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ABSTRACT. Admissible W-graphs were defined and combinatorially characterised by Stem-
bridge in [12]. The theory of admissible W-graphs was motivated by the need to construct
W-graphs for Kazhdan–Lusztig cells, which play an important role in the representation theory
of Hecke algebras, without computing Kazhdan–Lusztig polynomials. In this paper, we shall
show that type A-admissible W-cells are Kazhdan–Lusztig as conjectured by Stembridge in his
original paper.

1. INTRODUCTION

Let (W,S) be a Coxeter system andH(W ) its Hecke algebra over Z[q,q−1], the ring of Laurent
polynomials in the indeterminate q. We are interested in representations of W andH(W ) that
can be described by combinatorial objects, namely W-graphs. In particular, we are interested
in W-graphs corresponding to Kazhdan–Lusztig left cells.

In principle, when computing left cells one encounters the problem of having to com-
pute a large number of Kazhdan–Lusztig polynomials before any explicit description of
their W-graphs can be given. In [12], Stembridge introduced admissible W-graphs; these can
be described combinatorially and can be constructed without calculating Kazhdan–Lusztig
polynomials. Moreover, the W-graphs corresponding to Kazhdan–Lusztig left cells are ad-
missible. Stembridge showed in [13] that for any given finite W there are only finitely many
stongly connected admissible W-graphs. It was conjectured by Stembridge that in type A all
strongly connected admissible W -graphs are isomorphic to Kazhdan–Lusztig left cells. In this
paper we complete the proof of Stembridge’s conjecture.

We shall work with S-coloured graphs (as defined in Section 3 below), of which W-graphs
are examples. These graphs have both edges (bi-directional) and arcs (uni-directional). A cell
in such a graph Γ is by definition a strongly connected component of Γ, and a simple part of Γ

is a connected component of the graph obtained from Γ by removing all arcs and all edges of
weight greater than 1. A simple component of Γ is the full subgraph of Γ spanned by a simple
part. If Γ is an admissible W-graph, simple components of Γ are also called molecules.

Admissible W-cells and admissible simple components are by definition cells and simple
components of admissible W-graphs.

In [4], Chmutov established the first step towards the the proof of Stembridge’s conjecture,
showing that the simple part of an admissible molecule of type An−1 is isomorphic to the
simple part of a Kazhdan–Lusztig left cell. The proof made use of the axiomatisation of dual

.
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equivalence graphs on standard tableaux generated by dual Knuth equivalence relations, given
in an earlier paper by Assaf [1]. Our proof makes use of Chmutov’s result.

We organize the paper in the following sections. Section 2 and Section 3 deal with the
background on Coxeter groups and the corresponding Hecke algebras. In Section 4 the
definition and properties of W-graphs are recalled. In Section 5, we recall the definitions
of admissible W-graphs and molecules and how these can be characterised combinatorially.
Section 6 presents combinatorics of tableaux and the relationship between Kazhdan–Lusztig
left cells, dual Knuth equivalence classes and admissible molecules. We introduce the paired
dual Knuth equivalence relation in Section 7. In Section 8, we prove the first main result,
namely that admissible W-graphs in type An−1 are ordered. The proof that type A-admissible
cells are isomorphic to Kazhdan–Lusztig left cells is completed in Section 9.

2. COXETER GROUPS

Let (W,S) be a Coxeter system and l the length function on W . The Coxeter group W comes
equipped with the left weak order, the right weak order and the Bruhat order, respectively
denoted by 6L, 6R and 6, and defined as follows.

DEFINITION 2.1. (i) The left weak order is the partial order generated by the relations
x6L y for all x, y ∈W with l(x)< l(y) and yx−1 ∈ S.

(ii) The right weak order is the partial order generated by the relations x 6R y for all
xy ∈W with l(x)< l(y) and x−1y ∈ S.

(iii) The Bruhat order is the partial order generated by the relations x6 y for all x, y ∈W
with l(x)< l(y) and yx−1 conjugate to an element of S.

Observe that the weak orders are characterized by the property that x6R xy and y6L xy
whenever l(xy) = l(x)+ l(y).

For each J ⊆ S let WJ be the (standard parabolic) subgroup of W generated by J, and let DJ
the set of distinguished (or minimal) representatives of the left cosets of WJ in W . Thus each
w ∈W has a unique factorization w = du with d ∈ DJ and u ∈WJ , and l(du) = l(d)+ l(u)
holds for all d ∈ DJ and u ∈WJ . It is easily seen that DJ is an ideal of (W,6L), in the sense
that if w ∈ DJ and v ∈W with v6L w then v ∈ DJ .

If WJ is finite then we denote the longest element of WJ by wJ . By [7, Lemma 2.2.1], if W
is finite then DJ = {d ∈W | d 6L dJ}, where dJ is the unique element in DJ ∩wSWJ .

3. HECKE ALGEBRAS

Let A= Z[q,q−1], the ring of Laurent polynomials with integer coefficients in the indetermi-
nate q, and let A+ = Z[q]. The Hecke algebra of a Coxeter system (W,S), denoted byH(W )
or simply byH, is an associative A-algebra with A-basis {Hw | w ∈W } satisfying

H2
s = 1+(q−q−1)Hs for all s ∈ S,

Hxy = HxHy for all x, y ∈W with l(xy) = l(x)+ l(y).

We let a 7→ a be the involutory automorphism of A= Z[q,q−1] defined by q = q−1. It is well
known that this extends to an involutory automorphism ofH satisfying

Hs = H−1
s = Hs− (q−q−1) for all s ∈ S.

If J ⊆ S then H(WJ), the Hecke algebra associated with the Coxeter system (WJ ,J), is
isomorphic to the subalgebra of H(W ) generated by {Hs | s ∈ J }. We shall identify H(WJ)
with this subalgebra.
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4. W-GRAPHS

Given a set S, we define an S-coloured graph to be a triple Γ = (V,µ,τ) consisting of a set V,
a function µ : V ×V → Z and a function τ from V to P(S), the power set of S. The elements
of V are the vertices of Γ, and if v ∈V then τ(v) is the colour of the vertex. To interpret Γ as a
(directed) graph, we adopt the convention that if v, u ∈V then (v,u) is an arc of Γ if and only
if µ(u,v) 6= 0 and τ(u) * τ(v), and {v,u} is an edge of Γ if and only if (v,u) and (u,v) are
both arcs. We call µ(u,v) the weight of the arc (v,u). An edge {u,v} is said to be symmetric if
µ(u,v) = µ(v,u), and simple if µ(u,v) = µ(v,u) = 1.

If (W,S) is a Coxeter system, then a W-graph is an S-coloured graph Γ = (V,µ,τ) such
that the free A-module with basis V admits anH-module structure satisfying

(1) Hsv =

{
−q−1v if s ∈ τ(v)
qv+∑{u∈V |s∈τ(u)} µ(u,v)u if s /∈ τ(v),

for all s ∈ S and v ∈V.
We shall write MΓ for theH-module afforded by the W-graph Γ in the manner described

above. Since MΓ is A-free with basis V it admits an A-semilinear involution α 7→ α , uniquely
determined by the condition that v = v for all v ∈V . We call this the bar involution on MΓ. It
is a consequence of (1) that hα = hα for all h ∈H and α ∈MΓ.

We shall sometimes write Γ(V ) for the W-graph with vertex set V, if the functions µ and τ

are clear from the context.
Following [8], define a preorder 6Γ on V as follows: u6Γ v if there exists a sequence of

vertices u = x0,x1, . . . ,xm = v such that τ(xi−1) * τ(xi) and µ(xi−1,xi) 6= 0 for all i ∈ [1,m].
That is, u6Γ v if there is a directed path from v to u in Γ. Let ∼Γ be the equivalence relation
determined by this preorder. The equivalence classes with respect to ∼Γ are called the cells
of Γ. That is, the cells are the strongly connected components of the directed graph Γ. Each
equivalence class, regarded as a full subgraph of Γ, is itself a W-graph, with the µ and τ

functions being the restrictions of those for Γ. The preorder 6Γ induces a partial order on the
set of cells: if C and C′ are cells, then C 6Γ C′ if u6Γ v for some u ∈ C and v ∈ C′.

It follows readily from (1) that a subset of V spans aH(W )-submodule of MΓ if and only
if it is Γ-closed, in the sense that for every vertex v in the subset, each u ∈ V satisfying
µ(u,v) 6= 0 and τ(u)* τ(v) is also in the subset. Thus U ⊆V is a Γ-closed subset of V if and
only if U =

⋃
v∈U{u ∈V | u6Γ v}. Clearly, a subset of V is Γ-closed if and only if it is the

union of cells that form an ideal with respect to the partial order 6Γ on the set of cells.
Suppose that U is a Γ-closed subset of V , and let Γ(U) and Γ(V rU) be the full subgraphs

of Γ induced by U and V rU , with edge weights and vertex colours inherited from Γ. Then
Γ(U) and Γ(V rU) are themselves W-graphs, and

MΓ(VrU)
∼= MΓ(V )/MΓ(U)

asH(W )-modules.
It is clear that if J ⊆ S and Γ = (V,µ,τ) is a W-graph then ΓJ = (V,µ,τJ) is a WJ-graph,

where the function τJ : V →P(J) is given by τJ(v) = τ(v)∩ J.
We end this section by recalling the original Kazhdan–Lusztig W-graph for the regular

representation ofH(W ). For each w ∈W , define the sets

L(w) = {s ∈ S | l(sw)< l(w)}
and

R(w) = {s ∈ S | l(ws)< l(w)},

the elements of which are called the left descents of w and the right descents of w, respectively.
Kazhdan and Lusztig give a recursive procedure that defines polynomials Py,w whenever
y, w ∈W and y < w. These polynomials satisfy degPy,w 6 1

2 (l(w)− l(y)− 1), and µy,w is
defined to be the leading coefficient of Py,w if the degree is 1

2 (l(w)− l(y)−1), or 0 otherwise.
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Define W o = {wo |w∈W } to be the group opposite to W, and observe that (W×W o, StSo)
is a Coxeter system. Kazhdan and Lusztig show that if µ and τ are defined by the formulas

µ(w,y) = µ(y,w) =

{
µy,w if y < w
µw,y if w < y

τ̄(w) = L(w)tR(w)o

then (W,µ, τ̄) is a (W ×W o)-graph. Thus M =AW may be regarded as an (H,H)-bimodule.
Furthermore, the construction produces an explicit (H,H)-bimodule isomorphism M ∼=H.

It follows easily from the definition of µy,w that µ(y,w) 6= 0 only if l(w)− l(y) is odd; thus
(W,µ, τ̄) is a bipartite graph. The non-negativity of all coefficients of the Kazhdan–Lusztig
polynomials, conjectured in [8], has been proved by Elias and Williamson in [5].

Since W and W o are standard parabolic subgroups of W ×W o, it follows that Γ = (W,µ,τ)
is a W-graph and Γo = (W,µ,τo) is a W o-graph, where τ and τo are defined by τ(w) = L(w)
and τo(w) =R(w)o, for all w ∈W .

In accordance with the theory described above, there are preorders on W determined by the
(W ×W o)-graph structure, the W-graph structure and the W o-graph structure. We call these
the two-sided preorder (denoted by �LR), the left preorder (�L) and the right preorder (�R).
The corresponding cells are the two-sided cells, the left cells and the right cells.

5. ADMISSIBLE W-GRAPHS

Let (W,S) be a Coxeter system, not necessarily finite. For s, t ∈ S, let m(s, t) be the order of st
in W. Thus {s, t} is a bond in the Coxeter diagram if and only if m(s, t)> 2.

DEFINITION 5.1. [12, Definition 2.1] An S-coloured graph Γ = (V,µ,τ) is admissible if the
following three conditions are satisfied:

(i) µ(V ×V )⊆ N;
(ii) Γ is symmetric, that is, µ(u,v) = µ(v,u) if τ(u)* τ(v) and τ(v)* τ(u);

(iii) Γ has a bipartition.

REMARK 5.2. As we have seen in Sec. 4, the Kazhdan–Lusztig graph ΓW = Γ(W,∅) is
admissible. So its cells are admissible.

Let (W,S) be a braid finite Coxeter system. (That is, m(s, t)< ∞ for all s, t ∈ S.)

DEFINITION 5.3. [14, Definition 2.1] An S-coloured graph Γ = (V,µ,τ) is said to satisfy
the W-Compatibility Rule if for all u, v ∈V with µ(u,v) 6= 0, each i ∈ τ(u)r τ(v) and each
j ∈ τ(v)r τ(u) are joined by a bond in the Coxeter diagram of W .

By [12, Proposition 4.1], every W-graph satisfies the W-Compatibility Rule.

DEFINITION 5.4. [14, Definition 2.3] An admissible S-coloured graph Γ = (V,µ,τ) satisfies
the W-Simplicity Rule if for all u, v ∈V with µ(u,v) 6= 0, either τ(v)$ τ(u) and µ(v,u) = 0
or τ(u) and τ(v) are not comparable and µ(u,v) = µ(v,u) = 1.

The Simplicity Rule implies that if µ(u,v) 6= 0 and µ(v,u) 6= 0 then µ(u,v) = µ(v,u) = 1.
That is, all edges are simple. Furthermore if {u,v} is an edge then τ(u) and τ(v) are not
comparable, so that there exist at least one i ∈ τ(u)r τ(v) and at least one j ∈ τ(v)r τ(u). If
the Compatibility Rule is also satisfied, then {i, j} must be a bond in the Coxeter diagram.

If (W,S) is simply-laced then every W-graph with non-negative integer edge weights
satisfies the Simplicity Rule, even if it fails to be admissible: see [12, Remark 4.3].
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DEFINITION 5.5. [14, Definition 2.4] An admissible S-coloured graph Γ = (V,µ,τ) satisfies
the W-Bonding Rule if for all i, j ∈ S with mi, j > 2, the vertices v of Γ with i ∈ τ(v) and
j /∈ τ(v) or i /∈ τ(v) and j ∈ τ(v), together with edges of Γ that include the label {i, j}, form a
disjoint union of Dynkin diagrams of types A, D or E with Coxeter numbers that divide m(i, j).

REMARK 5.6. In the case m(i, j) = 3, the W-Bonding Rule becomes the W-Simply-Laced
Bonding Rule: for every vertex u such that i ∈ τ(u) and j /∈ τ(u), there exists a unique adjacent
vertex v such that j ∈ τ(v) and i /∈ τ(v).

By [12, Proposition 4.4], admissible W-graphs satisfy the W-Bonding Rule.
Let Γ = (V,µ,τ) be an S-coloured graph. Let i, j ∈ S with m(i, j) = p > 2. Suppose that

u,v ∈V with i, j /∈ τ(u) and i, j ∈ τ(v). For 26 r 6 p, a directed path (u,v1, . . . ,vr−1,v) in Γ

is said to be alternating of type (i, j) if i ∈ τ(vk) and j /∈ τ(vk) for odd k and j ∈ τ(vk) and
i /∈ τ(vk) for even k. Define

(2) Nr
i, j(Γ;u,v) = ∑

v1,...,vr−1

µ(v,vr−1)µ(vr−1vr−2) · · ·µ(v2,v1)µ(v1,u),

where the sum extends over all paths (u,v1, . . . ,vr−1,v) that are alternating of type (i, j).
Note that if Γ is admissible then all terms in (2) are positive.

DEFINITION 5.7. [14, Definition 2.9] An admissible S-coloured graph Γ = (V,µ,τ) satisfies
the W-Polygon Rule if for all i, j ∈ S and all u,v ∈V such that i, j ∈ τ(v)r τ(u), we have

Nr
i, j(Γ;u,v) = Nr

j,i(Γ;u,v) for all r such that 26 r 6 m(i, j).

By [12, Proposition 4.7], all W-graphs with integer edge weights satisfy the Polygon Rule.
The following result provides a necessary and sufficient condition for an admissible S-

coloured graph to be a W-graph.

THEOREM 5.8. [12, Theorem 4.9] An admissible S-coloured graph Γ = (V,µ,τ) is a W-graph
if and only if it satisfies the W-Compatibility Rule, the W-Simplicity Rule, the W-Bonding Rule
and the W-Polygon Rule.

It is convenient to introduce a weakened version of the W-polygon rule.

DEFINITION 5.9. [14, Definition 2.9] An admissible S-coloured graph Γ = (V,µ,τ) satisfies
the W-Local Polygon Rule if for all i, j ∈ S, all r such that 26 r6m(i, j), and all u,v such that
i, j ∈ τ(v)r τ(u), we have Nr

i, j(Γ;u,v) = Nr
j,i(Γ;u,v) under any of the following conditions:

(i) r = 2, and τ(u)r τ(v) 6=∅;
(ii) r = 3, and there exist k, l ∈ τ(u)r τ(v) (not necessarily distinct) such that {k, i} and
{ j, l} are not bonds in the Dynkin diagram of W ;

(iii) r > 4, and there is k ∈ τ(u)r τ(v) such that {k, i} and { j,k} are not bonds in the
Dynkin diagram of W .

DEFINITION 5.10. [14, Definition 3.3] An admissible S-coloured graph is called a W-molecular
graph if it satisfies the W-Compatibility Rule, the W -Simplicity Rule, the W-Bonding Rule
and W-Local Polygon Rules.

A simple part of an S-coloured graph Γ is a connected component of the graph obtained by
removing all arcs and all non-simple edges, and a simple component of Γ is the full subgraph
spanned by a simple part.

DEFINITION 5.11. A W-molecule is a W-molecular graph that has only one simple part.

REMARK 5.12. If Γ is an admissible W-graph then its simple components are W-molecules,
by [14, Fact 3.1.]. More generally, by [14, Fact 3.2.], the full subgraph of Γ induced by any
union of simple parts is a W-molecular graph.
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If M = (V,µ,τ) is an S-coloured graph and J ⊆ S then the WJ-restriction of M is defined to
be the J-coloured graph M↓J = (V,µ,τ) where τ(v) = τ(v)∩ J for all v ∈V and

µ(u,v) =

{
µ(u,v) if τ(u)* τ(v),
0 if τ(u)⊆ τ(v).

It is easy to check that if M = (V,µ,τ) is a W-molecular graph M↓J is a WJ-molecular graph.
The WJ-molecules of M↓J are called WJ-submolecules of M.

PROPOSITION 5.13. [4, Proposition 2.7] Let (W,S) be a Coxeter system and M = (V,µ,τ)
a W-molecular graph, and let J = {r,s, t} ⊆ S with m(s, t) = 3 and r /∈ {s, t}. Suppose that
v,v′,u,u′ ∈V , and that {v,v′} and {u,u′} are simple edges with

τ(v)∩ J = {s}, τ(u)∩ J = {s,r},
τ(v′)∩ J = {t}, τ(u′)∩ J = {t,r}.

Then µ(u,v) = µ(u′,v′).

6. TABLEAUX, LEFT CELLS AND ADMISSIBLE MOLECULES OF TYPE A

For the remainder of this paper we shall focus attention on Coxeter systems of type A.
A sequence of nonnegative integers λ = (λ1,λ2 . . . ,λk) is called a composition of n if

∑
k
i=1 λi = n. The λi are called the parts of λ . We adopt the convention that λi = 0 for all i > k.

A composition λ = (λ1,λ2, . . . ,λk) is called a partition of n if λ1 > · · ·> λk > 0. We define
C(n) and P(n) to be the sets of all compositions of n and all partitions of n, respectively.

For each λ = (λ1, . . . ,λk) ∈C(n) we define

[λ ] = {(i, j) | 16 i6 λ j and 16 j 6 k},

and refer to this as the Young diagram of λ . Pictorially [λ ] is represented by a top-justified
array of boxes with λ j boxes in the j-th column; the pair (i, j) ∈ [λ ] corresponds to the i-th
box in the j-th column. Thus for us the Young diagram of λ = (3,4,2) looks like this:

.

If λ ∈ P(n) then λ ∗ denotes the conjugate of λ , defined to be the partition whose diagram is
the transpose of [λ ]; that is, [λ ∗] = {( j, i) | (i, j) ∈ [λ ]}.

Let λ ∈ P(n). If (i, j) ∈ [λ ] and [λ ]r{(i, j)} is still the Young diagram of a partition, we
say that the box (i, j) is λ -removable. Similarly, if (i, j) /∈ [λ ] and [λ ]∪{(i, j)} is again the
Young diagram of a partition, we say that the box (i, j) is λ -addable.

If λ ∈C(n) then a λ -tableau is a bijection t : [λ ]→ T , where T is a totally ordered set
with n elements. We call T the target of t. In this paper the target will always be an interval
[m+1,m+n], with m = 0 unless otherwise specified. The composition λ is called the shape
of t, and we write λ = Shape(t). For each i ∈ [1,n] we define rowt(i) and colt(i) to be the row
index and column index of i in t (so that t−1(i) = (rowt(i),colt(i))). We define Tabm(λ ) to be
the set of all λ -tableaux with target T = [m+1,m+n], and Tab(λ ) = Tab0(λ ). If h ∈ Z and
t ∈ Tabm(λ ) then we define t +h ∈ Tabm+h(λ ) to be the tableau obtained by adding h to all
entries of t.

We define τλ ∈ Tab(λ ) to be the specific λ -tableau given by τλ (i, j) = i+∑
j−1
h=1 λh for all

(i, j) ∈ [λ ]. That is, in τλ the numbers 1, 2, . . . , λ1 fill the first column of [λ ] in order from
top to bottom, then the numbers λ1 +1, λ1 +2, . . . , λ1 +λ2 similarly fill the second column,
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and so on. If λ ∈ P(n) then we also define τλ to be the λ -tableau that is the transpose of τλ ∗ .
Whenever λ ∈ P(n) and t ∈ Tabm(λ ) we define t∗ ∈ Tabm(λ

∗) to be the transpose of t.
Let λ ∈ C(n) and t ∈ Tab(λ ). We say that t is column standard if the entries increase

down each column. That is, t is column standard if t(i, j) < t(i+ 1, j) whenever (i, j) and
(i+1, j) are both in [λ ]. We define CStd(λ ) to be the set of all column standard λ -tableaux.
In the case λ ∈ P(n) we say that t is row standard if its transpose is column standard (so that
t(i, j)< t(i, j+1) whenever (i, j) and (i, j+1) are both in [λ ]), and we say that t is standard
if it is both row standard and column standard. For each λ ∈ P(n) we define Std(λ ) to be the
set of all standard λ -tableaux. We also define Std(n) =

⋃
λ∈P(n) Std(λ ).

Let Wn be the symmetric group on the set {1,2, . . . ,n}, and let Sn = {si | i ∈ [1,n− 1]},
where si is the transposition (i, i+ 1). Then (Wn,Sn) is a Coxeter system of type An−1. If
1 6 h 6 k 6 n then we write W[h,k] for the standard parabolic subgroup of Wn generated by
{si | i ∈ [h,k−1]}. We adopt a left operator convention for permutations, writing wi for the
image of i under the permutation w.

