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Abstract

Following the approach of Ding and I. Frenkel (1993) for type A, we showed
in our previous work that the Gauss decomposition of the generator matrix in the
R-matrix presentation of the quantum affine algebra yields the Drinfeld generators
in all classical types. Complete details for type C' were given therein, while the
present paper deals with types B and D. The arguments for all classical types are
quite similar so we mostly concentrate on necessary additional details specific to the
underlying orthogonal Lie algebras.
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1 Introduction

The quantum affine algebras U,(g) associated with simple Lie algebras g admit at least
three different presentations. The original definition of Drinfeld [9] and Jimbo [17] was
followed by the new realization of Drinfeld [10] which is also known as the Drinfeld pre-
sentation, while the R-matriz presentation was introduced by Reshetikhin and Semenov-
Tian-Shansky [23] and further developed by I. Frenkel and Reshetikhin [12]. A detailed
construction of an isomorphism between the first two presentations was given by Beck [2].

An isomorphism between the Drinfeld and R-matrix presentations of the algebras U,(g)
in type A was constructed by Ding and I. Frenkel [8]. In our previous work [20] we were able
to extend this construction to the remaining classical types and gave detailed arguments
in type C. The present article is concerned with types B and D, where we use the same
approach as in [20] and mostly concentrate on necessary changes specific to the orthogonal
Lie algebras oy and their root systems. In particular, this applies to low rank relations
with the underlying Lie algebras 03 and 04, and to formulas for the universal R-matrices.

As with the corresponding isomorphisms between the R-matrix and Drinfeld presenta-
tions of the Yangians (see respective details in [4], [16] and [19]), their counterparts in the
quantum affine algebra case allow one to connect two sides of the representation theory in
an explicit way: the parameterization of finite-dimensional irreducible representations via
their Drinfeld polynomials can be easily translated from one presentation to another; see
[5, Chapter 12], [15] and [24].

To work with the quantum affine algebras in types B and D, we apply the Gauss
decomposition of the generator matrices in the R-matrix presentation in the same way in
types A and C; see [8] and [20]. We show that the generators arising from the Gauss
decomposition satisfy the required relations of the Drinfeld presentation. To demonstrate
that the resulting homomorphism is injective we follow the argument of E. Frenkel and
Mukhin [11] and rely on the formula for the universal R-matrix due to Khoroshkin and
Tolstoy [21] and Damiani [6].

Similar to the type C' case, we will introduce the extended quantum affine algebra in
types B and D defined by an R-matrix presentation. We prove an embedding theorem
which will allow us to regard the extended algebra of rank n — 1 as a subalgebra of the
corresponding algebra of rank n. We also produce a Drinfeld-type presentation for the
extended quantum affine algebra and give explicit formulas for generators of its center.
It appears to be very likely that these formulas can be included in a general scheme as
developed by Wendlandt [25] in the Yangian context.

To state our isomorphism theorem, let g = oy be the orthogonal Lie algebra, where
odd and even values N = 2n + 1 and N = 2n respectively correspond to the simple Lie
algebras of types B,, and D,,. Choose their simple roots in the form

O = € — €41 for izl,...,n—l,

€n if g = 02p41

Qp = .
€n—1 1 €p if g = 02p,



where €1, ..., €, is an orthonormal basis of a Euclidian space with the inner product (-, -).
The Cartan matrix [A;;] is defined by

2(a, )
Ay =22 1.1
! (ai7 ai) ( )
For a variable ¢ we set ¢; = ¢" for i = 1,...,n, where r; = (a4, a;)/2. We will use the
standard notation
¢ —q*
[k]q = = (1.2)

for a nonnegative integer k, and

b k k],
| R e

s=1

We will take C(¢'/?) as the base field to define most of our quantum algebras. In type
B,, we will need its extension obtained by adjoining the square root of [2],, = g2+ q7 12
The quantum affine algebra U,(on) in its Drinfeld presentation is the associative algebra
with generators z a;y, kf and ¢*/2 fori =1,...,n and m,l € Z with [ # 0, subject to

1,m?
+c/2

the following defining relations: the elements ¢ are central,

kik7t =k =1, (P2 = e = 1,

iAZ"
k’z‘k‘j = k?jk:ia kz Qjr = Qjk ki) k? l‘i k- t— J‘Ti

Jym 1 7,m?

A” gMme — g—me
[ai,maaj,l] — 5m,—l [m U]Qz q Q_l :
m 45 — 4,

[az’m>$i] _ j:[mAlJ]qz (]:F|m|c/2 +

2 m L5 mAls
+ + +Ai 4+ + iAij + o+ + +
Tim+1lir — 4 " TjTim+1 = TimTji+1 — Lj14+1%5mo
m—l)c/2 m—I1)c/2
[ + ] -5 q( el 1/} m+l — 4 ~ el i, +l
xz m jl (]
q; — qz
+ + + + _ . .
Z Z |: :| 7‘ »Sr(1) T xi)sw(l)szmxi)sw(l-l»l) e xivs’/\'('r) o 0’ t # ‘7’

eSS, [=0

where in the last relation we set » =1 — A;;. The elements v, ,, and ¢; _,, with m € Z
are defined by

= i Yimu™ ™ =k exp im SU S , (1.3)
m=0

s=1
pi(u) =D @i ™ = k; exp(—(q; — q; Zal ) (1.4)

m=0



whereas ¥ ,, = @i _m = 0 for m < 0.

To introduce the R-matrix presentation of the quantum affine algebra we will use the
endomorphism algebra End (CY @ CV) & End C" ® End C”". For g = 0,1 consider the
following elements of the endomorphism algebra (extended over C(¢'/?)):

N N
P= Z €ij @ €ji, Q= Z g eny @ e
and
N
R=gq Z €ii @ € + entint1 @ €nt1pn+1 + Z e ®ej+q Z €ii & €y
i=1,i4! i it
q_q Zew®eﬂ_ q_q Zq 62]’®61]7

1<J i>7

where e;; € End CY are the matrix units, and we used the notation #/ = N + 1 — i and

. 1 31 1 3 1
1,2,....N :( | N A —)
( J=(n=525073 73 nt

In the case g = 05, we define the elements P, ) and R by the same formulas by taking

N = 2n, except that the second term €,41n41 ® €,41,+1 in the expression for R should be
omitted, while the barred symbols are now given by

(1,2,...,N)=(n—1,...,1,0,0,—1,...,—n+1).

In both cases, following [12] consider the formal power series

u) =1+ kauk
k=1

whose coefficients f; are rational functions in ¢ uniquely determined by the relation

1
T = 00— )1 - w1 - ue ) )
where £ = ¢*>. Equivalently, f(u) is given by the infinite product formula
H 1 - u§2r uq72 §2r+1)(1 _ uq2 §2r+1)(1 _ u€2r+2> (16)

o (T=ug (1 —ug (1 —ug?e?)(1 —ug2¢>)

In accordance with [18], the R-matriz R(u) given by
R(u) = () (g7 (w - Du— YR — (7~ Du- P+ (¢~ Dw-1EQ)  (L7)
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is a solution of the Yang—Bazter equation

ng(U) ng(lb'l}) R23(U) = R23 (U) ng(uv) ng(U). (18)
The associative algebra U R(o ~) is generated by an invertible central element ¢%/? and
elements li[:Fm] with 1 < 4,7 < N and m € Z, subject to the following defining relations.

We have
l;;[O] = lﬁ[O] =0 for i>j and l+[0] 1;;10] = 1;;[0] l;g[O] =1,

while the remaining relations will be written in terms of the formal power series

Z L5 [Fm] u (1.9)

which we combine into the respective matrices

L*(u) =Y e ®15(u) € EndCYN @ U (gw)[[u, u™']).

1,j=1

Consider the tensor product algebra End CY @ End CN @ Uf{(gn) and introduce the series
with coefficients in this algebra by

Zew®1®zi u)  and 21@)@”@1i u). (1.10)

i,7=1 i,7=1

The defining relations then take the form

R(u/v)Li (u) Ly (v) = Ly (v) Ly (u) R(u/v), (1.11)
R(ug®/v)L{ (u)Ly (v) = Ly (v) i (w)R(ug */v), (1.12)

together with the relations
L*(u)DL*(ué)'D™ =1, (1.13)

where t denotes the matrix transposition with ej; = e; » and D is the diagonal matrix

D = diag[q',...,q"]. (1.14)

Now apply the Gauss decomposition to the matrices L*(u) and L~ (u). There exist
unique matrices of the form

0 ... 0 1 e(u) ... efy(u)
+ +
Fi<u): f21:(u) 1 O | Ei(u): O 1 emi(u) |
o) fw) o1 o 0 ... 1



and H*(u) = diag [h{ (u),...,hy(u)], such that
L*(u) = F*(u) H* (u) E*(u). (1.15)
Set
X () = e (ug®) = e (ug™?), X (u) = il (ug™?) = [y (wg?),

fori=1,...,n—1, and

X+ (u) {6Z,n+1(uqc/ ?) = enner(ug™?) for type B,
n u =
e:—l,n—&-l (uqc/2> - e;—l,n—l—l(uq_cﬂ) fOI' type Dm
X-(u) {fiﬂ,n(uq_d 2 = friin(ug?) for type B,
n u =
fn++17n—1(uq_6/2) - frj—i—l,n—l(qu/Q) fOI' type Dn

Combine the generators x -, of the algebra U, (o) into the series
= af,um (1.16)
mez
Main Theorem. The maps ¢/? — ¢/2,
wi () = (g — g7 )7 XG (ug),
i(u) hfﬂ(uqi) hi (ug')™,
piu) = iy (ug') hf (ug') ™,

fori=1,....n—1, and

22X E (ug™) for type B,
’_)
—q,") 1X Flugt) for type D,
) s a1 (ug™) hyy (ug™) ™ for type B,
nH(uq” Yho (ughHt for type D,,
{ n—l—l( uqn) ! fO’f’ typ@ Bn
’—)
n+1 h:f 1(“(1 ) for type D,
define an isomorphism U,(0y) — UR(ON)



To prove the Main Theorem we embed U, (0y) into an extended quantum affine algebra
qu"t(ﬁN) which is defined by a Drinfeld-type presentation. The next step is to use the
Gauss decomposition to construct a homomorphism from the extended quantum affine
algebra to the algebra U(R) which is defined by the same presentation as the algebra
Ul (on), except that the relation (1.13) is omitted. The expressions on the left hand side
of (1.13), considered in the algebra U(R), turn out to be scalar matrices,

L*(u)DL*(u€)' D™ = 25 (u) 1,

for certain formal series 2¥(u). Moreover, all coefficients of these series are central in
U(R). We will give explicit formulas for 2*(u), regarded as series with coefficients in the
algebra U (oy), in terms of its Drinfeld generators. The quantum affine algebra U, (o)
can therefore be considered as the quotient of U (o) by the relations z*(u) = 1.

As a final step, we construct the inverse map U(R) — U (oy) by using the uni-
versal R-matrix for the quantum affine algebra and producing the associated L-operators
corresponding to the vector representation of the algebra U,(oy).

We point out one immediate consequence of the Main Theorem: the Poincaré—Birkhoff—
Witt theorem for the R-matrix presentation Uf“(ﬁN) of the quantum affine algebra is
implied by the corresponding result of Beck [1] for U,(oy).

2 Quantum affine algebras

Recall the original definition of the quantum affine algebra U,(g) as introduced by Drin-
feld [9] and Jimbo [17]. We suppose that g is a simple Lie algebra over C of rank n and g
is the corresponding (untwisted) affine Kac-Moody algebra with the affine Cartan matrix
[Ay]7 j=o- We let ap, ay, ..., a,, denote the simple roots and use the notation of [5, Secs 9.1
and 12.2] so that ¢; = ¢" for r; = (a4, ;) /2.

2.1 Drinfeld—Jimbo definition and new realization

The quantum affine algebra U,(g) is a unital associative algebra with generators E,,, F,,
and k:iil with ¢ =0,1,...,n, subject to the defining relations:

k7' =k =1, kiky = kiky,
kiBoki' =" Ea;,,  kiFoki' = ¢ "V F,,

J 1 1



By using the braid group action, the set of generators of the algebra U,(g) can be
extended to the set of affine root vectors of the form Eqirs, Fotrs, Erss and Flis,,
where « runs over the positive roots of g, and ¢§ is the basic imaginary root; see [2, 3| for
details. The root vectors are used in the explicit isomorphism between the Drinfeld-Jimbo
presentation of the algebra U,(g) and the “new realization” of Drinfeld which goes back
to [10], while detailed arguments were given by Beck [2]; see also [3]. In particular, for
the Drinfeld presentation of the algebra U,(ox) given in the Introduction, we find that the
isomorphism between these presentations is given by

x> 0(1)F B, 15, T 0(1)* Fo, 46, k>0,
Ty —0(i)*F g, 115 k¢, Ty —o(i)* ¢ * ki E_oprs, k>0,
aig. + 0o())q P Eg i, a; 1+ 0(1)F Flusi g2, k>0,

where 0: {1,2,...,n} — {£1} is a map such that o(i) = —o(j) whenever A;; < 0.

