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Abstract

Limit theory involving stochastic integrals plays a major role in time series econo-
metrics. In earlier contributions on weak convergence to stochastic integrals, the
literature commonly uses martingale and semimartingale structures. Liang, et al
(2015) (see also Wang (2015), Chapter 4.5) currently extended the weak convergence
to stochastic integrals by allowing for the linear process in the innovations. While
these martingale and linear processes structures have wild relevance, they are not
sufficiently general to cover many econometric applications where endogeneity and
nonlinearity are present. This paper provides new conditions for weak convergence
to stochastic integrals. Our frameworks allow for long memory processes, causal
processes and near-epoch dependence in the innovations, which can be applied to
a wild range of areas in econometrics, such as GARCH, TAR, bilinear and other
nonlinear models.
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1 Introduction

In econometrics with nonstationary time series, it is usually necessary to rely on the

convergence to stochastic integrals. The latter result is particularly vital to nonlinear

cointegrating regression. See Wang and Phillips (2009a, 2009b, 2016) for instance. Also

see Wang (2015, Chapter 5) and the reference therein.

Let (uj, vj)j≥1 be a sequence of random vectors on Rd × R and Fk = σ(uj, vj, j ≤ k).

Write

xnk =
1

dn

k∑
j=1

uj, ynk =
1√
n

k∑
j=1

vj,

where 0 < d2n → ∞. As a benchmark, the basic result on convergence to stochastic

integrals is given as follows. See, e.g., Kurtz and Protter (1991).

THEOREM 1.1. Suppose

A1 (vk,Fk) forms a martingale difference with supk≥1Ev
2
k <∞;

A2 {xn,bntc, yn,bntc} ⇒ {Gt,Wt} on DRd+1 [0, 1] in the Skorohod topology.

Then, for any continuous functions g(s) and f(s) on Rd, we have

{
xn,bntc, yn,bntc,

1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=0

f(xnk) vk+1

}
⇒

{
Gt, Wt,

∫ 1

0

g(Gt)dt,

∫ 1

0

f(Gt) dWt

}
, (1.1)

on DR2d+2 [0, 1] in the Skorohod topology.

Kurtz and Protter (1991) [also see Jacod and Shiryaev (2003)] actually established the

result with ynk being a semimartingale instead of A1. Toward a general result beyond

the semimartingale, Liang, et al. (2015) and Wang (2015, Chapter 4.5) investigated the

extension to linear process innovations, namely, they provided the convergence of sample

quantities
n−1∑
k=0

f(xnk)wk+1 to functionals of stochastic processes and stochastic integrals,

where

wk =
∞∑
j=0

ϕj vk−j, (1.2)

with ϕ =
∞∑
j=0

ϕj 6= 0 and
∞∑
j=0

j |ϕj| < ∞. Liang, et al. (2015) and Wang (2015, Chapter

4.5) further considered the extension to α-mixing innovations.
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While these results are elegant, they are not sufficiently general to cover many econo-

metric applications where endogeneity and more general innovation processes are present.

In particular, the linear structure in (1.2) is well-known restrictive, failing to include

many practical important models such as GARCH, threshold, nonlinear autoregressions,

etc. The aim of this paper is to fill in the gap, providing new general results on the con-

vergence to stochastic integrals in which there are some advantages in econometrical ap-

plications. Explicitly, our frameworks consider the convergence of Sn :=
n−1∑
k=0

f(xnk)wk+1,

where the wk has the form:

wk = vk + zk−1 − zk, (1.3)

with zk satisfying certain regular conditions specified in next section. The {wk}k≥1 in

(1.3) is usually not a martingale difference, but
n∑
k=1

wk =
n∑
k=1

vk + z0 − zn provides an

approximation to martingale. Martingale approximation has been widely investigated in

the literature. For a current development, we refer to Borovskikh and Korolyuk (1997).

As evidenced in Section 3, these existing results on martingale approximation provide

important technical support for the purpose of this paper.

This paper is organized as follows. In Section 2, we establish two frameworks for the

convergence of Sn. Theorem 2.1 includes the situation that uk is a long memory process,

while Theorem 2.2 is for the uk to be a short memory process. It is shown that, for a

short memory uk, the additional term zk in (1.3) has an essential impact on the limit

behaviors of Sn, but it is not the case when uk is a long memory process under minor

natural conditions on the zt. Section 3 provides three corollaries of our frameworks on

long memory processes, causal processes and near-epoch dependence, which capture the

most popular models in econometrics. More detailed examples including linear processes,

nonlinear transformations of linear processes, nonlinear autoregressive time series and

GARCH model are given in Section 4. We conclude in Section 5. Proofs of all theorems

are postponed to Section 6.

Throughout the paper, we denote constants by C,C1, C2, . . . , which may differ at

each appearance. DRd [0, 1] denotes the space of càdlàg functions from [0, 1] to Rd. If

x = (x1, ..., xm), we make use of the notation ||x|| =
m∑
j=1

|xj|. For a sequence of increasing

σ-fields Fk, we write PkZ = E(Z|Fk)−E(Z|Fk−1) for any E|Z| <∞, and Z ∈ Lp(p > 0)

if 〈Z〉p = (E|Z|p)1/p <∞. When no confusion occurs, we generally use the index notation

xnk(ynk) for xn,k(yn,k). Other notation is standard.
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2 Main results

In this section, we establish frameworks on convergence to stochastic integrals. Except

mentioned explicitly, the notation is the same as Section 1.

THEOREM 2.1. In addition to A1–A2, suppose that supk≥1E
(
||zk uk||

)
< ∞ and

d2n/n→∞. Then, for any continuous function g(s) on Rd and any function f(x) on Rd

satisfying a local Lipschitz condition2, we have

{
xn,bntc, yn,bntc,

1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=0

f(xnk)wk+1

}
⇒

{
Gt, Wt,

∫ 1

0

g(Gt)dt,

∫ 1

0

f(Gs) dWs

}
. (2.1)

As noticed in Liang, et al. (2015), the local Lipschitz condition is a minor requirement

and hold for many continuous functions. If supk≥1E
(
||uk||2 + |zk|2

)
<∞, it is natural to

have supk≥1E
(
||zk uk||

)
< ∞ by Hölder’s inequality. Theorem 2.1 indicates that, when

d2n/n→∞, the additional term zk in (1.3) do not modify the limit behaviors under minor

natural conditions on zk and f(x).