It is clear that for any fixed composition λ ∈ C(n) the group Wn acts on Tab(λ ), via
(wt)(i, j) = w(t(i, j)) for all (i, j) ∈ [λ ], for all λ -tableaux t and all w ∈Wn. Moreover, the
map from Wn to Tab(λ ) defined by w 7→ wτλ for all w ∈Wn is bijective. We define the map
perm: Tab(λ ) 7→Wn to be the inverse of w 7→ wτλ , and use this to transfer the left weak order
and the Bruhat order from Wn to Tab(λ ). Thus if t1 and t2 are arbitrary λ -tableaux, we write
t1 6L t2 if and only if perm(t1) 6L perm(t2), and t1 6 t2 if and only if perm(t1) 6 perm(t2).
Similarly, we define the length of t ∈ Tab(λ ) by l(t) = l(perm(t)).

REMARK 6.1. If λ ∈ C(n) and t ∈ Tab(λ ) then the reading word of t is defined to be the
sequence b1, . . . ,bn obtained by concatenating the columns of t in order from left to right, with
the entries of each column read from bottom to top. This produces a bijection Tab(λ ) 7→Wn
that maps each t to the permutation word(t) given by i 7→ bi for all i ∈ {1, . . . ,n}. It is obvious
that perm(t) = word(t)w−1

λ
, where wλ = word(τλ ).

Given λ ∈ C(n) we define Jλ to be the subset of S consisting of those si such that i
and i+ 1 lie in the same column of τλ , and Wλ to be the standard parabolic subgroup of
Wn generated by Jλ . Note that the longest element of Wλ is the element wλ = word(τλ )
defined in Remark 6.1 above. We write Dλ for the set of minimal length representatives of
the left cosets of Wλ in Wn. Since l(dsi) > l(d) if and only if di < d(i+ 1), it follows that
Dλ = {d ∈Wn | di < d(i+1) whenever si ∈Wλ }, and the set of column standard λ -tableaux
is precisely {dτλ | d ∈ Dλ }.

We shall also need to work with tableaux defined on skew diagrams.

DEFINITION 6.2. A skew partition of n is an ordered pair (λ ,µ), denoted by λ/µ , such that
λ ∈ P(m+n) and µ ∈ P(m) for some m> 0, and λi > µi for all i. We write λ/µ ` n to mean
that λ/µ is a skew partition of n. In the case m = 0 we identify λ/µ with λ , and say that λ/µ

is a normal tableau.

DEFINITION 6.3. The skew diagram [λ/µ] corresponding to a skew partition λ/µ is defined
to be the complement of [µ] in [λ ]:

[λ/µ] = {(i, j) | (i, j) ∈ [λ ] and (i, j) /∈ [µ]}.

DEFINITION 6.4. A skew tableau of shape λ/µ , or (λ/µ)-tableau, where λ/µ is a skew
partition of n, is a bijective map t : [λ/µ]→T , where T is a totally ordered set with n elements.
We write Tabm(λ/µ) for the set of all (λ/µ)-tableaux for which the target set T is the interval
[m+1,m+n]. We shall omit the subscript m if m = 0.

7
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Let λ/µ be a skew partition of n. We define τλ/µ ∈ Tab(λ/µ) by

(3) τλ/µ(i, j) = i−µ j +
j−1

∑
h=1

(λh−µh)

for all (i, j) ∈ [λ/µ], and define τλ/µ ∈ Tab(λ/µ) to be the the transpose of τλ ∗/µ∗ .
If λ/µ ` n and m ∈ Z then W[m+1,m+n] acts naturally on Tabm(λ/µ), and we can define

perm: Tabm(λ/µ)→W[m+1,m+n] and use it to transfer the Bruhat order and the left weak
order from W[m+1,m+n] to Tabm(λ/µ) in exactly the same way as above.

All of our notation and terminology for partitions and Young tableaux extends naturally to
skew partitions and tableaux, and will be used without further comment.

Let λ ∈ C(n) and t a column standard λ -tableau. For each m ∈ Z we define t⇓m to
be the tableau obtained by removing from t all boxes with entries greater than m. Thus if
µ = Shape(t⇓m) then µ ∈C(m) and [µ] = {b∈ [λ ] | t(b)6m}, and t⇓m : [µ]→ [1,m] is the
restriction of t. It is clear that t⇓m is column standard. Moreover, if λ ∈ P(n) and t ∈ Std(λ )
then µ ∈ P(m) and t⇓m ∈ Std(µ).

Similarly, if λ ∈ P(n) and t ∈ Std(λ ) then for each m ∈ Z we define t ↑m to be the skew
tableau obtained by removing from t all boxes with entries less than or equal to m. Observe
that {b ∈ [λ ] | t(b) 6 m} is the Young diagram of a partition ν ∈ P(n), and λ/ν is a skew
partition of n−m. Clearly t ↑m is the restriction of t to [λ/ν ], and t ↑m ∈ Stdm(λ/ν).

We also define t ↓m = t⇓(m−1) and t⇑m = t ↑(m−1).
The dominance order is defined on C(n) as follows.

DEFINITION 6.5. Let λ , µ ∈C(n). We say that λ dominates µ , and write λ > µ or µ 6 λ , if
∑

k
i=1 λi 6 ∑

k
i=1 µi for each positive integer k.

The lexicographic order on compositions is defined as follows.

DEFINITION 6.6. Let λ , µ ∈C(n). We write λ >lex µ (or µ <lex λ ) if there exists a positive
integer k such that λk < µk and λi = µi for all i < k. We say that λ leads µ , and write λ >lex µ ,
if λ = µ or λ >lex µ .

It is clear that the lexicographic order is a refinement of the dominance order.

PROPOSITION 6.7. If λ ,µ ∈C(n) with λ > µ , then λ >lex µ .

For a fixed λ ∈C(n) the dominance order on CStd(λ ) is defined as follows.

DEFINITION 6.8. Let u and t be column standard λ -tableaux. We say that t dominates u if
Shape(t⇓m)> Shape(u⇓m) for all m ∈ [1,n].

REMARK 6.9. Let λ ∈ C(n) and let u, t ∈ CStd(λ ) with u 6= t. Since u⇓0 = t⇓0 and
u⇓n 6= t⇓n, we can choose i ∈ [0,n− 1] with u⇓ i = t⇓ i and u⇓(i+ 1) 6= t⇓(i+ 1). Let
µ = Shape(u⇓(i+1)) and λ = Shape(t⇓(i+1)), and let k = colu(i+1) and l = colt(i+1).
Then k 6= l, and µ j = λ j for all j < m = min(k, l). Furthermore, µm = λm +1 if m = k, and
λm = µm +1 if m = l. Thus λ >lex µ if and only if l > k.

Now suppose that t dominates u. Since u⇓ i = t⇓ i we have Shape(u⇓m) = Shape(t⇓m)
for all m6 i, and by Definition 6.8 we must have Shape(t⇓(i+1))> Shape(u⇓(i+1)). That
is, λ > µ . By 6.7 it follows that λ >lex µ , and so colu(i+1) = k < l = colt(i+1).

The following theorem shows that the dominance order on CStd(λ ) is the restriction of the
Bruhat order on Tab(λ ). That is, if u, t ∈ CStd(λ ) then t dominates u if and only if t > u.

THEOREM 6.10. Let λ ∈ C(n), and let u and t be column standard λ -tableaux. Then t
dominates u if and only if perm(t)> perm(u).

Proof. This is exactly [9, Theorem 3.8], except that we use columns where [9] uses rows. �
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Let λ = (λ1, . . . ,λk) ∈C(n). For each t ∈ Tab(λ ), we define cp(t) to be the composition of
the number ∑

k
i=1 iλi given by cp(t)i = colt(n+1− i), the column index of n+1− i in t. We

can now define the lexicographic order on CStd(λ ), a total order that refines the Bruhat order.

DEFINITION 6.11. Let λ be a composition of n and let u and t be column standard λ -tableaux.
We say that t leads u, and write t >lex u, if cp(t)>lex cp(u).

REMARK 6.12. It is immediate from Definitions 6.6 and 6.11 that if u, t ∈ CStd(λ ) then
t >lex u if and only if there exists l ∈ [1,n] such that colt(l)< colu(l) and colt(i) = colu(i) for
all i ∈ [l +1,n]. Since u and t are column standard and of the same shape, the latter condition
is equivalent to t ↑ l = u↑ l.

LEMMA 6.13. Let λ ∈C(n), and let u, t ∈ Tab(λ ). If t > u then t >lex u.

Proof. By Theorem 6.10 and the definition of the Bruhat order, it suffices to show that
if u = (i, j)t for some i, j ∈ [1,n], then t > u implies t >lex u. Without loss of generality
we may assume that j > i, and then t > u means that colt( j) < colt(i) = colu( j). Since
{k | colt(k) 6= colu(k)} = {i, j}, and j is the maximum element of this set, it follows from
Remark 6.12 that t >lex u, as required. �

COROLLARY 6.14. Let λ ∈C(n), and let u, t ∈ CStd(λ ). If t dominates u then t >lex u.

Let λ ∈ P(n). For each t ∈ Std(λ ) we define the following subsets of [1,n−1]:

SA(t) = {i ∈ [1,n−1] | rowt(i)> rowt(i+1)},
SD(t) = {i ∈ [1,n−1] | colt(i)> colt(i+1)},

WA(t) = {i ∈ [1,n−1] | rowt(i) = rowt(i+1)},
WD(t) = {i ∈ [1,n−1] | colt(i) = colt(i+1)}.

REMARK 6.15. It is easily checked that i ∈ SA(t) if and only if sit ∈ Std(λ ) and sit > t, while
i ∈ SD(t) if and only if sit < t (which implies that sit ∈ Std(λ )). Note also that if w = perm(t)
then i ∈ D(t) if and only if si ∈ L(wwλ ); this is proved in [10, Lemma 5.2].

REMARK 6.16. It is clear that if λ/µ ` n and m ∈ Z then m+ τλ/µ is the unique minimal
element of Stdm(λ/µ) with respect to the Bruhat order and the left weak order. Accordingly,
we call m+ τλ/µ the minimal element of Stdm(λ/µ). It is easily shown that if t ∈ Stdm(λ/µ)
then t = m+ τλ/µ if and only if SD(t) =∅. That is, t is minimal if and only if D(t) = WD(t).

For technical reasons it is convenient to make the following definition.

DEFINITION 6.17. Let λ/µ ` n > 1 and m∈Z. Let i be minimal such that λi > µi, and assume
that λi+1 > µi+1. The m-critical tableau of shape λ/µ is the tableau t ∈ Stdm−1(λ/µ) such
that colt(m) = i and colt(m+1) = i+1, and t ↑(m+1) is the minimal tableau of its shape.

If t is m-critical then, with i as in the definition, colt(m+2) = i if and only if λi−µi > 1.

REMARK 6.18. Let λ ∈ P(n) and m ∈ Z, and let t ∈ Std(λ ) satisfy colt(m+1) = colt(m)+1.
We claim that t⇑m is m-critical if and only if the following two conditions both hold:

1) either colt(m) = colt(m+2) or m+1 /∈ SD(t),
2) every j ∈ D(t) with j > m+1 is in WD(t).

Let Shape(t⇑m) = λ/µ , and put i = colt(m). Note that since m+1 is in column i+1 of
t⇑m, it follows that λi+1 > µi+1.

Given that colt(m+1) = colt(m)+1, the second alternative in condition (1) is equivalent
to colt(m)+16 colt(m+2). Hence condition (1) is equivalent to colt(m)6 colt(m+2). But
by Remark 6.16, condition (2) holds if and only if t ↑(m+ 1) is minimal, which in turn is

9



VAN MINH NGUYEN

equivalent to colt(m+2)6 colt(m+3)6 · · · 6 colt(n). So (1) and (2) both hold if and only
if t ↑(m+1) is minimal and colt( j)> colt(m) for all j > m.

Since colt(m+1) = i+1, it follows from the definition that t⇑m is m-critical if and only
if t ↑(m+1) is minimal and i = colt(m) is equal to min{ j | λ j > µ j }. But this last condition
holds if and only if m is in the first nonempty column of t⇑m, and since this holds if and only
if colt( j)> colt(m) for all j > m, the claim is established.

Recall that if w ∈Wn then applying the Robinson–Schensted algorithm to the sequence
(w1,w2, . . . ,wn) produces a pair RS(w) = (P(w),Q(w)), where P(w), Q(w) ∈ Std(λ ) for
some λ ∈ P(n). Details of the algorithm can be found (for example) in [11, Section 3.1]. The
first component of RS(w) is called the insertion tableau and the second component is called
the recording tableau.

The following theorem is proved, for example, in [11, Theorem 3.1.1].

THEOREM 6.19. The Robinson–Schensted map is a bijection from Wn to
⋃

λ∈P(n) Std(λ )2.

The following property of the Robinson–Schensted map is also proved, for example, in [11,
Theorem 3.6.6].

THEOREM 6.20. Let w ∈Wn. If RS(w) = (t,x) then RS(w−1) = (x, t).

The following lemma will be used below in the discussion of dual Knuth equivalence
classes.

LEMMA 6.21. [10, Lemma 6.3] Let λ ∈ P(n) and let w ∈Wn. Then RS(w) = (t,τλ ) for
some t ∈ Std(λ ) if and only if w = vwλ for some v ∈Wn such that vτλ ∈ Std(λ ). When these
conditions hold, t = vτλ .

DEFINITION 6.22. The dual Knuth equivalence relation is the equivalence relation ≈ on Wn
generated by the requirements that for all x ∈Wn and k ∈ [1,n−2],

1) x≈ sk+1x whenever L(x)∩{sk,sk+1}= {sk} and L(sk+1x)∩{sk,sk+1}= {sk+1},
2) x≈ skx whenever L(x)∩{sk,sk+1}= {sk+1} and L(skx)∩{sk,sk+1}= {sk}.

The relations 1) and 2) above are known as the dual Knuth relations of the first kind and
second kind, respectively.

REMARK 6.23. It is not hard to check that 1) and 2) above can be combined to give an
alternative formulation of Definition 6.22, as follows: ≈ is the equivalence relation on Wn
generated by the requirement that x ≈ sx for all x ∈Wn and s ∈ Sn such that x < sx and
L(x)* L(sx). In [8] Kazhdan and Lusztig show that whenever this holds then x and sx are
joined by a simple edge in the Kazhdan–Lusztig W -graph Γ = Γ(Wn). Furthermore, they show
that the dual Knuth equivalence classes coincide with the left cells in Γ(Wn).

The following result is well-known.

THEOREM 6.24. [11, Theorem 3.6.10] Let x,y ∈Wn. Then x≈ y if and only if Q(x) = Q(y).

Let λ ∈ P(n), and for each t ∈ Std(λ ) define C(t) = {w ∈Wn | Q(w) = t }. Theorem 6.24
says that these sets are the dual Knuth equivalence classes in Wn. It follows from Lemma 6.21
that C(τλ ) = {vwλ | vτλ ∈ Std(λ )}= {perm(t)wλ | t ∈ Std(λ )}= {word(t) | t ∈ Std(λ )}.

Let t, u ∈ Std(λ ), and suppose that t = sku for some k ∈ [2,n−1]. By Remark 6.15 above,
if x = word(u) then L(x)∩{sk−1,sk}= {sk−1} and L(skx)∩{sk−1,sk}= {sk} if and only if
D(u)∩{k−1,k}= {k−1} and D(t)∩{k−1,k}= {k}. Under these circumstances we write
u→∗1 t, and say that there is a dual Knuth move of the first kind from u to t. Similarly, if t = sku
for some k ∈ [1,n−2] such that D(u)∩{k,k+1}= {k+1} and D(t)∩{k,k+1}= {k} then
we write u→∗2 t, and say that there is a dual Knuth move of the second kind from u to t.

10
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Since C(τλ ) is a single dual Knuth equivalence class, any standard tableau of shape λ can be
transformed into any other by a sequence of dual Knuth moves or their inverses.

We call the integer k above the index of the corresponding dual Knuth move, and denote it
by ind(u, t).

REMARK 6.25. Dual Knuth moves are also defined for standard skew tableaux; the definitions
are exactly the same as for tableaux of normal shape. If λ/µ ` n and u, t ∈ Std(λ/µ) then we
write u≈ t if and only if u and t are related by a sequence of dual Knuth moves.

DEFINITION 6.26. For each J ⊆ Sn let ≈J be the equivalence relation on Wn generated by the
requirement that x≈J sx for all s ∈ J and x ∈Wn such that x < sx and L(x)∩ J * L(sx).

REMARK 6.27. Let J ⊆ Sn, let (W,S) = (Wn,Sn) and let Γ be the regular Kazhdan–Lusztig
W -graph. By the results of Section 4 we know that a simple edge {x,y} of Γ remains a simple
edge of Γ↓J provided that L(x)∩J * L(y)∩J and L(y)∩J * L(x)∩J. Recall that the simple
edges of Γ all have the form {x,sx}, where s ∈ S and x < sx ∈W . Given that x < sx, the
condition L(sx)∩J *L(x)∩J holds if and only if s∈ J, and so {x,sx} is a simple edge of Γ↓J
if and only if s ∈ J and L(x)∩ J * L(sx). Thus ≈J is the equivalence relation on W generated
by the requirement that x≈J y whenever {x,y} is a simple edge of Γ↓J .

DEFINITION 6.28. Let λ ∈ P(n) and 16m6 n. Let≈m be the equivalence relation on Std(λ )
defined by the requirement that u ≈m t whenever there is a dual Knuth move of index at
most m−1 from u to t and D(u)∩ [1,m−1]*D(t). We call such a move a (6m)-dual Knuth
move. The ≈m equivalence classes in Std(λ ) will be called the (6 m)-subclasses of Std(λ ),
and we shall say that u, t ∈ Std(λ ) are (6 m)-dual Knuth equivalent whenever u≈m t.

REMARK 6.29. Assume that λ ∈ P(n) and 16 m6 n, and let u, t ∈ Std(λ ). If u→∗2 t and
ind(u, t) 6 m− 1 then D(u)∩ [1,m− 1] * D(t) if and only if ind(u, t) ∈ [1,m− 2]. Clearly
this holds if and only if u↑m = t ↑m and u⇓m→∗2 t⇓m. If u→∗1 t and ind(u, t) 6 m− 1
then ind(u, t) ∈ [2,m−1], and D(u)∩ [1,m−1]* D(t) is automatically satisfied. Clearly this
holds if and only if u↑m = t ↑m and u⇓m→∗1 t⇓m. It follows that u ≈m t if and only if
u↑m = t ↑m, since Shape(u⇓m) = Shape(t⇓m) guarantees that u⇓m and t⇓m are related by
a sequence of dual Knuth moves. So in fact u≈m t if and only if t = wu for some w ∈Wm.

It is a consequence of Definitions 6.26 and 6.28 that if u, t ∈ Std(λ ) then u ≈m t if and
only if word(u) ≈J word(t), where J = Sm. The set of all (6 m)-subclasses of Std(λ ) is in
bijective correspondence with the set {v ∈ Stdm(λ/µ) | µ ∈ P(m) and [µ]⊆ [λ ]}, and each
(6 m)-subclass of Std(λ ) is in bijective correspondence with Std(µ) for some µ ∈ P(m) with
[µ] ⊆ [λ ]. If t ∈ Std(λ ) then the (6 m)-subclass that contains t is denoted by Cm(t) and is
given by Cm(t) = {u ∈ Std(λ ) | u↑m = t ↑m}.

In view of Remark 6.23 and Theorem 6.24, the following theorem follows from the results
of Kazhdan and Lusztig [8].

THEOREM 6.30. If t, t ′ ∈ Std(n) then the Wn-graphs Γ(C(t)) and Γ(C(t ′)) are isomorphic if
and only if Shape(t) = Shape(t ′). In particular, if λ ∈P(n) then Γ(C(t))∼=Γ(C(τλ )) whenever
t ∈ Std(λ ).

COROLLARY 6.31. Let Γ be the Wn-graph of a Kazhdan–Lusztig left cell of Wn. Then Γ is
isomorphic to Γ(C(τλ )) for some λ ∈ P(n).

Clearly for each λ ∈ P(n) the bijection t 7→ word(t) from Std(λ ) to C(τλ ) can be used to
create a Wn-graph isomorphic to Γ(C(τλ ) with Std(λ ) as the vertex set.

NOTATION 6.32. For each λ ∈ P(n) we write Γλ = Γ(Std(λ ),µ(λ ),τ(λ )) for the Wn-graph
just described.
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REMARK 6.33. Let λ ∈ P(n) and let J = Sm ⊆ Sn. It follows from Remark 6.27 and Defini-
tion 6.28 that the J-submolecules of Γλ are spanned by the (6 m)-subclasses of Std(λ ).

Now let λ ∈ P(n) and 16 m6 n, and put J = SnrSm. The J-submolecules of Γλ can be
determined by an analysis similar to that used above. We define ≈m to be the equivalence
relation on Std(λ ) generated by the requirement that u≈m t whenever there is a dual Knuth
move of index at least m from u to t and D(u)∩ [m,n−1]*D(t). The ≈m equivalence classes
in Std(λ ) will be called the (> m)-subclasses of Std(λ ). If u, t ∈ Std(λ ) then u≈m t if and
only if word(u) ≈J word(t), with J = SnrSm. An equivalent condition is that u↓m = t ↓m
and u⇑m≈ t⇑m. It follows that if t ∈ Std(λ ) then the (> m)-subclass that contains t is the
set Cm(t) = {u ∈ Std(λ ) | u↓m = t ↓m and u⇑m≈ t⇑m}.

REMARK 6.34. Let λ ∈ P(n) and m ∈ [1,n], and put J = SnrSm. By the discussion above,
the J-submolecules of Γλ are spanned by the (> m)-subclasses of Std(λ ).

We shall need to use some properties of the well-known “jeu-de-taquin” operation on skew
tableaux, which we now describe.

Fix a positive integer n and a target set T = [m+1,m+n]. It is convenient to define a partial
tableau to be a bijection t from a subset of {(i, j) | i, j ∈ Z+ } to T . We shall also assume that
the domain of t is always of the form [κ/ξ ]r{(i, j)}, where κ/ξ is a skew partition of n+1
and (i, j) ∈ [κ/ξ ]. If (i, j) is ξ -addable then t is a (κ/µ)-tableau, with [µ] = [ξ ]∪{(i, j)}, and
if (i, j) is κ-removable then t is a (λ/ξ )-tableau, with [λ ] = [κ]r{(i, j)}.

Now suppose that λ/µ is a skew partition of n and t ∈ Std(λ/µ), and suppose also that
c = (i, j) is a µ-removable box. Note that t may be regarded as a partial tableau, since
[λ/µ] = [κ/ξ ]r{(i, j)}, where [κ] = [λ ] and [ξ ] = [µ]r{(i, j)}. The jeu de taquin slide on
t into c is the process j(c, t) given as follows.

Start by defining t0 = t and b0 = (i, j). Proceeding recursively, suppose that k > 0 and
that tk and bk are defined, with tk a partial tableau whose domain is [κ/ξ ]r {bk}. If bk is
λ -removable then the process terminates, we define t ′ = tk and put m = k. If bk = (g,h) is not
λ -removable we put x = min(tk(g+1,h), tk(g,h+1)), define bk+1 = t−1

k (x), and define tk+1
to be the partial tableau with domain [κ/ξ ]r{bk+1} given by

tk+1(b) =

{
tk(b) whenever b is in the domain of tk and b 6= bk+1,
x if b = bk.

