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Abstract

The kinematic dynamo problem is solved for a uniformly electrically-conducting fluid filling an oblate
spheroidal volume with insulating exterior. The solution method uses a class of oblate spheroidal toroidal-
poloidal fields in a non-orthogonal coordinate system. Scaling of coordinates and fields to a spherical
geometry leads to a modified form of the kinematic dynamo problem with a geometric anisotropic diffusion
and a modified current-free condition in the exterior, which must be solved explicitly. The scaling
allows the use of well-developed spherical harmonic techniques in angle and large aspect ratios. Dynamo
solutions are found for three axisymmetric flows in oblate spheroids with semi-axis ratios 1 < a/c < 25.
For larger aspect ratios strong magnetic fields may occur in any region of the spheroid, depending on the
flow, but the external fields for all three flows are weak and concentrated near the axis or periphery of
the spheroid.
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1 Introduction

The generation of magnetic fields in the Earth, planets and stars can be modelled to a good approxima-
tion as self-exciting dynamos in electrically-conducting spherical or spherical shell cores with insulating
exteriors. Fortunately, spheres and spherical shells are the bounded conductors with insulating exteriors,

for which kinematic dynamos (Bullard and Gellmarl, 1954, [Elsasser, |_9j Gubbind, 1973, IPJ\MMJ
-) and dynamically consistent dynamos M&MM 11995 Qggw_&ﬂd, M,
Kuang and Bloxham, 1997), are the most mathematically and numerically tractable geometries, although
still difficult (Christensen et al, 2001, .Jackson et al, 2014, lJones et all, 2011, .ones, 2011, Marti et al, 2014,
Matsui et al, lZQld) The simplest aspherical geometry is spheroidal with one axis of arbitrary rotational sym-
metry. The Earth’s core is a sphere at zeroth order and an oblate spheroid at second order, with finer-scale
core-mantle boundary topography at higher orders. Spheroidal dynamos allow pressure coupling between
the core and the mantle in dynamical dynamos and offer checks on methods for more general topography.
Spheroidal dynamos of large semi-axis ratio, i.e. highly non-spherical, constitute an important class of dy-
namo geometries for elliptic and disk galaxies, and accretion disks; for example, E7-elliptical galaxies have
major to minor semi-axis ratio a/c = 10/3. Galactic models are typically aw-dynamos and use the thin disk
approximation a/c — co. See for example Stix (|L9_7ﬂ), White m (@ .

A spheroidal finite-element code has been developed by [Wu and nge ts (2009), and finite-volume codes
by [Ernst-Hullermann et all (2013) and [Vantieghem et all (2016). The aim of this work is to separately
develop pseudo-spectral numerical solutions of the insulated kinematic dynamo problem (KDP), the rotating
thermal convection problem and the rotating magneto-convection problem in spheroids and then to combine
them to solve the dynamical dynamo problem. Pseudo-spectral codes generally perform more efficiently in
spherical benchmarks for a given accuracy than finite-element and finite-volume codes (Christensen ,
2001, lTackson et al, 2014, lJones et all, 2011, Marti et al, 2014, Matsui et al, [2016), but there is no best
approach. A hybrid method for the insulated KDP is presented here, which is finite-difference in radius and
Galerkin in angle. Galerkin or Cheychev collocation methods can also be used in radius.

The dynamo action of a moving electrically conducting fluid, which occupies an oblate spheroidal volume
V in (Euclidean) space E3, is considered. The velocity v of the fluid is prescribed. The volume V has
semi-axes a and ¢ (a > ¢), a rigid boundary ¥ and is surrounded by an insulating exterior £\ V. The
magnetic induction field B is governed by the equations
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E:V2B+RmVx(va) inV; VxB=0 inE*\V; V-B=0 in E? (1.1)




where the problem has been non-dimensionalised using a typical length £, the magnetic diffusion time £2/n
and a typical speed V of the flow. The magnetic diffusivity 7 is uniform and R,, := VL/7n is the magnetic
Reynolds number. Useful choices for the length scale £ are the major or minor semi-axes of the spheroidal
boundary ¥, the radius of the sphere of volume |V| = §ma?c or the radius of the circle of area mac, which
imply respectively a = land 0 < ¢ < l,c=1land 1 <a<oo,c=1/a?and 1 <a < ocoorc=1/a
and 1 < a < co. In cartesian coordinates (z,y, z) with the z-axis aligned along the symmetry axis of the
spheroid, the boundary ¥ and outward (non-unit) normal n are given by
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=1 ni=(el+ yl,)/a® + 21, /c?. (1.2)

a

The vector field n is defined and smooth everywhere in E2, not only on X. Besides the magnetic Reynolds
number, a dimensionless shape parameter must be prescribed: the most useful are the aspect ratio a/c or
its reciprocal, the flattening f := 1 — ¢/a and the ellipticity e := /1 — (¢/a)?. The flattening and ellipticity
are related by f =1 —+v/1—e€2 and e = \/2f — f2. Shape can also be parametrised by a semi-axis: if the
volume is fixed so that a?c = 1, then a/c = a® = ¢ 32 ande =1 —a=6 =1 - ¢3;ifa =1 then a/c = 1/c
and e =1 —c? orif ¢=1, then a/c=a and e = /1 — 1/a?.

The tangential components of B are continuous across ¥ and B is self-exciting,

mxBjx=0, [n-Blg=0, B=0(r[®) as|r|— o, (1.3)

where [ |5 denotes the jump outward across ¥ and r = 21, + y1, + 21, is the radius vector from the origin.
The flow v satisfies the mass conservation equation and the impenetrable boundary condition
ap .
E—i—RmV-(pv)zo7 inV; n-v=0, on2X. (1.4)
If v is incompressible (L4) reduces to
V.-v=0, inV. (1.5)

In §2 classes of oblate spheroidal toroidal and poloidal fields analogous to the spherical classes are defined
to reduce to two the number of fields necessary to represent a solenoidal magnetic field or an incompressible
velocity. A further non-essential simplification is to scale the KDP to a spherical geometry. The spherically-
scaled KDP produces equations with an anisotropic geometric magnetic diffusion in V', analogous to the
anisotropic turbulent diffusion models considered by [Phillips and Ivers (2000, [2003), and an anisotropic
current-free condition in the insulating exterior. Numerical solution using spherical harmonic expansions in
the homoeoidal angles [see (2.I])] analogous to the Bullard-Gellman equations (Bullard and Gellman, [1954)
is described in §3. Results are given in §4 for magnetic free-decay and compared to the analytic solutions
for aspect ratios 1 < a/c < 100 in the axisymmetric case and small ellipticity in the non-axisymmetric case.
Critical magnetic Reynolds numbers of three spheroidal dynamos also are found for 1 < a/c < 25 based
on three spherical axisymmetric dynamos of [Dudley and James (1989). Alternative discretisations of the
insulating exterior are considered in §5. Section 6 is the conclusion.

2 A Class of Oblate Spheroidal Toroidal-Poloidal Fields

Introduce homeoidal oblate (a > ¢) spheroidal coordinates (r, 8, ¢)
x =arsinf cos¢, y=arsinf sing, z=crcosf . (2.1)

where 0 < r < 00, 0 < 6§ < 7 and ¢ is the azimuthal angle. Note: r is not |r|. If (r,0, ) are the coordinates
of a point P(x,y,2), then P lies on the oblate spheroidal r-surface X(r),
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Moreover, if ) is the projection of P parallel to the z-axis, onto the sphere of radius ar escribed on the
spheroid, then 6 is the angle Z20@Q. The spheroid ([[2)) corresponds to r = 1, i.e. (1) is . The meridional
sections of the r-surfaces are concentric homeoidal ellipses of equal ellipticity e. Their foci lie on the azimuthal
circle of radius aer in the equatorial plane z = 0, so the X(r) are not confocal, and aer — 0 as r — 0.



The coordinate system (7,0, ¢) is not orthogonal if a # ¢. There are two reciprocal sets of basis vec-
tors associated with (7,0, @), the covariant basis (eq, ez, e3) := (0,r, 0r, dpr), and the contravariant basis
(el,e?,e®) := (Vr,VO,Ve). The bases (e1,es,e3) and (e!,e? e®) are related by the usual reciprocity re-
lations, e; = %Jeijkej x eF and e’ = %J‘leijkej x ey, where J = 9(x,y,2)/0(r,0,¢) = a’cr?sinf is the
Jacobian of the transformation (21), repeated indices are summed and €, €% are the unit rank-3 alter-
nating tensors. The bases satisfy the bi-orthogonality condition, e; - €/ = (5{ . At any point on X(r), e!
is normal to X(r), and e; and es are tangential; e; is not parallel to e! and hence not normal to X(r)
except along principal axes. In fact, n = V%TQ = rel. The vector element of surface area on X(r) is
dXE(r) = ez x e3dfd¢ = Je'ddde = na’crsinfdfde and dX(r) = |n|a®crsinfdfdg. The volume
element AV = a?cr?sinfdr df d¢ = |n|~'d¥(r)r dr. The operator V = €0, + €?9p + €39;.