The condition d2n/n→∞ usually holds when the components of ut are long memory

processes. See Section 3.1 for example. The situation becomes very different if d2n/n →
σ2 < ∞ for a constant σ, which generally holds for short memory processes ut. In

this situation, as seen in the following theorem, zt has an essential impact on the limit

distributions.

Let Df(x) =
(
∂f
∂x1
, ..., ∂f

∂xd

)′
. The following additional assumptions are required for our

theory development.

A3. Df(x) is continuous on Rd and for any K > 0,

||Df(x)−Df(y)|| ≤ CK ||x− y||β, for some β > 0,

for max{||x||, ||y||} ≤ K, where CK is a constant depending only on K.

A4. (i) supk≥1E||uk||2 <∞ and supk≥1E|zk|2+δ <∞ for some δ > 0;

2That is, for any K > 0, there exists a constant CK such that, for all ||x||+ ||y|| < K,

|f(x)− f(y)| ≤ CK

d∑
j=1

|xj − yj |.
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(ii) Ezkuk → A0 = (A10, ..., Ad0), as k →∞;

Set λk = zkuk − Ezkuk.

(iii) supk≥2m ||E
(
λk | Fk−m

)
|| = oP (1), as m→∞; or

(iii)′ supk≥2mE ||E
(
λk | Fk−m

)
|| = o(1), as m→∞.

THEOREM 2.2. Suppose d2n/n → σ2, where σ2 > 0 is a constant. Suppose A1–A4

hold. Then, for any continuous function g(s) on Rd, we have

{
xn,bntc, yn,bntc,

1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=0

f(xnk)wk+1

}
⇒

{
Gt, Wt,

∫ 1

0

g(Gt)dt,

∫ 1

0

f(Gs) dWs + σ−1
d∑
j=1

Aj0

∫ 1

0

∂f

∂xj
(Gs) ds

}
. (2.2)

Remark 1. Condition A3 is similar to that in previous work. See, e.g, Liang, et al.

(2015) and Wang (2015). The moment condition supk≥1E|zk|2+δ <∞ for some δ > 0 in

A4 (i) is required to remove the effect of higher order from zk. In terms of the convergence

in (2.2), supk≥1E|zk|2 <∞ is essentially to be necessary. It is not clear at the moment if

the δ in A4 (i) can be reduced to zero.

Remark 2. If wk satisfies (1.2), we may write wk = ϕvk + zk−1 − zk, where zk =
∞∑
j=0

ϕ̄j vk−j with ϕ̄j =
∞∑

m=j+1

ϕm, i.e., wk can be denoted as in the structure of (1.3). See,

e.g., Phillips and Solo (1992). For this wk, Theorem 4.9 of Wang (2015) [also see Liang, et

al. 2015] established a result that is similar to (2.2) by assuming (among other conditions)

that, for any i ≥ 1,

∞∑
j=0

ϕ̄jE
(
uj+ivi | Fi−1

)
= A0, a.s., (2.3)

where A0 is a constant. Since it is required to be held for all i ≥ 1, (2.3) is difficult to be

verified for the uk to be a nonlinear stationary process such as uk = F (εk, εk−1, ...), even

in the situation that (εk, vk) are independent and identically distributed (i.i.d.) random

vectors. In comparison, A4 (ii) and (iii) [or (iii)′] can be easily applied to stationary

causal processes and mixing sequences, as seen in Section 3.

Remark 3. We have 1√
n

n∑
k=1

wk = 1√
n

n∑
k=1

vk + 1√
n
(z0 − zn), indicating that 1√

n

n∑
k=1

wk

provides an approximation to the martingale 1√
n

n∑
k=1

vk, under given conditions. However,
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1√
n

n∑
k=1

wk is not a semi-martingale as considered in Kurtz and Protter (1991), since we do

not require the condition supn≥1
1√
n

n∑
k=1

E|zk−1 − zk| < ∞. As a consequence, Theorems

2.1–2.2 provide an essential extension for the convergence to stochastic integrals, rather

than a simple corollary of the previous works.

3 Three useful corollaries

This section investigates the applications of Theorems 2.1 and 2.2. Section 3.1 consid-

ers the situation that uk is a long memory process and wk is a stationary causal process.

Section 3.2 contributes to the convergence for both uk and wk being stationary causal

processes. Finally, in Section 3.3, we investigate the impact of near-epoch dependence

in convergence to stochastic integrals. The detailed verification of assumptions for more

practical models such as GARCH and nonlinear autoregressive time series will be pre-

sented in Section 4.

3.1 Long memory process

Let (εi, ηi)i∈Z be i.i.d. random vectors with zero means and Eε20 = Eη20 = 1. Define a

long memory linear process uk by

uk =
∞∑
j=1

ψjεk−j,

where ψj ∼ j−µh(j), 1/2 < µ < 1 and h(k) is a function that is slowly varying at ∞. Let

F be a measurable function such that

wk = F (..., ηk−1, ηk), k ∈ Z,

is a well-defined stationary random variable with Ew0 = 0 and Ew2
0 < ∞. The wk is

known as a stationary causal process that has been extensively discussed in Wu (2005,

2007) and Wu and Min (2005).

Define xnk = 1
dn

k∑
j=1

uj and ynk = 1√
n

k∑
j=1

wj, where d2n = var(
n∑
j=1

uj). To investigate the

convergence of 1√
n

n−1∑
k=0

f(xnk)wk+1, we first introduce the following notation.

Write Fk = σ(εi, ηi, i ≤ k) and assume
∞∑
i=1

i 〈P0wi〉2 <∞. The latter condition implies
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that E(v2k + z2k) <∞, where

vk =
∞∑
i=0

Pkwi+k, zk =
∞∑
i=1

E(wi+k|Fk).