2.2 Extended quantum affine algebra

We will embed the algebra U,(oy) into an extended quantum affine algebra which we
denote by U (oy); cf. [8], [11] and [20]. Recalling the scalar function f(u) defined by
(1.5) and (1.6) set

g9(u) = f(u)(u—q ) (u—¢). (2.1)
To make formulas look simpler, for variables of type u, v, or similar, we will use the notation

uy = uqt?, vy = vgt?, ete.

Definition 2.1. The extended quantum affine algebra U;Xt(ﬁN) is an associative algebra

with generators Xiik, h;-fm, h;_,, and q¢/?, where the subscripts take values i = 1,...,n

and k € Z, while j =1,...,n+ 1 and m € Z,. The defining relations are written with
the use of generating functions in a formal variable u:

X (u) = Z ka u*, hi(u) = Z hfim utm,
kEZ m=0
they take the following form. The element ¢¢? is central and invertible,

h;fohf,o = hf,oh;fo =1.

Type B: For the relations involving hi(u) we have

hit (w)hi (v) = b3 (V)i (u),

J

g((ug®/v)*™) B (Wi (v) = g((ug=/v)*™) BF () (), i=1,....n,

g((ug®/v)*Y) ﬁhﬂwhf(v) = g((ug™°/v)*") —F " pF (o) (u),



for ¢ < 7, while

-1 12 1/2
+1\ 4 U+ —qUx ¢ —q TUf 4
c h hi (v
9((UQ /U) ) qus — g~ 1'U q 1/2ui - q1/2 n—l—l( ) n—i—l( )
-1 _ /2 —-1/2
. —ec +1\ 4 "Ux — QU+ ¢ —q U+ +
- g((uq /U) ) qus — q_lvi q 1/2U . ql/QUi hiJrl( )thrl( )

The relations involving A3 (u) and X f(v) are

U — v+

hit (u) X (v) = X5 (0)hi (u),

q(fzaj) —q_(ﬁi’aj)fvi J

q_(ez'voéj)ui _ q(eivaj)v

BE () X (v) =

X5 (v)h (u)

U4+ — v

for i # n + 1, together with

(X (1) = U ),

)X () = LB Oy ),

and
hT:lL:+1( )X+( ) = ;’(v) n+1< u),
 (

lea (W) X7 (V) = X7 (0)hiy (u),

for 1 <i < n — 1. For the relations involving X:*(u) we have
(u— ¢~ 0) X7 (ug") X5 (vg’) = (7@ u — 0) X5 (vg") X (ug')

for 1 <1i,7 <n,and

X (), X7 (0)) = Biga— ) (8o (00) by (o) = 8 (g o) i () By ()
together with the Serre relations
> Z { ] XE(Un(r) - - X () X (0) XE (1)) - - - X7 () = 0,
€S, 1=0
which hold for all ¢ # j and we set r = 1 — A;;. Here we used the notation
-
TEZ

for the formal d-function.



Type D: For the relations involving h"(u) we have

9((ug® /o)1) b (whT (v) = g((ug=/0)™) b (VA (w), i=1,...,n+1,
and

-1
c +1\ 4 U+ qu=x Uty — Ux h:t h:F
v
g((uq /U) )qui_q LU:F Uy — g~ LU:F ( ) n—i—l( )

-1
- +1y 4 Uf — QUL Ux — Ui +
= ¢ h h
g(<uq /U) ) qus — q_lvj: Uz — q_lvﬂ: n+1(v) n (U)

together with

g((ug® /o)) —E T ¥ (u)hF

qus — g lug ;)

_ wa~ /v +1 Uz U+ h¥ h:l:
9((ug=/v) )—q = (v)hi" (u)
for i < j and (i, ) # (n,n + 1). The relations involving h;"(u) and X (v) are

hE(WXF(v) = U U X+ (v)hE(w),
i (W)X (v) O T P (v)h; (u)

(es, ) _ (e, a])
_ q U+ —¢q
hf(u)Xj (v) =

“X; (0)h ()

U+ — v
for ¢ # n + 1, together with

hE () X () = ——— X

bt (W)X, () = X ()bt (u),

Uy — U "
and S
ho (W)X, (v) = m)(:—l(v)hi&-l(u)a
—1
_ quy —q U
hi+1(u)anl(U> = ﬁxnfl<v)hi+l<u)u
while N N . N
hoa (W)X (0) = X7 (0) hyy 4 (w),
Ho (W) X7 (V) = X7 (0)hiy s (w),
for 1 <17 <

n — 2. For the relations involving X (u) we have

(u _ qi(ai,aj)v)Xii(uqi)X;t(qu) _ +(a4,005)

(q u— )X (v¢") X (uq’)

10



(u— g 0) X (ug') Xy (vg" ) = (5w — 0) X7 (vg" ) X (ug)
fori=1,...,n—1,
(u— =o)X (u) X5 (v) = (¢7 " u — 0) X3 (0) X7 (u)
and
X (0), X7 ()] = 8= a7 (5(wa /o) (00) b o) =g o) () i ()
together with the Serre relations

D H XE () - X () X (0) X (i) . X ttnr) = 0,

€S, [=0

which hold for all i # j and we set r =1 — A;;. ]

Introduce two formal power series 27 (u) and 2z~ (u) in u and u™!

coefficients in the algebra Us*(oy) by

, respectively, with

[T A (wgq®) B (€ q*=2) by (u) Biryy (ug) for type B,
) =407 (2.2)
1 hE(u€ @) Thi (ugq¥72) hiE (u) hiE, (u) for type D,

where we keep using the notation £ = ¢>~". Note that by the defining relations of Defini-
tion 2.1, the ordering of the factors in the products is irrelevant.
The following claim is verified in the same way as for type C; see [20, Sec. 2.2].

Proposition 2.2. The coefficients of z*(u) are central elements of U (o). O

Proposition 2.3. The maps ¢*/% — ¢°/?,

v (u) = (6 — ¢ )7 X (ug),
Yiu) = by (ug') by (ug') ™
wi(u )Hhﬁl( ) hif (ug')™

ki = hfg(hify o)™

fori=1,....,n—1 in both types,

v (u) = (gn — ¢,") " X5 (ug™),
Un (1) = hyy o (ug”) by (ug™) ™,
on () = bty (ug™) bl (ug™) ™,

k, — h;{o

11



for type B, and

T (1) = (gn — ¢, ") X5 (ug™™h),

Un () = Py (ug™ ) ey (ug™ ™),

on(u) = hr+1+1< 71) h:ﬂ(uqnil)ila

kn — hn—l,ohn,o

for type D, define an embedding < : Uy(oy) — U (o).
Proof. As with type C [20, Sec. 2.2], it is straightforward to check that the maps define
a homomorphism. To show that its kernel is zero, we extend the algebra U,(oy) in type
D by adjoining the square roots (k,_1k,)*"/? and keep using the same notation for the
extended algebra. In both types we will construct a homomorphism g : U (oy) — Uy(oy)

such that the composition g o is the identity homomorphism on U, (o).
There exist power series (*(u) with coefficients in the center of U (oy) such that

CH(u) ¢F(ué) = 2% (u). Explicitly,

o

H z:i: é- 2m— 1 (uf—Zm—Q)—l'

The mappings X (u) — XF(u) for i = 1,...,n and hi( ) — hi( ) (E(u) for j =
L...,n+1 define a homomorphism from the algebra U eXt(o ~) to itself. The definition of
the series (*(u) implies that for the images of hi"(u) we have the relation

hi (w) ¢ (u) b (u€) ¢ (u€) = hi (u) hif (u€) 2= (u).
Hence the property g o ¢ = id will be satisfied if we define the map o : U (on) — Uy(on)
by
Xi(u) = (6 — g ) o (ug™)  for i=1,...,n—1,
and
X (@) = (g0 — g ') 27 (ug™ ™),
while
R (u) = o (u) for i=1,....,n+1,

where the series o;"(u) are defined in different ways for types B and D and so we consider
these cases separately.
For type B we have

n i—1 n
of (w) o (wg) = [ [ enwed) ™ [ en(usa™) []eeug™) ™
k=1 k=1 k=i
fori=1,...,n, and

(W) gy (u€) = H‘Pk ugq®)™! H(pk(uﬁq_k)
k=1

12



Explicitly, by setting ¢;(u) = k;p;(u), we get

of (u) = [ T &5(ue™"a") ' @(us " ¢ ) s (us > q7) 7'y (ug > g )
m=0 j=1
i—1 n
X Hgéj(uqﬁ) X Hk’
=1 j=i
fort=1,...,n, and
ap () = T T &™) 35w ) (u > g /) g(ug > 2q )
m=0 j=1

x [ @i(ug™)
j=1
In type D we have

o (u) o (u€) = ulug™™*) Hgok utd) [ onluéa™) [ onlua™)
k=1 k=1

fori=1,...,n—1,

ot (1) 0 (uE) = (g™ Hsok utd) ™ [ onluta™)

and

n—1
by (u) af ey (u) = n(uéq™ HSDk uéd") ™ [ ] en(ugq™)
k=1

Explicitly, by setting @;(u) = k;p;(u), we get

oo n—2
_ H H@j(ug_%nqj)_l@j( & 2m—1 )903( & 2m—1q—j>—1@j<u£—2m—2q—j)
m=0 j=1
i—1 n—2
IT IT #stue " gstue 10 x T @stug)  TLkitlo-1k)
m=0j=n—1 j=1 =i
fori=1,...,n—1,
oo n—2 ‘
= [T I &€ q) "o (ug > ") @y (ug > q77) 7 (ué "2 )
m=0 j=1
n—1
H H SOJ —2m g 1) j(u€72mflqn71) % H(ﬁj(uqi ) (/f 1 /C )1/2
m=0 j=n—1 j=1

13



and

oo n—2
n+1 H H% lgbj(ué-meflqj)@j(ué-mefqu_]) 1~ (u£*2m 2q79)
m=0 j=1
0o n n—1
H H @j(ug—qun—l)—l(ﬁj<u£—2m—1qn—1) % H@](uq—j>¢n<uq—n+l) % (k;_llkn)_l/Q-
m=0 j=n—1 j=1

In both types the relations defining «; (u) are obtained from those above by the respective
replacements o (u) — ; (u), ki — k;* and @ (u) — Vi (u).

As with type C, one can verify directly that the map o defines a homomorphism or
apply the calculations with Gaussian generators performed below; cf. [20, Remark 5.6]. O

By Proposition 2.3 we may regard U,(0y) as a subalgebra of U (o). In the following
corollary we will keep the same notation for the algebra U,(ox) in type D extended by
adjoining the square roots (k,_1k,)™/? (no extension is needed in type B). Let C be the
subalgebra of U (o) generated by the coefficients of the series z*(u).

Corollary 2.4. We have the tensor product decomposition
U;Xt(ﬁN) =U,(on) ®C.

Proof. The argument is the same as for type C' [20, Sec. 2.2]. O

3 R-matrix presentations

3.1 The algebras U(R) and U(R)

As defined in the Introduction, the algebra U(R) is generated by an invertible central
element ¢*? and elements lf';- [Fm] with 1 <4,j < N and m € Z, such that
101 — 7-10] — L +
L0l =15[0] =0 for > and 1710) 1

7

(0] = 1 [0] 15 [0] = 1,

and the remaining relations (1.11) and (1.12) (omitting (1.13)) written in terms of the
formal power series (1.9). We will need another algebra U(R) which is defined in a very
similar way, except that it is associated with a different R-matrix R(u) instead of (1.7).
Namely, the two R-matrices are related by R(u) = g(u)R(u) with g(u) defined in (2.1), so

that 1 1 ( D(u—1)¢
_ u— q9—q q—q )Ju—
( ) uq_qfl uq_q*1 (uq—q’ ) 5) ( )
Note the unitarity property o o
Rip(u) Ror(u™t) =1, (3:2)
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satisfied by this R-matrix, where Ris(u) = R(u) and Ry (u) = PR(u)P. More explicitly
the R-matrix R(u) can be written in the form

1
Z € & ey + _1 Z €i; & e]j q a — Z €ij X €ji

qu_z;é; . i#5,5’ N >5,i75! (3.3)
P Z<§£] €ij @ €5 + (u— ”Z:l aij(u) ey ® eij,
where
(g2 — €)(u— 1) for i=y73, i#7,
-+ (E-D@?-Du for i=j i=d,
aij(u) = (72 = (776w —1) — b0 (u — g)) for @< j,
(0 Dulg =)~y -©)  for P>

The algebra U(R) is generated by an invertible central element q“/?

with 1 <7,7 < N and m € Z, such that

and elements 65 [Fm]

f;;[O] =(;0]=0 for i>j and ££10] ¢;;[0] = £;;[0] £]0] = 1.

