown in Figure 9.

3. Understanding the Diagrammatic Statement

3.1. The associated graded structure. Let K be a field of characteristic zero. Extend w̃TF
by allowing formal linear combinations of w-foams of the same skeleton. As in [BD2,BD3], this
algebraic structure – whose operations consist of formal linear combinations, circuit algebra
connections and unzips – is filtered by powers of its augmentation ideal. Its associated graded
structure, denoted Asw, is a space of arrow diagrams on foam skeleta. We will introduce
arrow diagrams; for general background on the filtration and associated graded structure,
see [BD2, Section 2.2]; for the application to w-foams see [BD2, Section 4.2].
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Topological Statement

or# = ∆
# = ∆

Figure 9. The topological statement in w-foams: the connected sum of
two threaded spheres along the threads is the same as the sphere unzip of
a threaded sphere.

+

Figure 10. A linear combination of arrow diagrams on a w-foam skeleton.

An arrow diagram on a w-foam skeleton, aka Jacobi diagram, consists of a w-foam skeleton
(as defined in Section 2.2.1), along with a uni-trivalent directed arrow graph with the following
properties:

• univalent vertices are attached to the skeleton,
• trivalent vertices are equipped with a cyclic orientation, and
• each trivalent vertex is required to have two incoming arrows and one outgoing, this
is referred to as the two-in-one-out rule.

By “an arrow diagram” we usually mean a formal K-linear combination of arrow diagrams
on the same skeleton. An example is shown in Figure 10; in figures the arrow graphs will be
drawn in dotted lines. Arrow diagrams are combinatorial, not topological, objects, in other
words it does not matter exactly how the arrow graph is drawn in the plane or where the
univalent ends attach to the skeleton strands, only the order in which they are attached.

The space Asw consists of linear combinations of arrow diagrams as explained above, mod-
ulo a number of relations:

−−−→
STU ,

−→
V I, RI, CP and TF . The TF relation stands for Tails

Forbidden on strings, and means just that: any diagram with an arrow tail ending on a red
string is set to zero. The relations RI, CP and V I are shown in Figure 11. The acronym
RI stands for Rotation Invariance, this is the diagrammatic incarnation of the R1s relation;
CP stands for Cap Pull-out and comes from the identically named relation of w-foams; V I
stands for Vertex Invariance and has a less obvious topological explanation along the lines of
the 4T relation of classical Vassiliev theory [BN1].

The
−−−→
STU relation is in fact a group of three relations, shown in Figure 12, and again

analogous to the STU relation of Vassiliev [BN1]. The third
−−−→
STU relation is a special case

also referred to as Tails Commute, or TC. The
−−−→
STU relations imply a number of other

relations that are useful to be aware of: the
−→
AS relation (or Anti-Symmetry of trivalent

vertices), the
−−−→
IHX relation, and the Four-Term or

−→
4T relation, all shown in Figure 12, and

all of which mirror similar relations in the classical Vassiliev context. Note that the relations



RIBBON 2-KNOTS, 1+1=2, AND DUFLO’S THEOREM FOR ARBITRARY LIE ALGEBRAS 9

involving trivalent vertices are similar in spirit to the relations satisfied by a Lie bracket. This
will become important and explicit in the next section.

RI
=

CP
= 0

± ± ±
−→
V I
= 0, and ± ± ± −→

V I
= 0

Figure 11. The relations RI, CP , and
−→
V I. Ambiguous strands can be either

thick black or thin red. In the
−→
V I relation, signs are positive when the strand

of the arrow ending is oriented towards the vertex, and negative otherwise.

−−−→
STU1= − −−−→

STU2= − −−−→
STU3=
TC

−→
AS
= −

−−−→
IHX
= −

+ −→
4T
= +

Figure 12. The relations
−−−→
STU ,

−→
AS,

−−−→
IHX and

−→
4T on Aswt. Ambiguous

strands can be either thick black or thin red.

We introduce the following notation: For a w-foam F ∈ w̃TF , let Asw(S(F )) denote the
space of arrow diagrams with skeleton S(F ), where S(F ) is the skeleton of F as defined in
Section 2.2. Often we will write Asw(F ) to mean Asw(S(F )).

