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Abstract

The Landau–Lifshitz–Bloch equation perturbed by a space-dependent noise
was proposed in [9] as a model for evolution of spins in ferromagnatic materials
at the full range of temperatures, including the temperatures higher than the
Curie temperature. In the case of a ferromagnet filling a bounded domain
D ⊂ Rd, d = 1, 2, 3, we show the existence of strong (in the sense of PDEs)
martingale solutions. Furthermore, in cases d = 1, 2 we prove uniqueness of
pathwise solutions and the existence of invariant measures1 .

1The results of this paper have been presented at The conference on Stochastic Analysis and its
Applications Bédlewo, 29th May–3rd June 2017 and at the AIMS Conference on Dynamical Systems
and Differential Equations Taipei, July 2018

1



AMS suject classifications: 35K59, 35R15, 60H15

1 Introduction

The aim of this paper is to initiate the analysis of stochastic Landau-Lifschitz-Bloch
equation (1.3). For the reader’s convenience we recall here some background material
introduced in [17].

A well-known model of ferromagnetic material leads to the Landau–Lifshitz–
Gilbert equation (LLGE) for the evolution of magnetic moment, which is valid only
for temperatures close to the Curie temperature Tc [12, 16]. Several recent techno-
logical applications such as heat-assisted magnetic recording [15], thermally assisted
magnetic random access memories [21] or spincaloritronics have shown the need to
generalise this theory to higher temperatures. For high temperatures, a thermody-
namically consistent approach was introduced by Garanin [9, 10] who derived the
Landau–Lifshitz–Bloch equation (LLBE) for ferromagnets. The LLBE essentially in-
terpolates between the LLGE at low temperatures and the Ginzburg-Landau theory
of phase transitions. It is valid not only below but also above the Curie tempera-
ture. Let u(t,x) ∈ R3 be the average spin polarisation for t > 0 and x ∈ D ⊂ Rd,
d = 1, 2, 3. The LLBE takes the form

∂u

∂t
= γu×Heff + L1

1

|u|2
(u ·Heff)u− L2

1

|u|2
u× (u×Heff) , (1.1)

where the effective field Heff is given by (1.2) below. Here, | · | is the Euclidean
norm in R3, γ > 0 is the gyromagnetic ratio, and L1 and L2 are the longitudial and
transverse damping parameters, respectively.

Nevertheless, the deterministic LLBE is insufficient to capture the dispersion of
individual trajectories at high temperatures. For example, when the magnetization
is quenched it should describe the loss of magnetization correlations in different sites
of the sample. In the laser-induced dynamics, this is responsible for the slowing
down of the magnetization recovery at high laser fluency as the system temperature
decreases [8]. Therefore, under these circumstances and according to Brown [2, 3],
stochastic forms of the LLBE are discussed in [8, 11] where the LLBE is modified in
order to incorporate random fluctuations into the dynamics of the magnetisation and
to describe noise-induced transitions between equilibrium states of the ferromagnet.

In this paper, we consider the stochastic LLBE, introduced in [11], perturbing
the effective field Heff in (1.1) by a Gaussian noise. Furthermore, we focus on a
case in which the temperature T is raised higher than Tc, and as a consequence the
longitudial L1 and transverse L2 damping parameters are equal. The effective field
Heff is given by

Heff = ∆u− 1

χ||

(
1 +

3

5

T

T − Tc
|u|2

)
u, (1.2)
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where χ|| is the longitudinal susceptibility. Using the vector product identity a× (b×
c) = b(a · c)− c(a · b) where (·, ·) is the scalar product in R3, we obtain

u× (u×Heff) = (u ·Heff)u− |u|2Heff,

and from property L1 = L2 =: κ1, the stochastic LLBE takes the form

du =
(
κ1∆u+ γu×∆u−κ2(1 +µ|u|2)u

)
dt+

∞∑
k=1

(γu×hk +κ1hk) ◦ dWk(t), (1.3)

with κ2 := κ1
χ||

and µ := 3T
5(T−Tc) . Here, we assume that

∞∑
k=1

‖hk‖2
W1,∞(D) ≤ h <∞, (1.4)

and {Wk : k ≥ 1} is a family of independent real-valued Wiener processes. Finally,
the stochastic LLBE being studied in this paper is equation (1.3) with real positive
coefficients κ1, κ2, γ, µ, initial data u(0,x) = u0(x) and subject to homogeneous
Neumann boundary conditions.

We emphasise that introducing two kinds of noise, multiplicative and additive,
seems necessary to capture important features of the physical system. Namely, it is
argued in [8] that only then the model may lead to a Boltzmann distribution valid
for the full range of temperatures.

Despite its importance, very little is known about solutions to the deterministic
and stochastic LLBE. A pioneering work on the existence of weak solutions to the
deterministic LLBE (1.1) in a bounded domain is carried out in [17]. In this paper
a Faedo–Galerkin approximation was introduced and the method of compactness
was used to prove the existence of a weak solution for the LLBE and its regularity
properties. In this work we built on the theory developed in [17] and initiated
the theory of stochastic LLBE. While preparing its final version we learnt about the
paper [14]. In their work the authors, starting from the formulation in [17], prove the
existence of weak (in PDE sense) martingale solutions to equation (1.3). In our work
we show that martingale solutions are strong in PDE sense for d = 1, 2, 3 and prove
pathwise uniqeness in dimensions d = 1, 2 and this fact by the Yamada-Watanabe
theorem implies uniqueness of martingale solutions. Finally, we prove the existence of
an invariant measure which is an important step towards thermodynamic justification
of the stochastic LLBE. The results of this paper have been presented at a number
of international meetings (see footnote on p. 1).

The paper is organized as follows. Section 2 contains Theorem 2.2 and Theo-
rem 2.3 on the existence and uniqueness strong solution of (1.3) as well as its regu-
larity properties. In Section 3 we introduce the Faedo–Galerkin approximations and
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prove for their solutions some uniform bounds in various norms. Sections 4 and 5 are
devoted to the proof of Theorem 2.2. The existence of an invariant measure stated
in Theorem 6.4 is proved in Section 6. Finally, in the Appendix we collect, for the
reader’s convenience, some facts scattered in the literature that are used in the course
of the proof.

2 Notation and the formulation of the main results

Let D ⊂ Rd, d = 1, 2, 3, be an open bounded domain with uniformly C2 boundary.
The function space H1 := H1(D,R3) is defined as follows:

H1(D,R3) =

{
u ∈ L2(D,R3) :

∂u

∂xi
∈ L2(D,R3) for i = 1, 2, 3.

}
.

Here, Lp := Lp(D,R3) with p ≥ 1 is the usual space of pth-power Lebesgue integrable
functions defined on D and taking values in R3. Throughout this paper, we denote a
scalar product in a Hilbert space H by 〈·, ·〉H and its associated norm by ‖ · ‖H . The
duality between a space X and its dual X∗ will be denoted by X〈·, ·〉X∗ .

Let Xw denote the Hilbert space X endowed with the weak topology and let

C([0, T ];Xw) := the space of weakly continuous functions u := [0, T ]→ X

endowed with the weakest topology such that for all h ∈ X the mapping

C([0, T ];Xw) −→ C([0, T ];R)

u 7−→ 〈u(·), h〉X is continuous.

In particular, un → u in C([0, T ];Xw) iff for all h ∈ X:

lim
n→∞

sup
t∈[0,T ]

∣∣〈un(t)− u(t), h〉X
∣∣ = 0.

For a ball B1(R) := {x ∈ H1 : ‖x‖H1 ≤ R} we denote by B1
w(R) the ball B1(R)

endowed with the weak topology. It is well known that B1
w(R) is metrizable [1]. Let

us consider the following subspace of C([0, T ];H1
w)

C([0, T ];B1
w(R)) = {u ∈ C([0, T ];H1

w) : sup
t∈[0,T ]

‖u‖H1 ≤ R}.

The space
(
C([0, T ];B1

w), ρ
)

is a complete metric space with

ρ(u,v) = sup
t∈[0,T ]

q(u(t),v(t)),

where q is the metric compatible with the weak topology on B1.
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Definition 2.1. Let d = 1, 2, 3. Given u0 ∈ H1 and T > 0, a weak martingale
solution (Ω,F ,F,P,W,u) to (1.3), consists of

(a) a filtered probability space (Ω,F ,F,P) with the filtration F = (Ft) satisfying the
usual conditions,

(b) a family of independent real-valued Wiener processes W = (Wj)
∞
j=1, adapted to

the filtration F,

(c) a progressively measurable process u : [0, T ] × Ω → H1 ∩ L4 such that P-a.s.
u ∈ L∞ (0, T ;H1) and for every t ∈ [0, T ] and φ ∈ C∞0 (D), P-a.s.:

〈u(t),φ〉L2 =〈u0,φ〉L2 − κ1

∫ t

0

〈∇u(s),∇φ〉L2 ds− γ
∫ t

0

〈u(s)×∇u(s),∇φ〉L2 ds

− κ2

∫ t

0

〈(1 + µ|u|2(s))u(s),φ〉L2 ds

+

∫ t

0

∞∑
k=1

〈γu(s)× hk + κ1hk,φ〉L2 ◦ dWk(s), (2.1)

Now we can formulate the main results of this paper.

Theorem 2.2. Let d = 1, 2, 3. Assume that ‖u0‖H1 < C1 for a certain C1 > 0. Then
there exists a weak martingale solution (Ω,F ,F,P,W,u) of (1.3) such that

1. for every p ∈ [1,∞), α ∈ (0, 1/2)

u ∈ Lp
(
Ω;
(
L∞(0, T ;H1) ∩ L2(0, T ;H2)

))
,

E‖u‖qW γ,p(0,T ;L2) + E‖u‖pL∞(0,T ;H1)∩L2(0,T ;H2) < c, (2.2)

and for every q ∈
[
1, 4

3

)
E
(∫ T

0

‖u(t)×∆u(t)‖qL2 dt

)p
< c , (2.3)

where c is a positive constant depending on p, C1 and h.