The two bases have the important derivative properties, V - (J!e;) = 0 and V x € = 0. Thus, the
divergence of a vector field F in terms of its contravariant components, F = Fle; 4+ F%ey + F3es, is given
by

V -F=J Yo (JF") + 0g(JF?) + 0y (JF?)}.

Let e, 1= e1, €y := e/, €4 := eg/rsinf and B = B,e, + Byey + Byey, then B is solenoidal if and only
if 9,(r?sin B,.) + 9p(rsind By) + d4(r Bg) = 0. By analogy with spherical polar coordinates, homoeoidal
oblate spheroidal toroidal and poloidal fields can be defined component-wise by

- 6¢T o [OXQS [“)gar(TS) 3¢3T(TS)
T{T} := ey Snd ey 0pT, S{S} = —e, r + €9 r te rsinf

where sin? 0 A2S = sin @ 9y (sin 0 9p.S) + 94935, such that V-T{T} = 0 and V-S{S} = 0. The magnetic field
can thus be represented in E3 as a sum of oblate-spheroidal toroidal and poloidal fields, B = T{T} + S{S}.
For any T, S and r > 0 the fields T{T'} and S{S} are orthogonal over ¥(r) in a certain sense; see equation
(239) below. The matching and self-exciting conditions (L3]) become

Sl =0, [0,S]x=0, [T]z=0; S=00"%, T=0r"3 asr— . (2.3)
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Note that, since a?ce? x €® = e, /r?sinf, a’ce® x e! = ey/rsinf, a*ce! x e? =ey/r,

T{T} = Vx a®c(TVir?) = VT x a’ecn, S{S}=Vx azc(gifjez - rsinﬂagSeS) .
In particular, n- T{T} = 0. Typically, Vx T{T} # S{S} for any S and V x S{S} # T{T} for any T.
Physically, an oblate spheroidal toroidal (poloidal) magnetic field does not generate, nor is generated by,
a purely oblate spheroidal poloidal (toroidal) electric current. If incompressible the velocity can also be
represented as a sum of oblate spheroidal toroidal and poloidal fields, v = T{¢} + S{s}, with potentials ¢
and s. (Only in 9; and ¢ does t represent the time.)

2.1 Spherically-Scaled Coordinates and Fields

It is possible to proceed in the basis (e,,eg,e4), but it is easier to scale the cartesian coordinates, £ = z/a,
y=y/a and z = z/c, and the components of the magnetic field and the velocity along principal axes of the

spheroid (2)),
f=L-r=r-L, V=L'V, B=L-B=BL, v=L-v=v-L, n=L ¥, (2.4)

where r := 21, + y1, + z1. is the position vector in (&, 9, z)-space E0'3, the diagonal scale tensor L :=
a 1(1,1, + 1,1,) + ¢ '1.1, with inverse L~! := a(1,1, + 1,1,) + c1,1, and the operator V := 1,0; +
1,0; + 1,0;. The transformation is not simply a (passive) change of variable on the manifold E®, since the

same cartesian unit vectors are used in E3: (13,15,1:) = (14,14,1,). The scale tensor L can be separated
into isotropic and anisotropic parts,

L:1<I+L1212>7 L_lza(I—lelz)7 (2.5)

a 1-f

where I is the identity tensor. Note [¢| = r and A2=A-A where A= ix V The stretching transforms the
r-surface X(r) from a spheroid into a sphere (r) of radius in E?; the image V of the conducting fluid region



V under the transformation is the sphere 7 < 1 and the image of its boundary ¥ is the unit sphere »=%(1)
with normal i = #. The volume element dV = d(z,y, 2)/d(&, ¥, £)di djds = a2cdV. [Poincard (1885)
and [Bryan (1889) used this device in the study of the equilibrium of rotating, self-gravitating homogeneous
liquids. In general equations (Z4) imply

V-B=V-B,V.v=V-v; B-V=B.-V,v.V=v-V;n-B=¢#-B, n-v=#¢-v. (26)

The variables (r, 0, ¢) introduced in (21]) are spherical polar coordinates in E3. The basis (er,e9,€4)
in E3 is transformed into the orthonormal spherical polar basis (1,,19,145) = L - (e, eg,e,) in E3. Thus
the scalar components of B=B,1, + Byly + B¢1¢ and B with respect to (e, eq,e,) are equal, B, = B,

By = By and B¢ = By, but different with respect to (1,,1,,1,). Hence the oblate spheroidal toroidal-
poloidal representation for the magnetic field becomes

B =L (T{T} +S{S}) = T{T} + S{S} = VXTi + VxVxSF. (2.7)
Thus oblate spheroidal toroidal (poloidal) fields are scaled to spherical toroidal (poloidal) fields in E?3,

. T . A2
T{T} =1, %l _ 1, 0T,  S{S}=-1, 54, 20005, 050:(rS)
sin 6

r r Y

: (2.8)

The conditions § SdQ = 0 and deSO) = 0, where d{) := sinfdf d¢ is the element of solid angle on Xol(r),

are imposed to ensure uniqueness of S and 7. For all T', S and r > 0, T{T} and S{S} are orthogonal on
%(r),

| f{ TITY - ${S}dO =0, (2.9)

where D := L - L is positive-definite. The T{T'} and S{S} fields are orthogonal on 3(r) in the sense of the
first integral. Also

i T{T} =0, #-S{S}=-A%S, VxT{T}=8{T}, VxS{S}=T{-V25}. (2.10)

Thus VxB = T{-V25} + S{T}. It will be assumed throughout that any quantity in E3 has a ringed
version in E3 except for r, 8, ¢, the toroidal-poloidal potentials T', S, ¢, s, the basis vectors 1,, 1,, 1, and
the derived quantity Ynm(ﬁ, (;5).

2.2 The Spherically-Scaled Kinematic Dynamo Problem

It is shown in subsections (i)—(iii) that, if the coordinates and fields are scaled as in ([24]), the induction
equation ([l)(a) and ([d)(c) are transformed using (Z8]) to

0B . 2 S . © e s .

where  := ¢ /a? and }Dfm := a’R,, are a scaled time and magnetic Reynolds number. Moreover, the current-
free condition (LI))(b) becomes
Vx(B—e’B,1,)=0, inE*\V. (2.12)

The matching conditions at the boundary ¥ and the self-exciting conditions as r — oo ([L3]) imply
[B]E =0; B=0@r"?), asr— o, (2.13)

and conversely. Clearly v acts as a dynamo for the magnetic field B, i.e. B grows, if and only v acts as a
dynamo for ]j%; critical flows and magnetic fields correspond.
The mass conservation equation and velocity boundary condition (4] are transformed using (2.4) to
9p T .

§+RIHV (pv)=0, inV; n-v=0 ond; (2.14)
defining p by requiring wa/ ,BdV = f(w pdV for any corresponding volumes §V and 6V, i.e. p = a’cp. Hence
the flow v is kinematically feasible if and only if v is kinematically feasible. In particular, v is incompressible
if and only if v is incompressible; and n-v = 0 on 3 if and only if n-v = 0 on ¥. The no-slip velocity
condition is also preserved under (24]), v = 0 on Y if and only if v.= 0 on X, but the stress-free condition
on v has a more complicated form for v.



2.2.1 The Magnetic Induction Equation
By 28) (even without V-B = 0),
L-VXx(vxB)=(L-v)V-B+B-V(L-v)—(L-B)V-v—v-V(L-B)=V x (vxB).
Thus in scaled coordinates the dot product of the magnetic induction equation (ILI])(a) with L yields
#B=V-(D-VB)+ R,V x (v xB), (2.15)

where, using (Z3]), the geometric diffusion tensor D := L - L and its inverse can be written as

2
a®D :I+%1z1z, D! =a3(I-¢%1.1,). (2.16)
— €

Substituting (ZI6]) for D into (ZI5) yields the spherically scaled magnetic induction equation ([ZIT)(a).

The new feature of equation (2.I1]), over the magnetic induction equation (I.1), is the anisotropic geometric

diffusion term which enhances the magnetic diffusion in the z-direction.