Arrow diagrams, just like w-foams, form a circuit algebra: given several arrow diagrams, a
circuit algebra operation is to connect (some of) their skeleton ends by appropriately coloured
and oriented lines. Indeed, circuit algebra composition in Asw is the associated graded oper-
ation of the circuit algebra composition in w̃TF .

As for the (strand, disc and sphere) unzip operations ue, given a w-foam F with a choice
of a strand e, the associated graded unzip operation ue : Asw(F ) → Asw(ue(F )) maps each
arrow ending on e to a sum of two arrows, one ending on each of the two new strands which
replace e. For example, an arrow diagram with k arrows ending on e – either heads or tails –
is mapped to a sum of 2k arrow diagrams. This sum is represented notationally as shown in
Figure 13.
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ue


e

 =

e1 e2

+

e1 e2

:=
notation

+

Figure 13. Unzipping the strand labeled e, where e1 and e2 are the two new
strands replacing e. Here an arrow tail is shown, but the same applies to arrow
heads.

Z

( )
= C Z

( )
=

ea
an :=

... }n

Figure 14. Values of Z on generating w-foams.

3.2. The Homomorphic Expansion. In this section we introduce the homomorphic ex-
pansion Z : w̃TF → Asw, which exists by the results of [BD2] or [BD3]. An expansion is a
filtered linear map1 with the property that the associated graded map grZ : Asw → Asw is
the identity map on Asw. A homomorphic expansion is an expansion that is a circuit alge-
bra homomorphism and also intertwines each auxiliary operation (here only unzips) of w̃TF
with its arrow diagrammatic counterpart, meaning that the square below commutes. For disc
unzip, this was shown in [BD2,BD3]; for sphere unzip, we will prove it in Lemma 3.4.

Asw Asw

w̃TF w̃TF

ue

ue

Z Z

The map Z sends each generator G to an infinite sum of arrow diagrams on the skeleton
S(G), that is, Z(G) ∈ Asw(S(G)). The values of the crossings and the cap are computed
explicitly in [BD2,BD3]; to refer to them we use the notation shown in Figure 14. In particular,
the Z-value of a crossing of a black strand and a red string is the exponential ea of an arrow
a, to be interpreted as the power series, where an is shown in Figure 14.

To describe the Z-value C of a cap, we need to introduce a special class of arrow diagrams
called wheels. A wheel is an oriented cycle of arrows with a finite number of incoming arrows,
or “spokes”. (The 2-in-1-out property forces all univalent ends of this arrow graph to be arrow
tails, that is, all spokes are incoming.) See Figure 20 for an example of a wheel. Note that
reversing the orientation of an even wheel yields an equivalent arrow diagram via

−→
AS and TC

relations, while reversing the orientation of an odd wheel produces its negative. Hence, from
now on we assume all wheels are oriented clockwise. The value C is an infinite sum of even

1It is typically also required that Z is group-like, which is the case for the homomorphic expansion of
[BD2,BD3].
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Z( )
−→
V I
=

V+

Figure 15. The definition of V+.

wheels:

(3.1) C = exp

( ∞∑
n=1

c2nw2n

)
, where

∞∑
n=1

c2nx
2n =

1

4
log

sinhx/2

x/2
.

In particular, c2 = 1
96 , c4 = − 1

11520 , and c6 = 1
752776 .

Remark 3.1. The even degree part of C is uniquely determined. In the homomorphic expansion
described above, we chose C to be even for simplicity – corresponding to a choice of an
even associator – however, for any series of odd wheels Ω =

∑∞
n=0 c2n+1w2n+1, there is a

homomorphic expansion Z with C = exp (Ω +
∑∞

n=1 c2nw2n). Indeed, readers familiar with
[AT] may recall that a Kashiwara–Vergne solution (F, a) consists of a tangential automorphism
F of the degree completed free Lie algebra on two generators, and a power series a ∈ C[[x]]
called the Duflo function. In [AT, Section 6] Alekseev and Torossian state that the even
part of the Duflo function is uniquely determined and equals −1

2 log sinhx/2
x/2 , but there are

Kashiwara–Vergne solutions corresponding to any odd modification of this function. In [BD2]
it is shown that for any Kashiwara–Vergne solution (F, a) there is a homomorphic expansion
Z of w-foams, for which logC is obtained from −a/2 by replacing each xn by the n-wheel wn.