(We say that x slides from bk+1 into bk.) The tableau t ′ obtained by the above process is
denoted by j(c)(t). The sequence of boxes b0 = c, b1, . . . , bm is called the slide path of j(c, t),
and the box bm is said to be vacated by j(c, t).

The following observation follows immediately from the definition of a slide path.

LEMMA 6.35. Let b0 = c,b1, . . . ,bm be the slide path of a jeu de taquin slide, as described
above. If 06 i < j 6 m then bi(1)6 b j(1) and bi(2)6 b j(2).

We also have the following trivial result.

LEMMA 6.36. Let λ = (λ m1
1 , . . . ,λ

ml
l ) ∈ P(n) and µ = (1) ∈ P(1), and put t = (τλ ↑1)−1.

Then (λ1,m1) is vacated by the slide j((1,1), t). Similarly, if u = (τλ ↑1)−1, where λ ∈ P(n)
and λ ∗ = µ = (µn1

1 , . . . ,µ
nk
k ), then (n1,µ1) is vacated by the slide j((1,1),u).

A sequence of boxes β = (b1, . . . ,bl) called a slide sequence for a standard skew tableau t
if there exists a sequence of skew tableaux t0 = t, t1, . . . , tl such that the jeu de taquin slide
j(bi, ti−1) is defined for each i ∈ [1, l], and ti = j(bi)(ti−1). We write tl = jβ (t). Clearly the
slide sequence β = (b1, . . . ,bl) can be extended to a longer slide sequence b1, . . . ,bl+1 if
the skew tableau tl is not of normal shape. If tl is of normal shape then we write tl = j(t).
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Theorem 6.37 below says that j(t) is independent of the slide sequence and is the insertion
tableau of word(t).

THEOREM 6.37. [11, Theorem 3.7.7] Let λ/µ be a skew partition of n and t ∈ Std(λ/µ). If
β is any maximal length slide sequence for t then jβ (t) = P(word(t)).

Skew tableaux u and t are said to be dual equivalent if the skew tableaux jβ (u) and jβ (t)
are of the same shape whenever β is a slide sequence for both u and t. Dual equivalent skew
tableaux are necessarily of the same shape, since the slide sequence β is allowed to have
length zero. It is easily shown that if u and t are dual equivalent then every slide sequence
for u is also a slide sequence for t, from which it follows that dual equivalence is indeed an
equivalence relation. The following result says that this equivalence relation coincides with
dual Knuth equivalence.

THEOREM 6.38. [11, Theorem 3.8.8] Let λ/µ be a skew partition, and let u and t be standard
λ/µ-tableaux. Then u is dual equivalent to t if and only if u≈ t.

Note that Theorem 6.38 generalizes the fact that the set of standard tableaux of a given
normal shape form a single dual Knuth equivalence class.

If λ/µ is a skew partition of n then the corresponding dual equivalence graph has vertex
set Std(λ/µ) and edge set {{u, t} | u, t ∈ Std(λ/µ) and u→∗1 t or u→∗2 t }.

If k ∈ [1,n− 1] then each v ∈ Std(λ/µ) with D(v)∩{k,k+ 1} = {k} is adjacent in the
dual equivalence graph to a unique v′ with D(v′)∩{k,k + 1} = {k + 1}, and each v with
D(v)∩{k,k+1} = {k+1} is adjacent to a unique v′ with D(v′)∩{k,k+1} = {k}. In fact,
v′ = skv if colv(k) < colv(k + 2) 6 colv(k + 1) or colv(k + 1) < colv(k + 2) 6 colv(k), and
v′ = sk+1v if colv(k+1)6 colv(k)< colv(k+2) or colv(k+2)6 colv(k)< colv(k+1).

DEFINITION 6.39. We call the above tableau v′ the k-neighbour of v, and write v′ = k -neb(v).

It follows from Remark 6.23 that if µ is the empty partition then the dual equivalence graph
is isomorphic to the simple part of each Kazhdan–Lusztig left cell Γ(C(t)) for t ∈ Std(λ ); in
this case we call the dual equivalence graph the standard dual equivalence graph corresponding
to λ ∈ P(n). Extending earlier work of Assaf [1], Chmutov showed in [4] that the simple
part of an admissible Wn-molecule is isomorphic to a standard dual equivalence graph. The
following result is the main theorem of [4].

THEOREM 6.40. The simple part of an admissible molecule of type An−1 is isomorphic to the
simple part of a Kazhdan–Lusztig left cell.

It is worth noticing that Stembridge has shown that there are A15-molecules that cannot
occur in Kazhdan–Lusztig left cells [14, Remark 3.8].

REMARK 6.41. It follows that if M = (V,µ,τ) is a molecule then there exists λ ∈ P(n) and a
bijection t 7→ ct from Std(λ ) to V such that τ(ct) = D(t) and the simple edges of M are the
pairs {cu,ct} such that u, t ∈ Std(λ ) and there is a dual Knuth move from u to t or from t to u.
The molecule M is said to be of type λ .

Let M = (V,µ,τ) be an arbitrary Sn-coloured molecular graph, and for each λ ∈ P(n) let
mλ be the number of molecules of type λ in M. For each λ such that mλ 6= 0 let Iλ be some
indexing set of cardinality mλ . Then we can write

(4) V =
⊔

λ∈Λ

⊔
α∈Iλ

Vα,λ ,

where Λ consists of all λ ∈ P(n) such that mλ 6= 0, each Vα,λ = {cα,t | t ∈ Std(λ )} is the
vertex set of a molecule of type λ , τ(cα,t) = D(t), and the simple edges of M are the pairs
{cα,u,cβ ,t} such that α = β ∈ Iλ for some λ ∈ P(n) and u, t ∈ Std(λ ) are related by a dual
Knuth move. We shall call the set Λ the set of molecule types for the molecular graph M.

13
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Note that if Γ = (V,µ,τ) is an admissible Wn-graph then Γ is an Sn-coloured molecular
graph, by Remark 5.12, and hence Eq. (4) can be used to describe the vertex set of Γ.

REMARK 6.42. We know from Remark 5.2 and Corollary 6.31 that, for each λ ∈ P(n), the
Wn-graph Γλ = (Std(λ ),µ(λ ),τ(λ )) is admissible. Since {u, t} is a simple edge in Γλ when
u, t ∈ Std(λ ) are related by a dual Knuth move, and Std(λ ) is a single dual Knuth equivalence
class, we see that Γλ consists of a single molecule (of type λ ).

REMARK 6.43. Let Γ = (V,µ,τ) be an admissible Wn-graph, and continue with the notation
and terminology of Remark 6.41 above. Let m ∈ [1,n], and let K = Sm and L = SnrSm.

Let λ ∈ Λ and α ∈ Iλ , and let Θ be the molecule of Γ whose vertex set is Vα,λ . Write
Γ↓K = (V,µ,τ) (where τ = τK in the notation of Section 4 above). By Remark 6.41 applied to
Θ↓K , we may write

Vα,λ =
⊔

κ∈ΛK,α,λ

⊔
β∈IK,α,λ ,κ

Vα,λ ,β ,κ ,

where ΛK,α,λ is the set of all κ ∈ P(m) such that Θ contains a K-submolecule of type κ , and
IK,α,λ ,κ is an indexing set whose size is the number of such K-submolecules. Each Vα,λ ,β ,κ

is the vertex set of a K-submolecule of Θ of type κ . Writing Vα,λ ,β ,κ = {c′
β ,u | u ∈ Std(κ)},

we see that each cα,t ∈ Vα,λ coincides with some c′
β ,v with β ∈ IK,α,λ ,κ and v ∈ Std(κ). It

follows from Remark 6.33 above that the K-submolecule of Θ containing a given vertex cα,t
is spanned by the (6 m)-subclass Cm(t) = {u ∈ Std(λ ) | u↑m = t ↑m}. Thus when we write
cα,t = c′

β ,v as above, we can identify v with t⇓k.
Similarly, applying Remark 6.41 to Θ↓L, we may write

Vα,λ =
⊔

θ∈ΛL,α,λ

⊔
γ∈IL,α,λ ,θ

Vα,λ ,γ,θ ,

where ΛL,α,λ is the set of all θ ∈ P(n−m+ 1) such that Θ contains an L-submolecule of
type θ , and IL,α,λ ,θ is a set whose size is the number of such L-submolecules. Each Vα,λ ,γ,θ is
the vertex set of an L-submolecule of Θ of type θ . Writing Vα,λ ,γ,θ = {c′′γ,v | v ∈ Stdm−1(θ)}
(where Stdm−1(θ) is the set of standard θ -tableaux with target [m,n]), we see that each
cα,t ∈ Vα,λ coincides with some c′′γ,v with γ ∈ IL,α,λ ,θ and v ∈ Stdm−1(θ). By Remark 6.34
above we see that the L-submolecule of Θ containing a given vertex cα,t is spanned by the
(> m)-subclass Cm(t) = {u ∈ Std(λ ) | u↓m = t ↓m and u⇑m ≈ t⇑m}. Since the condition
u⇑m ≈ t⇑m is satisfied if and only if word(1−m+(u⇑m)) ≈ word(1−m+(t⇑m)), and
j(1−m+(t⇑m)) = P(word(1−m+(t⇑m))) by Theorem 6.37, it follows that when we write
cα,t = c′′

β ,v as above we can identify v with j(t⇑m) = m−1+ j(1−m+(t⇑m)).

7. EXTENDED DOMINANCE ORDER ON Std(n) AND PAIRED DUAL KNUTH
EQUIVALENCE RELATION

Let n > 1, and let (Wn,Sn) be the Coxeter group of type An−1 and Hn the corresponding
Hecke algebra. We shall need the following partial order, called the extended dominance order,
on Std(n).

DEFINITION 7.1. Let λ , µ ∈ P(n), and let u ∈ Std(λ ) and t ∈ Std(µ). Then t is said to
dominate u if Shape(u⇓m)6 Shape(t⇓m) for all m ∈ [1,n]. When this holds we write u6 t.

This is obviously a partial order on Std(n) =
⋃

λ∈P(n) Std(λ ), and it is also clear that u6 t
if and only if Shape(u)6 Shape(t) and u⇓(n−1)6 t⇓(n−1). The terminology and the 6
notation is justified since it extends the dominance order on Std(λ ) for each fixed λ ∈P(n). For
example, for n = 2, we have 1

2
< 1 2 , and for n = 3, we have 1

2

3

< 1 3

2
< 1 2

3
< 1 2 3 .
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We remark that in [2] this order was used in the context of the representation theory of
symmetric groups, while in [3] it was used in the context of combinatorics of permutations.

LEMMA 7.2. Let µ, λ ∈ P(n), let u ∈ Std(µ) and t ∈ Std(λ ), and let η = Shape(u↓n) and
θ = Shape(t ↓n). Suppose that η 6 θ and colu(n)6 colt(n). Then µ 6 λ .

Proof. Let colu(n) = p and colt(n) = q, and assume that p6 q. We are given that η 6 θ , and
so ∑

l
m=1 θm 6 ∑

l
m=1 ηm holds for all l. Hence for all l ∈ [1, p−1] we have

l

∑
m=1

λm =
l

∑
m=1

θm 6
l

∑
m=1

ηm =
l

∑
m=1

µm,

while for all l ∈ [p,q−1] we have

l

∑
m=1

λm =
l

∑
m=1

θm < (ηp +1)+
l

∑
m=1
m 6=p

ηm =
l

∑
m=1

µm,

and for all l > q we have

l

∑
m=1

λm = (θq +1)+
l

∑
m=1
m 6=q

θm 6 (ηp +1)+
l

∑
m=1
m 6=p

ηm =
l

∑
m=1

µm.

Hence µ 6 λ . �

LEMMA 7.3. Let λ ∈ P(n) and t ∈ Std(λ ). Suppose that i ∈ SD(t), and let p = colt(i) and
j = colt(i+1). For all h ∈ [1,n−1] let λ (h) = Shape(t⇓h) and θ (h) = Shape(sit⇓h). Then

(5)
l

∑
m=1

θ
(i)
m =


∑

l
m=1 λ

(i)
m = ∑

l
m=1 λ

(i+1)
m = ∑

l
m=1 λ

(i−1)
m if l < j

∑
l
m=1 λ

(i)
m +1 = ∑

l
m=1 λ

(i+1)
m = ∑

l
m=1 λ

(i−1)
m +1 if j 6 l < p

∑
l
m=1 λ

(i)
m = ∑

l
m=1 λ

(i+1)
m −1 = ∑

l
m=1 λ

(i−1)
m +1 if p < l

and

(6)
l

∑
m=1

λ
(i)
m =


∑

l
m=1 θ

(i)
m = ∑

l
m=1 θ

(i+1)
m = ∑

l
m=1 θ

(i−1)
m if l < j

∑
l
m=1 θ

(i)
m −1 = ∑

l
m=1 θ

(i+1)
m −1 = ∑

l
m=1 θ

(i−1)
m if j 6 l < p

∑
l
m=1 θ

(i)
m = ∑

l
m=1 θ

(i+1)
m −1 = ∑

l
m=1 θ

(i−1)
m +1 if p < l.

Proof. The results given by Eq. (5) and Eq. (6) are readily obtained from the following
formulae

(7) θ
(i)
m =


λ
(i)
m +1 = λ

(i+1)
m = λ

(i−1)
m +1 if m = j

λ
(i)
m −1 = λ

(i+1)
m −1 = λ

(i−1)
m if m = p

λ
(i)
m = λ

(i+1)
m = λ

(i−1)
m if m 6= j, p

and

(8) λ
(i)
m =


θ
(i)
m −1 = θ

(i+1)
m −1 = θ

(i−1)
m if m = j

θ
(i)
m +1 = θ

(i+1)
m = θ

(i−1)
m +1 if m = p

θ
(i)
m = θ

(i+1)
m = θ

(i−1)
m if m 6= j, p,

respectively. �

LEMMA 7.4. Let µ, λ ∈ P(n), let u ∈ Std(µ) and t ∈ Std(λ ). Suppose that i ∈ SD(u)∩SD(t).
Then u6 t if and only if siu6 sit.
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Proof. Let j = colt(i+ 1), let p = colt(i), let k = colu(i+ 1) and let q = colu(i). For all
h ∈ [1,n] let λ (h) = Shape(t⇓h), let θ (h) = Shape(sit⇓h), let µ(h) = Shape(u⇓h) and let
η(h) = Shape(siu⇓h).

Suppose that u6 t. Since siu and sit differ from u and t respectively only in the positions
of i and i+1, we have µ(h) = η(h) and λ (h) = θ (h) for all h 6= i. But since µ(h) 6 λ (h) for all
h by our assumption, it follows that η(h) 6 θ (h) for all h 6= i. Hence to show that siu6 sit it
suffices to show that η(i) 6 θ (i). Let l ∈ Z+ be arbitrary.

Case 1.
Suppose that l > k. By Lemma 7.3 applied to u, we have ∑

l
m=1 η

(i)
m = ∑

l
m=1 µ

(i−1)
m +1, by the

last two formulae of Eq.(5). Since µ(i−1) 6 λ (i−1) gives ∑
l
m=1 µ

(i−1)
m >∑

l
m=1 λ

(i−1)
m , it follows

that ∑
l
m=1 η

(i)
m > ∑

l
m=1 λ

(i−1)
m +1. But by Lemma 7.3 applied to t, in each case in Eq.(5) we

have ∑
l
m=1 λ

(i−1)
m +1> ∑

l
m=1 θ

(i)
m . Hence ∑

l
m=1 η

(i)
m > ∑

l
m=1 θ

(i)
m .

Case 2.
Suppose that l < k. By Lemma 7.3 applied to u, we have ∑

l
m=1 η

(i)
m = ∑

l
m=1 µ

(i)
m = ∑

l
m=1 µ

(i+1)
m ,

by the first formula of Eq. (5). Since µ(i) 6 λ (i) and µ(i+1) 6 λ (i+1), for each h ∈ {i, i+1}
we obtain ∑

l
m=1 µ

(h)
m > ∑

l
m=1 λ

(h)
m , and hence ∑

l
m=1 η

(i)
m > ∑

l
m=1 λ

(h)
m . By Lemma 7.3 applied

to t, in each case in Eq.(5) there exists h ∈ {i, i+1} such that ∑
l
m=1 λ

(h)
m = ∑

l
m=1 θ

(i)
m . Hence

∑
l
m=1 η

(i)
m > ∑

l
m=1 θ

(i)
m .

Conversely, suppose that siu6 sit. As above, it suffices to show that µ(i) 6 λ (i). Let l ∈ Z+

be arbitrary.

Case 1.
Suppose that l > j. By Lemma 7.3 applied to t, we have ∑

l
m=1 λ

(i)
m = ∑

l
m=1 θ

(i+1)
m −1, by the

last two formulae of Eq.(6). Since η(i+1) 6 θ (i+1) gives ∑
l
m=1 η

(i+1)
m >∑

l
m=1 θ

(i+1)
m , it follows

that ∑
l
m=1 η

(i+1)
m −1> ∑

l
m=1 λ

(i)
m . But by Lemma 7.3 applied to u, in each case in Eq.(6) we

have ∑
l
m=1 µ

(i)
m > ∑

l
m=1 η(i+1)−1. Hence ∑

l
m=1 µ

(i)
m > ∑

l
m=1 λ

(i)
m .

Case 2.
Suppose that l < j. By Lemma 7.3 applied to t, we have ∑

l
m=1 λ

(i)
m = ∑

l
m=1 θ

(i−1)
m = ∑

l
m=1 θ

(i)
m ,

by the first formula of Eq. (6). Since θ (i−1) > η(i−1) and θ (i) > η(i), for each h ∈ {i−1, i}
we obtain ∑

l
m=1 θ

(h)
m 6 ∑

l
m=1 η

(h)
m , and hence ∑

l
m=1 λ

(i)
m 6 ∑

l
m=1 η

(h)
m . By Lemma 7.3 applied

to u, in each case in Eq.(6) there exists h ∈ {i−1, i} such that ∑
l
m=1 η

(h)
m = ∑

l
m=1 µ

(i)
m . Hence

∑
l
m=1 λ

(i)
m 6 ∑

l
m=1 µ

(i)
m . �

DEFINITION 7.5. Let λ , µ ∈ P(n) and let 16m6 n. Let u, v ∈ Std(µ) and t, x ∈ Std(λ ), and
let i ∈ {1,2}. We say there is a paired (6 m)-dual Knuth move of the i-th kind from (u, t) to
(v,x) if there exists k 6 m−1 such that u→∗i v and t→∗i x are (6 m)-dual Knuth moves of
index k. When this holds we write (u, t)→∗i (v,x), and call k the index of the paired move.

We have the following equivalence relation on Std(µ)×Std(λ ).

DEFINITION 7.6. Let λ , µ ∈ P(n). The paired (6 m)-dual Knuth equivalence relation is the
equivalence relation ≈m on Std(µ)×Std(λ ) generated by paired (6 m)-dual Knuth moves.
When m = n we write ≈ for ≈n, and call it the paired dual Knuth equivalence relation.

We denote by Cm(u, t) the ≈m equivalence class that contains (u, t). By Remark 6.29 we
see that if (v,x) ∈Cm(u, t) then (v,x) = (wu,wt) for some w ∈Wm; furthermore, v↑m = u↑m
and x↑m = t ↑m.
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REMARK 7.7. It is clear that (u, t) ≈m (v,x) implies (u, t) ≈m′ (v,x) whenever m 6 m′. In
particular, (u, t) ≈m (v,x) implies (u, t) ≈ (v,x). For this reason, Cm(u, t) will be called the
(6 m)-subclass of C(u, t) =Cn(u, t).

REMARK 7.8. Let λ ∈ P(n). Since Std(λ ) is a single dual Knuth equivalence class, it follows
that C(u,u) = {(t, t) | t ∈ Std(λ )} holds for all u ∈ Std(λ ).

For example, consider µ =(3,1) and λ =(2,1,1). Then set Std(µ)×Std(λ ) has 9 elements.
It is easily shown that there are seven paired dual Knuth equivalence classes, of which two
classes have 2 elements and five classes have 1 element only. The two non-trivial classes are
{( 1 4

2

3

, 1 2 4

3
),( 1 3

2

4

, 1 2 3

4
)} and {( 1 3

2

4

, 1 3 4

2
),( 1 2

3

4

, 1 2 4

3
)}.

Let µ, λ ∈ P(n) and (u, t), (v,x) ∈ Std(µ)×Std(λ ). and suppose that (v,x) = (siu,sit) for
some i ∈ [1,n−1]. If i ∈ SD(u)∩SD(t) then u6 t if and only if v6 x, by Lemma 7.4, and it
follows by interchanging the roles of (u, t) and (v,x) that the same is true if i ∈ SA(u)∩SA(t).
In particular, if there is a paired dual Knuth move from (u, t) to (v,x) or from (v,x) to (u, t)
then u6 t if and only if v6 x. An obvious induction now yields the following result.

PROPOSITION 7.9. Let µ, λ ∈ P(n). Let (u, t), (v,x) ∈ Std(µ)× Std(λ ) and suppose that
(u, t)≈ (v,x). Then u6 t if and only if v6 x.

Let µ, λ ∈ P(n) and (u, t), (v,x) ∈ Std(µ)×Std(λ ). and suppose that (v,x) = (siu,sit) for
some i ∈ [1,n−1]. If i ∈ SD(u)∩SD(t) then l(v)− l(x) = (l(u)−1)− (l(t)−1) = l(u)− l(t),
and if i ∈ SA(u)∩SA(t) then l(v)− l(x) = (l(u)+1)− (l(t)+1) = l(u)− l(t). In particular,
l(v)− l(x) = l(u)− l(t) if there is a paired dual Knuth move from (u, t) to (v,x) or from (v,x)
to (u, t). It clearly follows that l(x)− l(v) is constant for all (v,x) ∈C(u, t). Hence we obtain
the following result.

PROPOSITION 7.10. Let µ, λ ∈ P(n). Let (u, t), (v,x) ∈ Std(µ)×Std(λ ) and suppose that
(u, t)≈ (v,x). Then u6L v if and only if t 6L x.

Proof. Since (u, t)≈ (v,x) there exists w ∈Wm such that v = wu and x = wt. By the definition
of the left weak order it follows that u6L v if and only if l(v)− l(u) = l(w), and t 6L x if and
only if l(x)− l(t) = l(w). Since (u, t)≈ (v,x) implies that l(v)− l(u) = l(x)− l(t), the result
follows. �

DEFINITION 7.11. Let µ, λ ∈ P(n) and (u, t) ∈ Std(µ)×Std(λ ). If j ∈ [1,n] and u⇓ j = t⇓ j
then we say that the pair (u, t) is j-restrictable.

REMARK 7.12. It is clear that the set R(u, t) = { j ∈ [1,n] | (u, t) is j-restrictable} is always
nonempty, since 1 ∈ R(u, t). Moreover, R(u, t) = [1,k] for some k ∈ [1,n].