Introduce the formal power series

Z EZJ Fmlu (3.4)

which we combine into the respective matrices
Z ei; ® {;:(u) € EndCY @ U(R)[[u, u™"]].
ij=1
The remaining defining relations of the algebra U(R) take the form
R(u/v) Ly (u) L3 (v) = L3 (v) LT (u) R(u/v), (3.5)
R(uq®/v) L1 (u) Ly (v) = L3 (v) L] (u) R(ug™/v), (3.6)

where the subscripts have the same meaning as in (1.10). The unitarity property (3.2)
implies that relation (3.6) can be written in the equivalent form

R(uq™*/v) Ly (u) L3 (v) = L3 (v) L (u) R(ug®/v). (3.7)

Remark 3.1. The defining relations satisfied by the series Ei(u) with 1 < 4,7 < n coincide
with those for the quantum affine algebra Uq(g[n) in [8]. O
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Following [8] and [20] we will relate the algebras U(R) and U(R) by using the Heisenberg
algebra H,(n) with generators ¢ and g, with r € Z \ {0}. The defining relations of #,(n)
have the form

[ﬁraﬁs] = 5r,—5 A, r= 17
and ¢¢ is central and invertible. The elements «, are defined by the expansion

— ., glug™®)
exp au’ = .
; 9(ugq®)

So we have the identity

g(ugq®/v) exp Z fru” - exp Z B_sv™° = g(uqg °/v)exp Z P_sv™° - exp Z Bru’.
r=1 s=1 s=1 r=1

Proposition 3.2. The mappings

L1 (u) — exp i Boyu”" - LT (u), L7 (u) — exp f: Bru” - L™ (u), (3.8)

define a homomorphism U(R) — Hy(n) ®cge,q-q U(R). O
We will use the notation t, for the matrix transposition defined in (1.13) applied to the
a-th copy of the endomorphism algebra End C" in a multiple tensor product. Note the
following crossing symmetry relations satisfied by the R-matrices:
(u—?)(ug — 1)

R(u)DRue)" DY = =i (39)

R(u)Dy R(ué)" Dyt = €%¢72, (3.10)

where the diagonal matrix D is defined in (1.14) and the meaning of the subscripts is the
same as in (1.10). The next two propositions are verified in the same way as for type C;
see [20, Sec. 3.1].

Proposition 3.3. In the algebras U(R) and U(R) we have the relations

DL*(wé)' D' L* (u) = L*(u) DL (uwé)' D" = 25 (u) 1, (3.11)
and

DLE(u&) D7 LE (u) = L5 (u)DLE (ué)' D™ = 3% (u) 1, (3.12)
for certain series 2 (u) and 3% (u) with coefficients in the respective algebra. []

Proposition 3.4. All coefficients of the series z*(u) and z~(u) belong to the center of the
algebra U(R). O

Remark 3.5. Although the coefficients of the series 37(u) and 37 (u) are central in the
respective subalgebras of U(R) generated by the coefficients of the series £;(u) and £;;(u),

they are not central in the entire algebra U(R). O
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3.2 Homomorphism theorems

Now we aim to make a connection between the algebras U(R) associated with the Lie
algebras oy_o and oy. We will use quasideterminants as defined in [13] and [14]. Let
A = [a;;] be a square matrix over a ring with 1. Denote by A% the matrix obtained from A
by deleting the i-th row and j-th column. Suppose that the matrix A% is invertible. The
17-th quasideterminant of A is defined by the formula
|Alyy = ai; — ] (A9) " el
where rij is the row matrix obtained from the i-th row of A by deleting the element a;;,
and c]’: is the column matrix obtained from the j-th column of A by deleting the element
a;;. The quasideterminant |A|;; is also denoted by boxing the entry a;; in the matrix A.
The rank n of the Lie algebra o with N = 2n+1 or N = 2n will vary so we will indicate
the dependence on n by adding a subscript [n] to the R-matrices. Consider the algebra

U (}_%[n_l]) and let the indices of the generators ff; [Fm] range over the sets 2 < 7,5 < 2’
and m=0,1,..., where ¢’ = N — i+ 1, as before.
Proofs of the following theorems are not different from those in type C'; see [20, Sec. 3.3].

Theorem 3.6. The mappings ¢/ — ¢=/? and

(iu)  55(u)
0 (u) — . 2<i,j<?, 3.13)
W ) [Gw) (
define a homomorphism U(}_%[nfl]) — U(}__{[n]). O

Fix a positive integer m such that m < n. Suppose that the generators Ef;(u) of the
algebra U(R[n_m}) are labelled by the indices m + 1 < 4,5 < (m +1)".

Theorem 3.7. For m < n — 1, the mapping

Ci(u) oo, (u) 455(u)
&j][(u) =eE (u) L 0 (u) éij(u) , m+1<i,j<(m+1), (3.14)
Ci(u) oo G (u) |45 (w)
defines a homomorphism 1y, : U(R[n—m]) N U(EM). -

We also point out a consistence property of the homomorphisms (3.14). Write v, =

wfjf ) to indicate the dependence of n. For a parameter [ we have the corresponding homo-
morphism

—[n—l—m]

b0 UR ) = UER"

m

provided by (3.14). Then we have the equality of maps wl(") o zp,(,?*’) = zpl(z)m
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Corollary 3.8. Under the assumptions of Theorem 3.7 we have

[£a (1), ¥ (€55 (0)] = 0,

U+ — Y )+ Uz — Vs -
/ wm(0F (V) = m (0 (0))E ;
quy — qilU:F ab(u)¢ ( Z](U>) quz — q,lvi,l?b ( iJ (U)) ab(u)
foralll <a,b<mandm+1<i,j<(m+1)". O

4 Gauss decomposition

Apply the Gauss decompositions (1.15) to the matrices L*(u) and £*(u) associated with

the respective algebras U(RI™) and U (E[n]). These algebras are generated by the coetfi-
cients of the matrix elements of the triangular and diagonal matrices which we will refer
to as the Gaussian generators. Here we produce necessary relations satisfied by these

generators to be able to get presentations of the R-matrix algebras U(RI™) and U (F[n]).

4.1 Gaussian generators

The entries of the matrices F*(u), H*(u) and E*(u) occurring in the decompositions
(1.15) can be described by the universal quasideterminant formulas [13], [14]:

lﬁ(“) litifl(u) li(“)
RO =t ) ) ) PSRN 6D
() o G | G(w)
whereas
lﬁ(“) liti—l(u) llij(u)
ef;(u):hgt(u)_l lill(u) liliil(u) liu(u) (42)
lzil(u) li_l(u) lf;(u)
and
lﬁ(“) li’—l(u) li(”)
O = ) () (| (43)
lj.[l(u) ljii_l(u) lﬁ(u)

for 1 <i < j < N. The same formulas hold for the expressions of the entries of the respec-
tive triangular matrices F*(u) and £*(u) and the diagonal matrices H*(u) = diag [ (u)]
in terms of the formal series @f;(u), which arise from the Gauss decomposition

L5 (u) = F*(u) H* (u) £ (u)
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for the algebra U (E[n}). We will denote by e¢;;(u) and f;;(u) the entries of the respective
matrices £ (u) and F*(u) for i < j.

The following Laurent series with coefficients in the respective algebras U(RI") and
UR [n]) will be used frequently:

Xf(u) = e:,r¢+1(u+) - e;iJrl(u—)v X (u) = :H,i(u—) - fijrl,i(u+)7 (4.4)
Xi+(u) = ej,_i+1(u+) - ei_,i+1(u—)a X (u) = :Zr“(u_) - fi_+1,i(u+> (4.5)
fori=1,...,n—1, and
nn (u €nm for type B,
n 1,n+1 U+ enfl,n+1 (U_) for type Du
I n In alu for type B,
n+1 o - fn+1,n71(u+) for type D,
while
{ n,n+1 U+ nn+1( ) for type B7
€h1 ,n+1 u+ en—l,n—&-l (’U/,) for type D7
X_( ) . {fn+1 n(u ) - fnJrl n(u-f-) fOI‘ type B7
f:+1,nfl(u*) - fr:+1,nfl(u+) for type D.

Proposition 4.1. Under the homomorphism U(R) — H(n) ®cige. g U(R) provided by

Proposition 3.2 we have

e (u) = €; (U)

() > exp S Briu™ - hE(u).
k=1

Proof. This is immediate from the formulas for the Gaussian generators. ]

Suppose that 0 < m < n. We will use the superscript [n — m] to indicate square
submatrices corresponding to rows and columns labelled by m+1,m+2,...,(m+1). In
particular, we set

1 0 . 0
i (u 1 e 0

J—_':I:[n—m}(u) _ +2 :+1( ) N ; |,
f?:erl)/erl(u) i f?:erl)’ (mazy(w) 1
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1 e$+1m+2<u) ei+1(m+1)/(u)

gy = |0 ! .

- : Cm+2) 1y ()

0 0 e 1

and HE=(u) = diag [bmH( ) R b?[mﬂ)/(u)}. Furthermore, introduce the products of
these matrices by

L:t[nfm] (U) — JT_':I:[nfm] (U) H:t[nfm] (U) E:t[nfm] (U) )
The entries of £~ (u) will be denoted by £;:" " (u).

The next series of relations are B and D type counterparts of the corresponding relations
in type C and verified by the same calculations; see [20, Sec. 4.2].

Proposition 4.2. The series 65["7”4 (u) coincides with the image of the generator series

+ Hln—m| :
(75 (u) of the extended quantum affine algebra U(R ) under the homomorphism (3.14),

Z;S[nfm](u) = U (ﬁi(u)), m+1<i,7< (m+1). 0
Corollary 4.3. The following relations hold in U(R[n]):
[n—m)] n—m n—m n—m - [n—m]
Riy " (ufo) 77 (w) £ (0) = 257 (0) £ () Ry (/).

[n—m] n—m n—m n—m - [n—m]
Ryy " (ug /o) £ ) £, ) = £, ) L7 ) Ryy " ufoy). O
Proposition 4.4. Suppose that m +1 < j,k, 0 < (m+ 1) and j #I'. Then the following
relations hold in U(R [n]). if 7 =1 then

- 1
n—m QU - C] U n—m q - Q U n—m
= () = TE T Ok gl ok ) 7T U e ) (4.8)

¢ Uy —vye Ugr — Vg
-1
) N (q q )ugi[n—m] (v)ei (’U),

+[n—m qu —q U tp-m
(gl ) = LY e — 0 m

e (u
mj kl U —v kj ml

if 7 <1 then

—1 —1
+ gq:[n—m] _ (q —q )v:l: E:F'[n—m] + . (q —q )u:F gq:[n—m] F 4.
e, 41" 0)] = L )t o) — U ) ), (49

£ () 5 )] = U et

4
[ » Vkl U — v

if 7 > 1 then

e ). ) = UV e 2 ) — e 0)
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Proposition 4.5. Suppose that m +1 < j,k,l < (m+1) and j # k'. Then the following
relations hold in U(R ): if j =k then

n—m U+ v n—m (q—q_l)U n—m
i (1 )ﬁ[ ) = mﬁﬁ[ ](U)f]m(u)+m ;-Fm(?))@[ W(v),

-1
n—m U—"v n—m q—4q v n—m
G0 = ) )+ L )

if 7 < k then

(), (P (o)) = U T om0 0 Vg )y priamnl )

jm Uy — vt Ugp — U

72, (), ey = =T 0 oy (T4 g gt

Jm u—v at u—v at
if 7 >k then
1
() (@) = 5 g ) i ),
+ — Ux
_ A1
(). 0] = T e ) ) ). 0

4.2 Type A relations

Due to the observation made in Remark 3.1 and the quasideterminant formulas (4.1), (4.2)
and (4.3), some of the relations between the Gaussian generators will follow from those for

the quantum affine algebra Uq(g[n)' see [8]. To reproduce them, set

L% (u Z e ® 05 (u

2,J=1

and consider the R-matrix used in [8] which is given by

n
= E €ii & ey + 71 E 6“®€”
=1

i#]
qu—q i>7 1<j

By comparing it with the R-matrix (3.1), we come to the relations in the algebra U (R[n]):
Raa(u/w) L3 (u) L35 (v) = L5 (0) L1 (u) Ra(u/v),
Ra(ug®/v) L1 (w) L5 (v) = L37 () L3 (u) Ra(ug™/v).