Since Z is a circuit algebra homomorphism, given the values of Z on the generators, it
is straightforward to compute Z of any w-foam F : if F is a circuit composition of some
generators {Gi}, then Z(F ) is the same circuit composition of the values Z(Gi).

We are working towards a diagrammatic statement of “1 + 1 = 2”, which depends heavily
on the homomorphicity of Z. We have yet to prove that Z is homomorphic with respect
to the sphere unzip operation, and to achieve this we need to discuss the Z-values of the
vertices in some detail. By definition, Z( ) ∈ Asw( ). Using iterative applications of the
relation

−→
V I, all arrow endings on the vertical strand of can be moved to the bottom

two strands. This induces an isomorphism Asw( ) ∼= Asw( ) [BD2]. Thus, Z( ) can be
viewed as an element of Asw( ) denoted by V+, as shown in Figure 15. The arrow diagram
V− = Z( ) ∈ Asw( ) is defined similarly.

Note that Asw( ) is an algebra2 with multiplication given by vertical concatenation. Let
us recall a useful fact from [BD2]:

Lemma 3.2. In Asw( ), V+ and V− are multiplicative inverses, i.e. V+ · V− = 1 = .

Proof. This follows from the fact that Z is homomorphic with respect to the unzip operation,
as shown in Figure 16. �

2In fact, a Hopf algebra with coproduct � : Asw( ) → Asw( ) ⊗ Asw( ). The coproduct � of an
arrow diagram is a sum of all possible ways of attaching each of the connected component of the arrow graph
– after removing the skeleton – to one of the tensor factor skeleta. Details on the Hopf algebra structure are
in [BD2, Section 3.2].
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ueZ

 e

 = ue

 e

V−

V+

 =

V−

V+

Zue

 e

 = Z


 =

Figure 16. Visual proof of Lemma 3.2.

The following corollary is a crucial ingredient in proving that Z is also homomorphic with
respect to sphere unzip:

Corollary 3.3. Z( ) = , that is, the Z-value of this w-foam is trivial, a skeleton with no
arrows. �

Lemma 3.4. Any homomorphic expansion Z of w̃TF is also homomorphic with respect to
sphere unzip.

Proof. To prove this we realize the sphere unzip operation as a composition of disc unzips
with another new operation called “cactus grafting”. Let K denote the “cactus” w-foam shown
in Figure 17. If e is a capped strand of a w-foam, the cactus grafting operation ge attaches K
to the capped end of e. This is well-defined: the only relation involving a cap is CP , namely,
the cap can be pulled out from under a strand. The same is true for the cactus, combining
CP with R4 moves. Topologically, cactus grafting is cutting a small disk out of a capped
strand and gluing the resulting boundary circle to the boundary of the cactus K.

The associated graded cactus grafting operation on arrow diagrams – also denoted ge –
simply attaches the skeleton K (without any arrows) at the end of the capped strand e in
place of the cap. This is well-defined: the cap participates only in the CP relation, that is,
an arrow head that is not separated from the cap by another arrow ending is zero. However,
an arrow head on K that is not separated by another arrow ending from the bottom of K
is also zero, as shown in Figure 17; this property is known as the head invariance of arrow
diagrams [BD2, Remark 3.14].

Finally, Corollary 3.3 implies that Z(K) is simply a cap value C at the top of an otherwise
empty skeleton K. Since the value C can be move from the top to the bottom of K using two−→
V I relations, we obtain that for any w-foam F with a capped edge e, Z(ge(F )) = ge(Z(F )),
in other words Z is homomorphic with respect to ge.

Finally, sphere unzip can be written as a composition of one cactus grafting followed by two
disc unzips as shown in Figure 18, hence Z is homomorphic with respect to sphere unzip. �

3.3. The diagrammatic statement. Applying the homomorphic expansion Z to the topo-
logical statement of Section 2.3 gives rise to the following equation:

Z
( )

= Z
( )

#Z
( )

= uZ
( )

Using the notation of Figure 14, we can compute each term of this individually to obtain
the final form of the diagrammatic statement, as shown in Figure 19.
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K

gee

D = 0

Figure 17. The “cactus” w-foam K on the left, cactus grafting in the middle.
The “head invariance” property of arrow diagrams on K is shown on the right,
where D denotes any arrow diagram above the arrow head on the skeleton K.

gee u2

ue

Figure 18. Sphere unzip is the composition of the cactus grafting and two
disc unzips.

