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ABSTRACT. The first two authors [Proc. Lond. Math. Soc. (3) 114(1):1–34, 2017] classified the behaviour near
zero for all positive solutions of the perturbed elliptic equation with a critical Hardy–Sobolev growth

−∆u = |x|−su2?(s)−1−µuq in B\{0},
where B denotes the open unit ball centred at 0 in Rn for n≥ 3, s ∈ (0,2), 2?(s) := 2(n− s)/(n−2), µ > 0 and
q > 1. For q ∈ (1,2?− 1) with 2? = 2n/(n− 2), it was shown in the op. cit. that the positive solutions with
a non-removable singularity at 0 could exhibit up to three different singular profiles, although their existence
was left open. In the present paper, we settle this question for all three singular profiles in the maximal possible
range. As an important novelty for µ > 0, we prove that for every q ∈ (2?(s)− 1,2?− 1) there exist infinitely
many positive solutions satisfying |x|s/(q−2?(s)+1)u(x)→ µ−1/(q−2?(s)+1) as |x| → 0, using a dynamical system
approach. Moreover, we show that there exists a positive singular solution with liminf|x|→0 |x|(n−2)/2u(x) = 0
and limsup|x|→0 |x|(n−2)/2u(x) ∈ (0,∞) if (and only if) q ∈ (2?−2,2?−1).

1. INTRODUCTION AND MAIN RESULTS

The Hardy–Sobolev inequality is obtained by interpolating between the Sobolev inequality (s = 0) and
the Hardy inequality (s = 2): For every s ∈ (0,2) and n≥ 3, there exists a positive constant Ks,n such that∫

Rn
|∇u|2 dx≥ Ks,n

(∫
Rn
|x|−s|u|2?(s) dx

) 2
2?(s)

for all u ∈C∞
c (Rn),

where 2?(s) := 2(n−s)/(n−2) denotes the critical Hardy–Sobolev exponent. The critical Sobolev exponent
2? corresponds to 2?(s) with s = 0. Recent results and challenges on the Hardy–Sobolev inequalities are
surveyed by Ghoussoub–Robert in [12], see also [13]. For s ∈ (0,2), the best Hardy–Sobolev constant Ks,n
is attained by a one-parameter family (Uη)η>0 of functions

(1.1) Uη(x) := cn,s η
n−2

2
(
η

2−s + |x|2−s)− n−2
2−s for x ∈ Rn,

where cn,s := ((n− s)(n−2))1/(2?(s)−2) is a positive normalising constant. The functions Uη are the only
positive non-singular solutions of the equation (see Chen–Lin [8] and Chou–Chu [9])

(1.2) −∆U = |x|−sU2?(s)−1 in Rn \{0}.

Moreover, any positive C2(Rn \{0}) singular solution U of (1.2) is radially symmetric around 0 and v(t) =
e−(n−2)t/2U(e−t) is a positive periodic function of t in R (see Hsia–Lin–Wang [14]).

The isolated singularity problem has been studied extensively, see Véron’s monograph [21]. Recent
works of the first author and her collaborators such as [4, 10, 11] give a full classification of the isolated
singularities for various classes of elliptic equations.
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In this paper, we settle an open question arising from [11] with regard to the existence of all the singular
profiles at zero for the positive solutions of the perturbed non-linear elliptic equation

(1.3) −∆u = |x|−su2?(s)−1−µuq for x ∈ B(0,R)\{0},

where µ is a positive parameter, q > 1 and s ∈ (0,2). By B(0,R) we denote the open ball in Rn (n ≥ 3)
centred at 0 with radius R > 0. The first two authors have proved in [11] that the positive singular solutions
of (1.3) can exhibit up to three types of singular profiles at zero in a suitable range for q:
• A (ND) type profile (for “Non Differential”) if

lim
|x|→0
|x|

s
q−(2?(s)−1) u(x) = µ

− 1
q−(2?(s)−1) . (ND)

• A profile of (MB) type (for “Multi-Bump”) in the sense that there exists a sequence (rk)k≥0 of positive
numbers decreasing to 0 such that rk+1 = o(rk) as k→+∞ and

u(x) = (1+o(1))
∞

∑
k=0

Urk(x) as |x| → 0, where Uη is as in (1.1). (MB)

• A profile of (CGS) type (for “Caffarelli–Gidas–Spruck”) if there exists a positive periodic function
v ∈C∞(R) such that

lim
|x|→0

(
|x|

n−2
2 u(x)− v(− log |x|)

)
= 0. (CGS)

The case q = 2?− 1 in (1.3) was fully dealt with in [11]. Hence, in the sequel we assume that q 6= 2?− 1.
We recall the relevant classification result from [11]:

Theorem 1.1 ([11]). Let u ∈C∞(B(0,R)\{0}) be an arbitrary positive solution to (1.3).

• If q > 2?−1, then 0 is a removable singularity;
• If 2?(s)− 1 < q < 2?− 1, then either 0 is a removable singularity, or u develops a profile of type

(CGS), (MB) or (ND);
• If 1 < q ≤ 2?(s)− 1, then either 0 is a removable singularity, or u has a profile of type (CGS) or

(MB).

Moreover, if u develops a profile of (MB) type, then 2?−2 < q < 2?−1.

However, no examples of the three singular profiles of Theorem 1.1 were given in [11], leaving open the
question of their existence. In the present paper, we fill this gap by proving the following:

Theorem 1.2. The three singular profiles of Theorem 1.1 actually do exist.

The existence assertion of Theorem 1.2 is a corollary of the following precise result:

Theorem 1.3. Equation (1.3) admits positive radially symmetric solutions developing (CGS), (MB) and
(ND) profiles in the exact range of parameters given by Theorem 1.1. More precisely, when q ∈ (1,2?−1),
there exists R0 > 0 such that for every R ∈ (0,R0), the following hold:

(i) For every γ > 0, there exists a unique positive radial solution uγ of (1.3) with a removable singu-
larity at 0 and lim|x|→0 uγ (x) = γ .

(ii) If q > 2?−2, then (1.3) has at least a positive (MB) solution.
(iii) For every positive singular solution U of (1.2), there exists a unique positive radial (CGS) solution

u of (1.3) with asymptotic profile U near zero.
(iv) If q > 2? (s)−1, then (1.3) admits infinitely many positive (ND) solutions.
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Remark 1.4. If q ∈ (1,2?(s)−1), then all positive radial solutions of (1.3) extend as positive radial solu-
tions in Rn \{0}. For q ∈ [2?(s)−1,2?−1), any positive radial non-(ND) solution u of (1.3) extends as a
positive radial solution at least in B(0,R∗)\{0} with R∗ independent of u (see Lemma 3.2).

From the three singular profiles of (1.3), only the (CGS) type is reminiscent of the asymptotics of the
local singular solutions for the Yamabe problem in the case of a flat background metric (µ = s = 0) studied
in Caffarelli–Gidas–Spruck [3] (see also Korevaar–Mazzeo–Pacard–Schoen [16] for a refined asymptotics
and Marques [19] for the case of a general background metric). But for µ > 0, the introduction of the
perturbation term in (1.3) yields two new singular profiles: the (ND) and (MB) types.

An important novelty in this paper is the existence of infinitely many positive radial (ND) solutions for
(1.3) when q ∈ (2?(s)− 1,2?− 1). To our best knowledge, there are no previous existence results known
for this type of singularities, which arise as a consequence of studying (1.3) with a critical Hardy–Sobolev
growth (i.e., s ∈ (0,2)) rather than with a critical Sobolev growth (s = 0). Since (1.4) fails for the (ND) solu-
tions, neither Pohozaev-type arguments nor Fowler-type transformations relevant for (CGS) or (MB) profiles
can be used. Specific to the (ND) solutions, the first term in their asymptotics arises from the competition
generated in the right-hand side of (1.3) and not directly from the differential structure. To overcome this
obstacle, we rewrite the radial form of (1.3) as a dynamical system using an original transformation involv-
ing three variables, see (2.2). The variable X1 in (2.2) is suggestive of a second order term in the asymptotics
of the (ND) solutions, which will make apparent the differential structure of our equation in a dynamical
systems setting. Nevertheless, by linearising the flow around the critical point, we find a positive eigenvalue,
a null one and a negative eigenvalue so that we cannot apply the classical Hartman–Grobman theorem. In-
stead, we shall use Theorem 7.1 in the Appendix, which invokes the notion of center-stable manifold and
ideas of Kelley [15].

For 1 < q < 2?−1, Theorem 1.1 yields that every positive non-(ND) solution of (1.3) satisfies

(1.4) limsup
|x|→0

|x|
n−2

2 u(x)< ∞.

Moreover, (1.4) holds for every positive solution of (1.3) when q ∈ (1,2?(s)−1]. Note that (1.4) is crucial
for Pohozaev type arguments [11], on the basis of which we prove in Sect. 3 the non-existence of smooth
positive solutions for (1.3), subject to u = 0 on ∂B(0,R).

Theorem 1.5. Let µ > 0 and s ∈ (0,2) be arbitrary. Let Ω be a smooth bounded domain in Rn (n≥ 3) such
that 0 ∈ Ω. Assume that Ω is star-shaped with respect to 0. Then, for every q ∈ (1,2?(s)−1], there are no
positive smooth solutions for the problem

(1.5)

{
−∆u = |x|−su2?(s)−1−µuq in Ω\{0},
u = 0 on ∂Ω.

If q ∈ (2?(s)−1,2?−1), then (1.5) admits no positive smooth solutions of non-(ND) type.

Motivated by the problem of finding a metric conformal to the flat metric of Rn such that K(x) is the
scalar curvature of the new metric, Chen–Lin [5, 6, 8] and Lin [17] analysed the local behaviour of the
positive singular solutions u ∈C2(B(0,1)\{0}) to

(1.6) −∆u = K(x)u2?−1 in B(0,1)\{0},
where K is a positive continuous function on B(0,1) in Rn (n≥ 3) with K(0) = 1. Moreover, K was always
assumed to be a C1 function on B(0,1)\{0} such that

(1.7) 0 < L := liminf
|x|→0

|x|1−`|∇K(x)| ≤ L := limsup
|x|→0

|x|1−`|∇K(x)|< ∞ for some ` > 0.
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In the above-mentioned works (see also Lin–Prajapat [18] and Taliaferro–Zhang [20]), the following ques-
tion was investigated: Under what conditions on K, the positive singular solutions of (1.2) with s = 0 are
asymptotic models at zero for the positive singular solutions of (1.6)?

This question was settled positively in any of the following situations:

(a) Assumption (1.7) holds for `≥ (n−2)/2 (see [8, Theorems 1.1 and 1.2]);
(b) If (1.7) holds with ` ∈ (0,(n−2)/2), together with extra conditions, see [17, Theorem 1.2].

Extra conditions in situation (b) are needed to guarantee a positive answer to the above question. Oth-
erwise, for every 0 < ` < (n−2)/2, Chen–Lin [8, Theorem 1.6] provided general positive radial functions
K(r) non-increasing in r = |x| ∈ [0,1] with K(0) = 1 such that (1.7) holds and (1.6) has a positive singular
solution with liminf|x|→0 |x|(n−2)/2u(x) = 0.

The importance of condition (1.7) in settling the above question can be inferred from our next result as
a by-product of Theorem 1.3(ii): For every 0 < ` < min{(n− 2)/2,2} and s ∈ (0,2) \ {`}, we construct a
positive continuous function K on B(0,R) for some R > 0 with K(0) = 1 such that exactly one inequality in
(1.7) fails, yet generating for (1.8) a positive singular solution, the asymptotics of which at zero cannot be
modelled by any positive singular solution of (1.2).

Corollary 1.6. For every 0 < `< min{(n−2)/2,2} and s∈ (0,2)\{`}, there exist R > 0 and a positive C1-
function K on B(0,R)\{0} in Rn (n≥ 3) with K < lim|x|→0 K(x)= 1 on B(0,R)\{0} such that 0= L< L<∞

if ` < s and 0 < L < L = ∞ if ` > s, yet

(1.8) −∆u = K(x)|x|−su2?(s)−1 in B(0,R)\{0}

admits a positive singular solution with liminf|x|→0 |x|(n−2)/2u(x) = 0.

Structure of the paper. In Sect. 2, we prove Theorem 1.3(iv) on the existence of infinitely many positive
(ND) solutions for (1.3). In Sect. 3, we establish Theorem 1.5, together with uniform a priori estimates for
the positive radial solutions of (1.3) satisfying (1.4) (see Proposition 3.1). In Sect. 4, by setting u(r) = y(ξ )
with ξ = r(2−s)/2, we reduce the assertion of Theorem 1.3(i) on removable singularities to the existence
and uniqueness of the solution for (4.1) on an interval [0,T ]. The latter follows from Biles–Robinson–
Spraker [2, Theorems 1 and 2]. In Sect. 5, after giving the proof of Corollary 1.6, we use an argument
influenced by Chen–Lin [8] to prove the existence of (MB) solutions for (1.3) in the whole possible range
q ∈ (2?−2,2?−1). In Sect. 6, with a dynamical system approach, we prove Theorem 1.3(iii): the positive
singular solutions of (1.2) serve as asymptotic models for the positive radial (CGS) solutions of (1.3). For a
dynamical approach to Emden–Fowler equations and systems, see Bidaut-Véron–Giacomini [1].

