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Abstract

Bachtiar, Ivers and James (2006, BIJ), and Bachtiar & James
(2010), showed that a planar fluid velocity v can support dynamo
action in a conducting sphere. BIJ also tried to convert some his-
torical flows to planar flows, via a process they termed ‘planarizing’.
In particular BIJ studied one of many flows considered by Pekeris,
Accad and Shkoller (1973, PAS). The PAS flow was chosen because
it produced a dynamo at low truncation levels and critical magnetic
Reynolds number Rc, this possibly influenced by it being a helical
Beltrami flow (i.e. ∇×v ‖ v). BIJ were able to planarize the poloidal
part of the PAS flow, but not the toroidal part. The present paper
considers more partly planarized PAS flows; and two modifications of
PAS, labelled biPAS and quasiPAS, that can be fully planarized. Bi-
PAS flows are just a sum of two PAS flows, and quasiPAS are PAS-like
with a modified radial cell structure for the toroidal flow. We have
studied 128 models using these flows, found 96 dynamos including 84
new dynamos, but found no dynamos with fully planar flows. The
partly planarized PAS, the biPAS and quasiPAS flows are not Bel-
trami. But 20 (normalized using rms(v), or 22 using max |v|) Rc of
the associated dynamos are lower than the Rc of the Beltrami dynamos
from which they were derived, showing that the Beltrami property is
not essential for low Rc.
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1 Introduction

It is generally believed that a magnetohydrodynamic dynamo process is re-
sponsible for the large-scale behavior of the geomagnetic field and other as-
troplanetary magnetic fields. This report has evolved from an attempt to
find dynamos maintained by incompressible purely planar flows, i.e. where
the conducting fluid’s velocity

v = ∇× (fez) (1)

is perpendicular to the cartesian unit vector ez, and has streamlines f =
const., z = const. We will adopt the terminology of Bachtiar, Ivers &
James (2006, BIJ). The existence of planar velocity dynamos is precluded
in some circumstances by an antidynamo theorem, the Planar Velocity The-
orem (PVT) (Zel’dovitch & Ruzmaikin 1980; BIJ; Bachtiar & James 2010,
BJ). The PVT applies when v and the induced magnetic field B decrease
sufficiently fast as radius r → ∞; and when the conducting volume V is
either all space V∞, or has its boundary Σ everywhere normal to ez (e.g.
when V is a plane layer |z| ≤ const. or half-space |z| ≤ 0). But the PVT
proofs fail when V is finite (BIJ). In particular, for V being a sphere with an

insulating exterior V̂ , BIJ discovered a model, their p1Y22DM12, where B

did not decay in time (corroborated by BJ; Li, Livermore & Jackson (2010,
LLJ). [We note that there is some variability and misunderstanding in the
literature concerning 2D flows, planar flows and the PVT, as discussed in the
Appendix.]

The mathematical problem for a spherical conductor V is to find a non-
decaying B that evolves according to the kinematic dynamo equations

∂B

∂t
= R∇× (v × B) + ∇2B , in V,

(2)
∇× B = 0 , in V̂ ,

here non-dimensionalized on the diffusion time scale and radius of V as length
scale. The exterior V̂ is assumed current-free. Since v is steady, solutions
B = Bλ(r) eλt can be sought. The fundamental aim is to find, if it exists,
the smallest critical magnetic Reynolds number Rc where ℜ(λ) = 0.

Following BIJ, field B is expanded in poloidal-toroidal vectors Sm
n , Tm

n , and
similarly for v, sm

n , tm
n . Also expanding f =

∑
n,m fm

n (r)Y m
n (θ, φ) in spherical

2



harmonics, BIJ showed that the corresponding poloidal and toroidal velocity
coefficients for planar velocity (1) were (with superscript m suppressed)

sn =
im

n(n + 1)
fn , (3)

tn−1 =
αn

n
dn+1fn , (4)

tn+1 = − αn+1

n + 1
d−nfn . (5)

Here αn :=
√

[(n2 − m2)/(4n2 − 1)] and dn := d/dr+n/r. Thus, for given fn,
the planar flow will generally have vector form sn+tn−1+tn+1. By prescribing
fn BIJ used (3)–(5) to find λ and Bλ. In particular, the successful BIJ planar
flow of model p1Y22DM12 used stream function

f = 2ℜ
{
f 2

2 Y 2
2

}
where f 2

2 = r2(1 − r2) . (6)

Variations with f 2
2 Y 2

2 replaced by rn(1 − rq)Y m
n , with q = 2, 4, 6, ...; n,m =

2, 4; and including shell geometry, also exhibit dynamo action (Bachtiar
2009). But all these planar flow models suffer from slow convergence w.r.t.
the discretization levels of the numerical solution.