Diagramatic Statement

= ea1+a2

u(C)

u(C)

+

ea2

C

C

ea1
C

C

Z
( )

#Z
( )

= uZ
( )

Figure 19. The Diagrammatic Statement of “1 + 1 = 2” in Asw. Since tails
commute, two caps on a strand can be combined into C2, and the two unzipped
caps can be combined as u(C)2 = u(C2).

4. Understanding the Tensor Statement

Ultimately we aim to give a solution of the Duflo problem, which concerns finite dimensional
Lie algebras. From here on, we fix a finite dimensional Lie algebra g over a field K of
characteristic zero. Let Ig denote the double of g, that is, the semidirect product g∗ o g,
where g∗ is taken to be abelian, and g acts on g∗ by the coadjoint action. In formulae:

Ig = {(ϕ, x) : ϕ ∈ g∗, x ∈ g},

(4.1) [(ϕ1, x1), (ϕ2, x2)] = (x1 · ϕ2 − x2 · ϕ1, [x1, x2]).
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+

Figure 20. A wheel with three spokes in Asw( 1 0), and an element in Asw( 2 2).

We will define a tensor interpretation map

T : Aw(↑n)→ (U(Ig)⊗n)∧,

where Aw(↑n) denotes arrow diagrams on n thick black strands, modulo the three
−−−→
STU

relations only3. U(Ig) is the universal enveloping algebra of Ig, and ∧ denotes the degree
completion, where elements of g∗ are defined to be degree 1, and elements of g are degree
zero; with this grading T is degree-preserving. We will show that when n = k1 + k2, T
descends to a map

T : Asw( k1 k2 )→ (S(g∗)⊗k1g ⊗ U(g)⊗k2)∧.

Here Asw( k1 k2 ) is the space of arrow diagrams on the skeleton of k1 spheres and k2 strings
– see Figure 20 for examples – modulo all three

−−−→
STU relations, as well as the CP relation at

both caps of each capped strand, as in Section 3. Note that the RI relation is vacuous on red
strings, and it follows from the CP relation on the twice-capped strands: short arrows can be
commuted to the cap they point towards, hence they vanish by CP .

As for the target, S(g∗) denotes the symmetric algebra of the linear dual of g, and the
subscript g denotes co-invariants under the co-adjoint action of g: that is, the quotient by the
image of the co-adjoint action. U(g) is the universal enveloping algebra of g, and ∧ denotes
the degree completion where elements of g∗ are degree one and elements of g are degree zero,
as before.

4.1. The Tensor Interpretation Map. The idea in the construction of T : Aw(↑n) →
(U(Ig)⊗n)∧ is that trivalent arrow vertices “represent” the Lie bracket in g, and the relations
in Asw(↑n) translate to Lie algebra axioms.

Denote the structure tensor of the Lie bracket of g by [, ]g ∈ g∗ ⊗ g∗ ⊗ g. Given a basis
{b1, · · · , bm} for g and the dual basis {b∗1, · · · , b∗m} for g∗, write [bi, bj ] =

∑m
k=1 c

k
ijbk for

structure constants ckij ∈ K. Then

[, ]g =

n∑
i=1

ckij b
∗
i ⊗ b∗j ⊗ bk.

Similarly, let id ∈ g∗ ⊗ g denote the identity tensor, given by id =
∑m

i=1 b
∗
i ⊗ bi.

For an arrow diagram D we first define T (D) in the tensor algebra T (Ig)⊗n as follows, and
as shown in Figure 21:

(1) Place a copy of id ∈ g∗ ⊗ g on every single arrow, with g∗ at the arrow tail, and g at
the arrow head.

(2) Place the structure tensor of the bracket [, ]g on all trivalent arrow vertices, with g∗

components on the incoming arrows and the g component at the outgoing arrow.