The results in this paper give the existence and profile at infinity for the positive solutions to

−∆ũ = |x|−sũ2?(s)−1−µ|x|(n−2)q−(n+2)ũq for |x|> 1/R

by using the Kelvin transform ũ(x) = |x|2−nu(x/|x|2), where u is a positive solution of (1.3).

2. (ND) SOLUTIONS

In this section, we let q ∈ (2?(s)−1,2?−1) and prove Theorem 1.3(iv), restated below.

Proposition 2.1. Assume that q∈ (2?(s)−1,2?−1). Then, there exists R0 > 0 such that for every R∈ (0,R0),
equation (1.3) admits infinitely many positive (ND) solutions.

The proof of Proposition 2.1 takes place in several steps. First, we reformulate the radial form of (1.3) as
a first order autonomous differential system using a new transformation, see (2.2).
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2.1. Formulation of our problem as a dynamical system. We first assume that u is a positive radial (ND)
solution of (1.3). We define

(2.1) ϑ :=
s

q−2?(s)+1
, β :=

(q−1)ϑ

2
−1, ζ :=

2?(s)−2
q−2?(s)+1

.

We introduce a new transformation involving three functions X1, X2 and X3 as follows

(2.2) X1(t) = t
(

1−µrsuq−2?(s)+1
)
, X2(t) =

1
t
, X3(t) =

ru′(r)
u(r)

+ϑ ,

where t := r−β and β ,ϑ are given by (2.1). Since u is a positive radial (ND) solution of (1.3), that is,
limr→0+ rϑ u(r) = µ−1/(q−2?(s)+1), it follows that

(2.3)
{

1−X1(t)X2(t) = µrsu(r)q−2?(s)+1 > 0 for all t ∈ [2R−β ,∞),
X1(t)X2(t)→ 0 as t→ ∞.

If we set ~X = (X1,X2,X3), then, as one easily checks, we have that

(2.4) ~X ′(t) = (H1(~X(t)),H2(~X(t)),H3(~X(t)))

for all t ∈ [2R−β ,∞), where H1, H2 and H3 are real-valued functions defined on R3 by

(2.5)


H1(ξ1,ξ2,ξ3) := ξ1ξ2 +β

−1(q−2?(s)+1)(1−ξ1ξ2)ξ3,

H2(ξ1,ξ2,ξ3) :=−ξ
2
2 ,

H3(ξ1,ξ2,ξ3) := β
−1

µ
−ζ

ξ1(1−ξ1ξ2)
ζ

++β
−1

ξ2(ξ3−ϑ)(ξ3−ϑ +n−2).

By ξ+ we mean the positive part of ξ . We define ~Y := (Y1,Y2,Y3), where ~Y (t) = ~X(t +2R−β ) for all t ≥ 0.
Then, (2.4) gives that ~Y ′(t) = (H1(~Y (t)),H2(~Y (t)),H3(~Y (t))) for all t ∈ [0,∞). To get more regularity, for
any ε ∈ (0,1), we choose Ψε ∈ C1(R) such that Ψε(t) = tζ for all t ≥ ε . By choosing ε0 ∈ (0,1) small
enough and using (2.3), we find that

(2.6) ~Y ′(t) = (H1(~Y (t)),H2(~Y (t)),H3,Ψε
(~Y (t))) for all t ∈ [0,∞)

for every ε ∈ (0,ε0), where the function H3,Ψε
: R3→ R is defined by

H3,Ψε
(ξ1,ξ2,ξ3) := β

−1
µ
−ζ

ξ1Ψε(1−ξ1ξ2)+β
−1

ξ2(ξ3−ϑ)(ξ3−ϑ +n−2).

2.2. Existence of solutions for (2.6). Using ϑ , β and ζ in (2.1), we define ϒ and Γ by

(2.7) ϒ := µ
ζ/2
√

q−2?(s)+1 and Γ := ϑ (n−2−ϑ)µ
ζ .

Lemma 2.2. Let q ∈ (2?(s)−1,2?−1) and ε ∈ (0,1). Fix Ψε ∈C1(R) such that Ψε(t) = tζ for all t ≥ ε .
For every δ > 0 small, there exist r0 ∈ (0,δ/2) and a Lipschitz function w : [0,r0]× [−r0,r0]→ [−r0,r0]
such that for any (Y2,0,Z3,0) ∈ (0,r0]× [−r0,r0], the system (2.6) subject to the initial condition

(2.8) ~Y (0) = (ϒ(Z3,0−w(Y2,0,Z3,0))+ΓY2,0,Y2,0,w(Y2,0,Z3,0)+Z3,0)

has a solution~Y (t) = (Y1(t),Y2(t),Y3(t)) for all t ≥ 0 satisfying

(2.9) lim
t→+∞

~Y (t) = (0,0,0).

Moreover, we have Y2(t) = 1/(t +Y−1
2,0 ) for all t ≥ 0.
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Proof. Since Ψε(1) = 1, we find one critical point (0,0,0) for (2.6). Linearising the flow around (0,0,0), we
get one unstable eigenvalue λ1 = µ−ζ/2β−1

√
q−2?(s)+1 with associated eigenvector (ϒ,0,1), one null

eigenvalue with associated eigenvector (Γ,1,0) and one stable eigenvalue −λ1 with associated eigenvector
(ϒ,0,1). For ~Z = (Z1,Z2,Z3), using a change of coordinates

(2.10) ~Y = (ϒ(Z1−Z3)+ΓZ2,Z2,Z1 +Z3), i.e., ~Z =

(
Y1−ΓY2 +ϒY3

2ϒ
,Y2,

ΓY2 +ϒY3−Y1

2ϒ

)
,

we bring the system (2.6) to a diagonal form, namely

(2.11) ~Z′(t) = (λ1Z1(t)+h1(~Z(t)),−Z2
2(t),−λ1Z3(t)+h3(~Z(t))) for all t ≥ 0.

For any δ > 0 small, the functions h1 and h3 are C1 on the ball Bδ (0) in R3 centred at 0 with radius δ .
Moreover, for some constant C1 > 0, the functions h1 and h3 satisfy

(2.12) |h1(~ξ )|+ |h3(~ξ )| ≤C1

3

∑
j=1

ξ
2
j and |∇h1(~ξ )|+ |∇h3(~ξ )| ≤C1

3

∑
j=1
|ξ j|

for all ~ξ = (ξ1,ξ2,ξ3) ∈ Bδ (0). By (2.10), proving Lemma 2.2 is equivalent to showing that for every
small δ > 0, there exist r0 ∈ (0,δ/2) and a Lipschitz map w : [0,r0]× [−r0,r0]→ [−r0,r0] such that for all
(Y2,0,Z3,0) ∈ (0,r0]× [−r0,r0], the system (2.11) subject to

(2.13) ~Z(0) = (w(Y2,0,Z3,0),Y2,0,Z3,0)

has a solution ~Z(t) for all t ≥ 0 with limt→+∞
~Z(t) = (0,0,0). Linearising the flow for (2.11) around (0,0,0)

yields one null eigenvalue, and the classical Hartman–Grobman theorem does not apply to (2.11). In Ap-
pendix, using the notion of center-stable manifold and inspired by Kelley [15], we prove Theorem 7.1 that
can be applied to (2.11) due to (2.12). This ends the proof. �

2.3. Proof of Proposition 2.1. For fixed ε ∈ (0,1), we choose Ψε ∈ C1(R) such that Ψε(t) = tζ for all
t ≥ ε . Let δ ∈ (0,(1−ε)1/2). Let r0 ∈ (0,δ/2) and w : [0,r0]× [−r0,r0]→ [−r0,r0] be given by Lemma 2.2.
We fix Y2,0 := r0/2. Then for any fixed Z3,0 ∈ [−r0,r0], the system (2.6), subject to the initial condition (2.8)
has a solution~Y (t) for all t ≥ 0 such that (2.9) holds. Moreover, we find that Y2(t) = 1/(t+Y−1

2,0 ) for all t ≥ 0.
Let t0 > 0 be large such that~Y (t) ∈ Bδ (0) for all t ≥ t0. Using that 0 < ε < 1−δ 2, for all t ≥ t0, we get that
1−Y1(t)Y2(t)> ε so that Ψε(1−Y1(t)Y2(t))= (1−Y1(t)Y2(t))ζ . Hence, we have H3,Ψε

(~Y (t))=H3(~Y (t)) for
all t ≥ t0. For every t ≥ T := t0 +Y−1

2,0 , we define ~X(t) by ~X(t) :=~Y (t−Y−1
2,0 ), which yields that X2(t) = 1/t.

Then, ~X(t) is a solution of the system (2.4) for all t ≥ T such that limt→∞
~X(t) = (0,0,0). With ϑ and β be

given by (2.1) and t := r−β , we define u(r) as in (2.2). Then u is a positive radial (ND) solution of (1.3) with
R := T−1/β . The above construction leads to an infinite number of positive radial (ND) solutions for (1.3)
by varying Z3,0 in [−r0,r0]. This completes the proof. �

3. CONSEQUENCES OF POHOZAEV’S IDENTITY

In this section, using Pohozaev’s identity, we prove Theorem 1.5, followed by uniform a priori estimates
for the positive radial solutions of (1.3) satisfying (1.4) (see Proposition 3.1).

Let u be any positive solution of (1.3) with q ∈ (1,2?− 1) such that (1.4) holds. As in [11], for every
r ∈ (0,R), we denote by P(q)

r (u) the Pohazev-type integral associated to u, namely

(3.1) P(q)
r (u) :=

∫
∂B(0,r)

[
(x,ν)

(
|∇u|2

2
− u2?(s)

2?(s)|x|s
+µ

uq+1

q+1

)
−T (x,u)∂ν u

]
dσ ,
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where T (x,u) = (x,∇u(x))+(n−2)u(x)/2. Here, ν denotes the unit outward normal at ∂B(0,r). Assuming
u satisfies (1.4), it was shown in [11] that there exists limr→0+ P(q)

r (u) := P(q)(u) and

(3.2) P(q)(u)≥ 0

with strict inequality if and only if u is a (CGS) solution of (1.3). We refer to P(q)(u) as the asymptotic
Pohozaev integral. We introduce the notation

(3.3) λ := (n−2)(2?−1−q)/2 and cµ,q,n := λ µ/(q+1).

Both λ and cµ,q,n are positive by the assumption q ∈ (1,2?−1).

3.1. Proof of Theorem 1.5. Let q ∈ (1,2?− 1). Suppose that (1.5) admits a positive smooth solution u
satisfying (1.4). From u = 0 on ∂Ω, we have ∇u = (∂ν u)ν for x ∈ ∂Ω, where ν denotes the unit outward
normal at ∂Ω. For every r > 0 small, by applying the Pohozaev identity as in [11, Proposition 6.1] for
ω = ωr = Ω\B(0,r), we get that

(3.4) − 1
2

∫
∂Ω

(x,ν)|∇u|2 dσ = P(q)
r (u)+ cµ,q,n

∫
ωr

uq+1 dx.

By letting r→ 0+ in (3.4) and using (3.2), we arrive at

(3.5) − 1
2

∫
∂Ω

(x,ν)|∇u|2 dσ = P(q)(u)+ cµ,q,n

∫
Ω

uq+1 dx≥ 0.

Since Ω is star-shaped with respect to the origin, we have (x,ν)> 0 on ∂Ω. Then, (3.5) can only hold when
∇u ≡ 0 on ∂Ω and u ≡ 0 in Ω. Hence, (1.5) has no positive smooth solutions satisfying (1.4). Using the
comments before statement of Theorem 1.5, we finish the proof. �

3.2. Uniform a priori estimates. Let q ∈ (1,2?−1). For the positive radial solutions u of (1.3) satisfying
(1.4), we derive uniform a priori estimates. These are crucial for proving the existence of (MB) solutions in
Proposition 5.1 and (CGS) solutions in Proposition 6.1. We define

(3.6)


R̄(u) := sup{R > 0 : u is a positive radial solution of (1.3)},

z(r) := r
n−2

2 u(r) for r ∈ (0,R), F0(ξ ) :=
(n−2)2

4
ξ

2− 2
2?(s)

ξ
2?(s) for ξ ≥ 0.

If u has a removable singularity at 0 or u is a solution of (MB) type, then liminfr→0+ z(r) = 0. If u is a
(CGS) solution, then from [11], we can derive that

(3.7) 0 < liminf
r→0+

z(r)≤ [(n−2)/2]2/(2
?(s)−2) := M0.

