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Abstract. We study graded nonlocal q-vertex algebras and we prove that they can be

generated by certain sets of vertex operators. As an application, we consider the family

of graded nonlocal q-vertex algebras Vc,1, c ≥ 1, associated with the principal subspaces

W (cΛ0) of the integrable highest weight Uq(ŝl2)-modules L(cΛ0). Using quantum integra-

bility, we derive combinatorial bases for Vc,1 and compute the corresponding character

formulae.

Introduction

In their work [LP], J. Lepowsky and M. Primc found the, so-called integrability condition

for the affine Kac-Moody Lie algebra ŝl2,

xα(z)c+1 = 0 (0.1)

on a level c integrable ŝl2-module. In general, (0.1) holds on an arbitrary level c integrable

ĝ-module, when the simple root α is replaced by the maximal root of the untwisted affine

Kac-Moody Lie algebra ĝ. Relation (0.1) led to a construction of combinatorial bases for

integrable highest weight ŝl2-modules (cf. [FKLMM],[MP]) and, consequently, to a new se-

ries of combinatorial Rogers-Ramanujan-type identities. Furthermore, integrability relations

played an important role in the construction of monomial bases for certain substructures

of ĝ-modules such as principal subspaces (cf. [FS],[G],[Bu1],[Ka]) and Feigin-Stoyanovsky’s

type subspaces (cf. [P1],[P2],[JP],[T]). For more information on principal subspaces the

reader may consult, for example, the papers [CLM1]–[CLM3],[S1],[S2] and the references

therein. Using Drinfeld realization of quantum affine algebra Uq(ŝln+1) (see [D]) and Frenkel-

Jing realization of its integrable highest weight modules (see [FJ]) J. Ding and T. Miwa

found in [DM] quantum integrability relations,

x±i (z1)x
±
i (z2) · · · x±i (zc+1) = 0 if z1/z2 = z2/z3 = . . . = zc/zc+1 = q∓2, (0.2)

on a level c integrable Uq(ŝln+1)-module.

In this paper, we continue our research on vertex algebraic structures arising from Frenkel-

Jing operators x±1 (z) for Uq(ŝl2), which was initiated in [Ko3]. So far there were several

fruitful approaches to associating vertex algebra-like theories with the various quantum

objects, such as quantum affine algebras or Yangians, which resulted in some fundamental

results and important constructions (cf. [AB],[B],[EK],[FR],[L1]–[L4]). However, motivated

by the role of integrability (0.1) in the representation theory of the affine Kac-Moody Lie

algebras, we introduce graded nonlocal q-vertex algebras, certain new structures which are

designed to make use of quantum integrability (0.2).
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The paper is organized as follows. In Section 1, we establish the notation and recall some

well-known results from the theory of quantum affine algebras. Although the exposition is

to a great extent similar to the preliminary section in [Ko3], we decided to include it in

order to make this paper as self-contained as possible.

In Section 2, we introduce the notion of graded nonlocal q-vertex algebra, which was

motivated by [BK] and [L1]. Roughly speaking, graded nonlocal q-vertex algebra is a triple

(V, Y,1), where V =
∐

u∈Z V(u) is a vector space over field F ⊃ C(q) of characteristic zero,

which satisfies all the axioms of vertex algebra (cf. [LL]) except Jacobi identity, which is

replaced by associativity,

Y (a, z0 + z2)Y (b, z2q
u)c = Y (Y (a, z0)b, z2)c (0.3)

for all a ∈ V(u), b, c ∈ V , u ∈ Z. The variables z0 and z2 in (0.3) satisfy the noncommutative

constraints

z2z0 = qz0z2

and certain natural grading restrictions are imposed on V and Y . Naturally, we expect that

in a more general setting a weaker form of (0.3) should be regarded.

For a vector space L over field F ⊃ C(q) of characteristic zero define

E(L)t = Hom(L,L((z)))⊗ F[t].

Our goal is to construct graded nonlocal q-vertex algebras generated by certain subsets of

E(L)t. The space E(L)t is considered instead of E(L) = Hom(L,L((z))) because it allows

us to efficiently introduce the rth products, r ∈ Z, among vertex operators, which utilize

quantum integrability (0.2). The products are defined for the operators satisfying a certain

technical requirement, quasi-commutativity, which may be considered as a more restrictive

version of quasi-compatibility introduced by H.-S. Li (cf. [L1]). The main result in this

section is the following theorem:

Theorem 2.14. Let S be a quasi-commutative subset of E(L)t. There exists a unique small-

est graded nonlocal q-vertex algebra V ⊆ E(L)t such that S ⊆ V . Furthermore, if S consists

of homogeneous elements, we have

V = span {a1(z, t)r1 · · · ak(z, t)rk 1 : aj(z, t) ∈ S, rj < 0, j = 1, ..., k, k ∈ Z≥0} .

As an application of Theorem 2.14 we construct graded nonlocal q-vertex algebras gener-

ated by quantum current operators x+i (z) or x−i (z) acting on an arbitrary restricted Uq(ĝ)-

module, where ĝ is an affine Kac-Moody Lie algebra of type (ADE)(1). Some of the ideas

and results in this section rely upon Li’s theory of nonlocal vertex algebras (cf. [L1],[L2])

even though different products and structures are considered.

In Section 3, we study graded nonlocal q-vertex algebras Vc,1, c ∈ Z>0, generated by the

operator x(z, t) := x+1 (z)⊗t ∈ E(L)t for Uq(ŝl2), which acts on the integrable Uq(ŝl2)-module

L = L(Λ0)
⊗c ⊃ L(cΛ0) of level c. Using (quantum) quasi-particles xm(z, t), m = 1, ..., c,

from [Ko1] we define the following subset of Vc,1:

Bc,1 =
{
xm1(z, t)r1xm2(z, t)r2 . . . xmk(z, t)rk 1 :

r1, ..., rk−1 ≤ −2, rk ≤ −1, 1 ≤ mj ≤ c, j = 1, ..., k, k ∈ Z≥0
}
,

where 1 is the vacuum vector in Vc,1. By employing the second part of Theorem 2.14 and

Koyama’s realization of intertwining operators for Uq(ŝl2) (see [Koy]), we prove the main

result of this section:
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Theorem 3.10. The set Bc,1 forms a basis for Vc,1.

For c = 1 the similar basis was already found in [Ko3]. However, this was a basis for W1,q,

a certain subspace of a much bigger (nongraded) nonlocal q-vertex algebra generated by

x(z) = x+1 (z) ∈ E(L(Λ0)) (which satisfied a slightly modified version of (0.3)). The space

W1,q did not have any additional vertex algebraic structure, which was caused by a lack of

grading restrictions. In this paper, as a consequence of the imposed grading restrictions, the

operator x(z) ⊗ t (on level 1) generates graded nonlocal q-vertex algebra V1,1, which gives

rise to the same character formula as W1,q.

It is important to emphasize that the use of the space E(L)t instead of E(L) did not affect

the form of the basis Bc,1. More precisely, we have:

Corollary 3.11. The set {a(z, t) |t=1 : a(z, t) ∈ Bc,1} is linearly independent.

Corollary 3.11 allows us to transfer the graded nonlocal q-vertex algebra structure from

Vc,1 to Vc = (Vc,1) |t=1 ⊂ E(L). Hence we obtain the construction of the graded nonlocal

q-vertex algebra Vc generated by x(z) ∈ E(L).

In the end, we show that, for a suitably defined character chq, we have

Theorem 3.13.

chq Vc,1 =
∑
r≥0

qr
2

(1− q)(1− q2) · · · (1− qr)
cr.

It is not surprising that for c > 1 the character formula does not coincide with the

classical case. The analogous basis for ŝl2 is derived using integrability (0.1) and com-

mutativity of vertex operator products, while vertex operator products for Uq(ŝl2) are no

longer commutative, so only quantum integrability (0.2) can be used. Finally, in view of the

close connection between the representation theory of affine Kac-Moody Lie algebras and

the Rogers-Ramanujan-type identities, it is worth noting that the character formula from

Theorem 3.13 equals the left-hand side in∑
r≥0

qr
2

(1− q)(1− q2) · · · (1− qr)
cr

=

(
1 +

∑
s≥0

(−1)s(1− cq2s)c2sqs(5s−1)/2 (1− cq) · · · (1− cqs−1)
(1− q) · · · (1− qs)

)∏
r≥1

1

1− cqr
,

one of the standard identities which can be used to derive both Rogers-Ramanujan identities

([HW], cf. also [A]).