2. the following equality holds in L2:

u(t) = u(0) + κ1

∫ t

0

∆u(s) ds+ γ

∫ t

0

u(s)×∆u(s) ds

− κ2

∫ t

0

(1 + µ|u|2)u(s) ds+
∞∑
k=1

∫ t

0

(
γu(s)× hk + κ1hk

)
◦ dWk(s),

(2.4)
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3. for every ᾱ ∈
[
0, 1

4

)
and β ∈ [0, 1

2
]

u(·) ∈ C ᾱ([0, T ];L2) ∩ Cβ([0, T ];L3/2) ∩ C([0, T ];H1
w)
)

P− a.s. (2.5)

Theorem 2.3. (Pathwise uniqueness) Let D ⊂ R or D ⊂ R2 and let u0 ∈ H1 be
fixed. Assume that (Ω,F ,F,P,W,u1) and (Ω,F ,F,P,W,u2) are two weak martingale
solutions to equation (2.4), such that for i = 1, 2

(a) u1(0) = u2(0) = u0,

(b) the paths of ui lie in L∞(0, T ;H1) ∩ L2(0, T ;H2),

(c) each ui satisfies equation (2.4).

Then, for P-a.e. ω ∈ Ω
u1(·, ω) = u2(·, ω).

Proof. Let v := u1 − u2. Then v satisfies the following equation

dv =
[
κ1∆v + γ(v ×∆u1 + u2 ×∆v − κ2

(
v + µ(|u1|2v + (|u1|2 − |u2|2)u2)

)
+

1

2
γ
∞∑
k=1

(v × hk)× hk
]
dt+ γ

∞∑
k=1

v × hk dWk(t), (2.6)

with v(·, 0) = v0 = 0 By using Itô Lemma and (2.6) we get

1

2
d‖v‖2 = 〈v, dv〉L2 +

1

2
〈dv, dv〉L2

=
[
−κ1‖∇v‖2

L2 + γ 〈v,u2 ×∆v〉 − κ2‖v‖2
L2 − κ2µ‖|u1|v‖2

L2

− κ2µ
〈
v, (|u1|2 − |u2|2)u2

〉
L2 −

1

2

∞∑
k=1

‖v × hk‖2
L2

]
dt,

hence

1

2
‖v(t)‖2 + κ1

∫ t

0

‖∇v(s)‖2
L2 ds+ κ2‖v(t)‖2

L2 ≤
1

2
‖v0‖2 + γ

∫ t

0

〈v(s),u2(s)×∆v(s)〉L2 ds

− κ2µ

∫ t

0

〈
v(s), (|u1(s)|2 − |u2(s)|2)u2(s)

〉
L2 ds.

(2.7)

We now estimate all terms in the right hand side of (2.7).
Let us start with the second term. By using the triangle inequality, there holds∣∣∫ t

0

〈
v(s), (|u1(s)|2 − |u2(s)|2)u2(s)

〉
L2 ds

∣∣ ≤ ∫ t

0

∫
D

|v|2|u2|(|u1|+ |u2|) dx ds

≤
∫ t

0

‖u2(s)‖L∞(‖u1(s)‖L∞ + ‖u2(s)‖L∞)‖v(s)‖2
L2 ds (2.8)
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The first term in case D ⊂ R is estimated by noting the following interpolation
inequality

‖v‖L∞ ≤ c‖v‖
1
2

L2‖v‖
1
2

H1 ,

there hold∣∣∫ t

0

〈v(s),u2(s)×∆v(s)〉L2 ds
∣∣ =

∣∣∫ t

0

〈v(s),∇u2(s)×∇v(s)〉L2 ds
∣∣

≤
∫ t

0

‖v(s)‖L∞‖∇v(s)‖L2‖∇u2(s)‖L2 ds

≤ c

∫ t

0

‖v‖
1
2

L2‖v‖
1
2

H1‖∇v‖L2‖∇u2‖L2 ds

≤ c

∫ t

0

‖v‖L2‖∇v‖L2‖∇u2‖L2 ds

+ c

∫ t

0

‖v‖1/2

L2 ‖∇v‖3/2

L2 ‖∇u2‖L2 ds

≤ κ1

2γ

∫ t

0

‖∇v‖2
L2 ds

+
γc2

κ1

∫ t

0

‖∇u2‖2
L2

(
1 +

4γc2

κ1

‖∇u2‖2
L2

)
‖v‖2

L2 ds.

(2.9)

It follows from (2.7)–(2.9) that

‖v(t)‖2
L2 ≤

1

2
‖v0‖2

L2 + c

∫ t

0

Φ(s)‖v(s)‖2
L2 ds,

where

Φ(s) := ‖u2(s)‖L∞(‖u1(s)‖L∞ + ‖u2(s)‖L∞) + ‖∇u2(s)‖2
L2 + ‖∇u2(s)‖4

L2 .

Using Gronwall inequality and noting
∫ t

0
Φ(s) ds <∞, we deduce that

‖v(t)‖2
L2 ≤ ec

∫ t
0 Φ(s) ds‖v0‖2

L2 ,

it implies u1(·, ω) = u2(·, ω) for P-a.e. ω ∈ Ω as v0 = 0.
The first term in case D ⊂ R2 is estimated by noting that

‖w‖L4 ≤ c‖w‖
1
2

L2‖w‖
1
2

H1 , ∀w ∈ H1(D) and D ⊂ R2
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and using the Young inequality ab ≤ a4/3

4/3
+ b4

4
, there hold

∣∣∫ t

0

〈v(s),u2(s)×∆v(s)〉L2 ds
∣∣ =

∣∣∫ t

0

〈v(s),∇u2(s)×∇v(s)〉L2 ds
∣∣

≤
∫ t

0

‖v(s)‖L4‖∇v(s)‖L2‖∇u2(s)‖L4 ds

≤ c

∫ t

0

‖v‖
1
2

L2‖v‖
1
2

H1‖∇v‖L2‖∇u2‖L4 ds

≤ c

∫ t

0

‖v‖1/2

L2 ‖∇v‖3/2

L2 ‖∇u2‖L4 ds+ c

∫ t

0

‖v‖L2‖∇v‖L2‖∇u2‖L4 ds

≤ 3κ1

4γ

∫ t

0

‖∇v‖2
L2 ds+

γ3c2

4κ3
1

∫ t

0

‖∇u2‖4
L4‖v‖2

L2 ds

+
κ1

8γ

∫ t

0

‖∇v‖2
L2 ds+

γc2

2κ2
1

∫ t

0

‖∇u2‖2
L4‖v‖2

L2 ds

≤ 5κ1

8γ

∫ t

0

‖∇v‖2
L2 ds

+ c

∫ t

0

(
‖∇u2‖2

L2‖u2‖2
H2 + ‖∇u2‖L2‖u2‖H2

)
‖v‖2

L2 ds.

(2.10)

It follows from (2.7), (2.8) and (2.10) that

‖v(t)‖2
L2 ≤

1

2
‖v0‖2

L2 + c

∫ t

0

Φ(s)‖v(s)‖2
L2 ds,

where

Φ(s) := ‖u2(s)‖L∞(‖u1(s)‖L∞ + ‖u2(s)‖L∞) + ‖∇u2‖2
L2‖u2‖2

H2 + ‖∇u2‖L2‖u2‖H2 .

Using the Gronwall inequality and noting
∫ t

0
Φ(s) ds <∞, we find that

‖v(t)‖2
L2 ≤ ec

∫ t
0 Φ(s) ds‖v0‖2

L2 ,

it implies u1(·, ω) = u2(·, ω) for P-a.e. ω ∈ Ω as v0 = 0.

Corollary 2.4. Let D ⊂ R or D ⊂ R2. Then for every u0 ∈ H1

1. there exists a pathwise unique strong solution of equation (1.3);

2. the martingale solution of (1.3) is unique in law.

Proof. Since by Theorem 2.2 there exists a martingale solution and by Theorem 2.3
it is pathwise unique, the corrollary follows from Theorem 2.2 and 12.1 in [19].
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3 Faedo-Galerkin Approximation

Let A = −∆ be the negative Neumann Laplacian in D. Then [7, Theorem 1, p.
335], there exists an orthonormal basis {ei}∞i=1 of L2, consisting of eigenvectors of A,
such that for all i = 1, 2, . . .

−∆ei = λiei,
∂ei
∂n

= 0 on ∂D, ei ∈ L∞ ,

where n is the outward normal on the boundary ∂D; and λi > 0 for i = 1, 2,. . . are
eigenvalues of A. For β > 0 we define the Hilbert space Xβ = dom

(
Aβ
)

endowed
with the norm

‖v‖Xβ =
∥∥(I + A)βv

∥∥
L2 .

The dual space will be denoted by X−β.
Let Sn := span{e1, · · · , en} and Πn be the orthogonal projection from L2 onto Sn,
defined by: for v ∈ L2

〈Πnv,φ〉L2 = 〈v,φ〉L2 , ∀φ ∈ Sn. (3.1)

We note that

〈∇w,∇Πnv〉L2 = 〈v, AΠnw〉L2 = 〈∇v,∇Πnw〉L2 , (3.2)

for v,w ∈ H1, hence
‖Πnv‖L2 ≤ ‖v‖L2 ∀v ∈ L2, (3.3)

and
‖∇Πnv‖L2 ≤ ‖∇v‖L2 ∀v ∈ H1. (3.4)

We are now looking for approximate solution un(t) ∈ Sn := span{e1, · · · , en} of
equation (1.3) satisfying

dun =
(
κ1∆un + γΠn(un ×∆un)− κ2Πn

(
(1 + µ|un|2)un

))
dt

+
n∑
k=1

Πn

(
γun × hk + κ1hk

)
◦ dWk(t), (3.5)

with un(0) = u0n = Πnu0. The existence of a local solution to (3.5) is a consequence
of the following lemma.

