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p-JONES-WENZL IDEMPOTENTS

GASTON BURRULL, NICOLAS LIBEDINSKY, AND PAOLO SENTINELLI

ABSTRACT. For a prime number p and any natural number n we introduce, by
giving an explicit recursive formula, the p-Jones-Wenzl projector pJWn, an ele-

ment of the Temperley-Lieb algebra TLn(2) with coefficients in Fp . We prove

that these projectors give the indecomposable objects in the Ã1-Hecke category
over Fp, or equivalently, they give the projector in EndSL2(Fp)

((F2
p
)⊗n) to the

top tilting module. The way in which we find these projectors is by categorify-
ing the fractal appearing in the expression of the p-canonical basis in terms of the

Kazhdan-Lusztig basis for Ã1.

1. INTRODUCTION

1.1. A new paradigm. In recent years a new paradigm has emerged in modular
representation theory. The central role that the canonical basis of the Hecke al-
gebra (and its associated Kazhdan-Lusztig polynomials) was believed to play is
now known to be played by the p-canonical basis (and its associated p-Kazhdan-
Lusztig polynomials). The most groundbreaking papers in this direction are (in
our opinion) the paper by Williamson [Wil17] commonly known as “Torsion ex-
plosion” (that broke down the old paradigm), the paper by Riche and Williamson
[RW18] known as the “Tilting manifesto” (that crystallized the emerging philoso-
phy) and the recent paper by Achar, Makisumi, Riche, and Williamson [AMRW19]
(that proved the conjecture in the tilting manifesto).

But although this brought a new scenario into place, there was a widespread
feeling that the p-canonical basis was impossible to calculate (if it is not by com-
plicated categorical manipulations). But this belief was again annihilated by the
beautiful conjecture by Lusztig and Williamson known as the “billiards conjec-
ture” [LW18], where they conjecture a way in which the p-canonical basis in type

Ã2 can be calculated for some finite (but big) family of elements. It is with the
intention of continuing on this path that this paper comes into existence.

1.2. The SL2 case. Let us consider type Ã1 (the infinite dihedral group). In this
case it is easy (and known since the dawn of the theory) to obtain an explicit for-
mula for the canonical basis. In the paper [Eli16], Elias lifted the canonical basis to

a categorical level in the Ã1-Hecke category over a field of characteristic zero. He
obtained that the Jones-Wenzl projectors give the indecomposable objects. More
precisely, there is a functor from the Temperley-Lieb category to the diagrammatic
Hecke category such that the images of the Jones-Wenzl projectors give idempo-
tents in the Bott-Samelson objects projecting to the indecomposable objects.

The main result of this paper is an analogous result, but for fields of positive

characteristic. The p-canonical basis of Ã1 was known since the year 2002 by the
work of Erdmann and Henke [EH02] (the group SL2 is the only semi-simple group
for which all tilting characters are known). When one expresses this basis in terms
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of the canonical basis one obtains a fractal-like structure (see Section 4.4). We lift
this construction to a categorical level and obtain what we call the p-Jones-Wenzl
projectors with recursive formulas as explicit as in the usual Jones-Wenzl projec-
tors.

We would like to remark that the formulas for the projectors in the characteris-
tic zero case were not so surprising as they already appear in the Temperley-Lieb
algebra. The formulas found in this paper are completely new. The most challeng-
ing and time-consuming part of the present work was to find the correct definition
of the p-Jones-Wenzl projectors.

1.3. Perspectives. There are at least four possible applications of our construction,
the first one being our main motivation for this work.

(1) Using Elias Quantum Satake [Eli17] and Elias triple clasp expansion [Eli15],
together with the main result of Williamson’s thesis [Wil11] one is not far
from completely understanding the projectors giving the indecomposable

objects in type Ã2 over a field of characteristic zero. The recursive formula
for the Jones-Wenzl projector is built-in to the recursive formula for sl3 (see
Formulas (1.7) and (1.8) of [Eli15]). So, as we have a p-analogue of this
part of the formula, we would just need a p-analogue of the other part. If
that was achieved, one would probably have the p-canonical basis for the

whole Ã2 (at least conjecturally). Of course, this might go far beyond Ã2,
but as the rank grows, the amount of information obtained via Quantum
Satake diminishes gradually. In any case, if this approach works, it would
give a good chunk of information in any rank.