1. Preliminaries

1.1. Quantum calculus. This subsection contains some elementary notions of quantum

calculus. For more details the reader may consult [KC]. Fix an indeterminate q. For any

two integers m and l, l ≥ 0, define q-integers, q-factorials, q-binomial coefficients:

[m]q =
qm − 1

q− 1
= 1 + q + ...+ qm−1; (1.1)

[0]q! = 1, [l + 1]q! = [l + 1]q[l]q · · · [1]q; (1.2)[
m

l

]
q

=
[m]q[m− 1]q · · · [m− l + 1]q

[l]q!
. (1.3)
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Denote by z0 and z two noncommutative variables satisfying

z0z = qzz0. (1.4)

In the rest of this paper we shall assume that all formal variables are commutative, unless

stated otherwise (as above). We have the following q-analogue of the binomial theorem:

Proposition 1.1. For every integer m and variables z0, z satisfying (1.4) we have

(z + z0)
m =

∑
l≥0

[
m

l

]
q

zm−lzl0.

Let V be a vector space over the field C(q) and let a(z) ∈ V [[z±1]] be an arbitrary Laurent

series. Define q-derivation of a(z) as

dq

dqz
a(z) =

a(zq)− a(z)

z(q− 1)
∈ V [[z±1]].

In order to simplify our notation we will denote the nth q-derivation of a(z) as a[n](z). The

operator
dq

dqz
is obviously a linear operator and it satisfies the general Leibniz rule:

Proposition 1.2. For every nonnegative integer m and a(z), b(z) ∈ Hom(V, V ((z))) satis-

fying a(z1)b(z) ∈ Hom(V, V ((z1, z))) we have

(a(z)b(z))[m] =
m∑
l=0

[
m

l

]
q

a[l](z)b[m−l](zql).

1.2. Quantum affine algebra Uq(ĝ). First, we recall some facts from the theory of affine

Kac-Moody Lie algebras (see [K] for details). Let Â = (aij)
n
i,j=0 be a generalized Cartan

matrix of affine type and let S = diag(s0, s1, . . . , sn) be a diagonal matrix of relatively

prime positive integers such that the matrix SÂ is symmetric. Let t̂ be a vector space over

C(q1/2) with a basis {α∨0 , α∨1 , . . . , α∨n , d}. Denote by α0, α1, . . . , αn linear functionals from

t̂∗ such that αi(α
∨
j ) = aji and αi(d) = δi0 for i, j = 0, 1 . . . , n. Define the set of simple

roots, Π̂ = {α0, α1, ..., αn} and the set of simple coroots, Π̂∨ = {α∨0 , α∨1 , ..., α∨n}. Denote by

ĝ the affine Kac-Moody Lie algebra associated with the matrix Â. Let Λ0,Λ1, . . . ,Λn be the

fundamental weights, i.e. the elements of t̂∗ satisfying

Λi(α
∨
j ) = δij, Λi(d) = 0, i, j = 0, 1, . . . , n.

Imaginary roots of ĝ are integer multiples of δ = d0α0 + d1α1 + . . . + dnαn ∈ t̂∗, where

integers di are given in [K]. Define the integral dominant weight as any nonzero element

Λ of the free Abelian group generated by Λ0,Λ1, . . . ,Λn, δ/d0, which satisfies Λ(α∨i ) ≥ 0

for i = 0, 1, ..., n. The invariant symmetric bilinear form on t̂∗ is given by (αi, αj) = siaij,

(δ, αi) = (δ, δ) = 0, i, j = 0, 1, . . . , n.

Denote by g a simple Lie algebra associated with the Cartan matrix A = (aij)
n
i,j=1. Let

t ⊂ t̂ be a Cartan subalgebra of g, which is generated by the elements α∨1 , α∨2 , . . . , α∨n . Let

Q =
⊕n

i=1 Zαi ⊂ t be the classical root lattice and P =
⊕n

i=1 Zλi ⊂ t∗ the classical weight

lattice, where elements λi ∈ t∗ satisfy λi(α
∨
j ) = δij for i, j = 1, 2, . . . , n.

In this paper, we will mostly use q-numbers defined in (1.1)–(1.3). However, the definition

of quantum affine algebra is usually given in terms of (differently defined) q-numbers, so
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we recall them as well. Fix an indeterminate q. For any two integers m and l, l ≥ 0, define

q-integers, q-factorials and q-binomial coefficients:

[m]q =
qm − q−m

q − q−1
;

[0]q! = 1, [l + 1]q! = [l + 1][l] · · · [1];[
m

l

]
q

=
[m][m− 1] · · · [m− l + 1]

[l]!
.

We present the Drinfeld realization (see [D]) of the quantum affine algebra Uq(ĝ).

Definition 1.3. Let ĝ be an untwisted affine Kac-Moody Lie algebra with Cartan matrix

Â = (aij)
n
i,j=0. The quantum affine algebra Uq(ĝ) is the associative algebra over C(q1/2) with

unit 1 generated by the elements x±i (k), ai(l), K
±1
i , γ±1/2 and q±d, i = 1, 2, . . . , n, k, l ∈ Z,

l 6= 0, subject to the following relations:

[γ±1/2, u] = 0 for all u ∈ Uq(ĝ)0, (d1)

KiKj = KjKi, KiK
−1
i = K−1i Ki = 1, (d2)

[ai(k), aj(l)] = δk+l 0
[aijk]qi
k

γk − γ−k

qj − q−1j
, (d3)

[ai(k), K±1j ] = [q±d, K±1j ] = 0, (d4)

qdx±i (k)q−d = qkx±i (k), qdai(l)q
−d = qkai(l), (d5)

Kix
±
j (k)K−1i = q±(αi,αj)x±j (k), (d6)

[ai(k), x±j (l)] = ± [aijk]qi
k

γ∓|k|/2x±j (k + l), (d7)

x±i (k + 1)x±j (l)− q±(αi,αj)x±j (l)x±i (k + 1)

= q±(αi,αj)x±i (k)x±j (l + 1)− x±j (l + 1)x±i (k), (d8)

[x+i (k), x−j (l)] =
δij

qi − q−1i

(
γ
k−l
2 ψi(k + l)− γ

l−k
2 φi(k + l)

)
, (d9)

Sym
l1,l2,...,lm

m∑
s=0

(−1)s
[
m

s

]
qi

x±i (l1) · · ·x±i (ls)x
±
j (k)x±i (ls+1) · · ·x±i (lm) = 0, for i 6= j, (d10)

where m = 1− aij, qi = qsi and the elements φi(−r) and ψi(r), r ∈ Z≥0, are given by

φi(z) =
∞∑
r=0

φi(−r)zr = K−1i exp

(
−(qi − q−1i )

∞∑
r=1

ai(−r)zr
)
,

ψi(z) =
∞∑
r=0

ψi(r)z
−r = Ki exp

(
(qi − q−1i )

∞∑
r=1

ai(r)z
−r

)
.

If qi = q we will usually omit the index qi and write [m] instead of [m]qi . Denote by x±i (z)

the series

x±i (z) =
∑
r∈Z

x±i (r)z−r−1 ∈ Uq(ĝ)[[z, z−1]]. (1.5)
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We shall continue to use the notation x±i (z) for the action of (1.5) on an arbitrary Uq(ĝ)-

module V :

x±i (z) =
∑
r∈Z

x±i (r)z−r−1 ∈ (EndV )[[z, z−1]].

Drinfeld gave the following Hopf algebra structure for his realization of Uq(ŝln+1) (cf. also

[DI]):

∆(qc/2) = qc/2 ⊗ qc/2,

∆(x+i (z)) = x+i (z)⊗ 1 + φi(zq
c1/2)⊗ x+i (zqc1),

∆(x−i (z)) = 1⊗ x−i (z) + x−i (zqc2)⊗ ψi(zqc2/2),

∆(φi(z)) = φi(zq
−c2/2)⊗ φi(zqc1/2),

∆(ψi(z)) = ψi(zq
c2/2)⊗ ψi(zq−c1/2),

ε(qc) = 1, ε(x±i (z)) = 0, ε(φi(z)) = ε(ψi(z)) = 1;

S(qc) = q−c,

S(x+i (z)) = −φi(zq−c/2)−1x+i (zq−c),

S(x−i (z)) = −x−i (zq−c)ψi(zq
−c/2)−1,

S(φi(z)) = φi(z)−1, S(ψi(z)) = ψi(z)−1,

where i = 1, 2, ..., n and qc1 denotes the action of the center γ = qc on the first tensor factor

while qc2 the action on the second tensor factor. For l ≥ 1 set

∆(0) = 1 and ∆(l) = (1⊗ · · · ⊗ 1︸ ︷︷ ︸
l − 1

⊗∆)∆(l−1).