See Lemma 7 of Wu and Min (2005), namely, (35) there. All processes wk, vk and zk are

stationary satisfying the decomposition:

wk = vk + zk−1 − zk. (3.1)

We next let ρ = Eε0v0 =
∞∑
i=0

Eε0wi, Ω =

(
1 ρ
ρ Ev20

)
, (B1t, B2t) be a bivariate Brownian

motion with covariance matrix Ω t and Bt be a standard Brownian motion independent of

(B1t, B2t). We further define a fractional Brownian motion BH(t) depending on (Bt, B1t)

by

BH(t) =
1

A(d)

∫ 0

−∞

[
(t− s)d − (−s)d

]
dBs +

∫ t

0

(t− s)ddB1s,

where

A(d) =
( 1

2d+ 1
+

∫ ∞
0

[
(1 + s)d − sd

]2
ds
)1/2

.

After these notation, a simple application of Theorem 2.1 yields the following result

in the situation that uk is a long memory process and wk is a stationary causal process.

THEOREM 3.1. Suppose
∞∑
i=1

i〈P0wi〉2 <∞ and, for some ε > 0,

∞∑
i=1

i1+εE|wi − w∗i |2 <∞, (3.2)

where w∗k = F (..., η∗−1, η
∗
0, η1, ..., ηk−1, ηk) and {η∗k}k∈Z is an i.i.d. copy of {ηk}k∈Z and

independent of (εk, ηk)k∈Z. Then, for any continuous function g(s) and any function f(x)

satisfying a local Lipschitz condition, we have

{
xn,bntc, yn,bntc,

1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=0

f(xnk)wk+1

}
⇒

{
B3/2−µ(t), B2t,

∫ 1

0

g
[
B3/2−µ(t)

]
dt,

∫ 1

0

f
[
B3/2−µ(t)

]
dB2t

}
. (3.3)

We remark that condition
∞∑
i=1

i〈P0wi〉2 <∞ is close to be necessary. As shown in the

proof of Theorem 3.1 (see Section 6), condition (3.2) can be replaced by

E
[ ∞∑
i=0

Pk(wi+k − w∗i+k)
]2
→ 0, as k →∞,
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which is required to remove the correlation between ε−j and vj for j ≥ 1 so that a bivariate

process (BH(t), B2t) depending on (Bt, B1t, B2t) can be defined on DR2 [0, 1]. Without this

condition or equivalent, the limit distribution in (3.3) may have a different structure.

Condition (3.2) is quite weak, which is satisfied by most of the commonly used models.

Examples including nonlinear transformations of linear processes, nonlinear autoregressive

time series and GARCH model will be given in Section 4.

3.2 Causal processes

As in Section 3.1, suppose that (εi, ηi)i∈Z are i.i.d. random vectors with zero means

and Eε20 = Eη20 = 1. In this section, we let

uk = F1(..., εk−1, εk); wk = F2(..., ηk−1, ηk), k ∈ Z,

where F1 and F2 are measurable functions such that both uk and wk are well-defined

stationary random variables with Eu0 = Ew0 = 0 and Eu20 +Ew2
0 <∞, namely, both uk

and wk are stationary causal processes.

This section investigates the convergence of 1√
n

n−1∑
k=0

f(xnk)wk+1, where xnk = 1√
n

k∑
j=1

uj.

To this end, let Fk = σ(εi, ηi, i ≤ k),

z1k =
∞∑
i=1

E(ui+k|Fk), z2k =
∞∑
i=1

E(wi+k|Fk)

v1k =
∞∑
i=0

Pkui+k, v2k =
∞∑
i=0

Pkwi+k.

The following assumption is used in this section.

A5 (i)
∞∑
i=1

i〈P0ui〉2 <∞; (ii)
∞∑
i=1

i〈P0wi〉2+δ <∞, for some δ > 0;

Set λ̃k = ukz2k − Eukz2k.

(iii) supk≥2m |E
(
λ̃k | Fk−m

)
| = oP (1), as m→∞; or

(iii)′ supk≥2mE |E
(
λ̃k | Fk−m

)
| = o(1), as m→∞.

As noticed in Section 3.1, all uk, wk, zik and vik, i = 1, 2, are stationary, having the

decompositions:

uk = v1k + z1,k−1 − z1k, wk = v2k + z2,k−1 − z2k. (3.4)
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Furthermore A5 (i) [(ii), respectively] implies that E
(
v210 + z210

)
< ∞ [E

(
|v20|2+δ +

|z20|2+δ
)
<∞, respectively]. As a consequence, it follows that

E|ukz2k| <∞ and A0 := Eu0z20 =
∞∑
i=1

E(u0wi) <∞.

We further let Ω =

(
Ev210 Ev10v20
Ev10v20 Ev220

)
and (B1t, B2t) be a bivariate Brownian motion

with covariance matrix Ω t. We have the following result by making an application of

Theorem 2.2.

THEOREM 3.2. Suppose that A3 (with d = 1) and A5 hold. Then, for any continuous

function g(s), we have

{
xn,bntc, yn,bntc,

1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=0

f(xnk)wk+1

}
⇒

{
B1t, B2t,

∫ 1

0

g(B1s)ds,

∫ 1

0

f(B1s) dB2s + A0

∫ 1

0

f ′[B1s]ds
}
, (3.5)

where ynk = 1√
n

k∑
j=1

wj.

Theorem 3.2 provides a quite general result for both ut and wt are causal processes.

In a related research, using a quite complicated technique originated from Jacod and

Shiryaev (2003), Lin and Wang (2015) considered the specified situation that ut = wt.

In comparison, by using Theorem 2.2, our proof is quite simple, as seen in Section 6.

Furthermore our condition A5 is easy to verify. An illustration is given in the following

corollary, investigating the case that uk is a short memory linear process and wk is a

general stationary causal process.