DEFINITION 7.13. Let µ, λ ∈ P(n) and (u, t) ∈ Std(µ)×Std(λ ). We shall call the number k
satisfying R(u, t) = [1,k] the restriction number of the pair (u, t). If k is the restriction number
of (u, t) then we say that (u, t) is k-restricted.

REMARK 7.14. With (u, t) as above, the restriction number of (u, t) is at least 1 and at most n.
If k ∈ [1,n] then (u, t) is k-restricted if and only if it is k-restrictable and not (k+1)-restrictable.
If (u, t) is k-restricted then k = n if and only if u = t, and if k < n then colu(k+1) 6= colt(k+1)
and rowu(k+1) 6= rowt(k+1).

LEMMA 7.15. Let µ, λ ∈ P(n), and let u ∈ Std(µ) and t ∈ Std(λ ). If n < 4 then D(u) = D(t)
implies u = t.

Proof. This is trivially proved by listing all the standard tableaux. �
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DEFINITION 7.16. Let µ, λ ∈ P(n) and (u, t) ∈ Std(µ)×Std(λ ). We say that the pair (u, t)
is favourable if the restriction number of (u, t) lies in D(u)⊕D(t), the symmetric difference
of the descent sets of u and t.

REMARK 7.17. Let µ, λ ∈ P(n), and suppose that (u, t) ∈ Std(µ)×Std(λ ) is k-restricted.
Then no element of [1,k− 1] can belong to D(u)⊕D(t), since u⇓k = t⇓k implies that
D(u)∩ [1,k−1] = D(t)∩ [1,k−1]. So if (u, t) is favourable then k = min(D(u)⊕D(t)), and
if (u, t) is not favourable then k < min(D(u)⊕D(t)).

Let µ, λ ∈ P(n), and let (u, t) ∈ Std(µ)×Std(λ ). Let i be the restriction number of (u, t),
and suppose that i 6= n. Let w = u⇓ i = t⇓ i ∈ Std(ξ ), where ξ = Shape(w), and let also
(g, p) = u−1(i+1) and (h,q) = t−1(i+1), the boxes of u and t that contain i+1. Thus (g, p)
and (h,q) are ξ -addable, and (g, p) 6= (h,q) since (u, t) is not (i+1)-restrictable. Clearly there
is at least one ξ -removable box (d,m) that lies between (g, p) and (h,q) (in the sense that
either g > d > h and p6 m < q, or h > d > g and q6 m < p), and note that i ∈ D(u)⊕D(t)
if and only if the ξ -removable box w−1(i) is such a box.

With (d,m) as above, suppose that w′ ∈ Std(ξ ) satisfies w′(d,m) = i. Since Std(ξ ) is a
single dual Knuth equivalence class there must be a sequence of dual Knuth moves of index
at most i− 1 taking w to w′. This same sequence of dual Knuth moves takes (u, t) to (v,x),
where v satisfies v⇓ i = w′ and v↑ i = u↑ i, and x satisfies x⇓ i = w′ and x↑ i = t ↑ i. Thus (v,x)
is i-restricted and favourable, and (v,x)≈i (u, t).

We denote by F(u, t) the set of all (v,x) obtained by the above construction, as (d,m) and
w′ vary. Clearly every (v,x) ∈ F(u, t) is k-restricted and favourable, and satisfies(v,x)≈i (u, t).
Note also that (u, t) ∈ F(u, t) if and only if (u, t) is favourable.

Since colv(i+ 1) = colu(i+ 1) and colx(i+ 1) = colt(i+ 1), we can now deduce the fol-
lowing result.

LEMMA 7.18. Let µ, λ ∈ P(n) and let (u, t) ∈ Std(µ)× Std(λ ) with u 6= t. Let i be the
restriction number of (u, t), and assume that i /∈ D(u)⊕D(t). Let (v,x) ∈ F(u, t). Then either
D(x)rD(v) = D(t)rD(u) and D(v)rD(x) = {i}∪(D(u)rD(t)), this alternative occurring
in the case that colu(i+ 1) < colt(i+ 1), or else D(x)rD(v) = {i} ∪ (D(t)rD(u)) and
D(v)rD(x) = D(u)rD(t) (in the case that colt(i+1)< colu(i+1)).

Proof. The construction of (v,x) is given in the preamble above. Since (v,x) and (u, t) are both
i-restricted, D(v)∩ [1, i− 1] = D(x)∩ [1, i− 1] and D(u)∩ [1, i− 1] = D(t)∩ [1, i− 1]. That
is, (D(v)⊕D(x))∩ [1, i−1] = (D(u)⊕D(t))∩ [1, i−1] =∅. Furthermore, since v↑ i = u↑ i
and x↑ i = t ↑ i it follows that (D(v)rD(x))∩ [i+ 1,n− 1] = (D(u)rD(t))∩ [i+ 1,n− 1]
and (D(x)rD(v))∩ [i+1,n−1] = (D(t)rD(u))∩ [i+1,n−1]. It remains to observe that
if p = colv(i+ 1) 6 m = colv(i) = colx(i) < q = colx(i+ 1) then i ∈ D(v)rD(x), while if
q6 m < p then i ∈ D(x)rD(v). �

LEMMA 7.19. Let µ, λ ∈ P(n) and let (u, t) ∈ Std(µ)×Std(λ ). Assume that the restriction
number of (u, t) lies in D(u)⊕D(t), and let (v,x) ∈ F(u, t). Then D(v)rD(x) = D(u)rD(t)
and D(x)rD(v) = D(t)rD(u).

Proof. The proof is the same as the proof of Lemma 7.18, except that it can be seen now that
i ∈ D(v)rD(x) if i ∈ D(u)rD(t) and i ∈ D(x)rD(v) if i ∈ D(t)rD(u). �

LEMMA 7.20. Let µ, λ ∈ P(n) and (u, t) ∈ Std(µ)×Std(λ ), and i the restriction number
of (u, t). Suppose that D(t)$D(u) and i < j, where j = min(D(u)rD(t)). Let (v,x)∈ F(u, t).
If colu(i+ 1) < colt(i+ 1) then D(v)rD(x) = {i}∪ (D(u)rD(t)) and D(x)rD(v) = ∅,
while if colt(i+ 1) < colu(i+ 1) then D(v)rD(x) = D(u)rD(t) and D(x)rD(v) = {i}.
In the former case D(v)∩ {i, j} = {i, j} and D(x)∩ {i, j} = ∅, while in the latter case
D(v)∩{i, j}= { j} and D(x)∩{i, j}= {i}.
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Proof. Since D(t)$D(u) we have D(u)⊕D(t) =D(u)rD(t) 6=∅; so j =min(D(u)⊕D(t)),
and since j > i, we have i /∈ D(u)⊕D(t), hence (v,x) ∈ F(u, t) satisfies the further properties
specified in Lemma 7.18.

If colu(i+1)< colt(i+1) then Lemma 7.18 gives D(v)rD(x) = {i}∪ (D(u)rD(t)) and
D(x)rD(v) =∅, since D(t)rD(u) =∅ by hypothesis. In particular, since j ∈ D(u)rD(t),
we see that D(v)rD(x) contains both i and j.

If colt(i+1)< colu(i+1) then Lemma 7.18 combined together with D(t)rD(u) =∅ gives
D(v)rD(x)=D(u)rD(t) and D(x)rD(v)= {i}. In particular it follows that j∈D(v)rD(x)
and i ∈ D(x)rD(v). �

Let Γ = Γ(C,µ,τ) be a Wn-molecular graph, and let Λ be the set of molecule types for Γ.
For each λ ∈ Λ let mλ be the number of molecules of type λ in Γ, and Iλ some indexing set
of cardinality mλ . As in Remark 6.41, the vertex set of Γ can be expressed in the form

C =
⊔

λ∈Λ

⊔
α∈Iλ

Cα,λ ,

where Cα,λ = {cα,t | t ∈ Std(λ )} for each α ∈ Iλ , and the simple edges of Γ are the pairs
{cβ ,u,cα,t} such that α = β ∈ Iλ for some λ ∈ Λ and u, t ∈ Std(λ ) are related by a dual
Knuth move.

Now let λ , µ ∈ Λ, and let (α, t) ∈ Iλ ×Std(λ ) and (β ,u) ∈ Iµ ×Std(µ), so that cα,t and
cβ ,u are vertices of Γ. Suppose that D(u)rD(t) 6=∅, and let j ∈ D(u)rD(t).

Suppose that there exist i < j and (v,x) ∈ Std(µ)×Std(λ ) such that (u, t) and (v,x) are
related by a paired (6 i)-dual Knuth move. Then j ∈ D(u↑ i)rD(t ↑ i), since j ∈ D(u)rD(t)
and j > i. Thus j ∈ D(v↑ i)rD(x↑ i), since (v,x) ≈i (u, t) gives v↑ i = u↑ i and x↑ i = t ↑ i.
Hence j ∈ D(v)rD(x). Moreover, since (u, t) and (v,x) are related by a paired (6 i)-dual
Knuth move, there are k, l 6 i−1 with |k− l|= 1 such that

D(x)∩{k, l, j}= {k}, D(v)∩{k, l, j}= {k, j},
D(t)∩{k, l, j}= {l}, D(u)∩{k, l, j}= {l, j},

and it follows from Proposition 5.13 that µ(cβ ,v,cα,x) = µ(cβ ,u,cα,t).
More generally, suppose that i < j and (v,x) ∈ Std(µ)× Std(λ ) satisfy (v,x) ≈i (u, t),

so that for some m ∈ N there exist (u0, t0), (u1, t1), . . . , (um, tm) in Std(µ)× Std(λ ), with
(uh−1, th−1) and (uh, th) related by a paired (6 i)-dual Knuth move for each h ∈ [1,m], and
(u0, t0) = (u, t) and (um, tm) = (v,x). Applying the argument in the preceding paragraph and a
trivial induction, we deduce that j ∈ D(uh)rD(th) and µ(cβ ,uh

,cα,th) = µ(cβ ,u,cα,t) for all
h ∈ [0,m]. Thus we obtain the following result.

LEMMA 7.21. Let Γ be a Wn-molecular graph. Using the notation as above, let λ , µ ∈ Λ,
and let (α, t) ∈ Iλ ×Std(λ ) and (β ,u) ∈ Iµ ×Std(µ). Suppose that D(u)rD(t) 6= ∅, and
let j ∈ D(u)rD(t). Then for all i < j and all (v,x) ∈Ci(u, t) we have j ∈ D(v)rD(x) and
µ(cβ ,v,cα,x) = µ(cβ ,u,cα,t).

COROLLARY 7.22. Let Γ be a Wn-molecular graph as above. Let λ ∈ Λ, and u, t ∈ Std(λ ),
and suppose that u = s jt > t for some j ∈ [1,n−1]. Then µ(cα,u,cα,t) = 1, for all α ∈ Iλ .

Proof. Since t < s jt = u, it follows from Remark 6.23 that if D(t)* D(u) then there is a dual
Knuth move from t to u, and {cα,u,cα,t} is a simple edge. Thus µ(cα,u,cα,t) = 1 in this case,
and so we may assume that D(t)$ D(u).

Since u = s jt it is clear that t ↓ j = u↓ j, and hence D(t)∩ [1, j−2] = D(u)∩ [1, j−2]. If
j−1 ∈D(u) then j−1 ∈D(t), as colt( j−1) = colu( j−1)> colu( j)> colu( j+1) = colt( j).
Moreover, since t < s jt gives j ∈ D(u)rD(t), it follows that j = min(D(u)rD(t)). Note
also that j−1 is the restriction number of (u, t).
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Writing i for j− 1, we see that u and t satisfy the hypotheses of Lemma 7.20, since
i < j = min(D(u)rD(t)). Since colt(i+1)< colu(i+1), it follows that (u, t)≈i (v,x), where
(v,x) ∈ F(u, t) satisfies D(v)∩{i, j}= { j} and D(x)∩{i, j}= {i}. Since (u, t)≈i (v,x) there
exists w ∈Wi with v = wu and x = wt, and since j > i it follows that s jw = ws j. Thus
s jx = s jwt = ws jt = wu = v. Furthermore s jx > x, since j /∈ D(x), and D(x) * D(v) since
i ∈D(x)rD(v). So there is a dual Knuth move indexed by j from x to v, and so {cα,v,cα,x} is
a simple edge. Thus µ(cα,v,cα,x) = 1, and so µ(cα,u,cα,t) = 1 by Lemma 7.21. �

LEMMA 7.23. Let Γ be a Wn-molecular graph as above. Let µ, λ ∈Λ, let u∈ Std(µ) and let t ∈
Std(λ ). Suppose that D(u) = {n−1}∪D(t) and µ(cβ ,u,cα,t) 6= 0 for some β ∈Iµ and α ∈Iλ .
Suppose further that the restriction number of (u, t) is i < n−2. Then colu(i+1)< colt(i+1),
and (u, t)≈i (v,x) for some (v,x) ∈ Std(µ)×Std(λ ) such that D(v) = D(x)∪{i,n−1} and
µ(cβ ,v,cα,x) = µ(cβ ,u,cα,t) 6= 0.

Proof. Since clearly u 6= t, the set F(u, t) is defined and nonempty. Let (v,x) ∈ F(u, t). Then
it follows by Lemmas 7.20 and 7.21 that (u, t)≈i (v,x) and µ(cβ ,v,cα,x) = µ(cβ ,u,cα,t) 6= 0.
Moreover, if colu(i+1)< colt(i+1) then Lemma 7.20 gives D(v) = D(x)∪{i,n−1}. Thus
it remains to show that colu(i+1)< colt(i+1). Suppose otherwise. Then Lemma 7.20 shows
that n−1 ∈ D(v)rD(x) and i ∈ D(x)rD(v), and now the W -Compatibility Rule says that
i and n− 1 must be joined by a bond in the Coxeter diagram of Wn. This contradicts the
assumption that i < n−2. �

LEMMA 7.24. Suppose that u, t ∈ Std(n) are such that the restriction number of (u, t) is n−1
and D(u) = {n−1}∪D(t). Then colu(n)< colt(n), Shape(u)< Shape(t), and u < t.

Proof. Clearly n > 2. Since u⇓(n− 1) = t⇓(n− 1) we have Shape(u↓n) = Shape(t ↓n),
and since n−1 ∈ D(u)rD(t) we have colu(n)6 colu(n−1) = colt(n−1)< colt(n). Hence
Shape(u)< Shape(t) by Lemma 7.2, and u < t by Definition 7.1. �

LEMMA 7.25. Let Γ be a Wn-molecular graph as above. Let µ, λ ∈ Λ, let u ∈ Std(µ), and let
t ∈ Std(λ ). Suppose that D(u) = {n−1}∪D(t) and that µ(cβ ,u,cα,t) 6= 0 for some β ∈ Iµ

and α ∈ Iλ , and suppose that the restriction number of (u, t) is n−2. Then (u, t)≈n−2 (v,x)
for some (v,x) ∈ Std(µ)× Std(λ ) with µ(cβ ,v,cα,x) = µ(cβ ,u,cα,t), and either u < t and
D(v) = {n−2,n−1}∪D(x) (in the case colu(n−1)< colt(n−1)), or else (λ ,α) = (µ,β )
and u = sn−1t > t, and µ(cβ ,u,cα,t) = 1 (in the case colt(n−1)< colu(n−1)).

Proof. Clearly n> 3. Since (u, t) is (n−2)-restricted, we have u⇓(n−2) = t⇓(n−2) and
colu(n− 1) 6= colt(n− 1). Observe that (u, t) satisfies the hypotheses of Lemma 7.20 with
i = n− 2 and j = n− 1. Thus letting (v,x) ∈ F(u, t), it follows that (u, t) ≈n−2 (v,x), and
furthermore, µ(cβ ,v,cα,x) = µ(cβ ,u,cα,t) 6= 0 by Lemma 7.21.
Case 1.
Suppose that colu(n− 1) < colt(n− 1). Then since Shape(u⇓(n− 2)) = Shape(t⇓(n− 2))
it follows from Lemma 7.2 that Shape(u⇓(n−1))< Shape(t⇓(n−1)). Furthermore, since
n− 1 ∈ D(u)rD(t), it follows that colu(n) 6 colu(n− 1) < colt(n− 1) < colt(n). Hence
µ < λ by Lemma 7.2, and u < t by Definition 7.1. Moreover, since colu(n−1)< colt(n−1)
and D(u)rD(t) = {n−1}, it follows from Lemma 7.18 that D(v) = D(x)∪{n−2,n−1}.

Case 2.
Suppose that colt(n− 1) < colu(n− 1). Lemma 7.18 gives D(x)∩{n− 2,n− 1} = {n− 2}
and D(v)∩{n−2,n−1}= {n−1}, and since µ(cβ ,v,cα,x) 6= 0 it follows from Wn-Simplicity
Rule that µ(cβ ,v,cα,x) = 1. Hence µ(cβ ,u,cα,t) = 1. Moreover, since {cβ ,v,cα,x} is a simple
edge, it follows that from Theorem 6.40 and Remark 6.41 that λ = µ and α = β . Hence
u = sn−1t, since u⇓(n−2) = t⇓(n−2), and u > t since colt(n−1)< colu(n−1). �
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REMARK 7.26. Let Γ be a Wn-molecular graph as above. Let µ, λ ∈ Λ, let u ∈ Std(µ), and let
t ∈ Std(λ ). Suppose that D(u) = {n−1}∪D(t) and that µ(cβ ,u,cα,t) 6= 0 for some β ∈ Iµ

and α ∈ Iλ . Let i be the restriction number of (u, t), and note that i 6 n− 1. If i < n− 2
then colu(i+ 1) < colt(i+ 1) by Lemma 7.24, and if i = n− 1 then colu(n) < colt(n) by
Lemma 7.23. In the remaining case i = n−2, if colu(n−1)> colt(n−1) then u = sn−1t > t
by Lemma 7.25. Thus it can be deduced that if u 6= sn−1t > t then colu(i+1)< colt(i+1).

REMARK 7.27. Let Γ be a Wn-molecular graph as above. Let µ, λ ∈ Λ, and let (β ,u) ∈
Iµ ×Std(µ) and (α, t) ∈ Iλ ×Std(λ ) satisfy the condition µ(cβ ,u,cα,t) 6= 0 and D(t)$D(u).
Let j = min(D(u)rD(t)), and i the restriction number of (u, t), and note that i6 j.

Let K = Sr {s j+1, . . . ,sn−1}, and let ΓK = Γ↓K , the WK-graph obtained by restricting Γ

to WK . As in Remark 6.43, for each λ ∈ Λ and α ∈ Iλ we define ΛK,α,λ to be the set of all
κ ∈ P( j+1) such that the molecule of Γ with the vertex set Cα,λ contains a K-submolecule of
type κ , and let IK,α,λ ,κ index these submolecules. Let ΛK =

⋃
α,λ ΛK,α,λ , the set of molecule

types for ΓK , and for each κ ∈ ΛK let IK,κ =
⊔
{(α,λ )|κ∈ΛK,α,λ }IK,α,λ ,κ . For each β ∈ IK,κ we

write {c′
β ,u | u ∈ Std(κ)} for the vertex set of the corresponding K-submolecule of Γ.

Let v = u⇓( j + 1) and x = t⇓( j + 1), and write η = Shape(v) and θ = Shape(x). By
Remark 6.43, we can identify the vertex cβ ,u of ΓK with c′

δ ,v for some δ ∈ IK,β ,u,η , and the
vertex cα,t of ΓK with c′γ,x for some γ ∈ IK,α,λ ,θ . It is clear that D(v) = D(x)∪{ j}, so it
follows that µ(c′

δ ,v,c
′
γ,x) = µ(cβ ,u,cα,t) 6= 0. Moreover, since i6 j, the restriction number of

(v,x) is also i. Thus Lemma 7.24, Lemma 7.23 and Lemma 7.25 are applicable to ΓK and (v,x)
subject to hypotheses i = j, i < j−1 and i = j−1, respectively. In particular, Remark 7.26
says that if u 6= si+1t > t then colu(i+1)< colt(i+1).

We end this section with two technical lemmas that will be used throughout the rest of the
paper. They are concerned with descent sets and the lexicographic order on standard tableaux.
The first of these lemmas is needed for future applications of the polygon rule. Recall that if
t ∈ Std(n) and i ∈ [1,n−1] then sit ∈ Std(n) if and only if either i ∈ SA(t) or i ∈ SD(t).

LEMMA 7.28. Let t ∈ Std(n) and let i ∈ A(t) and j ∈ SD(t). Put v = s jt.
(i) Suppose that i < j−1. Then i /∈ D(v) and j /∈ D(v).

Additionally, if i ∈ SA(v) then i ∈ D(siv) and j /∈ D(siv).
(ii) Suppose that i = j−1 and colt( j+1)> colt( j−1). Then j−1 /∈D(v) and j /∈D(v).

Additionally, if j−1 ∈ SA(v) then j−1 ∈ D(s j−1v) and j /∈ D(s j−1v).
(iii) Suppose that i = j− 1 and colt( j+ 1) < colt( j− 1). Then j− 1 ∈ SD(v). Writing

w = s j−1v, we have j−1 ∈ D(v) and j /∈ D(v), and j−1 /∈ D(w) and j /∈ D(w).
Additionally, if j ∈ SA(w), then j− 1 ∈ SA(s jw), and we have j ∈ D(s jw) and
j−1 /∈ D(s jw), and j−1 ∈ D(s j−1s jw) and j /∈ D(s j−1s jw).

Proof. (i) Since v = s jt and j ∈ SD(t), it follows that j ∈ SA(v), whence j /∈ D(v). Since
v is obtained from t by switching the positions of j and j+1, and since i+1 < j, it follows
that i and i+1 have the same row and column index in v as they have in t. Since i /∈ D(t), this
shows that i /∈ D(v).

If i ∈ SA(v) then siv is standard and i ∈ D(siv). Since siv is obtained from v by switching
i and i+1, and since j > i+1, it follows that j and j+1 have the same row and column index
in siv as in v. Since j /∈ D(v) it follows that j /∈ D(siv).

(ii) Since v = s jt and j ∈ SD(t), it follows that j ∈ SA(v), whence j /∈ D(v). Now since
colv( j−1)= colt( j−1) and colv( j)= colt( j+1), and colt( j−1)< colt( j+1) by assumption,
it follows that colv( j−1)< colv( j). That is, j−1 /∈ D(v).

If j−1 ∈ SA(v) then s j−1v is standard and j−1 ∈ D(s j−1v). Since j−1 and j are both
ascents of v, we have colv( j−1)< colv( j)< colv( j+1), and since s j−1v is obtained from v
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by switching j−1 and j, we have cols j−1v( j) = colv( j−1) and cols j−1v( j+1) = colv( j+1),
and it follows that cols j−1v( j)< cols j−1v( j+1). Thus j /∈ D(s j−1v).