2.2.2 The Equations in the Insulating Exterior

The current-free condition (LI])(b) in the insulating exterior E3 \ V transforms to
VxB=V-{(LxLY)-B}=0, inE*\V. (2.17)

The equivalent but more useful equation ([2I2]) for the present formulation is derived here. Using the form

@A) of L,
f

B=a(B- fB.1.), aV = v+ﬁ1 L0 . (2.18)
Substituting these two expressions directly into (II))(b) gives
VXBzﬁxé—f%xézlﬁ%h x9:B=0, inE*\V. (2.19)

It is not obvious that the vector equation (2I9) is equivalent to two scalar equations in T and S. However,
observe that (ZI9) implies

1,-VxB=0 inE*\V. (2.20)
The V-divergence of the middle expression in (2I9) gives d; (1 - VxB), which vanishes identically if (Z20)

is satisfied, so that [2I9) is in fact equivalent to just two scalar equations. This can be seen more clearly
by contracting the left equation in (2I9]) with L, which yields

aL-VxB=VxB — f%xézlz + L(lz x 9:B+ 1,1, - VxB) . (2.21)

1—f
Using the identity VxB.1, 4+ 1, x 9:B + 1.1, - VxB = VxB and 2f — f2 = ¢ reduces (Z2ZI)) to
a(l—f)L-VxB=Vx(B—¢e?B,1.). (2.22)

Thus the current-free conditions (ILI))(b), (ZI1) or (Z.I9) are equivalent to the current-free condition (ZI2)).
This equation differs in form from the original current-free condition (II])(b) by a subtractive O(e?) geometric
anisotropy 62V><B 1,.

By ([CI)(b) there exists a magnetic scalar potential ¥ with B = —V¥ in E3\V and V?¥ =0 by TI)(c )-
The potential ¥ and B are related by B = —D - VU where D is given by ([2.I6) and since V? = V-D- V
U satisfies the elliptic equation V-D-VU¥ = 0. Hence

o a 2 a (32 o o

B= —(v n ﬁ1282)\1//(12, (v“' n magag)\p —0, inE3\V.
In cylindrical polar coordinates, B, = —8;¥ /a2, By = —519,¥/a%, B, = —9: ¥ /c2. The equation V2¥ = 0
implies V2(V¥)2 = 2VV¥ : VV¥ > 0 and (V-D-V)(V¥)2 = 2tr[(VVE)T-D-VV¥] > 0. Thus the elliptic
interior maximum principle (Protter and Weinberger, [1984) implies, noting (L3])(c), that maxgs\y |B| occurs
on Y and Max fs\ |B| on XOJ, although not necessarily at corresponding points.



2.2.3 The Toroidal and Poloidal Equations

The solenoidal condition ([2.II))(b) is satisfied by the toroidal-poloidal representation (2.17). Equations for
the toroidal-poloidal potentials T and S in V follow from 2I1])(a) by using (210,

2

(9; — V2)A2S = —16721% - 02:B — Ry -V x (v x B) (2.23)
— €
2

(9 = VAT = —- C £ Vx0:B — Rui - VXV x (v x B). (2.24)
— €

In E3\V, since the V-divergence of the left side of ([ZI2) is zero, the properties (ZI0) of toroidal-poloidal
fields imply (2I2) is equivalent to the two scalar equations

P Vx(B-e?B.1,)=0, #-VxVx(B-¢e’B.1,)=0. (2.25)

Expressions in T and S follow from the identities r - Vx f1, = 0,f, I0), - @X%X(flz) = 7r0.0:f —
rcos@V2f, 1, =cosfl, —sinfly and 0; = cos 0, —r~'sinfh dy. Thus

. . . 0 . in 6
B, = B, cosf — Bysinf = _ s A%S — s

. 090 (rS) — 04T, (2.26)

and the left sides of (Z.25]) become

FoVx(B - e2B.1,) = AT + 2 (@i\?ad,s + gagar(raw) + 8¢¢T> (2.27)
r- VxVx(B - 62ézlz) = A2V2S + e*{rd,(cos 0, —sinh dy) — rcos@%z}
6. ing
+ (CO: A%S + %aear(m) + 8¢T) . (2.28)

From properties of the operator A2, (Z25) with ([Z27) and Z28) reduce to the spherical equations T' = 0
and V28 = 0 in the limit e — 0. In general, if e > 0 they couple non-axisymmetric 7" and S fields in » > 1.

Equations different from (2:25]) are possible, e.g. for e > 0 equations ([220) and (2.26), noting (ZI0)), imply

cos sin 6

AT + ——000,(T) — V20,8 =0, in E*\V. (2.29)

r

By ([Z21) and ([228])), conditions [23]) and (Z20]) are equivalent to conditions (LI)(b) and (L3). However, it

is not obvious that conditions (23] together with ([2.12)) are sufficient to guarantee that no current crosses
Y. Observe that the dot product of ZIZ) with # yields a(1—f)n -V x B = & - Vx(B—¢2B.1,), since
n = L-r. Apart from factors a(1—f)[n| and |¢| the expressions on the left and first on the right are the
normal components of the (dimensionless) current on ¥ and ¥. The difficulty is the B, term. From (23)
and 227), [r - @x(]i’»—eQB%zlz)]i =0. Hence [n-Vx B]y =0 and thusn-VxB =0on ™.
Finally, if v (equivalently v) satisfies the impenetrable boundary condition ([Z.I4])(b) the velocity poloidal
scalar s satisfies
s=0 atr=1. (2.30)

3 Numerical Method

Equations (2I1]), (Z12) and ([ZI3]) are solved by discretising the toroidal-poloidal equations (Z23]), (224,
@28) with Z27) and ([228), using a Galerkin method in angle with spherical harmonics as the basis
functions and second-order finite differences in radius for simplicity, and solving subject to (23)). Other
radial discretisation methods are possible.

3.1 The Angular Spectral Equations

The magnetic toroidal-poloidal potentials are expanded in spherical harmonics,

(2n+1)(n —m)!
(n+m)!

F= S e Y 0.6), YI6,0) = <>m\/ Pum(cos0)e™ , (3.1)



where f =T or S, and P, ,, is the Neumann associated Legendre function,

2 d™Pa(2) 1 a

P = (1 -2 Py(z) = — (2 - 1)". 2
wm(2) 1= (1= 222 p ) o L E ) (32)
Also (Y,M)* = (— )mY ™ where an asterisk denotes complex conjugation; A2Y/™ = —X, Y™ where ), :=
n(n+1); and V2f(r)Y;™ = D, f(r)Y,™ for any function f(r), where D,, := r~2[8, ( 20,) — An]. The spherical

harmonics (B1]) form a complete orthonormal set with respect to the inner-product (f, g) :== § fg* dQ /4m of

complex scalar functions f and g on E(r) The n = 0 terms do not contribute to the vector fields and are
omitted. The boundary, matching and self-exciting conditions (2:3]) imply the spherical harmonic coefficients
satisfy

[S7r=1 =0, [0:57],=1 =0, [T)];=1 =0; S =002, T =0(r"") asr—oo. (3.3
For a self-exciting insulated spherical dynamo the behaviour of T' as r — oo does not arise as in (B3] since
T then vanishes in E3\ V.
3.1.1 The Conducting Region
The spectral forms of the poloidal and toroidal induction equations ([2:23)) and (224]) are

2

(9 = DSy = =81 {0::B) + RuST{Vx (¥ x B)} (3.4)
2
(9 = DT = 7T {0::B) + BT {VX(v x B)}, (3.5)

where the (reduced) poloidal transform and the toroidal transform are defined by
1 . 1 .
T{F} = —— ¢ Y,"r-FdQ TF}i=—— @Y, A-FdQ. .
SPFY = o Ve R, TFh = o AR (36)

The horizontal divergence equation is redundant as shown in Appendix A.

In time-stepping problems, the transforms (B.6) of the induction term are most efficiently calculated
numerically from values of F on a (6, ¢)-grid using fast-Fourier transforms in ¢ and Gaussian quadrature
in f. However, in the eigen- and critical-value problems for steady flows considered here the transforms are
evaluated using angular spectral expansions (Bullard and Gellman, [1954, [Elsasser, [1946); see Appendix B.
The transforms of the anisotropic diffusion terms are more problematic. The angular spectral forms of the
anisotropic magnetic diffusion terms in (34]) and (B3] have relatively few terms, and so are preferable here
to the numerical calculation of ([B.6]). The transforms are

S™{0::BY = L7(S,T),  T{09::B} = L™(T,—V?2S). (3.7)

where the differential operator L] is defined by

n—2 2imce)
LTM(F,G) = i nDi—non BN+ ———di G
n( ) ) n Cn—1nl1-n2- 9+ (n+1) 1— n_1T
m 2chn+1 m n+3
Cy'DpFy + mdnHG o1 + 1 Cn1nr2Dnt2nis e, (3.8)
and the operators d,, := 0,+n/r and Dy, 1, := dy, dy,. The coefficients are defined by ¢ := /(n2—m?2)/(4n2—1),
Crt oy = Cpi Ce and
7 n—2 n+3
Cy = o Cnn 7_1_ 1 Ll - (3.9)
Expansions ([B.8) may be derived using the recurrence relations
cosO Y, =yt Yo Fey Yo, sin® 0pY,)t = eyt Yo —(n+ 1)yt Yo (3.10)

The poloidal and toroidal equations (84 and (&3] hold for n = 1 and n = 2, since the factor ¢/ in the first
two terms of (3.8]) vanishes for n = 1 (forcing m = 1) and the first term clearly vanishes for n = 2. The right
side of equation ([B.7))(b) contains third-order radial derivatives of S]”* through the terms d;_,D,_1S]" ; and
dp42Dp41577 1 but only second-order derivatives of 1.