The coproduct formula applied on the tensor product of c integrable highest weight modules

gives

∆(c−1)(x+i (z)) =
c∑
l=1

x
+(l)
i (z), (1.6)

where

x
+(l)
i (z) = φi(zq

1
2 )⊗ φi(zq

3
2 )⊗ · · · ⊗ φi(zql−

3
2 )︸ ︷︷ ︸

l − 1

⊗x+i (zql−1)⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
c− l

. (1.7)

1.3. Representations of Uq(ŝl2). The algebra Uq(ŝl2) is generated by the elements x±1 (k),

a1(l), K
±1
1 , γ±1/2 and q±d, k, l ∈ Z, l 6= 0. In order to simplify the notation, we will

omit index ”1” and write x±(k), a(l), K±1, φ(z) instead of x±1 (k), a1(l), K
±1
1 , φ1(z). We

recall Frenkel-Jing realization of the integrable highest weight Uq(ŝl2)-modules L(Λ0) and

L(Λ1) (see [FJ]). The Heisenberg algebra Uq(ĥ) of level 1 is generated by the elements a(l),

l ∈ Z \ {0}, and the central element γ±1 = q±c subject to the relations

[a(r), a(s)] = δr+s 0
[2r][r]

r
, r, s ∈ Z \ {0} . (1.8)

Algebra Uq(ĥ) has a natural realization on the space Sym(ĥ−) of the symmetric algebra

generated by the elements a(−r), r ∈ Z>0, via the following rule:

γ±1 . . . multiplication by q±1,
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a(r) . . . differentiation operator subject to (1.8),

a(−r) . . . multiplication by the element a(−r).

Denote the resulted level 1 irreducible Uq(ĥ)-module by M(1). Define the following operators

on M(1):

E±−(a, z) = exp

(
∓
∑
r≥1

q∓r/2

[r]
a(−r)zr

)
, E±+(a, z) = exp

(
±
∑
r≥1

q∓r/2

[r]
a(r)z−r

)
.

Let C {Q} be the group algebra of the classical weight lattice Q = Zα1 generated by eα,

α ∈ Q. The space C {P} = C {Q} ⊕ C {Q} eλ1 is a C {Q}-module. For α ∈ Q define an

action z∂α on C {P} by z∂αeβ = z(α,β)eβ. Set

L0 = M(1)⊗ C {Q} , L1 = M(1)⊗ C {Q} eλ1 .

Theorem 1.4 [FJ]. By the action

x±(z) = E±−(−a, z)E±+(−a, z)⊗ e±α1z±∂α1 ,

the space Li, i = 0, 1, becomes the integrable highest weight Uq(ŝl2)-module with the highest

weight Λi.

The following theorem is a special case of the, so-called quantum integrability, which was

found by Ding and Miwa.

Theorem 1.5 [DM]. On every level c integrable Uq(ŝl2)-module

x±(z1)x
±(z2) · · ·x±(zc+1) = 0 if z1/z2 = z2/z3 = . . . = zc/zc+1 = q∓2. (1.9)

In the end, following [Koy] we define the vertex operator Y(z) on the space V = M(1)⊗
C {P}:

E−(z) = exp

(∑
r≥1

qr/2

[2r]
a(−r)zr

)
, E+(z) = exp

(
−
∑
r≥1

qr/2

[2r]
a(r)z−r

)
;

Y(z) = E−(z)E+(z)⊗ eλ1(−z)∂λ1 ∈ Hom(V, V ((z1/2))).

The relations in the next proposition can be verified by a direct calculation.

Proposition 1.6. The following relations hold on V :

x+(z1)x
+(z2) = (z1 − z2)(z1 − q−2z2) : x+(z1)x

+(z2) :, (1.10)

x+(z1)φ(z2q
1/2) = q2

1− q−2 z2
z1

1− q2 z2
z1

φ(z2q
1/2)x+(z1), (1.11)

x+(z1)E−(z2) =

(
1− z2

z1

)
E−(z2)x

+(z1), (1.12)

φ(z1)E−(z2) = E−(z2)φ(z1). (1.13)

2. Graded nonlocal q-vertex algebras

2.1. Definition. Let V be an arbitrary vector space over the field F ⊇ C(q) of characteristic

zero and 1V the identity V → V .
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Definition 2.1. A graded nonlocal q-vertex algebra is a triple (V, Y, 1), where

V =
∐
u∈Z

V(u) (v0)

is a Z-graded vector space equipped with a linear map

Y (·, z0) : V → (EndV )[[z±10 ]]

a 7→ Y (a, z0) =
∑
r∈Z

arz
−r−1
0 (v1)

and with a distinguished vector 1 ∈ V such that the following conditions hold: For every

a, b, c ∈ V and s, u ∈ Z

arb = 0 for sufficiently large integer r; (v2)

Y (1, z0) = 1V ; (v3)

Y (a, z0) 1 ∈ V [[z0]] and lim
z0→0

Y (a, z0) 1 = a; (v4)

arV(s) ⊆ V(s+u−r−1) if a ∈ V(u); (v5)

Y (a, z0 + z2)Y (b, z2q
u)c = Y (Y (a, z0)b, z2)c if a(z) ∈ V(u) and (v6)

z2z0 = qz0z2. (v7)

The definition requires some further explanations. We use the following conventions in

(v6). On the left-hand side we assume that z0 + z2 appears to the right of z2:

Y (a, z0 + z2)Y (b, z2q
u)c =

∑
r∈Z

∑
s∈Z

ar(bsc)(z2q
u)−s−1(z0 + z2)

−r−1. (2.1)

The expression (z0 +z2)
−r−1 is expanded in nonnegative powers of z2 using Proposition 1.1.

On the right-hand side of (v6), we assume that the variable z0 appears to the left of z2:

Y (Y (a, z0)b, z2)c = Y (
∑
r∈Z

arbz
−r−1
0 , z2)c =

∑
s∈Z

∑
r∈Z

(arb)scz
−r−1
0 z−s−12 . (2.2)

As a consequence of (v6), using (2.1) and (2.2), we get

(arb)sc =
∑
l≥0

[
l − r − 1

l

]
q

q(s+l+1)(r−u+1)ar−l(bs+lc) for all r, s ∈ Z. (2.3)

2.2. Construction. Let L be an arbitrary vector space over the field F ⊇ C(q) of charac-

teristic zero. We will use the following notation:

E(L) = Hom(L,L((z))), E(L)t = Hom(L,L((z)))⊗ F[t].

Our goal is to construct graded nonlocal q-vertex algebras generated by the subsets of

E(L)t. For A(z1, ..., zn) ∈ Hom(L,L((z1, ..., zn))) we will denote by limzj→z A(z1, ..., zn) or

limz1,...,zn→z A(z1, ..., zn) an element of the space Hom(L,L((z))) which is obtained from

A(z1, ..., zn) by replacing all the variables z1, ..., zn by z. Notice that limzj→z B(z1, ..., zn)

need not be well-defined for an arbitrary B(z1, ..., zn) ∈ Hom(L,L[[z±11 , ..., z±1n ]]). First, we

recall a few well-known technical results which will be often used in this section.

Lemma 2.2. Let A(z1, z) ∈ Hom(L,L((z1, z))), B(z2, z1, z) ∈ Hom(L,L((z2, z1, z))) and

p(z) ∈ F(q)[z]. Then

(a) lim
z1→z

A(z1, z) = lim
z1→z

lim
z→z1

A(z1, z);
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(b) lim
z2,z1→z

B(z2, z1, z) = lim
z2→z

lim
z1→z

B(z2, z1, z);

(c) lim
z1→z

p(z/z1)A(z1, z) = lim
z1→z

p(z/z1) lim
z1→z

A(z1, z).

Proof. Equality (a) is trivial while equalities (b) and (c) follow from more general results

proved in [MP, Section 5]. �

Denote by F(q)[z]0 the following set of polynomials:

F(q)[z]0 =
{
p(z) ∈ F(q)[z] : p(1) = 1 and p(qn) 6= 0 for all n ∈ Z≥0

}
.

Obviously, F(q)[z]0 is closed under multiplication. We shall consider the space

Hom(L,L((z1, z2, . . . , zm)))t = Hom(L,L((z1, z2, . . . , zm)))⊗ F(q)[t].

For a homogeneous element a(z)⊗ tα ∈ E(L)t we write

wt(a(z)⊗ tα) = degt(a(z)⊗ tα) = α. (2.4)

The function wt will define a gradation on the graded nonlocal q-vertex algebras which will

be constructed in this section.

Definition 2.3. A sequence (a1(z) ⊗ tα1 , . . . , am(z) ⊗ tαm) in E(L)t is said to be quasi-

commutative if there exists a polynomial p(z) ∈ F(q)[z]0 such that( ∏
1≤i<j≤m

p(zj/zi)

)
a1(z1)a2(z2q

α1)a3(z3q
α1+α2) · · · am(zmq

α1+...+αm−1) (2.5)

∈ Hom(L,L((z1, z2, . . . , zm))).

In general, a sequence (
∑N1

j=1 a1,j(z)⊗ tα1,j , . . . ,
∑Nm

j=1 am,j(z)⊗ tαm,j) in E(L)t is said to be

quasi-commutative if for every choice of (j1, ..., jm), where 1 ≤ jk ≤ Nk, k = 1, ...,m, the

sequence (a1,j1(z)⊗ tα1,j1 , . . . , am,jm(z)⊗ tαm,jm ) is quasi-commutative.

Notice that if (a1(z)⊗g1(t), . . . , am(z)⊗gm(t)) is quasi-commutative for some polynomials

gj(t), j = 1, ...,m, then for all integers α1 ≤ α2 ≤ ... ≤ αm the sequence (a1(zq
α1) ⊗

g1(t), . . . , am(zqαm)⊗ gm(t)) is also quasi-commutative.