Lemma 3.1. For n ∈ N, define the maps:

F 1
n : Sn 3 v 7→ ∆v ∈ Sn,
F 2
n : Sn 3 v 7→ Πn(v ×∆v) ∈ Sn,
F 3
n : Sn 3 v 7→ Πn((1 + µ|v|2)v) ∈ Sn,
Gnk : Sn 3 v 7→ Πn

(
γun × hk + κ1hk

)
Then F 1

n and Gnk are globally Lipschitz and F 2
n , F 3

n are locally Lipschitz.
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Proof. For any v ∈ Sn we have

v =
n∑
i=1

〈v, ei〉L2 ei and −∆v =
n∑
i=1

λi 〈v, ei〉L2 ei.

Using the triangle inequality and the Hölder inequality, we obtain for any u,v ∈ Sn

‖F 1
n(u)− F 1

n(v)‖L2 = ‖∆u−∆v‖L2 = ‖
n∑
i=1

λi 〈u− v, ei〉L2 ei‖L2

≤
n∑
i=1

λi
∣∣〈u− v, ei〉L2

∣∣ ≤ ( n∑
i=1

λi

)
‖u− v‖L2 ,

and the globally Lipschitz property of F 1
n follows immediately.

Next, estimate (3.3) yields

‖F 2
n(u)− F 2

n(v)‖L2 = ‖Πn(u×∆u− v ×∆v)‖L2 ≤ ‖u×∆u− v ×∆v‖L2

≤ ‖u× (∆u−∆v)‖L2 + ‖(u− v)×∆v‖L2

≤ ‖u‖L∞‖F 1
n(u)− F 1

n(v)‖L2 + ‖(u− v)‖L2‖∆v‖L∞ .

Since F 1
n is globally Lipschitz and all norms on the finite dimensional space Sn are

equivalent, F 2
n is locally Lifshitz.

Similarly, the local Lipschitz property of F 3
n follows from the estimate,

‖F 3
n(u)− F 3

n(v)‖L2 ≤ ‖u− v‖L2 + µ‖Πn(|u|2u− |v|2v)‖L2

≤ ‖u− v‖L2 + µ‖|u|2u− |v|2v‖L2

≤ ‖u− v‖L2 + µ‖|u|2(u− v)‖L2 + µ‖(u− v) · (u+ v)v‖L2

≤
(
1 + µ‖|u|2‖L∞ + µ‖u+ v‖L∞‖v‖L∞

)
‖u− v‖L2 .

which completes the proof of this lemma.

We first recall the relation between the Stratonovich and Itô differentials: if Wk is
an R-valued standard Wiener process defined on a certain filtered probability space
(Ω,F ,F,P) then

Gnk(v) ◦ dWk(t) =
1

2
G′nk(v)[Gnk(v)] dt+Gnk(v) dWk(t),

where
G′nk(v)[Gnk(v)] = Πn

(
Gnk(v)× hk

)
.

Therefore (3.5) can be rewritten as an Itô equation

dun = Fn(un) dt+
n∑
k=1

Gnk(un)dWk(t), (3.6)
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with

Fn(un) := F 1
n(un) + F 2

n(un)− F 3
n(un) +

1

2

n∑
k=1

Πn

(
Gnk(un)× hk

)
.

We now proceed to prove uniform bounds for the approximate solutions un.

Lemma 3.2. For any p ≥ 1, n = 1, 2,. . . and every t ∈ [0,∞), there holds

E sup
s∈[0,t]

‖un(s)‖2p
L2 + E

(∫ t

0

‖∇un‖2
L2 ds

)p
+ E

(∫ t

0

∫
D

(
1 + µ|un|2

)
|un|2 dx ds

)p
≤ c,

where c is a positive constant depending on p, C1 and h.

Proof. Let us consider a function ψ : Sn 3 v 7→ 1
2
‖v‖2

L2 ∈ R that is C∞ with

ψ′(v)(g) = 〈v, g〉L2 and ψ′′(v)(g,k) = 〈k, g〉L2 for all g,k ∈ Sn .

Using the Itô Lemma we obtain

dψ(un) = 〈un, dun〉L2 +
1

2
〈dun, dun〉L2 . (3.7)

From (3.6) and (3.7) we deduce that

1

2
d‖un(t)‖2

L2 =
(
〈un, Fn(un)〉L2 +

1

2

n∑
k=1

‖Gnk(un)‖2
L2

)
dt+

n∑
k=1

〈un, Gnk(un)〉L2 dWk(t).

(3.8)

We also have

〈un, Fn(un)〉L2 = −κ1‖∇un(t)‖2
L2 − κ2

∫
D

(
1 + µ|un|2

)
|un|2 dx

+
1

2

n∑
k=1

γ 〈un, Gnk(un)× hk〉L2

= −κ1‖∇un(t)‖2
L2 − κ2

∫
D

(
1 + µ|un|2

)
|un|2 dx

− 1

2

n∑
k=1

‖Gnk(un)‖2
L2 +

1

2
κ1

n∑
k=1

〈hk, Gnk(un)〉L2 , (3.9)

and 〈un, Gnk(un)〉L2 = κ1 〈un,hk〉L2 . (3.10)

11



Therefore, taking into account that (3.8)–(3.10) and (3.3) we obtain

1

2
‖un(t)‖2

L2 + κ1

∫ t

0

‖∇un(s)‖2
L2 ds+ κ2

∫ t

0

∫
D

(
1 + µ|un(s)|2

)
|un|2(s) dx ds

=
1

2
‖u0,n‖2

L2 +
1

2
κ1

n∑
k=1

∫ t

0

〈hk, Gnk(un(s))〉L2 ds

+ κ1

n∑
k=1

∫ t

0

〈un(s),hk〉L2 dWk(s)

≤ 1

2
‖u0,n‖2

L2 + ct
n∑
k=1

‖hk‖2
L2 + c

( n∑
k=1

‖hk‖2
L∞
) ∫ t

0

‖un(s)‖L2 ds

+ c
n∑
k=1

∫ t

0

〈un(s),hk〉L2 dWk(s)

≤ c+ c

∫ t

0

‖un(s)‖2
L2 ds+ c

n∑
k=1

∫ t

0

〈un(s),hk〉L2 dWk(s). (3.11)

It follows from (3.11) and Jensen’s inequality that for any p ≥ 1 there hold

‖un(t)‖2p
L2 +

(∫ t

0

‖∇un(s)‖2
L2 ds

)p
+
(∫ t

0

∫
D

(
1 + µ|un(s)|2

)
|un|2(s) dx ds

)p
≤ c+ c

(∫ t

0

‖un(s)‖2
L2 ds

)p
+ c
∣∣ n∑
k=1

∫ t

0

〈un(s),hk〉L2 dWk(s)
∣∣p

≤ c+ c

∫ t

0

‖un(s)‖2p
L2 ds+ c

∣∣ n∑
k=1

∫ t

0

〈un(s),hk〉L2 dWk(s)
∣∣p (3.12)

Using the Burkholder-Davis-Gundy inequality and the Hölder inequality, we estimate

E sup
s∈[0,t]

∣∣ n∑
k=1

∫ s

0

〈un(τ),hk〉L2 dWk(τ)
∣∣p ≤ cE

∣∣ n∑
k=1

∫ t

0

(〈un(s),hk〉L2)
2 ds
∣∣p/2

≤ cE
∣∣ n∑
k=1

∫ t

0

‖un(s)‖2
L2‖hk‖2

L2 ds
∣∣p/2

≤ c
( n∑
k=1

‖hk‖2
L2

)p/2E[∣∣∫ t

0

‖un(s)‖2
L2 ds

∣∣p/2]
≤ cE

[
1 + (

∫ t

0

‖un(s)‖2
L2 ds)p

]
≤ c+ c

∫ t

0

E‖un(s)‖2p
L2 ds,

12



and in view of (3.11), we find that

E‖un(t)‖2p
L2 + E

(∫ t

0

‖∇un(s)‖2
L2 ds

)p
+E

(∫ t

0

∫
D

(
1 + µ |un(s)|2

)
|un(s)|2 dx ds

)p
≤ c+ c

∫ t

0

E‖un(s)‖2p
L2 ds.

In particular, for any p ≥ 1

E‖un(t)‖2p
L2 ≤ c+ c

∫ t

0

E‖un(s)‖2p
L2 ds.

The result follows immediately from the Gronwall inequality, which completes the
proof of this lemma.

Lemma 3.3. For any p ≥ 1, n = 1, 2,. . . and every t ∈ [0,∞), there holds

E sup
s∈[0,t]

‖∇un(s)‖2p
L2 + κ2E

(∫ t

0

‖∆un(s)‖2
L2 ds

)p
≤ c,

where c is a positive constant depending on C1 and h.

Proof. In a similar fashion as in the proof of Lemma 3.2, we consider a function

ψ : Sn 3 v 7→
1

2
‖∇v‖2

L2 ∈ R.

By noting that for all g,k ∈ Sn,

ψ′(v)(g) = 〈∇v,∇g〉L2 = −〈∆v, g〉L2 and ψ′′(v)(g,k) = 〈∇k,∇g〉L2 .

and using the Itô Lemma we get

dψ(un) = −〈∆un, dun〉L2 +
1

2
〈∇dun,∇dun〉L2 .