Apart from investigating p1Y22DM12, BIJ also tried to transform several
historical flows into planar flows consistent with (3)–(5). They coined the
phrase ‘planarizing’ for this process, which comprised several steps.

To planarize a given sn flow where m 6= 0, (3) can be solved for fn =
−in(n + 1)sn/m, and tn±1 then found from (4),(5).

To planarize a given tn flow two paths can be considered. (a) If αn+1 6= 0
then, assuming a fixed boundary at r = 1, (4) can be solved for

fn+1 =
n + 1

αn+1

r−n−2

∫ r

1

rn+2 tn dr , (7)

and (3),(5) used to create sn+1, tn+2. A necessary condition for v to be
single-valued at r = 0 is fn+1(0) = 0 which, given(7), requires

∫ 1

0

rn+2 tn dr = 0 . (8)

If (8) is satisfied then a planar flow can be found with form tn + sn+1 + tn+2.
Alternatively (b) if αn 6= 0 then (5) can be solved for

fn−1 = − n

αn

rn−1

∫ r

1

r−n+1 tn dr , (9)
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and (3),(4) used to create sn−1, tn−2. In this case a consistency condition like
(8) is not required and the resulting planar flow has form tn + sn−1 + tn−2.

BIJ referred to flows as ‘partly planarized’ when only the poloidal s, or
toroidal t component of the flow was planarized. It is convenient to introduce
parameters ps, pt and label flows as (ps, pt)-planarized. In this paper we
consider only ps, pt = 0 or 1, so (0, 0)-planarized means unplanarized flow,
(1, 0) means the s component is planarized, (0, 1) means the t component is
planarized, and (1, 1) means both s and t components are planarized.

Since the spherical harmonic order m = 2 for all flows herein, the magnetic
field decouples into chains

M02 : Sm
n , Tm

n ; n = 1, 2, 3, . . . ; m = 0(mod2) ;
(10)

M12 : Sm
n , Tm

n ; n = 1, 2, 3, . . . ; m = 1(mod2) ;

which can be considered separately as dynamo candidates. The first mode
S0

1 in M02 is an axial dipole, whereas S1
1 in M12 is an equatorial dipole.

We note that in the real formalism of PAS, flow (11) permits decoupling
into 4 independent magnetic chains labelled A,B,C,D by PAS. But with any
planarization, even only (1,0) or (0,1), such decoupling fails, whilst the de-
coupling in (10) remains valid.

One particular flow considered by BIJ was an s2
2, t22 flow of Pekeris, Accad

and Shkoller (1973, PAS). Using their formulae, BIJ could only planarize s2
2

since t22 failed the consistency condition (8). However, the resulting (1, 0)-
planarized PAS flow produced an M02 dynamo with smaller Rc than the
original PAS flow (BIJ). This result and the good convergence of PAS models
prompted us to modify, as described in §2.1, the original PAS flows to forms
that can be fully (1,1)-planarized by the BIJ procedure, the aim being to find
planar flow dynamos with better convergence than p1Y22DM12 and related
models.

2 PAS based flows

In the following subsection §2.1 we give the background theory for partly
planarizing PAS flows. In §§2.2,2.3 we describe our 2 modifications to PAS,
i.e. biPAS and quasiPAS, that allow full planarization.
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2.1 PAS flows

PAS found a number of kinematic dynamos based on helical Beltrami flows
(i.e. ∇× v ‖ v) in particular

v = 2ℜ{s2
2 + t2

2}, (11)

where

s2
2 = KΛi j2(Λir) , t22 = Λi s

2
2 . (12)

Here Λi is the ith positive root of the spherical Bessel function j2, and K =√
(6/5) in the BIJ formalism. For geophysical and convergence reasons PAS

initially paid special attention to the case i=3. This is the flow considered
by BIJ and Dudley & James (1989, DJ).

Whilst the PAS flow (11) cannot be fully planarized, its s2
2 component can

be planarized by using (3),(5) and the spherical Bessel property

d−n jn(Λr) = −Λr jn+1(Λr) . (13)

One can thus construct an add-on component

t23 = −α2
3

3
d−2 f 2

2 = −i α3KΛ2
i j3(Λir) . (14)

[Equation (4) yields t21 = 0 as usual for spherical harmonic coefficients.] The
combination 2ℜ{s2

2 + t2
3} is then planar, and (11) is (1,0)-planarized to

v = 2ℜ{s2
2 + t2

3 + t2
2} . (15)

Our results for the (0,0)-PAS flow (11) and the (1,0)-planarized PAS flow
(15) are given in §3.1.