Definition 2.4. Let (a(z, t), b(z, t)) = (
∑M

i=1 ai(z) ⊗ tαi ,
∑N

j=1 bj(z) ⊗ tβj) be a quasi-

commutative pair in E(L)t. For an integer r we define

a(z, t)−r−1b(z, t) ∈ (EndL)[[z±1]]t = (EndL)[[z±1]]⊗ F(q)[t]

by

a(z, t)−r−1b(z, t) =
M∑
i=1

N∑
j=1

(ai(z)⊗ tαi)−r−1
(
bj(z)⊗ tβj

)
(2.6)

where, for r ≥ 0

(ai(z)⊗ tαi)−r−1(bj(z)⊗ tβj) = lim
z1→z

pij(z/z1)

[r]q!
a
[r]
i (z1)bj(zq

αi+r)⊗ tαi+βj+r (2.7)

and pij(z) ∈ F(q)[z]0 is any polynomial satisfying

pij(z/z1)a
[r]
i (z1)bj(zq

αi+r) ∈ Hom(L,L((z1, z))), (2.8)

while for r < 0 we set

a(z, t)−r−1b(z, t) = 0.
9



Notice that the polynomial pij(z) in Definition 2.4 does depend on the choice of the

integer r. At this point, it is not clear whether this definition, more precisely (2.7), depends

on the choice of the polynomial pij(z). This issue is resolved in the next proposition.

Proposition 2.5. Definition 2.4 is independent of the choice of the polynomials pij(z) ∈
F(q)[z]0 satisfying (2.8).

Proof. The proof goes similarly as the proof of [L2, Lemma 3.3]. It is sufficient to consider

only homogeneous elements a(z) ⊗ tα, b(z) ⊗ tβ ∈ E(L)t. Let pk(z) ∈ F(q)[z]0, k = 1, 2, be

two polynomials satisfying

pk(z/z1)a
[r](z1)b(zq

α+r) ∈ Hom(L,L((z1, z)))

for some r ≥ 0. Using Lemma 2.2 we get

lim
z1→z

p1(z/z1)

[r]q!
a[r](z1)b(zq

α+r)⊗ tα+β+r

=p2(1) lim
z1→z

p1(z/z1)

[r]q!
a[r](z1)b(zq

α+r)⊗ tα+β+r

= lim
z1→z

p2(z/z1)
p1(z/z1)

[r]q!
a[r](z1)b(zq

α+r)⊗ tα+β+r

= lim
z1→z

p1(z/z1)
p2(z/z1)

[r]q!
a[r](z1)b(zq

α+r)⊗ tα+β+r

=p1(1) lim
z1→z

p2(z/z1)

[r]q!
a[r](z1)b(zq

α+r)⊗ tα+β+r

= lim
z1→z

p2(z/z1)

[r]q!
a[r](z1)b(zq

α+r)⊗ tα+k+r,

as required. �

The following generalization of Proposition 2.5 can be proved analogously.

Lemma 2.6. Let (a1(z) ⊗ tα1 , ..., am(z) ⊗ tαm) be a quasi-commutative sequence in E(L)t
and let pk(z) ∈ F(q)[z]0, k = 1, 2, be polynomials satisfying

Ak(z1, ..., zm) :=

( ∏
1≤i<j≤m

pk(zj/zi)

)
a1(z1)a2(z2q

α1)a3(z3q
α1+α2) · · · am(zmq

α1+...+αm−1)

∈ Hom(L,L((z1, z2, . . . , zm))) for k = 1, 2.

Then

lim
z1,...,zm→z

A1(z1, ..., zm) = lim
z1,...,zm→z

A2(z1, ..., zm).

Let (a(z)⊗ tα, b(z)⊗ tβ) be a quasi-commutative pair in E(L)t. Set

Y (a(z)⊗ tα, z0)(b(z)⊗ tβ) =
∑
r∈Z

(a(z)⊗ tα)−r−1(b(z)⊗ tβ)zr0 (2.9)

and then extend Y by linearity. Set

1 = 1E(L) ⊗ 1 ∈ E(L)t. (2.10)

The following properties of the rth products follow directly from (2.4), (2.9), (2.10) and

Definition 2.4.
10



Corollary 2.7. Let (a(z, t), b(z, t)) and (c(z) ⊗ tα, d(z) ⊗ tβ) be two quasi-commutative

pairs in E(L)t and r an arbitrary integer.

(a) a(z, t)rb(z, t) ∈ E(L)t for r ∈ Z;

(b) The pairs (a(z, t),1) and (1, a(z, t)) are quasi-commutative;

(c) Y (1, z0) = 1E(L)t ;

(d) Y (a(z, t), z0) 1 ∈ E(L)t[[z0]] and limz0→0 Y (a(z, t), z0) 1 = a(z, t);

(e) If e(z, t) := (c(z)⊗ tα)r(d(z)⊗ tβ) 6= 0, then wt(e(z, t)) = α + β − r − 1.

The following lemma is one of the key results in this section.

Lemma 2.8. Let (a1(z, t), ..., am(z, t)) and (ak(z, t), ak+1(z, t)) for some k = 1, 2, ...,m− 1

be two quasi-commutative sequences in E(L)t. Then for every integer r the sequence

(a1(z, t), ..., ak−1(z, t), ak(z, t)−r−1ak+1(z, t), ak+2(z, t), ..., am(z, t))

is quasi-commutative.

Proof. Let r ≥ 0. It is sufficient to consider only the sequence of homogeneous elements

(a1(z)⊗ tα1 , ..., am(z)⊗ tαm). Let p(z) ∈ F(q)[z]0 be a polynomial satisfying

p(zk+1/zk)ak(zk)ak+1(zk+1q
αk) ∈ Hom(L,L((zk, zk+1))); (2.11)

p(zk+1/zk)ak(zkq
l)ak+1(zk+1q

r+αk) ∈ Hom(L,L((zk, zk+1))) for l = 0, 1, ..., r; (2.12)( ∏
1≤i<j≤m

p(zj/zi)

)
a1(z1)a2(z2q

α1) · · · am(zmq
α1+...+αm−1) ∈ Hom(L,L((z1, ..., zm))).

(2.13)

Note that (2.12) implies

p(zk+1/zk)a
[r]
k (zk)ak+1(zk+1q

r+αk) ∈ Hom(L,L((zk, zk+1))).

Since (ak(z)⊗ tαk)−r−1(ak+1(z)⊗ tαk+1) is a F(q)[z−1]-linear combination of

(ak(zq
l)⊗ tαk+r)−1(ak+1(z)⊗ tαk+1), l = 0, 1, ..., r,

it is sufficient to prove that the sequence

(a1(z)⊗ tα1 , ..., ak−1(z)⊗ tαk−1 , (ak(zq
l)⊗ tαk+r)−1(ak+1(z)⊗ tαk+1),

ak+2(z)⊗ tαk+2 , ..., am(z)⊗ tαm) (2.14)

is quasi-commutative for every l = 0, 1, ..., r. First, (2.13) implies( ∏
1≤i<j≤m

p(wj/wi)

)
a1(w1)a2(w2q

α1) · · · am(wmq
α1+...+αm−1) ∈ Hom(L,L((z1, ..., zm))),

(2.15)

where wu = zu for u < k, wk = zkq
l and wu = zuq

r for u > k. Notice that p(wj/wi) is an

element of F(q)[zj/zi]0 for all 1 ≤ i < j ≤ m. Expression (2.15) can be written as ∏
1≤i<j≤m

(i,j)6=(k,k+1)

p(wj/wi)

 a1(w1) · · · ak−1(wk−1qα1+...+αk−2)

·
(
p(wk+1/wk)ak(wkq

α1+...+αk−1)ak+1(wk+1q
α1+...+αk)

)
· ak+2(wk+2q

α1+...+αk+1) · · · am(wmq
α1+...+αm−1). (2.16)
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Applying (2.16) on an arbitrary vector v ∈ L, we get a finite number of negative powers

of zj, j = 1, 2, ...,m. Therefore, applying the limit limzk→zk+1
on (2.16) and using (2.11) we

get, up to a nonzero multiplicative scalar, ∏
1≤i<j≤m
i,j 6=k

p(wj/wi)


( ∏
j>k+1

p(wj/(wk+1q
l−r))

)(∏
i<k

p((wk+1q
l−r)/wi)

)
(2.17)

· a1(w1) · · · ak−1(wk−1qα1+...+αk−2)

· ak(wk+1q
α1+...+αk−1+l−r)−1ak+1(wk+1q

α1+...+αk) (2.18)

· ak+2(wk+2q
α1+...+αk+1) · · · am(wmq

α1+...+αm−1)

∈ Hom(L,L((z1, ..., zk−1, zk+1, ...zm))),

where

ak(wk+1q
α1+...+αk−1+l−r)−1ak+1(wk+1q

α1+...+αk)

= ak(zk+1q
α1+...+αk−1+l)−1ak+1(zk+1q

α1+...+αk+r)

in (2.18) denotes the first tensor factor of

(ak(zk+1q
α1+...+αk−1+l)⊗ tαk+r)−1(ak+1(zk+1q

α1+...+αk−1)⊗ tαk+1)

=
(
(ak(zq

l)⊗ tαk+r)−1(ak+1(z)⊗ tαk+1)
) ∣∣∣∣

z=zk+1q
α1+...+αk−1

.