3It would be called Asw(↑n) if we also imposed RI.
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“id”
g∗ g :=

m∑
i=1

b∗i bi

[, ]g
:=

m∑
i,j,k=1

ckij

b∗i

b∗j

bk

Figure 21. Steps (1) and (2) in computing T .

m∑
e,f,h,i,j,k=1

cfke · c
i
fh · ckij

e

h

j

k

f

i

=
m∑

c,e,f,i,j,k=1

cfke · c
i
fh · ckij · b∗e · b∗h · b∗j ∈ T (Ig)

Figure 22. Example computation of T for a wheel with three spokes.

D

 
m∑

f,i,j,k,l=1

cikf · ckij

j

f

ki

l

 
m∑

f,i,j,k,l=1

cikf · ckij · (b∗fb∗jb∗l ⊗ bl) ∈ T (Ig)⊗ T (Ig)

Figure 23. An example for computing T.

(3) Arrows which connect two trivalent vertices now have an element of g∗ meeting an
element of g. Contract these by evaluating the element of g∗ on the element of g to
get a coefficient in K. Multiply the constants together.

(4) What remains is a linear combination of diagrams with elements of g∗ and g along
the strands. Multiplying these in T (Ig) along the orientation of the strands produces
an element in T (Ig⊗n).

Given the bases {b1, ..., bm} for g and {b∗1, ..., b∗m} for g∗, a simple way to compute the value
of T on a given diagram D is to sum over all ways of labelling each arrow with an index
1, ...,m, form the corresponding product in T (Ig)⊗n taking a factor bi for each arrow tail
labelled i and b∗j for each arrow head labelled j; with the coefficient given by the product of
ctrs for each arrow vertex with incoming arrows labelled r and s and outgoing arrow labelled
t. See Figures 22 and 23 for sample computations of T for two arrow diagrams.

Lemma 4.1. T descends to a well defined map Aw(↑n)→ (U(Ig)⊗n)∧.
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Proof. We need to check that relations in Aw(↑n) are mapped to relations in (U(Ig)⊗n)∧.
This is indeed the case:

−−−→
STU1 and

−−−→
STU2 are mapped to the relations [xi, xj ] = xixj − xjxi,

and [ϕi, xj ] = ϕixj − xjϕi.
−−−→
STU3 = TC is the fact that g∗ is abelian. It is also easy to check

that the T is degree preserving, so the completions on both sides agree. �

Proposition 4.2. When k1 + k2 = n, T further descends to a well defined map

T : Asw( k1 k2 )→
(
S(g∗)⊗k1g ⊗ U(g)⊗k2

)∧
.

Proof. Before we prove the statement, we establish the following crucial Lie theory fact:

g\U(Ig)/g ∼= (Sg∗)g.

The notation on the left hand side means factoring out by the multiplication action of g on
the left and on the right. First of all, as vector spaces U(Ig) ∼= U(g∗)⊗U(g) ∼= S(g∗)⊗U(g).
The Poincare–Birkhoff–Witt (PBW) Theorem implies that this isomorphism also holds as g-
bimodules, that is, the left multiplication action of g on U(Ig) is the coadjoint action on S(g∗),
and the right multiplication action is simply right multiplication in U(g). Hence, factoring
out by right multiplication gives S(g∗) and then modding out by left multiplication yields
(Sg∗)g, as claimed.

We now re-phrasing the statement as a commutative diagram:

A(↑n)
(
U(Ig)⊗k1 ⊗ U(Ig)⊗k2

)∧
Asw( k1 k2 )

(
S(g∗)⊗k1g ⊗ U(g)⊗k2

)∧
T

π1 π2

∃T

Here the projection π1 is imposing two cap relations on each of the first k1 strands, and
killing all arrow diagrams with any arrow tails on strands k1 + 1 through n. The map π2
is the projection U(Ig) → g\U(Ig)/g in the first k2 tensor factors, and the projection given
by setting ϕ = 0 for any ϕ ∈ g∗ in the last k2 tensor factors. One then defines the bottom
horizontal T map in the obvious way: taking any pre-image of π1, and applying T followed
by π2. For this to be well-defined, we need to show that any element in the kernel of π1 is
killed by the composition of π2 ◦ T .