3.1.2 The Insulating Exterior
The angular spectral forms of the exterior equations (228) with ([2.27) and (2.28) are now derived. Each
term is treated separately. The expansions of the first terms are - VxB = —A2T = > A\, T™Y,™ and
P Vx(VxB) = A2V25 = — Y onm AnDpSY ™. The expansions of the second term in each equation follow
fromr-Vx fl1,=0,f=>, szmYm
P VXVX(f1) =V [(Vf x 1) x ¥ =V (r0,.f1, —rcosOVf) = rd,0: f — rcos O V2 f

and the formulae

r-Vx Vx (fl.) =Y {=(n+D)edinfly +ne) dnia i Y

n,m
B, = {=(n—1)cldi_nSiy —imT}" + (n+2)ci  dnya S } Y0 (3.11)

which can be derived using relations ([B.I0). Thus the spectral forms of (Z27]) and (Z28) give

AT — 62{ —im(n — 1)t di_nS)ty +m*T,) +im(n + 2) n+1dn+25n+1} =0 (3.12)
-2
D,S™ + 62{" ) DinanST oy g pm _ EmD, S
n ’ n
- s (3.13)
imep’ n
S dp2 T + —— ] Cnt1nt2Dnt2, n+35n+2} =0.
where 1
~m n m n m
O = G L (3:14)

3.2 Radial Discretisation

The radial dependence is discretised using second-order finite differences. In the interior 0 < r < 1— a
uniform radial grid is used: r; = jh, j = 0 : J, with step size h = 1/J and r; = 1—. In the exterior
14+ < r < oo a uniform grid in the inverse radial coordinate £ = 1/r is used: & = 1+ jhe, 7 = 0 : Jg,
with step size he = —1/J;. Additional interior and exterior limiting grid points » = 1— and r = 1+ are
allocated to the boundary r = 1 to simplify implementation of the finite-differencing. Thus the full radial
gridis r; = jhfor j = 0: Jand r; = 1/[1 4+ (j — J)he]/ for j = J+1 : J+Je with rjy = 1—, rj11 =1
and ryyo = 14. See table[Il The truncation levels J, J¢ and the related step sizes h, he can be specified
independently.

The S™ and T equations ([BZ) and (BX) are discretised at internal radial grid points in V; the S™
equation is also discretised at the boundary grid point » = 1—. The T, equation is not discretised at
r = 1—, since T is continuous across the boundary by B3] but 9,7 may be discontinuous. The ST
and T equations ([B.12) and B.I3]) are discretised at the grid points in the exterior E3\ V. There is one
equation for each of the coefficient values T,)*(r;) and S}*(r;) at each grid-point r;. Matching conditions are
applied as shown in table [Il

3.2.1 The Conducting Interior

The following one-sided second-order right-boundary schemes are used at or near the boundary.
= LN (fo —Af1 4 30) + 3O ()n? (
(()2) = h_Q(_f—?, +4f o —5f_14+2fy) + Qf(4)(77)h2 (
D = 307 ( = foa 80 = Tho + 6RSV) + A FD )2 (
§ =0 (fos = 6F 2+ 15/ 1 = 10fo + 6RfSY ) + 3£ ()2 (
=573 (= foa 4 9f0 — 8f 4+ 60SY) = Z O (mn? (

Schemes [BI5) and (BI0) are used for the T field at rj; schemes BI7)-BI9), which include the first
derivative at the boundary, are used for the second and third derivatives of the S field at r; or r;_j.
Otherwise centred formulas are used for the T" and S fields.



Radial Block Radius Equations Fields
1 h Sm de, T;* de ST, T;™
J—1 1—h=(J—1)h ST de, T/ de S T

J 1—=Jh S de, T me ST, T/
J+1 1 S mc o, S
J+2 I+ =(1+0he)~t ST de, T/ de ST, T™
J+3 (1+h5)*1 Sm de, T7* de S, T
J+Je+1 | (1+( gfl)hg) L Smde, T/* de S, T

Table 1: The ordering of differential equations (de) and matching conditions (mc) for S and T)7* into radial
blocks. Note he < 0.

3.2.2 Insulating Exterior

The change of variable from r to £ in equations BI2]) and (BI{I) is accomplished with the iden‘uities7
70, = —£0¢, 0, = —£20¢. Define the operators d§ := O¢+a&™! Da b= dgd5 and DS, := Oge — A€~ 2, where a,

b are constants. Then d, = —52 > Dap = £4D2 an—b> D§ = Dg_n nand Dy =Dpio = IS D_n L, = &4D5,.
Thus the toroidal and poloidal equations become
AT 4 e {—im(n — 1)czl§2d2715;"71 +im(n + 2)c?+1§2din72 1 — m?*T™} =0 (3.20)
m n—2 m im m ™ Am m
EQDiSn +82{ n Cp— 1n§ Dn—i—ln 28 n— 2_7871 de 1 _Cn §2D$1‘S’n
(3.21)

moo, n+3
+ 1 n+1d£—n 2Tn+1 + 1 n+1 n+2£ D—n —n— 35n+2} =0.

The left boundary difference schemes used in the exterior are obtained by replacing h by —h in the corre-
sponding right schemes and used in the S-equation [B.2I]) at r ;1o for the T and S fields.

3.3 Eigen- and Critical-Value Problems for Steady Flows

For steady flows magnetic field solutions can be found with time dependence Buxelf= e7t, where t is the
time and the growth rates are related by ¥ = a?vy. Growth, criticality and decay are preserved by the scaling:
Re” = Rey = 0 or Re¥Re~ > 0. Computations use ¥ and the magnetic Reynolds number R,, = a’R,,, and
the shape parameter a/c (or ¢/a) is prescribed. Values of the growth rates and magnetic Reynolds numbers
for different length scales can be derived from computations by scaling with the shape parameter. Since the
growth rate 4 depends only on the shape and ]:Zm, y(a,c, Ry) = a=2%(c/a, Rm) Thus, if the length scale £
is the major or minor semi-axis, spherical radius or circle radius, so that a = 1, c =1, a?>c =1 or ac = 1, the
associated growth rates 7 and magnetic Reynolds numbers Ry, are given by 7, 5(c/a)?, 4(c/a)?/® or ’y(c/a)
and Ry, Ri(c/a)?, (c/a)Q/3 or Ru(c/a), respectively. Setting a = 1 gives 5(c, Rm) = v(1,¢, Ry), and
hence v(a, ¢, Ry) = a=2v(1, c/a, a’Ry,).

The spatial discretisation approximates the problem by a matrix generalised eigenproblem Ax = yBx,
where the matrix B is singular. The discretisation produces banded matrices with the narrowest band, in
general, if all coefficients and their equations at each grid point are blocked together. The matrix A is
essentially block-pentadiagonal due to the centred difference formulas with the one-sided formulas (310),
BI7) and I9) distorting this slightly. In principle the generalised eigenvalues 4 are the zeros of the
characteristic polynomial det(YyB — A) = 0. If the matrices A and B are NxN, the leading coefficient of
this polynomial is det B, which is zero since B is singular. Accordingly there are less than N generalised
eigenvalues. In fact, generally there may be 0,1,..., N—1, or infinitely-many eigenvalues if the characteristic
polynomial vanishes identically. Thus the generalised problems with A = A;, Ay or A and B, where

-1 0 10 0 0 11
Al‘:(o 1); A0:Z(1 1>; A"o::(l 1>? B::(O 0)3

have one (y = —1), zero and co-many eigensolutions. Despite this theoretical aspect of the generalised
eigenproblem no difficulty, such as phantom eigenvalues, which may occur with the QQ Z-algorithm, has been



observed in practice with the methods used to determine selected generalised eigenvalues of the kinematic
dynamo problem: inverse iteration, the implicitly restarted Arnoldi method and the power method with the
conformal transformation w = —(z—=z1)/(2—22). The transformation maps the half-plane Rez > 0 to the
exterior of the circle |w| =1, z; — 0, 23 > 00 and §(21422) — 1. The line Re z = ¢ is mapped to the circle

(c—22)wW + [c — 2 (z1422)](W+W) + ¢ — 21 =0,
with centre [c — 3(21+22)]/(c—22) and radius §|z1—z2|/|c—22|. Applying this mapping to the spectrum of

the generalised eigenproblem yields a method for finding the eigenvalue of largest real part: apply the power
method to the matrix M := —I — (20—21)(A—2B)"'B.