This equation together with (3.6) and (3.7) yields

1

2
d‖∇un(t)‖2

L2 =
(
−〈∆un, Fn(un)〉L2 +

1

2

n∑
k=1

‖∇Gnk(un)‖2
L2

)
dt

−
n∑
k=1

〈∆un, Gnk(un)〉L2 dWk(t). (3.13)

13



Using (3.2), we infer that

−〈∆un, Fn(un)〉L2 = −κ1‖∆un(t)‖2
L2 + κ2

〈
∆un,

(
1 + µ|un|2

)
un
〉
L2

− 1

2

n∑
k=1

γ 〈∆un, Gnk(un)× hk〉L2

= −κ1‖∇un(t)‖2
L2 − κ2

∫
D

(
1 + µ|un|2

)
|∇un|2 dx

− 2µκ2

(
〈un,∇un〉L2

)2 − 1

2

n∑
k=1

‖∇Gnk(un)‖2
L2

+
n∑
k=1

R(un,hk), (3.14)

and − 〈∆un, Gnk(un)〉L2 = 〈∇un, γun ×∇hk + κ1∇hk〉L2 , (3.15)

where,

R(un,hk) =
1

2
γ 〈∇un, Gnk(un)×∇hk〉L2 +

1

2
〈γun ×∇hk + κ1∇hk,∇Gnk(un)〉L2 .

(3.16)
Therefore, it follows from (3.13)–(3.15) that

1

2
‖∇un(t)‖2

L2 + κ1

∫ t

0

‖∆un(s)‖2
L2 ds+ κ2

∫ t

0

∫
D

(
1 + µ|un(s,x)|2

)
|∇un(s,x)|2 dx ds

+ 2µκ2

∫ t

0

(
〈un(s),∇un(s)〉L2

)2
ds

=
1

2
‖∇u0,n‖2

L2 +
n∑
k=1

∫ t

0

R(un(s),hk) ds

+
n∑
k=1

∫ t

0

〈∇un(s), γun(s)×∇hk + κ1∇hk〉L2 dWk(s). (3.17)

Using the Jensen inequality we deduce from (3.17) that

‖∇un(t)‖2p
L2 +

(∫ t

0

‖∆un(s)‖2
L2 ds

)p
+
(∫ t

0

∫
D

|un(s,x)|2|∇un(s,x)|2 dx ds
)p

≤ c+ c
( n∑
k=1

∫ t

0

∣∣R(un(s),hk)
∣∣ ds)p

+ c
( n∑
k=1

∫ t

0

〈∇un(s), γun(s)×∇hk + κ1∇hk〉L2 dWk(s)
)p
. (3.18)
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We now first estimate
∑n

k=1R(un,hk) by using Hölder inequality, the assumption (1.4)
and Cauchy–Schwarz inequality
n∑
k=1

∣∣R(un,hk)
∣∣ ≤ c

n∑
k=1

(
‖∇un‖L2‖Gn,k(un)‖L2 +

(
‖un‖L2 + ‖∇hk‖L2

)
‖∇Gn,k(un)‖L2

)
≤ c‖un‖2

H1 + c
n∑
k=1

‖Gn,k(un)‖2
H1 + c

n∑
k=1

‖∇hk‖2
L2

≤ c+ c‖un‖2
H1 . (3.19)

This inequality together with Lemma 3.2 yields

E
[( n∑

k=1

∫ t

0

∣∣R(un(s),hk)
∣∣ ds)p] ≤ c+ cE

[(∫ t

0

‖un(s)‖2
H1 ds

)p] ≤ c. (3.20)

Then by using the Burkholder-Davis-Gundy inequality, (1.4) and Hölder inequality,
we estimate the last term in the right hand side of (3.18)

E sup
s∈[0,t]

∣∣ n∑
k=1

∫ s

0

〈∇un(τ), γun(τ)×∇hk + κ1∇hk〉L2 dWk(τ)
∣∣p

≤ cE
∣∣ n∑
k=1

∫ t

0

(
〈∇un(s), γun(s)×∇hk + κ1∇hk〉L2

)2
ds
∣∣p/2

≤ cE
∣∣ n∑
k=1

∫ t

0

(
‖∇hk‖L∞

∫
D

|∇un(s,x)| |un(s,x)| dx+ ‖∇un(s)‖L2‖∇hk‖L2

)2
ds
∣∣p/2

≤ cE
∣∣∫ t

0

(∫
D

|∇un(s,x)|2 |un(s,x)|2 dx+ c‖∇un(s)‖2
L2

)
ds
∣∣p/2

≤ cE
∣∣∫ t

0

∫
D

|∇un(s,x)|2 |un(s,x)|2 dx ds
∣∣p/2 + cE

∣∣∫ t

0

‖∇un(s)‖2
L2 ds

∣∣p/2
≤ E

[1
2

(∫ t

0

∫
D

|∇un(s,x)|2 |un(s,x)|2 dx ds
)p

+
c2

2

]
+ cE

∫ t

0

‖∇un(s)‖2p
L2 ds+ c

≤ c+
1

2
E
(∫ t

0

∫
D

|∇un(s,x)|2 |un(s,x)|2 dx ds
)p

+ cE
∫ t

0

‖∇un(s)‖2p
L2 ds.

(3.21)

It follows from (3.18)–(3.21) that

E‖∇un(t)‖2p
L2 + E

(∫ t

0

‖∆un(s)‖2
L2 ds

)p
+

1

2
E
(∫ t

0

∫
D

|un(s,x)|2|∇un(s,x)|2 dx ds
)p

≤ c+ cE
∫ t

0

‖∇un(s)‖2p
L2 ds .

The result follows immediately by using Gronwall’s inequality, which complete the
proof of this lemma.
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Lemma 3.4. For every t ∈ [0, T ], there holds

E
∫ t

0

‖(1 + µ|un(s)|2)un(s)‖2
L2 ds ≤ c.

Here c is a positive constant depending on T , C1 and h.

Proof. From Lemma 3.2–3.3 and the Sobolev imbedding of H1 into L6, we have

E
[
‖u3

n(t)‖2
L2

]
= E

[
‖un(t)‖6

L6

]
≤ E

[
‖un(t)‖6

H1

]
≤ c,

so

E
[∫ t

0

‖
(
1 + µ|un|2(s)

)
un(s)‖2

L2 ds
]
≤ 2

∫ t

0

E
[
‖un(t)‖2

L2

]
ds+ 2µ2

∫ t

0

E
[
‖u3

n(t)‖2
L2

]
ds

≤ c,

which completes the proof of the lemma.

Lemma 3.5. For p ≥ 1, n = 1, 2, . . . ,

E
(∫ T

0

‖un(s)‖2
L∞ ds

)p
≤ c, (3.22)

Furthermore, for any r ∈
[
1, 4

3

)
and p ∈ [1,∞)

E
(∫ T

0

‖un(s)×∆un(s)‖rL2 ds

)p
≤ c , (3.23)

where c is a positive constant depending on T , C1 and h.

Proof. Estimate (3.22) follows immediately from Lemmas 3.2 and 3.3 and the con-
tinuous imbedding H2 ⊂ L∞.
We will prove (3.23) for d = 3. Using interpolation we obtain for every t (omitted for
simplicity)

‖un ×∆un‖L2 ≤ ‖un‖L∞ ‖∆un‖L2

≤ ‖un‖H3/2 ‖∆un‖L2

≤ ‖un‖1/2

H1 ‖un‖1/2

H2 ‖un‖H2

≤ ‖un‖1/2

H1 ‖un‖3/2

H2 . (3.24)

Therefore, using the Hölder inequality we obtain∫ T

0

‖un ×∆un‖rL2 dt ≤
∫ T

0

‖un‖r/2H1 ‖un‖3r/2

H2

≤
(∫ T

0

‖un‖2
H2 dt

)3r/4(∫ T

0

‖un‖2r/(4−3r)

H1 dt

)(4−3r)/4
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Using the Hölder inequality again and invoking Lemmas 3.2 and 3.3 we find that

E
∫ T

0

‖un ×∆un‖rL2 dt ≤
(
E
∫ T

0

‖un‖2
H2 dt

)3r/4(
E
∫ T

0

‖un‖2r/(4−3r)

H1 dt

)(4−3r)/4

≤ c ,

for a certain c > 0 independent of n and (3.23) follows for p = 1. Estimate for
arbitrary p > 1 follows easily by similar arguments as in the proof of Lemma 3.3.

4 Tightness and construction of new probability

space and processes

Equation (3.6) can be written in the following way as an approximation of equa-
tion (2.1)

un(t) = un(0) +

∫ t

0

F 1
n(un(s))− F 3

n(un(s)) ds+

∫ t

0

F 2
n(un(s)) ds

+
1

2

n∑
k=1

∫ t

0

Πn

(
Gnk(un(s))× hk

)
ds+

n∑
k=1

∫ t

0

Gnk(un(s))dWk(s)

We will write shortly

un(t) = un(0) +
3∑
i=1

Bn,i(un)(t) +Bn,4(un,W )(t), t ∈ [0, T ]. (4.1)

We now prove a uniform bound for un.

Lemma 4.1. Let D ⊂ Rd be an open bounded domain. Let r ∈
[
1, 4

3

)
, q ∈ [1,∞),

p > 2 and α ∈
(
0, 1

2

)
with pα > 1. Then there exists a constant c depending on p, C1

and h, such that for all n ≥ 1

E‖Bn,1(un)‖qW 1,2(0,T ;L2) ≤ c, (4.2)

E‖Bn,2(un)‖qW 1,r(0,T ;L2) ≤ c, (4.3)

E‖Bn,3(un)‖qW 1,2(0,T ;L2) ≤ c, (4.4)

E‖Bn,4(un,W )‖qWα,p(0,T ;L2) ≤ c, (4.5)

Moreover,
E‖un‖qWα,p(0,T ;L2) ≤ c . (4.6)
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Proof. Inequality (4.2) follows immediately from Lemma 3.2, 3.3 and Lemma 3.4.
Inequality (4.3) is in fact a reformulation of (3.23). Inequality (4.4) follows from
Lemma 3.2. Estimate (4.5) is a consequence of Lemma 3.2 and Lemma 7.1. In order
to prove (4.6), we recall the Sobolev embedding

W 1,r(0, T ;L2) ⊂ Wα,p(0, T ;L2), if
1

p
− α > 1

r
− 1 .