For R > 0, we also define

(3.8) FR(ξ ) :=
(n−2)2

4
− 2

2?(s)
ξ

2?(s)−2 +
2µRλ ξ q−1

q+1
for ξ ≥ 0.

For F0 given by (3.6), let Λ0 denote the unique positive solution of F0(ξ ) = 0, that is

(3.9) Λ0 := [(n−2)(n− s)/4]
1

2?(s)−2 .

For any Λ > Λ0, we have F0(Λ)< 0. Let RΛ denote the unique R > 0 for which FR(Λ) = 0:

(3.10) RΛ :=
[
− (q+1)F0(Λ)

2µΛq+1

] 1
λ

> 0.
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Moreover, it holds

(3.11) RΛ = sup
{

ξ > 0 : FRΛ
(t)> 0 for all t ∈ (0,ξ )

}
.

Proposition 3.1 (Uniform a priori estimates). Let q∈ (1,2?−1). Then for every Λ>Λ0, there exists RΛ > 0
as in (3.10) such that any positive radial solution of (1.3) with R ∈ (0,RΛ) satisfying (1.4) can be extended
as a positive radial solution of (1.3) in B(0,RΛ]\{0} and

(3.12) r
n−2

2 u(r)< Λ for all r ∈ (0,RΛ].

Let ωn−1 denote the volume of the Euclidean (n− 1)-sphere Sn−1 in Rn. Let λ and cµ,q,n be given by
(3.3). For q > 2?(s)−1, we define `q as follows

(3.13) `q :=
(2− s)(q+1)
(n− s)(q−1)

[
(n−2)(n− s)(q−1)

4(q−2?(s)+1)

]− q−2?(s)+1
2?(s)−2

.

A key tool in proving Proposition 3.1 is given by Lemma 3.2, which is of interest in its own.

Lemma 3.2. Let q ∈ (1,2?−1). Let u be a positive radial solution of (1.3) satisfying (1.4).

(a) For all r ∈ (0, R̄), the functions z and Fr(z) in (3.6) and (3.8), respectively satisfy

(3.14) z2(r)Fr(z(r)) =
2P(q)(u)

ωn−1
+[rz′(r)]2 +2cµ,q,n

∫ r

0
ξ

n−1uq+1(ξ )dξ .

(b) If R̄ <+∞, then liminfr↗R̄ u(r)> 0 and limsupr↗R̄ u(r) = +∞.
(c) If 1 < q < 2?(s)−1, then R̄ =+∞.
(d) If q = 2?(s)−1, then R̄≥ (1/µ)1/s.
(e) If q ∈ (2?(s)−1,2?−1), then R̄ > (`q/µ)1/λ , where `q is given by (3.13).

Remark 3.3. We have `q→ 1 as q↘ 2?(s)−1 and using F0 in (3.6), we get

(3.15) `q =
q+1

2
sup

Λ∈(Λ0,∞)

−F0(Λ)

Λq+1 .

Proof. From our assumptions, it follows that limr→0+ rnuq+1(r) = 0.

Proof of (a). Since u is a radial solution of (1.3), the Pohozaev-type integral P(q)
r (u) satisfies

(3.16)
2P(q)

r (u)
ωn−1

=−[rz′(r)]2 + z2(r)Fr(z(r)) for all r ∈ (0, R̄).

By the Pohozaev identity, see [11, Proposition 6.1], for every 0 < r1 < r < R̄, we find that

(3.17) P(q)
r (u)−P(q)

r1 (u) = ωn−1cµ,q,n

∫ r

r1

ξ
n−1uq+1(ξ )dξ .

Letting r1→ 0+ in (3.17), for any r ∈ (0, R̄), we find that

(3.18) P(q)
r (u) = P(q)(u)+ωn−1cµ,q,n

∫ r

0
ξ

n−1uq+1(ξ )dξ .

Then we conclude (3.14) by using (3.16) and (3.18). The proof of (a) is now complete. �
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Proof of (b). Assume that R̄ <+∞. To prove that liminfr↗R̄ u(r)> 0, we proceed by contradiction. Assume
that for a sequence (rk)k≥1 of positive numbers with rk ↗ R̄ as k → ∞, we have limk→∞ u(rk) = 0, that
is limk→∞ z(rk) = 0. We let r = rk in (3.14), then pass to the limit k→ ∞ to obtain a contradiction. For
the other claim in (b), assume that limsupr↗R̄ u(r) < +∞. Then limsupr↗R̄ z(r) < +∞ since R̄ < +∞. By
the classical ODE theory, it follows that limsupr↗R̄ |u′(r)| = ∞. On the other hand, by (3.14), we get that
limsupr↗R̄ |rz′(r)|<+∞, which shows that limsupr↗R̄ |u′(r)|<+∞. This contradiction completes the proof
of (b). �

Proof of (c). Let q < 2?(s)−1. If R̄ < ∞, then there exists a sequence (rk)k≥1 in (0, R̄) with limk→∞ rk = R̄
and limk→∞ z(rk) = +∞. By letting r = rk in (3.14) and k→ ∞, the left-hand side of (3.14) diverges to −∞

as k→ ∞, which is a contradiction. This proves that R̄ =+∞. �

Proof of (d). Let q = 2?(s)− 1. We argue by contradiction. Assume that R̄ < (1/µ)1/s. Then, there exists
(rk)k≥1 in (0, R̄) with limk→∞ rk = R̄ and limk→∞ z(rk) = +∞. Since rλ = rs < R̄s for all r ∈ (0, R̄), from
(3.14) and the definition of Fr in (3.8) (with R = r), we have

(3.19)
(n−2)2z2(rk)

4
− 2(1−µR̄s)z2?(s)(rk)

2?(s)
> 0 for all k ≥ 1.

By letting k→ ∞ in (3.19) and using that 1−µR̄s > 0, we get that the left-hand side of (3.19) tends to −∞

as k→ ∞. This contradiction proves that R̄≥ (1/µ)1/s. �

Proof of (e). Let q ∈ (2?(s)−1,2?−1). To prove R̄ > (`q/µ)1/λ with `q as in (3.13), it suffices to assume
R̄ <+∞. Let FR̄ be the function FR in (3.8) with R = R̄. We distinguish two cases:

CASE 1: If u has a removable singularity at 0, or u is a (MB) solution, then liminfr→0+ z(r) = 0 using that
z(r) = r

n−2
2 u(r). Since limsupr↗R̄ z(r) = +∞, to ensure (3.14) for a positive radial solution u of (1.3) which

is not (CGS) nor (ND), it is necessary to have

(3.20) FR̄(ξ )> 0 for all ξ ∈ [0,∞).

We next study the monotonicity of FR̄. We see that FR̄ has only one positive critical point ξc defined by

(3.21) ξc :=
(

(2− s)(q+1)
µ(n− s)(q−1)R̄λ

) 1
q−2?(s)+1

.

Moreover, ξc is a global minimum point for F̄ on [0,∞). Thus, (3.20) holds if and only if FR̄(ξc)> 0, which
corresponds to R̄ > (`q/µ)1/λ .

CASE 2: If u is a radial (CGS) solution of (1.3) then we need FR̄(ξ )> 0 for every ξ ≥ liminfr→0+ z(r). If M0

in (3.7) satisfies M0≤ ξc then R̄> (`q/µ)1/λ is necessary to have FR̄(ξ )> 0 for every ξ ∈ [liminfr→0+ z(r),+∞).
If M0 > ξc, then from (3.21) and (3.7), we get

(3.22) R̄λ >
(2− s)(q+1)

µ(n− s)(q−1)

(
n−2

2

)− 2(q−2?(s)+1)
2?(s)−2

,

which again implies R̄ > (`q/µ)1/λ .

We have established the assertion of (e) in both Cases 1 and 2. �

This completes the proof of Lemma 3.2. �
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Proof of Proposition 3.1. For any q ∈ [2?(s)−1,2?−1), we denote R∗ = R∗(q) as follows

R∗ :=

{
(1/µ)1/s if q = 2?(s)−1,

(`q/µ)1/λ if 2?(s)−1 < q < 2?−1.

Let Λ > Λ0 be fixed. Let u be any positive radial solution of (1.3) with R ∈ (0,RΛ) such that (1.4) holds.
From Lemma 3.2, the maximum radius of existence R̄ = R̄(u) for u satisfies R̄ = +∞ if 1 < q < 2?(s)− 1,
R̄≥ R∗ for q = 2?(s)−1 and R̄ > R∗ for 2?(s)−1 < q < 2?−1. From (3.15) and (3.10), we have RΛ ≤ R∗

for all 2?(s)−1 < q < 2?−1. When q = 2?(s)−1, then using the definition of F0 and R∗, we see easily that
RΛ < R∗. Hence, we can extend u as a positive radial solution of (1.3) in B(0,RΛ]\{0} for all 1 < q < 2?−1.
We now prove (3.12). Assume by contradiction that (3.12) fails, that is, z(r0) ≥ Λ for some r0 ∈ (0,RΛ],
where z(r) := r

n−2
2 u(r) is defined as in (3.6). Since z(r0)≥Λ >Λ0 >M0, the Mean Value Theorem, together

with (3.11) and (3.7), gives that there exists r1 ∈ (0,r0) such that z(r1) = Λ. Hence, using Lemma 3.2(a),
we find that 0 = Λ2 FRΛ

(Λ)> 0. This contradiction ends the proof of Proposition 3.1. �

4. REMOVABLE SINGULARITIES

The assertion of Theorem 1.3(i) follows from Lemma 3.2 and Lemma 4.1 below.

Lemma 4.1. For q > 1 and every γ ∈ (0,∞), there exists R > 0 such that (1.3) has a unique positive radial
solution uγ with a removable singularity at 0 and limr→0+ uγ(r) = γ .

Proof. Fix γ ∈ (0,∞) arbitrarily. We consider the following initial value problem:

(4.1)

{
y′′(ξ )+ay′(ξ )/ξ +4(y2?(s)−1−µ ξ

2s
2−s yq)/(2− s)2 = 0 for ξ > 0,

y(0) = γ, y′(0) = 0,

where we denote a := (2n− s− 2)/(2− s). By Biles–Robinson–Spraker [2, Theorems 1 and 2], for every
γ > 0, there exists a unique positive solution yγ of (4.1) on some interval [0,T ] with T > 0. A solution y of
(4.1) is defined in [2] as follows:

(a) y and y′ are absolutely continuous on [0,T ];
(b) y satisfies the ODE in (4.1) a.e. on [0,T ];
(c) y satisfies the initial conditions in (4.1).

Since a > 1, the function ξ 7−→ ξ ay′γ(ξ ) is absolutely continuous on [0,T ]. From (4.1), we have(
ξ

ay′γ(ξ )
)′
=− 4

(2− s)2 ξ
a
(

y2?(s)−1
γ −µ ξ

2s
2−s yq

γ

)
a.e. in [0,T ].

Thus, for all ξ ∈ [0,T ], we find that

ξ
ay′γ(ξ ) =−

4
(2− s)2

∫
ξ

0
ta
(

y2?(s)−1
γ (t)−µ t

2s
2−s yq

γ(t)
)

dt.

By the property (a) for yγ , we find that yγ ∈ C2(0,T ] satisfies the ODE in (4.1) on (0,T ]. The change of
variable uγ(r) = yγ(ξ ) with ξ = r(2−s)/2 yields that uγ is a positive radial C2(0,R]-solution of (1.3) with
R = T 2/(2−s) and limr→0+ uγ(r) = γ . This proves the existence claim.

We now show the uniqueness claim: any positive radial C2(0,R]-solution u of (1.3) for some R > 0 such that
limr→0+ u(r) = γ must coincide with uγ on their common domain of existence. Indeed, using the change of
variable u(r) = y(ξ ) with ξ = r(2−s)/2, we get that y ∈ C2(0,R(2−s)/2] satisfies the differential equation in
(4.1) for all ξ ∈ (0,R(2−s)/2) and limξ→0+ y(ξ ) = limr→0+ u(r) = γ . Hence, y can be extended by continuity
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at 0 by defining y(0) = γ . To conclude that y is a solution of (4.1) on [0,R(2−s)/2] in the sense of [2], that is,
y satisfies properties (a)–(c) stated above with T = R(2−s)/2, it suffices to show that

(4.2) y′(ξ )→ 0 and y′′(ξ )→−2γ
2?(s)−1/[(n− s)(2− s)] as ξ → 0+.

This would give that y ∈C2[0,R(2−s)/2], and then, by applying Theorem 2 in [2], we conclude that y = yγ on
[0,min{T,R(2−s)/2}], proving our uniqueness assertion.

We prove (4.2). Since u is a positive radial solution of (1.3) with limr→0+ u(r) = γ , we have

(4.3) r−(n−1−s) (rn−1u′(r)
)′
=−u2?(s)−1 +µrsuq→−γ

2?(s)−1 as r→ 0+.