2.2 BiPAS flows

Our first modified PAS flow, designated biPAS, is defined as the superposition
of two flows of PAS type (12), i.e.

s2
2 = KΛi j2(Λir) + CKΛk j2(Λkr) , (16)

t22 = KΛ2
i j2(Λir) + CKΛ2

k j2(Λkr) , (17)
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where C = const. 6= 0, Λi and Λk (k 6= i) are the ith and kth positive roots of
j2(r), and K =

√
(6/5) as before. Whilst this biPAS flow is the superposition

of 2 Beltrami flows, it is itself not Beltrami. Use of the Bessel property

∫
rn+1jn−1(Λr) dr =

1

Λ
rn+1 jn(Λr) + const. (18)

shows that consistency condition (8) is satisfied by choosing

C = − Λi j3(Λi)

Λk j3(Λk)
. (19)

Substituting (19) into (16),(17) yields

s2
2 =

KΛi

j3(Λk)
[j3(Λk)j2(Λir) − j3(Λi)j2(Λkr)] , (20)

t22 =
KΛi

j3(Λk)
[Λi j3(Λk)j2(Λir) − Λk j3(Λi)j2(Λkr)] . (21)

The biPAS flow defined by (16), (17) reverts to a PAS flow if C = 0, and
yields free decay if i = k, whence C = −1 by (19). To planarize s2

2 in (20)
we used (3),(5) and (13) to construct the add-on

t23 = i α3

KΛi

j3(Λk)

(
− Λi j3(Λk) j3(Λir) + Λk j3(Λi) j3(Λkr)

)
. (22)

To planarize t22 in (21), we used (7),(3),(5)(13) to construct the add-ons

s2
3 =

i
√

7

2

KΛi

j3(Λk)

(
j3(Λk)j3(Λir) − j3(Λi)j3(Λkr)

)
, (23)

t24 =

√
3

2

KΛi

j3(Λk)

(
Λi j3(Λk)j4(Λir) − Λk j3(Λi)j4(Λkr)

)
. (24)

The resulting combination

v = 2ℜ{s2
2 + t2

3 + t2
2 + s2

3 + t2
4} (25)

is then a fully planarized biPAS flow, or (1,1)-biPAS for short. Our results
for biPAS flows are given in §3.2.
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2.3 QuasiPAS flows

Our second modification of PAS is the quasiPAS flow defined by changing
the radial argument of the PAS t22 flow component, i.e. replacing (12) by

s2
2 = KΛi j2(Λir) , t22 = KΛ2

i j2(Γkr), (26)

where Γk is the k-th positive root of j3 rather than j2 as in PAS. Like biPAS,
the quasiPAS flow is not Beltrami. Using (18), the quasiPAS flow (26) can
be shown to satisfy the consistency condition (8).

The planarization of s2
2 is achieved as in §2.1, by the addition of t23 given by

(14). To planarize t22 in (26) we use (7),(3),(5),(13) to construct the add-ons

s2
3 =

iK

2α3

Λ2
i

Γk

j3(Γk r), (27)

t24 =

√
3

2
KΛ2

i j4(Γk r). (28)

The resulting fully planarized (1,1)-quasiPAS flow has the same form as (25).
Our results for quasiPAS flows are given in §3.3.

3 Results

In §§3.1–3.3 that follow we give results corresponding to the flows defined in
§§2.1–2.3. But first we given some common background concerning notation
and numerical method.

Including planarization parameters ps, pt to allow full, part or no planariza-
tion, yields PAS, biPAS and quasiPAS flows with general form

v = 2ℜ{(s2
2 + pst

2
3) + (t2

2 + pt(s
2
3 + t2

4))} . (29)

The poloidal and toroidal scalar functions for (29) are given by

(i) (12),(14) for PAS, with pt = 0 since (8) can’t be satisfied;

(ii) (20)–(24) for biPAS;

(iii) (26)–(28) for quasiPAS.
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Since m = 2 for all flows in this paper, a rotation through ∆φ = π/2 simply
reverses the flow. So any Rc occur in ± pairs and we may assume R > 0.
Because some results depend on velocity normalization, we use 3 different
magnetic Reynolds numbers:

(i) un-normalized R′, notation as in PAS, calculated from (2) using v given
by (12),(14);

(ii) R = vrms R′ as in PAS, normalized using vrms =
√ [

3/(4π)
∫

V
|v|2 dV

]
;

(iii) R↑ = vmax R′ normalized using vmax = maxV |v|. Results based on R↑

may differ markedly from those using R. So we use a ↑ generally to indi-
cate when differences occur. For results independent of normalization,
the ↑ will be omitted.

vrms was calculated using the orthogonality of sm
n , tm

n which implies

vrms =

[
∑

n,m

3n(n + 1)

∫ 1

0

(
n(n + 1) |sn|2 +

∣∣∣∣
d(rsn)

dr

∣∣∣∣
2

+ |rtn|2
)

dr

]1

2

.