Therefore, using the first four inequalities, we easily deduce (4.6).

Lemma 4.2. If β > 0 and p ∈
(
1, 4

3

)
, then the measures {L(un)}n∈N on L2(0, T ;H1)∩

Lp(0, T ;L4) ∩ C
(
[0, T ];X−β

)
are tight.

Proof. From Lemmas 3.2– 3.3 and (4.6), we deduce

E‖un‖Wα,p(0,T ;L2)∩Lp(0,T ;H1)∩L2(0,T ;H2) ≤ c.

This together with the following compact embeddings

Wα,p(0, T ;L2) ∩ Lp(0, T ;H1) ↪→ C([0, T ];X−β) ∩ Lp(0, T ;L4), (4.7)

Wα,p(0, T ;L2) ∩ L2(0, T ;H2) ↪→ C([0, T ];L2) ∩ L2(0, T ;H1) (4.8)

imply the tightness of {L(un)}n∈N.

By Lemma 4.2 and the Prokhorov theorem, we have the following property by
noting that from the Kuratowski theorem, the Borel subsets of C([0, T ];Sn) are Borel
subsets of Lp(0, T ;L4) ∩ C([0, T ];X−β) ∩ L2(0, T ;H1).

Proposition 4.3. Assume that β > 0 and p > 1. Then there exist

1. a propability space (Ω′,F ′,P′),

2. a sequence {(u′n,W ′
n)} of random variables defined on (Ω′,F ′,P′) and taking

values in the space
(
Lp(0, T ;L4)∩C([0, T ];X−β)∩L2(0, T ;H1)

)
×C([0, T ];R∞),

3. a random variable (u′,W ′) defined on (Ω′,F ′,P′) and taking values in
(
Lp(0, T ;L4)∩

C([0, T ];X−β) ∩ L2(0, T ;H1)
)
× C([0, T ];R),

such that in the space
(
Lp(0, T ;L4) ∩ C([0, T ];X−β) ∩ L2(0, T ;H1)

)
× C([0, T ];R∞)

there hold

(a) L(un,W ) = L(u′n,W
′
n), n ∈ N,

(b) (u′n,W
′
n)→ (u′,W ′) strongly, P′-a.s..
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Moreover, for every p ∈ [1,∞) the sequence {u′n}n∈N satisfies

sup
n∈N

E′
[

sup
t∈[0,T ]

‖u′n(t)‖2p
H1 + ‖u′n‖

2p
L2(0,T ;H2)

]
<∞, (4.9)

sup
n∈N

E′
[ ∫ T

0

‖(1 + µ|u′n|2(s))u′n(s)‖2
L2 ds

]
<∞, (4.10)

and for any r ∈
[
1, 4

3

)
and p ∈ [1,∞)

sup
n∈N

E′
(∫ T

0

‖u′n(s)×∆u′n(s)‖rL2 ds

)p
<∞, (4.11)

(4.12)

It follows that u′n ∈ C([0, T ];Sn) and the laws on C([0, T ];Sn) of un and u′n are
equal.

5 Existence of a weak solution

Our aim is to prove that u′ from Proposition 4.3 is a weak solution of the stochastic
LLBEs according to the Definition 2.1. We first find an equation satisfied by the new
process (u′n(t),W ′

n(t))t∈[0,T ] in Subsection 5.1. Then in Subsection 5.2 we prove the
convergence of that equation.

5.1 Equation for the new process

The following lemmas state that the processes W ′ and W ′
n from Proposition 4.3 are

Brownian motions, which can be proved as in [4].

Lemma 5.1. The processes W ′
n, n ≥ 1, and W ′ are Wiener processes defined on

(Ω′,F ′,P′). Moreover, for 0 ≤ s < t ≤ T , the increments W ′(t)−W ′(s) are indepen-
dent of the σ-algebra generated by u′(r) and W ′(r) for r ∈ [0, s].

From now on, we work solely in the probability space (Ω′,F ′,F′,P′) and all the
processes are defind on this space. In order to simplify notations, we will write
(Ω,F ,F,P) and the new processes W ′

n, u
′
n etc. will be denoted as Wn,un . . . etc.

Lemma 5.2. Let Bn,i be defined as in (4.1). Let a sequence of L2-valued processes
(Mn(t))t∈[0,T ] on (Ω,F ,P) be defined by

Mn(t) := un(t)− un(0)−
3∑
i=1

Bn,i(un)(t).

Then for each t ∈ [0, T ] there holds

Mn(t) = Bn,4(un,Wn)(t) P-a.s.
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Proof. The result is obtained by using (4.9), Lemma 3.2 and the same arguments as
in [5, Theorem 7.7 (Step 1)].

5.2 Convergence of the new processes

Before proving the convergence of {Mn}, we find the limits of sequences {Bn,i(un)}
for i = 1, 2, 3, and their relationship with u′ in the following lemmas.

Lemma 5.3. For any φ ∈ L4(D) ∩Xβ, there holds

lim
n→∞

E
∫ t

0

〈Πn

[
(1 + µ|un|2)un(s)

]
,φ〉L2 ds = E

∫ t

0

〈(1 + µ|u|2)u(s),φ〉L2 ds, (5.1)

lim
n→∞

E
∫ t

0

〈Πn

(
(un(s)× hk)× hk

)
,φ〉L2 ds = E

∫ t

0

〈(u(s)× hk)× hk,φ〉L2 ds. (5.2)

Proof. Proof of (5.1): By using the same arguments in the proof of [17, Lemma 4.3]
we have P-a.s.

lim
n→∞

∫ t

0

〈Πn

(
(1 + µ|un|2(s))un(s)

)
,φ〉L2 ds =

∫ t

0

〈(1 + µ|u|2(s))u(s),φ〉L2 ds. (5.3)

We have

E
∣∣〈Πn

(
(1 + µ|un|2)un

)
,φ〉L2(0,t;L2)

∣∣2 ≤ 2E
∣∣〈un,φ〉L2(0,t;L2)

∣∣2
+ 2E

∣∣〈µ|un|2un,Πnφ〉L2(0,t;L2)

∣∣2
≤ 2
(
E‖un‖4

L2(0,T ;L2)

) 1
2
(
E‖φ‖4

L2(0,T ;L2)

) 1
2

+ 2µ
(
E‖un‖12

L6(0,T ;L6)

) 1
2
(
E‖Πnφ‖4

L2(0,T ;L2)

) 1
2 .

This together with (3.3), (4.9) and the Sobolev imbedding of H1 into L6 imply

sup
n∈N

E
∣∣〈Πn

(
(1 + µ|un|2)un

)
,φ〉L2(0,t;L2)

∣∣2 <∞. (5.4)

From (5.3) and (5.4), the first result (5.1) follows immediately by using the Vitali
theorem.

Proof of (5.2): The proof of (5.2) is omitted because it is similar to the proof
of (5.1).

Lemma 5.4. Let {un} and u be the processes defined in Proposition 4.3. Then for
any p ≥ 1 there hold

un → u weakly in L2p(Ω;
(
L∞(0, T ;H1) ∩ L2(0, T ;H2)

)
),

hence u′ ∈ L2p
(
Ω;C([0, T ];H1

w)
)

and

E sup
t∈[0,T ]

‖u(t)‖2p
H1 + E

(∫ T

0

‖u(t)‖2
H2 dt

)p
<∞.
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Proof. From (b)-Proposition 4.3, we get for ω ∈ Ω′, P′-a.s.∫ T

0
L4〈un(t, ω),ψ(t, ω)〉

L
4
3
dt→

∫ T

0
L4〈u(t, ω),ψ(t, ω)〉

L
4
3
dt,

for ψ(ω) ∈ L 4
3 (0, T ;L 4

3 ). Moreover, the sequence
∫ T

0 L4〈un(t),ψ(t)〉
L

4
3
dt is uniformly

integrable on Ω if we choose ψ ∈ L4(Ω;L
4
3 (0, T ;L 4

3 )). Indeed,

sup
n∈N

∫
Ω

∣∣∫ T

0
L4〈un(t),ψ(t)〉

L
4
3
dt
∣∣2 dP(ω) ≤ sup

n∈N

∫
Ω

∣∣∫ T

0

‖un(t)‖L4‖ψ(t)‖
L

4
3
dt
∣∣2 dP′(ω)

≤ sup
n∈N

∫
Ω

‖un‖2
L∞(0,T ;L4)‖ψ‖2

L1(0,T ;L
4
3 )
dP(ω)

≤ sup
n∈N
‖un‖2

L4(Ω;L∞(0,T ;L4))‖ψ‖2

L4(Ω;L1(0,T ;L
4
3 ))

<∞,

here the last inequality is obtained by using (4.9) and the imbedding of H1 into L4.
Thus, by using the Vitali theorem we deduce

E
∫ T

0
L4〈un(t),ψ(t)〉

L
4
3
dt→ E

∫ T

0
L4〈u(t),ψ(t)〉

L
4
3
dt . (5.5)

On the other hand, by using the Banach-Alaoglu theorem we infer from (4.9) that
there exist a subsequence of {un} (still denoted by {un}) and v ∈ L2p(Ω;L∞(0, T ;H1)∩
L2(0, T ;H2)) such that

un → v weakly in L2p(Ω;L∞(0, T ;H1) ∩ L2(0, T ;H2)).