3.4 Magnetic Energy and Related Seminorms

Norms and seminorms can be useful to estimate numerical convergence (Bachtiar and James, 2010). Useful
spheroidal seminorms of a scalar field f on E? are defined by

1 . 1 .
2 = 24Q 2 = —/ 24V
|f|2,r In é(r) ! ) ||fH2G i Jo f )

where the first integral is taken over a spheroidal r-surface and G is a region in E3. The seminorm |fl2, 3 is
anorm, i.e. it is zero only if f = 0 in E®, which is denoted || f||2 := || f||2,z. The subscript 2’s are suppressed
below. The squared norm can be split into internal and external parts: || f[|* = [|f[[¥ + || f[[%s\,- Also

oo 1 1
112 = / e, R = / SR, Py = / 12

Related seminorms of a vector field F on E? are obtained by setting f = F := |F|; thus |F|, := |F|, and
IFlle == [1Flle-
A weighted magnetic energy on X(r) is 2ra? E(r), where

1 o o o
E(r):=|B/al? = o j{(B2 —e*B2)d) = /E( ) iB?|2ra*ern| !t dY.

Since any T and S are orthogonal over any (r) by @) and 2f — f2 = €2,
E(r) = |T[; +IS[? — ¢*| B (3.22)
The total magnetic energy in E® is 2ma*cEp, where

o0
Ep = |B/al® = | T2 + ] — 2| B.|* = / E(r)r? dr (3.23)

In spherical harmonic spectral form, |T|? = Do Al T2, r2|S|2 = > ANIST? 4 Xl (rSy) P} and
from (BII)),

PIB.E =Y [~ (n=1)e [0, (rSi ) —n S ]+ (n+2) ety [0n (rSii )+ (n4 1) Sty ] —imr T

Thus the magnetic energy is not the sum of the toroidal and poloidal energies in Vife #0. Inr>1,

120 =D {NISI1P + MlOe(6S)7) — 2571}

n,m

B2 = €2 |(n—1)c [De(€Sm )+ (n — 2)S 1= (n+2) el 1 [0 (€5 ) — (n+3) Sy | —imr T [
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4 Results

Magnetic free-decay v = 0 provides an excellent test case, since the new features in equations (2I1]) and
[2I2) are all active if the ellipticity e > 0. If e = 0, the conducting volume V' is spherical with magnetic
free-decay modes given by

gm _ efji—l,l«t jn(jn,l,kr), ™ _ e*ji,kt jn(jn,kr); r<l; (4 1)
" jn(jnfl,k)/r_n_17 " 07 r> 17
where n > 1, j,, is the nth spherical Bessel function of the first kind and j, i is the kth positive zero of jy,
ie. jn(jnk) =0forn=0,1,..., k=1,2,.... There are n cells of non-zero S or T in latitude and k cells in
radius.

4.1 Axisymmetric Free-Decay Solutions

For e > 0 there exist analytical axisymmetric (m = 0) free-decay (R = 0) solutions in terms of spheroidal
wave functions using confocal spheroidal coordinates. These functions are difficult to compute even in the
arbitrary precision. Further details of the solutions are given in [Wu and Robertd (2009). The spheroidal
coordinates are also used in g5l

An axisymmetric magnetic field has the representation B = Vx (x14/s) + Bg1y, where x is the magnetic
flux function, and x = —a?crsinf 9y S and By, = —a dpT. The fields x and By are odd (even) in the equator
if S and T are even (odd). The associated field B = Vx(¥14/8) + Bylg, where ¥ = x/a2c. Assuming
x(r,t) = X(r)e? and By(r,t) = Bg(r)e?t, the magnetic induction equation (LI) with Ry, = 0 decouples
into two scalar equations of the same form, V2u — 25~ d,u — yu = 0, with either u = ¥ or u = By. This
equation has separable solutions in confocal oblate spheroidal coordinates (£, ¢,n). The change to (£, ¢,n)
from cylindrical polar coordinates (s, ¢, z) is given by

s=dyv(1+8&)1—n2), z=d&n, d:=+a?>—-c*=ae. (4.2)

The boundary ([2)) is then given by the level surface £ = ¢/d = c/ae, since x = scos¢ and y = ssin ¢.
The separable solutions are of the form u = sZ(§)H (n), where Z(&) = R&)(—ia, i€) and H(n) = S1,(—io,n)
are radial and angular oblate spheroidal wave functions of the first kind, degree n and order 1 (Flammer,
2005, note d differs by a factor 2) and 02 = —d?y. Since By = 0 on the insulating boundary ¢ = c/ae, the
azimuthal modes are

By = Ry} (<i08,,,16) Sin(—ichy, e, (4.3)

in

where 2, (a,c) = —(02,)?/(a® — ¢?) and o2, is the kth positive zero of R&)(—im ic/ae) = 0. The field By is
odd (even) in the equator if n is even (odd) and vanishes in the exterior. The growth rates 42, (1, ¢) = 32,(c)
for a = 1 (suppressing R, = 0), were calculated using the spheroidal wave function package in Mathematica 8
(Falloon et all, 2003). The functions 4%, (c/a) for ¢/a = 0.01(0.01)0.1(0.05)1 (see figure [I) are shown in
table B of [Appendix C] with n = 1,2,3, k = 1 and n = 1, K = 2. The relative errors in the numerical
eigenvalues are shown in figure 21

10 s

Figure 1: Ellipses of semi-axis ratios a/c = 1,1.25,2,3,4,5 with ¢ = 2 and a/c = 10,20, 25,50,100 with
a = 10.

The meridional solutions are more complicated due to the matching conditions on x at the conducting
boundary £ = c¢/ae. In the exterior & > c¢/ae, x — 0 as £ — o0, so the separable solutions are = =

11



R(0,i¢) = QL(i¢) and H = S1,(0,1)PL(n), where Q™ is an associated Legendre function of the second
kind,

n

" T nle) Qule) = gPaeos (1) = D LR (w) P,

dz™

Q' (z) = (a* = 1)

and Py, is the Legendre polynomial [B2))(b) of degree k. To satisfy the matching conditions, linear combina-~
tions of these modes are required,

R(l)( o, i€)

>nCn Sin(—io,n)et | &€ < c/ae;

X = ]Zg ((5)10 ,ic/ae) (4.4)
;= Pl(n)ert, > c/ae.
Zl lQl (1c/a ) ( ) g /
Since x and Vx are continuous across the conducting boundary,
Z Cpdl™ =Cii1, Z Cy0e(log R\}) (—i0,i€)) = Cr410¢(log Q1,1 (i), at & = c/ae,

using Sy (—io,n) = 2220 di"" (—io) P/}, (n), where the primed summation is over | = n —mmod 2, and
Smn(0,m) = P*(n). Note dj*"(0) = 6;'~™. This yields two homogeneous linear systems ), Aj,(c0)Cy =0,
where [(> 0) and n—1(> 0) are either both odd or both even, and

A (0) = (€8¢ (log R\Y) (—i0,i€)) — €8¢ (log Q}(i€)) }di ™ (—io), & = c/ae.

For non-trivial solutions det[A;,(o)] = 0, which determines . The y-modes are even (odd) in the equa-
tor if n is odd (even). In the spherical limit a/c — 1, a — 1, ¢ — 0, £ = c¢/ae — o0, 0 — /=7,

€0¢(log R} (—i0,1€)) = /=7j4 (/=) /dn(v/=7) and €¢[log QL (i€)] — —I — 2, using (Flammer, [2005,
eq.(4.1.15)) and (Olver et all, 12010, eqs.(14.8.15), (14.3.10)),

.. _ _ D idmen L F2m)0
R, (—ioi€) = Nyt (14 22 S bmen LE20R gy (o)
>0 !
. Q" (w) /2
VA = QM (w) ~ : — 00 45
€ F(V—f—ﬂ—'—l) Qu(w) F(V+%)(21U)”+l as |U)| o0 ( )

where the normalisation factor N, := Zgzo dy(—io)(1+2m)!/1!. Hence asa/c — 1, Ain(0) = v/=Yin-1(vV=7)8""" /jn(v/~
and y = —j2 | ,, n=1,2,..., recovering the m = 0 poloidal modes in #I)). The zeros of det[A;,(d)] = 0

for e > 0 and hence the axisymmetric meridional growth rates 77} (a,c) can thus be found by continuation

from e = 0. By continuity the cell structure of the spherical free-decay modes extends to e > 0. The growth

rates Y. (1,¢) = 4m.(c) for a = 1 (suppressing Ry, = 0) were computed in Mathematica 8, but note the

angular coefficients dl”C are not intrinsic functions (Emig et all, 2008, [Falloon et all, 2003). The decay rate

functions 41" (¢/a) and 44" (c/a) are given in table Bl of [Appendix C| for ¢/a = 0.01(0.01)0.1(0.05)1. The

relative errors in the numerical eigenvalues are shown in figure @l There is excellent agreement with the

analytic solutions, but truncation levels must increase substantially for ¢/a = 0.01.