(30)

vmax was estimated by finding maxV |v| over r, θ, φ grids using interval-
halving with re-used v evaluations and the symmetry v(φ) = −v(φ + π/2).
The grids were chosen fine enough to obtain about 4 digit accuracy. Similar
calculations using x, y, z grids gave good agreement.

The dynamo problem (2) was discretized using second-order finite differences
with J radial subdivisions and Legendre degrees n ≤ N . The critical Rc

was determined by considering convergence of λ w.r.t. J and N , this being
shown by BJ to be a sensitive test. Generally we searched for non-decaying
B over at least the interval 0 < R′ < 4, and for relatively small frequency
ω = ℑ(λ). If that failed we searched more widely over at least 0 < ω < 100.
These search regions are much more extensive than the region needed for the
original (0,0)-PAS flows (11) where R′

c . 2.76 with ω = 0 suffices.

For brevity we will use labels like bPASps0pt1ΛiΛkM12 for the biPAS model
with ps =0, pt =1, Λi, Λk, M12; and qPASps1pt0ΛiΓkM02 for the quasiPAS
model with ps = 1, pt = 0, Λi, Γk, M02; and similarly for other models. We
also use abbreviated substrings, e.g. ps0pt1, Λ1Γ2, where the context clearly
identifies other parameters. For comparing Rc-values we will use the (0,0)-
PAS results as a benchmark, and consider the effects of planarizing, and
dependence on magnetic chains and velocity normalization.
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3.1 PAS results

PAS reported results for the (0,0) flows (11) with Λi (i = 1, . . . , 8, 10, 15, 20)
for chain M02, and with Λi (i = 1, 2, 3) for M12. They found working
dynamos in all those cases (PAS Tables 4,8).

Since PAS flows cannot be (0,1) or (1,1)-planarized, we here report only on
(0,0) and (1,0) planarizations, the latter using (15). And since pt = 0 for
all these models we will suppress the pt0 sublabel in this section. We used
Λi (i = 1, . . . , 5, 10, 15, 20) for both M02 and M12, specifically

Λ1 = 5.7634 . . . , Λ2 = 9.0950 . . . , Λ3 = 12.322 . . . , Λ4 = 15.514 . . .
(31)

Λ5 = 18.689 . . . , Λ10 = 34.470 . . . , Λ15 = 50.205 . . . , Λ20 = 65.927 . . .

and our results are shown in Table 1.

BIJ considered only Λ3 and chain M02, but found that the (1,0)-planarized
PAS flow (15) produced a working dynamo with unnormalized R′

c(ps1Λ3M02)
= 0.23 noticeably smaller than the original (0,0)-PAS R′

c(ps0Λ3M02) = 0.37.
[R′

c was wrongly reported as 0.27 in BIJ but correctly depicted as 0.23 in BIJ’s
Figure 5(c).] BIJ did not consider velocity normalization, for which Table 1
shows that the difference is even larger, namely Rc(ps1Λ3M02) = 19.6 (67.9↑)
compared with Rc(ps0Λ3M02) = 29.3 (112↑).

The roots (31) represent 8 flows for each of the (0,0),(1,0) planarizations,
giving 16 flows for each magnetic chain M02,M12, and 32 PAS models in total.
All 32 models work as stationary dynamos, with Rc as in Table 1. Convergent
solutions were obtained at tractable truncation levels J ≤ 1600, N ≤ 30
with eigenmatrix sizes tending to increase with Λi but . 50GB. Of these,
11 (i.e. all the ps0ΛiM02 (i = 1, . . . , 5, 10, 15, 20) and ps0ΛiM12 (i ≤ 3))
were reported in PAS Tables 4,8 which agree closely with Table 1 herein;
and ps1Λ3M02 was reported by BIJ. [We also found that other i-values, e.g.
i = 6, . . . , 9, 11, . . . 14, 16, . . . , 19 produce working dynamos, but results are
omitted here since they don’t add substantially to the discussion.] So Table 1
contains 20 new dynamos and leads to the following comments.