Hence, the function r 7−→ rn−1u′(r) is decreasing on some interval (0,r0) for small r0 > 0. Thus, there exists
limr→0+ rn−1u′(r) = θ ∈ (−∞,∞]. We next show that θ = 0. Assume by contradiction that θ 6= 0. Then
choosing min{θ ,0}< c < max{θ ,0}, we find that h(r) = u(r)+c(n−2)−1r2−n is decreasing (respectively,
increasing) on (0,r1) for r1 > 0 small when θ < 0 (respectively, when θ > 0). Since limr→0+ h(r) =−∞ if
θ < 0 and limr→0+ h(r) =+∞ if θ > 0, we arrive at a contradiction. This proves that limr→0+ rn−1u′(r) = 0.
Hence, by (4.3), we get that limr→0+ rs−1u′(r) = −γ2?(s)−1/(n− s). Coming back to the ξ variable, we
obtain (4.2). This ends the proof of Lemma 4.1. �

5. (MB) SOLUTIONS

In Sect. 5.1 we prove Corollary 1.6. In Sect. 5.2 we prove Theorem 1.3(ii) given as Proposition 5.1.

5.1. Proof of Corollary 1.6. For every 0 < ` < min{(n− 2)/2,2}, we set q := 2? − 1− 2`/(n− 2) so
that q ∈ (2?− 2,2?− 1) with q > 1. Then, for every s ∈ (0,2), Theorem 1.3(ii) yields a positive radial
(MB) solution uMB of (1.3) for some R > 0. We define z(r) = r(n−2)/2uMB(r) for r ∈ (0,R). Since z∗ :=
limsupr→0+ z(r) ∈ (0,∞) and z∗ = liminfr→0+ z(r) = 0, the asymptotics of uMB at zero is different from that
of any positive singular solution of (1.2). By defining

K(r) = 1−µrsuMB(r)q−2?(s)+1 and Cs,` := 2(s− `)/(n−2) for r = |x| ∈ (0,R),

we see that u = uMB is a positive singular solution of (1.8). Moreover, we find that

(5.1) |r1−`K′(r)|= µ[z(r)]Cs,`
∣∣`+Cs,` rz′(r)/z(r)

∣∣ for all r ∈ (0,R).

We have Cs,` > 0 when ` < s and Cs,` < 0 when ` > s. With L and L as in (1.7), we prove that

(5.2) L = 0 < L < ∞ if ` ∈ (0,s), whereas 0 < L < L = ∞ if ` > s.

Indeed, since P(q)(uMB) = 0 and z∗ < ∞, Lemma 3.2(a) yields that

(5.3) limsup
r→0+

r|z′(r)|/z(r)< ∞ and F0(z(r))− [rz′(r)]2→ 0 as r→ 0+,

where F0 is given by (3.6). Hence, L = 0 and L < ∞ if ` ∈ (0,s). Since z∗ = 0, for every ρ ∈ (0,z∗),
there exists a sequence {rk} of positive numbers decreasing to 0 as k → ∞ such that limk→∞ z(rk) = ρ .
Then, by (5.3), we have limk→∞(rkz′(rk))

2 = F0(ρ). For suitable ρ , using rk in (5.1), we get that L > 0 for
` ∈ (0,s), and correspondingly 0 < L < ∞ for ` > s. It remains to show that L = ∞ if ` > s. Assuming the
contrary, Rkz′(Rk)/z(Rk)→−`/Cs,` for every sequence {Rk} of positive numbers decreasing to 0 such that
limk→∞ z(Rk) = 0. Lemma 3.2(a) gives that FRk(z(Rk))≥ [Rkz′(Rk)/z(Rk)]

2. Letting k→ ∞, we would have
(n−2)2/4≥ `2/C2

s,`, which is a contradiction with s > 0. Thus, (5.2) holds and K satisfies the properties in
Corollary 1.6. �
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5.2. Existence of (MB) solutions.

Proposition 5.1. Let q ∈ (1,2?−1). Assuming that q > 2?−2, then for R > 0 small, (1.3) admits at least a
positive radial (MB) solution u, that is,

(5.4) liminf
r→0+

r
n−2

2 u(r) = 0 and limsup
r→0+

r
n−2

2 u(r) ∈ (0,∞).

Proof. We use an argument inspired by Chen–Lin [8]. Let (γi)i≥1 be an increasing sequence of positive
numbers with limi→∞ γi = ∞. By Lemmas 4.1 and 3.2, for every i ≥ 1, there exists Ri > 0 such that (1.3),
subject to lim|x|→0+ u(x) = γi, admits a unique positive radial C2(0,Ri]-solution uγi . From now on, we use ui
instead of uγi . Let Λ > Λ0 be fixed, where Λ0 is given by (3.9). By Proposition 3.1, there exists RΛ > 0 such
that ui can be extended as a positive radial C2(0,RΛ]∩C[0,RΛ]-solution of (1.3) in (0,RΛ] satisfying

(5.5) ui(0) = γi, r
n−2

2 ui(r)≤ Λ for all r ∈ (0,RΛ] and every i≥ 1.

CLAIM: For any u0 > 0, there exist r0 ∈ (0,RΛ) and i0 ≥ 1 such that

ui(r0)≥ u0 for all i≥ i0.

We now complete the proof of Proposition 5.1 assuming the Claim. From (5.5), there exists a subsequence
of (ui), relabelled (ui), converging uniformly to u∞ on any compact subset of (0,RΛ]. Moreover, ui→ u∞ in
C2

loc(0,RΛ] and u∞ is a radial solution of (1.3). The above Claim yields limsupr→0+ u∞(r) = ∞, that is, u∞

has a non-removable singularity at 0. By (5.5), we get limsupr→0+ r
n−2

2 u∞(r) ∈ (0,∞). Since q < 2?−1, we
thus find that uq+1

∞ ∈ L1(B(0,RΛ)). We have P(q)(ui) = 0 for all i≥ 1. By letting u = ui in (3.18) and (3.16),
then passing to the limit i→+∞, we find that

(5.6) P(q)
r (u∞) = cµ,q,n

∫
B(0,r)

uq+1
∞ (x)dx for all r ∈ (0,RΛ].

By letting r→ 0+ in (5.6), we find that P(q)(u∞) = 0. Hence by (3.2), u∞ is not a (CGS) solution of (1.3).
As u∞ does not have a removable singularity at 0, we conclude that u∞ is a radial (MB) solution of (1.3), that
is u∞ satisfies (5.4). This ends the proof of Proposition 5.1. �

Proof of the Claim. Suppose the contrary. Then for some u0 > 0 and any r0 ∈ (0,RΛ), there exists a subse-
quence of ui, relabeled (ui), such that

(5.7) ui(r0)< u0 for all i≥ 1.

We apply the following transformation

(5.8) wi(t) = r
n−2

2 ui(r) with t = logr.

By w′i(t) and w′′i (t), we denote the first and second derivative of wi with respect to t, respectively. Then wi
satisfies the equation

(5.9) w′′i (t)− f (wi(t)) = µeλ twq
i (t) for −∞ < t < logRΛ,

where λ := (n−2)(2?−1−q)/2 and f : [0,∞)→ R is defined by

(5.10) f (ξ ) := (n−2)2
ξ/4−ξ

2?(s)−1 for all ξ ≥ 0.

From (5.5), we have that

(5.11) wi(t) ∈ (0,Λ] for all t ∈ (−∞, logRΛ] and i≥ 1.

The proof of the Claim is now divided into five steps:
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Step 5.1. The family (w′i(t))i≥1 is uniformly bounded on (−∞, logRΛ].

Proof of Step 5.1. Using FR in (3.8) with R = et , we define Ei : (−∞, logRΛ]→ R by

(5.12) Ei(t) :=
(
w′i(t)

)2−w2
i (t)Fet (wi(t)).

We have λ > 0 (since q < 2?−1) and limt→−∞ wi(t) = 0. By Lemma 3.2(a), we find that

(5.13) Ei(t) =−2cµ,q,n

∫ t

−∞

eλξ wq+1
i (ξ )dξ and E ′i (t) =−2cµ,q,n eλ twq+1

i (t)< 0

for all t ∈ (−∞, logRΛ). It follows that

(5.14) lim
t→−∞

w′i(t) = lim
t→−∞

Ei(t) = 0.

From (5.13), we have Ei < 0 on (−∞, logRΛ]. Thus, by (5.11), we get that (w′i(t))i≥1 is uniformly bounded
for t ∈ (−∞, logRΛ], completing Step 5.1. �

Step 5.2. For ε0 > 0 and r0 ∈ (0,RΛ) small such that r(n−2)/2
0 u0 < ε0/2, we set

Fi := {t ∈ (−∞, logr0) : wi(t)≥ ε0} for all i≥ 1.

Then there exists i0 ≥ 1 such that

wi(logr0)< ε0/2 and Fi 6= /0 for every i≥ i0.

Proof of Step 5.2. For 0 < ε0 < [(n−2)/2](n−2)/(2−s), we define

(5.15) β0 := 2ε
2?(s)−2
0

(
n−2+

√
(n−2)2−4ε

2?(s)−2
0

)−1

so that 0 < β0 <
n−2

2
is small.

Since β0 → 0+ as ε0 → 0+, we can take ε0 > 0 small enough such that β0 is smaller than max{(n−
2)/4,2/q,(2− s)/(2?(s)−1)}. Our choice of r0 and (5.7) yield that

(5.16) wi(logr0) = r
n−2

2
0 ui(r0)< r

n−2
2

0 u0 < ε0/2 for all i≥ 1.

To end Step 5.2, we show by contradiction that there exists i0 ≥ 1 such that Fi 6= /0 for all i ≥ i0. Indeed,
suppose that for a subsequence (wik)k≥1 of (wi)i≥1, we have

(5.17) wik(t)< ε0 for all t ∈ (−∞, logr0] and every k ≥ 1.

Let k ≥ 1 be arbitrary. Using (5.17) and (5.15), we infer that

(5.18) β0 (n−2−β0) = ε
2?(s)−2
0 > w2?(s)−2

ik
(t)

for all t ≤ logr0. From (5.9) and (5.18), we obtain that

(5.19) w′′ik(t)> [(n−2)/2−β0]
2 wik(t) for all t ≤ logr0.

In particular, t 7−→ w′ik(t) is increasing on (−∞, logr0]. Since limt→−∞ w′ik(t) = 0, we find that w′ik(t)> 0 for
all t ≤ logr0. Set

Gik(t) := (w′ik(t))
2− [(n−2)/2−β0]

2 w2
ik(t).

Using (5.19), we get that Gik is increasing on (−∞, logr0] and limt→−∞ Gik(t) = 0. Thus, Gik > 0 on
(−∞, logr0], which implies that

w′ik(t)> [(n−2)/2−β0]wik(t) for all t ≤ logr0.

Thus, t 7−→ e−(
n−2

2 −β0)twik(t) is increasing on (−∞, logr0]. Using (5.8) and (5.16), we find that

(5.20) uik(r)≤ c0 r−β0 for every r ∈ (0,r0] and all k ≥ 1,
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where c0 := (ε0/2)r
− n−2

2 +β0
0 . Since β0 can be made arbitrarily small, it follows from (5.20) that the right-

hand side of (1.3) with u = uik is uniformly bounded in Lp(B(0,r0)) for some p > n/2. Then, uik satisfies
(1.3) in D ′(B(0,r0)) (in the sense of distributions) and (uik)k≥1 is uniformly bounded in W 2,p(B(0,r0)) for
some p > n/2. Hence, (uik(r))k≥1 is uniformly bounded in r ∈ [0,r0/2], which leads to a contradiction with
uik(0) = γik → ∞ as k→ ∞. This ends the proof of Step 5.2. �

For i≥ i0, we define
ti := sup{t ∈ (−∞, logr0) : wi(t)≥ ε0} .

It follows from Step 5.2 that ti is well-defined and that ti ∈ (−∞, logr0) for all i≥ i0.

Step 5.3. We claim that for every i ≥ i0, the function wi is decreasing on [ti, t̄i] for some t̄i ∈ (ti, logr0].
Moreover, by diminishing ε0 > 0 and r0 > 0, there exist positive constants c1,c2 independent of ε0 and i such
that

(5.21) wi(t̄i)≥ c1ε

q+2
2

0 e
λ ti
2 and t̄i− ti ≤

2
n−2

log
ε0

wi(t̄i)
+ c2.

Moreover, if t̄i < logr0, then wi is increasing on [t̄i, logr0] and

(5.22) logr0− t̄i ≤
2

n−2
log

wi(logr0)

wi(t̄i)
+ c3,

where c3 > 0 is a constant independent of ε0 and i.