(2) The Jones-Wenzl projector JWn is an endomorphism of the n-fold tensor
product V ⊗n of the natural representation of the quantum group Uq(sl2)
projecting into the maximal simple module. One would like to obtain a
projector satisfying the same property, but when q is a root of unity. Our
p-Jones-Wenzl projector is certainly not the answer to this question, but
might be an important ingredient.

(3) In the same vein as the last point, it would be desirable to get the underly-
ing quiver for Tilt0(SL2) in prime characteristic, following the approach of
[RW18] using the methods in [AT17] (the latter calculate the quiver in the
root of unity case using the Jones-Wenzl projector).

(4) The Jones-Wenzl projectors play a key role in the definition of Reshetikhin-
Turaev 3-manifold invariants. It is appealing to replace in that definition
the Jones-Wenzl projector by the p-Jones-Wenzl projector and see if one
obtains an invariant of some kind of object. For example, could it be that
if one does this process to the colored Jones polynomial one obtains an
invariant of framed links (necessarily more refined than the usual colored
Jones polynomial)?

1.4. Acknowledgements. The second author presented these results at the confer-
ence “Categorification and higher representation theory” in July 2018 at the Mittag
Leffler institute. We would like to thank the organisers for the opportunity to dis-
cuss this construction and the participants (especially Jonathan Brundan, Daniel
Tubbenhauer and Marko Stosic) for useful comments. We would also like to thank
Geordie Williamson for interesting discussions.
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2. DEFINITION OF THE p-JONES-WENZL IDEMPOTENTS

2.1. The generic Temperley Lieb category. Let m,n ∈ N0 = {0, 1, 2, . . .} be such
that n−m is even. An (m,n)-diagram consists of the following data:

(1) A closed rectangle R in the plane with two opposite edges designated as
top and bottom.

(2) m marked points (vertices) on the top edge and n marked points on the
bottom edge.

(3) (n + m)/2 smooth curves (or “strands") in R such that for each curve γ,
∂γ = γ ∩ ∂R consists of two of the n+m marked points, and such that the
curves are pairwise non-intersecting.

Two such diagrams are equivalent if they induce the same pairing of the n + m
marked points. We call a (m,n)-crossingless matching one such equivalence class.

Let δ be an indeterminate over Q. The generic Temperley Lieb category T L(δ) (as
defined in [GW03]) is a strict monoidal category defined as follows. The objects
are the elements of N0. If m − n is odd, Hom(m,n) is the zero vector space. If
m − n is even, Hom(m,n) is the Q(δ) vector space with basis (m,n)-crossingless
matchings. The composition of morphisms is first defined on the level of diagrams.
The composition g ◦ f of an (n,m)-diagram g and an (m, k)-diagram f is defined
by the following steps:

(1) Put the rectangle of g on top of that of f , identifying the top edge of f (with
its m marked points) with the bottom edge of g (with its m marked points).

(2) Remove from the resulting rectangle any closed loops in its interior. The
result is a (n, k)-diagram h.

(3) The composition g ◦ f is (−δ)rh, where r is the number of closed loops
removed.

This composition clearly respects equivalence of diagrams. The tensor product of
objects in T L is given by n⊗ n′ = n+ n′. The tensor product of morphisms is defined
by horizontal juxtaposition. With this we end the definition.

Example 2.1. Vertical composition in T L(δ):

.

Consider the flip involution, a contravariant functor : T L(δ) → T L(δ) defined
as the identity on objects and by flipping the diagrams upside down on mor-
phisms.

For any natural number n, the Temperley-Lieb algebra on n strands is defined to
be the Q(δ)-algebra TLn(δ) := EndT L(δ)(n).

Example 2.2. A generator of TL12(δ) as a Q(δ)-module:

http://arxiv.org/abs/fondecyt-conicyt/3160010
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2.2. Jones-Wenzl projectors. Let n be a natural number. Let TLn(2) be the Temperley-
Lieb algebra specialised at δ  2.

Proposition 2.3. There is a unique non-zero idempotent JWn ∈ TLn(2), called the
Jones-Wenzl projector on n strands, such that

ei ◦ JWn = JWn ◦ ei = 0,

for all 1 ≤ i ≤ n− 1, where ei = .

It is easy to see that when the JWn is expressed in the Q-basis of (n, n)-diagrams,
the coefficient of the identity is 1.

The following proposition adds-up the most important properties of the Jones-
Wenzl projectors. We will prove a p-analogue of these properties later in the paper.

Proposition 2.4. The Jones-Wenzl projectors satisfy:

(1) Absorption. .