4.2 Free-Decay Solutions for Small Ellipticity

For small ellipticity e < 1 free-decay solutions can be expanded in powers of e2. Only the growth rate to
first order is calculated here; the modes are derived elsewhere (Ivers, 2017). The degeneracy in the decay
rates of S™ and T™ ; splits if e > 0 and motivates the following expansion in e?
Tﬁ1:T$1,O+eT “ot - Sﬁ:Sﬁo—i—eQSﬁQ—l—..., Y= ey +... (4.6)
T a0 = Tﬁn—&zz,zz@ +... ol = Sﬁnﬂz,mem +.. l>1, (4.7)
where yo = =A%, T, ,, =0ifl > (n—1-m)/2 and S™ ,, = 0if | > (n—m)/2. Let A = j,_1  and suppress

k below. The l = O terms are spherical free-decay modes: if r <1, Sy =ojn(Ar) and T} | o = iTjn_1(A1),
where o and 7 are constants with typically o7 # 0; and if r > 1, STy = ojn(N)r~""1 and Ty = 0.
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Figure 2: Relative errors of axisymmetric meridional 77, (left) and azimuthal 42, (right) free-decay rates
versus 0.01 < ¢/a <1 at different truncation levels (N, J, J¢) for the values of (n,k, N, J, J¢) shown.

Substitute expansions (£8) and (7)) into the interior equations (4] and B, and the exterior equations
BI2) and @BI3). Several useful factors of 1 — e?, which affect only subdominant terms, are retained for
simplicity.

Since Dy,jn (A7) = 407n (A7), equations (B4) and (BH) are satisfied to O(1). To O(e?) they give, ap-
plying the recurrence relations for spherical Bessel functions, d,4+17n(Ar) = Ajp—1(Ar) and d_,j,(\r) =
—)\jn+1()\’l“),

2mell

i ~ )
(Yo = Dn-1)TiLy 2 = — 12 { n )U’YO)‘ (Crntivo — 72)T}Jn1()\7") (4.8)

(n—

1 -
1_62{(On Yo —V2)0 +

2me)

(10 — Da)SI = )m}gnm (4.9)

n(n+1

where 55 := 72(1 — €2) and C™ is given by [33). In the exterior r > 1, the O(e?) equations from (.IZ) and

BI3) yield
deﬂs =0, DSy =CrD,ST, =0. (4.10)

Hence the boundary and matching conditions ([B.3)) imply the boundary conditions,

m —
Tn71,2

T ,=0, dup1ST =0, atr=1-. (4.11)

To find the growth rate multiply (@S] by r%4,_1(\r), @) by 72, (\r), and integrate r over [0,1]. Two

integrations by parts, the boundary conditions (Z.I1l), (70 — Dyp)jp(Ar) = 0 and fo r? ]p (Ar)dr # 0 yield the
solvability conditions

2mep? m ~ m ~ 2mey _
WU’YO)\ —(Chlir —72)7 =0, (C'vo —72)0 + n(n + 1)7/\ =0.
If o1 #0, (CFy = F2/70)(CF! = A2/0) = (2me;?)?/[(n? — 1)n?]. Thus v = *477(e) + O(e*) where
2% m)2
+,.m - €2 72 1 m m m__ 2 (4mcn) 4.12
Tn (6) =7 + 1— 62 ’ 7o Q(C 1+Cn ) \/(C n— 1) + (712—1)712 >0. ( . )
If e > 0, ¥4 (e) > ~v7(e). Since T, ™ = *4™ we consider only m > 0. If m = n there is one non-trivial
root, Y2 /Y0 = C" = (n+3)/[(n+1)(2n+3)] and 7 = 0. If m = 0, either ¢ = 0 and F2 /70 = CY_;, or 7 =0

and J2/v0 = C2. Thus, for n > 1 and k > 1 (restoring k) there 2n + 1 modes: 7™ for m =0:n — 1 and
T for m = 0:n; for n =1 there are two modes, ~47, and T4 ;. Figure B compares computed values of
~ with i’y}ffl and the zero js 1 ~ 6.98793 on 0 < e < 0.4, ie. 79 = —48.8312 and 1 < a/c < 5/v21 & 1.09.
Using an averaged sub-dominant denominator 1 — %62 gives better agreement than either 1 —e2 or 1 for e
near 0.4.
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Figure 3: Splitting of free-decay modes. Comparison of computed v with ([@I2]) for small ellipticity 0 < e <
0.4. Solid and broken curves are iyz;}l with averaged denominator. Symbols a, o, +, ¢, 0 are computed
values with (N, .J, J¢) = (20,800,200) for m = 0,1,2,3,4. The 49, and T4, curves are different.

4.3 Non-Axisymmetric Free-Decay Solutions

The n =1, k =1 modes are ~7{ ; = —(3 + £ (a/c)*)m? 4+ O(e*) = 4%, shown in table B for 0.01 < ¢/a < 1
and T7i, = —(2 + 2(a/c)®)7* + O(e?), shown in table @ for 1 < a/c < 25. For a/c = 1.01, the leading term
gives *711,1 ~ —9.94896 compared to the eigenvalue —9.94890 computed with (V, J, J¢) = (40, 400, 200); for
afc=1.1, J“yil ~ —10.699 compared to the eigenvalue —10.695. Typical spherical harmonic coefficients are

shown in figure Ml Since B = 0 if and only if B=0ata point, a magnetically hidden dynamo occurs only if
B =0 in E3\ V. Unlike the sphere the only hidden free-decay modes in a spheroid are the m = 0 toroidal
modes.

4.4 Dynamos with Axisymmetric Flows

The dynamo action of three axisymmetric flows is now considered for aspect ratios 1 < a/c < 25. These
three flows are constructed by choosing as v in V three spherical flows of [Dudley and James (1989) which
exhibit dynamo action, and transforming them to kinematically feasible spheroidal flows v in V' [see the
discussion following (ZI4])]. Axisymmetry of v is preserved under the transformation to v if the symmetry
axes of v and the spheroid V are aligned. In cylindrical polar coordinates (s, ¢, z) and (§, ¢, 2) with common
unit vectors (15,14,1,), where s is the physical cylindrical radius, the scale transformation ([Z4) is s = as,
z =%, vs = als, Vg = aVy and v, = cv,. An incompressible axisymmetric flow has the meridional-azimuthal
representation v = vy, +wsly where vy, = VX (¢14/s), and v = v, +@(8, 2)§14 where vy, = V x (’(/J1¢/S)
Hence the stream functions and differential rotations are related by (s, z) = a2cip(s/a, z/c) and w(s,z) =
w(s/a,z/c). The Dudley and James (1989) spherical dynamo flows are of the form

v

rsin 6

vV =eV x < 1¢>+o‘brsin01¢,

where € is a tuning parameter (Latter and Ivers, 2010). The associated toroidal-poloidal velocity potentials ¢
and s are given by dys = —1)/rsinf and dpt = —rsinf. If ¢y := rsin7rsin®6, 1y := 3r2 sin 77 sin?0 cos b,
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Figure 4: The Sj(r) and T, (r) coefficient functions of *+j ; for n < 4. The toroidal coefficients T, , T} are
non-zero in the insulating exterior r > 1 and their first derivatives have a jump discontinuity at » = 1.

w1 = r~tsinar, Wy := 3sinar cos 6, the three flows are (121,631), (122,631), (122,032) with € = 0.17,0.13,0.14
respectively, i.e. in toroidal-poloidal form,

(a) siti-flow: s =t =sin7r cosf, s§ =17 = % sinwr, e = 0.17;

(b) soty-flow: s = %r sin 77 cos?0, t = sin7r cos 6, s§ = %r singr, t9 = % sinmr, € = 0.13;
(c) sotp-flow: s =t = 3rsinmrcos?f, s§ =9 = %r sin7r, e = 0.14;

using V¥ = v/3cos and Yy = v/5(—1 + 3cos? ) /2. The flows are shown in figure [ for a/c = 5.

LIJZ Swl S002
1
2
)
0 0 2 4 0 2 4
S S S S

Figure 5: Stream functions 11, ¥2 and azimuthal velocities swq and swy for a/c = 5.