Proof of Step 5.3. Let i ≥ i0 be arbitrary. By Step 5.2, we have wi(t) ≤ ε0 for every t ∈ [ti, logr0]. Since
(5.18) holds for all t ∈ [ti, logr0], as in the proof of Step 5.2, we regain (5.19) replacing wik by wi for all
t ∈ [ti, logr0]. Hence, t 7−→ w′i(t) is increasing on [ti, logr0] since w′′i (t) > 0 for all t ∈ [ti, logr0]. We next
distinguish two cases:

CASE 1: w′i(t) 6= 0 for all t ∈ [ti, logr0). Hence, w′i < 0 on [ti, logr0) using that wi < ε0 on (ti, logr0].

CASE 2: w′i(t̄i) = 0 for some t̄i ∈ [ti, logr0). Then, w′i < 0 on [ti, t̄i) and w′i > 0 on (t̄i, logr0].

In both cases, wi is decreasing on [ti, t̄i] such that
(1) t̄i = logr0 in Case 1;
(2) t̄i ∈ (ti, logr0) and w′i(t)> 0 for all t ∈ (t̄i, logr0] in Case 2.

Unless explicitly mentioned, the argument below applies for both Case 1 (when t̄i = logr0) and Case 2 (when
t̄i ∈ (ti, logr0)).

From (5.9), we have that

(5.23) w′′i (t)≥ f (wi(t)) for all t ∈ [ti, logr0].

Thus, using (5.23), we find that

(5.24) t 7−→
(
w′i(t)

)2−F0(wi(t))

(a) is non-increasing on [ti, t̄i] (in both Case 1 and Case 2);
(b) is non-decreasing on [t̄i, logr0] in Case 2.

Proof of the first inequality in (5.21). By (5.16) and wi(ti) = ε0, we infer that there exists t̃i ∈ (ti, logr0)
such that wi(̃ti) = ε0/2 and, moreover, t̄i ∈ (̃ti, logr0]. Hence, there exists ξi ∈ [ti, t̃i] such that

−ε0/2 = wi(̃ti)−wi(ti) = w′i(ξi)(̃ti− ti).
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By Step 5.1, (|w′i(t)|)i≥1 is uniformly bounded on (−∞, logRΛ) so that

(5.25) t̃i− ti ≥ cε0 for some constant c > 0.

From (5.11), (5.12) and (5.13), there exists c̃ > 0 such that

(5.26) − c̃w2
i (t)≤ Ei(t)≤ Ei(̃ti) for every t̃i < t ≤ logr0.

Moreover, using (5.25), together with Ei(ti)< 0 and wi ≥ ε0/2 on [ti, t̃i], we obtain that

(5.27) Ei(̃ti) = Ei(ti)−
2λ µ

q+1

∫ t̃i

ti
eλ twq+1

i (t)dt ≤−
λ µcε

q+2
0 eλ ti

2q (q+1)
.

Since t̄i ∈ (̃ti, logr0], by combining (5.26) and (5.27), there exists c1 > 0 such that

(5.28) wi(t̄i)≥ c1ε

q+2
2

0 e
λ ti
2 ,

where c1 > 0 is independent of ε0 and i. �

Proof of the second inequality in (5.21). From (5.24), for all t ∈ [ti, t̄i), we have

(5.29) [w′i(t)]
2−F0(wi(t))≥−F0(wi(t̄i)),

which jointly with w′i(t)< 0 and F0 increasing on [0,ε0], yields that

(5.30) −w′i(t) [F0(wi(t))−F0(wi(t̄i))]
−1/2 ≥ 1 for all t ∈ [ti, t̄i).

Hence, for all t ∈ [ti, t̄i), by integrating (5.30) over [t, t̄i], we get that

(5.31) t̄i− t ≤
∫ wi(t)

wi(t̄i)

dη

[F0(η)−F0(wi(t̄i))]
1/2 =: Di(t).

We shall prove below that

(5.32) Di(t)≤
2

n−2

(
log

wi(t)
wi(t̄i)

+ log2
)
+ k̃w2?(s)−2

i (t)

for all t ∈ [ti, t̄i), where k̃ > 0 is a constant independent of ε0 and i. Then, since wi ≤ ε0 on [ti, t̄i], from (5.31)
an (5.32), we conclude the proof of the second inequality in (5.21).

Proof of (5.32). For every ξ ≥ 0, we define

(5.33) gi(ξ ) :=
(

n−2
2

)2

ξ
2− 2

2?(s)
ξ

2?(s) [wi(t̄i)]
2?(s)−2 .

By a change of variable, we find that

(5.34) Di(t) =
∫ wi(t)/wi(t̄i)

1

dξ

[gi(ξ )−gi(1)]
1/2 for all t ∈ [ti, t̄i).

By the definition of gi in (5.33), for each ξ > 1, we have

(5.35)
gi(ξ )−gi(1)

ξ 2−1
=

(
n−2

2

)2

− 2[wi(t̄i)]2
?(s)−2

2?(s)
ξ 2?(s)−1

ξ 2−1
.

Since (2?(s)−1)ξ 2?(s)−2?(s)ξ 2?(s)−2+1 increases for ξ ≥ 1, we get that ξ 2?(s)−1 is bounded from above
by 2?(s)ξ 2?(s)−2(ξ 2−1) for all ξ ≥ 1. Hence, for any 1 < ξ ≤ ε0/wi(t̄i), we find that

(5.36)
[w(t̄i)]2

?(s)−2

2?(s)
ξ 2?(s)−1

ξ 2−1
≤ [wi(t̄i)ξ ]2

?(s)−2 ≤ ε
2?(s)−2
0 .
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Since we fix ε0 > 0 small, there exists a positive constant k, independent of ε0 and i, such that

(5.37)
[

ξ 2−1
gi(ξ )−gi(1)

]1/2

≤ 2
n−2

+2k [wi(t̄i)ξ ]2
?(s)−2

for every 1 < ξ ≤ ε0/wi(t̄i). Since wi(t)≤ wi(ti)≤ ε0 for each t ∈ [ti, t̄i), using (5.37) in (5.34), we get

(5.38) Di(t)≤
2

n−2

∫ hi(t)

1

dξ

[ξ 2−1]1/2 +2k [wi(t̄i)]
2?(s)−2 Ei(t),

where for every t ∈ [ti, t̄i), we define hi(t) and Ei(t) by

(5.39) hi(t) :=
wi(t)
wi(t̄i)

and Ei(t) :=
∫ hi(t)

1

ξ 2?(s)−2

(ξ 2−1)1/2 dξ .

A simple calculation gives that there exists C > 0 such that for every t ∈ [ti, t̄i), we have

(5.40) Ei(t)≤Ch2?(s)−2
i (t).

Using (5.39) and (5.40) into (5.38), we reach (5.32) with k̃ large enough. This completes the proof of the
inequalities in (5.21). �

Proof of (5.22) in Case 2 (when t̄i ∈ (ti, logr0)). Recall that wi is increasing on [t̄i, logr0] so that using
(5.16), we get that wi(t)≤ wi(logr0)< ε0/2 for all t ∈ [t̄i, logr0]. Moreover, the function in (5.24) is non-
decreasing on [t̄i, logr0]. Hence, we recover (5.29) for all t ∈ (t̄i, logr0]. Since this time w′i > 0 on (t̄i, logr0],
instead of (5.31), we find that

(5.41) w′i(t) [F0(wi(t))−F0(wi(t̄i))]
−1/2 ≥ 1 for every t ∈ (t̄i, logr0].

Using Di(t) given by (5.31), we see that by integrating (5.41) over [t̄i, t], we obtain that

(5.42) t− t̄i ≤Di(t) for all t ∈ (t̄i, logr0].

Similar to the case t ∈ [ti, t̄i), we can prove (5.32) for all t ∈ (t̄i, logr0], which jointly with (5.42), gives the
existence of a constant c3 > 0 independent of ε0 and i such that

(5.43) t− t̄i ≤
2

n−2
log

wi(t)
wi(t̄i)

+ c3 for all t ∈ (t̄i, logr0].

By letting t = logr0 in (5.43), we conclude (5.22). This proves the assertions of Step 5.3. �

Step 5.4. Proof of the Claim concluded in Case 1 of Step 5.3: t̄i = logr0.

Proof of Step 5.4. Suppose that w′i < 0 on [ti, logr0).

The second inequality in (5.21) of Step 5.3 reads as follows

(5.44) logr0− ti ≤
2

n−2
log

ε0

wi(logr0)
+ c2.

The first inequality in (5.21) and (5.16) give that r
n−2

2
0 u0 ≥ c1ε

q+2
2

0 e
λ ti
2 . By applying log to this inequality

and to (5.28) (with t̄i = logr0), respectively, we find that

(5.45) λ ti/2≤ [(n−2)/2] logr0 + c4 (logu0 + log(1/ε0))

for some constant c4 > 0 independent of ε0 and i, respectively

(5.46) log(wi(logr0))≥ λ ti/2+[(q+2)/2] logε0 + logc1.
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Using (5.46) into (5.44), we deduce that

(5.47) logr0 ≤ [1−λ/(n−2)] ti + c5 log(1/ε0)

for a constant c5 > 0 independent of ε0 and i. We have

(5.48) Θ := 2(q−2?+2)/(2?−1−q)> 0 since q ∈ (2?−2,2?−1).

Plugging into (5.47) the estimate on ti from (5.45), we conclude that

(5.49) −Θ logr0 ≤ c6 [logu0 + log(1/ε0)] ,

where c6 is a positive constant independent of ε0 and i. Since Θ > 0, we can choose r0 > 0 small so that
the left-hand side of (5.49) is bigger than twice the right-hand side of (5.49), which is a contradiction with
(5.49). This completes Step 5.4. �

Step 5.5. Proof of the Claim in Case 2 of Step 5.3: t̄i ∈ (ti, logr0).

Proof of Step 5.5. We have w′i < 0 on [ti, t̄i) and w′i > 0 on (t̄i, logr0]. The first inequality of (5.21) yields

(5.50) 2 logwi(t̄i)≥ (q+2) logε0 +λ ti +2logc1.

By adding the second inequality of (5.21) to that of (5.22), we get

(5.51) logr0− ti ≤
2

n−2
[logε0 + logwi(logr0)−2logwi(t̄i)]+C1,

where C1 > 0 is a constant independent of ε0 and i. By (5.16), we have

(5.52) logwi(logr0)≤ logu0 +[(n−2)/2] logr0.

Using (5.50) and (5.52) into (5.51), we obtain that

(5.53) [2λ/(n−2)−1] ti ≤C2 [log(1/ε0)+ logu0] ,

where C2 > 0 is a a constant independent of ε0 and i. Since the coefficient of ti in (5.53) equals 2?−2−q,
which is negative from the assumption q > 2?−2, using that ti < logr0, we infer that

(5.54) (2?−2−q) logr0 ≤C2 [log(1/ε0)+ logu0] .

By choosing r0 > 0 small so that the left-hand side of (5.54) is greater than twice the right-hand side of
(5.54), we reach a contradiction. This proves Step 5.5. �

From Steps 5.4 and 5.5 above, we conclude the proof of the Claim. �

6. (CGS) SOLUTIONS

This section is devoted to the proof of part (iii) of Theorem 1.3, restated below.

Proposition 6.1. Let q ∈ (1,2?− 1). There exists R0 > 0 such that for every R ∈ (0,R0) and any positive
singular solution U of (1.2), there exists a unique positive radial (CGS) solution u of (1.3) with asymptotic
profile U near zero.

Proof. Let f be given by (5.10). Let U be a positive singular solution of (1.2). Then, by defining ϕ(t) =
e−(n−2)t/2U(e−t) for t ∈ R, we see that ϕ ∈C∞ (R) is a positive periodic solution of

(6.1) ϕ
′′(t) = f (ϕ(t)) for all t ∈ R.

Let P denote the set of all positive smooth periodic solutions of (6.1) to be described in Sect. 6.1. We next
show that Proposition 6.1 is equivalent to Lemma 6.2, the proof of which will be given in Sect. 6.2.
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Lemma 6.2. Let q ∈ (1,2?− 1). For every ϕ ∈P , there exists T0 = T0(ϕ) > 0 large for which the non-
autonomous first order system

(6.2)

{
(V ′,W ′) = (W, f (V )+µe−λ tV q) in [T0,∞),

V > 0 on [T0,∞),

has a unique solution satisfying

(6.3) (V (t),W (t))−
(
ϕ(t),ϕ ′(t)

)
→ (0,0) as t→ ∞.

Indeed, assuming that Proposition 6.1 holds, then for every ϕ ∈P , we use the transformation

(6.4) ϕ(t) = r
n−2

2 U(r), V (t) = r
n−2

2 u(r), W (t) =V ′(t) with t = log(1/r),

where u is the unique positive radial (CGS) solution of (1.3) satisfying limr→0+ u(r)/U(r) = 1. Hence, we
obtain that (V,W ) is a solution of (6.2) for any T0 > log(1/R) and, moreover, V (t)−ϕ (t)→ 0 as t → ∞.
Using (6.1), we find that W ′(t)−ϕ ′′(t)→ 0 as t→ ∞. Hence, W −ϕ ′ is uniformly continuous on [T0,+∞).
Since limt→∞(V −ϕ)(t) = 0, we get that limt→+∞(W −ϕ ′)(t) = 0. This proves Lemma 6.2. We prove the
reverse implication. If Lemma 6.2 holds, then for every positive singular solution U of (1.2), using (6.4) and
Proposition 3.1, we get a unique positive radial (CGS) solution u of (1.3) satisfying limr→0+ u(r)/U(r) = 1.