Hence we get the following relations for the Gaussian generators which were verified in [§],
where we use notation (4.5).
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Proposition 4.6. In the algebra U(E[n]) we have
bi (Wb} (v) = b7 (v)bi (W), bF (Wb (v) =bF (V)b (W) for 1<ij<n,

T pEu)hF() = —F = pF 1<i<j<
qus —q lvg bi (u )b] (v) qu —q_lvih (v )h (w) for St<Jxn
Moreover,
Ur — V
b (u) X (v) = ——— b; (u
) 7 q(e“a])u:F —q — (€&, aJ)v ( ) )
(Givaj) — (61705])
b (wX; (0) = T2 e ohE () for 1<i<n, 1<j<n,
U+ —V
while

(u = g D0) X (ug) X (vg’) = (7D — 0) X5 (v ) X (ug'),
and
2 (), X7 (0)] = 8i5(a =) (0 (wa™/v) b (v4) b (v4) =6 (ug® /) bF (uy) b (1))
for 1 <i,j < n, together with the Serre relations for the series Xi=(u), ..., X (u). ]

Remark 4.7. Consider the inverse matrices £*(u)™! = [Ei(u) |Y,—1. By the defining rela-
tions (3.5) and (3.6), we have

L) LE () R (ufv) = R (ufo) £ () £E ()™
L5 (0) 7 L () R (uge fv) = B (ug e /0) L3 (0) L] ()™

So we can get another family of generators of the algebra U (R M) which satisfy the defining
relations of Uq(g[n). Namely, these relations are satisfied by the coefficients of the series

l i( ) with 4,j = n/,...,1". In particular, by taking the inverse matrices, we get a Gauss
decomposmon for the matrlx [ j[( )]i j=n’,...1 from the Gauss decomposition of the matrix
LE(u). O

4.3 Relations for low rank algebras: type B

In view of Theorem 3.7, a significant part of relations between the Gaussian generators is
implied by those in low rank algebras. In this section we describe them for the algebra

U (ﬁm) in type B associated with the Lie algebra o3.

Lemma 4.8. The following relations hold in the algebra U(}_%[l]). For the diagonal gener-
ators we have

by (u)by (v) = by (v)hi (w), by (Wb (v) = by (V)bY (u),
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by (u)b (v) = by (v)hi (u), (4.10)

Uy —

mfh (w)bh3 (v) = R b3 (v)b7 (). (4.11)
Moreover,
+ F (v) — Ux — VUt F (v iu (q_q )Uj: + (o
bi (u) e1,2( )= —qqu — q_lv_i e1,2( )b1 (u) + —q s b1( )e 1,2( ),
et (v) = — Y E (o (u (q_ql)viuiu
by ( )%,2( ) qu—q v 91,2( )b (u) + qi—q v b1 ( )e1,2( ),
ti) = _tETVE e v (¢—q Hux o W (0
f;(“)bl (u) = qus — q-lvs by ( )f%ﬂ( )+ P f2,1( )bi (u), (4.12)
) = Ui o)+ L o ), (4.13)
and
. ~ (g—q Nus 1 (g—gq Dus ()1
[e12(u), f31(v)] = —q ST b3 (v)bT (v) —qui = by (w)bi (u)™,
00 B 0] = L= (5 ) — b b)) (1.14)

Proof. All relations in the lemma are consequences of those between the series Ei(u) and

0 (v) with i # k' and j # I’ in the algebra U (}_%[1]). Therefore, they are essentially relations
occurring in type A and verified in the same way; cf. Proposition 4.6. [

Now we turn to the B-type-specific relations.

Lemma 4.9. In the algebra U(Em) we have
-1 -1
+ _ Uz —q Ux + (¢ —q ug 2
eio(u)efy(v) = q_lqu—_viefz(U)el,z(U) mﬁ (v)
(u:F — q_lvi>(1 —q ) + (u)2
(¢ ugs —v)(ug — g7 20)
(us —ve)g V(g7 = Ds oL L(u) + (ug —vi)g (¢! — Qus F.(v)
-1 . 2 l u -1 . -1 . e1,3 v
(¢ i — ve) (s — g 20s) (¢ "y — v2)(q 'z — qua)

and

- e eyl -
QAT
e e

ef2(“)2
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Moreover,

—1
—q )U:F =s 2
us — qus f2,1(“)

T () (u —q UF 71(v) — (4

f31(v)fa(u) = = f2 (W)f3(v) p=
C (us—q” 1v:F)(l—q*2)

VR e K

(us —ve)g (g2 = Duy

(¢ ug — vg)(us — ¢7%0)

(ux —v5)g (7" = Qv ¥
(¢ — 0) (g iz — qug) 1(v)

o (u) +

and
_ vz + (q—q 1)1)
Faa(0)fza(w) = q 1u f21( )2 (v) — 1 f21< )2
_(u— )(1—q 2)u
(q 1u )( )f21( ) /
(u v)q 1/2(q —1u, (- v)g 72 (g — v
(q L —v)(u — ¢2v) fa1(u) + (¢ u—v)(gtu— )f3 1(v).

Proof. By using the expression (3.3) for the R-matrix, we obtain from (3.6) that

1
(y—aq )y —

iy (u) by (v) = = (a12(y) 611 (v) 63 (u)
+ az(y) (V)0 (w) + az(y) C3(0) 6 (u)), (4.15)
where we set y = u_ /u,. Similarly, we also have

) = 2L w)ehw + T e e (),

1

qy —q vy —q
_ y—1 a—q'
0 (u)lp(v) = v —q-! 612( )0 (u) + qy_q_lgn(v)gﬁ(u)- (4.16)

In terms of Gaussian generators the left hand side of (4.15) can now be written as

(g—q Yy
qy—q*

b (0)h] (et (w)er(v) + by (v)ers ()b (w)ery(v)

qy — q‘1
which equals
Dy

LY By o)t )ty (o) + L

= , by (w)hy (v)er(v)°.

Now use another consequence of (3.6),

1
(y—qHly—qt)

(CL13(?J)€ (v)l5(u)
+ azs ()12 (0) 0 (w) + ass(y) i (v) 6y (),

fﬁ( )€13( ):
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which together with (4.16) brings (4.15) to the form
¢y - G=a Y o o
y— 751 (u)by (v)ery(v)
g2 =gy —q)
(y—q )¢y —1)

(y—q g 'y —q) D= (06 (0o (o
(y—D(gty—1) b1 (w)by (v)ers( )QE( )
(y—q " ?y—1(qg—q")
(y—q gy -1y —1)

(e
¢'(q -1y -
WUT(U)W (v)ers(v).

bl (0)b7 (u)ery(w)ery(v) +

by (0)b1 (u)es(u)

+

)
(
)

by (v)bi (w)efs(u)?
+

Since the series b (u) and by (u) are invertible and their coefficients pairwise commute, we
arrive at one case of the first relation of the lemma. The remaining relations are verified
by quite a similar calculation. O

Now we will be concerned with relations in the algebra U (E[I]) involving the diagonal
generators b3 (u).

Lemma 4.10. We have the relations

0% (o) () + L= ) ()03 (0)
(¢ q u)j(t U:Fq‘l ) (2 —1)g'/? (4.17)
_ Ut = QU )\Ut = 4 V%) et o \pF(y — YF et (0hT (v
- e e nf () + D o)
and .
05 () (u) + (q;—q”f;ﬁwm;(v)
~1y — v -2 _ 1\g1/2p
- O )+ U nf o)
Moreover,
i)+ 0 0)
_ (g lug —qui)(uz —qloy) o ek (u (¢ =g Pug o V)eE (v
T (g — o) (g um — v2) b3 (v)erz(u) + ¢ Tur — vy b3 (v)edx(v)
and
(b5 () + (q;#m et
_(Tlu—qu)(u—gv) o 1)q1/ ?

b (v)eiz(u) + S HOEAGE

(u—v)(gtu— ) q tu—
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Proof. All eight relations are verified in the same way so we only give full details to check
one case of (4.17), where the top signs are chosen. The defining relations (3.6) imply

1 +U_U an+U_U al.-i-u—,u
(r—q)(x—q) (a21(£v)€31( W1 (V) + aga(x)lay (u)lay(v) + ass (@)l (u)la( ))
- v i q—_qfl +
= 120G+ — Sl (1) (), (4.18)

where z = uy /v_ and y = u_/v,. In terms of the Gaussian generators the right hand side
can be written as
—1

+ (u y—1 + 9—49 +
- _lbz( )l ( )+qy _1f21( )5 ()5, (u )+qy _1f21( )y (0) g (u).

Applying (3.6) again we get the relations

c—1 . qg—qt .
qw_q,lgm(u)gm(l’) + 0T —q- 1611( u)ly(v)
y—1 q—q '
=—F0 05 +— s
W—q 1 12(v)65; (u) w—a 11(v)€3;(u)
and . )
T — - q—q -
W@H(U)gu(v) + W%( u)lyy (v) = € (0) Ll (w).
They allow us to bring the right hand side of (4.18) to the form
Ly ) () + — a0 (W 0) + T T ha0)6h ()0
qy —q- qr —q - qr —q-
y—1 _ r—1 _ g—q ! _ _
= w) + oy (V) (————F, (u) by, (v) + ————0F (W)l (v)) ey (v
T ——— by (0)03;(w) + fau ( )(qx 1 21(u) 3 (v) - q,l 11(u)031(v)) epy (v)
q— q + —
+ —qx — q_1f21( v)bi (u)h (v)

which is equal to

-1

179 o ()b (u)bh3 (v).
. _lf)z( )31 () + €y (v) L5 (w)ery (v )+Wf21(0)f)1( )by (v)

Due to (3.6) the expression

L S (u)ly o H(uw)ls, (v
@ —q )z —q ) (agl(a:)€31(u)€11(v) + a22($)€;1(u)€21(v) + agz (@) €y (u) 5 ( ))

coincides with 3, (v)f5, (u) so that the right hand side of (4.18) equals

L o1 (2)0F (W) 07, (V) + aga ()05 (1)l (V) + ass ()T (W)l (v)) e, (v
(x_q,Q)(x_q,l)( 21 ()03, ()7, (v) + aga ()03, (u) 5, (V) + ags(x) 0 (u)lz; (v)) ey (v)

)+ 2= s (Vh ()b (V).
+qy _1h2< v) 5, ( )"‘qx_q_lle( )by (w)by (v)
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Hence we can write (4.18) in the form

L 5 (w)b5 (V) + ass ()] (u)fa0(v)b5 (v
@ —q )z —q ) (@22(3@)%1( )2 (v) + ass(z) 7 (w)f5o(v)by ( ))

-1

-1 _
= T 00 () 4 T ()b ()b (),

Together with (4.12) this leads to the relation

azs(z) C(g—q )y Wh= (v
(e —a] (e ) s ()
CLQg(QT) T (w)fa (v)b5 (v
+ ($_q_2)(x—q_1)bl( )f32( )hQ( )
_y-l S (V)0 (u (q_q_l)(x_l)Jru_v S (v
= S )0 + T T W (0)

By the following consequence of (4.13),
(31 (u) = 73 (Wb (w) = gby (u)f; (ug?),

the relation takes the form

(ot = Y an (i s ()

az(2) T(u)fzm(v)bs (v
T RO
=D i i) + S D s ().

Cay—aq! (qz —g¢71)?
Finally, apply relations (4.11) between b (u) and b, (v) and use the invertibility of by (u)
to come to the relation

ags(z) N A P e (0
<(x — ¢ 2)(z—qY) - (g7 — q_1)2> qfa1(uq”)by (v)

&23(1’)

3 5 4.1
+ (ZE _ C]_Q)('T _ q_l)fSQ(U>h2 (U) ( 9)
gle—=1) oo (amg -1
= b, (v uq”) + v)b, (v).
2oy () + L o )
It remains to use the formulas for a;;(u) to see that (4.19) is equivalent to the considered
case of (4.17). O

Lemma 4.11. In the algebra U(Em) we have
1

(¢ ux — qug)(us — qflvqt) + Flp) = (¢ tus — que)(us — q tvy) O
(que — g o) (g Tus — v:F)h2 (u)bz (v) = (qus — ¢ 11 (g Tus — vy bz (v)bz (v)
and

b (u)b (v) = by (v)by (u).
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Proof. We only give details for one case of the more complicated first relation by choosing
the top signs; the remaining cases are considered in a similar way. We begin with the
following consequence of (3.6),

e (D (0) + ) W) 0) + o))
- (y — q_2)1(y —q ) <a12(y)€2_1 (v)la3(w) + a2 (y) o (V)3 (u) + a32(y)€2_3(v)€;1(u)),
(4.20)

where z = uy /v_ and y = u_ /v, and then express both sides in terms of the Gaussian
generators. The left hand side takes the form

: 5 (021 (2) G (0) + () () (0) o a2 ) s () ) ()

YR
L (w5 () + ass ()0 (w)fa (V)b (v
g (@203 () F () )fia(0)03 ()
The defining relations (3.6) also give

o () + (@) ) (1) + () 1), (1))

y—1 (a—q My ,_
= 2 (M (u) + ——2 22 () (u
P 21(0) 35 (u) p——— 22(V) 051 (1)

so that the left hand side of (4.20) takes the form

y—1 (@=0Y ) o\t e (0
W€21(0)622(U>e12<v)+ v —q- U (V)3 (w)ers(v)

L 5 5 T (u)fz(v)hy (v
+ (@ —q ) —q ) (a22(x>f22(“)h2 (v) + azs(@) 5 (u)F32(v)hs ( ))

A similar calculation shows that the right hand side of (4.20) equals

-1 _ -1
(O W) a0) + T (0) () 0)

1 _ N
+ (v—q2)(y—q") <a22(y)h2 (V)33 (1) + ags()by (v)ey (V)3 (U)>

Therefore, by rearranging (4.20) we come to the relation

o i ()00 () + e () ) (0 (1)

r—1 - q—q " _
- —_1f21(v)€;2(u)€12(v) - —_1f21(v)€f2(u)€22(v)
g . e (4.21)
= e ()b () + ez (em(v) G (w)

Y=L o v e (o)~ LY e
- W@l(v)gm(l‘)eu(v) v — - lon (V)3 (u)ery(v).
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Furthermore, by (3.6) we have

z—1 q—q"
e @rz( ) (v) + W&B( u)ly; (v)

which allows us to write (4.21) in the form

1
(z—q¢?)(x—q")

(a2 (@)Eh()b5 () + azsla) <u>fg2<v>b;<v>)

—‘fv‘q i (V) ()b (0)
. 1 (4.22)

= = (e WD () + ()b (em(0) i ()

C(a—a Ny P
qy — g [)2( s (u)ery(v).