(2) Recursion. .

As an example of the recursion,

.

The following equality follows easily from the definitions:

(2.1) JWm ◦HomT L(n,m) ◦ JWn =

{

{0}, if n 6= m,

spanQ{JWn}, if n = m.

2.3. Definition of the p-Jones Wenzl projectors. Let us fix a prime number p for
the rest of this section. We will introduce the p-analogue of the Jones-Wenzl idem-
potents defined above.

If n ∈ N is an integer and aip
i+ai−1p

i−1+ · · ·+a1p+a0 is the p-adic expansion
of n+ 1, we define the support of n to be the following set of natural numbers

supp(n) = {aip
i ± ai−1p

i−1 ± · · · ± a1p± a0}.

Definition 2.5. Let n be a natural number. If n+1 has at least two non-zero coeffi-
cients in its p-adic expansion, we define the father of n to be the natural number f [n]
obtained by replacing the right-most non-zero coefficient in the p-adic expansion
of n + 1 by zero and then substracting 1. In formulas, if n + 1 =

∑r
i=m aip

i with
am 6= 0, then f [n] := (

∑r

i=m+1 aip
i)− 1. If n+ 1 has only one non-zero coefficient

in its p-adic expansion, then n + 1 = jpi for some 0 < j < p and some i ∈ N. In
that case, we say that n is a p-Adam (because it has no father).
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Let us start by defining the rational p-Jones-Wenzl projector on n strands, denoted

by pJWQ
n . It will be defined by induction on the number of non-zero coefficients

in the p-adic expansion of n+ 1. If n is a p-Adam, we define .

If n is not a p-Adam, suppose that

,

with I = supp(f [n])− 1, λi ∈ Q, pi ∈ HomT L(f [n], i) and pi the image of pi under
the flip involution (in the case where f [n] is a p-Adam, we have that λf [n] = 1 and
pf [n] = id).

Let m := n− f [n]. We define

(2.2) .

The “new” set of pi and λi should be clear from the picture. The new index set is
(I −m) ⊔ (I +m) which is exactly supp(n) − 1. With this we finish the definition

of pJWQ
n :=

∑
λi (pi ◦ JWi ◦ pi). For notational convencience,we will sometimes

use the notation U i
n := pi ◦ JWi ◦ pi, so we have

(2.3) pJWQ
n :=

∑

λiU
i
n.

Theorem 2.6. For all n ∈ N, the morphism pJWQ
n ∈ TLn(2) is an idempotent. Fur-

thermore, if we express pJWQ
n in the Q-basis of crossingless matchings, and write each of

its coefficients as an irreducible fraction a/b, then p does not divide b.

We remark that in the definition of the Temperley-Lieb algebra one could have
used any other commutative ring R instead of Q. We denote by TLn(2)R the
corresponding algebra. Now we can state the main definition of this paper.

Definition 2.7. We define the p-Jones-Wenzl projector onn-strands pJWn ∈ TLn(2)Fp

as the expansion of pJWQ
n ∈ TLn(2) in the Q-basis of crossingless matchings

but replacing each of the coefficients a/b (expressed as irreducible fractions) by

a·
(
b
)−1

∈ Fp, where the bar means reduction modulo p.
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Remark 2.8. A more elegant way to define the p-Jones Wenzl projector is to lift
pJWQ

n ∈ TLn(2)Q ⊂ TLn(2)Qp
to an idempotent in TLn(2)Zp

and then project to
TLn(2)Fp

.

Remark 2.9. One can define an analogue of pJWQ
n ∈ TLn(2) in the generic Temperley-

Lieb algebra TLn(δ). This is done by replacing natural numbers by quantum num-
bers in the coefficients of the formula. For instance, (i + 1 − m)/(i + 1) must be
changed by [i + 1 − m]q/[i + 1]q ∈ Q(δ). The projectors thus defined satisfy all
properties in Section 3.1 essentially with the same proof.

Example 2.10 (Example of a rational 3-Jones-Wenzl projector). Let us compute
3JWQ

10. We notice that f3[10] = 8 and that 8 is a 3-Adam. Using (2.2) we have,

(2.4) .

Example 2.11 (Example of rational 2-Jones-Wenzl). To calculate 2JWQ
10, first we

note that f2[10] = 9, f2[9] = 7 and 7 is a 2-Adam. Using (2.2) we have,

(2.5) .

Using (2.2) again we obtain,

(2.6) .