COROLLARY 3.1. Suppose that ut =
∞∑
j=0

ϕjεt−j, where
∞∑
i=1

i|ϕi| < ∞. Result (3.5)

holds true, if, in addition to A3 (with d = 1),

∞∑
k=1

k〈wk − w
′

k〉2+δ <∞, for some δ > 0, (3.6)

where w
′

k = F2(..., η−1, η
∗
0, η1, ..., ηk) and {η∗k}k∈Z is an i.i.d. copy of {ηk}k∈Z and indepen-

dent of (εk, ηk)k∈Z.

Condition (3.6) is required to establish A5 (ii). When ut =
∞∑
j=0

ϕjεt−j with
∞∑
i=1

i|ϕi| <

∞, A5 (iii) can be established under less restrictive condition:
∞∑
k=1

k〈wk − w
′

k〉2 < ∞ as
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seen in the proof of Corollary 3.1 given in Section 6. Some examples for wk satisfying

(3.6), including nonlinear transformations of linear processes, nonlinear autoregressive

time series and GARCH model are discussed in Section 4.

3.3 Near-epoch dependence

Let {Ak}k≥1 be a sequence of random vectors whose coordinates are measurable func-

tions of another random vector process {ηk}k∈Z. Define F ts = σ(ηs, ..., ηt) for s ≤ t and

denote by Ft for F t−∞. As in Davidson (1994), {Ak}k≥1 is said to be near-epoch depen-

dence on {ηk}k∈Z in LP -norm for p > 0 if

〈At − E
(
At | F t+mt−m

)
〉p ≤ dt ν(m),

where dt is a sequence of positive constants, and ν(m)→ 0 as m→∞. For short, {Ak}k≥1
is said to be LP -NED of size −µ if dt ≤ 〈At〉p and ν(m) = O(m−µ−ε) for some ε > 0.

For k ≥ 1, let xnk = 1√
n

k∑
j=1

uj and ynk = 1√
n

k∑
j=1

wj, where (uk, wk)k≥1 defined on Rd+1

is a stationary process. This section investigates the convergence of 1√
n

n−1∑
k=0

f(xnk)wk+1 in

the following conditions:

A6 (i) ηk = (ηk1, ..., ηkm), k ∈ Z, is α-mixing of size −6 3;

(ii) (uk)k≥1 is L2-NED of size −1 and uk is adapted to Fk;

(iii) (wk)k≥1 is L2+δ-NED of size −1 for some δ > 0;

(iv) E(u0, w0) = 0 and E
(
||u0||4 + |w0|4

)
<∞.

Due to the stationarity of (uk, wk)k≥1, it follows easily from A6 that

Ω := lim
n→∞

1

n

n∑
i,j=1

E(M ′
iMj) =

(
Ω1 ρ
ρ′ Ω2

)
, (3.7)

where Mk = (uk, wk) and

Ω1 = Eu
′

0u0 + 2
∞∑
i=1

Eu
′

0ui, Ω2 = Ew2
0 + 2

∞∑
i=1

Ew0wi,

ρ = Eu
′

0w0 +
∞∑
i=1

(Eu
′

0wi + Eu
′

iw0).

3For a definitions of α-mixing, we refer to Davidson (1994).
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For a proof of (3.7), see Section 6. In terms of (3.7) and A6, Corollary 29.19 of Davidson

(1994, Page 494) yields that, as n→∞,(
xn,[nt], yn,[nt]

)
⇒ (B1t, B2t), (3.8)

where (B1t, B2t) is a d+1-dimensional Brownian motion with covariance matrix Ω t. Now,

by using Theorem 2.2, we have the following theorem.

THEOREM 3.3. Suppose A3 and A6 hold. For any continuous function g(s) on Rd,

we have {
xn,bntc, yn,bntc,

1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=0

f(xnk)wk+1

}
⇒

{
B1t, B2t,

∫ 1

0

g(B1s)ds,

∫ 1

0

f(B1s) dB2s +

∫ 1

0

A0 Df [B1s]ds
}
, (3.9)

where A0 =
∞∑
i=1

E(u0wi).

Theorem 3.3, under less moment conditions, provides an extension of Theorem 3.1 in

Liang, et al. (2005) [see also Theorem 4.11 of Wang (2005)] from α−mixing sequence

to near-epoch dependence. We mentioned that NED approach also allows for our results

to be used in many practical important models such as bilinear, GARCH, threshold

autoregressive models, etc. For the details, we refer to Davidson (2002).

4 Examples: verifications of (3.2) and (3.6)

As in Section 3.1 and 3.2, define a stationary causal process by

wk = F (..., ηk−1, ηk), k ∈ Z,

where ηi, i ∈ Z, are i.i.d. random variables with mean zero and Eη20 = 1 and F is a

measurable function such that Ew0 = 0 and Ew2
0 <∞.

In this section, we verify (3.2) and (3.6) for some practical important examples, includ-

ing linear processes, nonlinear transformations of linear processes, nonlinear autoregressive

time series and GARCH model. These examples partially come from Wu (2005) and Wu

and Min (2005). For the convenience of reading, except mentioned explicitly, we use the

notation as in Section 3, in particular, we recall the notation that {η∗k}k∈Z is an i.i.d. copy

of {ηk}k∈Z and independent of (εk, ηk)k∈Z, and

w∗k = F (..., η∗−1, η
∗
0, η1, ..., ηk−1, ηk) and w′k = F (..., η−1, η

∗
0, η1, ..., ηk−1, ηk).
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We mention that, due to the stationarity of wk and i.i.d. properties of ηk,

E|P0wn|p ≤ E|wn − w′n|p

≤ Cp
(
E|wn − w∗n|p + E|wn+1 − w∗n+1|p

)
, (4.1)

for any p ≥ 1, where Cp is a constant depending only on p. As a consequence, both (3.2)

and (3.6) hold if we can prove

E|wn − w∗n|2+δ ≤ C n−4−3δ, (4.2)

for some δ > 0 and all n sufficiently large.

4.1 Linear process and its nonlinear transformation

Consider a linear process wk defined by wk =
∞∑
j=0

θjηk−j with Eη0 = 0. Routine

calculation show that wk − w′k = θk(η0 − η∗0) and wk − w∗k =
∞∑
j=0

θj+k(η−j − η∗−j). Hence,

• if
∞∑
j=1

j|θj| <∞,
∞∑
j=1

j2+δθ2j <∞ and E|η0|2+δ <∞ for some δ > 0,

then (3.2) and (3.6) hold true.