Now transform the left hand side of this relation. Since

+u—U:y__1—U+u m + (u
Cia(u)ly; (v) (w_qqﬂﬂ)@ﬂ)+ —— Crp(v) 0 (u),

we have
fa1 (UWE(U)%_(U) =y (v)fi(v)‘lfﬁ(u)bg‘(v)

YT N () () (o (a—q My — N () () -1h (o
= —qy—q_1€21< )ETZ( e (v) ™ by ( )+—qy 7! o1 (v)era( )EE( ) (v)" by (v)

which equals

Y=L ) ) () by () + LY e () (0) b5 (0)

qy —4q qy — g
_(q—q_)y + 1
T () ()5 () (),

Furthermore, by (3.6) we have

z—1 _ (g—q "
0 (u)l v+—£+ (7 (v
qr — g1 12( ) 21( ) qr — g~ 22( ) 11( )

oy—1 . (¢—q My +
= oy (V)05 () + W —q U (vt (u)
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and so

i (03 (0) =~ g ()i ()b (1) + L% e ) o)

gr —q = q
U PN,
P Zb; ()b (w)bi () "3 (v).

Therefore, the left hand side of (4.22) is equal to

1
(x—q)(x

oy (022(0) )i (0) + () ) ()0 (0))

(g—gH-1)
(g —q71)?

Bl (007 0) — (=L b (0

(a—a "y o
(e —a Ny (0)b7 ()b ()5 (v).

Similarly, the right hand side of (4.22) takes the form

= q—z)l(y p )(an( Y)by (v) 55 (u) + azs(y)bs (v)ex(v)ls (U)>
Clg—qgyly -1 T Uil "2y
TEYEE by (v)ers(v)ls, (u) — w0

(¢—a )% b (o (o
(qw—q‘l)(qy—Q‘l)hQ (v)by (v) b (u)hy (v),

265 (1))

and taking into account the relation by (v)hy (v) = by (v)bhy (v), we get

o () )03 () + e () ) (0 (1)

D o () — (L s 0 .
= o (42 () + a0 (V)5 ()05 )
- D (w166 ) — T ) (),

It follows from (4.13) that 3, (u)bi (u) = ¢ b (u)fs; (ug®) which implies

far (u)by (u)eiy(u) = gby (u)fs (qu)qz(u) = qr]f(“)%é(“)fil(“‘f) - qr)f(“)%é(“)f;l(uf)-

Furthermore, (4.14) gives
Far (w)b (u)efy(u) = gby (w)edy ()3 (ug®) + b (w)by (ug®)~"h3 (ug®) — b3 ()
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and so
(32(u) = gh (u)ey (W) (ug®) + b ()b (ug”) by (ug?).
Therefore, the left hand side of (4.23) takes the form

ass () (g—q*)?

<(:U —q )z —q) (gz-— Q‘1)2>q

azs(if) + ) (0B (q—q
+ (IL‘—(]_2>(ZE—C]_1)€12( )f32( )bQ( ) (q17 q 1)

aga () (q—q‘1)2 TV NP
<(l’—q2)(x—q1) + (qz — q1)? >fh( )b1 (ug”) by (ug”)by (v).

Finally, by using the (4.19) we can write the left hand side of (4.23) as

(o (u)f3, (ug”)by (v)
D

(x —

D ot i (0)b7 ()

1)2

a2 () n (¢—q )z

((ﬂj —q¢ ) (x—q?t) (qv—q')?

Q@ ) + + (ua?
+méu( )52( )le( q )

)07 ()b (ug®) ™03 (ug?)h3 (v)

Similarly, the right hand side of (4.23) equals

an(y) =P e o o
<(y )y —q ) + (C]y_ql)g) by (v)b3 (ug”)by (ug”) ™ by (u)
i ”ex> b () (ug?).

qr —
Cancelling equal terms on both sides and applying (4.10) and (4.11) we get

az(z) (g—q ') qx—l qy—q1 b (0 B (o) (1)1
<(x—q—2)(x—q—1) + (qm—q—1)2> Br— g1 Py — by (u)bs (ug”)by (v)by (ug”)
_ ags(y) (G—a "W\ @=1 qy—=a ' o oy o
_((y—Q‘2)(y—Q‘1)+(qy—q‘1)2> qgr—qt y—1 hl( )bz ()bz (ug )by (ug’) ™

Recalling the formula for as(u) and using the invertibility of by (u), we come to the relation

(z—1)(qgz —q7?)
(z —q¢ ") (¢*r —q7?)

(y—D(qy —q7?)

(0 — ) (% — _z)bz( v)b3 (ug’)

b3 (ug®)by (v) =

which is equivalent to the considered case of the first relation in the lemma. O

4.4 Relations for low rank algebras: type D

As with the case of type B, a key role in deriving relations in U(R [n]) between the Gaussian
generators will be played by Theorem 3.7 and Proposition 4.2. This time we will need

relations in the algebra U(R [2]) in type D associated with the semisimple Lie algebra oy.

31



Lemma 4.12. The following relations hold in the algebra U(Em). For the diagonal gen-
erators we have

bi(wbi(v) = b ()b (W), bF(WhT(v) =b7 ()b (w),  i=12
by ()b (v) = by (v)hi (u),

() = ST ()b (w)
Moreover,
() = TG + L T ),
b @eR0) =~ @b ) + L ey ),
RO = U0+ L g wh ),
b ) = — @) + L i ),
and

5 (hF(0) = L5 Vg e (u) — LU ) o),
eh(whE(v) = L Ut )b u) — LT M pr e ),
0F ()7 () = L5 =T VE e ()3 o) — UL Ve (),

)0 = P s 0) - T ()

For the off-diagonal generators we have

—1 —1 -1
+ T _ (q—q )qu:F o (q—q Dve 4 o (qug —¢ Ut - +
e ¢ = ¢ - ¢ —_—¢ ¢
12(u)efz(v) s — qus 12\V P T——— 2(w)” + = 1qu — qus 2(v)era(u)

-1 -1
£\t (¢—q¢Hu s, (@=q¢Hv . (qu=gv .
¢ ¢ = — ¢ - —_—¢ ¢ ,
a(u)erz(v) ¢lu— qu 12(v) lu—qu 12(u)” + lu— qu 12(v)eiz(u)

-1 -1

+ = _(q—q Dus (¢—q )v¢$ o (g7 ug — qUz .+ +
fa1 (u)f3, (v) —qui Ty f21( ) —qui — g s fai(v)” + —qui . f31(v)fa (u)

) = LT e g e U B ),

qu — g~ v qu — q~lv qu

together with

ey (), F ()] = ULy (o)1 = 0 1

5. 7)) = () — b))

U —
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Proof. The generating series Ei(u) with i, 7 = 1,2 satisfy the same relations as those in

the algebra Uq(g[Q); cf. Section 4.2. Therefore, all relations follow by the same calculations
as in [8]. O

Lemma 4.13. In the algebra U(Em) we have
e33(u) = fap(u) = 0. (4.24)
Proof. By Corollary 4.3,

-1
g u—qu)(u—v
@gm(u)@é[l](v) = (q(u _ qlv)(zf— ql)v) @t:sm (U)@tzm (u).

Hence €2i2[1] (u)€2i3[1] (v) = 0. Since the series b3 (u) is invertible, we get e (u) = 0. The
second relation follows by a similar argument. O

Lemma 4.14. All relations of Lemma 4.12 remain valid after the replacements
by (u) = by (u), ep(u) = ey(u), e (u) = e (u),  Fia(u) = fiz(u), 5 (w) = i (w).

Proof. In view of Lemma 4.13, this holds because the series ff;(u) with 4,5 = 1, 3 satisfy

the same relations as in the algebra Uq(EIZ). O
Lemma 4.15. In the algebra U(EM) we have
by (u)b3 (v) = b3 (V)b (u),

(¢ 'us —qug)(us —vz) 4 () — (¢ tus — qus)(usr — vs) O (u
(qus — ¢ vg) (us — Q‘lv:F)hQ (u)bg (v) = (qus — ¢~ 'vo) (ur — ¢ Tvg) hs (v)b3 (w).

Proof. By Corollary 4.3 we have

(¢ ue —qug)(ue —vg)  epg, e (¢ uy — que)(us —ve)  ep), | el
14 w)l V) = 1 v)l ).
(qui — q_lsz)(Ui . q—lv:F) 22 ( ) 33 ( ) (qu:l: - q_leF)(u:I: _ q—l,U:F) 33 ( ) 22 ( )

Writing this in terms of the Gaussian generators and using Lemma 4.13 we get the second
relation. The first relation is verified in the same way. O]

Lemma 4.16. In the algebra U(E[Q}) we have
e (1) = —eip(u)eis(u) = —eiy(w)eis(u), (4.25)

i (u) = —fa (w)fs (u) = i (u)fan (w),

and

e (uw)efz(v) = eh(v)eiz(u),  en(u)eis(v) = eip(v)eis(u), (4.26)

f;tl(u)fz)i(v) =5 (U)%l (u), f2il (u)ﬁﬁ(v) fzil(v)fsil(u)
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Proof. The arguments are similar for all relations so we only give details for the first
equality in (4.25) and the first part of (4.26). The defining relations (3.5) give

4

LS aalufo) W) ()

() pup——
(u)li3(v) (w0 — 2 2

and

gﬁ(“)ﬁi(“) 2%4 u/v) Ei ( ).

(U/v—q —

Hence we can write

+ + (=D 'u/v—q) 0, |, u
612( )€13( ) (U/’U —q_2)(u/v . 1) éll( )614( )

+ P Lot + I i o).

(4.27)

Using again (3.5), we get

u/v—1 qg—q*t
() = B0 W) + LT ) ).

Therefore, (4.27) is equivalent to

LY ) (e ()l (0) — ()b (0) (o))

u/v—1
(g =) v —q)

- (/v =g ) (ufv-1)

+ (q_lL/;—z);L/th(u)hl (v )<914( ) + e (v )6?3(1’))'

b (v)b7 (u) (13 (u) + i (w)eis(w)

Since b7 (v)bF(u) = b (u)b7 (v) and the series b (u) is invertible, we come to the relation

¢ 'u/v—gq + £ (Ve (u :(q_2 1) (g /v — q) + et (u
u/—v—l (91( Jeiz(v) — e (v)eqz( )) (/v — ) (ufv — 1) (914( ) + eip(u)erz( ))

(¢ ' —qu/v
+ W(eﬁ(v) +ep(v)eiz(v).
Setting u/v = ¢2, we get ¢i;(v) + ¢i5(v)ef3(v) = 0 which is the first relation in (4.25).
For the proof of the first part of (4.26), consider the relations

By 0) = ———— 3 il /o) ()6 (u)

(UZF/U:I: —q )2 i=1
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and

G (w)lfy(v) = me ug V) G (0) 65 (u),

(ux/vi —q?

which hold by (3.6). As with the above argument, they imply

0 U/0% — 4 ()6 (0) — oy (0)e ()

Ry
- =D e T )+ b))
# LU (6 0) + ).
Using (4.25) we get ehy(u)eFy(0) — eh(0)ely(u) = 0 =

Lemma 4.17. In the algebra U(}_%m) we have
eitz(u)ef?,(v) = efs(“)ﬁz(“% e1j[2(u)e1j[3(v) = 21i3(v)91i2(u)>
fZil(u)f?,jFl(U> = f?ﬁ(v)fi (u), fQil (u)ﬁ,ﬁ(v) = fsil(v)fzil(“)

Proof. All relations are verified in the same way so we only give details for the first one
with the top signs. By the defining relations (3.6), we have

(i (u)li3(v) = Zazz uz /)0 (0) 05 (). (4.28)

(UZF/Ui_q i=1

Using the Gauss decomposition and (4.25), we can write the right hand side of (4.28) as

g (O (GG + e )7 (5 )
+ asa(2)h ()65, (0)b (W)efy(w) — aia(@)b7 (v)e(v)er; (0)b] (1),
where z = u_/v,. Note that efy(u)efs(u) = ef3(u)efy(u) by (4.25). Hence, using the

relations between by (u) and the series ej,(v) and e;(v), provided by Lemmas 4.12 and
4.14, we can write the right hand side of (4.28) in the form

o7 ()b ) (2 e ey ) + L e ey
+ I 0w — e (v) )

On the other hand, by the relations between e,(u) and by (v), the left hand side of (4.28)
can be written as

b ()b (v)

g lr—1

(e ) + T e ).

z—1 r—1
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Hence, due to (4.26) and the property by (v)b{ (u) = b (u)bh; (v) we get ejz(v)ef,(u)
efo(u)ez(v), as required.