On the first k1 strands, the cap relations assert that an arrow head at the very beginning
or the very end of the strand is zero. The map T assigns elements of g to arrow heads. Hence,
the projection π2, which factors out by the multiplication action of g on U(Ig) both on the
left and on the right makes the bottom map well defined.

On strands k1 + 1 through n, π1 kills all arrow tails. Under the tensor interpretation
map T , arrow tails ending on a given strand translate to elements of g∗ in a product in the
corresponding U(Ig) tensor factor. Hence the quotient map which sets elements of g∗ to be
zero makes the bottom horizontal map well defined, and this is π2. �

The following Proposition will play a crucial role later; we present it here as it is based on
a similar principle as the proof above:

Proposition 4.3. The image of T is g-invariant, where g acts via the adjoint action on each
of the Ug factors (that is, sum over acting on each one): T (D) ∈ (Sg∗)⊗k1g ⊗

(
(Ug)⊗k2

)g for

any diagram D ∈ Asw( k1 k2 ).
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D

+

= D

+

Figure 24. The head invariance property in Asw( k1 k2 ).

Proof. To give a short argument, the structure tensors of the identity and the Lie bracket are
invariant elements, which are composed in an invariant way when computing the image under
T of an arrow diagram, hence the result is g-invariant.

A more hands-on proof uses the head invariance property of arrow diagrams: the relevant
incarnation is shown in Figure 24; the property in general is discussed in [BD2, Remark 3.14].
In words, the sum over all thin red strands of attaching an additional arrow head at the
bottom of the strand gives the same result as the sum over all thin red strands of attaching
the arrow head at the top.

To prove the Proposition, we apply T on both sides of the equality of Figure 24. Attach an
additional arrow head at the bottom of the i-th red strand of an arrow diagram D, where the
arrow tail lies on an additional strand as in Figure 24; call this new diagram Di. Compare
T (Di) with T (D):

T (Di) =

m∑
j=1

b∗j ⊗ (bj ×i T (D)),

where ×i denotes multiplying on the left in the i-th tensor factor.
Similarly, let Di denote the arrow diagram obtained from D by attaching an arrow head

at the top of the i-th red strand.

T (Di) =
m∑
j=1

b∗j ⊗ (T (D)×i bj),

where multiplication is now on the right. Hence,

T (Di)− T (Di) =

m∑
j=1

b∗j ⊗ (bj ·i T (D)),

where ·i denotes the adjoint action on the i-th Ug tensor factor. Due to the head invariance
property we have

0 =

k2∑
i=1

T (Di)− T (Di) =
m∑
j=1

b∗j ⊗

(
k2∑
i=1

bj ·i T (D)

)
.

The right hand side is only zero if
∑k2

i=1 bj ·i T (D) = 0 for each j = 1...m, which is exactly
the statement of the Proposition. �
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b∗j
ui

∆

b∗j + b∗j

T T

⊗b∗j⊗ ⊗(b∗j ⊗ 1 + 1⊗ b∗j )⊗

⊗∆b∗j⊗

Figure 25. The tensor interpretation map intertwines unzip with co-
multiplication.

4.2. The tensor statement. To obtain the tensor statement, we simply apply the map T
to the diagrammatic statement of Figure 19:

Z
( )

#Z
( )

= u2Z
( )

.

Since Z( ) is an element of Asw( ), T (Z( )) =: Υ ∈ (S(g∗)g ⊗ U(g))∧.
The connected sum operation in Asw is concatenation along the red strings. Under the

tensor interpretation map T , this translates to multiplication in U(g), while the S(g∗) com-
ponents remain separate tensor factors. Hence, with notation explained below,

T
(
Z( )#Z( )

)
= Υ13Υ23 ∈ (S(g∗)⊗2g ⊗ U(g))∧.

Here Υ13 := φ13(Υ), where φ13(x⊗ y) := x⊗ 1⊗ y, and Υ23 := φ23(Υ), where φ23(x⊗ y) :=
1⊗ x⊗ y.