6.1. Description of P . We show that the set P of all positive smooth periodic solutions of (6.1) is given
by (6.7). This is basically standard ODE theory. We state only the essential steps and leave the details to the
reader. The function F0 in (3.6) is increasing on [0,M0] and decreasing on [M0,∞) with M0 given by (6.5).
Thus F0 reaches its maximum σ at M0, where

(6.5) M0 :=
(

n−2
2

) n−2
2−s

and σ := F0(M0) =
2− s
n− s

(
n−2

2

) 2(n−2)
2−s

.

Note that M0 is the only positive zero of f (ξ ) = 0. Let ϕ ∈P . Since F0(ξ ) = 2
∫ ξ

0 f (t)dt for all ξ ≥ 0,
from (6.1), there exists a constant σ > 0 such that

(6.6)
(
ϕ
′(t)
)2

= F0(ϕ(t))−σ for all t ∈ R.

In fact, by taking µ = 0 in (3.16) for u=U with U given by (6.4), we precisely obtain that σ = 2P(U)/ωn−1 >
0, where P(U) is the Pohozaev invariant associated to the positive singular solution U of (1.2). From (6.5)
and (6.6), we must have

0 < σ ≤ σ and ϕ ≡M0 on R if σ = σ .

Let σ ∈ (0,σ) be fixed. Let aσ and bσ denote the two positive solutions of F0(ξ ) = σ with 0 < aσ < M0 <
bσ . It follows from standard analysis of the ODE (6.1) that for any σ ∈ (0, σ̄), there is a unique solution ϕσ

to (6.1) such that minR ϕσ = ϕσ (0) = aσ < bσ = maxR ϕσ . Moreover, ϕσ is periodic and we let 2tσ > 0 be
its principal period.

For every τ ∈ S1, let ϕσ ,τ denote the function whose graph is obtained from that of ϕσ by a horizontal
shift with (tσ/π)Arg τ units, where Argτ denotes the principal argument of τ . Note that ϕσ = ϕσ ,τ0 with
τ0 = (1,0) ∈ S1. It follows that

(6.7) P = {ϕσ}∪{ϕσ ,τ}(σ ,τ)∈(0,σ)×S1 ,

where ϕσ ≡M0 and ϕσ ,τ(t) = ϕσ (t− (tσ/π)Argτ) for all t ∈ R.
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6.2. Proof of Lemma 6.2. We first prove Lemma 6.2 for ϕ ∈ ∪{ϕσ ,τ}(σ ,τ)∈(0,σ0)×S1 with σ0 ∈ (0,σ) and
second for ϕ ∈ {ϕσ}∪{ϕσ ,τ}(σ ,τ)∈[σ0,σ)×S1 with σ0 ∈ (0,σ) close enough to σ .

Step 6.1. For any σ∗ ∈ (0,σ0) fixed, there exists T0 > 0 large such that for every ϕ = ϕσ ,τ with (σ ,τ) ∈
(σ∗,σ0)×S1, the system (6.2), subject to (6.3), admits a unique solution (Vσ ,τ ,Wσ ,τ).

Proof of Step 6.1. For the existence proof, we make a suitable transformation and use the Fixed Point The-
orem for a contraction mapping. Let I0 be an open interval such that (σ∗,σ0)b I0 b (0,σ). The key here is
that for every (σ ,τ) ∈ I0×S1, both ϕσ ,τ and ∂tϕσ ,τ = ϕ ′σ ,τ are differentiable with respect to σ . This does
not hold for σ = σ . By differentiating (6.6) with respect to σ and using (6.1), we get

f (ϕσ ,τ(t))
d [ϕσ ,τ(t)]

dσ
−∂tϕσ ,τ(t)

d [∂tϕσ ,τ(t)]
dσ

=
1
2

for all t ∈ R.

We see that there exists C∗ > 0 such that for every (σ ,τ) ∈ I0×S1, we have

(6.8) |∂tϕσ ,τ(t)|+
∣∣∣∣d [ϕσ ,τ(t)]

dσ

∣∣∣∣≤C∗ for all t ∈ R.

Moreover, there exists T0 > 0 such that C∗e−λT0/2 < a0 := inf{aσ : σ ∈ I0}, where aσ is the smallest pos-
itive root of F0(ξ ) = σ . Let XT0 denote the set of all continuous functions ( f1, f2) : [T0,∞)→ R2 with
eλ t/2(| f1(t)|+ | f2(t)|)≤ 1 for all t ≥ T0. If we define

‖( f1, f2)‖ := sup
t≥T0

{
eλ t/2 (| f1(t)|+ | f2(t)|)

}
,

then (XT0 ,‖ · ‖) is a complete metric space. For (V̂ ,Ŵ ) ∈XT0 and recalling that ϕ ′′σ ,τ = f (ϕσ ,τ) on R, we
consider the following transformation:

(6.9)
[

V (t)−ϕσ ,τ(t)
W (t)−ϕ ′σ ,τ(t)

]
=

 ∂tϕσ ,τ(t)
d[ϕσ ,τ (t)]

dσ

f (ϕσ ,τ(t))
d[∂t ϕσ ,τ (t)]

dσ

[V̂ (t)
Ŵ (t)

]
for t ∈ [T0,∞).

Note that the matrix and its inverse are both uniformly bounded with respect to (σ ,τ)∈ I0×S1. In particular,
(6.9) yields that

(6.10) V (t) := ϕσ ,τ(t)+V̂ (t)∂tϕσ ,τ(t)+Ŵ (t)
d [ϕσ ,τ(t)]

dσ
.

From (6.8), (6.10) and our choice of T0, we find that

(6.11) |V (t)−ϕσ ,τ(t)| ≤C∗e−λ t/2‖(V̂ ,Ŵ )‖ ≤C∗e−λT0/2 < a0 for all t ≥ T0.

For every t ≥ T0 and (σ ,τ) ∈ I0×S1, we have ϕσ ,τ(t) ≥ aσ ≥ a0 since aσ is increasing in σ . Thus, (6.11)
proves that V in (6.10) is positive on [T0,∞) for all (V̂ ,Ŵ ) ∈XT0 . For simplicity of reference, using V in
(6.10) for (V̂ ,Ŵ ) ∈XT0 , we define

g
σ ,τ,V̂ ,Ŵ (t) := f (V (t))− f (ϕσ ,τ(t))− (V (t)−ϕσ ,τ(t)) f ′(ϕσ ,τ(t))+µe−λ tV q(t).

By (6.11), there exist positive constants C0 and C1 such that for all (V̂ ,Ŵ ) ∈XT0 ,

(6.12) |g
σ ,τ,V̂ ,Ŵ (t)| ≤C0|V (t)−ϕσ ,τ(t)|2 +µe−λ tV q(t)≤C1e−λ t

for every t ∈ [T0,∞) and (σ ,τ) ∈ I0×S1. Remark that (6.2) is equivalent to the system

(6.13) (V̂ ′(t),Ŵ ′(t)) =
(

2g
σ ,τ,V̂ ,Ŵ (t)

d [ϕσ ,τ(t)]
dσ

,−2g
σ ,τ,V̂ ,Ŵ (t)∂tϕσ ,τ(t)

)
on [T0,∞).
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For every (V̂ ,Ŵ ) ∈XT0 and t ≥ T0, we define

Φσ ,τ(V̂ ,Ŵ )(t) =
(
−2
∫

∞

t
g

σ ,τ,V̂ ,Ŵ (y)
d [ϕσ ,τ(y)]

dσ
dy,2

∫
∞

t
g

σ ,τ,V̂ ,Ŵ (y)∂tϕσ ,τ(y)dy
)
.

We next prove the existence of T0 > 0 large such that Φσ ,τ maps XT0 into XT0 and Φσ ,τ is a contraction
mapping on XT0 for every (σ ,τ) ∈ I0×S1. From (6.8), (6.12) and the definition of (XT0 ,‖ · ‖), we have

(6.14) ‖Φσ ,τ(V̂ ,Ŵ )‖ ≤ 2C∗ sup
t≥T0

{
eλ t/2

∫
∞

t
|g

σ ,τ,V̂ ,Ŵ (y)|dy
}
≤ 2C∗C1

λ
e−λT0/2.

Thus, for large T0 > 0, we find that Φσ ,τ(V̂ ,Ŵ ) ∈XT0 for every (V̂ ,Ŵ ) ∈XT0 and all (σ ,τ) ∈ I0×S1. For
every (V̂1,Ŵ1) and (V̂2,Ŵ2) in XT0 , we have

‖(V̂1,Ŵ1)− (V̂2,Ŵ2)‖= sup
t≥T0

{
e

λ t
2 Ŝ(t)

}
with Ŝ(t) := |(V̂1−V̂2)(t)|+ |(Ŵ1−Ŵ2)(t)|.

Hence, there exist positive constants C2 and C3 such that for every (σ ,τ) ∈ I0×S1

‖Φσ ,τ(V̂1,Ŵ1)−Φσ ,τ(V̂2,Ŵ2)‖ ≤ 2C∗ sup
t≥T0

{
e

λ t
2

∫
∞

t

∣∣∣g
σ ,τ,V̂1,Ŵ1

(y)−g
σ ,τ,V̂2,Ŵ2

(y)
∣∣∣ dy
}

≤C2 sup
t≥T0

{
e

λ t
2

∫
∞

t

[
(Ŝ(y))2 + e−λyŜ(y)

]
dy
}

≤C3e−
λT0

2 ‖(V̂1,Ŵ1)− (V̂2,Ŵ2)‖

for all (V̂1,Ŵ1),(V̂2,Ŵ2) ∈XT0 . Thus, for T0 > 0 large, Φσ ,τ is a contraction on XT0 for all (σ ,τ) ∈ I0×S1.
Hence, Φσ ,τ has a unique fixed point in XT0 , say (V̂σ ,τ ,Ŵσ ,τ), which gives a unique solution in XT0 of (6.13)
such that limt→∞(V̂σ ,τ ,Ŵσ ,τ)(t) = (0,0). By (6.8) and (V̂ ,Ŵ ) = (V̂σ ,τ ,Ŵσ ,τ) in (6.9), we obtain a solution
(Vσ ,τ ,Wσ ,τ) of (6.2) satisfying (6.3) with ϕ = ϕσ ,τ . Moreover, (Vσ ,τ ,Wσ ,τ) is continuous in (σ ,τ) since
Φσ ,τ is continuous in (σ ,τ).

To prove uniqueness, on Ω0 := I0×S1× (0,e−T0), we define the functions H,G : Ω0→ R3 by

H (σ ,τ,r) := (Vσ ,τ (t (r)) ,Wσ ,τ (t (r)) ,r) and G(σ ,τ,r) :=
(
ϕσ ,τ (t (r)) ,ϕ ′σ ,τ (t (r)) ,r

)
for every (σ ,τ,r) ∈ Ω0, where t (r) := log(1/r). From our construction, H is continuous. Since Vσ ,τ is a
solution to a second-order ODE and Wσ ,τ =V ′σ ,τ , the uniqueness theorem for ODEs yields that H is one-to-
one in Ω0. Clearly, G is also continuous and one-to-one in Ω0. Thus, by applying the Domain Invariance
Theorem, we obtain that H and G are open. Moreover, since the functions {ϕσ ,τ}(σ ,τ)∈I0×S1 are periodic,
we see that G(Ω0) = Σ0× (0,e−T0) for some domain Σ0 in R2. Let H0 : Σ0× (−e−T0 ,e−T0)→ R3 be the
function defined as

H0 (ξ1,ξ2,r) :=


H
(
G−1 (ξ1,ξ2,r)

)
if r > 0

(ξ1,ξ2,0) if r = 0

J
(
H
(
G−1 (ξ1,ξ2,−r)

))
if r < 0,

where J(ξ1,ξ2,r) := (ξ1,ξ2,−r). Since H and G are one-to-one in Ω0, we obtain that H0 is one-to-one
in Σ0× (−e−T0 ,e−T0). Moreover, since H and G−1 are continuous in Ω0, we obtain that H0 is continuous
in Σ0 × [(−e−T0 ,e−T0)\{0}]. As regards the continuity of H0 on Σ0 ×{0}, for every (ζ1,ζ2) ∈ Σ0 and
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(ξ1,ξ2,r) ∈ Σ0× [(−e−T0 ,e−T0)\{0}], we write