Since polynomials in (2.17) do not have any zeroes in the set
{
qn : n ∈ Z≥0

}
, we conclude

that (2.14) is quasi-commutative. �

Denote by Rzj the operator

Rzj : a(z1, ..., zj−1, zj, zj+1, ..., zn) 7→ a(z1, ..., zj−1, zjq, zj+1, ..., zn).

We will need the following three technical lemmas.

Lemma 2.9. For every nonnegative integer s and a polynomial p(z) ∈ F(q)[z]0 we have(
∂q

∂qz1
Rz +

∂q

∂qz

)s

=
s∑
l=0

[
s

l

]
q

Rl
z

∂lq

∂qzl1

∂s−lq

∂qzs−l
; (2.19)

Rz

∂q

∂qz1
p(z/z1) = − z

z1

∂q

∂qz
p(z/z1). (2.20)

Proof. Equality (2.19) can be proved by induction over s, using

∂q

∂qz
Rz = qRz

∂q

∂qz
,

∂q

∂qz1
Rz = Rz

∂q

∂qz1

and Proposition 1.1; Equality (2.20) can be verified by a direct calculation. �

Lemma 2.10. Let a(z), b(z) ∈ E(L) and p(z) ∈ F(q)[z]0 such that

p(z/z1)a(z1)b(z), p(z/z1)a
[1](z1)b(zq), p(z/z1)a(z1)b

[1](z) ∈ Hom(L,L((z1, z))). (2.21)

Then

dq

dqz
lim
z1→z

p(z/z1)a(z1)b(z) = lim
z1→z

(
∂q

∂qz1
Rz +

∂q

∂qz

)
p(z/z1)a(z1)b(z); (2.22)
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dq

dqz
lim
z1→z

p(z/z1)a(z1)b(z) = lim
z1→z

p(z/z1)

(
∂q

∂qz1
Rz +

∂q

∂qz

)
a(z1)b(z). (2.23)

Proof. Equality (2.22) is obvious. Let us prove (2.23). We have

lim
z1→z

(
∂q

∂qz1
Rz +

∂q

∂qz

)
p(z/z1)a(z1)b(z) (2.24)

= lim
z1→z

Rz

((
∂q

∂qz1
p(z/z1)

)
a(z1q)b(z) + p(z/z1)a

[1](z1)b(z)

)
(2.25)

+ lim
z1→z

((
∂q

∂qz
p(z/z1)

)
a(z1)b(zq) + p(z/z1)a(z1)b

[1](z)

)
. (2.26)

Note that (2.21) implies that limits (2.25) and (2.26) do exist. Using (2.20) we can express

(2.25) as

lim
z1→z

Rz

((
∂q

∂qz1
p(z/z1)

)
a(z1q)b(z) + p(z/z1)a

[1](z1)b(z)

)

= lim
z1→z

((
− z

z1
·
∂q

∂qz
p(z/z1)

)
a(z1q)b(zq) + p(zq/z1)a

[1](z1)b(zq)

)

= lim
z1→z

((
−
∂q

∂qz
p(z/z1)

)
a(z1q)b(zq) +

z1
z
p(zq/z1)a

[1](z1)b(zq)

)
. (2.27)

Combining (2.24) and (2.27) we get

lim
z1→z

(
∂q

∂qz1
Rz +

∂q

∂qz

)
p(z/z1)a(z1)b(z)

= lim
z1→z

((
−
∂q

∂qz
p(z/z1)

)
a(z1q)b(zq) +

z1
z
p(zq/z1)a

[1](z1)b(zq)

+

(
∂q

∂qz
p(z/z1)

)
a(z1)b(zq) + p(z/z1)a(z1)b

[1](z)

)

= lim
z1→z

((
−
∂q

∂qz
p(z/z1)

)
a[1](z1)b(zq)z(q− 1)

+
z1
z
p(zq/z1)a

[1](z1)b(zq) + p(z/z1)a(z1)b
[1](z)

)

= lim
z1→z

(((
−
∂q

∂qz
p(z/z1)

)
z(q− 1) +

z1
z
p(zq/z1)

)
a[1](z1)b(zq) + p(z/z1)a(z1)b

[1](z)

)

= lim
z1→z

(((
−
∂q

∂qz
p(z/z1)

)
z(q− 1) +

z1
z
p(zq/z1)

)
p(z/z1)a

[1](z1)b(zq)

+ p(z/z1)
2a(z1)b

[1](z)

)
. (2.28)
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Since

lim
z1→z

((
−
∂q

∂qz
p(z/z1)

)
z(q− 1) +

z1
z
p(zq/z1)

)
= 1,

Assumption (2.21), together with (2.28), implies

lim
z1→z

(
∂q

∂qz1
Rz +

∂q

∂qz

)
p(z/z1)a(z1)b(z)

= lim
z1→z

(
p(z/z1)a

[1](z1)b(zq) + p(z/z1)a(z1)b
[1](z)

)
.

Finally, Equality (2.23) follows from (2.22). �

Using (2.19) and Lemma 2.10 one can prove:

Lemma 2.11. Let (a(z)⊗ tα, b(z)⊗ tβ) be a quasi-commutative pair in E(L)t, r, s nonneg-

ative integers and p(z) ∈ F(q)[z]0 a polynomial satisfying

p(z/z1)a(z)b(zqα) ∈ Hom(L,L((z1, z)));

p(z/z1)a
[r+l](z1)b

[s−l](zqα+l+r) ∈ Hom(L,L((z1, z))) for l = 0, 1, ..., s.

Then
∂sq

∂qzs1

(
lim
z3→z1

p(z1/z3)a
[r](z3)b(z1q

r+α)

)
=

s∑
l=0

[
s

l

]
q

q(s−l)(r+α) lim
z3→z1

p(z1/z3)a
[r+l](z3)b

[s−l](z1q
α+l+r).

The set S ⊆ E(L)t is said to be quasi-commutative if every finite sequence in S is quasi-

commutative. The quasi-commutative set S ⊆ E(L)t is said to be closed if a(z, t)rb(z, t) is

an element of S for all a(z, t), b(z, t) ∈ S, r ∈ Z.

Lemma 2.12. Let V be a closed, quasi-commutative subspace of E(L)t such that 1 ∈ V .

Then (V, Y,1) satisfies all the axioms of the graded nonlocal q-vertex algebra, except maybe

grading restrictions (v0) and (v5).

Proof. The definition of the operator Y is given in (2.9), so (v1) is satisfied. Definition 2.4

implies (v2). The definition of the vector 1 ∈ E(L)t is given in (2.10) and Corollary 2.7

implies (v3) and (v4).

Let us prove (v6). It is sufficient to consider an arbitrary quasi-commutative sequence

of homogeneous elements (a(z) ⊗ tα, b(z) ⊗ tβ, c(z) ⊗ tγ), whose all subsequences are also

quasi-commutative. Fix nonnegative integers r0, s0. Let p(z) ∈ F(q)[z]0 be a polynomial

satisfying

p(z/z1)a
[r](z1)b(zq

r+α) ∈ Hom(L,L((z1, z))); (2.29)

p(z1/z3)a
[r+l](z3)b

[s−l](z1q
α+l+r) ∈ Hom(L,L((z3, z1))); (2.30)

p(z/z1)p(z/z3)p(z1/z3)a
[r+l](z3)b

[s−l](z1q
α+l+r)c(zqα+β+r+s+k) ∈ Hom(L,L((z3, z1, z)));

(2.31)

p(z/z1)b
[v](z1)c(zq

β+v) ∈ Hom(L,L((z1, z))) (2.32)

for all

r = 0, 1, ..., r0 + s0, k, s, v = 0, 1, ..., s0, l = 0, 1..., s.
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Using (2.31), (2.32) and Lemma 2.2 we get

lim
z1,z3→z

p(z/z1)p(z/z3)p(z1/z3)a
[u](z3)b

[v](z1q
α+u)c(zqα+β+u+v)

= lim
z3→z

lim
z1→z

p(z/z1)p(z/z3)p(z1/z3)a
[u](z3)b

[v](z1q
α+u)c(zqα+β+u+v)

= lim
z3→z

p(z/z3)
2a[u](z3) lim

z1→z
p(z/z1)b

[v](z1q
α+u)c(zqα+β+u+v) (2.33)

for all u = 0, 1, ..., r0 + s0, v = 0, 1, ..., s0. Using (2.30), (2.31) and Lemma 2.2 we get

lim
z1,z3→z

p(z/z1)p(z/z3)p(z1/z3)a
[r+l](z3)b

[s−l](z1q
α+l+r)c(zqα+β+r+s)

= lim
z1→z

lim
z,z3→z1

p(z/z1)p(z/z3)p(z1/z3)a
[r+l](z3)b

[s−l](z1q
α+l+r)c(zqα+β+r+s)

= lim
z1→z

lim
z→z1

lim
z3→z1

p(z/z1)p(z/z3)p(z1/z3)a
[r+l](z3)b

[s−l](z1q
α+l+r)c(zqα+β+r+s)

= lim
z1→z

lim
z→z1

p(z/z1)
2 lim
z3→z1

(
p(z1/z3)a

[r+l](z3)b
[s−l](z1q

α+l+r)
)
c(zqα+β+r+s)

= lim
z1→z

p(z/z1)
2 lim
z3→z1

(
p(z1/z3)a

[r+l](z3)b
[s−l](z1q

α+l+r)
)
c(zqα+β+r+s) (2.34)

for all r = 0, 1, ..., r0, s = 0, 1, ..., s0, l = 0, 1, ..., s.