In particular, since L2p(Ω;L∞(0, T ;H1) ∩ L2(0, T ;H2)) is isomorphic to the space(
L

2p
2p−1 (Ω;L1(0, T ;X−

1
2 ) ∩ L2(0, T ;X−1))

)∗
, we have

E
∫ T

0

∫
D

un(t,x)φ(t,x) dx dt→ E
∫ T

0

∫
D

v(t,x)φ(t,x) dx dt, (5.6)

as n tends to infinity, for any φ ∈ L
2p

2p−1 (Ω;L1(0, T ;X−
1
2 ) ∩ L2(0, T ;X−1)).

By the density of L4(Ω;L2(0, T ;L 4
3 )) in L

2p
2p−1 (Ω;L1(0, T ;X−

1
2 ) ∩ L2(0, T ;X−1)),

we infer from (5.5) and (5.6) that u = v in L2p(Ω;L∞(0, T ;H1) ∩ L2(0, T ;H2)). It
follows from Proposition (4.3) that un ∈ C([0, T ];H1

w). This together with the weakly
convergence of un to u in L2p(Ω;

(
L∞(0, T ;H1)) and the completeness of C([0, T ];H1

w)
imply that u ∈ L2p

(
Ω;C([0, T ];H1

w)
)
.

Furthermore, since v satisfies (4.9), it implies u also satisfies (4.9), which com-
pletes the proof of the lemma.
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Let p ∈
(
1, 4

3

)
be fixed. From (3.23) and by the Banach-Alaoglu theorem, there exist

subsequences of {un ×∆un} and of {Πn(un ×∆un)} (still denoted by {un ×∆un},
{Πn(un ×∆un)}, respectively); and Z, Z̄ ∈ L1(Ω;Lp(0, T ;L2)) such that

un ×∆un → Z̄ weak? in Lp(Ω;Lp(0, T ;L2)) (5.7)

Πn(un ×∆un)→ Z weak? in Lp(Ω;Lp(0, T ;L2)). (5.8)

Using the same arguments as in [17, Lemma 4.2], we obtain

Z = Z̄ in Lp(Ω;Lp(0, T ;L2)). (5.9)

Lemma 5.5. For any φ ∈ L∞(Ω;L4(0, T ;W1,4)), there holds

lim
n→∞

E
∫ T

0

〈Πn

(
un(s)×∆un(s)

)
,φ〉L2 ds = −E

∫ T

0

〈u(s)×∇u(s),∇φ〉L2 ds .

Proof. From (5.7)–(5.9) and

〈un(t)×∆un(t),φ〉L2 = −〈un(t)×∇un(t),∇φ〉L2 ,

it is sufficient to prove that

lim
n→∞

E
∫ T

0

〈un(s)×∇un(s),∇φ〉L2 ds = E
∫ T

0

〈u(s)×∇u(s),∇φ〉L2 ds . (5.10)

Using the same arguments in the proof of [17, Lemma 4.3], we have P-a.s.

lim
n→∞

∫ T

0

〈un(t)×∇un(t),∇φ(t)〉L2 dt =

∫ T

0

〈u(t)×∇u(t),∇φ(t)〉L2 dt .

Moreover, the sequence
∫ T

0
〈un(t)×∇un(t),∇φ(t)〉L2 dt is uniformly integrable on Ω.

Indeed, (4.9) and the Sobolev imbedding of H1 into L4 yield

sup
n∈N

E
∣∣∫ T

0

〈un(t)×∇un(t),∇φ(t)〉L2 dt
∣∣2

≤ sup
n∈N

E
∣∣∫ T

0

‖un(t)‖2
L4‖∇un(t)‖L2‖∇φ(t)‖2

L4 dt
∣∣2

≤ c sup
n∈N

E
(
‖un‖6

L∞(0,T ;H1)‖∇φ‖2
L2(0,T ;L4)

)
≤ c‖∇φ‖2

L4(Ω;L2(0,T ;L4)) sup
n∈N
‖un‖6

L12(Ω;L∞(0,T ;H1)) <∞.

Thus the Vitali theorem yields (5.10), which completes the proof of the lemma.
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Lemma 5.5 together with (5.8) yields for any test function φ ∈ L∞(Ω;L4(0, T ;W1,4))
there holds

E
∫ T

0

〈Z(t),φ(t)〉L2 dt = −E
∫ T

0

〈u(t)×∇u(t),∇φ(t)〉L2 dt

= E
∫ T

0

〈u(t)×∆u(t),φ(t)〉L2 dt,

where the last equality follows from u×∆u ∈ Lp(Ω;Lr(0, T ;L2)) for any p ∈ (1,∞)
and r ∈

[
1, 4

3

)
. Hence, we deduce

Z = u×∆u in L1(Ω;Lr(0, T ;L2)). (5.11)

The limits of {Mn} and {Bn,4(un,Wn)} as n tends to infinity are stated in the
following lemmas.

Lemma 5.6. For each t ∈ [0, T ], the sequence of random variables Mn(t) is weakly

convergent in L
4
3 (Ω;X−β) to a limit M that satisfies the following equation

M(t) =u(t)− u(0)− κ1

∫ t

0

∆u(s) ds+ κ2

∫ t

0

(1 + µ|u|2)u(s) ds

− γ
∫ t

0

u(s)×∆u(s) ds− 1

2
γ
∞∑
k=1

∫ t

0

(u(s)× hk)× hk ds

Proof. Let t ∈ (0, T ] and φ ∈ L4(Ω;Xβ). Since un converges to u in C([0, T ];X−β)
P-a.s., we infer that

lim
n→∞ X−β〈un(t),φ〉Xβ =X−β 〈u(t),φ〉Xβ , P′-a.s.. (5.12)

Furthermore, by using H1 ↪→ X−β and (4.9) we obtain

sup
n∈N

E
∣∣
X−β〈un(t),φ〉Xβ

∣∣2 ≤ sup
n∈N

(
E
[
‖un(t)‖4

X−β

]) 1
2
(
E
[
‖φ‖4

Xβ

]) 1
2 <∞,

which implies that {X−β〈un(t),φ〉Xβ}n∈N is uniformly integrable. Together with (5.12),
it implies from the Vitali theorem that

lim
n→∞

EX−β〈un(t),φ〉Xβ = EX−β〈u(t),φ〉Xβ . (5.13)

By using Lemmas 5.4 and 5.5, we infer from (5.11) and the embedding

L1(Ω;Lr(0, T ;L2)) ↪→ L1(Ω;Lr(0, T ;X−β)),
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that

lim
n→∞

E
∫ t

0

〈∆un(s),φ〉L2 ds = E
∫ t

0

〈∆u(s),φ〉L2 ds , (5.14)

lim
n→∞

E
∫ t

0
X−β〈Πn

(
un(s)×∆un(s)

)
,φ〉Xβ ds = E

∫ t

0
X−β〈u(s)×∆u(s),φ〉Xβ ds ,

(5.15)

These limits together with Lemma 5.3 imply that

lim
n→∞ L

4
3 (Ω;X−β)

〈Mn(t),φ〉L4(Ω;Xβ) =
L

4
3 (Ω;X−β)

〈M (t),φ〉L4(Ω;Xβ),

which complete the proof of this Lemma.

Lemma 5.7. Let {un} and u′ be the processes defined in Proposition 4.3. Then there
holds

lim
n→∞

E
∥∥ n∑
k=1

(∫ t

0

Πn(γun(s)×hk+κ1hk) dWk,n(s)−
∫ t

0

(γu(s)×hk+κ1hk) dWk(s)
)∥∥

X−β
= 0 .

Proof. The proof of this lemma is omitted because it is similar as part of the proof
of [4, Lemma 5.2].

Proof of the main theorem (Theorem 2.2):

Proof. From Lemmas 5.2, 5.6 and 5.7 we deduce

M(t) =
∞∑
k=1

∫ t

0

(γu(s)× hk + κ1hk) dWk(s) in L
4
3 (Ω;X−β),

which means {u,W} satisfies (2.4).
It remains to prove that u satisfies (2.5). Since u and W satisfy (2.4) P-a.s., for
0 ≤ s < t ≤ T we have

u′(t)− u(τ) = κ1

∫ t

τ

∆u(s) ds+ γ

∫ t

τ

u(s)×∆u(s) ds− κ2

∫ t

τ

(1 + µ|u|2)u′(s) ds

+
γ

2

∞∑
k=1

∫ t

τ

(u(s)× hk)× hk ds+ γ

∞∑
k=1

∫ t

τ

u(s)× hk dWk(s).