(6.15) |H0 (ξ1,ξ2,r)−H0 (ζ1,ζ2,0)| ≤ |H0 (ξ1,ξ2,r)− (ξ1,ξ2,r)|+ |(ξ1,ξ2,r)− (ζ1,ζ2,0)|
≤
∣∣(Vσ ,τ (t (|r|))−ϕσ ,τ (t (|r|)) ,Wσ ,τ (t (|r|))−ϕ

′
σ ,τ (t (|r|))

)∣∣+ |(ξ1,ξ2,r)− (ζ1,ζ2,0)| ,

where (σ ,τ, |r|) = G−1 (ξ1,ξ2, |r|). Since (V̂σ ,τ ,Ŵσ ,τ) ∈XT0 , it follows from (6.8), (6.9) and (6.15) that for
every (ζ1,ζ2,0) ∈ Σ0×{0}, H0 (ξ1,ξ2,r)→H0 (ζ1,ζ2,0) as (ξ1,ξ2,r)→ (ζ1,ζ2,0) i.e., H0 is continuous at
(ζ1,ζ2,0). By another application of the Domain Invariance Theorem, we obtain that H0 is open. We let Σ∗
be the domain such that Σ∗×{r} = G((σ∗,σ0)×S1,r) for every r > 0. In particular, since Σ∗ is open, we
obtain that for every (σ ,τ) ∈ (σ∗,σ0)×S1, every solution (V (t) ,W (t)) of (6.2) satisfying

(6.16) (V (t),W (t))−
(
ϕσ ,τ(t),ϕ ′σ ,τ(t)

)
→ (0,0) as t→ ∞

must satisfy (X(t (r)),Y (t (r))) ∈ Σ∗ for small r > 0. Since Σ∗×{0} b H0(Σ0× (−e−T0 ,e−T0)) and H0 is
open, we obtain that there exists R0 ∈ (0,e−T0) such that Σ∗× [−R0,R0] ⊂ H0(Σ0× (−e−T0 ,e−T0)). It then
follows from the definitions of H0 and Σ∗ that Σ∗× (0,R0]⊂ H(I0×S1× (0,R0]). Hence, for every solution
(X (t) ,Y (t)) of (6.2) satisfying (6.16) for some (σ ,τ) ∈ (σ∗,σ0)× S1, we obtain (X(t (r)),Y (t (r)),r) ∈
H(I0×S1× (0,R0]) and so (X(t (r)),Y (t (r))) = (Vσ ,τ(t (r)),Wσ ,τ(t (r))) for small r > 0. Hence, for every
ϕ = ϕσ ,τ with (σ ,τ) ∈ (σ∗,σ0)×S1, we conclude that (Vσ ,τ ,Wσ ,τ) is the unique solution of (6.2) satisfying
(6.3). This ends Step 6.1. �

Step 6.2. Proof of Lemma 6.2 if ϕ ∈ ∪{ϕσ ,τ}(σ ,τ)∈[σ0,σ ]×S1 for σ0 ∈ (0,σ) close enough to σ .

Proof of Step 6.2. For (σ ,τ) ∈ (0,σ ]×S1, we search for T0 ∈ R and V,W ∈ C1([T0,+∞)) such that (6.2)
holds and (V (t),W (t))−(ϕσ ,τ(t),ϕ ′σ ,τ(t))→ (0,0) as t→∞. Writing Ṽ =V −ϕσ ,τ and W̃ =W −ϕ ′σ ,τ , this
is equivalent to finding T0 ∈ R and Ṽ ,W̃ ∈C1([T0,+∞)) such that

(6.17)

{
(Ṽ ′,W̃ ′) = (W̃ , f (ϕσ ,τ +Ṽ )− f (ϕσ ,τ)+µe−λ t(ϕσ ,τ +Ṽ )q) in [T0,∞),

(Ṽ (t),W̃ (t))→ (0,0) as t→+∞.

We define L(ϕσ ,τ ,ϕσ )(t) := f ′(ϕσ ,τ(t))− f ′(ϕσ (t)) for t ∈ R and

A :=
(

0 1
f ′(M0) 0

)
.

Since ϕσ ≡M0 and ϕσ ,τ → ϕσ as σ → σ uniformly with respect to τ ∈ S1, we get that

(6.18) lim
σ→σ

sup
τ∈S1, t∈R

|L(ϕσ ,τ ,ϕσ )(t)|= 0.

With a Taylor expansion, we write

f (ϕσ ,τ +Ṽ )− f (ϕσ ,τ) = f ′(ϕσ )Ṽ +L(ϕσ ,τ ,ϕσ )Ṽ +Q(ϕσ ,τ ,Ṽ )

with |Q(ϕσ ,τ ,Ṽ )| ≤C|Ṽ |2. Therefore, the system in (6.17) rewrites as follows

(6.19)
(

Ṽ
W̃

)′
= A

(
Ṽ
W̃

)
+

(
0

L(ϕσ ,τ ,ϕσ )Ṽ +Q(ϕσ ,τ ,Ṽ )+µe−λ t(ϕσ ,τ +Ṽ )q

)
.

Since f ′(M0)< 0, we get that A has two conjugate pure imaginary eigenvalues. Therefore, there exists C > 0
such that ‖etA‖+‖e−tA‖ ≤C for all t ∈ R, where ‖ · ‖ is any operator norm on R2. For all t ≥ T0, we define
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X̃(t) := e−tA
(

Ṽ (t)
W̃ (t)

)
and

Φϕσ ,τ (t, X̃) := e−tA
(

0
L(ϕσ ,τ ,ϕσ )(etAX̃)1 +Q(ϕσ ,τ ,(etAX̃)1)+µe−λ t(ϕσ ,τ +(etAX̃)1)

q

)
,

where (etAX̃)1 denotes the first coordinate of etAX̃ ∈R2. Then getting a solution to (6.17) amounts to finding
a solution X̃ ∈C1([T0,+∞),R2) to

(6.20) X̃ ′(t) = Φϕσ ,τ (t, X̃(t)) for t ≥ T0 and lim
t→+∞

X̃(t) = 0.

As in Step 6.1, we find a solution to (6.20) via the Fixed Point Theorem for contracting maps on a complete
metric space. Since Q(ϕσ ,τ ,Ṽ ) is quadratic in Ṽ , the last two terms of the second coordinate of Φϕσ ,τ (t, X̃)

are tackled as in Step 6.1. The first term is linear in Ṽ and controled by L(ϕσ ,τ ,ϕσ ): with (6.18), this term is
contracting for σ close enough to σ . Mimicking the existence proof of Step 6.1, we get the following:

There exist ε > 0 and T0 > 0 such that for every (σ ,τ)∈ [σ−3ε,σ ]×S1, there exists a solution (Vσ ,τ ,Wσ ,τ)∈
C1([T0,+∞),R2) to (6.2) such that (6.3) holds for ϕ = ϕσ ,τ . Moreover, since (σ ,τ) 7−→ (ϕσ ,τ ,ϕ

′
σ ,τ) is con-

tinuous on (0,σ ]×S1 (despite the issue for σ ), the continuity of the fixed points depending on a parameter
yields that (σ ,τ) 7−→ (Vσ ,τ ,Wσ ,τ) is continuous on [σ−3ε,σ ]×S1. Here we have taken the supremum norm
on C0([T0,+∞),R2): via the fixed point construction, we also get that this holds with a weighted norm.

We only sketch the uniqueness proof. For τ0 = (1,0) ∈ S1 and every ξ ∈ B(0,2ε)⊂ R2, we define

σ(ξ ) := σ −|ξ | and {τ(ξ ) := ξ/|ξ | if ξ 6= 0 and τ(0) = τ0} .

Due to the uniqueness of solution for σ = σ , as one checks, we have the continuity of the mappings
ξ 7−→ (ϕσ(ξ ),τ(ξ ),ϕ

′
σ(ξ ),τ(ξ )) and ξ 7−→ (Vσ(ξ ),τ(ξ ),W ′σ(ξ ),τ(ξ )) on B(0,2ε). We introduce the domain Ω0 :=

B(0,2ε)× (0,e−T0) and the functions H,G : Ω0→ R3 defined as

H (ξ ,r) := (Vσ ,τ (t) ,Wσ ,τ (t) ,r) and G(ξ ,r) :=
(
ϕσ ,τ (t) ,ϕ ′σ ,τ (t) ,r

)
for every (ξ ,r)∈Ω0, where t (r) := log(1/r), σ =σ(ξ ) and τ = τ(ξ ). Arguing as in Step 6.1 and with some
extra care for the case ξ = 0, we get the uniqueness of the solution of (6.2) satisfying (6.3) for ϕ = ϕσ ,τ .
This ends the proof of Step 6.2. �

This completes the proof of Lemma 6.2 and thus of Proposition 6.1. �

7. APPENDIX

Here, we establish Theorem 7.1, a critical result that was used in the proof of Lemma 2.2. The proof of
Theorem 7.1 is strongly inspired by Kelley’s paper [15]. We denote by Bδ (0) ⊂ R3 the ball centered at 0
with radius δ > 0. For any r0 > 0, we set Dr0 := [0,r0]× [−r0,r0].

Theorem 7.1. Let h j ∈C1(Bδ (0)) for some δ > 0 with j = 1,2,3. Suppose there exist constants C1 > 0 and
p > 1 such that for all ~ξ = (ξ1,ξ2,ξ3) ∈ Bδ (0), we have

(7.1)


3

∑
j=1
|h j(~ξ )| ≤C1

3

∑
j=1

ξ
2
j and

3

∑
j=1
|∇h j(~ξ )| ≤C1

3

∑
j=1
|ξ j|,

h2(~ξ )≤−C1|ξ2|p and h2(ξ1,0,ξ3) = 0.
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For fixed a > 0 and c < 0, we consider the system

(7.2)

{
~Z ′(t) = (aZ1(t)+h1( ~Z (t)),h2( ~Z (t)),cZ3(t)+h3( ~Z (t))) for t ≥ 0,

~Z (0) = (x0,y0,z0).

Then there exist r0 ∈ (0,δ/2) and a Lipschitz function w : Dr0 → [−r0,r0] such that for all (y0,z0) ∈Dr0 and
x0 = w(y0,z0), the initial value system (7.2) has a solution ~Z on [0,∞) and

(7.3) lim
t→+∞

~Z (t) = (0,0,0).

Moreover, we have that the parametrized surface (Z2,Z3) 7−→ (w(Z2,Z3),Z2,Z3) is stable in the sense
that Z1(t) = w(Z2(t),Z3(t)) for all t ≥ 0.

Proof. Since h j ∈ C1(Bδ (0)) for 1 ≤ j ≤ 3, the Cauchy–Lipschitz theory applies to the system. For r0 ∈
(0,δ/2) and C2 > 0, we define X as the set of all continuous functions w : Dr0 → [−r0,r0] such that
w(0,0) = 0 and w is C2-Lipschitz. Note that (X ,‖ · ‖∞) is a complete metric space. For any w ∈X , we
consider the system

(Sw)

{
(y′,z′) = (h2(w(y,z),y,z),cz+h3(w(y,z),y,z)) on [0,∞),

(y(0),z(0)) = (y0,z0).

We now divide the proof of Theorem 7.1 in five Steps.

Step 7.1. Let r0 ∈ (0,δ/2) be such that 4C1(1+C2
2)r0 ≤ |c|. If (y0,z0) ∈ Dr0 , then the flow Φw

t (y0,z0)
associated to (Sw) is defined for all t ∈ [0,+∞). If we set

(7.4) (y(t),z(t)) := Φ
w
t (y0,z0) for all t ∈ [0,∞),

then 0≤ y(t)≤ y0 and |z(t)| ≤max{y0, |z0|} on [0,∞). Moreover, we have

(7.5) lim
t→∞

(y(t),z(t)) = (0,0).

Proof of Step 7.1. Let (y0,z0)∈Dr0 be arbitrary. Since the Cauchy–Lipschitz theory applies, the initial value
problem (Sw) has a unique solution (y,z) on an interval [0,b) with b > 0. We prove the following:

(i) y≡ 0 if y0 = 0 and 0 < y(t)≤ y0 for all t ∈ [0,b) if y0 ∈ (0,r0];
(ii) |z(t)| ≤max{y0, |z0|} for every t ∈ [0,b).

Proof of (i). We write h2(w(y(t),z(t)),y(t),z(t)) = ĥ2(t,y(t)) for t ∈ [0,b), where ĥ2(t,y) is continuous in
t ∈ [0,b) and Lipschitz with respect to y ∈ [0,r0]. The assumption (7.1) yields ĥ2(·,0) = 0 on [0,b) and
ĥ2(t,y(t))≤ 0 for all t ∈ [0,b). The claim of (i) holds since y′(t)≤ 0 on [0,b) and y is the unique solution of
y′(t) = ĥ2(t,y(t)) for t ∈ [0,b), subject to y(0) = y0. �

Proof of (ii). Since c < 0, using the system (Sw), we find that

(7.6) (z2)′ = 2
(
−|c|z2 + zh3(w(y,z),y,z)

)
on [0,b).