For Taylor series A(z0, z2), B(z0, z2) ∈ E(L)[[z0, z2]]t we write A(z0, z2) ≡ B(z0, z2) if the

coefficient of zr0z
s
2 in A(z0, z2)−B(z0, z2) equals zero for all r ≤ r0 and s ≤ s0. In the following

calculations we assume that the variables z0, z2 satisfy (v7). We use the relation ”≡” because

the polynomial p(z) satisfying (2.29)–(2.32) depends on the choice of nonnegative integers

r0, s0. Using (2.29), (2.34) and Lemma 2.11 we get

Y (Y (a(z)⊗ tα, z0)b(z)⊗ tβ, z2)(c(z)⊗ tγ)

≡Y (

r0∑
r=0

lim
z1→z

p(z/z1)

[r]q!
a[r](z1)b(zq

r+α)⊗ tα+β+rzr0, z2)(c(z)⊗ tγ)

=

r0∑
r=0

zr0Y ( lim
z1→z

p(z/z1)

[r]q!
a[r](z1)b(zq

r+α)⊗ tα+β+r, z2)(c(z)⊗ tγ)

≡
r0∑
r=0

s0∑
s=0

lim
z1→z

p(z/z1)2
[s]q!

(
lim
z3→z1

p(z1/z3)

[r]q!
a[r](z3)b(z1q

r+α)

)[s]

c(zqα+β+r+s)


⊗ tα+β+γ+r+szr0zs2

=

r0∑
r=0

s0∑
s=0

s∑
l=0

q(s−l)(α+r)

[r]q![l]q![s− l]q!

· lim
z1→z

(
p(z/z1)

2

(
lim
z3→z1

p(z1/z3)a
[r+l](z3)b

[s−l](z1q
α+l+r)

)
c(zqα+β+r+s)

)
⊗ tα+β+γ+r+szr0zs2

=

r0∑
r=0

s0∑
s=0

s∑
l=0

q(s−l)(α+r)

[r]q![l]q![s− l]q!

· lim
z1,z3→z

(
p(z/z1)p(z/z3)p(z1/z3)a

[r+l](z3)b
[s−l](z1q

α+l+r)c(zqα+β+r+s)
)
⊗ tα+β+γ+r+szr0zs2.

(2.35)
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Using (2.32) and (2.33) we get

Y (a(z)⊗ tα, z0 + z2)Y (b(z)⊗ tβ, z2qwt a(z)⊗tα)(c(z)⊗ tγ)

≡Y (a(z)⊗ tα, z0 + z2)

s0∑
v=0

lim
z1→z

p(z/z1)q
αv

[v]q!
b[v](z1)c(zq

β+v)⊗ tβ+γ+vzv2

≡
r0+s0∑
u=0

s0∑
v=0

lim
z3→z

(
p(z/z3)

2

[u]q!
a[u](z3)

(
lim
z1→z

p(z/z1)q
αv

[v]q!
b[v](z1q

u+α)c(zqα+β+u+v)

))
⊗ tα+β+γ+u+vzv2(z0 + z2)

u

=

r0+s0∑
u=0

s0∑
v=0

lim
z3→z

(
p(z/z3)

2

[u]q!
a[u](z3)

(
lim
z1→z

p(z/z1)q
αv

[v]q!
b[v](z1q

u+α)c(zqα+β+u+v)

))

⊗ tα+β+γ+u+vzv2

(
u∑
l=0

[
u

l

]
q

zu−l0 zl2

)

=

r0+s0∑
u=0

s0∑
v=0

u∑
l=0

qv(α+u−l)

[u− l]q![l]q![v]q!

· lim
z3→z

(
p(z/z3)

2a[u](z3)

(
lim
z1→z

p(z/z1)b
[v](z1q

u+α)c(zqα+β+u+v)

))
⊗ tα+β+γ+u+vzu−l0 zt+l2

=

r0+s0∑
u=0

s0∑
v=0

u∑
l=0

qv(α+u−l)

[u− l]q![l]q![v]q!

· lim
z1,z3→z

(
p(z/z1)p(z/z3)p(z1/z3)a

[u](z3)b
[v](z1q

u+α)c(zqα+β+u+v)
)
⊗ tα+β+γ+u+vzu−l0 zv+l2 .

(2.36)

Applying the substitutions u = r + l and v = s− l to (2.36) we get (2.35) ≡ (2.36), i.e.

Y (Y (a(z)⊗ tα, z0)b(z)⊗ tβ, z2)c(z)⊗ tγ ≡ Y (a(z)⊗ tα, z0 + z2)Y (b(z)⊗ tβ, z2qα)c(z)⊗ tγ.

Finally, since r0 and s0 were arbitrary nonnegative integers, we conclude

Y (Y (a(z)⊗ tα, z0)b(z)⊗ tβ, z2)c(z)⊗ tγ = Y (a(z)⊗ tα, z0 + z2)Y (b(z)⊗ tβ, z2qα)c(z)⊗ tγ.

�

Lemma 2.13. Let V be a maximal quasi-commutative subspace of E(L)t. Then

(a) V is closed.

(b) V contains 1.

(c) If
∑N

i=1 ai(z)⊗ tαi ∈ V , then ai(z)⊗ tαi ∈ V for i = 1, 2, ..., N .

(d) V is a graded nonlocal q-vertex algebra.

Proof. Statement (a) follows from Lemma 2.8. Maximality of V , together with Corollary

2.7, implies (b). Statement (c) is a consequence of the maximality of V and Definition 2.3.

Finally, let V(u) be a subspace of V consisting of all homogeneous elements a(z) ⊗ tu ∈ V .

Lemma 2.12, Statements (a)–(c) and Corollary 2.7 imply (d). �

The following theorem is the main result in this section.
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Theorem 2.14. Let S be a quasi-commutative subset of E(L)t. There exists a unique

smallest graded nonlocal q-vertex algebra V ⊆ E(L)t such that S ⊆ V . Furthermore, if S
consists of homogeneous elements, we have

V = span {a1(z, t)r1 · · · ak(z, t)rk 1 : aj(z, t) ∈ S, rj < 0, j = 1, ..., k, k ∈ Z≥0} . (2.37)

Proof. By Zorn’s Lemma, S is a subset of the maximal closed quasi-commutative subset

of E(L)t which is, by Lemma 2.13, graded nonlocal q-vertex algebra. Therefore, we can

construct V as the intersection of all graded nonlocal q-vertex algebras containing S, whose

grading is defined as in the proof of Lemma 2.13.

Let us prove (2.37). Denote the right-hand side in (2.37) by R. It is evident that R ⊆ V .

By (v6) (cf. also (2.3)) R is closed and by Lemma 2.8 R is quasi-commutative. Therefore,

since 1 ∈ R, by Lemma 2.12, R is graded nonlocal q-vertex algebra (notice that grading re-

strictions (v0) and (v5) hold because S consists of homogeneous elements). By construction,

V is the smallest graded nonlocal q-vertex algebra containing S, so V ⊆ R. �

Remark 2.15. By taking r = s = −1 in (2.3) we get (a−1b)−1c = a−1(b−1c) for vertex

operator products given by Definition 2.4. Hence the graded nonlocal q-vertex algebra V

constructed in Theorem 2.14 becomes an unital associative algebra with product being

defined by a · b = a−1b for all a, b ∈ V .

2.3. Examples. Consider the quantum affine algebra Uq(ĝ) given by Definition 1.3, when

ĝ is an affine Kac-Moody Lie algebra of type (ADE)(1) and Â = (aij)
n
i,j=0 is its Cartan

matrix. Let L be a restricted Uq(ĝ)-module. Set

S =
{
x+i (z)⊗ 1 : i = 1, 2, ..., n

}
⊂ E(L)t and q = q2.

Recall definitions of the vertex operator map Y and the vacuum vector 1 in (2.9) and (2.10).