Since the velocities are axisymmetric the magnetic field decouples into toroidal-poloidal chains S}, Ty, Sy 1, Ty

for m = 0,1,2,... (omit SJ, T7). The sat;-flow is equatorially symmetric (ES), i.e. it has a chain of the

form t9,9,t9,59,..., so the magnetic field decouples into an equatorially anti-symmetric (EA) field with
the chain T, S0, 1, T 5, ... or an ES field with the chain S}, 17" 1, S, 5, .... The sit;- and spto-flows

are not ES so the magnetic field has no EA/ES symmetry. Numerically the coefficient chains are truncated
at degree N. Critical dynamo solutions with Rey = 0 = Re are computed. Results for the three flows
are shown in figure [0l and in table 2l For a sphere (a/c = 1) the critical magnetic Reynolds number and
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Figure 6: Critical magnetic Reynolds numbers R, and angular frequency w. vs a/c =5 for the flows (top to
bottom) sit1, sot; and sate (R, only).

frequency are consistent with [Dudley and James (1989). The slopes of the magnetic Reynolds number plots
for a/e > 5 indicate R. o (a/c)2? for sit1, and R. o (a/c)™? for sot; and syto. Truncation levels (N, J, J)
were: for the sit; flow, (80,800,100) for a/c = 3,4, (80,800,200) for 5 < a/c < 10 and (80,1600, 200) for
10 < a/c < 25; for the saty flow, (80,800, 100) for a/c < 5 and (80, 800,200) for a/c > 5; and for the saty
flow, (80, 800, 200).

v 0 81t1 82151 32t2
a/c | T, R. Im 7, R. Im 7, R.

1 —m? 155.585 —34.1440 94.9263 | —18.2102 | 53.5624
1.2 | —11.592 | 194.942 —41.9226 | 102.3607 | —18.9060 | 62.4924
1.5 | —14.689 | 270.313 —55.986 119.2005 | —20.8543 | 79.1692

2 | —21.108 | 441.614 —85.738 158.6265 | —25.6386 | 115.1571

3| —38.223 | 957.444 —168.675 | 273.0472 | —39.1726 | 216.5595

4| —60.643 | 1701.689 | —283.199 | 431.8008 | —57.2683 | 356.0900

5 | —88.189 | 2671.595 | —429.725 | 633.9955 | —79.8498 | 533.0085

6 | —120.80 | 3865.436 | —608.442 | 879.4256 | —106.970 | 746.9163

7 | —158.45 | 5282.018 | —819.416 | 1167.983 | —138.665 | 997.5940

8 | —201.11 | 6920.498 | —1062.669 | 1499.612 | —174.961 | 1284.916

9 | —248.79 | 8780.251 | —1338.204 | 1874.280 | —215.874 | 1608.804
10 | —301.46 | 10860.64 | —1646.07 | 2291.963 | —261.412 | 1969.214
20 | —1102 | 43782.25 | —6501.62 | 8832.98 —972.20 7578.5
25 | —1689 68486.7 —10141.2 13715.5 —1502.2 11750

Table 2: Critical magnetic Reynold’s number I?ic vs a/c for the sit; and sote flows with m = 1 magnetic
fields, and the sty flow with an EA (no ES dynamo has been found) m = 1 magnetic field. For most aspect
ratios (NN, J, J¢) = (20,200, 50). For the sty flow Im~, = 0.

Magnetic field plots are constructed for the normal, tangential and azimuthal components in the natural
orthonormal basis (1,,1¢,1¢), B = Byl + Bili + Baly. Geometrically, 1,, and 1, are normal and tangent
to the r-surface at any point, and lie in the meridional plane. This is a hybrid non-coordinate basis since
Ly = e'/lel| = n/[n|, 1; = ex/|es| = eq/leg| and 1, = €%/|e’| = es/les| = ey/|ey|. Now [n|B,
n-B=r-L-B=r- B =rB,, thus B, = rB /|n|, where ac|n| = rv/a? cos? 0 + ¢2sin® 0. Also, since
B=25 eT+B9e9+B¢e¢, B, =1,-B = B,1;-e,+By1;- -eg, where 1-e, = e;-eg/|eg| = (a®>—c?)sind cosf/|eq|

16



and 1; - eg = |eg| = \/a2 cos2 0 + c2sin? 6. Lastly, B, = cé¢. The components éT, é@, §¢ are computed
from T and S in E3 as in the spherical case. The critical magnetic fields of the s;t;-flow are shown in
figure [ for a/c = 10 and figure Rl for a/c = 5. Strong magnetic field is confined near the axis with very weak
field towards the periphery of the spheroid, both internally and externally. The fields are reminiscent of the
spherical results of Latter and Ivers (2010) at much larger magnetic Reynolds numbers. The critical fields
of the soti-flow and sato-flow for a/c = 5 are shown in figures [ and [I0 respectively. Strong magnetic field
occurs toward the periphery for the sot1-flow, both internally and externally. For the ssto-flow, internally the
strongest magnetic field occurs near the axis but there is also strong field toward the periphery; externally
the strongest field occurs at the periphery.

5 Alternative Methods for the Insulating Exterior

Two alternative solution methods for the insulating exterior are given in this section. The first method
eliminates 7" from the system of exterior equations. Solving [B12) for 7)™ gives
™ _ ime?

n m{—(n 1)C:Lnd1_n5;n_1 + (n + 2)Czl+1dn+25?+1} , inr Z 1—. (51)

Observe from the matching conditions B3]) on 7" and S}* that equation (5I) holds at » = 1£. Also, since
|m| <nand e? <1< n(n+1)/m?, \, # e*m?, there are no zero divisors. There is a simpler equation than

BI12) for m # 0, the spectral form of (2.20),
—(n=1Detdin T3 + (n 4 2)cyt AT 4 imD, S (5.2)

which can be derived from ([229) and used with (5I)). However, explicit elimination of 7}, from (5.2) or
BI3) using 1)) gives

DnSn +e {)\n_l—627’n2 nfl,nDl n,2—nPnp—-2 — m n, nD S
nn +2) L2 +3)

Ant1 — €2m? Cht Lt Ant1 — €2m?

Equation (5.3)), which is valid for all m, can be used in r > 1 together with (.I)) at r = 1—.

The second method replaces the system of equations for 7" and S]* in the exterior by a coupled system
of boundary conditions at r = 1—, derived from (&) and relations between the scalar, toroidal and poloidal
potentials ¥, T and S. Laplace’s equation V?W¥ = 0 separates in the confocal oblate spheroidal coordinates
([#2). The exterior solution is

1DnS3 + Cn+1 n+2Dn+2 n+3Sn+2} =0. (5'3)

> VIQUGOPI ()™, in &> c/d. (54)
n>1m
The homoeoidal coordinates (2]) and confocal coordinates ([L2]) are related by s = arsinf = d/1 + £24/1 — n?
and z = ccos§ = dén. Solving for r and 0 gives

d2 & g — c/1+8V/1-7

2 2 2,2

The r- and &-surfaces coincide if and only if the first equation holds for all |n| < 1. This is true if and only
if r2/d*> = (1+&2)/a® = ¢2/c2, ie. £ =c/ae and r = &d/c = 1. Thus only the boundary spheroid X is both
an r-surface and an &-surface.

The vector field n defined in (I.2)) is normal to r-surfaces and can be written in the form n = 1,rsinf/a+
1.rcosf/c. On X, r = 1 and n = 1,sin6/a + 1,cosf/c. The confocal £ basis vector e := Ocr =
d(E/1 =021 +ny/1+€21,)//1 + €2 is normal to the &-surface at any point. In fact, e¢ = cdn on X where
& =c/ae and n = cos§. Thus, using 2.0), 0;¥ =e;- V¥ = —e; - B= —cdn- B = —cdr - B = ¢dA2S. Thus
from (B4),

Q™ (ic/ae) = iacer, S (5.5)
where the prime indicates the derivative. A second relation between ¥, S and T is given by the horizontal
divergence of V¥ = —D~! . B. Using I6)(b) and A2 = (rVy,)2,

A2 = —a*?Vy, - (B — €2B.1.), = —a?A%0,(rS) + €*a®r*Vy, - (B.1.),. (5.6)
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Figure 7: Critical magnetic field for the s1t; flow with a/c = 10. Real (left) and imaginary (right) parts of
B,., By, By in E? (top three rows) and of By, B, B, (bottom three rows).
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Figure 8: Critical magnetic field for the si¢; flow with a/c = 5. Real and imaginary parts of B,, By, By in
E3 (top two rows) and of By, By, B, (bottom two rows).
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Figure 9: As in figure [§ but for the sot; flow.
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Figure 10: Critical magnetic field for the sots flow with a/c = 5. Fields B,., By, By in E® (top) and By, By,
B, (bottom).
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Substituting (54 and evaluating (.8) on X (£ = ¢/ae, n = cosd and r = 1) gives
8,8 + ST 4 a 72U QM (ic/ae) = 2HI{B,1.}, (5.7)
introducing the horizontal divergence transform defined by

1 o .