Since w is a C2-Lipschitz function, using the hypothesis on h3 in (7.1), we have

(7.7) |zh3(w(y,z),y,z)| ≤C1|z|
[
w2(y,z)+ y2 + z2]≤C1

(
1+C2

2
)
|z|
(
y2 + z2) .

Using |z| ≤ r0 and the choice of r0 > 0, from (7.7) we obtain that

(7.8) |zh3(w(y,z),y,z)| ≤ |c|max{y2,z2}/2 on [0,b).

If y0 = 0, then y ≡ 0 on [0,b) by (i). From (7.8) and (7.6), we have (z2)′ ≤ 0 on [0,b), which yields
|z(t)| ≤ |z0| for all t ∈ [0,b), proving (ii) if y0 = 0.
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We now prove (ii) when y0 > 0. If there exists t0 ∈ [0,b) such that |z(t0)|= y0, then using (i) and (7.8), we
find that |zh3(w(y,z),y,z)|(t0) < |c|z2(t0). Thus, (7.6) yields that (z2)′(t0) < 0. This means that |z(t)| = y0
has at most a solution in [0,b). Hence, one of the following holds:

(a) |z(t)| ≤ y0 for all t ∈ [0,b), which immediately yields (ii);
(b) |z(t)| ≥ y0 for all t ∈ [0,b);
(c) For some t0 ∈ (0,b), we have |z|> y0 on t ∈ [0, t0) and |z|< y0 on (t0,b).

Using (7.8) into (7.6), we get (z2)′ < 0 on [0,b) in case (b) and on [0, t0) in case (c) since max{y2,z2}= z2.
Thus in case (b) and (c) respectively, we find that |z| ≤ |z0| on [0,b) and [0, t0), respectively. This proves (ii)
when y0 > 0. �

By (i), (ii) and the finite-time blow-up of solutions of ODEs, the flow Φw
t (y0,z0) associated to (Sw) is

defined for all t ∈ [0,+∞). Let (y(t),z(t)) be as in (7.4).

Proof of (7.5). If y0 = 0, then y≡ 0 on [0,∞). Assuming y0 > 0, then y > 0 on [0,∞). The hypothesis on h2
in (7.1) implies that (y1−p)′(t)≥ (p−1)C1 for all t ≥ 0. By integration, we get that limt→+∞ y(t) = 0. Hence,
for every ε > 0, there exists tε > 0 large such that 0 ≤ y ≤ ε on [tε ,∞). To prove that limt→+∞ z(t) = 0, we
show that there exists t̃ε ≥ tε such that |z(t)| ≤ ε for all t ≥ t̃ε . Indeed, with a similar argument to the proof of
(ii), it can be shown that |z(t)|= ε has at most one zero on [tε ,∞). The option |z| ≥ ε on [tε ,∞) is not viable
here. Indeed, if |z| ≥ ε on [tε ,∞), then again from (7.6) and (7.8), we would have (z2)′ ≤ −|c|z2 ≤ −|c|ε2

on [tε ,∞), leading to a contradiction. Hence, either |z| ≤ ε on [tε ,∞) or there exists t̃ε ∈ (tε ,∞) such that
|z| > ε on [tε , t̃ε) and |z| < ε on (̃tε ,∞). In either of these cases, the conclusion limt→+∞ z(t) = 0 follows.
This proves (7.5). �

The proof of Step 7.1 is now complete. �

Step 7.2. For any ρ > 0, let r0 ∈ (0,δ/2) be as in Step 7.1 and 3C1(3+2C2)r0 < ρ . Then for any w j ∈X

and
(
y( j)

0 ,z( j)
0

)
∈ Dr0 with j = 1,2, we have

(7.9) |(y1,z1)− (y2,z2)|(t)≤ eρt
(
‖w1−w2‖∞ +

∣∣(y(1)0 ,z(1)0 )− (y(2)0 ,z(2)0 )
∣∣)

for all t ∈ [0,∞), where we denote (y j(t),z j(t)) := Φ
w j
t (y( j)

0 ,z( j)
0 ) for j = 1,2.

Proof of Step 7.2. We denote Y := y1− y2 and Z := z1− z2. It suffices to prove that

(7.10) e−2ρt(Y 2 +Z2)(t)≤ ‖w1−w2‖2
∞ +(Y 2 +Z2)(0) for all t ≥ 0.

When clear, we drop the dependence on t in notation. For j = 1,2, we set

(7.11) Pj := (w j(y j,z j),y j,z j) and L := Y [h2(P1)−h2(P2)]+Z [h3(P1)−h3(P2)] .

By a simple calculation, we see that

(7.12)
(
e−2ρt(Y 2 +Z2)

)′
= 2e−2ρt [−ρ

(
Y 2 +Z2)−|c|Z2 +L

]
.

We show that L in (7.11) satisfies

(7.13) |L| ≤ 3C1r0
[
(3+2C2)(Y 2 +Z2)+‖w1−w2‖2

∞

]
.

Proof of (7.13). Since max{|y j|, |z j|, |w j(y j,z j)|} ≤ r0 for j = 1,2, by the assumption on |∇h2| and |∇h3| in
(7.1), we infer that

(7.14) sup
ξ∈[0,1]

|(∇φ)(ξ P1 +(1−ξ )P2)| ≤ 3C1r0
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with φ = h2 and φ = h3. Therefore, we get that

(7.15) |L| ≤ 3C1r0|P1−P2|(|Y |+ |Z|)≤ 3
√

2C1r0|P1−P2|
√

Y 2 +Z2.

Set a1 = ‖w1−w2‖∞ and a2 =
√

Y 2 +Z2. Using (7.11) and that w1 is C2-Lipschitz, we get

(7.16)
|P1−P2| ≤ |w1(y1,z1)−w2(y2,z2)|+a2

≤ |w1(y1,z1)−w1(y2,z2)|+a1 +a2 ≤ (1+C2)a2 +a1.

Plugging (7.16) into (7.15), then using the inequality 2a1a2 ≤ a2
1 +a2

2, we conclude (7.13). �

Using (7.13) into (7.12), we get that

(7.17)
(
e−2ρt (Y 2 +Z2)(t))′ ≤ 2e−2ρt [

α0(Y 2 +Z2)(t)+3C1r0‖w1−w2‖2
∞

]
,

where α0 := 3C1(3+2C2)r0−ρ is negative from our choice of r0. Hence, from (7.17), for every t ∈ (0,∞),
we deduce that

(7.18)
(
e−2ρt (Y 2 +Z2)(t))′ ≤ 2ρ e−2ρt‖w1−w2‖2

∞.

By integrating (7.18), we obtain (7.10), which completes Step 7.2. �

Step 7.3. Let r0 ∈ (0,δ/2) be as in Step 7.2 with ρ = a/2 and 6C1(1 +C2)r0 < aC2. Then, the map
T : X →X is well-defined, where for every w ∈X , we put

Tw(y0,z0) :=−
∫

∞

0
e−ath1 (w(Φw

t (y0,z0)) ,Φ
w
t (y0,z0)) dt for all (y0,z0) ∈ Dr0 .

Proof of Step 7.3. For all (y0,z0) ∈Dr0 , we define (y(t),z(t)) := Φw
t (y0,z0). We now observe that for all t ≥

0, h1(w(y(t),z(t)),y(t),z(t)) stays bounded since max{|w(y(t),z(t))|, |y(t)|, |z(t)|} ≤ r0. Then, Tw(y0,z0) is
well-defined since a > 0. From w(0,0) = 0, we have Φw

t (0,0) = (0,0) for all t ≥ 0, which yields Tw(0,0) =
0. To prove that Tw ∈X , it remains to show that Tw ranges in [−r0,r0] and Tw is C2-Lipschitz. Indeed,
using (7.1), for every (y0,z0) ∈ Dr0 , we find that

(7.19) |Tw(y0,z0) | ≤C1

∫
∞

0
e−at(w2(y,z)+ y2 + z2)dt ≤

3C1r2
0

a
.

Since 3C1r0 < a, we have |Tw(y0,z0) | ≤ r0 so that Tw ranges in [−r0,r0].
We prove that Tw is C2-Lipschitz. We fix (y( j)

0 ,z( j)
0 ) ∈ Dr0 for j = 1,2, then define (y j(t),z j(t)) :=

Φw
t
(
y( j)

0 ,z( j)
0

)
and Pj(t) := (w(y j,z j),y j,z j)(t) for all t ≥ 0. By the definition of Tw, we see that

(7.20)
∣∣Tw

(
y(1)0 ,z(1)0

)
−Tw

(
y(2)0 ,z(2)0

)∣∣≤ ∫ ∞

0
e−at |h1(P1)−h1(P2)| dt.

Since (7.14) holds for φ = h1, using w1 = w2 = w in (7.16), we get that

|h1(P1)−h2(P2)| ≤ 3C1(1+C2)r0 |(y1,z1)− (y2,z2)| .

Using that 6C1(1+C2)r0 < aC2 and taking ρ = a/2 in Step 7.2, we arrive at

(7.21) |h1(P1)−h1(P2)| ≤
aC2

2
e

at
2
∣∣(y(1)0 ,z(1)0

)
−
(
y(2)0 ,z(2)0

)∣∣.
From (7.20) and (7.21), we see that Tw is C2-Lipschitz, completing Step 7.3. �

Step 7.4. If also 12C1r0(2+C2)< a in Step 7.3, then T is a contraction on X .
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Proof of Step 7.4. For w1,w2 ∈X and (y0,z0) ∈ Dr0 , we define

(y j(t),z j(t)) := Φ
w j
t (y0,z0) and Pj(t) := (w j(y j(t),z j(t)),y j(t),z j(t))

for all t ≥ 0 and j = 1,2. As in Step 7.2 with ρ = a/2, we obtain that

(7.22)
|h1(P1)−h1(P2)| ≤ 3C1r0|P1−P2| ≤ 3C1r0 [(1+C2)|(y1,z1)− (y2,z2)|+‖w1−w2‖∞]

≤ 3C1r0(2+C2)e
at
2 ‖w1−w2‖∞.

Then, using (7.22) and our choice of r0, we see that

|(Tw1−Tw2)(y0,z0)| ≤
∫

∞

0
e−at |h1(P1)−h1(P2)|dt <

1
2
‖w1−w2‖∞.

Therefore, T is 1/2-Lipschitz, so it is a contraction mapping. This ends Step 7.4. �

Step 7.5. Let r0 ∈ (0,δ/2) be as in Step 7.4. Then, there exists w ∈X such that for every (y0,z0) ∈ Dr0

and x0 = w(y0,z0), the initial value system (7.2) has a solution ~Z = (x,y,z) defined on [0,∞) and satisfying
(7.3).

Proof of Step 7.5. The choice of r0 in Step 7.4 depends only on a, |c|,C1,C2. Picard’s fixed point theorem
yields the existence of w ∈X such that Tw = w, where T is given by Step 7.3, that is,

(7.23) w(y,z) =−
∫

∞

0
e−aξ h1

(
w
(

Φ
w
ξ
(y,z)

)
,Φw

ξ
(y,z)

)
dξ

for all (y,z) ∈Dr0 . We fix (y0,z0) ∈Dr0 arbitrarily. We show that ~Z (t) = (x(t),y(t),z(t)) is a solution to the
initial system (7.2), subject to (7.3), where we define

(7.24) (y(t),z(t)) := Φ
w
t (y0,z0) and x(t) := w(y(t),z(t)) for all t ≥ 0.

Indeed, Step 7.1 yields that (y′,z′) = (h2(x,y,z),cz + h3(x,y,z)) on [0,∞). In view of w(0,0) = 0 and
limt→+∞(y(t),z(t)) = (0,0), we get limt→+∞ x(t) = 0, proving (7.3). Since

Φ
w
ξ
(y(t),z(t)) = Φ

w
ξ
◦Φ

w
t (y0,z0) = Φ

w
t+ξ

(y0,z0) = (y(t +ξ ),z(t +ξ ))

for all ξ , t ≥ 0, from (7.23) and (7.24), we obtain that

(7.25)

x(t) =−
∫

∞

0
e−aξ h1

(
w
(

Φ
w
ξ
(y(t),z(t))

)
,Φw

ξ
(y(t),z(t))

)
dξ

=−
∫

∞

0
e−aξ h1 (w(y(t +ξ ),z(t +ξ )) ,y(t +ξ ),z(t +ξ )) dξ

=−eat
∫

∞

t
e−aθ h1 (w(y(θ),z(θ)) ,y(θ),z(θ)) dθ

for all t ≥ 0. This ends Step 7.5 since x ∈C1[0,+∞) and x′ = ax+h1(x,y,z) on [0,∞). �

Using the definition of X and Step 7.5, we finish the proof of Theorem 7.1. �
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FRANCE

E-mail address: frederic.robert@univ-lorraine.fr
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