(iii) As in (i) and (ii) we have j /∈ D(v). The assumption colt( j+1)< colt( j−1) gives
colv( j)< colv( j−1), and so j−1 ∈ SD(v). Hence w = s j−1v is standard, and j−1 ∈ SA(w).
Since colw( j+1) = colv( j+1) = colt( j) and colw( j) = colv( j−1) = colt( j−1), and since
j−1 ∈ A(t) by assumption, it follows that j ∈ A(w). Thus j−1 ∈ D(v) and j /∈ D(v), and
j−1 /∈ D(w) and j /∈ D(w), as required.

If j ∈ SA(w) then s jw ∈ Std(λ ). Since j−1 and j are both strong ascents of w, we have
roww( j−1)> roww( j)> roww( j+1), and since s jw is obtained from w by switching j and
j+1, we have rows jw( j−1) = roww( j−1) and rows jw( j) = roww( j+1), and it follows that
rows jw( j−1)> rows jw( j). Thus j−1 ∈ SA(s jw).

Now j− 1 ∈ SA(s jw) gives j− 1 /∈ D(s jw), and gives j− 1 ∈ D(s j−1s jw). Similarly,
j ∈ SA(w) gives j ∈ D(s jw). Finally, the assumption colt( j + 1) < colt( j − 1) gives
cols j−1s jw( j) = cols jw( j− 1) = colt( j+ 1) < colt( j− 1) = cols jw( j+ 1) = cols j−1s jw( j+ 1),
and j /∈ D(s j−1s jw). �

Recall from Remark 6.12 that if λ ∈ P(n) and u, t ∈ Std(λ ) then t >lex u if and only if
there exists l ∈ [1,n] such that colt(l)< colu(l) and t ↑ l = u↑ l.

LEMMA 7.29. Let λ ∈ P(n) and 0 6 i 6 n− 1. Let t, t ′ ∈ Std(λ ) satisfy t ↑ i = t ′ ↑ i. Let
j ∈ SD(t) and put v = s jt, and suppose that i ∈ A(t) and i < j. Then v <lex t ′, and the
following all hold.

(i) If i ∈ SA(v) then siv ∈ Std(λ ) and siv <lex t ′.
(ii) If y ∈ Std(λ ) and y < v then y <lex t ′.

(iii) Suppose that i = j− 1 and that colt( j+ 1) < colt( j− 1), and let w = s j−1v. Then
w ∈ Std(λ ) and w <lex t ′. If j ∈ SA(w) then s j−1s jw ∈ Std(λ ) and s j−1s jw <lex t ′.

(iv) Suppose that i = j− 1 and that colt( j + 1) < colt( j− 1), and let w = s j−1v. Let
x ∈ Std(λ ) be such that x < w and D(x) contains exactly one of j−1 or j, and let y
be the ( j−1)-neighbour of x (see Definition 6.39). Then y <lex t ′.

Proof. Since j ∈ SD(t) we have t > s jt = v, and hence t >lex v by Corollary 6.14. Indeed,
colt( j+1)< colt( j) = colv( j+1) and t ↑( j+1) = v↑( j+1). Since t ↑ i = t ′ ↑ i and j+1 > i
it follows that colt ′( j+1)< colv( j+1) and t ′ ↑( j+1) = v↑( j+1), giving t ′ >lex v.

(i) The assumption i ∈ SA(v) gives siv ∈ Std(λ ), and since j+1 > i+1 it follows that
colt ′( j+1)< colv( j+1) = colsiv( j+1) and t ′ ↑( j+1) = siv↑( j+1). So t ′ >lex siv.

(ii) If y < v then y <lex v, by Corollary 6.14, and since v <lex t ′ this gives y <lex t ′.
(iii) Since colv( j) = colt( j+1)< colt( j−1) = colv( j−1), we have j−1 ∈ SD(v), and

since this gives s j−1v ∈ Std(λ ), an argument similar to that for (i) yields w <lex t ′.
If j ∈ SA(w) then s jw ∈ Std(λ ). Since j− 1 ∈ SA(s jw) by Lemma 7.28 (iii), we have

s j−1s jw ∈ Std(λ ). Since colt( j+1)< colt( j−1) = cols j−1s jw( j+1), and since j+1 > i+1,
it follows that colt ′( j + 1) < cols j−1s jw( j + 1) and t ′ ↑ j + 1 = s j−1s jw↑ j + 1. This gives
t ′ >lex s j−1s jw.

(iv) There are two cases to consider.

Case 1.
Suppose that D(x)∩{ j−1, j}= { j−1} and D(y)∩{ j−1, j}= { j}. Then either y = s jx > x
or y = s j−1x < x.

Suppose first that y = s jx > x. Since x < s jx = y and w < s jw, the assumption x < w gives
y < s jw by Lemma 7.4. Since s jw < s j−1s jw, it follows that y < s j−1s jw, and this gives
y <lex s j−1s jw by Corollary 6.14. But s j−1s jw <lex t ′ by (v), this yields y <lex t ′.

Suppose now that y = s j−1x < x. Since x < w, we have y < w, whence y <lex w by Corol-
lary 6.14. But w <lex t ′ by (v), this yields y <lex t ′.
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Case 2.
Suppose that D(x)∩{ j−1, j}= { j} and D(y)∩{ j−1, j}= { j−1}. Then either y = s jx < x
or y = s j−1x > x.

Suppose first that y = s j−1x > x. Since x < s j−1x = y and w < s j−1w = v, the assumption
x < w gives y < v by Lemma 7.4. Thus y <lex t ′ by (ii).

Suppose now that y = s jx < x. Since x < w, we have y < w, whence y <lex w by Corol-
lary 6.14. But w <lex t ′ by (v), this yields y <lex t ′. �

8. ORDERED ADMISSIBLE W-GRAPHS IN TYPE A

Let Γ = Γ(C,µ,τ) be an admissible Wn-graph, and let Λ⊆ P(n) be the set of molecule types
for Γ. As in Remark 6.41 we write

C =
⊔

λ∈Λ

⊔
α∈Iλ

Cα,λ ,

where for each λ ∈ Λ the set Iλ indexes the molecules of Γ of type λ , and for each λ ∈ Λ

and α ∈ Iλ the set Cα,λ = {cα,t | t ∈ Std(λ )} is the vertex set of a molecule of type λ . Fix
λ ∈ Λ and let C′

λ
=Cr

(⊔
α∈Iλ

Cα,λ

)
, the set of vertices of Γ belonging to molecules of type

different from λ . We define Iniλ (Γ) to be the set of (α, t) ∈ Iλ ×Std(λ ) such that there exists
an arc from cα,t to some vertex in C′

λ
. That is,

Iniλ (Γ) =
{
(α, t) ∈ Iλ ×Std(λ )

∣∣ µ(cβ ,u,cα,t) 6= 0 for some (β ,u) ∈
⊔

µ∈Λr{λ}
(Iµ×Std(µ))

}
.

For each α ∈ Iλ we also define Ini(α,λ )(Γ) = { t ∈ Std(λ ) | (α, t) ∈ Iniλ (Γ)}.
Note that, by Theorem 5.8, Γ satisfies the Wn-Compatibility Rule, the Wn-Simplicity Rule,

the Wn-Bonding Rule and the Wn-Polygon Rule.
Now since Γ satisfies the Wn-Simplicity Rule, it follows by Definition 5.4 that whenever

vertices cα,t and cβ ,u belong to different molecules and µ(cβ ,u,cα,t) 6= 0, we must have
D(t)$ D(u) and µ(cα,t ,cβ ,u) = 0.

Suppose that Iniλ (Γ) 6= ∅. We define tΓ,λ to be the element of
⋃

α∈Iλ
Ini(α,λ )(Γ) that is

minimal in the lexicographic order on Std(λ ). If Γ is clear from the context then we will
simply write tλ for tΓ,λ .

We make the following definition.

DEFINITION 8.1. Let Γ = Γ(C,µ,τ) be an admissible Wn-graph, and let

C =
⊔

λ∈Λ

⊔
α∈Iλ

Cα,λ ,

as above. Then Γ is said to be ordered if for all vertices cα,t and cβ ,u with µ(cβ ,u,cα,t) 6= 0,
either u < t (in the extended dominance order) or else α = β and u = st > t for some s ∈ Sn.

Note that µ(cβ ,u,cα,t) 6= 0 implies that D(u) * D(t). In particular, since S1 = ∅, the
condition µ(cβ ,u,cα,t) 6= 0 can never be satisfied in the case n = 1. Thus it is vacuously true
that any W1-graph is ordered.

Our objective in this section is to prove Theorem 8.18, which states that all admissible
Wn-graphs are ordered. The proof will proceed by induction on n.

REMARK 8.2. In particular, it will follow from Theorem 8.18 that the Kazhdan–Lusztig
Wn-graph corresponding to the regular representation of H(Wn) is ordered in the sense of
Definition 8.1. In this case the vertex set of Γ = (C,µ,τ) is C =Wn, the set of molecule types
is Λ = P(n), for each λ ∈ P(n) the set of molecules of type λ is indexed by Iλ = Std(λ ), and
for each λ ∈ Λ and x ∈ Iλ the set Cx,λ consists of those w ∈Wn such that Q(w) = x, where
Q(w) is the recording tableau in the Robinson–Schensted process.
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Now let v, w ∈Wn and put RS(w) = (t,x) ∈ Std(λ )2 and RS(v) = (u,y) ∈ Std(ν)2, where
λ , µ ∈ P(n). The conclusion of Theorem 8.18, applied in this case, is that if µ(v,w) 6= 0 and
τ(v)* τ(w) then either u < t or else µ = λ and (u,y) = (st,x) for some s ∈ Sn.

If Γ is replaced by Γo = (C,µ,τo), then since RS(w−1) = (x, t) and RS(v−1) = (y,u) by
Theorem 6.20, the conclusion of Theorem 8.18 is that if µ(v,w) 6= 0 and τo(v)* τo(w) then
either y < x or else µ = λ and (u,y) = (t,sx) for some s ∈ Sn.

Thus, in particular, if µ(v,w) 6= 0 and τ(v)* τ(w) or τo(v)* τo(w) then µ 6 λ .
It follows from the definition of the preorder �LR (in Section 4 above) that if v, w ∈Wn

and v �LR w then there is a sequence of elements z0 = v, z1, . . . , zm−1, zm = w such that
µ(zi−1,zi) 6= 0 and τ̄(zi−1)* τ̄(zi) for each i ∈ [1,m]. Since τ̄(zi−1)* τ̄(zi) is equivalent to
τ(zi−1)* τ(zi) or τo(zi−1)* τo(zi), it follows that µ 6 λ .

We now commence the proof of Theorem 8.18. We assume that n is a positive integer
and that all admissible Wm-graphs are ordered for 1 6 m < n. We let Γ = Γ(C,µ,τ) be an
admissible Wn-graph, and use the notation introduced in the preamble to this section: Λ is the
set of molecule types of Γ, and for each λ ∈ Λ the set Iλ indexes the molecules of type λ . We
fix K = Snr {sn−1} and L = Snr {s1}, and we let ΓK = Γ↓K and ΓL = Γ↓L, the WK-graph
and WL-graph obtained by restricting Γ to WK and WL. Since |K|= |L|= n−1, the inductive
hypothesis tells us that ΓK and ΓL are ordered.

By Remark 6.43, the set of molecule types for ΓK is ΛK =
⋃

α,λ ΛK,α,λ , where ΛK,α,λ

is the set of all κ ∈ P(n− 1) such that the molecule with the vertex set Cα,λ contains a K-
submolecule of type κ , and for each κ ∈ ΛK , the indexing set for those molecules of type κ is
IK,κ =

⊔
{α,λ |κ∈ΛK,α,λ }IK,α,λ ,κ , where IK,α,λ ,κ indexes the K-submolecules of type κ in the

molecule with the vertex set Cα,λ . The vertex set of ΓK is

C =
⊔

κ∈ΛK

{c′γ,x | (γ,x) ∈ IK,κ ×Std(κ)}.

By Remark 6.43, the set of molecule types for ΓL is ΛL =
⋃

α,λ ΛL,α,λ , where ΛL,α,λ is
the set of all θ ∈ P(n− 1) such that the molecule with the vertex set Cα,λ contains an L-
submolecule of type θ , and for each θ ∈ ΛL, the indexing set for those molecules of type θ

is IL,θ =
⊔
{α,λ |θ∈ΛL,α,λ }IL,α,λ ,θ , where IL,α,λ ,θ indexes the L-submolecules of type θ in the

molecule with the vertex set Cα,λ . The vertex set of ΓL is

C =
⊔

θ∈ΛL

{c′′ε,y | (ε,y) ∈ IL,θ ×Std(κ)}.

LEMMA 8.3. Let µ, λ ∈Λ with µ 6 λ , and let (β ,u) ∈ Iµ×Std(µ) and (α, t) ∈ Iλ ×Std(λ )
satisfy the condition µ(cβ ,u,cα,t) 6= 0 and D(t)$D(u). Let j = min(D(u)rD(t)) and assume
that j < n−1. Then u < t unless α = β and u = s jt > t.

Proof. Since j is at least 1, the requirement that n−1> j implies that n> 3. Let v= u⇓(n−1)
and x = t⇓(n−1), and write η = Shape(v) and θ = Shape(x). We shall need the restriction
of Γ to WK constructed earlier.

By Remark 6.43, we can identify the vertex cβ ,u of ΓK with c′
δ ,v for some δ ∈ IK,β ,u,η ,

and the vertex cα,t of ΓK with c′γ,x for some γ ∈ IK,α,λ ,θ . Now since j ∈ D(u)rD(t) and
j < n−1, we have j ∈ (D(u)∩ [1,n−2])r (D(t)∩ [1,n−2]) = D(v)rD(x), and it follows
that µ(c′

δ ,v,c
′
γ,x) = µ(cβ ,u,cα,t) 6= 0. Since ΓK is ordered, we have either v < x or γ = δ and

v = six > x for some i ∈ [1,n−2]. In the former case, since Shape(u) = µ 6 λ = Shape(t) by
hypothesis and since u⇓(n−1) = v < x = t⇓(n−1), we have u < t by the remark following
Definition 7.1 In the latter case, we have α = β , and since it is clear that i = j, it follows that
u = s jt > t. �
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PROPOSITION 8.4. Let µ, λ ∈ Λ with µ 6 λ , and suppose that (β ,u) ∈ Iµ ×Std(µ) and
(α, t) ∈ Iλ ×Std(λ ) satisfy µ(cβ ,u,cα,t) 6= 0. Then u < t unless α = β and u = sit > t for
some i ∈ [1,n−1].

Proof. Since µ(cβ ,u,cα,t) 6= 0, it follows that D(u) * D(t). If D(t) * D(u) then the Wn-
Simplicity Rule shows that {cβ ,s,cα,t} is a simple edge, thus α = β and u = sit for some
i ∈ [1,n−1]. Thus we may assume that D(t) $ D(u). If min(D(s)rD(t)) < n−1 then the
result is given by Lemma 8.3.

It remains to consider the case D(u) = D(t)∪{n−1}. Let i be the restriction number of
the pair (u, t) and note that i < n by Remark 7.14. If i = n− 1 or i = n− 2 then the results
are given by Lemma 7.24 and Lemma 7.25, respectively. We may assume that i < n−2. It
follows by Lemma 7.23 that (u, t) ≈i (v,x) for some (v,x) ∈ Std(µ)×Std(λ ) satisfying the
condition µ(cβ ,u,cα,t) = µ(cβ ,v,cα,x) 6= 0 and D(x) $ D(v) = D(x)∪{i,n− 1}. Since it is
clear that v 6= skx > x for all k ∈ [1,n−1], Lemma 8.3 shows that v < x, equivalently, u < t by
Proposition 7.9. �

The following definitions are motivated by the structure of tΓ,λ .

DEFINITION 8.5. Let µ,λ ∈ P(n). Let (u, t) ∈ Std(µ)×Std(λ ), and let k be the restriction
number of (u, t). The pair (u, t) is said to be k-minimal, and t is said to be k-minimal with
respect to u, if D(t)$ D(u) and t⇑k is k-critical, and t ↓k is the minimal tableau of its shape.

For example, ( 1 2 5

3

4

, 1 2 3

4 5
) is 2-restricted but not 2-minimal, ( 1 2 3

4

5

, 1 2 3

4 5
) is 4-

minimal, and ( 1 2 5

3

4

, 1 2 5

3 4
) is 3-minimal.

Let µ, λ ∈ P(n), and let (u, t) ∈ Std(µ)×Std(λ ). Let k be the restriction number of (u, t),
and assume that k ∈ [1,n−1] (or, equivalently, u 6= t). Recall that

F(u, t) = {(v,x) ∈Ck(u, t) | v−1(k) = x−1(k) lies between u−1(k+1) and t−1(k+1)}.

DEFINITION 8.6. Let µ,λ ∈ P(n) and (u, t) ∈ Std(µ)×Std(λ ) with u 6= t, and let k be the
restriction number of (u, t). We define A(u, t) = {(v,x) ∈ F(u, t) | colx(k) = colt(k+1)−1}
and call any element of A(u, t) an approximate of (u, t).

Note that A(u, t) 6=∅ if and only if colu(k+1)< colt(k+1).

REMARK 8.7. Let u, t as above and assume that A(u, t) 6=∅. It is clear from Definition 8.6
that every approximate (v,x) of (u, t) is k-restricted and satisfies (v,x) ≈k (u, t), and that
A(u, t) = {(v,x) ∈ Ck(u, t) | colv(k) = colx(k) = colt(k + 1)− 1}, which is a (non-empty)
(k− 1)-subclass of Ck(u, t). It follows that if κ = Shape(x⇓(k− 1)) = Shape(v⇓(k− 1)),
where (v,x) ∈ A(u, t), then the bijection from Std(κ) to A(u, t) given by w 7→ (v,x) such that
v⇓(k−1) = x⇓(k−1) = w transfers the partial order 6 from Std(κ) to A(u, t). The minimal
element of A(u, t), called the minimal approximate of (u, t), is the pair (v,x) given by w = τκ ,
and the maximal element of A(u, t), called the maximal approximate of (u, t), is the pair (v,x)
given by w = τκ .

REMARK 8.8. Let µ, λ ∈ Λ, and let (β ,u) ∈ Iµ ×Std(µ) and (α, t) ∈ Iλ ×Std(λ ) satisfy
the condition µ(cβ ,u,cα,t) 6= 0 and D(t)$ D(u). Let k ∈ [1,n−1] be the restriction number
of the pair (u, t). Let l = min(D(u)rD(t)), and let L = {s1, . . . ,sl}. Remark 7.27 applied
to Γ ↓L, the WL-graph obtained by restricting Γ to WL, shows that if u 6= sk+1t > t then
colu(k+1)< colt(k+1). Thus if u 6= sk+1t > t then the set A(u, t) 6=∅. In particular, if α 6= β

then, since µ(cβ ,u,cα,t) 6= 0 implies that D(t)$ D(u), and since µ = λ and µ(cβ ,u,cα,t) 6= 0
imply that u < t by Proposition8.4, the condition µ(cβ ,u,cα,t) 6= 0 is sufficient for the set
A(u, t) 6=∅.
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LEMMA 8.9. Let µ,λ ∈ P(n) and (u, t) ∈ Std(µ)× Std(λ ) with u 6= t, and let k be the
restriction number of (u, t). Assume that A(u, t) 6= ∅, and let (v,x) ∈ A(u, t). Then (v,x) is
k-restricted and satisfies (v,x)≈k (u, t). If, moreover, D(t)$ D(u), then we have D(x)$ D(v)
with k = min(D(v)rD(x)).

Proof. It follows from Remark 8.7 that (v,x) is k-restricted and satisfies (v,x) ≈k (u, t). It
remains to show that D(x) $ D(v) with k = min(D(v)rD(x)) if D(t) $ D(u). So suppose
further that D(t)$ D(u)

Since colu(k+1)< colt(k+1) (since A(u, t) 6=∅), Lemma 7.18 and Lemma 7.19 show that
D(x)rD(v) = D(t)rD(u) and D(v)rD(x)⊇ D(u)rD(t). Since D(t)$ D(u), this yields
D(x)$ D(v). Now since (v,x) is favourable, we have k = min(D(v)⊕D(x) by Remark 7.17,
and it follows that k = min(D(v)rD(x)). �

LEMMA 8.10. Let µ,λ ∈Λ with µ 6= λ , and let (β ,u)∈ Iµ×Std(µ) and (α, t)∈ Iλ ×Std(λ )
satisfy µ(cβ ,u,cα,t) 6= 0. Let k be the restriction number of (u, t). Then A(u, t) 6=∅, and for all
(v,x) ∈ A(u, t) the following three conditions hold:

(i) (v,x)≈ (u, t),
(ii) D(x)$ D(v) and k = min(D(v)rD(x)),

(iii) µ(cβ ,v,cα,x) = µ(cβ ,u,cα,t).

Proof. We have A(u, t) 6=∅ by Remark 8.8. Let (v,x) ∈ A(u, t), then by Lemma 8.9, we have
(u, t)≈k (v,x), whence (u, t)≈ (v,x). Moreover, since µ 6= λ , and since µ(cβ ,u,cα,t) 6= 0, we
have D(t)$D(u), and it follows by Lemma 8.9 that D(x)$D(v) with k = min(D(v)rD(x)).
It remains to show that µ(cβ ,v,cα,x) = µ(cβ ,u,cα,t). Let l = min(D(u)rD(t)). Since (u, t) is
k-restricted, we have k 6 l.

Suppose first that k < l. Since (u, t) ≈k (v,x) and k < l ∈ D(u)rD(t), the result follows
from Lemma 7.21.

Suppose now that k = l = min(D(u)rD(t)), in particular, this shows that k ∈D(u)rD(t).
Let w = t⇓k = u⇓k ∈ Std(ξ ), where ξ = Shape(w), and let (h,q) = t−1(k+1) and (g, p) =
t−1(k), the boxes of t that contain k+1 and k respectively. Since k /∈D(t), it follows that g> h
and p < q. If p = q−1 then we have (u, t) ∈ A(u, t). Since (u, t) ≈k−1 (v,x) by Remark 8.7
and since k ∈ D(u)rD(t), we have µ(cβ ,v,cα,x) = µ(cβ ,u,cα,t) by Lemma 7.21. Thus, we
can assume that p < q−1.

Let (d,m) = (ξq−1,q− 1), and note that the assumption implies that g > d > h > ξq. It
is clear that (g, p) and (d,m) are ξ -removable, and (g, p) 6= (d,m). Let ζ ∈ P(k− 2) such
that [ζ ] = [ξ ]r {(g, p),(d,m)}, and let (i, j) be a ζ -removable box that lies between (g, p)
and (d,m) (in the sense that g > i > d and p 6 j < m). We can choose w′ ∈ Std(ξ ) with
w′(i, j) = k− 2, w′(d,m) = k− 1 and w′(g, p) = k, and define (u1, t1) by u1⇓k = w′ and
u1 ↑k = u↑k, and t1⇓k = w′ and t1 ↑k = t ↑k. Since

(u1, t1) ∈ {(v,x) ∈Ck(u, t) | colv(k) = colx(k) = g},
the (k−1)-subclass of Ck(u, t), it follows that (u, t)≈k−1 (u1, t1). and it follows by Lemma 7.21
that µ(cβ ,u1 ,cα,t1) = µ(cβ ,u,cα,t) and k ∈ D(u1)rD(t1).