Ol

Lemma 4.18. In the algebra U(EM) we have
ea(u) = —eiz(u), o) = —ep(u),  fiaw) =), fal) = ).
Proof. We only verify the first relation. By Proposition 3.3, we have the matrix relation
£ ()5 Pu) = DPLL* (ug ) (D)

Take (4,4) and (2, 4)-entries on both sides and use the property ex;(u) = 0, which holds
by Lemma 4.13, to get

by (ug™?) = b (u) "5 ¥ (u)
and
¢ by (ug ez (ug™?) = —eqy(w)by (u) =15 Pl(w).
This implies
q b7 (ug?)eiz(ug™?) = —eq(w)bhy (ug ™).
By the relations between b (u) and ¢f5(v) from Lemma 4.14, we also have
q b1 (ug ?)er3(ug™?) = ei3(w)hy (ug ™).

By comparing the two formulas we conclude that e5(u) = —e3;(u). [

Lemma 4.19. We have the relations

W =0, [eh(u). ()] =0, (4.29
W =0, [eh(u). ()] =0, (4.30)
and
5 (hF() = L T P pret )+ U ez ) (1)
Ug — Uy uqj 1— o
b0 = L)) + T e o),
0% () () = T 90 5 (T (o) + L) g )z (1),
U+ (% U+ (%
0 0 () = L ) + L ).
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Proof. We only give a proof of one case of (4.29) and (4.31), the remaining relations are
verified in a similar way. As before, we set = u, /v_ and y = u_/v,. The defining
relations (3.6) imply

r—1 B qg—q Yz _
Wfﬁ(u)%l(“) + #E&(u)ﬁn(z})

y—1 . (¢—a My +
= —E l + ———=5(v) 6 (u).  (4.32
- 51(0) 015 () p— 2 (V)0 (u). (4.32)
Taking into account Lemma 4.13, we can write the right hand side as
_ y—1 qa—q ')y
o) (5o + L e w).
Using again (3.6), we get
() = @ + T ) (),
qy—q! qy —q
Therefore, (4.32) is equivalent to

r—1 V= (o (¢q—q Mz _ ”
—qx—q—l%( )31 ( )+—qx_q_ g (u) 7y (v) = f3, (V) €5 (w07 (v). (4.33)

By using the relation between f3; (v) and b7 (u) from Lemma 4.14 bring the right hand side
to the form

L @) by () + LT () edy ()b (o).

qr —q qr —q!
On the other hand, Lemma 4.13 implies that the left hand side of (4.33) equals
rz—1 _ (q—qt _
h1 (u)efy ()5 (0)by (v) + ) f31( )b (w)eds(w)by (v),

qr —q! qr —

thus proving that [e]5(u), {3 (v)] = 0.
Now turn to (4.31). The defining relations (3.6) give

-1 _ (¢—q ")z -
—,EB(U)K%(U) + —,E?E(U)El:a(
qr—q! qr—q! (y—q¢22 %

M,,;

ais(y) 0, ()0, (u). (4.34)

By Lemma 4.13, the left hand side can be written as

x—1 .
qx—q—lhl( )312( )b (v)

+ (2 Lt entfi) + - n b () br (en).

r—q qr —¢q
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Due to (4.29), this expression equals

T —

N v
pp——— —— by (u Jera(u)b (v)

-1 g1
= (It @)+ L n () ey (00
which simplifies further to
-1
T ()b (o) + i (0) () 0)

by the relation between by (u) and f5;(v) provided by Lemma 4.14. Furthermore, by (3.6)

we also have
4

Gy (u)li3(v) 2 Z ai3(y Ol (u)

i=1
so that the left hand side of (4.34) becomes

r—1 f
+ R EAC
qx—q_lbl( ) 2(u)b3 (v) (y — E ais(y (U)
Using Lemmas 4.13 and 4.18, in terms of Gaussian generators we get

T —
qr —q-

bl( )iz (u)bs (v)
- Lily <(y — 1)bs (0)b (u)efy(u) + (¢ — qfl)yf)gT(U)efz(U)hf(“))'

(qy —q

As a final step, use the relations between hT (u) and ej,(v) and those between b7 (u) and
b3 (v) from Lemmas 4.12 and 4.14, respectively, to come to the relation

q y—q (a—q My
e12( )b; (v) = v — f)3(> ()+—y b (v)er,(v),

as required. H

Lemma 4.20. In the algebra U(Em) we have

5 (Wb () = T 9 g et () 4 0 ey )

() = T Pawye )+ L  wges 0)
0 ()5 () = %féﬁ(u)@(v) =T g o),

Jv

0 ) ) = T i ng ) + U (),
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Proof. The arguments for all relations are quite similar so we only give details for one case
of the first relation. By (3.6) we have

r—1 B (q—cfl)xJr _ B 1 4a~ — (VO (u
WQ&(UW%(U) + sz3(u)€12(v) = —(y Y ,Zl i2(Y) g ( )gli’( ). (4.35)

Taking into account Lemma 4.13, write the left hand side as

L e 003 () + b el )l
(@—q M .
+ Wf; (u)hf(u)eﬁ(u)ﬁu(v).
By (4.30) this equals
b (W)efy (07 (0) + b () ()T (i)
+ T b et ()l

Then by using the relation between by (u) and f,;(v) from Lemma 4.12, we bring the left
hand side of (4.35) to the form
r—1 _ _ _
Wbﬂ“)ﬁ%(“)bz (v) + far (V)b (w)es (w)lrp(v).
By the defining relations between EE(U) and ¢1,(v) we have
4

ey (u) 5 (v) = W= Z ain(y) Ly, (v) 01 ()

and so the left hand side of (4.35) can be written as

%bf() (W) (v) f” Zazz ().

qz
Hence by Lemma 4.13 relation (4.35) now reads

—1
e UROLAGLAG
1
= = g2 ()2 (007 (e (w) + ann ()b (V)b (). (136)
Using the equality ey, (v) = —ej3(v) from Lemma 4.18 and the relations between b (u) and

¢j3(v) from Lemma 4.14, we find that the right hand side of (4.36) equals
¢ 'y—q v—1 (G—q Yy -1 . = _
v—1 qr— q_lh 1 (w)hy (v)egz(u) + y—1 qu— q_lhl (w)bs (v)egs(v),
where we also applied the relations between by (u) and b, (v). Now (4.36) turns into one
case of the first relation due to the invertibility of by (u). O
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4.5 Formulas for the series 2*(u) and 3% (u)

We will now consider the cases of odd and even N simultaneously, unless stated otherwise.
Recall that the series 2% (u) and 3% (u) were defined in Proposition 3.3. We will now indicate
the dependence on n by adding the corresponding superscript. Write relation (3.12) in the
form

DL (ug)' D™t = L5 (u) ™ 57 (u). (4.37)

Using the Gauss decomposition for £*(u) and taking the (N, N)-entry on both sides of
(4.37) we get

by (u€) = b (u)~'5™ " (). (4.38)
Lemma 4.21. The following relations hold in the algebra U(F[n]):
eiﬂ)’i'(u) = _ei’H(uéqu) and f?ft(i+1)'<u) = _fiu(ufqm) (4.39)

for1 <i<n-—1.

Proof. By Propositions 3.3 and 4.2, for any 1 < i <n — 1 we have

E:I: [n—i+1] (u)_lgi [n—i+1] (U,) _ D[n—i+1]£:|: [n—i+1] (ufq%—Z)t(D[n—i-l—l})—l’ (440)
where
- n—i+1/2 1/2 ~1/2 —nti—1/2
Dl _ diag|q N Al DAY By Y ] for type B,
diag[¢"™", ..., q, 1, 1, ¢, ..., ¢ "] for type D.

By taking the (¢/,4") and ((z + 1), 4’)-entries on both sides of (4.40) we get

b (ugq™ ) = by (w) "5 " (w) (4.41)

and | |
elH)/ a(u ) b (u)™! sy ):q[th(U$q22_2)e$+1(u5q2’_2).

Due to (4.41), this formula can be written as
— €y (W) 07 (u€q® %) = g b7 (u€q®™?) ey (u€g™ ™). (4.42)
Furthermore, by the results of [§],
q hf(u) e?,[i—l-l(u) = e?,[z‘+1(uq2) hii<U>7
so that (4.42) is equivalent to
— iy (W) 07 (u€g®™?) = e (u€g™) by (ug™™?),

thus proving the first relation in (4.39). The second relation is verified in a similar way. [
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Proposition 4.22. In the algebras U(E[n]) and U(R™) we have the respective formulas:

5w Hbi (uéq™)™ Hhi (u€q™?) by (Wb (ug),

0y Hhi (uéq™) 1Hhi (u€q™ ) hiyyy (w) hivyy (uq)

for type B, and

:t[n Hhi ungl H bi ufq2Z ( ) n+1< u),

Ay Hhi (u€q®) th (uEq®2) B () ity ()

and for type D.

Proof. The arguments for both formulas are quite similar so we only give a proof of the first
ones for types B and D. Taking the (2’,2')-entry on both sides of (4.40) and expressing
the entries of the matrices £ (1)~ and £+ (u¢)* in terms of the Gauss generators, we
get

by (u€) + fau (u) b (u€) ez (u€) = (b (w) ™" + e (W) ()~ i o0 () )5 1 ().

As we pointed out in Remark 3.5, the coefficients of the series 3*™(u) are central in the

respective subalgebras generated by the coefficients of K?Ej ] (u). Therefore, using (4.38), we
can rewrite the above relation as

f);(“)_léi[n]( )= bi(uf) + f21(U§) fh (u€) 912(U§) 92/ p(w) rﬁ(“ﬁ) ffw(u)

Now apply Lemma 4.21 to obtain

th( ) ! i[n (u) = h§t<uf) + %1(“5) bic(u@ eﬁ(“f) - eﬁ(“&f) rﬁ(“ﬁ) f%tl(uff)-

On the other hand, by the results of [8] we have

h1 (u )912( )=q 1eﬁ(uq )h%(“)a fﬁ(u) f;tl(ucf) = q_lfgcl(“) hic(u)a
and
(q —q 1)

[eiz(u), 21 (v)] = (hy (0)b3 () ™" = b3 () by () ™).

This leads to the expression
by (w)~'5* () = by (u€q®) by (usa®) b (u).
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Since 31 (u) = b3 (u)b3 (u&q?), we get a recurrence formula

350 () = b (uéq®) M (uf) 351 (u).

To complete the proof, we only need the formulas of 3= (u). Working with the algebras
U (}_%[1]) and U (}_%[2]), respectively, we find by a similar argument to the above that

()15 W (w) = b5 (ug) b (ug) ™y (ug ™)

for type B, and
57 W (u) = by (W) (u)
for for type D. ]

4.6 Drinfeld-type relations in the algebras U (EM) and U(RI")

We will now extend the sets of relations produced in Secs 4.2, 4.3 and 4.4 to obtain all nec-

essary relations in the algebras U(R [n]) and U(RM) to be able to prove the Main Theorem.
We begin by stating three lemmas which are immediate consequences of Corollary 3.8.