Theorem 2.16. There exists a unique smallest graded nonlocal q-vertex algebra (〈S〉 , Y,1)

which contains S. Furthermore, 〈S〉 is spanned by{
(x+i1(z)⊗ 1)r1 · · · (x+im(z)⊗ 1)rm 1 : 1 ≤ ij ≤ n, rj < 0, j = 1, ...,m, m ∈ Z≥0

}
.

Proof. It is sufficient to prove that every finite sequence in S is quasi-commutative. Then,

we can apply Theorem 2.14. First, by considering relations (d8) and (d10) we see that every

pair in S is quasi-commutative. Note that for (αi, αj) = 0 relation (d8) gives us

(z1 − z2)x+i (z1)x
+
j (z2) = (z1 − z2)x+j (z2)x

+
i (z1),

so we have to use (d10) to establish quasi-commutativity.

The rest of the proof goes analogously as the proof of [L1, Lemma 3.2]. Assume that every

sequence of lengthm in S is quasi-commutative. We shall prove that every sequence of length

m + 1 in S is quasi-commutative, so the statement will follow by induction. Consider the

sequence (a1(z), ..., am+1(z)) in S. Let p1(z), p2(z), p3(z) ∈ C(q1/2)[z]0, p4(z) ∈ C(q1/2)[z] be

polynomials satisfying

p1(z2/z1)a1(z1)a2(z2) = p4(z2/z1)a2(z2)a1(z1) ∈ Hom(L,L((z1, z2))); (2.38)

P2(z2, ..., zm+1)a2(z2) · · · am+1(zm+1) ∈ Hom(L,L((z2, ..., zm+1))); (2.39)

P3(z1, z3, ..., zm+1)a1(z1)a3(z3) · · · am+1(zm+1) ∈ Hom(L,L((z1, z3, ..., zm+1))), (2.40)
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where

P2(z2, ..., zm+1) =
∏

2≤i<j≤m+1

p2(zj/zi), P3(z1, z3, ..., zm+1) =
∏

1≤i<j≤m+1
i,j 6=3

p3(zj/zi).

Of course, existence of polynomials p1(z) and p4(z) satisfying (2.38) is a consequence of

(d8) and (d10). Using (2.38)–(2.40) we get

p1(z2/z1)P2(z2, ..., zm+1)P3(z1, z3, ..., zm+1)a1(z1)a2(z2)a3(z3) · · · am+1(zm+1) (2.41)

= p4(z2/z1)P2(z2, ..., zm+1)P3(z1, z3, ..., zm+1)a2(z2)a1(z1)a3(z3) · · · am+1(zm+1). (2.42)

Since (2.41) is an element of Hom(L,L((z1))((z2, z3, ..., zm+1))) and (2.42) is an element

of Hom(L,L((z2))((z1, z3, ..., zm+1))), we conclude that the both sides are contained in

Hom(L,L((z1, z2, z3, ..., zm+1))). Since p1(z), p2(z), p3(z) ∈ C(q1/2)[z]0, the statement fol-

lows by induction. �

Naturally, there is an analogous result for negative current operators. Set

T =
{
x−i (z)⊗ 1 : i = 1, 2, ..., n

}
⊂ E(L)t and q = q−2.

Corollary 2.17. There exists a unique smallest graded nonlocal q-vertex algebra (〈T 〉 , Y,1)

which contains T . Furthermore, 〈T 〉 is spanned by{
(x−i1(z)⊗ 1)r1 · · · (x−im(z)⊗ 1)rm 1 : 1 ≤ ij ≤ n, rj < 0, j = 1, ...,m, m ∈ Z≥0

}
.

By repeating the proof of Theorem 2.16 almost verbatim, one can prove:

Corollary 2.18. For every (α1, ..., αn) in (Z≥0)×n there exists a unique smallest graded

nonlocal q-vertex algebra (V, Y,1), q = q±2, generated by the set{
x±i (z)⊗ tαi : i = 1, 2, ..., n

}
⊂ E(L)t.

Furthermore, V is spanned by{
(x±i1(z)⊗ tαi1 )r1 · · · (x±im(z)⊗ tαim )rm 1 : 1 ≤ ij ≤ n, rj < 0, j = 1, ...,m, m ∈ Z≥0

}
.

Remark 2.19. In this paper, we are mainly concerned with the vertex algebraic structures

arising from Uq(ŝl2). Even though the construction of a much broader class of graded non-

local q-vertex algebras was here presented, the role of these examples was to clarify the

application of Theorem 2.14. The case ĝ = ŝl2, which is studied in the next section, gives

rise to the structures whose character formulae greatly resemble those from the classical

theory. However, the definition of vertex operator products for ĝ 6= ŝl2, which would provide

the analogous correspondence, might require the use of bigger spaces E(L)⊗F[[t1, ..., tn]] in

a similar vein as in [Ko2].

3. Graded nonlocal q-vertex algebras for Uq(ŝl2)

3.1. Quasi-particles. In this section, we consider quantum affine algebra Uq(ŝl2). Let c ≥ 1

and

L = (L0)
⊗c = (M(1)⊗ C {Q})⊗c.

In the rest of this paper, we will denote the operator x+1 (z) ∈ E(L) by x(z) and the operator

φ1(z) ∈ E(L) by φ(z). By Corollary 2.18 for every n ≥ 0 the operator x(z) ⊗ tn ∈ E(L)t
generates a graded nonlocal q-vertex algebra, which will be denoted by Vc,n. Our goal is
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to construct monomial bases for Vc,1 and, consequently, obtain corresponding character

formulae. The main building blocks of basis elements will be quasi-particles.

Definition 3.1. For a positive integer m we call the operator

xm,n(z, t) = (x(z)⊗ tn)−1(x(z)⊗ tn)−1...(x(z)⊗ tn)−1︸ ︷︷ ︸
m

1 ∈ Vc,n

a quasi-particle of charge m.

Proposition 3.2. For all m, k ≥ 1, n ≥ 0 we have in Vc,n

xm,n(z, t)−1xk,n(z, t) = xm+k,n(z, t). (3.1)

Proof. The statement is a consequence of Remark 2.15. �

Remark 3.3. Definition 3.1 and Equality (3.1) coincide with the properties of the original

quasi-particle operators for the affine Kac-Moody Lie algebras (cf. [FS],[G],[Bu2]). Also, in

[Ko1], (quantum) quasi-particle operators for quantum affine algebra Uq(ŝl2),

x+mα1
(z) := lim

zj→zq2(j−1)

(
m−1∏
r=1

m∏
s=r+1

(
1− q2 zs

zr

))
x(z1) . . . x(zm) ∈ E(L), (3.2)

were considered. Using quantum integrability (1.9) it was proved that

x+mα1
(z) = 0 on any level c < m integrable highest weight module. (3.3)

From now on, we shall consider only quasi-particles xm,1(z, t) ∈ Vc,1. In order to simplify

our notation we will denote xm,1(z, t) by xm(z, t).

Proposition 3.4. For m ≥ 1 we have

xm(z, t) = 0 in Vc,1 if and only if m > c.

Proof. Denote by xm(z) ∈ E(L) the left tensor factor of the element in E(L)t = E(L) ⊗
C(q1/2)[t] which is obtained by setting t = 1 in xm(z, t). More precisely,

xm(z)⊗ 1 = (xm(z, t))
∣∣
t=1
.

The operator xm(z) is equal, up to a nonzero multiplicative factor, to the operator x+mα1
(z)

in (3.2). Furthermore, (3.3) (see [Ko1, Proposition 16]) implies that xm(z, t) = 0 if m > c.

If m ≤ c, [Ko1, Theorem 38] provides a basis for a certain subspace of L. The basis consists

of the monomials of the operator’s xm(z) coefficients acting on a certain vector v ∈ L. This

implies that the operator xm(z) has some nonzero coefficients, hence xm(z, t) 6= 0. �

3.2. Basis for Vc,1. Corollary 2.18 implies

Proposition 3.5. The set

Sc,1 = {x1(z, t)r1x1(z, t)r2 . . . x1(z, t)rk 1 : rj < 0, j = 1, ..., k, k ∈ Z≥0} .

spans Vc,1.

By setting r = −1 in (2.3) we get

(a−1b)sc =
∑
l≥0

q−u(s+l+1)a−1−l(bs+lc) for all s ∈ Z, (3.4)
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where a ∈ (Vc,1)(u) for some integer u ≥ 0 and b, c ∈ Vc,1. Rewriting (3.4) we get

q−u(s+1)a−1(bsc) = −
∑
l≥1

q−u(s+l+1)a−1−l(bs+lc) + (a−1b)sc. (3.5)

Formula (3.5) and Proposition 3.2 imply that an element x1(z, t)r1 . . . x1(z, t)rk 1 of Sc,1
satisfying r1, ..., rj−1, rj+1 < −1 and rj = −1 for some j < k can be written as a linear

combination of the summands

x1(z, t)r1 . . . x1(z, t)rj−1
x1(z, t)sj . . . x1(z, t)sk 1, for some sj, ...sk ∈ Z, sj < −1,

and the summand

x1(z, t)r1 . . . x1(z, t)rj−1
x2(z, t)rj+1

x1(z, t)rj+2
. . . x1(z, t)rk 1 .