For fixed Λi, the effects of planarizing are opposite for M02, M12. For
M02, Rc(ps1Λi) < Rc(ps0Λi). So (1,0)-planarizing reduces Rc. Indeed all
8 (1,0) M02 models have significantly lower Rc than the corresponding (0,0)
models. [Notably, for M02 the least (1,0)-PAS Rc, i.e. Rc(ps1Λ20) = 18.8
and R↑

c(ps1Λ2) = 54.5, are also significantly less than the least (0,0)-PAS,
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Rc(ps0Λ20) = 26.3 and R↑
c(ps0Λ2) = 102.] On the other hand, for M12

Rc(ps1Λi) > Rc(ps0Λi). So (1,0)-planarizing increases Rc. All 8 (1,0) M12
models have higher Rc than the corresponding (0,0) models, but by relatively
small differences compared to the M02 case. [For M12, the least (1,0) Rc, i.e.
Rc(Λ20) = 19.0, is a bit greater than the least (0,0), Rc(Λ20) = 15.1, but
the least (1,0) and least (0,0) R↑

c , i.e. R↑
c(Λ20) and R↑

c(Λ1), are both ≈ 32.]

Rc and R↑
c exhibit contrasting trends w.r.t. their dependence on Λi, as

depicted in Figure 1. (i) The vrms Rc decrease monotonically as i, Λi in-
crease, and approach asymptotic minima close to Rc(ps0Λ20M02) = 26.3
(this one known to PAS), Rc(ps0Λ20M12) = 15.1, Rc(ps1Λ20M02) = 18.8,
and Rc(ps1Λ20M12) = 19.0. Also, for M12 there is very little dependence of
Rc on i. (ii) By contrast, the vmax R↑

c increase rapidly and linearly w.r.t. i
for i & 3.

For a given flow, i.e. for ps, Λi fixed, Rc(ps0M12) < Rc(ps0M02) ∀i, and
Rc(ps1ΛiM12) < Rc(ps1ΛiM02) for i < 5. For ps = 1 and i ≥ 5 there is little
M dependence, indeed Rc(ps1M12)=Rc(ps1M02) to 2 digits. So where there
is noticeable difference, M12 is advantageous in producing lower Rc.

Overall the least (0,0)-PAS Rc is just less than the least (1,0) Rc [i.e. Rc(ps0
Λ20M12) = 15.1 < Rc(ps1Λ20M02) = 18.8]. But the least (0,0) and least
(1,0) R↑

c are almost equal [R↑
c(ps0Λ1M12) = 32.3, R↑

c(ps1Λ1M12)= 32.4].

3.2 BiPAS results

Relations (20)–(24) for s2
2, t

2
2, t

2
3, s

2
3, t

2
4 are all antisymmetric w.r.t. interchange

of i, k except for a multiplicative factor τik := Λi/j3(Λk). So interchange of
i, k corresponds to flow reversal (or reversing sign(R)) which can be counter-
acted by rotation of coordinate frame through ∆φ = π/2 as earlier indicated.
And normalizing Rc removes dependence on the factor τik, so if Rc exists

Rc(ΛiΛk) = Rc(ΛkΛi) . (32)

Also, if i = k then s2
2 , . . . , t24 in (20)–(24) are all zero, corresponding to

free decay. So, for determining Rc it suffices to consider i < k. [Aside:
numerical tests on the ratio ρ := |τik/τki| show that |ρ − 1| < .05 . It
follows by interchanging i, k in (20)–(24) that even without normalization
|R′

c(ΛiΛk) − R′
c(ΛkΛi)| . 5%.]
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Figure 1: Rc(PAS) vs i showing monotonic decrease to asymptotic limits,
and R↑

c(PAS) vs i showing linear increase, for ps =0, 1 and chains M01,M12.
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M02 M12

ps pt i vrms vmax Rc R
↑
c Rc R

↑
c

0 0 1 36.14 66.92 99.8 185. 17.4 32.3
2 58.69 166.7 35.8 102. 15.6 44.3
3 80.19 305.9 29.3 112. 15.3 58.5
4 108.3 469.6 27.7 132. 15.2 72.8
5 130.8 681.5 27.0 156. 15.2 87.3
10 241.9 2318. 26.4 279. 15.1 160.
15 352.6 4918. 26.3 405. 15.1 233.
20 433.2 8756. 26.3 531. 15.1 306.

1 0 1 38.64 64.81 45.2 75.9 19.3 32.4
2 62.74 161.4 21.2 54.5 19.2 49.3
3 85.73 296.3 19.6 67.9 19.1 65.9
4 108.3 469.6 19.2 83.1 19.0 82.3
5 130.8 681.5 19.0 98.9 19.0 98.9
10 241.9 2318. 18.8 180. 19.0 182.
15 352.6 4918. 18.8 262. 19.0 265.
20 463.1 8480. 18.8 343. 19.0 347.

Table 1: Rc for PAS models, i.e. flow (29) with parameters ps = 0, 1 and
pt = 0; Bessel j2 roots Λi; and magnetic chains M02, M12.