Indeed (3.6) follows from
∞∑
k=1

k〈wk−w′k〉2+δ ≤
∞∑
k=1

k · |θk| · 〈η0−η∗0〉2+δ <∞; and (3.2) from

∞∑
i=1

i1+δ〈wi − w∗i 〉22 =
∞∑
i=1

i1+δE[
∞∑
j=i

θj(ηi−j − η∗i−j)]2

≤
∞∑
i=1

i1+δ
∞∑
j=i

θ2jE[(η0 − η∗0)]2 ≤ C
∞∑
j=1

j2+δθ2j <∞.

The result above can be easily extended to a nonlinear transformation of wk. To see

the claim, let

hk = G(wk)− EG(wk),

where G is a Lipschitz continuous function, i.e., there exists a constant C <∞ such that

|G(x)−G(y)| ≤ C|x− y|, for all x, y ∈ R. (4.3)

It is readily seen that (3.2) and (3.6) still hold true with the wk being replaced by hk by

using the following facts:

|hk − h′k| ≤ C|wk − w′k| and |hk − h∗k| ≤ C|wk − w∗k|.

2
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4.2 Nonlinear autoregressive time series

Let wn be generated recursively by

wn = R(wn−1, ηn), n ∈ Z, (4.4)

where R is a measurable function of its components. Let

Lη0 = sup
x 6=x′

|R(x, η0)−R(x′, η0)|
|x− x′|

be the Lipschitz coefficient. Suppose that, for some q > 2 and x0,

E(logLη0) < 0 and E(Lqη0 + |x0 −R(x0, η0)|q) <∞. (4.5)

Lemma 2 (i) of Wu and Min (2005) proved that there exist C = C(q) > 0 and rq ∈ (0, 1)

such that, for all n ∈ N,

E|wn − w∗n|q ≤ Crnq . (4.6)

Since (4.6) implies (4.2), the wn defined by (4.4) satisfies (3.2) and (3.6).

We mention that the wn defined by (4.4) is a nonlinear autoregressive time series

and the condition (4.5) can be easily verified by many popular nonlinear models such as

threshold autoregressive (TAR), bilinear autoregressive, ARCH and exponential autore-

gressive (EAR) models. The following illustrations come from Examples 3-4 in Wu and

Min (2005).

TAR model: wn = φ1 max(wn−1, 0) + φ2 max(−wn−1, 0) + ηn. Simple calculation

implies that if Lη0 = max(|φ1|, |φ2|) < 1 and E(|η0|q) < ∞ for some q > 0, then (4.5) is

satisfied.

Bilinear model: wn = (α1 + β1ηn)wn + ηn, where α1 and β1 are real parameters and

E(|η0|q) <∞ for some q > 0. Note that Lη0 = |α1 +β1η0|. (4.5) holds if only E(Lqη0) < 1.

2

4.3 GARCH model

Let {wt}t≥1 be a GARCH(l,m) model defined by

wt =
√
htηt and ht = α0 +

m∑
i=1

αiw
2
t−i +

l∑
j=1

βjht−j, (4.7)

where ηt ∼ i.i.d. with Eη1 = 0 and Eη21 = 1, α0 > 0, αj ≥ 0 for 1 ≤ j ≤ m, βi ≥ 0

for 1 ≤ i ≤ l, and h0 = Op(1). It is well-known that, if
m∑
i=1

αi +
l∑

j=1

βj < 1, then wt

13



is a stationary process having the following representation (see, e.g., Theorem 3.2.14 in

Taniguchi and Kakizawa (2000)):

Yt = MtYt−1 + bt with Mt = (θη2t , e1, . . . , em−1, θ, em+1, . . . , el+m−1)
T ,

where Yt = (w2
t , . . . , w

2
t−m+1, ht, . . . , ht−l+1)

T and bt = (α0η
2
t , 0, . . . , 0, α0, 0, . . . , 0)T and

θ = (α1, . . . , αm, β1, . . . , βl)
T ; ei = (0, . . . , 0, 1, 0, . . . , 0)T is the unit column vector with

ith element being 1, 1 ≤ i ≤ l +m.

Suppose that E|η0|4 < ∞ and ρ[E(M
⊗

2
t )] < 1, where ρ(M) is the largest eigenvalue

of the square matrix M and
⊗

is the usual Kronecker product. Proposition 3 in Wu and

Min (2005) implies for some C <∞ and r ∈ (0, 1),

E(|wn − w∗n|4) ≤ Crn. (4.8)

Since (4.8) implies (4.2), the wn defined by (4.7) satisfies (3.2) and (3.6). 2

5 Conclusion

On weak convergence to stochastic integrals, we have shown that the commonly used

martingale and semimartingale structures can be extended to include the long memory

processes, the causal processes and the near-epoch dependence in the innovations. Our

frameworks can be applied to GARCH, TAR, bilinear and other nonlinear models. In

econometrics with non-stationary time series, it is usually necessary to rely on the con-

vergence to stochastic integrals. The authors hope these results derived in this paper

prove useful in the related areas, particularly, in nonlinear cointegrating regression where

endogeneity and nonlinearity play major roles.

6 Proofs

This section provides the proofs of all theorems. Except mentioned explicitly, the

notation used in this section is the same as in previous sections.
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Proof of Theorem 2.1. We may write

1√
n

n−1∑
k=1

f(xnk)wk+1 =
1√
n

n−1∑
k=1

f(xnk)(vk+1 + zk − zk+1)

=
1√
n

n−1∑
k=1

f(xnk)vk+1 +
1√
n

n−1∑
k=1

[
f
(
xnk
)
− f

(
xn,k−1

)]
zk + op(1)

=
1√
n

n−1∑
k=1

f(xnk)vk+1 +Rn + oP (1), say. (6.1)

Write ΩK = {xni : max1≤i≤n ||xni|| ≤ K}. Since f satisfies the local Lipschitz condition,

it is readily seen from supk E||zkuk|| <∞ that, as n→∞,

E|Rn|I(ΩK) ≤ CK
1√
ndn

n∑
k=1

E||zkuk|| ≤ CK (n/d2n)1/2 → 0.