Lemma 4.23. In the algebra U(Ti[n]) we have

b ()i (v) = b (V)67 (w),

U+ — Ux + . Uy — V4 + +
mhi (Wb (v) = —qqu =, 1 (V)05 (),
and
ez:",:i+1(u)hn+1(v) b (v)e ”+1(U) efiﬂ(u) f+1(”) = hrjz:—i-l(v)e;twrl(u)a
ﬁil,i(u)hn—&—l(v) b (U)fH»l z(u) fil,z(u) n+1 (U) - hn+1(v)fz+l z(u)
wherei=1,...,n—1 for type B, and v =1,...,n — 2 for type D. O

Lemma 4.24. In the algebra U(R™) we have

f)ii(u)efnﬂ(v) = ein-‘,—l(v)b;’t(u)a hz:'t(u)ein-i-l(v) = ein-kl(v)h?:(u)?
b (W)fs1.0 (V) = Firyr (V)05 (1), b ()10 (v) = Fes (V)05 (1)
fori=1,...,n—1 1in type B, while
bz:'t(u)ef—l,nﬂ(v) = ef—l,nﬂ(v)bgt(u% b (w)e;_ 1t (V) = ei—l,n—l—l(v)hz:'t(u)?
[Jz‘i('“)firl,nﬂ(v) = irl,n—l(v)f)zi(u)a hi(u)fn—i-ln 1(v) = ﬁﬂ,n—l(”)f)ﬂu)
fori=1,...,n—21n type D. O
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Lemma 4.25. In the algebra U(R™) we have

ejll,:z'nLl(u)eriL,n-i-l(v) = einﬂ(“)eﬁﬂ(u)» e?,:iJrl(u)e?L:,n—I—l(v) €y n+1(U)%i,¢+1(U)v
fﬁll(u)ﬁf—i—ln(v) = f;";—f—l,n(v)fﬁ»l,i(u)’ fiu(u)f;im(“) = 7T+1n(v>f'j‘:+12(u>
forio=1,...,n—2 in type B, while
i (e 1 (V) = G (05 (), e el (0) = ey (V)6 (u),
fﬁl,i(u)f;‘;—f—l,n—l(l}) = f’rjz:—i—l,n—l(v)ﬁ:l,i(u)’ fﬁu(u) ;F+1,n—1(v) = ;F+1,n—1(v)ﬁt+1,¢(u)
forio=1,....,n—3 in type D. O

Now we consider the cases B and D separately.

Lemma 4.26. The following relations hold in the algebra U(R ) of type B:

(qus —q~ vi)ei—l,n(u)en,n—&-l(v) = (uz —vi)ef n+1(v)ef—1,n(u) +(@—q )Uien—l,n—i-l(u)

—(¢— q_l)uﬂn 1 n(v)ein—&-l(v) —(q— q_l)u:!:er:';—l,n+l(v>7
(qu—q ' v)en 1 (w)en (V) = (u—=v)er, g (V)en 1, (W) + (g — ¢ ver 4 (u)
—(2—q l)uen 1 n(v)eimrl(v) —(q— q_l)uei:fl,n+1(v)7

and
(us = v )1 (W0 (0) = (que — 7 vp) (01 () + (0 = 0o (V)
—(q— q_lvﬂFf;Fﬂ,n(v) ;F,n—1(v> —(¢— q_l)uiﬁi{—l,n—l(u)’
('LL - ,U)finfl<u) n+1 n( ) (q’Ll, ) iJrl,n(U)finfl(u) + (q - qil)vﬁf«kl,nfl(v)

- (q - q )Ufn—l—l,n(U)frﬂz:,n—l(v) - (q - q_l)uf’rﬂ;—f—l,n—l(u)'
Proof. We will only prove the first relation. By (4.9) we have
n 1n< )b:F( ) nn—l—l(U) - h:':( )efn—i—l( )e'rjl:—l,n(u)

_ 1 -1
= e et ) = L 06 (). (49
Relation (4.8) implies
|
=L hT() = PET e e )+ T e
U;F V4 U;F — U4+

so that (4.43) can be rewritten as

Mrﬂ Yk | (u >einﬂ<v>+wrﬁ< Jer 1 (V)€1 (v)

- b$( ) nnJrl(U)eriLfl,n(u)
(a—qvs (a—q u
= u:F—fJ:F( V)en_ g (u) — Tviﬂﬁ( V)¢ 141 (V).
Since hF(v) is invertible, this gives the first relation. O
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A similar argument proves the counterpart of Lemma 4.26 for type D.
Lemma 4.27. The following relations hold in the algebra U(R ) of type D:

(qus —q~ vi>eri172,n71(u)e7ffl,n+l(v)
= (ug — Ui)ei—l,n—kl(v)e:—ln—l( )+ (g — q_l)vie'r:lz:—ln—i—l(u)
—(¢— qil)u$6f172,nfl(v>ei 1 n+1(U) (q— q71>u¥2572,n+1(v)7
(qu — q_lv)ei—Zn—l(U’)ei—l,n—&-l(v)
= (u— v)ef 1 n+1(v)erz‘;72,n71(u) + (¢ — q_l)veaf—znﬂ(u)
—(g—q )uen 2,n— 1(”)%%—1,%1(“) —(¢— q_l)uei[—znﬂ(v)a
and
(us — U?)fifl,an(u)f7T+l,nfl(U)
= (qu+ — q_leZ)ﬁz:-l—l,n—l(U)frjz:—l,n—Z(u) + (¢ — Q_I)U¢f7f+1,n—2(v)
—(¢— qilv$f7f+1,nfl(,U)fifl,an(U) — (g — qil)uif§+1,n72(u)a
(u— U)f?f—l,n—Z(u)ff-H,n—l(U)
= (qu — q_lv)ﬁ;rl,nfl(U>f7jz:fl,n72(u) + (g — q_l)vfrjfﬂ,nd(v)
—(¢— q_l)vfirl,n—l(U)ff—Ln—Q(U) — (g — q_l)ufirl,n—z(u)-
The next lemma is verified by a similar argument with the use of Corollary 3.8.

Lemma 4.28. In the algebra U(Tz[”]) foralli=1,...,n—1 we have

efiﬂ(“)ffﬂ,n(”) = ffﬂ,n(v)eiﬂ(l‘)a e;tz'-l—l(u)ffwrl,n(v) = ?H»l,n(v)eii,i—l—l(u)a
fiﬂ,i(u)eimrl(”) = ein+1(7})ﬁj—1,i(u)7 fiu(u)eimrl(“) = einﬂ(”)ﬁrl,i(u)a
for type B, and for all i =1,...,n — 2 we have
ez;l,:i-i-l(u)ﬁlz:—&-l,n—l(v) = frzlz:+1,n—1(v)ez:'|,:i+l(u)7 ez:",:i—i-l(u)ﬁz:—i-l,n—l(v) = f'rqz:—i-l,n—l(v)ez:",:i—&-l(u)a
fi—l,i(u)ei:—l,n—i-l(v) = ef—l,nﬂ(v)fﬁu(u% fzz'lfi-l,i(u>ejz:—1,n+1(v) = e:f—l,n—l-l(U)fz::-Li(u)a
for type D.

We are now in a position to summarise the results of Secs 4.2, 4.3 and 4.4 and give
complete lists of relations between the Gaussian generators. The completeness of the
relations will be established in Section 5.

Theorem 4.29. (i) The following relations hold in the algebra U(R ) of type B. For the
relations involving b (u) we have

b (w)h (v) = b (v)b7 (u),
b (w)bT (v) = b7 (v )bﬂ) i=1,...,n,

e s Uz hﬂF( )f)f(u), i <,

b (u)b} (v) =

quis — q lug qus — ‘1v
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and

q s — que ¢ Pur — g Pog o (Wb (v)
quy — q_lvq: q 1/2u:t _ ql/gv n+1 n+1

g us —que ¢ Pug — g Pog L 0
qus — g oe ¢ V2ug — g0y e (V)b (-

The relations involving b (u) and in(v) are

b ()} (v) =

U — v+

q(fivaj)u — q*(ei’aj)vi J

q_(51'70‘]')ui q(et aJ)'U

b (u) X (v) =

fori #n+ 1, together with

X7 (v)b7 (u)

U4+ — v

+ _ (quz —v)(ugz —v) + U
n+1( )X;—(U) - ( o qv)(quq: o q LU)X ( ) n—i—l( )
N o (ui —q)(que = q0) fo v n
n+l<u>‘)(n (U) - (quj: . U)(ui . U) Xn ( ) n—i—l( )

and
m (WX (0) = X (0)by 4 (u),

erE+1( )X (v) = Xf(“)hfﬂ(“)y
for 1 <i<n—1. For the relations involving Xi( ) we have
(u — g~ 0) X (ug") X (vg?) = (g u —0) X (vg?) X (ug')
fori,j=1,...,n; and

(), & (0)] = byl — a1 (6 (wa™/0)b; () b (03) = (g /v)b (uy) b (ws)
together with the Serre relations

> Z { } S () - A (@) X (0) X (Unn)) - X (Un(y) = 0, (4.44)

eSS, =0

which hold for all © # j and we setr =1— A;;

(ii) The following relations hold in the algebm UR ) of type D.
For the relations involving b (u) we have

b (u)h(v) = b (v)bi (u),
bE(u)hF (v) = bf(v)hﬂu), i=1,...n+1,
T (u)hT (o) = —= b (v)h (u)

qui — q lus ! qug — ‘1v
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for i < j with (i,j) # (n,n+ 1), and

¢ lur —que  usr — vz - g us —que ug — g
1 1 h ( ) n+1(v) - -1 -1
qu+ — ¢ "VxUx — ¢ "Uf QU — ¢ V4 U — ¢ U4

n+1( )bi( )

The relations involving b (u) and in(v) are

b (u) X} (v) =

U — v+

+ +
q(eiaaj)u _ q—(ei,aj),v:t Xj <U)h7, (U),

q(eivaj)ui — qf(e’i:aj)v

b (u) X} (v) = X7 (v)bi (u)

U4 — v
fori # n+ 1, together with
+ XH(o) = —F 7Y et
n+1( ) n (U) q,lu:F_qv n (U) n—l—l( )
-1
- q Uy —qu ,,_
1 (W)X (v) = X ()b, (w),
U+ — v
and
u
o (WX 1(“):(13F_ﬁ9‘(+ (0)by (w),
- qus —q v
f+1( )X, () = ————X,(v) 7jf+1( ),
U4+ — 0
while

£ (0) = X (0)bE, (u),
£ (WA (1) = X (o), (),
(
(a;

for 1 <i < n—2. For the relations involving X;=(u) we have

(u— g 0) X (ug') X (vg’) = (¢ u — 0) X (vg?) X (ug)
fori,j=1,....,n—1;

(u— ) X (ug") X (vg" ") = (¢ — 0) X (vg" ™) X (ug')
fori=1,....,n—1;

(u— g X (u) X () = (¢ — ) X (0) X (u)

and
2 (), X7 (0)) = 05lg = ) (S (wa /)7 (0) B (04) = 8 (g 0)b57 (1) b0 (1))
together with the Serre relations

> Z { } X5 (tn(r)) + - X (Un () X (0) X (tn (i) - - X (tn() = 0, (4.45)

eSS, =0

which hold for all @ # j and we set r =1 — A;;.
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Proof. All relations except for (4.44) and (4.45) follow from the corresponding results
in Secs 4.2, 4.3 and 4.4 by applying Theorem 3.7 and Proposition 4.2 and recalling the
definition (4.5). The remaining Serre relations are verified in the same way as for type C
[20, Sec. 4.6] by adapting the Levendorski argument [22] to the quantum affine algebras. [J

By using Theorem 4.29 and Proposition 4.1 we arrive at the following homomorphism
theorem for the extended quantum affine algebra U™ (o) introduced in Definition 2.1.

Theorem 4.30. The mapping

X (u) = X" (u), for i=1,...,n,
X; (u) — X, (u), for i=1,...,n,
h]i(u) > h;t(u), for j=1,....,n+1,

defines a homomorphism DR : U (ay) — U(R), where X;"(u) on the right hand side is
giwen by (4.4), (4.6) and (4.7).

We will show in the next section that the homomorphism DR provided by Theorem 4.30
is an isomorphism by constructing the inverse map with the use of the universal R-matrix
for the algebra U,(ox) in a way similar to types A and C; see [11] and [20, Sec. 5].

5 The universal R-matrix and inverse map

We will need explicit formulas for the universal R-matrix for the quantum affine algebras
obtained by Khoroshkin and Tolstoy [21] and Damiani [6, 7].