Since p < m, we have k−1∈ SD(w′), and so k−1∈ SD(u1) and k−1∈ SD(t1). It follows
that we can define (u2, t2) ∈ Std(µ)×Std(λ ) by u2 = sk−1u1 and t2 = sk−1t1, and we note that
w′′ = u2⇓k = t2⇓k = sk−1w′, and u2 ↑k = u1 ↑k and t2 ↑k = t1 ↑k. Since w′ = sk−1w′′ > w′′,
and D(w′′)∩{k− 2,k− 1} = {k− 2} and D(w′)∩{k− 2,k− 1} = {k− 1}, it follows that
there is a dual Knuth move (of the first kind) of index k− 1 taking w′′ to w′. As the same
dual Knuth move takes (u2, t2) to (u1, t1), we have (u1, t1) and (u2, t2) are related by a paired
6 k-dual Knuth relation indexed by (k−1). Moreover, it can be verified easily that

D(t1)∩{k−2,k−1,k}= {k−1}, D(u1)∩{k−2,k−1,k}= {k−1,k},
D(t2)∩{k−2,k−1,k}= {k−2}, D(u2)∩{k−2,k−1,k}= {k−2,k}. ,
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and it follows by Proposition 5.13 that µ(cβ ,u2 ,cα,t2) = µ(cβ ,u1 ,cα,t1).
Finally, since it is clear that (u2, t2) ∈ A(u, t), we have (u2, t2)≈k−1 (v,x) by Remark 8.7,

and since k ∈ D(u2)rD(t2), it follows by Lemma 7.21 that µ(cβ ,v,cα,x) = µ(cβ ,u2 ,cα,t2).
Thus, µ(cβ ,v,cα,x) = µ(cβ ,u,cα,t). as required. �

PROPOSITION 8.11. Let λ ∈ Λ satisfy the condition that Iniλ (Γ) 6=∅, and let t ′ = tΓ,λ . Let
(α, t ′) ∈ Iλ ×Std(λ ) and (β ,u′) ∈ Iµ ×Std(µ), where µ ∈ Λr {λ}, satisfy the condition
that µ(cβ ,u′ ,cα,t ′) 6= 0. Let k be the restriction number of (u′, t ′), and let (u, t) ∈ A(u′, t ′). Then
t⇑k is k-critical. Thus if (u, t) is the minimal approximate of (u′, t ′) then t is k-minimal with
respect to u.

Proof. Lemma 8.10 tells us that (u, t)≈ (u′, t ′), that D(t)$ D(u) and k = min(D(u)rD(t)),
and that µ(cβ ,u,cα,t) = µ(cβ ,u′ ,cα,t ′) 6= 0. Note that colt(k+1) = colt(k)+1, since (u, t) is
an approximate of (u′, t ′) (see Definition 8.6). Thus, by Remark 6.18, to show that t⇑k is
k-critical it will suffice to show that every j ∈ D(t) with j > k+1 is in WD(t), and that either
colt(k+2) = colt(k) or k+1 /∈ SD(t). We do both parts of this by contradiction.

For the first part, suppose that j > k+1 and j ∈ SD(t). Since j ∈ D(t) and D(t)$ D(u),
we have j ∈D(t)∩D(u), and since k ∈D(u)rD(t), it follows that j ∈D(t) and k /∈D(t), and
k, j ∈ D(u). Let v = s jt, which is standard since j ∈ SD(t). It follows by Lemma 7.28 (i) that
k, j /∈ D(v). Moreover, since µ(cα,t ,cα,v) = 1 by Corollary 7.22, and since µ(cβ ,u,cα,t) 6= 0,
it follows that (cα,v,cα,t ,cβ ,u) is an alternating directed path of type ( j,k).

Recall that if µ(cβ ,u,cα,t) 6= 0 then µ(cβ ,u,cα,t) > 0, because Γ is admissible. Thus
N2

j,k(Γ;v,u)> 0, whence N2
k, j(Γ;v,u)> 0, as Γ satisfies the Wn-Bonding Rule. So there exists

at least one ν ∈ Λ and (γ,y) ∈ Iν ×Std(ν) such that (cα,v,cγ,y,cβ ,u) is an alternating directed
path of type (k, j). Since t ′ ↑k = t ↑k and k < j−1, we have v <lex t ′ by Lemma 7.29. Thus,
if ν 6= λ then we have (α,v) ∈ Iniλ (Γ) and v ∈

⋃
α∈Iλ

Ini(α,λ )(Γ), and so this contradicts the
assumption that t ′ = tΓ,λ . It follows that ν = λ and y ∈ Std(λ ).

By Proposition 8.4, we must have either γ = α and y = skv > v or y < v. Recall that
skv ∈ Std(λ ) and skv > v if and only if k ∈ SA(v). Thus in the case γ = α and y = skv > v,
then since t ′ ↑k = t ↑k and k < j−1 we have y = skv <lex t ′ by Lemma 7.29 (i), while in the
case y < v, then since t ′ ↑k = t ↑k and k < j−1 we have y <lex t ′ by Lemma 7.29 (ii). In either
case, since (γ,y) ∈ Iniλ (Γ) and y ∈

⋃
α∈Iλ

Ini(α,λ )(Γ), this contradicts the assumption that
t ′ = tΓ,λ .

For the second part, suppose that k+1 ∈ SD(t) and colt(k+2) 6= colt(k).

Case 1.
Suppose that colt(k)< colt(k+2). Since (u, t) ∈ A(u′, t ′), we have colt(k) = colt(k+1)−1,
and it follows that colt(k+1)6 colt(k+2). This contradicts the assumption that k+1∈ SD(t).

Case 2.
Suppose that colt(k+2)< colt(k). Since k+1 ∈ SD(t)⊆ D(t) and D(t)$ D(u), it follows
that k+1 ∈ D(t)∩D(u), and since k ∈ D(u)rD(t), it follows that k+1 ∈ D(t) and k /∈ D(t),
and k,k+ 1 ∈ D(u). Let v = sk+1t. Since k+ 1 ∈ SD(t)), we have v ∈ Std(λ ). Let w = skv.
Since k ∈ SD(v) by Lemma 7.28 (iii), we have w ∈ Std(λ ). Now, it follows by Lemma 7.28
(iii) that k ∈ D(v) and k+1 /∈ D(v), and k /∈ D(w) and k+1 /∈ D(w).

Moreover, since µ(cα,v,cα,w) = µ(cα,t ,cα,v) = 1 by Corollary 7.22, and since it is also
true that µ(cβ ,u,cα,t) 6= 0, it follows that (cα,w,cα,v,cα,t ,cβ ,u) is an alternating directed path
of type (k,k+1).

As recalled above, if µ(cβ ,u,cα,t) 6= 0 then µ(cβ ,u,cα,t)> 0, because Γ is admissible. Thus
N3

k,k+1(Γ;w,u)> 0, whence N3
k+1,k(Γ;w,u)> 0, as Γ satisfies the Wn-Bonding Rule.

So there exist ξ ∈ Λ and (δ ,x) ∈ Iξ ×Std(ξ ), and ν ∈ Λ and (γ,y) ∈ Iν ×Std(ν) such
that (cα,w,cδ ,x,cγ,y,cβ ,u) is an alternating directed path of type (k+1,k).
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Since t ′ ↑k = t ↑k, we have w <lex t ′ by Lemma 7.29 (iii). Thus, if ξ 6= λ then we have
(α,w) ∈ Iniλ (Γ) and w ∈

⋃
α∈Iλ

Ini(α,λ )(Γ), and so this contradicts the assumption that
t ′ = tΓ,λ . It follows that ξ = λ and x ∈ Std(λ ).

Since µ(cγ,y,cδ ,x) 6= 0, and since D(x)∩{k,k+1}= {k+1} and D(y)∩{k,k+1}= {k},
we have {cδ ,x,cγ,y} is a simple edge by the Wn-Simplicity Rule. Thus ν = λ and γ = δ , and y
and x are related by a dual Knuth move. We have either δ = α and x = sk+1w > w or x < w by
Proposition 8.4, and y is the unique k-neighbour of x. If x = sk+1w > w, then since x ∈ Std(λ ),
this is equivalent to k+ 1 ∈ SA(w). It follows by Lemma 7.28 (iii) that y = skx > x is the
unique k-neighbour of x. In this case, since t ′ ↑k = t ↑k, we have y <lex t ′ by Lemma 7.29
(iii). If x < w and y is the unique k-neighbour of x, then since t ′ ↑k = t ↑k, we have y <lex t ′

by Lemma 7.29 (iv). In either case, since (γ,y) ∈ Iniλ (Γ) and y ∈
⋃

α∈Iλ
Ini(α,λ )(Γ), this

contradicts the assumption that t ′ = tΓ,λ .

If (u, t) is the minimal approximate of (u′, t ′), then it is clear that t is k-minimal with respect
to u in accordance with Definition 8.5. �

COROLLARY 8.12. Let λ ∈ Λ satisfy the condition that Iniλ (Γ) 6= ∅, and let t ′ = tλ . Let
(α, t ′) ∈ Iλ ×Std(λ ) and (β ,u′) ∈ Iµ ×Std(µ), where µ ∈ Λr {λ}, satisfy the condition
that µ(cβ ,u′ ,cα,t ′) 6= 0. Let k be the restriction number of (u′, t ′). Then tλ ↑(k+1) is minimal
and if k+1 ∈ SD(tλ ) then coltλ (k+1) = coltλ (k+2)+1.

Proof. Let (u, t)∈A(u′, t ′). Then t⇑k is k-critical, by Proposition 8.11. Now since t ↑k = tλ ↑k,
this shows that tλ ↑(k+1) is minimal and if k+1 ∈ SD(tλ ) then coltλ (k+1) = coltλ (k+2)+
1. �

LEMMA 8.13. Let n > 2, and let µ, λ ∈ P(n). Let t ∈ Std(λ ) and u ∈ Std(µ) and suppose
that t is 1-minimal with respect to u. Then µ < λ .

Proof. Since (u, t) is 1-minimal, we have t(1,1) = u(1,1) = 1 and t(1,2) = u(2,1) = 2. So if
n= 2, we have µ = (2)< (1,1) = λ . We proceed inductively on n> 3. If t(1,3) = 3 then since
t is 1-minimal, we have t = τλ , where λ = (1, . . . ,1). Since λ = max((P(n),6)), and since
µ1 > 1 = λ1, we deduce that µ < λ . We may just assume that t(2,1) = 3, . . . , t(λ1,1) = λ1+1,
and it follows that 2, . . . ,λ1 ∈ D(t). Now since D(t) $ D(u), we have 2, . . . ,λ1 ∈ D(u), and
so, u(3,1) = 3, . . . ,u(λ1 +1,1) = λ1 +1. In particular, this shows µ1 > λ1.

Let η = Shape(u⇓(n− 1)) and let θ = Shape(t⇓(n− 1)). It is clear that t⇓(n− 1) is
1-minimal with respect to u⇓(n−1), whence η < θ by the inductive hypothesis. We shall
show that colu(n)6 colt(n). Suppose to the contrary that colt(n)< colu(n).

Suppose first that colt(n−1) = 1 so that 1,3, . . . ,n−1 fill column 1 of t. Since D(t)$D(u),
we have 1,2,3, . . . ,n− 1 fill column 1 of u. Since colu(n) > 1, we have u(1,2) = n, and it
follows that n− 1 ∈ A(u). Now since D(t) $ D(u), we have n− 1 ∈ A(t), consequently
colt(n)> colt(n−1) = 1. It follows that colt(n)> 2 = colu(n), contradicting our assumption.

Suppose now that colt(n− 1) > 1. Let 1 < q = colt(n− 1) 6 colt(n). Since η 6 θ , we
have n−1 = ∑

q
m=1 θm 6 ∑

q
m=1 ηm, and so, if i < n then colu(i)6 colt(n−1). It follows that

colu(n)6 q+1 = colt(n−1)+1 < colt(n)+1, whence colu(n)6 colt(n), if n−1 ∈WA(u),
and colu(n)6 colu(n−1)6 colt(n−1)6 colt(n), if n−1 ∈D(u). Either case contradicts our
assumption.

Since η < θ and colu(n)6 colt(n), we have µ 6 λ by Lemma 7.2, and since µ1 > λ1, we
obtain µ < λ . �

LEMMA 8.14. Let λ ∈ Λ satisfy the condition that Iniλ (Γ) 6= ∅. Let (α, t ′) ∈ Iniλ (Γ) with
t ′ = tλ , and let µ ∈ Λr {λ} and (β ,u′) ∈ Iµ × Std(µ) such that µ(cβ ,u′ ,cα,t ′) 6= 0. Let
(u, t) ∈ Std(µ)×Std(λ ), and let k > 3 be the restriction number of (u, t). Suppose that (u, t)
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satisfies

t⇓k = u⇓k =
1 2 · · · k−2 k−1
k

,

and t satisfies further properties that colt(n) = k−1, and u satisfies further properties that
u(1,k) = n and (2,k−1) /∈ [µ]. Then (u, t) /∈ A(u′, t ′).

Proof. Assume to the contrary that (u, t) ∈ A(u′, t ′). By Remark 8.7, both (u′, t ′) and (u, t)
have the same restriction number, and A(u′, t ′) consists of (v,x) ∈ Std(µ)×Std(λ ) such that
v⇓(k−1) = x⇓(k−1) ∈ Std((1k−1)), and v⇑k = u⇑k and x⇑k = t⇑k. Thus it follows that
(u′, t ′) is k-restricted, and A(u′, t ′) = {(u, t)}.

It follows by Lemma 8.10 that (u, t) ≈ (u′, t ′), D(t) $ D(u) with k = min(D(u)rD(t)),
and µ(cβ ,u,cα,t) = µ(cβ ,u′ ,cα,t ′) 6= 0, and it follows by Lemma 8.11 that t⇑k is k-critical.
Since colt(k + 1) = colt(k) + 1, we have t(2,2) = k + 1, and since k ∈ D(u)rD(t), we
have colu(k+1)6 colu(k), hence colu(k+1) = 1, and it follows that u(3,1) = k+1. Since
u(1,k) = n, it follows further that k+1 < n.

Case 1.
Suppose that (u, t) = (u′, t ′).

Since k > 3, we have colu(k) = 1 < k− 1 = colu(k− 1), and so k− 1 ∈ SD(u) ⊆ D(u).
Let v = sk−1u. Since k− 1 ∈ SD(u), it follows that v ∈ Std(µ) and k− 1 /∈ D(v). Since
colu(k− 2) = k− 2 < k− 1 = colu(k− 1), it follows that k− 2 /∈ D(u). Moreover, since v
is obtained from u by switching the positions of k− 1 and k, and since k > 3, we have
colv(k− 1) = colu(k) = 1 6 k− 2 = colu(k− 2) = colv(k− 2), and so k− 2 ∈ D(v).Thus
there is a dual Knuth move (of the first kind) of index k−1 taking v to u, which shows that
{cβ ,u,cβ ,v} is a simple edge in Γ.

Since k > 3, we have 1 6 k− 2 = colt(k− 2) < k− 1 = colt(k− 1), and it follows that
k− 2 /∈ D(t). Since k ∈ D(u)rD(t), we also have k /∈ D(t). Similarly, since u⇓k = t⇓k,
we have k− 2 /∈ D(u), but since k ∈ D(u)rD(t), we have k ∈ D(u). We have shown that
k−2 ∈ D(v). Now since colv(k+1) = colu(k+1) = 1 < k−1 = colu(k−1) = colv(k), as v
is obtained from u by switching the positions of k−1 and k, we also have k ∈D(v). Moreover,
since µ(cβ ,u,cα,t) 6= 0 and µ(cβ ,v,cβ ,u) = 1 (as {cβ ,u,cβ ,v} is a simple edge), it follows that
(cα,t ,cβ ,u,cβ ,v) is an alternating directed path of type (k,k−2).

Since N2
k−2,k(Γ; t,v) = N2

k,k−2(Γ; t,v), as Γ satisfies the Wn-Polygon Rule, and since
N2

k,k−2(Γ; t,v)> µ(cβ ,u,cα,t), it follows that N2
k−2,k(Γ; t,v)> 0, whence there are ξ ∈ Λ and

(γ,x) ∈ Iξ ×Std(ξ ) such that (cα,t ,cγ,x,cβ ,u) is an alternating directed path of type (k−2,k).
Since rowt(k−2) = rowt(k−1), we have k−2 ∈WA(t), and so k−2 /∈ D(t), and since

t⇓k = u⇓k, we have k−1 ∈ D(t), since k−1 ∈ D(u). Thus if k−1 /∈ D(x) then {cα,t ,cγ,x}
is a simple edge. That is, if k− 1 /∈ D(x) then α = γ and t and x are related by a dual
Knuth move. Moreover, since sk−2t /∈ Std(λ ), this shows that x = sk−1t. But then since
k > 3 and since x is obtained from t by switching the positions of k− 1 and k, we have
colx(k+ 1) = colt(k+ 1) = 2 6 k− 1 = colt(k− 1) = colx(k), and it follows that k ∈ D(x),
contradicting the requirement that k /∈ D(x). Thus k−1 ∈ D(x).

Since µ(cβ ,v,cγ,x) 6= 0, and since D(x)∩{k−1,k}= {k−1} and D(v)∩{k−1,k}= {k},
the Wn-Simplicity Rule shows that {cβ ,v,cγ,x} is a simple edge. Equivalently, γ = β , and x and
v are related by a dual Knuth move. Indeed, x is, in this case, the (k−1)-neighbour of v. But
the (k−1)-neighbour of v is skv, since colv(k+1) = colv(k−1)< colv(k). Therefore, x = skv.

It can be seen that (α, t) = (α, t ′) and (β ,skv) satisfy the conditions of Corollary 8.12.
Since it is clear that (skv, t ′) = (skv, t) is (k− 2)-restricted, and since colt(k) < colt(k− 1),
we have by Corollary 8.12 that k− 1 = colt(k− 1) = colt(k)+ 1 = 2. Thus, k = 3, and so
colt(n) = 2. Since t ↑(k−1) is the minimal tableau of its shape by Corollary 8.12, we have
colt(3) 6 colt(4) 6 · · · 6 colt(n), and so colt(3) = 1 and colt(4) = · · · = colt(n) = 2. Thus
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λ1 = 2 and λ2 = n−2, and since λ1 > λ2, it follows that n6 4. This contradicts the fact that
n > k+1 (as shown earlier).

Case 2.
Suppose that (u, t) 6= (u′, t ′).

Since (u, t) ≈k (u′, t ′) by Lemma 8.9, there exists z ∈Wkr {1} with u′ = zu and t ′ = zt.
Hence there is an i ∈ [1,k−2] such that u′ and t ′ satisfy

w′ = t ′⇓k = u′⇓k =
1 · · · i i+2 · · · k

i+1
,

and, furthermore, t ′ ↑k = t ↑k and u′ ↑k = u↑k.
If k = 3 then since (2,2) /∈ [µ] and u(1,3) = n, we have µ2 = 1 and µ3 = 1. Therefore

µ = (n− 2,1,1) and the first row of u is 1 2 n , while u(2,1) = 3 and u(i,1) = i+ 1
for i ∈ [3,n− 2]. Since colu(n− 1) = 1 < 3 = colu(n), we have n− 1 /∈ D(u), and since
D(t)$ D(u) it follows that n−1 /∈ D(t). That is, colt(n−1)< colt(n). Now t ↑(k+1) is the
minimal tableau of it shape, by Corollary 8.12, and so

colt(5)6 colt(6)6 · · ·6 colt(n−1)< colt(n).

Thus colt(k+2) = colt(5) = · · ·= colt(n−1) = 1 and colt(n) = 2. Hence λ = (n−3,3), the
first three rows of t are 1 2 , 3 4 and 5 n and t(i,1) = i+ 2 for i ∈ [4,n− 2].
Now since Ck(u, t) = {(u, t),(s2u,s2t)}, we have (u′, t ′) = (s2u,s2t). It can be verified easily
that D(s2u) = D(s2t) = {1,3, . . . ,n− 2}, and it follows that µ(cβ ,s2u,cα,s2t) = 0. This is in
contradiction to the assumption that µ(cβ ,u′ ,cα,t ′) 6= 0. Henceforth, we may assume that k> 4.

Since t ′⇓k = u′⇓k, we have D(t ′)∩ [1,k− 1] = D(u′)∩ [1,k− 1]. Since k > 4, one the
one hand, we have colt ′(k+1) = colt(k+1) = 2 < k−1 = colt(k−1) = colt ′(k), and on the
other hand, we have colu′(k+ 1) = colu(k+ 1) = 1 < k− 1 = colu(k− 1) = colu′(k). Thus,
it follows that k ∈ D(t ′)∩D(u′), and so D(t ′)∩ [1,k] = D(u′)∩ [1,k]. Let l ∈ D(u′)rD(t ′),
which is not an empty set since D(t ′)$ D(u′). This shows that l > k.

We claim that i = 1. Suppose to the contrary that i > 1. Now since i > 1, it follows that
colw′(i+1) = 16 i−1= colw′(i−1)< colw′(i−1)+1= colw′(i), and so i∈ SD(w′)⊆D(w′)
and i− 1 /∈ D(w′). Since i ∈ SD(w′), we have siw′ is standard and i /∈ D(siw′). Moreover,
since colsiw′(i) = colw′(i+1)< colw′(i) = colsiw′(i−1), it follows that i−1 /∈ D(siw′). Thus
siw′→∗1 w′ with the index i, and since the same dual Knuth move takes (siu′,sit ′) to (u′, t ′), we
have (siu′,sit ′)≈k (s′, t ′). It follows by Lemma 7.21 that µ(cβ ,siu′ ,cα,sit ′) = µ(cβ ,u′ ,cα,t ′) 6= 0.
Since sit ′ < t ′, it follows from Corollary 6.14 that sit ′ <lex t ′. But (α,sit ′) ∈ Iniλ (Γ) and
sit ′ ∈

⋃
α∈Iλ

Ini(α,λ )(Γ), this contradicts the assumption that t ′ = tλ . Hence, i = 1, as claimed.
Let v = j(u′ ↑1) and x = j(t ′ ↑1), and write ζ = Shape(v) and ξ = Shape(x). We shall

need the restriction of Γ to WL constructed earlier.
By Remark 6.43, we can identify the vertex cβ ,u′ of ΓL with c′′

δ ,v for some δ ∈ IL,β ,µ,ζ ,
and the vertex cα,t ′ of ΓL with c′′γ,x for some γ ∈ IL,α,λ ,ξ . Note that since µ 6= λ , and so
β 6= α , we have IL,β ,µ,ξ ∩IL,α,λ ,ζ =∅, and it follows that δ 6= γ . Now since l > 1, we have
l ∈ D(v)rD(x), whence D(v) * D(x), and it follows that µ(cδ ,v,cγ,x) = µ(cβ ,u′ ,cα,t ′) 6= 0.
Since ΓL is ordered, and since δ 6= γ , we obtain v < x; in particular, ζ 6 ξ .