This implies that Rn = oP (1) due to P (ΩK)→ 1, as K →∞. Theorem 2.1 follows from

Theorem 1.1. 2

Proof of Theorem 2.2. We may write

1√
n

n−1∑
k=1

f(xnk)wk+1 =
1√
n

n−1∑
k=1

f(xnk)(vk+1 + zk − zk+1)

=
1√
n

n−1∑
k=1

f(xnk)vk+1 +
1√
n

n−1∑
k=1

[
f
(
xnk
)
− f

(
xn,k−1

)]
zk + op(1)

=
1√
n

n−1∑
k=1

f(xnk)vk+1 +
1√
n

n−1∑
k=1

(xnk − xn,k−1)Df(xn,k−1)zk +R1(n) + op(1)

=
1√
n

n−1∑
k=1

f(xnk)vk+1 +
1√
ndn

n−1∑
k=1

E(zkuk)Df(xn,k−1) +R1(n) +R2(n) + op(1),(6.2)

where the remainder terms are

R1(n) =
1√
n

n−1∑
k=1

zk [f(xnk)− f(xn,k−1)− (xnk − xn,k−1)Df(xn,k−1)]

R2(n) =
1√
ndn

n−1∑
k=1

[zkuk − E(zkuk)]Df(xn,k−1).

By virtue of Theorem 1.1, to prove (2.2), it suffices to show that

Ri(n) = oP (1), i = 1, 2. (6.3)

15



To prove (6.3), write ΩK = {xni : max1≤i≤n ||xni|| ≤ K}. Note that A3 implies that,

for any K > 0 and max{||x||, ||y||} ≤ K, ||Df(x)|| ≤ CK and

|f(x)− f(y)− (x− y) Df(x)| ≤ CK ||x− y||1+β
′
,

where β′ = min{δ/(2 + δ), β} for δ > 0 given in A4(i). Then,

E|R1(n)|I
(
ΩK

)
≤ CK√

n

n∑
k=1

E
(
||xnk − xn,k−1||1+β

′ |zk|
)

≤ CK n
−(1+β′/2)

n∑
k=1

E(||uk||1+β
′ |zk|) = O(n−β

′/2), (6.4)

where we have used the fact that, due to A4(i),

sup
k≥1

E(||uk||1+β
′ |zk|) ≤ sup

k≥1

(
E||uk||2

)(1+β′)/2
sup
k≥1

(
E|zk|2+δ

)1/(2+δ)
<∞.

This implies that R1(n) = OP (n−β
′/2) due to P (ΩK)→ 1 as K →∞.

It remains to show R2(n) = oP (1). To this end, let m = mn → ∞ and mn ≤ log n.

By recalling λk = zkuk − E(zkuk), we have

R2(n) =
1

nσ

2m∑
k=1

λkDf(xn,k−1) +
1

nσ

n−1∑
k=2m

λkDf(xn,k−m−1)

+
1

nσ

n−1∑
k=2m

λk
[
Df(xn,k−1)−Df(xn,k−m−1)

]
= R21(n) +R22(n) +R23(n).

As in the proof of (6.4), it is readily seen from A3 that

E|R21(n)|I
(
ΩK

)
≤ CKmn

−1 sup
k≥1

E||λk|| ≤ CKn
−1 log n,

E|R23(n)|I
(
ΩK

)
≤ CKn

−1
n∑
k=1

E
(
||xn,k−1 − xn,k−m−1||β

′ ||λk||
)

≤ CKn
−1−β′/2

n∑
k=1

k−1∑
j=k−m

E(||uj||β
′||λk||) ≤ CKn

−β′/2 log n,

where β′ = min{δ/(2 + δ), β}. Hence R21(n) + R23(n) = oP (1) due to P (ΩK) → 1 as

K →∞. To estimate R22(n), write

IR1(n) =
1

nσ

n−1∑
k=2m

[
λk − E(λk | Fk−m−1)

]
x∗k,

IR2(n) =
1

nσ

n−1∑
k=2m

E(λk | Fk−m−1)x∗k,
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where x∗k = Df(xn,k−m−1)I(max1≤j≤k−m−1 ||xnj|| ≤ K). Due to A4 (iii) and A3,

|IR2(n)| ≤ CK
n

n∑
k=1

||E(λk | Fk−m−1)|| ≤ sup
k≥2m

||E(λk | Fk−m−1)|| = oP (1).

Similarly, if A4 (iii)′ and A3 hold, then

E|IR2(n)| ≤ CK
n

n∑
k=1

E||E(λk | Fk−m−1)|| ≤ sup
k≥2m

E ||E(λk | Fk−m−1)|| = o(1),

which yields |IR2(n)| = oP (1). On the other hand, we have

IR1(n) =
m∑
j=0

IR1j(n),

where

IR1j(n) =
1

nσ

n−1∑
k=2m

[
E(λk | Fk−j)− E(λk | Fk−j−1)

]
x∗k.

Let λ1k(j) =
[
E(λk | Fk−j)− E(λk | Fk−j−1)

]
x∗k. Note that, for each j ≥ 0,

IR1j(n) =
1

nσ

n−1∑
k=2m

λ1k(j)

is a martingale with supk≥1E||λ1k(j)||1+δ ≤ C supk≥1E||λk||1+δ <∞ for some δ > 0. The

classical result on strong law for martingale (see, e.g., Hall and Heyde (1980, Theorem

2.21, Page 41)) yields

IR1j(n) = oa.s(log−2 n),

for each 0 ≤ j ≤ m ≤ log n, implying IR1(n) =
m∑
j=0

IR1j(n) = oP (1).

We now have R22(n) = oP (1) due to P (ΩK)→ 1 as K →∞, and the fact that, on Ωk,

R22(n) =
1

nσ

n−1∑
k=2m

λkx
∗
k = IR1(n) + IR2(n) = oP (1).