We used the first three positive roots of j2(r) given in (31). So the ΛiΛk

combinations investigated were Λ1Λ2, Λ1Λ3, Λ2Λ3, giving 3 flows for each of
the (0, 0), (1, 0), (0, 1), (1, 1) planarizations, 12 flows for each of the magnetic
chains M02, M12, and a total of 24 biPAS models.

All 18 of the non-(1,1) models worked as dynamos but we found no dy-
namos amongst the 6 (1,1) candidates. For the non-(1,1) models convergence
w.r.t. truncation levels J, N was generally good, requiring J ≤ 500, N ≤ 50
and eigenmatrix sizes . 100GB. One exception ps0pt1Λ2Λ3M12 required
[J,N ] ∼ [300, 70], and matrix size ∼ 250GB. All but 2 of the dynamos were
stationary. The critical non-(1,1) Rc are shown in Table 2 leading to the
following comments.

For fixed Λi, Λk the effects on Rc of planarizing biPAS are different for M02,
M12. For M02, Rc(ps1pt0) < Rc(ps0pt0) < Rc(ps0pt1), i.e. (1,0)-planarizing
reduces Rc whereas (0,1)-planarizing increases Rc. [So for M02 the least
Rc are (1,0), namely Rc(ps1pt0Λ2Λ3M02) = 16.9 (70.7↑).] But for M12,
Rc(ps0pt0) < Rc(ps1pt0) < Rc(ps0pt1), i.e. any planarizing increases Rc. [So
the least Rc are (0,0), namely Rc(Λ1Λ2M12)= 13.1 (42.1↑).] It is noticeable
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M02 M12

ps pt i k vrms vmax ω Rc R
↑
c Rc R

↑
c

0 0 1 2 67.52 216.3 6.42 40.8 131. 13.1 42.1
1 3 85.31 257.2 33.0 107. 323. 18.9 56.9
2 3 98.83 455.1 22.8 105. 11.9 54.7

0 1 1 2 135.0 385.8 189. 540. 161. 459.
1 3 170.6 513.1 247. 744. 246. 739.
2 3 197.7 818.5 91.5 379. 2.8e2 1.1e3

1 0 1 2 72.19 210.3 25.4 73.9 15.1 44.0
1 3 91.20 277.1 24.4 74.0 25.9 78.6
2 3 105.6 441.7 16.9 70.7 14.3 59.8

Table 2: Rc for model biPAS (29) with planarization parameters ps, pt; Bessel
j2 roots Λi, Λk; magnetic chains M02, M12; and frequency ω = ℑ(λ), zero if
not shown.

that the Rc(bPASps0pt1) are all large (& 91 (379↑)). So planarizing the
toroidal flow alone, whilst it does produce dynamos, is disadvantageous.

For a given flow, i.e. ps, pt, Λi and Λk fixed, Rc(M12)<Rc(M02) for 7/9 of
the successful flows. So, like the PAS case, M12 is advantageous.

Because of velocity normalization and the i, k symmetry in (20),(21), a biPAS
flow with sub-label ΛiΛk can be derived from either the (0,0)-PASΛi or the
(0,0)-PASΛk flow. Comparing Tables 1,2 shows that 8 (3↑)/18 biPAS have
lower Rc than both the corresponding (0,0)-PAS dynamos. And overall the
least biPAS Rc is less than the least (0,0)-PAS [i.e. Rc(bPASps0pt0Λ2Λ3M12)
= 11.9 < Rc(PASps0pt0Λ20M12) = 15.1]. But for vmax normalization the
reverse holds: the least biPAS exceeds the least (0,0)-PAS [R↑

c(bPASps0
pt0Λ1Λ2M12) = 42.1 > R↑

c(PASps0pt0Λ1M12) = 32.3].

3.3 QuasiPAS results

For quasiPAS we investigated flows using Λi (i = 1, 2, 3), and Γk (k = 1, 2, 3),
the latter being the first 3 positive roots of j3:

Γ1 = 6.9879 . . . , Γ2 = 10.417 . . . , Γ3 = 13.698 . . .

So 9 Λi, Γk combinations were considered for each of the (0, 0), (1, 0), (0, 1),
(1, 1) planarizations; making 36 flows for each of the magnetic chains M02,
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M12; and a total of 72 quasiPAS models.

Amongst the 54 non-(1,1) models we found 46 dynamos, 23 M02 and 23
M12, 35 being stationary. But we found no successful (1,1) dynamos. The
quasiPAS models were much more problematic than PAS or biPAS, often
having higher Rc, needing higher truncation levels J ≤ 800, N ≤ 70 and
eigenmatrix sizes > 200GB, or showing no convergence even for relatively
small R. The The critical Rc for the non-(1,1) flows are shown in Table 3,
with the following implications.