Let (g, p) and (h,q) be boxes vacated in j(u′ ↑1) and j(t ′ ↑1) respectively. Since t ′ ↑k = t ↑k,
we have t ′(2,2) = k+1 and colt ′(n) = k−1. Moreover, Corollary 8.12 shows that t ′ ↑(k+1)
is the minimal tableau of its shape, equivalently colt ′(k+2) 6 · · · 6 colt ′(n). It is therefore
clear that colt ′(i) 6 colt ′(n) = k−1 for all i ∈ [1,n], in particular, this shows that q 6 k−1.
Since u′ ↑k = u↑k, we have u′(1,k) = n, and since u′(1,k−1) = k while (2,k−1) /∈ [µ], it
follows that colu′(i)6 k−2 for all i ∈ [1,n]r{k}∪{n}. Note, moreover, that the box (2,1) is
in the slide path of j((1,1),u′ ↑1)), and so we have g> 2, and it follows that p6 k−2 < k−1.
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Hence, we obtain ∑
k−1
m=1 ξm = ∑

k−1
m=1 λm−1 = ∑

k−1
m=1 µm +1−1 = ∑

k−1
m=1 ζm +1+1−1. Thus

ζ 
 ξ , a desired contradiction. �

LEMMA 8.15. Let λ ∈ Λ, let µ ∈ Λr {λ}, and suppose that (α, t ′) ∈ Iλ × Std(λ ) and
(β ,u′) ∈ Iµ ×Std(µ) satisfy the condition that µ(cβ ,s′ ,cα,t ′) 6= 0, where we write t ′ for tλ .
Then µ < λ .

Proof. It is clear that n is at least 2. Recall that µ(cβ ,u′ ,cα,t ′) 6= 0 implies that D(t ′)$ D(u′)
and µ(cα,t ′ ,cβ ,u′) = 0, since vertices cβ ,u′ and cα,t ′ belong to different molecules. Let k be
the restriction number of the pair (u′, t ′) and note that 1 6 k 6 n− 1. By Lemma 8.10, we
have A(u′, t ′) 6= ∅. Let (u, t) be an approximate of (u′, t ′). By Lemma 8.9, we have (u, t) is
k-restricted. By Lemma 8.10, we have (u, t)≈ (u′, t ′), D(t)$D(u) with k =min(D(u)rD(t)),
and µ(cβ ,u,cα,t)= µ(cβ ,u′ ,cα,t ′) 6= 0. By Proposition 8.11, t⇑k is k-critical. For later reference,
let ν = Shape(u⇓k) = Shape(t⇓k).

If k = 1 then since t is 1-minimal with respect to u, it follows by Lemma 8.13 that µ < λ ,
and if k = n−1 then since D(u) = {n−1}∪D(t), it follows by Lemma 7.24 that µ < λ . We
may therefore assume that 1 < k < n−1.

Let w = j(u↑1) and let y = j(t ↑1), and let v = u⇓(n− 1) and let x = t⇓(n− 1). Let
ζ = Shape(w) and ξ = Shape(y), and let η = Shape(v) and θ = Shape(x). We shall need the
restriction of Γ to WK and WL established earlier.

By Remark 6.43, the vertex cβ ,u of ΓK coincides with the vertex c′
δ ,v for some δ ∈ IK,η and

the vertex cα,t of ΓK coincides with the vertex c′γ,x for some γ ∈ IK,θ . Since k ∈ D(u)rD(t)
and k < n−1, we have k ∈ D(v)rD(x), and so, µ(c′

δ ,v,cγ,x) = µ(cβ ,u,cα,t) 6= 0.
By Remark 6.43, the vertex cβ ,u of ΓL coincides with the vertex c′′π,w for some π ∈ IL,ζ and

the vertex cα,t of ΓL coincides with the vertex c′′ε,y for some ε ∈ IL,ξ . Since k ∈ D(u)rD(t)
and k > 1, we have k ∈ D(w)rD(y), and so, µ(c′′π,w,cε,y) = µ(cβ ,u,cα,t) 6= 0.

Since α 6= β (since µ 6= λ ), we have γ 6= δ and ε 6= π . Since ΓK and ΓL are ordered, it
follows that v < x and w < y. In particular, this gives η 6 θ and ζ 6 ξ .

Since t⇑k is k-critical, it follows from the minimality of colt⇑k(k) that colt(n)> colt(k).
We shall show that if colt(n) > colt(k) then colt(n) > colu(n). Suppose to the contrary that
colt(k)< colt(n)< colu(n). We aim to show that (u, t) satisfies the hypothesis of Lemma 8.14.

Let l = colt(n). Since η 6 θ , it follows that

(9)
l

∑
m=1

θm 6
l

∑
m=1

ηm.

Moreover, since colt(k + 2) 6 · · · 6 colt(n− 1) 6 colt(n), since t ↑(k + 1) is the minimal
tableau of its shape, and since colt(k + 1) 6 colt(n), since colt(k) + 1 = colt(k + 1) and
colt(k)+16 colt(n) by assumption, we have

(10) colt(i)6 l if k < i < n,

and so Eq. (9) can be expressed in the form
l

∑
m=1

νm +n−1− k 6
l

∑
m=1

νm +
l

∑
m=1

(ηm−νm).

Thus ∑
l
m=1(ηm− νm) > n− 1− k. But for each m ∈ [1, l], ηm− νm counts certain positive

integers between k and n, and so, we have ∑
l
m=1(ηm − νm) 6 n− 1− k. It follows that

∑
l
m=1(ηm−νm) = n−1− k. Equivalently, we have

(11) colu(i)6 l if k < i < n.

In particular, Eq.(11) shows that colu(n− 1) 6 l = colt(n). Since colt(n) < colu(n) by our
assumption, this implies that colu(n−1) < colu(n). Thus n−1 ∈ A(u). Since D(t) $ D(u),
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it follows that n−1 ∈ A(t). Since colu(i)6 l whenever k < i < n by Eq.(11) and colt(i)6 l
whenever k < i < n by Eq.(10), and since colu(n)> colt(n) = l by our assumption, we have

(12)
l

∑
m=1

µm =
l

∑
m=1

νm +n−1− k =
l

∑
m=1

νm +(n− k)−1 =
l

∑
m=1

λm−1.

Let (g, p) and (h,q) be the boxes vacated by j((1,1),u↑1) and j((1,1), t ↑1), respectively.
We claim that

(13) q6 l < p.

If l < q then ∑
l
m=1 ξm = ∑

l
m=1 λm, and since ∑

l
m=1 µm > ∑

l
m=1 ζm, it follows by Eq.(12) that

∑
l
m=1 ξm > ∑

l
m=1 ζm. If p6 l = colt(n) then ∑

l
m=1 ζm = ∑

l
m=1 µm−1 < ∑

l
m=1 µm. Moreover,

since ∑
l
m=1 λm−16 ∑

l
m=1 ξm, it follows by Eq.(12) that ∑

l
m=1 ζm < ∑

l
m=1 ξm. Since ζ 6 ξ ,

either case results in a contradiction, whence q6 l < p, as claimed.
Let u(g, p) = b. We claim that b = n.

If k+16 b < n then p = colu(b)6 l by Eq. (11), contradicting Eq. (13). Thus b6 k or b = n.
But colu(k) = colt(k)< colt(n) = l by our assumption, and so the case b = k is excluded by
Eq. (13). Suppose that b < k. Since the box (g, p) in the diagram of Shape(u↑1) is vacated
by j((1,1),u↑1), and since u⇓k = t⇓k, the box (g, p) in the diagram of Shape(t ↑1) is in the
slide path of j((1,1), t ↑1), and it follows that h > g and q > p by Lemma 6.35. The latter
inequality contradicts q < p given by Eq.( 13). Hence b = n, as claimed.

We claim that

(14) colu(i)< p−1 if k < i < n.

By Eq. (10), we have colt(k+1)6 colt(n).
Suppose first that colt(k + 1) = colt(n). Since n− 1 ∈ A(t), as shown above, we have

colt(n−1)< colt(n), and since colt(k+1) = colt(k)+1, the assumption colt(k+1) = colt(n)
implies that colt(n− 1) 6 colt(k). But colt(n− 1) > colt(k) by the minimality of colt⇑k(k),
we therefore have colt(n−1) = colt(k). Since t ↑(k+1) is the minimal tableau of its shape,
this shows that colt(k+2)6 · · ·6 colt(n−1) = colt(k), and so it follows by the minimality of
colt⇑k(k) that colt(k) = colt(k+2) = · · ·= colt(n−1), whence k+1,k+2, . . . ,n−2 ∈ D(t).
On the one hand, since k ∈ D(u), and since D(t)$ D(u), we have k,k+1, . . . ,n−2 ∈ D(u),
and it follows that colu(n−1)6 colu(n−2)6 · · ·6 colu(k+1)6 colu(k). On the other hand,
since colu(k) = colt(k) = colt(k+1)−1 = colt(n)−1 = l−1, and it follows by Eq.(13) that
colu(k)< p−1. Hence, if k < i < n then colu(i)< p−1.

Suppose now that colt(k + 1) < colt(n) = l. Since t ↑(k + 1) is the minimal tableau of
its shape, and since n− 1 ∈ A(t), as shown above, so that colt(n− 1) < colt(n), we have
colt(k+2)6 · · ·6 colt(n−1)< colt(n). Hence if k < i < n, we have colt(i)< l. Since η 6 θ ,
we have ∑

l−1
m=1 θm 6 ∑

l−1
m=1 ηm. This gives

l−1

∑
m=1

νm +n−1− k 6
l−1

∑
m=1

νm +
l−1

∑
m=1

(ηm−νm)

that is, n−1− k 6 ∑
l−1
m=1(ηm−νm). But since ηm−νm counts, for each m ∈ [1, l−1], certain

positive integers between k and n, it follows that ∑
l−1
m=1(ηm−νm)6 n−1− k. Therefore, we

conclude that ∑
l−1
m=1(ηm−νm) = n−1− k, that is, colu(i)6 l−1 if k < i < n. Since l < p by

Eq. (13), we have colu(i)< p−1 if k < i < n. This completes the proof of our claim.
Obviously n slides from the box (g, p) of the diagram of Shape(u↑1) into either the box

(g−1, p) or the box (g, p−1). Note that Eq. (14) gives u(g, p−1)6 k and u(g−1, p)6 k,
and so t(g, p− 1) = u(g, p− 1) and t(g− 1, p) = u(g− 1, p). Now if n slides into the box
(g− 1, p), so that the box (g− 1, p) is in the slide path of j((1,1), t ↑1), then Lemma 6.35
gives p 6 q, contradicting Eq. (13). Thus n slides into the box (g, p− 1), so that the box
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(g, p− 1) is in the slide path of j((1,1), t ↑1), and Lemma 6.35 gives p− 1 6 q. But since
q6 l < p by Eq. (13), this shows that colt(n) = l = q = p−1.

Let κ = (κm1
1 , . . . ,κms

s ) = Shape(u⇓k−1) = Shape(t⇓k−1).
We claim that colu(k) = colt(k) = 1.

Suppose to the contrary that colt(k) > 1. Choose (u, t) to be the minimal approximate of
(u′, t ′). By Lemma 6.36, we have (κ1,m1) is vacated by j((1,1),τκ ↑1). Since (g, p− 1) is
vacated by j((1,1),τκ ↑1), we have κ1 = g and m1 = p−1. Since colt(n) = p−1, and since
t−1(k) is a κ-addable box and t−1(k) 6= (κ1,1), we have p− 1 = m1 < colt(k), the latter
inequality shows that colt(n)< colt(k), contradicting our assumption that colt(k)< colt(n).
Thus colu(k) = colt(k) = 1, as claimed.

Since κ1 = g, as shown above, we have rowu(k) = rowt(k) = κ1 + 1 = g+ 1. We claim
that g = 1.
Suppose to the contrary that g > 1. We have (g, p) /∈ [κ] since u(g, p) = n but (g−1, p) ∈ [κ]
because g > 1 and because of Eq. (14). It follows that (g, p) = u−1(n) is a κ-addable box,
whence s> 1. Choose (u, t) to be the maximal approximate of (u′, t ′). Let κ∗=(κ∗n1

1 , . . . ,κ∗nr
r ).

It follows from Lemma 6.36 that (n1,κ
∗
1 ) is vacated by j((1,1),τκ ↑1). Since n1 = ms and

κ∗1 = m1 + · · ·+ms, it follows that (κ1,m1) 6= (n1,κ
∗
1 ), a clear contradiction. Thus g = 1, as

claimed.
Since t(2,1) = u(2,1) = k, we deduce that κ consists of (k−1) parts of length 1, that is,

m1 = k−1 and κ1 = 1. Thus colt(n) = k−1 and u(1,k) = n, and since colt(n)> colt(k) by
our assumption, we have colt(n)> 2, and it follows that k> 3. Moreover, since colu(i)< k−1
for k 6 i 6 n− 1, we have (2,k− 1) /∈ [µ]. It is clear that (u, t) satisfies the hypothesis of
Lemma 8.14. But Lemma 8.14 shows that (u, t) /∈ A(u′, t ′), which completes our argument by
contradiction.

We have shown that colt(n) = colt(k) or if colt(n)> colt(k) then colt(n)> colu(n).
Suppose first that colt(n) = colt(k). Since t ↑(k+ 1) is the minimal tableau of its shape,

we have colt(n) > colt(n− 1) > · · · > colt(k+ 3) > colt(k+ 2). Since colt(k) = colt(n), it
follows from the minimality of colt⇑k(k) that colt(k) = colt(k+2) = · · ·= colt(n). Moreover,
since colt(k+ 1) = colt(k)+ 1 > colt(k), this shows that colt(k+ 1) > colt(k+ 2). Thus, it
follows that k+1,k+2, . . . ,n−1 ∈ D(t). Now since D(t)$ D(u) and k = min(D(u)rD(t)),
in particular, k ∈ D(u)rD(t), it follows that k,k+1,k+2 . . . ,n−1 ∈ D(u). This shows that
colu(n)6 colu(n−1)6 · · ·6 colu(k) = colt(k) = colt(n), whence µ < λ by Lemma 7.2.

Finally, suppose that colu(n)6 l = colt(n). Since η 6 θ , we have µ 6 λ by Lemma 7.2,
and since µ 6= λ , we have µ < λ . �

LEMMA 8.16. Suppose further that Γ is a cell. Then Λ = {λ} for some λ ∈ P(n).

Proof. Assume to the contrary that Λ consists of more than one partitions of n. Let λ ∈ Λ.
Since Γ is strongly connected, the set Iniλ (Γ) 6=∅. Let (α, tλ ) ∈ Iniλ (Γ). Let µ ∈ Λr{λ}
be such that µ(cβ ,u,cα,tλ ) 6= 0, for some (β ,u) ∈ Iµ ×Std(µ). Then µ < λ by Lemma 8.15.
Repeating the argument with µ in place of λ . Since Λ is a finite set and Γ is strongly connected,
a finite chain λ > µ > · · ·> γ > · · ·> ν > γ is eventually reached, a clear contradiction. �

Lemma 8.16 says that the set of molecule types for an admissible Wn- cell is a singleton set
{λ}, where λ is a partition of n.

LEMMA 8.17. Suppose that n > 2. Let D and D′ be cells of Γ, and let {µ} and {λ} be the
sets of molecule types for D and D′, respectively. Then D6Γ D′ implies µ 6 λ . In particular,
if cα,t ∈ D′ and cβ ,u ∈ D satisfy the condition that µ(cβ ,u,cα,t) 6= 0, then µ 6 λ .

Proof. If µ = λ then the result holds trivially. So we can assume that µ 6= λ . Let (C,6Γ) be
the poset of cells of Γ induced by the preorder 6Γ. It follows that |C|> 2.

33



VAN MINH NGUYEN

Suppose first that D and D′ are the only cells of Γ. Since D6Γ D′, the set Iniλ (Γ) 6=∅. Let
(α, tλ ) ∈ Iλ ×Std(λ ) and (β ,u) ∈ Iµ ×Std(µ) satisfy µ(cβ ,u,cα,tλ ) 6= 0. It follows readily
from Lemma 8.15 that µ < λ .

Suppose now that |C| > 2 and the result holds for any admissible Wn-graph of less than
|C| cells. Let C0 and C1 be a minimal and a maximal cell in (C,6Γ). It is clear that C0 and
CrC1 are closed subsets of C, hence the full subgraphs Γ(CrC0) and Γ(CrC1) induced by
CrC0 and CrC1 are themselves admissible Wn-graph with edge weights and vertex colours
inherited from Γ. It follows that if both D and D′ are cells of Γ(CrC0) or Γ(CrC1), then the
result is given by the inductive hypothesis. Furthermore, since D6Γ D′ by assumption, we
can assume that D =C0 and D′ =C1 are the (unique) minimal and maximal cells in (C,6Γ).

Let C′ 6=C0,C1 be a cell of Γ. By Lemma 8.16, the set of molecule types for C′ is {ν} for
some ν ∈ Λ. Now since C0 6Γ C′ and C0 and C′ are cells of Γ(CrC1), we have µ 6 ν by the
inductive hypothesis. Similarly, since C′ 6Γ C1 and C′ and C1 are cells of Γ(CrC0), we have
ν 6 λ by the inductive hypothesis. It follows that µ 6 λ as required.

Since µ(cβ ,u,cα,t) 6= 0, we have D(u)* D(t). It follows that cβ ,u 6Γ cα,t , hence D6Γ D′

by the definition of the preorder 6Γ. It follows from the result above that µ 6 λ . �

THEOREM 8.18. Γ is ordered.

Proof. Suppose that (α, t) ∈ Iλ ×Std(λ ) and (β ,u) ∈ Iµ satisfy µ(cβ ,u,cα,t) 6= 0. It follows
from Lemma 8.17 that µ 6 λ . Now Proposition 8.4 says that u< t unless α = β and u= sit > t
for some i ∈ [1,n−1]. That is, Γ is ordered. �

REMARK 8.19. Let y,w ∈Wn, and let RS(y) = (u,v) and RS(w) = (t,x). It follows from
Remark 8.2 that ify�LR w then µ 6 λ , where µ = Shape(x) = Shape(u) and λ = Shape(y) =
Shape(v). This gives an alternative approach to the necessary part of the following well-known
result. (See, for example, [6, Theorem 5.1].)

THEOREM 8.20. Let y,w ∈Wn and µ,λ ∈ P(n), and suppose that RS(y) ∈ Std(µ)×Std(µ)
and RS(w) ∈ Std(λ )× Std(λ ). Then y �LR w if and only if µ 6 λ . In particular, the sets
D(λ ) := {w ∈Wn | RS(w) ∈ Std(λ )×Std(λ )}, where λ ∈ P(n), are precisely the Kazhdan–
Lusztig two-sided cells.

Let λ ∈ P(n). For each t ∈ Std(λ ), since C(t) = {w ∈Wn | Q(w) = t} gives rise to the left
cell isomorphic to Γλ , we have D(λ ) =

⊔
t∈Std(λ )C(t) gives rise to the union of |Std(λ )| left

cells whose molecule types are λ .

9. W-GRAPHS FOR ADMISSIBLE CELLS IN TYPE A

DEFINITION 9.1. Let λ ∈ P(n). A pair of standard λ -tableaux (u, t) is said to be a probable
pair if u < t and D(t)$ D(u).

It can be seen that there is no probable pair unless n> 5.

LEMMA 9.2. Let λ ∈ P(n), and let u, t ∈ Std(λ ). Let i be the restriction number of (u, t) and
j = max(SD(t)). If (u, t) is favourable and satisfies D(t)$ D(u) then i < j.

Proof. Suppose to the contrary that i> j. Since (u, t) is favourable, and since D(t)$ D(u),
we have i ∈ D(u)⊕D(t) = D(u)rD(t). Since i /∈ D(t), we have i 6= j, and so i > j. Let
w = t⇓ i = u⇓ i ∈ Std(µ), where µ = Shape(w). Since j = max(SD(t)) and since i > j, we
have D(t ↑ i)∩ [i+ 1,n− 1] = WD(t ↑ i)∩ [i+ 1,n− 1], and it follows by Remark 6.16 that
t ↑ i is minimal, that is, t ↑ i = τλ/µ . Moreover, since i /∈ D(t), this shows that for all k > i, we
have colt(k)> colt(i+1)> colt(i), from which we have λm = µm for all m6 colt(i). Hence
if k > i then colu(k)> colu(i), in particular, colu(i+1)> colu(i), contradicting i ∈ D(u). �
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LEMMA 9.3. Let λ ∈ P(n), and let u, t ∈ Std(λ ). Let i be the restriction number of (u, t).
Suppose that (u, t) is favourable and satisfies D(t)$ D(u). If, moreover, i+1 = maxSD(t),
then colt(i+2) 6= colt(i).

Proof. Suppose to the contrary that colt(i+2) = colt(i). Since (u, t) is i-restricted, we have
u⇓ i = t⇓ i. Let µ = Shape(t⇓ i) = Shape(u⇓ i), and let u(g, p) = t(g, p) = i. Now since
i+ 1 = maxSD(t), we have t ↑(i+ 1) is minimal, hence colt(i) = colt(i+ 2) 6 colt(k) for
k > i+2. Furthermore, since (u, t) is favourable, we have i ∈ D(u)rD(t), and so we have
colt(i)< colt(i+1). It follows that for k > i, we have colt(k)> colt(i). Therefore, for each
j ∈ [1, p− 1], we have λ j = µ j. This shows that for k > i, we have colu(k) > colu(i), in
particular, we have colu(i+ 1) > colu(i). Since i ∈ D(u)rD(t), as (u, t) is favourable, we
have colu(i+ 1) 6 colu(i). Thus colu(i+ 1) = colu(i), and we have u(g+ 1, p) = i+ 1. An
easy induction on l ∈ [1,λp−g] shows that if t(g+ l, p) = i+ l +1 then u(g+1, p) = i+ l.
However, this contradicts D(t)$ D(u), as desired. �

Let Γ = Γ(C,µ,τ) be an admissible Wn-graph. Suppose that Λ = {λ}, where λ ∈ P(n), is
the set of molecule types for Γ, and let I = Iλ index the molecules of Γ. By Remark 6.41, the
vertex set of Γ is given by C =

⊔
α∈I Cα,λ , where for each α ∈ I, Cα,λ = {cα,t | t ∈ Std(λ )},

the simple edges of Γ are the pairs {cβ ,u,cα,t} such that α = β and u and t are related by a
dual Knuth move, and τ(cα,t) = D(t).

LEMMA 9.4. Let u, t ∈ Std(λ ), and suppose that the pair (u, t) is probable. Then for all
(v,x) ∈ F(u, t), the pair (v,x) is probable, max(SD(v)) = max(SD(t)), and µ(cβ ,v,cα,x) =
µ(cβ ,u,cα,t).