Eliminating U7 from (53) and (5.8)) yields the boundary condition
(ic/ae)Qp (ic/ae)
QY (ic/ae)

As a/c — 1, e = 0 and the condition (B9) reduces to the spherical poloidal insulating boundary condition
0rSI + (n 4+ 1)S™ /r = 0, since (Olver et all, 2010, equations(14.3.10),(14.8.15))

—ipm Qllj(w) _ 771/2
e D(v+p+1) Qiw) ~ (v + 2)(2w)v+1’

D,.8™ + (1 + €2\, )S,T = H{B.1.}. (5.9)

as |w| — oo..

The horizontal divergence of f1, for a scalar field f is given by rVy, - (f1.)n = —sinfdyf — 2cos@ f. Thus
by (BI0)) the spherical harmonic expansion for the horizontal divergence of f1, is given by »Vy, - (f1,)n =

— Zn,m{(n + et fry —nept o [ 1Y Setting f = B, and using BII) yields

o 1
H{B:1:} = —A{(n+ ey [=(n = 2)eit1de-n Sy g —imT2y + (n+ ey dns1 )]

n

- ”C?Jrl [—”C?densgl - imT’rTLr}H +(n+ 3)C?+2dn+3577l+2]} . (5.10)

There is a third relation between ¥, S and T given by the surface curl of VU =-D"!.B:if A:=fx 6,
then 0 = A- V¥ = -A-(D"'-B) = —A-(B—¢?B,1,), but this is the toroidal equation in the exterior
@.25)(a).

6 Conclusion

The method described in §3 applies to mean field dynamos with a rank-2 tensor a-effect, which are more
relevant to galactic dynamo models. The magnetic induction equation (2.11])(a) becomes

2
0B = <v2+1ie2855)B+RmV><(\°/><B)+RaL-V-(L><a-L1-B).

The method also applies directly to the kinematic dynamo problem in prolate spheroids, and extends eas-
ily to tri-axial ellipsoids and to homeoidal ellipsoidal shells (using vector and tensor spherical harmon-
ics). The method can also be applied to thermal convection and magnetoconvection problems. For non-
homeoidal shells such as confocal shells, non-homeoidal toroidal-poloidal fields are required, but deriva-
tion of the toroidal-poloidal spectral equations is more difficult (for the confocal case see |Schmitt, 2006,
Schmitt and Jault, 2004). Work on time-stepping the kinematic dynamo problem is in progress.
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Appendix A The Horizontal Spectral Equations

The horizontal divergence equations in the conducting region and insulating exterior contain no new infor-
mation. The spectral form of the horizontal divergence of the magnetic induction equation in the conducting
region is dy (9; — D,,)S™ = H™{F}, where the operator d; := d, +7~1, F = €20::B/(1 —€2) + Ry, VX (v x B)
and H™ is defined by (B.8). The anisotropic magnetic diffusion term is H'{0::B} = d; L7 (T, S). In fact,
the equation is simply d; applied to the radial induction equation 223).

In the insulating region 7Vy, - (V x B)y = r~1(rVy-)29,(rT) = —d; Y mm LY and

rVi - (VX By = —dy Y im{—(n = D)etdynSiy + (n 4 2)ei 1 dngaSiy — im0}V,

Thus, r@h . {V x (B —e%B,1,)}, = 0 is equivalent to applying the operator d; to the toroidal equation
@28)(a) in the exterior.
Appendix B Angular Spectral Forms of the Induction Term

The induction term expansions (BIl) and (B2) are derived in[Bullard and Gellmanl (1954) (with an additional
factor of r in the toroidal and poloidal potentials),

RAVX (v x B)} =Y {(sa955,) + (5aT5S,) + (taSsSy) + (taTsSy)} . (B1)
a,p
(50985y) = 5 Aapy {—Aaapy5a(1Sp) + AsAap, (rsa)' Sp}/r?
(saT3Sy) = EapyAaSaIp/T
(ta5557) = Eaﬁ'y* AgtaSQ/T
(taTgS,Y) =0.

where primes indicate radial derivatives, Ao := a(a + 1), Aagy = Ao + Ag + Ays gy = Ao — Ag + Ay, et
and

TAVX (v X B)} = S {(5a85T,) + (5aTsTy) + (o S5Ts) + (taTHT5)} (B2)
a,
(sa55Ty) ::%EQBV*{)\amsaﬁg — Xapy[r(saSs) + 7"23’QS;3] — )\QTZSOCSg — Agr?slSg}/r?
(5aT3Ty) = 5 Aapy{—AyAapy(5aTs + r5,T3) — Aadapy (rsyTs + rsaTh)}/r?
(taSETy) = Aapy{ Ay Aapy(taSs + 70 S5) + AsAag, (11,Ss + 10 Sp) } /T

(taTgTv) = )\,YEQB,Y*taTg/T.
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The Adams-Gaunt integral A, "nyn.,

In terms of 3j-symbols,
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Appendix C Axisymmetric free-decay rates

V0apy + Das, + Dlnass +1).

are defined by

).

c/a ’QY{I,HC/G fyfbc/a ’DY?J(C/G)Q ’07?,2(0/“)2 %3,1(0/0)2 ’?3,1(0/@2

1.00 | 9.869604401 | 20.190728556 | 20.190728556 | 59.679515944 | 33.217461914 | 48.831193644
0.95 | 9.573463520 | 20.055037754 | 18.613749809 | 55.143044929 | 31.359968460 | 46.156321167
0.90 | 9.277209597 | 19.938272263 | 17.113443397 | 51.154471585 | 29.583789242 | 43.268233071
0.85 | 8.980829306 | 19.843715162 | 15.689963175 | 47.785740476 | 27.888848717 | 40.094806581
0.80 | 8.684306079 | 19.775447577 | 14.343430635 | 44.987859397 | 26.274897455 | 36.684608046
0.75 | 8.387619214 | 19.738608214 | 13.073916808 | 42.616368122 | 24.741463026 | 33.181370561
0.70 | 8.090742726 | 19.739761920 | 11.881417136 | 40.534934346 | 23.287792006 | 29.720337242
0.65 | 7.793643821 | 19.787435038 | 10.765816420 | 38.654989408 | 21.912783614 | 26.388556676
0.60 | 7.496280891 | 19.892913332 9.726839734 | 36.924907840 | 20.614917500 | 23.235623972
0.55 | 7.198600817 | 20.071466941 8.763983471 | 35.314099582 | 19.392181612 | 20.289491743
0.50 | 6.900535321 | 20.344296723 7.876418810 | 33.803139044 | 18.242011186 | 17.566210599
0.45 | 6.601995965 | 20.741754519 7.062858522 | 32.378570791 | 17.161256187 | 15.074925162
0.40 | 6.302867166 | 21.308935269 6.321380045 | 31.030259621 | 16.146199525 | 12.820193872
0.35 | 6.002996288 | 22.115977381 5.649209918 | 29.750035017 | 15.192646483 | 10.802780638
0.30 | 5.702179241 | 23.278482385 5.042510539 | 28.530990811 | 14.296089721 | 9.019441606
0.25 | 5.400138973 | 25.002008642 4.496284019 | 27.367114899 | 13.451922975 | 7.462044036
0.20 | 5.096492218 | 27.692128802 4.004589491 | 26.253081717 | 12.655647658 | 6.116720679
0.15 | 4.790695731 | 29.213416496 3.561191068 | 25.184123285 | 11.903020017 | 4.964576007
0.10 | 4.481954125 | 41.511793699 3.160335450 | 24.155938651 | 11.190124920 | 3.984883255
0.09 | 4.419755597 | 44.576686595 3.084822548 | 23.954844700 | 11.051993860 | 3.807895437
0.08 | 4.357380346 | 48.394890704 3.010777197 | 23.755194930 | 10.915281480 | 3.636879220
0.07 | 4.294814582 | 53.282588634 2.938165403 | 23.556960350 | 10.779961450 | 3.471693435
0.06 | 4.232043027 | 59.763884660 2.866954338 | 23.360112471 | 10.646007969 | 3.312200030
0.05 | 4.169048686 | 68.776654491 2.797112297 | 23.164623292 | 10.513395759 | 3.158263906
0.04 | 4.105812582 | 82.184711526 2.728608657 | 22.970465280 | 10.382100054 | 3.009752757
0.03 | 4.042313418 | 104.306446505 | 2.661413830 | 22.777611361 | 10.252096592 | 2.866536917
0.02 | 3.978527174 | 143.485205010 | 2.595499228 | 22.586034899 | 10.123361606 | 2.728489210
0.01 | 3.914426594 | 266.247562876 | 2.530837220 | 22.651011290 | 9.995871812 2.595484809

Table 3: Axisymmetric meridional 4™ and azimuthal 42, growth rates with weights c¢/a and (c/a)? for
0.01 <c/a <1
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