Note that 3JWQ
10 and 2JWQ

10 are quite different.

3. SOME PROPERTIES OF THE p-JONES-WENZL PROJECTORS

3.1. The following lemma, although simple, will prove to be useful.
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Lemma 3.1. Let 0 6 m 6 n. In TLn(2) we have the equality

,

where λn,m := (−1)m · n+1
n+1−m

.

Proof. The first equality is a consequence of Proposition 2.4; moreover, from (2.1)
we can deduce the existence of some coefficients λn,m ∈ Q satisfying the second
equality. We only need to calculate these λn,m to finish the proof. Let us observe
that λn,0 = 1 and λn,m = λn,k ·λn−k,m−k, for all 0 6 k 6 m. We prove the result by
induction on m. For m = 1 we have that λn,1 = −(n + 1)/n, by [EL17, Eq. (2.8)].
Let m > 1. By our inductive hypothesis we obtain

λn,m = λn,1 · λn−1,m−1 = −
(n+ 1)

n
·
(−1)m−1 · n

n− (m− 1)
= (−1)m ·

n+ 1

n+ 1−m
.

�

Proposition 3.2. The element pJWQ
n ∈ TLn(2) is an idempotent. Moreover, {λiU

i
n}i∈I

is a set of mutually orthogonal idempotents.

Proof. We will prove it by induction in the number of non-zero terms that n + 1

has in the p-adic expansion. If n is a p-Adam, then pJWQ
n = JWn, which is an

idempotent. Consider now n not to be a p-Adam. Let

pJWQ

f [n] =
∑

i∈supp(f [n])−1

λi (pi ◦ JWi ◦ pi).

By our inductive hypothesis and Equation (2.1), we have that

(3.1) JWi ◦ pi ◦ pi ◦ JWi =
1

λi

JWi

and JWi ◦ pi ◦ pj ◦ JWj = 0, for all i 6= j ∈ supp(f [n]) − 1. Then, absortion and
Equation (3.1) give

,
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Equation (3.1) and Lemma 3.1 give

.

These two formulas prove the idempotence of the summands in pJWQ
n . Since

i±m 6= j ±m for all i, j ∈ supp(f [n])− 1, i 6= j, by (2.1) we finish the proof. �

Proposition 3.3. The idempotent pJWQ
n satisfies the following absortion property:

.

Proof. We prove only the second equality, the first one being analogous. Recall the
notation expressed by Equation (2.3) and remark that

.
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By the first part of Proposition 2.4 and Equation (3.1) we have that

The remaining terms appearing in the expansion of the left-hand side are all zero
by Equation (2.1). �

4. THE HECKE CATEGORY OF Ã1-SOERGEL BIMODULES

4.1. Hecke algebra. The infinite dihedral group U2 (of type Ã1) is the group with
presentation U2 = 〈s, t : s2 = t2 = e〉. We denote the length function by ℓ and
the Bruhat order by ≤. An expression is an ordered tuple w = (s1, s2, . . . , sr) of
elements of S.

We denote by w ∈ W the corresponding product of simple reflections w =
s1s2 · · · sr.

Consider the ring L = Z[v±1] of Laurent polynomials with integer coefficients
in one variable v. The Hecke algebra H of the infinite dihedral group is the free
L-module with basis {Hw |w ∈ U2} and multiplication given by:

HwHs =

{
HwHs, if w < ws;
Hws + (v−1 − v)Hw, if ws < w,

for all w ∈ U2. The set {Hw : w ∈ U2} is called the standard basis of H. On the other
hand, H has the Kazhdan-Lusztig basis (or KL-basis) that we call {bw : w ∈ U2}. In
the literature this basis is also denoted by Hw (see [JW17]) or C′

w in the original
paper by Kazhdan and Lusztig [KL79]. The following formula has an easy proof
(all the calculations with the infinite dihedral group are explicit).

Lemma 4.1. Let s1 · · · sk be a reduced expression of x ∈ U2 and r a simple reflection.
Then

bwbr =







(v + v−1)bw if r = sk;
bwr + bwsk if k > 1 and r = sk−1;
bwr otherwise.
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4.2. The p-canonical basis. Consider the Coxeter system W = U2. Let H be the
Hecke category (as defined in [EW16]) which is minimal over Z with Cartan matrix

(
2 −2
−2 2

)

.