On the right side, the unzip operation sends an arrow ending on the unzipped strand to
a sum of two arrows, one ending on each daughter strand. Under the tensor interpretation
map T , this is sent to the Hopf algebra coproduct ∆ of Ŝ(g∗)g given by ∆(ϕ) = ϕ⊗ 1 + 1⊗ϕ
for primitive elements ϕ ∈ g∗g, as explained in Figure 25. In other words, T ◦ u = ∆ ◦ T , and
therefore

T
(
u2Z

( ))
= (∆⊗ 1)Υ ∈

(
S(g∗)⊗2g ⊗ U(g)

)∧
.

In summary, we obtain the Tensor Statement of Figure 26. Note the similarity with the
triangularity equation R13R23 = (∆⊗ 1)R of quasi-triangular Hopf algebras, yet this is not a
triangularity equation as S(g)g and Ug are not a dual pair.

Tensor Statement

Υ13Υ23 = (∆⊗ 1)Υ in (S(g∗)⊗2
g ⊗ U(g))∧

Figure 26. The tensor statement.
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5. The Duflo Isomorphism

There is a pairing g∗×g→ K given by the evaluation. This extends to a pairing Sg∗×Sg→
K in the following way. Given a monomial ϕ1 · ... · ϕk ∈ Sg∗ with ϕi ∈ g∗ and a monomial of
the same degree x1 · ... · xk ∈ Sg with xj ∈ g,

(5.1) 〈ϕ1 · ... · ϕk, x1 · ... · xk〉 :=
∑
σ∈Sk

ϕ1(xσ(1)) · ... · ϕk(xσ(k)),

where the sum is over all permutations of the k indices. Monomials pair as zero with any
monomial of a different degree, and the pairing is then extended bilinearly.

Alternatively, given a basis {b1, ..., bm} of g and dual basis {b∗1, ..., b∗m} of g∗, Sg and Sg∗
are spanned linearly by monomials in the basis elements bi and b∗j respectively. The monomial
(b∗1)

α1 ·...·(b∗m)αm pairs as zero with every monomial in the basis vectors {bi} except bα1
1 ·...·bαm

m ,
and

(5.2) 〈(b∗1)α1 · ... · (b∗m)αm , bα1
1 · ... · b

αm
m 〉 =

m∏
i=1

αi!

This descends to a pairing (Sg∗)g × (Sg)g → K. For Π ∈ (Sg∗)g and P ∈ (Sg)g we
will denote the value of this pairing by by 〈Π, P 〉. Finally, one can extend to a pairing
(Sg∗)⊗ng × ((Sg)g)⊗n → K by simply multiplying the pairings of tensor factors. This satisfies
the equality

(5.3) 〈Π, PQ〉 = 〈∆Π, P ⊗Q〉

for any P,Q ∈ (Sg)g, where ∆ is the co-product on (Sg∗)g induced by the co-product on Sg∗.
Define the Duflo map

D : S(g)g → U(g)g

by pairing with the first tensor factor of Υ ∈ (S(g∗)g ⊗ U(g))∧, and by an abuse of notation,
denote this by D(P ) = 〈Υ, P 〉. Note that although Υ lives in a degree completion, it is finite
in each degree, and so only finitely many terms of Υ have non-zero pairings with any given
P ∈ S(g)g. Hence, D(P ) ∈ U(g). The fact that D(P ) is g-invariant is a direct consequence
of Proposition 4.3.

Theorem 5.1. (The Duflo problem.) The map D is an algebra homomorphism.

Proof. After the work accomplished throughout the previous sections, this is now easy. By
definition, D is linear. The multiplicativity of D, on the other hand, follows directly from the
Tensor Statement. Let P,Q ∈ S(g)g, then

D(PQ) = 〈Υ, PQ〉 1
= 〈(∆⊗ 1)Υ, P ⊗Q〉 2

= 〈Υ13Υ23, P ⊗Q〉=D(P )D(Q).

Here Equality 1 is Equation (5.3) above, and the second pairing is applied in the first two
tensor factors of (∆⊗1)Υ. Equality 2 is the Tensor Statement, and the pairing is still applied
in the first two tensor factors of the first argument. �

Proposition 5.2. The map D is an algebra isomorphism.