Combining these results, we prove R2(n) = oP (1) and also complete the proof of (2.2). 2

Proof of Theorem 3.1. Except mentioned explicitly, notation used in this section is

the same as in Section 3.1. First note that

d2n = var(
n∑
j=1

uj) ∼ cµ n
3−2µh2(n), with cµ =

1

(1− µ)(3− 2µ)

∫ ∞
0

x−µ(x+ 1)−µdx,
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i.e., d2n/n → ∞. See, e.g., Wang, Lin and Gullati (2003). By recalling (3.1) and using

Theorem 2.1, Theorem 3.1 will follow if we may verify A2, i.e., on DR2 [0, 1],

( 1

dn

[nt]∑
j=1

uj,
1√
n

[nt]∑
j=1

wj
)
⇒

(
B3/2−µ(t), B2t

)
. (6.5)

We next prove (6.5). Since {(εk, vk),Fk}k≥1 forms a stationary martingale difference

with covariance matrix Ω, an application of the classical martingale limit theorem [see,

e.g., Theorem 3.9 of Wang (2015)] yields that

( 1√
n

[nt]∑
j=1

εj,
1√
n

[nt]∑
j=1

vj
)
⇒
(
B1t, B2t

)
, (6.6)

on DR2 [0, 1]. Recall that, for k ≥ 1,

w∗k = F (..., η∗−1, η
∗
0, η1, ..., ηk−1, ηk),

where {η∗k}k∈Z is an i.i.d. copy of {ηk}k∈Z and independent of (εk, ηk)k∈Z. Let v∗k =
∞∑
i=0

Pkw∗i+k. Note that ε−i is independent of (εi, v
∗
i ) for i ≥ 1. If we have the condition:

1√
n

max
1≤k≤n

∣∣∣ k∑
j=1

(vj − v∗j )
∣∣∣ = oP (1), (6.7)

it follows from (6.6) that

( 1√
n

[nt]∑
j=1

ε−j,
1√
n

[nt]∑
j=1

εj,
1√
n

[nt]∑
j=1

vj
)
⇒
(
Bt, B1t, B2t

)
, (6.8)

on DR3 [0, 1], where Bt is a standard Brownian motion independent of
(
B1t, B2t

)
. Note

that

max
1≤k≤n

∣∣∣ 1√
n

k∑
j=1

wj −
1√
n

k∑
j=1

vj

∣∣∣ ≤ max
1≤k≤n

|zk|/
√
n = oP (1).

Result (6.8) implies that

( 1√
n

[nt]∑
j=1

ε−j,
1√
n

[nt]∑
j=1

εj,
1√
n

[nt]∑
j=1

wj
)
⇒
(
Bt, B1t, B2t

)
,

on DR3 [0, 1]. As a consequence, (6.5) follows from the continuous mapping theorem and

similar arguments to those in Wang, Lin and Gullati (2003).
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It remains to show that (3.2) implies (6.7). In fact, by noting {vk − v∗k,Fk}k≥1 forms

a martingale difference, it is readily seen from martingale maximum inequality that, for

any ε > 0,

P
(

max
1≤k≤n

∣∣∣ k∑
j=1

(vj − v∗j )
∣∣∣ ≥ ε

√
n
)
≤ 2

nε2

n∑
j=1

E(vj − v∗j )2

≤ 2

nε2

n∑
k=1

E
[ ∞∑
i=0

Pk(wi+k − w∗i+k)
]2
. (6.9)

By Hölder’s inequality and (3.2), we have

E
[ ∞∑
i=0

Pk(wi+k − w∗i+k)
]2
≤

∞∑
i=0

(i+ k)−1−ε
∞∑
i=0

(i+ k)1+εE
[
Pk(wi+k − w∗i+k)

]2
≤ C

∞∑
i=k

i1+εE(wi − w∗i )2 → 0,

as k →∞. Taking this estimate into (6.9), we yield (6.7) and also complete the proof of

Theorem 3.1. 2

Proof of Theorem 3.2. As in the proof of Theorem 3.1, by recalling (3.4) and using

Theorem 2.2, we only need to verify A2, i.e., on DR2 [0, 1],

( 1√
n

[nt]∑
k=1

uk,
1√
n

[nt]∑
k=1

wk
)
⇒ (B1t, B2t). (6.10)

In fact, by noting that
{

(v1k, v2k),Fk
}
k≥1 forms a stationary martingale difference with

E
(
v210 + v220

)
<∞, the classical martingale limit theorem [see, e.g., Theorem 3.9 of Wang

(2015)] yields that

( 1√
n

[nt]∑
k=1

v1k,
1√
n

[nt]∑
k=1

v2k
)
⇒ (B1t, B2t),

on DR2 [0, 1], where (B1t, B2t)t≥0 is a 2-dimensional Gaussian process with zero means,

stationary and independent increments, and covariance matrix:

Ωt = lim
n→∞

1

n

[nt]∑
k=1

cov
[(v1k

v2k

)(
v1k, v2k

)]
= Ω t.

As a consequence, we have

(
xn,[nt], yn,[nt]

)
=

( 1√
n

[nt]∑
k=1

v1k,
1√
n

[nt]∑
k=1

v2k
)

+Rn,t

⇒ (B1t, B2t),
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due to the fact that, by recalling E(|z10|2 + |z20|2) <∞,

sup
0≤t≤1

||Rn,t|| ≤ max
1≤k≤n

(|z1k|+ |z2k|)/
√
n = oP (1).

This yields (6.10), and also completes the proof of Theorem 3.2. 2

Proof of Corollary 3.1. We only need to verify A5. First of all, simple calculation

shows that Pkui+k = ϕiεk. As a consequence,
∞∑
i=1

i 〈P0ui〉2 <∞, that is, A5 (i) holds.