This defines a category Hk by base change, for any ring k. The main result of
that paper [EW16, Theorem 6.26] (although in that paper they consider general
Coxeter systems and a big range of realizations) is the following. The category H
is a Krull-Remak-Schmidt Z-linear category with a grading shift functor [1]. The
indecomposable objects Bw are indexed by w ∈ W (modulo grading shift) and

Bw
⊕
⊂ w is the only summand of w (where w is any reduced expression of w ∈ W )

that does not appear in any reduced expression u, with u ≤ w. Furthermore, there
is an isomorphism of Z[v±1]-algebras called the character

ch: 〈H〉 −→ H

〈Bs〉 7−→ Hs,

where s ∈ S, and 〈H〉 denotes the split Grothendieck group of H. The group 〈H〉
has a Z[v±1]-algebra structure as follows: the monoidal structure on H induces a
unital, associative multiplication and v acts via v[B] := [B(1)] for an object B of H.

It is a fundamental theorem by Elias and Williamson [EW14] (again, for any
Coxeter group) conjectured by Soergel that in HR, the image of the indecompos-
able objects are the Kazhdan-Lusztig basis. In formulas:

ch(〈Bw〉) = bw.

However, in HFp this is not the case. In this latter category, to emphasize the
dependence on p, we will denote by pBw the indecomposable object. Let us define

ch(〈pBw〉) :=
pbw.

The set {pbw}w∈W is another Z[v±1]-basis of H. It is called the p-canonical basis of
H.

4.3. The Jones-Wenzl idempotents as Soergel bimodules. For the infinite dihe-
dral group, let us color the set S = {s, t}. Let T Lc be the 2-colored Temperley-Lieb
category as defined in [EL17, Section 2.1] (this is just the generic Temperley-Lieb
category defined in Section 2.1, specialised at δ  2, with regions colored by el-
ements of S in such a way that adjacent regions always have different colours).
Take a diagram E in T L and colour its regions accordingly using the set S with
s colouring its left-most region. This new diagram sE is a morphism in T Lc. By
abuse of notation we will just call it E . For example,

.

By the main theorem of Elias and the second author’s paper [EL17, Proposi-
tion 3.10], there is an additive Q-linear monoidal faithful functor (fully faithful if
one only considers degree zero morphisms in HQ) F : Kar(T Lc) −→ HQ, where
Kar(−) is the Karoubi envelope functor. The functor F is essentially deformation
retract. It takes JWn into the indecomposable object Bn+1, where n is the unique
element w of length n such that sw < w in U2.



p-JONES-WENZL IDEMPOTENTS 11

4.4. Categorification. By [JW17, Lemma 5.1] we have that

(4.1) pbn+1 =
∑

i∈supp(n)

bi.

We will categorify this formula. Recall that
∑

i∈supp(n)−1 λiU
i
n is the orthogonal

decomposition of pJWQ
n , as in (2.3), where U i

n := pi ◦ JWi ◦ pi.

Proposition 4.2. In the category Kar(T Lc) there is an isomorphism

pJWQ
n

∼=
⊕

i∈supp(n)−1

JWi.

Proof. Since {λiU
i
n}i∈supp(n) is a set of mutually orthogonal projectors, it is enough

to prove that λiU
i
n
∼= JWi. Consider the map

f = λi(JWi ◦ pi) : (n, λiU
i
n) → (i, JWi).

By Equation (3.1) one can see that f is indeed a map in the Karoubi envelope, i.e.,
f = JWi ◦ f ◦ (λiU

i
n). It is easy to prove that g = pi ◦ JWi is the inverse of f , thus

proving the proposition. �

Applying the functor F one obtains

F(pJWQ
n ) ∼=

⊕

i∈supp(n)

Bi.

Finally, we decategorify by applying the character ch defined in Section 4.2 and
obtain

(4.2) ch(〈F(pJWQ
n )〉) = pbn+1.

4.5. The absortion property determines the rational p-Jones Wenzl projector.

Notation 4.3. Consider m ∈ N. If n is even, we denote pbnb
m
1 := pbn bsbtbs · · ·

︸ ︷︷ ︸
m terms

. If

n is odd, we denote pbnb
m
1 := pbn btbsbt · · ·

︸ ︷︷ ︸
m terms

.

Lemma 4.4. If n ∈ N and m := n− f [n], there is a finite set K ⊂ N such that

pbf [n]+1b
m
1 = pbn+1 +

∑

k∈K

ck bk

where k /∈ supp(n) and ck ∈ N for all k ∈ K .