Proof. We may assume that (u, t) is not favourable. Let (v,x) ∈ F(u, t). Let i be the restriction
number of (v,x) (which is also the restriction number of (u, t)), and let j = max(SD(x)). Since
(v,x) ∈ F(u, t), we have (v,x)≈i (u, t), and so (v,x)≈ (u, t) by Remark 7.7, and since (u, t) is
probable, we have u < t, and it follows by Lemma 7.9 that v < x. Furthermore, u < t implies
that u⇓(i+ 1) 6 t⇓(i+ 1), but since (u, t) is i-restricted. we have u⇓(i+ 1) 6= t⇓(i+ 1),
therefore u⇓(i + 1) < t⇓(i + 1). It follows by Remark 6.9 that colu(i + 1) < colt(i + 1).
Moreover, as (u, t) is not favourable and D(t)$ D(u), so that D(u)⊕D(t) = D(u)rD(t), we
have i<min(D(u)rD(t)) by Remark 7.17. Thus (u, t) satisfies the hypothesis of Lemma 7.20.
Since colu(i+1)< colt(i+1) as shown above, it follows by Lemma 7.20 that (v,x) satisfies
D(v)rD(x) = {i} ∪ (D(u)rD(t)) and D(x)rD(v) = ∅. Since D(x)rD(v) = ∅ while
D(v)rD(x) 6=∅, we have D(x)$ D(v). Hence (v,x) is probable.

Next, since j = max(SD(x)) and j > i by Lemma 9.2, we have j = max(SD(x↑ i)), and
since t ↑ i = x↑ i, we have j = max(SD(t ↑ i)), and it follows that j = max(SD(t)), as required.

Finally, since i < min(D(u)rD(t)) as shown above, we have µ(cβ ,v,cα,x) = µ(cβ ,u,cα,t)
by Lemma 7.21. �

PROPOSITION 9.5. Monomolecular admissible cells of type An−1 are Kazhdan–Lusztig.

Proof. Suppose that Γ = Γ(C,µ,τ) is a monomolecular admissible Wn -cell. Then there is a
partition λ of n such that C = {ct | t ∈ Std(λ )}, and {cu,ct} is a simple edge of Γ if and only
if u, t ∈ Std(λ ) are related by a dual Knuth move. In view of Corollary 6.31, our task is to
show that Γ∼= Γλ = Γ(Std(λ ),µ(λ ),τ(λ )). Recall from Remark 6.42 that Γλ is an admissible
Wn-graph consisting of a single molecule of type λ . Since it follows from Remark 6.15 that
τ(ct) = D(t) = τ(λ )(t) for all t ∈ Std(λ ), it remains to show that µ(cu,ct) = µ(λ )(u, t) for all
u, t ∈ Std(λ ). Note that, by Theorem 5.8, both Γ and Γλ satisfy the Wn-Compatibility Rule,
the Wn-Simplicity Rule, the Wn-Bonding Rule and the Wn-Polygon Rule.

We have shown in Theorem 8.18 that Γ and Γλ are both ordered. Thus if u, t ∈ Std(λ ) then
µ(cu,ct) = µ(λ )(u, t) = 0 unless u < t or u = sit > t for some i ∈ [1,n−1]. If u = sit > t for
some i ∈ [1,n−1] then we have µ(cu,ct) = µ(λ )(u, t) = 1 by Corollary 7.22. Now suppose
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that u < t and D(t) * D(u). If one or other of µ(cu,ct) and µ(λ )(u, t) is nonzero then, by
the Simplicity Rule, one or other of {cu,ct} and {u, t} is a simple edge, whence u and t are
related by a dual Knuth move (by Remark 6.41), and both {cu,ct} and {u, t} are simple edges.
So µ(cu,ct) = µ(λ )(u, t) = 1 in this case. Obviously there is nothing to show if µ(cu,ct) are
µ(λ )(u, t) both zero, and so all that remains is to show that µ(cu,ct) = µ(λ )(u, t) whenever
u < t and D(t)$ D(u). That is, it remains to show that µ(cu,ct) = µ(λ )(u, t) for all probable
pairs of standard λ -tableaux.

Let (u′, t ′) be a probable pair. If t ′= τλ then there is nothing to prove. Proceeding inductively
on the lexicographic order, let τλ 6= t ′ ∈ Std(λ ), and assume that the result holds for all
x ∈ Std(λ ) such that x <lex t ′.

Let i be the restriction number of (u′, t ′), and let j = max(SD(t ′)). Let (u, t) ∈ F(u′, t ′),
and note that (u, t) is i-restricted and favourable, and satisfies t ↑ i = t ′ ↑ i and u↑ i = u′ ↑ i.
Moreover, Lemma 9.4 shows that (u, t) is probable, max(SD(t)) = max(SD(t ′)) = j, and
µ(cu,ct) = µ(cu′ ,ct ′) and µ(λ )(u, t) = µ(λ )(u′, t ′). By the last result, it suffices to show that
µ(cu,ct) = µ(λ )(u, t).

Since j ∈ SD(t), we have s jt ∈ Std(λ ) and s jt < t. Let v = s jt, and note that v <lex t ′ by
Lemma 7.29. Since i < j by Lemma 9.2, we have either j− i > 1 or j− i = 1.

Case 1.
Suppose that j− i > 1, so that m(i, j) = 2. Since (u, t) is favourable, and since D(t)$ D(u)
(since (u, t) is probable), we have i ∈ D(u)rD(t) and j ∈ D(u)∩D(t), that is, i /∈ D(t) and
j ∈ D(t), and i, j ∈ D(u). We also have i, j /∈ D(v), by Lemma 7.28 (i).

If (cv,cy1 ,cu) is any alternating directed path of type ( j, i), then, since Γ is ordered, it
follows that either y1 = s jv = t > v or y1 < v. Similarly, if (cv,cx1 ,cu) is any alternating
directed path of type (i, j), then it follows that either x1 = siv > v or x1 < v. Note that if
x1 = siv > v, then since x1 ∈ Std(λ ), it follows that i ∈ SA(v). Thus, if x1 = siv > v, then
i ∈ D(siv) and j /∈ D(siv) by Lemma 7.28 (i). Now since Γ satisfies the Wn-Polygon Rule, we
have N2

j,i(Γ;cv,cu) = N2
i, j(Γ;cv,cu), and it follows that

(15) µ(ct ,cv)µ(cu,ct) +∑
y1<v

µ(cy1 ,cv)µ(cu,cy1)

= µ(csiv,cv)µ(cu,csiv) +∑
x1<v

µ(cx1 ,cv)µ(cu,cx1),

where the term µ(csiv,cv)µ(cu,csiv) on the right hand side of Eq. (15) should be omitted if
i /∈ SA(v). Note that if i∈ SA(v) then (cv,csiv,cu) is not necessarily a directed path, since there
need not be an arc from siv to u, but in this case µ(csiv,cv)µ(cu,csiv) = 0 since µ(cu,csiv) = 0.
Similarly, (cv,ct ,cu) is not necessarily a directed path, since there need not be an arc from t
to u, but µ(ct ,cv)µ(cu,ct) = 0 in this case. So Eq. (15) still holds in these cases.

Since Corollary 7.22 gives µ(ct ,cv) = 1, and µ(csiv,cv) = 1 if i ∈ SA(v), Eq. (15) yields
the following formula for µ(cu,ct):

µ(cu,ct) = µ(cu,csiv) +∑
x1<v

µ(cx1 ,cv)µ(cu,cx1) −∑
y1<v

µ(cy1 ,cv)µ(cu,cy1),

where µ(cu,csiv) should be interpreted as 0 if siv /∈ Std(λ ).
Working similarly on Γλ yields the following formula for µ(λ )(u, t):

µ
(λ )(u, t) = µ

(λ )(u,siv) +∑
x1<v

µ
(λ )(x1,v)µ(λ )(u,x1) −∑

y1<v
µ
(λ )(y1,v)µ(λ )(u,y1).

Since v <lex t by Lemma 7.29, siv <lex t (if i ∈ SA(t)) by Lemma 7.29 (i), and x1 <lex t
and y1 <lex t by Lemma 7.29 (ii), it follows by the inductive hypothesis that the corresponding
edge weights that appear in the two formulae above are the same. Thus µ(cu,ct) = µ(λ )(u, t),
as desired.
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Case 2.
Suppose that i = j− 1, so that m(i, j) = 3. By Lemma 9.3, colt( j− 1) 6= colt( j + 1), and
it follows that either one of the following situations occurs: colt( j− 1) < colt( j + 1) or
colt( j−1)> colt( j+1).

If colt( j−1)< colt( j+1), then the result follows by the same argument as above, with
j−1 replacing i and Lemma 7.28(ii) replacing Lemma 7.28(i).

Suppose that colt( j− 1) > colt( j + 1). Since j− 1 ∈ SD(v) by Lemma 7.28 (iii), we
have s j−1v ∈ Std(λ ) and s j−1v < v. Let w = s j−1v. It follows by Lemma 7.28 (iii) that
j−1, j /∈ D(w), but j−1, j ∈ D(u), since (u, t) is favourable and probable.

We consider length three alternating directed paths of type ( j−1, j) and ( j, j−1) from cw
to cu. We have j ∈ D(t) and j−1 /∈ D(t) (since (u, t) is favourable), while j−1 ∈ D(v) and
j /∈ D(v) by Lemma 7.28 (iii).

If (cw,cx1 ,cx2 ,cu) is any alternating directed path of type ( j−1, j), then, since Γ is ordered,
it follows that either x1 = s j−1w = v > w, or else x1 < w. Moreover, since Γ satisfies the
Wn-Simply Laced Bonding Rule, the fact that j−1 ∈ D(x1) and j /∈ D(x1) shows that cx2 is
the unique vertex adjacent to cx1 satisfying j− 1 /∈ D(x2) and j ∈ D(x2). That is, x2 is the
( j−1)-neighbour of x1. Thus it follows that either x1 = v and x2 = s jv = t, or else x1 < w and
either x2 = s jx1 > x1 or x2 = s j−1x1 < x1.

Similarly, if (cw,cy1 ,cy2 ,cu) is any alternating directed path of type ( j, j− 1), then it
follows that either y1 = s jw > w or y1 < w, and y2 is the ( j−1)-neighbour of y1. Note that if
y1 = s jw > w, then since y1 ∈ Std(λ ), it follows that j ∈ SA(w). Thus, if y1 = s jw > w then
y2 = s j−1y1 = s j−1s jw> s jw= y1, and j ∈D(s jw) and j−1 /∈D(s jw), and j−1∈D(s j−1s jw)
and j /∈ D(s j−1s jw) by Lemma 7.28 (iii), while if y1 < w then either y2 = s j−1y1 > y1 or
y2 = s jy1 < y1.

Now since Γ satisfies the Wn-Polygon Rule, we have N3
j−1, j(Γ;cw,cu) = N3

j, j−1(Γ;cw,cu),
and it follows that

(16) µ(cv,cw)µ(ct ,cv)µ(cu,ct)+ ∑
x1<w

x2=( j−1) -neb(x1)

µ(cx1 ,cw)µ(cx2 ,cx1)µ(cu,cx2)

= µ(cs jw,cw)µ(cs j−1s jw,cs jw)µ(cu,cs j−1s jw)+

∑
y1<w

y2=( j−1) -neb(y1)

µ(cy1 ,cw)µ(cy2 ,cy1)µ(cu,cy2),

where the term µ(cs jw,cw)µ(cs j−1s jw,cs jw)µ(cu,cs j−1s jw) on the right hand side of Eq. (16
should be omitted if j /∈ SA(w). Note that if j ∈ SA(w) then (cw,cs jw,cs j−1s jw,cu) is not
necessarily a directed path, since there need not to be an arc from cs j−1s jw to cu, but in
this case µ(cs jw,cw)µ(cs j−1s jw,cs jw)µ(cu,cs j−1s jw) = 0 since µ(cu,cs j−1s jw) = 0. Similarly,
(cw,cv,ct ,cu) is not necessarily a directed path, since there need not be an arc from ct to cu,
but µ(cv,cw)µ(ct ,cv)µ(cu,ct) = 0 in this case. So Eq. (16) still holds in these cases.

Since µ(cv,cw) = µ(cs jw,cw) = 1 and µ(ct ,cv) = µ(cs j−1s jw,cs jw) = 1, by Corollary 7.22,
and since µ(cx2 ,cx1)= µ(cy2 ,cy1)= 1, since {cx1 ,cx2} and {cy1 ,cy2} are simple edges, Eq. (16)
yields the following formula for µ(cu,ct):

µ(cu,ct) = µ(cu,cs j−1s jw)+ ∑
y1<w

y2=( j−1) -neb(y1)

µ(cy1 ,cw)µ(cu,cy2)

− ∑
x1<w

x2=( j−1) -neb(x1)

µ(cx1 ,cw)µ(cu,cx2),

where µ(cu,cs j−1s jw) should be interpreted as 0 if s jw /∈ Std(λ ).
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Working similarly on Γλ yields the following formula for µ(λ )(u, t):

µ
(λ )(u, t) = µ

(λ )(u,s j−1s jw)+ ∑
y1<w

y2=( j−1) -neb(y1)

µ
(λ )(y1,w)µ(λ )(u,y2)

− ∑
x1<w

x2=( j−1) -neb(x1)

µ
(λ )(x1,w)µ(λ )(u,x2).

Since w, s j−1s jw <lex t ′ (if j ∈ SA(w)) by Lemma 7.29 (iii), and x2,y2 <lex t ′ by Lemma 7.29
(iv), it follows by the inductive hypothesis that the corresponding edge weights that appear in
the two formulae above are the same. Thus µ(cu′ ,ct ′) = µ(λ )(u′, t ′), as desired. �

PROPOSITION 9.6. Let Γ = Γ(C,µ,τ) be an admissible Wn-graph. Suppose that Λ = {λ},
where λ ∈ P(n), is the set of molecule types for Γ, and let I = Iλ index the molecules of Γ.
For each α ∈ I, let Cα =Cα,λ = {cα,t | t ∈ Std(λ )} be the vertex set of a molecule of Γ. Then
Γ =

⊔
α∈I Γ(Cα), and Γ(Cα) is isomorphic to Γλ for each α ∈ I.

Proof. If |I| = 1 then Γ = Γ(Cα). Since Γ(Cα) is a monomolecular admissible Wn-cell of
type λ , Proposition 9.5 says that Γ(Cα) is isomorphic to Γλ . So we assume that |I|> 1.

If Γ =
⊔

α∈I Γ(Cα) then for each α ∈ I the set Cα = {cα,t | t ∈ Std(λ )} is the vertex set
of a monomolecular admissible Wn-cell of type λ . The result then follows immediately from
Proposition 9.5, which says that each Γ(Cα) is isomorphic to Γλ . Thus it suffices to show that
Γ =

⊔
α∈I Γ(Cα).

Suppose otherwise. Then there exists α ∈ I such that

Iniα(Γ) = { t ∈ Std(λ ) | µ(cβ ,u,cα,t) 6= 0 for some (β ,u) ∈ (Ir{α})×Std(λ )} 6=∅,
and we let t ′ be the element of Iniα(Γ) that is minimal in the lexicographic order on
Std(λ ). Choose (β ,u′) ∈ (I r {α})×Std(λ ) with µ(cβ ,u′ ,cα,t ′) 6= 0. Since Γ satisfies the
Wn-Simplicity Rule (by Theorem 5.8), the assumption that α 6= β and µ(cβ ,u′ ,cα,t ′) 6= 0 im-
plies that D(t ′)$ D(u′). Moreover, since Γ is ordered (by Theorem 8.18), α 6= β implies that
u′ < t ′. Hence (u′, t ′) is a probable pair.

Let i be the restriction number of (u′, t ′) and j = max(SD(t ′)). Let (u, t) ∈ F(u′, t ′). It is
clear that (u, t) is i-restricted and favourable. Thus Lemma 9.4 shows that (u, t) is probable,
max(SD(t)) = max(SD(t ′)) = j, and µ(cβ ,u,cα,t) = µ(cβ ,u′ ,cα,t ′) 6= 0. Furthermore, since
i ∈ D(u)rD(t) (since (u, t ′) is favourable), and since j ∈ D(t) and D(t)$ D(u) (since (u, t)
is probable), it follows that j ∈ D(t) and i /∈ D(t), and i, j ∈ D(u). Let v = s jt, and note that
v ∈ Std(λ ) and v < t. Since i < j by Lemma 9.2, either i < j−1 or i = j−1.

Suppose first that i < j−1. It follows by Lemma 7.28 (i) that i, j /∈ D(v). Moreover, since
µ(cα,t ,cα,v) = 1 by Corollary 7.22, and since µ(cβ ,u,cα,t) 6= 0, it follows that (cα,v,cα,t ,cβ ,u)
is an alternating directed path of type ( j, i).

Since Γ is admissible, if µ(cβ ,u,cα,t) 6= 0 then µ(cβ ,u,cα,t) > 0. So it follows that
N2

j,i(Γ;v,u) > 0, and so N2
i, j(Γ;v,u) > 0, since Γ satisfies the Wn-Bonding Rule. Thus there

exists at least one (δ ,x1) ∈ I ×Std(λ ) such that (cα,v,cδ ,x1 ,cβ ,u) is an alternating directed
path of type (i, j). If δ 6= α then v ∈ Iniα(Γ). Now since t ′ ↑ i = t ↑ i, we have v <lex t ′ by
Lemma 7.29. This, however, contradicts the definition of t ′. Hence δ = α , and x1 ∈ Iniα(Γ).
Now Theorem 8.18 shows that either x1 = siv and i ∈ SA(v), or else x1 < v. But x1 <lex t ′ by
Lemma 7.29 (i) in the former case, and x1 <lex t ′ by Lemma 7.29 (ii) in the latter case. Both
alternatives contradict the definition of t ′, thus showing that i < j−1 is impossible.

Suppose now that i = j− 1. By Lemma 9.3, we have colt( j− 1) 6= colt( j + 1), and it
follows that either colt( j−1)< colt( j+1) or colt( j−1)> colt( j+1).
Case 1.
Suppose that colt( j− 1) < colt( j+ 1). The result follows by the same argument as above,
with j−1 replacing i and Lemma 7.28 (ii) replacing Lemma 7.28 (i).
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Case 2.
Suppose that colt( j−1)> colt( j+1). Then j−1 ∈ SD(v), and j−1 ∈ D(v), and j /∈ D(v)
by Lemma 7.28 (iii). Note that since j−1 ∈ SD(v), we have s j−1v ∈ Std(λ ) and s j−1v < v.
Let w = s j−1v. It follows by Lemma 7.28 (iii) that j−1, j /∈ D(w).

Next, since µ(cα,c,xα,w) = µ(cα,t ,cα,v) = 1 by Corollary 7.22 and since µ(cβ ,u,cα,t) 6= 0,
it follows that (cα,w,cα,v,cα,t ,cβ ,u) is an alternating directed path of type ( j−1, j).

Since Γ is admissible, if µ(cβ ,u,cα,t) 6= 0 then µ(cβ ,u,cα,t) > 0. So it follows that
N3

j−1, j(Γ;w,u) > 0, and so N3
j, j−1(Γ;w,u) > 0, since Γ satisfies the Wn-Bonding Rule.

Thus there exists at least one (δ ,x1) ∈ I × Std(λ ) and one (γ,x2) ∈ I × Std(λ ) such
that (cα,w,cδ ,x1 ,cγ,x2 ,cβ ,u) is an alternating directed path of type ( j, j− 1). If δ 6= α then
w ∈ Iniα(Γ). Now since t ↑( j−1) = t ′ ↑( j−1), we have w <lex t ′ by Lemma 7.29 (iii). This,
however, contradicts the definition of t ′. Therefore, δ = α .

Since D(x1)∩{ j−1, j}= { j} and D(x2)∩{ j−1, j}= { j−1}, and µ(cγ,x2 ,cδ ,x1) 6= 0, it
follows from the Wn-Simplicity Rule that {cδ ,x1 ,cγ,x2} is a simple edge. Thus γ = δ , and x1
and x2 are related by a dual Knuth move. Thus x2 is the ( j−1)-neighbour of x1. We see that
x2 ∈ Iniα(Γ), and it will suffice to show that x2 <lex t ′, contradicting the definition of t ′.

By Theorem 8.18 either x1 = s jw>w or x1 <w. If x1 <w then since t ↑( j−1) = t ′ ↑( j−1),
the conclusion x2 <lex t ′ follows from Lemma 7.29 (iv). We are left with the case x1 = s jw > w.
This gives j ∈ SA(w), and we see that the conditions of Lemma 7.28 (iii) are satisfied: we have
v= s jt with j ∈ SD(t) and colt( j+1)< colt( j−1), and w= s j−1v. Since j ∈ SA(w) it follows
that j−1 ∈ SA(x1), and s j−1x1 is the ( j−1)-neighbour of x1. Thus x2 = s j−1x1 = s j−1s jw,
and since t ↑( j−1) = t ′ ↑( j−1), we have x2 <lex t ′ by Lemma 7.29 (iii). �

REMARK 9.7. Since α 6= β and µ(cβ ,u′ ,cα,t ′) 6= 0, it follows by Remark 8.8 that A(u′, t ′) 6=∅.
Let (u, t) ∈ A(u′, t ′), noting that (u, t) ∈ F(u′, t ′). Then t ′⇑ i is i-critical. (The proof is very
much the same as that for Proposition 8.11.) Since i < j (as shown above) and j < i+ 2,
since t ↑(i+1) is minimal, we have j = i+1. Definition 6.17 says that colt(i+2) = colt(i).
But colt(i+2) 6= colt(i) by Lemma 9.3. This contradiction provides an alternative proof for
Proposition 9.6.

We are now in a position to state and prove the main result of the paper.

THEOREM 9.8. Admissible cells of type An−1 are Kazhdan–Lusztig.

Proof. Let Γ = Γ(C,µ,τ) be an admissible Wn-cell, and let Λ be the set of molecule types
for Γ. By Lemma 8.16, Λ = {λ} for some λ ∈ P(n). Let I = Iλ be the indexing set for
the molecules of Γ, and let, for each γ ∈ I, Cγ = Cγ,λ = {cγ,w | w ∈ Std(λ )} be the vertex
set of a molecule of Γ. By Proposition 9.6, Γ =

⊔
γ∈I Γ(Cγ), where for each γ ∈ I, Γ(Cγ) is

isomorphic to Γλ . Since Γ is an admissible Wn-cell by hypothesis, it follows that I = {γ},
whence Γ = Γ(Cγ) and Γ is isomorphic to Γλ . Since Γλ is isomorphic to Γ(C(τλ )), it follows
from Corollary 6.31 that Γ is isomorphic to a Kazhdan–Lusztig left cell. �

REMARK 9.9. Let λ ∈ P(n) and let D(λ ) =
⊔

t∈Std(λ )C(t), the Kazhdan–Lusztig two-sided
cell corresponding to λ . By Remark 8.19, the singleton set {λ} is the set of molecule types of
the admissible Wn-graph Γ(D(λ )). It follows from Proposition 9.6 that Γ(D(λ )) is a disjoint
union of the Kazhdan–Lusztig left cells Γ(C(t)). This implies the following well known result
(see, for example, [7, Theorem 5.3]).

THEOREM 9.10. Let λ ∈ P(n) and y,w∈D(λ ). If y�L w then y,w∈C(t) for some t ∈ Std(λ ).
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