For fixed Λi, Γk the effects on Rc of planarizing are again different for M02,
M12. For M02, Rc(ps1pt0) < min(Rc(ps0pt0),Rc(ps0pt1)) for 6/9 of the
Λi Γk combinations (here counting “-” as larger than any Rc). So (1,0)-
planarizing usually reduces Rc. [Indeed the least M02 Rc are Rc(ps1pt0Λ3Γ3)
= 28.2 (105↑).] For M12, Rc(ps0pt0) < min(Rc(ps1pt0),Rc(ps0pt1)) for 8
(7↑)/9 of the Λi Γk combinations. So for M12 any planarizing usually in-
creases Rc. [Indeed the least M12 Rc are Rc(ps0pt0Λ3Γ2) = 17.1 and
R↑

c(ps0pt0Λ2Γ1) = 44.0.]

The 46 successful quasiPAS dynamos include 20 flows where both M02,M12
work (i.e. 40 dynamos), and 14/20 of these flows have Rc(M12)<Rc(M02).
So M12 is advantageous, like PAS and biPAS but not as decisively. There
were 3 flows successful for M12 but not for M02, and 3 other flows vice versa.

Comparing Tables 1,3 shows that only 3 (5↑)/46 of the quasiPAS dynamos
have lower Rc than the corresponding (0,0)-PAS dynamos. And the overall
least quasiPAS Rc, i.e. Rc(ps0pt0Λ3Γ2M12) = 17.1 (56.0↑), are a bit larger
than the least (0,0)-PAS Rc(Λ3M12) = 15.1 and R↑

c(Λ1M12) = 32.3. Most
of the quasiPAS Rc were large (> 100) or not found.

3.4 Conclusion

The original aim of this investigation was to find a dynamo using a planar flow
defined by (1). The only known planar flow dynamos are model p1Y22DM12
of BIJ using stream function (6), and variations thereof (Bachtiar 2009),
but all these exhibit high Rc and slow convergence w.r.t. truncation levels
J, N . On the other hand, the PAS flows (26) produce dynamos with fast
convergence at low Rc. Since the PAS flows can’t be fully planarized by
the BIJ algorithm (4)–(9), we have investigated partly planarized (1,0)-PAS
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M02 M12

ps pt i k vrms vmax ω Rc R
↑
c ω Rc R

↑
c

0 0 1 1 32.86 72.84 68.4 152. 14.4 52.3 116.
1 2 29.33 77.39 - - 56.9 150.
1 3 27.86 75.50 - - 80.8 219.
2 1 66.09 161.9 8.6e2 2.1e3 18.0 44.0
2 2 54.84 177.6 36.9 101. 327. 19.2 62.2
2 3 49.84 190.7 17.4 2.1e2 8.0e2 49.8 191.
3 1 110.2 317.6 4.8e2 1.4e3 27.1 78.1
3 2 86.88 284.3 3.6e2 1.2e3 17.1 56.0
3 3 76.05 322.1 225. 953. 17.3 73.1

0 1 1 1 60.34 124.0 3.1e2 6.4e2 11e1 4.0e2 8.3e2
1 2 45.88 127.5 - - 4.6e2 1.3e3
1 3 38.91 127.0 - - - -
2 1 142.3 304.7 2.7e2 5.8e2 7e1 4.6e2 9.8e3
2 2 103.5 306.9 109. 322. 1.7e2 4.1e2 1.2e3
2 3 84.01 315.2 10e1 4.5e2 1.7e3 - -
3 1 256.2 553.1 4.4e2 9.4e2 361. 7.8e2
3 2 183.2 556.6 71. 282. 857. - -
3 3 145.6 561.7 87. 3.4e2 - -

1 0 1 1 35.59 67.81 70.8 135. 21.8 50.9 97.0
1 2 32.36 74.52 222. 511. 19 3.1e2 7.1e2
1 3 31.03 74.00 2.2e2 5.2e2 3.4e2 8.1e2
2 1 69.72 194.4 5.9e2 1.6e3 20.1 56.1
2 2 59.16 166.5 77.5 218. 12 36.0 101.
2 3 54.56 180.9 32.0 106. 55.1 183.
3 1 114.2 367.8 383. 1.23e3 31.6 102.
3 2 92.02 336.3 2.9e2 1.0e3 19.9 72.6
3 3 81.81 303.6 28.2 105. 22.0 81.7

Table 3: Rc for model quasiPAS (29) with planarization parameters ps, pt;
Bessel j2 roots Λi, j3 roots Γk; magnetic chains M02, M12; and frequency
ω = ℑ(λ), zero if not shown. Rc not found is indicated by “-”.