Proof. By Equation (4.1) we have that

pbf [n]+1 =
∑

j∈J

bj

with J := supp(f [n]).
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By using m times Lemma 4.1 we have,

pbf [n]+1b
m
1 =

∑

j∈J

bjb
m
1

=
∑

j∈J

m∑

r=0

(
m

r

)

bj−m+2r

=
∑

j∈supp(n)

bj +
∑

j∈J

m−1∑

r=1

(
m

r

)

bj−m+2r

= pbn+1 +
∑

j∈J

m−1∑

r=1

(
m

r

)

bj−m+2r.

since 0 < r < m, this concludes the lemma. �

It is well known that in HQ, the degree zero part of Hom(Bx, By) is either Q · id
if x = y or zero if x 6= y. On the other hand, the absortion property (Proposition

3.3) means that F(pJWQ
n ) is a direct summand of F(pJWQ

f [n])⊗ idm. So, by Lemma

4.4, the projector F(pJWQ
n ) is the unique idempotent in the endomorphism ring

of F(pJWQ

f [n]) ⊗ idm whose image is isomorphic to that of F(pJWQ
n ) (or, in other

words, whose image categorifies pbn+1). This could be an alternative definition of
the rational p-Jones-Wenzl projector.

4.6. Proof of Theorem 2.6.

Proof. By abuse of notation, if b ∈ HZ we will denote by b the corresponding object
in Hk, for any ring k. By construction of the morphism spaces in Hk (light leaves
are always a k-basis of the Hom spaces between Bott-Samelson objects) we have
that

(4.3) HomHZ(b, b′)⊗Z k ∼= HomHk(b, b′).

Let Fp be the finite field with p elements, Zp the p-adic integers and Qp the
p-adic numbers. The isomorphism (4.3) gives sense to the following functors

• ⊗Zp
Qp : HZp → HQp

• ⊗Zp
Fp : HZp → HFp

Notation 4.5. For the rest of this proof, we will consider objects and morphisms
in the Temperley-Lieb category (via the functor F) as if they were objects and mor-

phisms in the Hecke category. For example, pJWQ
n ∈ HQ.

We need to prove that pJWQ
n seen as a morphism in HQp can be lifted to HZp

using the functor ⊗Zp
Qp. We will prove it by induction on the number of non-zero

coefficients in the p-adic expansion of n+ 1. If n is a p-Adam, then pJWQ
n = JWn.

It can easily be deduced from [EL17, Theorem A.2] that JWn is defined over (can
be lifted to) Zp.

Now we suppose that pJWQ

f [n] can be lifted to HZp . We will prove that pJWQ
n

can also be lifted. Let us say that pJW
Zp

f [n] ∈ HZp is this lifting and pJW
Fp

f [n] ∈ HFp
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is the image of this morphism under the functor ⊗Zp
Fp. As for any b, b′ objects of

HZ we have

dim(HomHFp (b, b
′)) = rk(HomHZp (b, b

′)) = dim(HomHQp (b, b
′)).

By the formula for ch given in [EW16, Definition 6.23], we obtain at the decategori-
fied level

ch(〈pJW
Fp

f [n]〉) = ch(〈pJWQ

f [n]〉) =
pbf [n]+1.

So pJW
Fp

f [n] is isomorphic to the indecomposable object corresponding to the

unique word of length f [n] + 1 starting with s. In formulas

pJW
Fp

f [n]
∼= pBf [n]+1 ∈ HFp .

Recall that m = n−f [n]. The indecomposable object pBn+1 is a direct summand of
pJW

Fp

f [n]⊗idm. Let πFp
∈ End(pJW

Fp

f [n]⊗idm) be the corresponding projector. Since

End(pJW
Zp

f [n] ⊗ idm) is a finitely generated Zp-module, we can use idempotent

lifting techniques for complete local rings (see [Lam13, Proposition 21.34 (1)]) and

find an idempotent πZp
∈ End(pJW

Zp

f [n] ⊗ idm) mapping to πFp
.

By applying the corresponding functor one obtains an idempotent

(πZp
⊗Zp

Qp) ∈ End(pJW
Qp

f [n] ⊗ idm)

that (as πZp
and πFp

) decategorifies into pbn+1. But we have seen pJWQ
n is the

unique idempotent in the endomorphism ring of pJWQ

f [n]⊗ idm whose image cate-

gorifies pbn+1. Thus, (πZp
⊗Zp

Qp) =
pJWQ

n . This implies that pJWQ
n can be lifted

to πZp
∈ HZp . �
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