By the Minkowski inequality and the the embedding L2 ↪→ L 3
2 , we obtain for any
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p ≥ 1

E‖u(t)− u(τ)‖2p

L3/2 ≤ cE
(∫ t

τ

‖∆u(s)‖L2 ds

)2p

+ cE
(∫ t

τ

‖u(s)×∆u(s)‖L3/2 ds

)2p

+ cE
(∫ t

τ

‖u(s)‖L2 ds

)2p

+ cE
(∫ t

τ

‖|u|2u(s)‖L2 ds

)2p

+ cE

(∫ t

τ

∞∑
k=1

‖(u(s)× hk)× hk‖L2 ds

)2p

+ c
∞∑
k=1

E

(
∞∑
k=1

‖
∫ t

τ

u(s)× hk dWk(s)‖L2

)2p

. (5.16)

The following estimates follow from u ∈ L2p
(
Ω;
(
L∞(0, T ;H1) ∩ L2(0, T ;H2)

))
and

the embedding H1 ↪→ L6,

E
(∫ t

τ

‖∆u(s)‖L2 ds

)2p

≤ (t− τ)pE
(∫ T

0

‖∆u(s)‖2
L2 ds

)p
≤ c(t− τ)p;

E
(∫ t

τ

‖u(s)×∆u(s)‖L3/2 ds

)2p

≤ E
(∫ t

τ

‖u(s)‖L6‖∆u(s)‖L2 ds

)2p

≤ c(t− τ)pE
(
‖u‖2p

L∞(0,T ;H1)

(∫ T

0

‖∆u(s)‖2
L2 ds

)p)
≤ c(t− τ)p;

E
[∫ t

τ

‖u(s)‖L2 ds
]2p ≤ (t− τ)2pE

[
‖u‖2p

L∞(0,T ;L2)

]
≤ c(t− τ)2p;

E
[∫ t

τ

‖|u|2u(s)‖L2 ds
]2p ≤ (t− τ)pE

[∫ t

τ

‖u(s)‖6
L6 ds

]p
≤ (t− τ)2pE

[
‖u‖6p

L∞(0,T ;H1)

]
≤ c(t− τ)2p;

E
[ ∞∑
k=1

∫ t

τ

‖(u(s)× hk)× hk‖L2 ds
]2p ≤ (t− τ)2p

( ∞∑
k=1

‖hk‖2
L∞
)2pE

[
‖u‖2p

L∞(0,T ;L2)

]
≤ c(t− τ)2p;

E
[ ∞∑
k=1

‖
∫ t

τ

u(s)× hk dWk(s)‖L2

]2p ≤ cE
[ ∞∑
k=1

∫ t

τ

‖u(s)× hk‖2
L2 ds

]p
≤ c(t− τ)p

( ∞∑
k=1

‖hk‖2
L∞
)pE[‖u‖2p

L∞(0,T ;L2)

]
≤ c(t− τ)p.
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Here we use the Burkholder-Davis-Gundy inequality for the last estimate. These
estimates together with (5.16) yield

E‖u(t)− u(τ)‖2p

L3/2 ≤ c(t− τ)p. (5.17)

Noting from (3.24) that

E
(∫ t

τ

‖u(s)×∆u(s)‖L2 ds

)2p

≤ E
(∫ t

τ

‖u(s)
1/2

H1 ‖u(s)‖3/2

H2 ds

)2p

≤ (t− τ)p/2E
[
‖u‖pL∞(0,T ;H1)

(∫ T

0

‖u(s)‖2
H2 ds

)3p/2]
≤ c(t− τ)p/2.

This together with (5.17) imply that u satisfies (2.5) (thanks to the Kolmogorov
continuity test).

6 Existence of an invariant measure for the stochas-

tic LLBE on 1 or 2-dimensional domains

In this section we will show the existence of invariant measure for equation (2.4). In
our proof we modify the ideas from [6], where different type of difficulties had to be
dealt with.
We start with the following result.

Lemma 6.1. Let u be a weak solution to equation (2.4) with properties listed in
Theorem 2.2. Then there exists a positive constant c depending on C1 and h such
that for all t ≥ 0 we have ∫ t

0

E‖u(s)‖2
H2 ds ≤ c(1 + t).

Proof. We will use a version of the Itô Lemma proved in [20]. By Theorem 2.2 and
with V = H1 we easily find that assumptions of Lemma 1.4 in [20] are satsified and
therefore (2.4) yields

1

2
d‖u(t)‖2

L2 =
(
〈u(t), F (u(t))〉L2 +

1

2

∞∑
k=1

‖Gk(u(t))‖2
L2

)
dt+

∞∑
k=1

〈u(t), Gk(u(t))〉L2 dWk(t),

(6.1)

where

Gk(u) := γu× hk + κ1hk,

and F (u) := κ1∆u+ γu×∆u− κ2(1 + µ|u|2)u+
1

2

∞∑
k=1

Gk(u)× hk.
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Noting 〈u(t), Gk(u(t))〉L2 = κ1 〈u(t),hk〉L2 and

〈u(t), F (u(t))〉L2 = −κ1‖∇u(t)‖2
L2 − κ2

∫
D

(
1 + µ|u|2

)
|u|2 dx

+
1

2

∞∑
k=1

γ 〈u, Gk(u)× hk〉L2

= −κ1‖∇u(t)‖2
L2 − κ2‖u(t)‖2

L2 − κ2µ‖u(t)‖4
L4

− 1

2

∞∑
k=1

‖Gk(u)‖2
L2 +

1

2
κ1

∞∑
k=1

‖hk‖2
L2 ,

it follows from (6.1) that

1

2
‖u(t)‖2

L2 + κ1

∫ t

0

‖∇u(s)‖2
L2 ds+ κ2

∫ t

0

‖u(s)‖2
L2 ds+ κ2

∫ t

0

µ‖u(s)‖4
L4 ds

=
1

2
‖u0‖2

L2 +
1

2
κ1t

∞∑
k=1

‖hk‖2
L2 + κ1

∞∑
k=1

∫ t

0

〈u(s),hk〉L2 dWk(s). (6.2)

By Theorem 2.2 we have

E
∫ t

0

〈u(s),hk〉2L2 ds ≤ ‖hk‖2
L2E

∫ t

0

‖u(s)‖2
L2 ds <∞,

hence the process →
∫ t

0
〈u(s),hk〉L2 dWk(s) is a martingale on [0, T ] In particular

E
∫ t

0

〈u(s),hk〉L2 dWk(s) = 0 ,

and invoking (6.2) we obtain

1

2
E‖u(t)‖2

L2 + κ1E
∫ t

0

‖∇u(s)‖2
L2 ds+ κ2E

∫ t

0

‖u(s)‖2
L2 ds+ κ2E

∫ t

0

µ‖u(s)‖4
L4 ds

=
1

2
‖u0‖2

L2 +
1

2
κ1t

∞∑
k=1

‖hk‖2
L2 ≤ c+ ct. (6.3)

The inequality (6.3) implies

E
∫ t

0

‖u(s)‖2
H1 ds ≤ c+ ct. (6.4)
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In a similar fashion as in the proof of (3.17), we obtain the identity

1

2
‖∇u(t)‖2

L2 + κ1

∫ t

0

‖∆u(s)‖2
L2 ds+ κ2µ

∫ t

0

∫
D

|u(s,x)|2|∇u(s,x)|2 dx ds

+ κ2

∫ t

0

‖∇u(s)‖2
L2 ds+ 2µκ2

∫ t

0

(
〈u(s),∇u(s)〉L2

)2
ds

=
1

2
‖∇u0,‖2

L2 +
∞∑
k=1

∫ t

0

R(u(s),hk) ds

+
∞∑
k=1

∫ t

0

〈∇u(s), γu(s)×∇hk + κ1∇hk〉L2 dWk(s), (6.5)

where R is defined as in (3.16). We first estimate R(u,hk) by using Hölder inequality
as follows

R(u,hk) :=
γ

2
〈∇u, Gk(u)×∇hk〉L2 +

1

2
〈γu×∇hk + κ1∇hk,∇Gk(u)〉L2

≤ γ

2
‖∇hk‖L∞

(
‖∇u‖L2‖Gk(u)‖L2 + ‖u(s)‖L2‖∇Gk(u)‖L2

)
+
κ1

2
‖∇hk‖L2‖∇Gk(u)‖L2

≤ κ1

4
‖∇hk‖2

L2 +
γ

4
‖∇hk‖L∞‖u‖2

H1 +
(κ1

4
+
γ

4
‖∇hk‖L∞

)
‖Gk(u)‖2

H1

≤
(κ1

4
+
κ3

1

2
+
κ2

1γ

2
‖∇hk‖L∞

)
‖hk‖2

H1

+
(γ

4
‖∇hk‖L∞ + γ2‖hk‖2

H1(
κ1

2
+
γ

2
‖∇hk‖L∞)

)
‖u‖2

H1 .

Hence,
∞∑
k=1

R(u,hk) ≤ c+ c‖u‖2
H1 . (6.6)

Again by Theorem 2.2 we have

E
[ ∞∑
k=1

∫ t

0

(
〈∇u(s), γu(s)×∇hk + κ1∇hk〉L2

)2
ds
]

≤ E
[ ∞∑
k=1

∫ t

0

(
γ‖∇hk‖L∞‖∇u(s)‖L2‖u(s)‖L2 + κ1‖∇u(s)‖L2‖∇hk‖L2

)2
ds
]

≤ 2γ2t
( ∞∑
k=1

‖∇hk‖2
L∞
)
E‖u‖4

L∞(0,T ;H1) + 2κ2
1

( ∞∑
k=1

‖∇hk‖2
L2

)
E
∫ t

0

‖∇u(s)‖2
L2 ds <∞,

hence the process

t→
∞∑
k=1

∫ t

0

〈∇u(s), γu(s)×∇hk + κ1∇hk〉L2 dWk(s)
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is a martingale on [0, T ]. In particular,

E
[ ∞∑
k=1

∫ t

0

〈∇u(s), γu(s)×∇hk + κ1∇hk〉L2 dWk(s)
]

= 0 ,

and invoking (6.5)–(6.6) and (6.4) we obtain

1

2
E‖∇u(t)‖2

L2 + κ1E
∫ t

0

‖∆u(s)‖2
L2 ds ≤

1

2
‖∇u0‖2

L2 + c+ ct,

which implies

E
∫ t

0

‖∆u(s)‖2
L2 ds ≤ c+ ct .

This completes the proof of this lemma.

For T > 0, p ≥ 4 and 1
2
> β > 1

4
let

Z := L2(0, T ;H1) ∩ Lp(0, T ;L4) ∩ C
(
[0, T ];X−β

)
∩ C([0, T ];H1

w)

=: Z̃ ∩ C([0, T ];H1
w)

where H1
w denotes the space H1 endowed with the weak topology of H1. We will

denote by T be the supremum of the corresponding four topologies, i.e. the smallest
topology on Z such that the four natural embedding from Z are continuous.