Recall that the Cartan matrix for the Lie algebra oy is defined in (1.1) and consider the
diagonal matrix C' = diag[ry, 72, ..., 7] with r; = (o, ;)/2. The matrix B = [B;;] := CA
is symmetric with By; = (a;, a;). We will use the notation B = [By;] for the inverse matrix
B~!. We will also need the ¢g-deformed matrix B(q) = [B;;(q)] with B;;(q) = [Bij], and its
inverse B(q) = [By;(q)]; see (1.2). Both n x n matrices B and B(q) are symmetric and for
N =2n+1 (type B) we have

Bij =] for 5 <i (5.1)
and ) i
Jla or i=n
B(q) B [n]q —[n— 1]q ! ’ (5.2)
) Bl —ily = I —i = 1],) o |
\ [n]g = [n— 1], or s

whereas for N = 2n (type D) the entries are given by

J for 7<i<n—2,
Bij: j/2 for jgﬁ—Z, i=n-—1,n, (5.3)
n/4 for i=j>n-1,
L (n—2)/4 for i=n, j=n-1,
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and

( 2 n—1—1i
e 2], for j<i<n—2
[2]117171
Ula for j<n—2, i=n-1n,
5 [2]q"‘1

W for 1=53>n-1,
n—2),
\ [2]11 [2]q"*1
As with type C' [20, Sec. 5|, we will use the parameter-dependent universal R-matrix
defined in terms of the presentation of the quantum affine algebra used in Section 2.1. The
formula for the R-matrix uses the fi-adic settings so we will regard the algebra over C[[A]]
and set ¢ = exp(h) € C[[h]]. Define elements hy,...,h, by setting k; = exp(hh;). The
universal R-matrix is given by

for i=n, j=n-—1.

R(u) = R™°(u)R° (u)R<%(u), (5.5)
where
R (u H H exp,, (67! = @)U Eairs @ Farns),
acA} k=0
R(w)=T"" H H eXqu — @)U E_ ks @ F- aths) T
a€A} k>0

with T = exp(—hB;j;h; ® h;) and
no -1 —1
i —a)q; —4q5) k- _
0 U) _ eXp(Z Z (q ql)(ilj q]) [k] B;i (C] )uquc/Qaz’k ® aj_rq kc/2> T
k>0 i,5=1 q q E
It satisfies the Yang—Baxter equation in the form
ng(u)ng(uvq*CQ)Rgg(v) = ,R,23('U),R,13<U’Uq62)7312(’u/) (56)

where ¢ = 1 ® c® 1; cf. [12].

A straightforward calculation verifies the following formulas for the vector representa-
tion of the quantum affine algebra. As before, we denote by e;; € End C" the standard
matrix units.

Proposition 5.1. The mappings ¢=°/? — 1,

—(@2n—1-i)k

T —q 6z+1 i 4 €4! (i+1)' s

ka — q ez i1 +q (2n—1-d)k

[Fg.

ik = (qiik<qikei+1,i+l —¢Fei) + ¢ IR (g Reyy — qke(i+1)’(i+1)’>)

ki — q(eit1,i41 + €iri0) + qfl(ezi + €e(it1y,3i+1y) + Z €55,
j;ﬁi,i+1,i’,(i+1)’

(it 1),
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fori=1,....n—1, and
Ty [2](1122(—617%6%1@ + qf("fl)ken/,nﬂ),
o 202 -

7 gn ( — q*(nfl)k

€n,n+1 + C]_ €n+1,n’)>

—nk 7(n71)k)

€nn + (q q €n+1,n+1> + qinken’n’)
kn — qen’ n' + q_lenn + Z €j55

J#Fn.n’
in type B, and the mappings ¢*¢/% — 1,

+ —ik —(2n—2—i)k
T = —q T€it1,i +(q ( ) €4i! (i4+1)5

- —ik —(2n—2—i)k
T —q Fegi g P

Mo 0 )
A — %(q "(g " eirrin — ¢"ei) + q
ki = qeipr,ivn + ewi) + 4 (e + ey (1y) + Z €jj
LA (1)

E(i+1)i

(2n—2—1i)k (qikei/i/ - qke(i+1)'(i+1)/>)

fori=1,....n—1, and

+ —(n—1)k

‘Tnk = q (n=1) (_en+1,nfl + €n+2,n)7
- —(n—1)k

xnk = q (n=1) (_enfl,nJrl + en,n+2)7

k
g [ ]]{qu q—(n—l)k‘(

-1 E :
kn — q<en+1,n+1 + en+2,n+2) + q (enfl,nfl + en,n) + ejj>
j#En—1nn+1n+2

—k k —k k
qd C€n+int+l — 4 En—1n—1 + q €ny2n4+2 —(q 6n,n>

in type D, define a representation my : U,(on) — EndV of the algebra U,(on) on the
vector space V = CV. O

It follows from the results of [12] that the R-matrix defined in (1.7) coincides with the
image of the universal R-matrix:

R(u) = (mv @ mv) R(w).
Introduce the L-operators in U,(oy) by the formulas
LT (u) = (id @ my) Ray (ug®?),
I—/i (U,) = (ld X 7Tv) R12(U71qic/2>71.

Recall the series 2% (u) defined in (2.2). Their coefficients are central in the algebra
U*(oy); see Proposition 2.2. Therefore, the Yang-Baxter equation (5.6) implies the
relations for the L-operators:

R(u/v)L¥ (u) Ly (v) = Ly (v) LY (u) R(u/v),
R(uy/v_) Ly (u)Ly (v) = Ly (v) Ly (u) R(u—/v4),



where we set

Lt Hz “2mely o (e me2) L (5.7)
L™ (u) = L™ (u) H T(wg ) 2w )T (5.8)

Note that although these formulas for the entries of the matrices L*(u) involve a completion
of the center of the algebra Us*(oy), it will turn out that the coefficients of the series in
ut! actually belong to U;Xt(ﬁN); see the proof of Proposition 5.5 below. Thus, we may
conclude that the mapping

RD : L*(u) = L*(u) (5.9)

defines a homomorphism RD from the algebra U(R) to a completed algebra U (oy),
where we use the same notation for the corresponding elements of the algebras.
By using the vector representation 7y defined in Proposition 5.1, introduce the matrices
F*(u), E*(u) and H*(u) by setting
F*(u) = (id ® mv) R3 (ug’?),
E*(u) = (id ® mv) R5 (ug’?),

o0

H*(u) = (id@m)RY, (ug”?) ] 2F (g )  (ug>m )7,

m=0

and
E~(u) = (id® Wv)R>0<u;1)—1,

F~(u) = (id ® m/)R<"(uz") ™,
H(u) = (id @ my)(R(u) H () e (ugm2).
The decomposition (5.5) implies the correspondlng decomposition for the matrix L*(u):
L*(u) = F*(u) H* (w)E*(u),

Recall the Drinfeld generators a:lik of the algebra U, (ox), as defined in the Introduction,
and combine them into the formal series

vy ()0 =) @b, wf ()™ =>"al b,

k>0 k>0
= Zx;ku_k, o (u)s0 = Z whu "
k>0 k=0
Furthermore, for all i =1,...,n — 1 set
fit(w) = (@ — ¢ ay (urg™)?°, e (u) = (g — g7 ) (u—q™)”",
fi(w) = (q;" = a)ay (u—q™)=°, e; (u) = (¢ — q)af (uypq™)™,
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whereas

£iw) = (gn —a,") 213 2, (upg )", e} (u) = (gn —q, ") (237 2} (u_g ™),
fo ) = (g, = an) (232 @, (u_g™™) <, e, (u) = (q," — qu) (2002 2 (uyq™™)=".
for type B, and
£iw) = (o — g ")z, (urg )20, e (u) = (gn — qp )z, (u_g"1)>°,
fr ) = (g, = qu)z, (u_g~ "=, e, (u) = (q," — qu)z; (usq ")

for type D.

Proposition 5.2. The matriz F*(u) is lower unitriangular and has the form

- -
fit () 1 O
FE(u) = o (u) 1
—fra w1y 1
*
I —fi (uéq®) 1]
for type B, and
-1 -
fiw) 1 O
L
aCh U 1
—faw) —fa(wg®™ V) 1
I —fi (uég?) 1.

for type D.

Proof. The argument is a straightforward verification relying on the formulas of Proposi-
tion 5.1; cf. [20, Prop. 5.2]. ]

As in Sec. 2.2, we will assume that the algebra U,(0s,) is extended by adjoining the
square roots (k,_1k,)*'/? (no extension is necessary in type B).

Lemma 5.3. The image (id ® my) (1) is the diagonal matriz

diag[ﬁkb,ﬁkb, ﬁkb ek Lk ...,ﬁkb—l}
b=2 b=1

b=1 b=1
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for type B, and
dlag[Hk’b k)12 Hk’b o k) Y2, (e k) V2, (KL k)2,

(ki) 72, (k) ™72, Hk (k1) 2]

for type D.
Proof. The calculation is the same as in type C; see [20, Lemma 5.3]. O

Proposition 5.4. The matriz E*(u) is upper unitriangular and has the form

(1 e (u) i
1 e (u) *
1 et(u)
Ei(u) = 1 —en_q (ug™™?)
1 —ey(uéq?)
O 1 —ei (uéq®)
L 1 -
for type B, and
1 ef(u) T
*
1oy i(u) ei(u)
1 0 —eX(u)
E*(u) = 1 =y (u)
O 1 —ey(uégh)
1 —ei (uég?)
I 1 i

for type D.

Proof. By the construction of the root vectors F_,.xs and the formulas for the represen-
tation 7y provided by Proposition 5.1, it is sufficient to evaluate the image of the product

Ty H exp,, (¢ — 4)u " P irs @ E_giiks) T (5.10)

k>0
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with respect to id ® my for simple roots a; with ¢ = 1,...,n. Using the isomorphism of
Sec. 2.1, we can rewrite the internal product in terms of Drinfeld generators as

[T expy, (@7 = @) Cua*) a7 ks © 4%k ).
k>0

The calculation breaks into a few cases depending on the type (B and D) and the value
of 4, but it is quite similar in all cases; cf. [20, Prop. 5.2]. We will only give details in the
case ¢ = n in type D for the matrix E*(u). Note that ¢, = ¢ and so by Proposition 5.1,

(id @ mv) [T exp, (67" — @) (o)t ko @ ¢k, ey )

k>0
= [ exp,(ala™ = @)(uo)fa) _kn ® ¢~ (—entnsr + e(urry.mory).
k>0

Hence, expanding the g-exponent and applying Lemma 5.3, we find that the image of the
expression (5.10) with ¢ = n with respect to the operator id ® 7y is found by

1 - Q(qil - Q) Z ((knflkn)il/zxr,T’_k(knflkn)l/Q) (ufqi(nil))k & €n—1,n+1

k>0

+ Q(q_l —q) Z ((kvilkn)_1/233:—1,—1@(]‘5;—11]‘371)1/2) (U—q_(n_l))k @ €(n+1),(n—1)-
k>0

. . + -1 :I:Aij + . . .
By using the relations k; 2, ki~ = ¢; 7 2, we can write this expression as

1= (¢ =z, (u_g "™ @ep 11+ (¢ — Q)2 (u_Eq" )0 @ etniny mory
=146/ (u) @ en1ns1 — €] (1) @ €fnr1y,noty-

This proves that the (n — 1,n 4+ 1) entry of Et(u) is e} (u), while the ((n + 1)/, (n — 1))
entry is —e (u), as required. O

In the next proposition we use the series z*(u) introduced in (2.2). Their coefficients
belong to the center of the algebra U;Xt(/o\N); see Proposition 2.2. For a nonnegative
integer m with m < n we will denote by 2*["~™l(v) the respective series for the subalgebra
of U;"t (on), whose generators are all elements ka, hjfk and ¢¢? such that 4, > m + 1;

see Definition 2.1. We also denote by £~ the parameter ¢ for this subalgebra so that

g[n_m] B q72n+2m+1 fOI' type B,
)| g2t for type D.

Proposition 5.5. The matriv H*(u) is diagonal and has the form
H*(u) = diag [hf(u), o hiE (), b (w), AW ) hE(ue)=t L 2 () hli(uf["])_l}
for type B, and
H*(u) = diag (77 (W), ... iy (w), 2* U () hE (ueth =1, ,zi[”](u)hli(ug[”])_l}
for type D.
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Proof. The starting point is a universal expression for H*(u) which is valid for all three
types B, D and C (the latter was considered in [20, Sec. 5]) and is implied by the definition.
In particular, for H(u) we have:

B eXp(Z Z Qz)(Qj_ - Qj) iéij(qk)ukaj,_k ® Wv(ai,k)>

k>0 i,5=1

(1d®7TV Tgl H Z+ US_Qm 1 (Uf_zm_Q)_l,
m=0

where the matrix elements By;(q) are defined in (5.2) and (5.4). The calculation is then per-
formed in the same way as for type C' with the use of Propositions 2.3, 5.1 and Lemma 5.3;
see [20, Prop. 5.5]. O

Taking into account Propositions 5.2, 5.4 and 5.5 we arrive at the following result.

Corollary 5.6. The homomorphism
RD :U(R) — U;Xt(ﬁN)

defined in (5.9) is the inverse map to the homomorphism DR defined in Theorem 4.30.
Hence the algebra U(R) is isomorphic to U™ (ox). O

Corollary 5.6 together with the results of Secs 2.2 and 4.5 complete the proof of the
Main Theorem.
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