Due to (4.1), A5 (ii) is implied by (3.6). It remains to show that A5 (iii) holds true

if
∞∑
t=1

t 〈wt − w
′
t〉2 <∞, as the latter is a consequence of (3.6). In fact, by letting

j∑
i=k

= 0

if j < k, we may write

E
(
λ̃k | Fk−m

)
=

k−m∑
j=−∞

Pj(ukz2,k) =
∞∑
i=0

ϕi

∞∑
j=m

Pk−j(εk−iz2,k)

=
∞∑
i=0

ϕi
(max{m,i}∑

j=m

+
∞∑

j=max{m,i}+1

)
P0(εj−iz2,j)

=
∞∑
i=0

ϕi

max{m,i}∑
j=m

P0(εj−iz2,j) +
∞∑
i=0

ϕi

∞∑
j=max{m,i}+1

∞∑
t=1

P0(εj−iwt+j)

:= A1m + A2m. (6.11)

It is readily seen from E|z2k|2 = E|z20|2 <∞ that

E|A1m| ≤ 2
∞∑
i=m

i |ϕi|(Eε20)1/2 (Ez220)
1/2 → 0,

as m → ∞. As for A2m, by noting P0(εj−iwt+j) = E
[
εj−i(wt+j − w

′
t+j) | F0

]
whenever

j > i, we have

E|A2m| ≤
∞∑
i=0

|ϕi|
∞∑

j=m+1

∞∑
t=1

E|εj−i(wt+j − w
′

t+j)|

≤ C
∞∑

j=m+1

∞∑
t=1+j

〈wt − w
′

t〉2

≤ C

∞∑
t=m

t 〈wt − w
′

t〉2 → 0,

as m→∞. Taking these estimates into (6.11), we obtain

E
[

sup
k≥2m

|E
(
λ̃k | Fk−m

)
|
]
≤ E|A1m|+ E|A2m| → 0,
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implying A5 (iii). 2

Proof of Theorem 3.3. First note that, under A6, it follows from Theorem 17.5 of

Davidson (1994) that wk, k ∈ Z, is a stationary L2+δ-mixingale of size −1 with constant

〈w0〉4,

〈E(wk | Fk−m)〉2+δ ≤ C 〈w1〉4m−γ, (6.12)

〈wk − E(wk | Fk+m)〉2+δ ≤ C 〈w1〉4m−γ, (6.13)

hold for all k, m ≥ 1 and some γ > 1. Furthermore, by Theorem 16.6 of Davidson (1994),

we may write

wk = vk + zk−1 − zk,

where, as in Section 3.2,

vk =
∞∑
i=0

Pkwi+k, zk =
∞∑
i=1

E(wi+k|Fk).

It is readily seen that both vk and zk are stationary and (vk,Fk)k≥1 forms a martingale

difference with Ev21 ≤ 2Ew2
1 + 4Ez21 < ∞, since, by (6.12), the following result holds

(implying Ez21 <∞):

〈zk,j〉2+δ ≤
∞∑

i=j+1

〈E(wi|F0)〉2+δ ≤ C〈w1〉4
∞∑

i=j+1

i−γ <∞, (6.14)

for any j ≥ 0, where zk,j =
∞∑

i=j+1

E(wi+k|Fk). By (6.12) and (6.13), for any k ≥ 1, we also

have

|E(w1wk)| ≤ E
(
|w1 − w∗1| |wk|

)
+ E

[
|w∗1| |E(wk | Fk/2)|

]
≤ 〈w1〉2

{
〈w1 − w∗1〉2 + 〈E(wk | Fk/2)〉2

}
≤ C 〈w1〉2〈w1〉4 k−γ, (6.15)

where w∗1 = E(w1 | Fk/2). The result (6.15) will be used later.

Since wk has structure (1.3) with the vk satisfying A1, (3.8) implies A2 and A6 (iii)

and (6.14) with j = 0 imply A4 (i), by using Theorem 2.2, Theorem 3.3 will follow if we

prove (3.7) and

sup
k≥2m

E||E
(
λk | Fk−m

)
|| → 0, (6.16)
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where λk = zkuk − Ezkuk, as m→∞.

By recalling the stationarity of (uk, wk)k≥1, to prove (3.7), it suffices to show that Ω1,Ω2

and ρ are finite. In fact (6.15) implies that |Ω2| ≤ Ew2
0 + C

∞∑
j=1

j−γ < ∞. Similarly, we

may prove that (uk)k≥1 is a stationary L2-mixingale of size −1 with constant 〈u0〉4. As a

consequence, the same argument yields |Ω1| <∞ and |ρ| <∞.

In order to prove (6.16), let z∗k = zk − zk,αm =
αm∑
i=1

E(wi+k|Fk),

λk,1 = z∗kuk − Ez∗kuk, λk,2 = zk,αmuk − Ezk,αmuk,

where αm →∞ and zk,αm is given as in (6.14). Due to (6.14), we have

E||E
(
λk,2 | Fk−m

)
|| ≤ E||λk,2|| ≤ 2 〈zk,αm〉2 〈u0〉2 → 0, (6.17)

as m → ∞, uniformly for any k ≥ 2m and any integer sequence αm → ∞. By recalling

that uk is adapted to Fk and Fk−m ⊂ Fk, we may write

E||E
(
λk,1 | Fk−m

)
|| ≤

αm∑
i=1

E||E
(
Ak | Fk−m

)
||,

where Ak = ukwi+k − Eukwi+k. Since both uk and wk are L2-NED of size −1, Corollary

17.11 of Davidson (1994) implies that Ak is L1-NED of size −1. As a consequence, as in

the proof of (6.12), there exist a sequence of vm such that vm → 0 and

E||E
(
Ak | Fk−m

)
|| ≤ C vm.

Hence, uniformly for k ≥ 2m,

E||E
(
λk,1 | Fk−m

)
|| ≤ C αmvm → 0,

as m → ∞, by taking αm to be such an integer sequence that αm → ∞ and αmvm → 0.

This, together with (6.17), yields

sup
k≥2m

E||E
(
λk | Fk−m

)
|| ≤ C (αmvm + 2 〈zk,αm〉2 〈u0〉2)→ 0,

as m→∞, as required. The proof of Theorem 3.3 is now complete. 2
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