Theorem 6.2. Assume that an H1-valued sequence {u0,l}l∈N is convergent weakly in
H1 to u0 ∈ H1. Let C1 > 0 be such that supl∈N ‖u0,l‖H1 ≤ C1. Let (Ω,F ,F,P,ul,W )
be a unique solution of (1.3) with the initial data u0,l. Then there exist

• a subsequence {lk}k,

• a stochastic basis (Ω̃, F̃ , F̃, P̃),

• a standard F̃-Wiener process W̃ = (W̃j)
∞
j=1 defined on this basis,

• progressively measurable processes ũ, {ũlk}k∈N (defined on this basis) with laws
supported in (Z, T ) such that

ũlk has the same law as ulk on Z
ũlk → ũ in Z as k →∞, P̃− a.s.,
and ũ is a solution of the stochastic LLB equation with the initial data u0.

Proof. Step 1. From Theorem 2.3 and Corollary 2.4, given the inital data u0,l ∈ H1

there exists a unique solution ul to equation (1.3) defined on the stochastic basis
(Ω,F ,F,P,W ). Since C([0, T ];H1

w) is a non-metric space, we use the Jakubowski’s
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version of the Skorokhod theorem proved in [13], see also Theorem 7.4 in the Ap-
pendix.
Step 2. We show that the sequence {ul} of Z-valued Borel random variables defined

on (Ωl,F l,Fl,Pl) satisfies the condition of Theorem 7.4.
Let

Y(β) = Wα,p(0, T ;X−β) ∩ L∞(0, T ;H1) ∩ L2(0, T ;H2)

denote a Banach space endowed with the norm

‖u‖Y(β) = ‖u‖Wα,p(0,T ;X−β) + ‖u‖L∞(0,T ;H1) + ‖u‖L2(0,T ;H2) .

By noting that {u0,l}l is uniformly bounded in H1 and using (2.2)–(2.3), we deduce
that for α ∈ [0, 1

2
), p ≥ 4 and for all l = 1, 2, · · · ,

ul ∈ L2p
(
Ω;C([0, T ];H1

w)
)

and El‖ul‖Y(β) ≤ c,

where c is a positive constant only depending on C1, p ≥ 1 and h. Let

BR(β) := {v ∈ Y(β) : ‖v‖Y ≤ R}.

By the Chebyshev inequality and the above uniform bound of {ul}, we infer that

sup
l∈N

Pl
(
{ul ∈ BR(β)}

)
≥ 1− c

R2
(6.7)

The following compact embedding

Wα,p(0, T ;X−β1) ∩ Lp(0, T ;H1) ∩ L2(0, T ;H2) ↪→ Z̃, (6.8)

holds for β1 ∈ (0, β). Therefore,

BR (β1) is a compact subset in Z̃. (6.9)

By Theorem 2.1 in [23] we have for any β ≥ 0 a continuous imbedding2.

L∞(0, T ;H1) ∩ C([0, T ];X−βw ) ⊂ C([0, T ];H1
w)

As a consequence we find that for a certain r > 0 we have BR (β1) ⊂ Z̃∩C([0, T ];B1
w(r))

where C([0, T ];B1
w(r)) is the metric subspace in C([0, T ];H1

w) and B1
w(r) was defined

on p.4. Let {vn} be a sequence in BR (β1). Then {vn} is uniformly bounded in
Wα,p(0, T ;X−β) ∩ L∞(0, T ;H1) ∩ L2(0, T ;H2). It follows from (6.8)–(6.9) that there
exist a subsequence of {vn} (still denoted by {vn}) and v ∈ BR (β1) satisfying

vn → v in Z̃, and vn → v weak? in L∞(0, T ;H1),

2In fact, the continuous imbedding is not explicitly stated in Theorem 2.1 but in our case it can
be easily deduced from the proof.
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which implies
lim
n→∞

sup
s∈[0,T ]

| 〈vn(s)− v(s),h〉H1 | = 0 ∀h ∈ H1.

Therefore, vn → v in Z̃ ∩ C([0, T ];B1
w(r)). This together with (6.9) implies

BR (β1) is a compact subset in Z. (6.10)

Now, taking into account (6.7), (6.10), the proof of the theorem follows from
Theorem 7.4.

Let us recall that by Corollary 2.4 equation (2.4) has a unique weak solution that, in
view of Theorem 2.2, defines a H1-valued Markov process u. Therefore, we can define
its transition semigroup: for any φ ∈ Bb(H1), i.e. a bounded and Borel function
φ : H1 → R we define

Ptφ(u0) := E[φ(u(t;u0))], ∀u0 ∈ H1, (6.11)

where u(t,u0) stands for the process u starting at time t = 0 at u(0) = u0. The
next result states the sequentially weak Feller property of Pt.

Lemma 6.3. Let φ : H1 → R be a bounded and sequentially weakly continuous
function and let u0,l → u0 weakly in H1 as l→∞. Then for every t ≥ 0

Ptφ(u0,l)→ Ptφ(u0) as l→∞ .

Proof. Assume that u0,l → u0 weakly in H1 as l → ∞. By Theorem 6.2, there
exist a subsequence of ul (still denoted by ul), a stochastic basis (Ω̃, F̃ , F̃, P̃), an R∞-
valued standard F̃-Wiener process W̃ = (W̃j)

∞
j=1 defined on this basis, progressively

measurable processes ũ and {ũl}l∈N (defined on this basis) with laws supported in
(Z, T ) such that

ũl has the same law as ul on Z (6.12)

and
ũl → ũ in Z as l→∞, P̃− a.s.

Hence,
Ẽ[φ(ũ(t))] = E[φ(u(t;u0))] =: Ptφ(u0), (6.13)

and ũl → ũ in C([0, T ;H1
w), P̃-a.s. This together with the sequential weak continuity

of φ implies
φ(ũl(t))→ φ(ũ(t)) in R.

Therefore, since the function φ is bounded, by the Lebesgue Dominated Convergence
Theorem we infer that

lim
l→∞

Ẽ[φ(ũl(t))] = Ẽ[φ(ũ(t))]. (6.14)
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Note that equality of laws (6.12) yields equality of laws of ũl(t) and ul(t) for every
t ≥ 0. Thus by (6.13)–(6.14) we obtain

lim
l→∞

Ptφ(u0,l) = lim
l→∞

E[φ(ul)] = lim
l→∞

Ẽ[φ(ũl(t))] = Ẽ[φ(ũ(t))] = Ptφ(u0),

and the lemma follows.

Theorem 6.4. Let D ⊂ R or D ⊂ R2. Then there exists at least one invariant
measure for equation (1.3).

Proof. Lemma (6.3) implies that the semigroup {Pt}t≥0 is sequentially weakly Feller
in H1. Using the Chebyshev inequality and Lemma 6.1, we infer that for every T > 0
and R > 0

1

T

∫ T

0

P({‖u(s;u0)‖H1 > R}) ds ≤ 1

TR2

∫ T

0

E[‖u(s;u0)‖2
H1 ] ds ≤

c+ cT

TR2
,

where c is the constant only depending on u0 and h. Hence, thanks to the Maslowski-
Seidler theorem, see [18] or Theorem 7.3, we infer that there exists at least one
invariant measure for equation (1.3).

7 Appendix

Lemma 7.1. Assume that E is a separable Hilbert space, p ∈ [2,∞) and α ∈ (0, 1
2
).

Then there exists a constant c depending on T and α such that for any progressively
measurable process ξ = (ξj)

∞
j=1 there holds

E‖
∞∑
j=1

I(ξj)‖pWα,p(0,T ;E) ≤ cE
∫ T

0

( ∞∑
j=1

|ξj(t)|2E
) p

2 dt,

where I(ξj) is defined by

I(ξj) :=

∫ t

0

ξj(s) dWj(s), t ≥ 0.

In particular, P–a.s. the trajectories of the process I(ξj) belong to Wα,2(0, T ;E).

Lemma 7.2. [22, Corollary 19] Suppose s ≥ r, p ≤ q and s − 1/p ≥ r − 1/q
(0 < r ≤ s < 1, 1 ≤ p ≤ q ≤ ∞). Let E be a Banach space and I be an interval of
R. Then

W s,p(I;E) ↪→ W r,q(I;E).

Let us recall the Maslowski-Seidler theorem [18] about the existence of an invariant
measure.
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Theorem 7.3. Assume that

1. the semigroup {Pt}t≥0 is sequentially weakly Feller in H1;

2. there exists T0 ≥ 0 such that for any ε > 0 there exists R > 0 satisfying

sup
T>T0

1

T

∫ T

0

P({‖u(s;u0)‖H1 > R}) ds ≤ ε,

Then there exists at least one invariant measure for equation (1.3).

Let us recall the Jakubowski’s version of the Skorokhod Theorem [13]

Theorem 7.4. Let (X , τ) be a topological space such that there exists a sequence
{fm} of continuous functions fm : X → R that separates points of X . Let {Xn} be a
sequence of X -valued Borel random variables defined on (Ωn,Fn,Pn). Suppose that
for evey ε > 0 there exists a compact subset Kε ⊂ X such that

sup
n∈N

Pn({Xn ∈ Kε}) > 1− ε.

Then there exist a subsequence {nk}k∈N, a sequence {Yk}k∈N of X–valued Borel ran-
dom variables and an X–valued Borel random variable Y defined on a certain proba-
bility space (Ω,F ,P) such that

L(Xnk) = L(Yk), k = 1, 2, · · ·

and
Yk →τ Y as k →∞, P− a.s.
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[5] Z. Brzeźniak and L. Li. Weak solutions of the stochastic Landau–Lifshitz–Gilbert
equation with non–zero anisotrophy energy. Applied Mathematics Research eX-
press, (2016).

33
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