Proof. In light of Theorem 5.1 we only need to prove that D is bijective. Recall that Ug
is filtered by word length (aka the PBW filtration), and the PBW Theorem states that the
associated graded algebra is isomorphic to Sg. We claim that D is a filtered map; this is true
by inspection of Υ as below. We then prove that grD is the identity, hence D is bijective.
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Recall that Z( ) consists of an exponential ea of an arrow a from the capped strand to
the red string, followed by a value C2 on the twice-capped strand, as shown in Figure 19.
Hence,

T (Z( )) = T (ea) · (T (C2)⊗ 1).

Since T (a) = ι, where ι ∈ g∗ ⊗ g denotes the structure tensor of the identity morphism of g,
we have T (ea) = eι. Recall from Formula (3.1) that T (C2) = 1 + higher degree terms.

Now let P ∈ S(g)g be homogeneous of degree d. Observe that D(P ) lives in filtered degree
at most d, hence D is a filtered map. In particular the only term of D(P ) that doesn’t belong
to filtered degree d− 1 arises from pairing with 1

d! ι
d.

Hence, the associated graded map grD(P ) = gr(P 7→ 〈eι, P 〉), and by formula (5.1) this is
the identity of Sg, completing the proof. �

5.1. The explicit formula. It remains to derive the explicit formula for the Duflo map. The
starting point for this is the value T

(
Z( )

)
= eιT (C2), where ι is the identity tensor in

g∗ ⊗ g. As discussed above as part of the proof of Proposition 5.2, for any P ∈ Sg, the term
of D(P ) of highest filtered order arises from pairing with eι. We begin by understanding the
map S given by this pairing, that is, S : Sg→ Ug, S(P ) = 〈eι, P 〉.

Since S is linear, it is enough to consider the case where P is a monomial of degree d in the
basis elements bi, say bi1bi2 ...bid , where i1 ≤ i2 ≤ id. The only term of eι that P pairs with,
then, is ιd/d!. Given that 〈ι, bi〉 = bi, then by the formula (5.1),〈

ιd

d!
, bi1bi2 ...bid

〉
=

1

d!

∑
σ∈Sd

bσ(i1)...bσ(id).

In other words, S is simply the PBW symmetrization map.
Next, we need to understand what happens when P is paired with the term ιd−r

(d−r)! · δr,
where δr ∈ Sg∗ is the degree r term of T (C2), and the multiplication occurs in the first tensor
factor. Although T (C2) is concentrated in even degrees, we compute 〈 ιd−1

(d−1)! · b
∗
i , P 〉 as an

instructive example. Applying formula (5.1) in this case, we sum over pairing any one factor
of P with b∗i , this factor disappears, and the map S is applied to the rest. This has the same
effect as differentiating P with respect to bi (denote this differential operator by ∂i), then
applying S. In other words, 〈

ιd−1

(d− 1)!
· b∗i , P

〉
= S(∂iP ).

This conclusion extends easily to the case of pairing with ιd−r/(d−r)!·δr. Namely, δr ∈ Sg∗
can be written uniquely as a polynomial in the b∗i . Let Dr denote the differential operator on
Sg given by replacing each occurrence in δr of b∗i by ∂i, for all i. Then,〈

ιd−r

(d− r)!
· δr, P

〉
= S(Dr(P )).

Now recall that from Equation 3.1,

C2 = exp

( ∞∑
n=1

2c2nw2n

)
, where

∞∑
n=1

c2nx
2n =

1

4
log

sinhx/2

x/2
.

Here w2n denotes the wheel with 2n spokes. In Figure 23 we computed T for a wheel with
three spokes, and the result clearly generalises to any number of spokes. It remains to interpret
this result in a more useful form. The value T (w2n) lives in Sg∗, and elements of Sg∗ can be
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viewed as polynomial functions on g. Brief inspection of T (w2n) leads to the conclusion that
for any x ∈ g, the function T (w2n) it is given by

T (w2n)(x) = Tr(adx)2n,

where “Tr” denotes the trace and “ad” stands for the adjoint representation.
Hence,

T (C2) = exp

( ∞∑
n=1

2c2n Tr(adx)2n

)
=

(
sinh

(
Tr adx

2

)
x
2

)1/2

= det1/2

(
sinh

(
adx
2

)
adx
2

)
.

This agrees with the well-known formula for the Duflo isomorphism, see for example [D1],
or [BLT, Section 1.1].
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