flows (15) and these exhibit equally good convergence and low Rc as shown
in Table 1. So, seeking planar flow dynamos with better convergence than
p1Y22DM12, we have investigated 2 modifications of PAS flows: (i) biPAS
given by (20),(21), and (ii) quasiPAS given by (26). All investigated flows
have the form (29) with planarization parameters ps, pt = 0, 1. Altogether
we have studied 32 PAS, 24 biPAS and 72 quasiPAS models with flows of the
form (29), and magnetic chains M01,M02 given by (10). We have confirmed
12 known PAS dynamos, and found 84 new dynamos comprising 20 PAS, 18
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biPAS and 46 quasiPAS. But we have found no fully planar flow dynamos.
Generally we have found (i) that the M12 magnetic chain has lower Rc than
M02; (ii) that the (1,0) partly planarized dynamos have lower Rc for M02,
and the (0,0) unplanarized dynamos have lower Rc for M12.

Whilst (0,0)-PAS flows are helical Beltrami flows, the (1,0)-PAS, and all
the biPAS and quasiPAS flows are not. Nevertheless, of the non-Beltrami
dynamos, 20 (22↑) possess lower Rc than the corresponding (0,0) PAS dy-
namos. So helicity is not necessary for an efficient dynamo in the sense of
having lower Rc. Indeed for vrms normalization the overall least Rc found was
the non-Beltrami Rc(bPASps0pt0Λ2Λ3M12) ≈ 12, compared with the least
Beltrami Rc(PASps0pt0ΛiM12) ≈ 15 (i = 3, . . . , 20). But such comparisons
depend on velocity normalization. For vmax normalization the overall least
were the Beltrami (0,0)-PAS and non-Beltrami (1,0)-PAS R↑

c(Λ1M12), both
≈ 32, considerably less than the least biPAS R↑

c(ps0pt0Λ1Λ2M12) ≈ 42 and
least quasiPAS R↑

c(ps0pt0Λ3Γ2M12) ≈ R↑
c(ps1pt0Λ2Γ1M12) ≈ 56.

Tables 1,2 show a low range for the (0,0)-PAS dynamos: Rc ∼ 15−100 (32↑−
531↑), and even lower for the (1,0)-PAS: Rc ∼ 19 − 45 (32↑ − 347↑) and
(1,0)-biPAS: Rc ∼ 14 − 26 (44↑ − 79↑). In contrast the BIJ planar flow
dynamo p1Y22DM12 has high Rc ∼ 317 (1150↑). Larger Rc generally require
larger truncation levels J and N , larger eigenmatrices and longer cpu solution
times. The difficulties in finding planar flow dynamos are perhaps partly due
to larger Rc, but the Rc of historical dynamos are quite variable. E.g. the
simple roll dynamos s1t1, s2t1, s2t2 of DJ have low Rc ∼ 32−104 (51↑−173↑),
whereas the Kumar-Roberts dynamos reported in DJ have higher Rc ∼ 398−
875 (808↑ − 1717↑), whilst still having very good convergence. This suggests
that the difficulties with planar flow dynamos are not due to high Rc alone.
Whilst the (1,0)-PAS and (1,0)-biPAS dynamos stand out for having very
low Rc, this work shows amongst other things that attempting to find planar
flow dynamos by modifying successful flows with low Rc does not necessarily
work. Finding a planar flow dynamo with good convergence remains an
outstanding problem.

Appendix: 2D and planar flows, and the PVT

In his early work on a PVT Zel’dovich (1957, Z) defined his 2D motion via
“vz = 0, vx and vy depend only on x and y”, with ∇ · v = 0. The subse-
quent Zel’dovich-Ruzmǎiken (1980, ZR) PVT removed the z-independence,
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describing their 2D motion by “vz = 0, vx = vx(x, y, z), vy = vy(x, y, z)”,
making their flow equivalent to (1). LLJ (p.8679) refer to “planar flows
(flows independent of the vertical coordinate z)”, and to “the z-independent
flow P1Y22DM12” of BIJ. We emphasize here that whilst v defined by (1) has
no ez component, it does generally depend on z. Indeed the z-dependence of
the flow for p1Y22DM12 is clearly present in Figure 2 of BIJ which includes
vφ meridional contours for the stream function (6).

For his PVT for finite V , Z assumed Bz ≡ 0 on the surface Σ of V , which is
not true in general. Otherwise both Z and ZR assumed V was all space. So
the PVTs of Z and ZR do not contradict the BIJ planar flow dynamo where
V is a conducting finite sphere surrounded by free space.
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