Applying such a procedure an appropriate number of times on every element of Sc,1 and

using Proposition 3.2, we can construct a spanning set for Vc,1, which consists of the elements

xm1(z, t)r1xm2(z, t)r2 . . . xmk(z, t)rk 1 such that if rj = −1 then rj+1 = ... = rk = −1,

(3.6)

where rj < 0, mj ≥ 1, j = 1, ..., k, k ∈ Z≥0. Finally, Propositions 3.2 and 3.4 imply

Proposition 3.6. The set

Bc,1 =
{
xm1(z, t)r1xm2(z, t)r2 . . . xmk(z, t)rk 1 :

r1, ..., rk−1 ≤ −2, rk ≤ −1, 1 ≤ mj ≤ c, j = 1, ..., k, k ∈ Z≥0
}

(3.7)

spans Vc,1.

Our next goal is to prove that the set Bc,1 is linearly independent. The space L0 =

M(1) ⊗ C {Q} is an Uq(ŝl2)-module, so the space L = (L0)
⊗c has also a Uq(ŝl2)-module

structure given by Drinfeld’s coproduct formula, as explained in Section 1.2. For an element

a(z, t) = xm1(z, t)r1xm2(z, t)r2 . . . xmk(z, t)rk 1 ∈ Bc,1 (3.8)

define a c-tuple

ra(z,t) = (r(1), r(2), ..., r(c)),

where r(j) denotes the number of indices i = 1, 2, ..., k such that mi ≥ j. Define the following

subspaces of L0:

(L0)s =
{
v ∈ L0 : Kv = q2sv

}
, s ∈ Z.

Then L0 =
∐

s∈Z(L0)s and we have Georgiev’s projection ([G], cf. also [Ko1])

πa(z,t) : (L0)
⊗c → (L0)r(1) ⊗ (L0)r(2) ⊗ · · · ⊗ (L0)r(c) .

The mapping πa(z,t) can be generalized to the space of the formal Laurent series with

coefficients in (L0)
⊗c, so we can consider the projection

πa(z,t) : (L0)
⊗c[[z±11 , z±12 , ...]]→ ((L0)r(1) ⊗ · · · ⊗ (L0)r(c)) [[z±11 , z±12 , ...]].

The operator a(z, t) in (3.8) can be expressed as a linear combination of the monomials

Ar11,l1,m1
(z, t)−1A

r2
2,l2,m2

(z, t)−1 · · ·Ark−1

k−1,lk−1,mk−1
(z, t)−1A

rk
k,lk,mk

(z, t), (3.9)

where

A
rj
j,lj ,mj

(z, t) = (zrj+1 ⊗ t−rj−1)x(zqMj+lj , t)−1x(zqMj+lj+1, t)−1...x(zqMj+lj+mj−1, t)−1 1,
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lj = 0, 1, ...,−rj − 1, j = 1, 2, .., k, Mj =

j−1∑
i=1

(−ri − 1). (3.10)

All the summands in a such linear combination have the same degree degt in variable t.

The operator

Ar11,0,m1
(z, t)−1A

r2
2,0,m2

(z, t)−1 · · ·Ark−1

k−1,0,mk−1
(z, t)−1A

rk
k,0,mk

(z, t) (3.11)

will be called the leading term of a(z, t).

Lemma 3.7. The leading term of any operator a(z, t) ∈ Bc,1 is nonzero.

Proof. Using the analogous arguments as in the proof of (2.33) one can show that leading

term (3.11) of the operator a(z, t) in (3.8) can be written as

A(z, t) = lim
zj,s→z

(( ∏
1≤i≤j≤k

∏
1≤r≤mi
1≤s≤mj
(i,r)<(j,s)

p(zj,s/zi,r)

)
(3.12)

·
k∏
j=1

(
(zrj+1 ⊗ t−rj−1)x(zj,1q

Mj , t)x(zj,2q
Mj+1, t)...x(zj,mjq

Mj+mj−1, t)
))

for some polynomial p(z) ∈ C(q1/2)[z]0. Applying A(z, t) on the vector 1 = 1⊗c ∈ (L0)
⊗c = L

and setting t = 1 we get an element of L((z)):

lim
zj,s→z

(( ∏
1≤i≤j≤k

∏
1≤r≤mi
1≤s≤mj
(i,r)<(j,s)

p(zj,s/zi,r)

)

·
k∏
j=1

(
zrj+1x(zj,1q

Mj)x(zj,2q
Mj+1)...x(zj,mjq

Mj+mj−1)
))

1. (3.13)

Recall the notation in (1.6) and (1.7). By applying the projection πa(z,t) on (3.13) we get

the Laurent series with coefficients in L = (L0)
⊗c,

lim
zj,s→z

(( ∏
1≤i≤j≤k

∏
1≤r≤mi
1≤s≤mj
(i,r)<(j,s)

p(zj,s/zi,r)

)

·
k∏
j=1

(
zrj+1x(mj)(zj,1q

Mj)x(mj−1)(zj,2q
Mj+1)...x(1)(zj,mjq

Mj+mj−1)
))

1. (3.14)

Formula (3.14) follows from [Ko1, Lemma 18] (cf. also [DF]). Roughly speaking, the pro-

jection πa(z,t) forces the operators x(zj,1q
Mj), ..., x(zj,mjq

Mj+mj−1), j = 1, 2, ..., k, appearing

in (3.13) to spread along the mj leftmost tensor factors of (L0)
⊗c in the ordering as above,

i.e.

x(zj,1q
Mj , t) appears on the tensor factor mj;

x(zj,2q
Mj+1, t) appears on the tensor factor mj − 1;

...

x(zj,mjq
Mj+mj−1, t) appears on the tensor factor 1.
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For more details the reader may consult [Ko1, Subsection 4.1].

Consider the expression under the limit in (3.14). Formulas (1.6), (1.7), (1.10) and (1.11)

imply that its every tensor factor consists (up to a nonzero multiplicative scalar) of the

operators positioned in the following order:

φ( ) · · ·φ( ) : x( ) · · ·x( ) :,

(with the appropriate arguments) and multiplied by some polynomials in C(q1/2)[zj,s/zi,r]0.

Hence, the limit limzj,s→z of each tensor factor, when applied on 1 ∈ L0, is nonzero, so the

statement of Lemma clearly follows. �

Lemma 3.8. The set of all nonzero monomials

Ar11,l1,m1
(z, t)−1A

r2
2,l2,m2

(z, t)−1 · · ·Ark−1

k−1,lk−1,mk−1
(z, t)−1A

rk
k,lk,mk

(z, t), (3.15)

r1, ..., rk−1 ≤ −2, rk ≤ −1, 0 ≤ lj ≤ −rj − 1, 1 ≤ mj ≤ c, j = 1, ..., k, k ∈ Z≥0,

is linearly independent.

Proof. Assume that nonzero monomials in (3.15) are not linearly independent. Let

n∑
i=1

γiAi(z, t) = 0 (3.16)

be a linear combination of the given nonzero monomials

Ai(z, t) = A
r1,i
1,l1,i,m1,i

(z, t)−1 · · ·A
rki−1,i

ki−1,lki−1,i,mki−1,i
(z, t)−1A

rki,i
ki,lki,i,mki,i

(z, t),

where

r1,i, ..., rki−1,i ≤ −2, rki,i ≤ −1, 0 ≤ lj,i ≤ −rj,i − 1, 1 ≤ mj,i ≤ c,

j = 1, 2, ..., ki, ki ∈ Z≥0, i = 1, 2, ..., n,

such that all the scalars γi are nonzero and n > 1 is minimal. Set Ci = m1,i + ...+mki,i for

i = 1, 2, ..., n. Applying the operator qα ⊗ ...⊗ qα︸ ︷︷ ︸
c

on (3.16) we get

n∑
i=1

q2CiγiAi(z, t) = 0.

Since n was minimal, this implies Ci = Cj for all i, j = 1, 2, ..., n. We will denote Cj by C.

Set

Di = C − r1,i − ...− rki,i − ki, i = 1, ..., n. (3.17)

Then degtAi(z, t) = Di for all i = 1, ..., n. Without loss of generality we can assume that

D1 ≤ D2 ≤ ... ≤ Dn. Multiplying (3.16) by t−D1 , setting t = 0 and then multiplying

the resulting equality by tD1 we get another linear constraint among Ai(z, t). If Di 6= Dj

for some i, j = 1, 2, ..., n, this gives a contradiction to minimality of n. Therefore, we can

assume that Di = Dj for all i, j = 1, 2, ..., n, i.e. degtAi(z, t) = degtAj(z, t).

Every Ai(z, t) can be expanded as in (3.12):

Ai(z, t) = lim
zj,s→z

(( ∏
1≤u≤v≤k

∏
1≤r≤mu
1≤s≤mv

(u,r)<(v,s)

pi(zv,s/zu,r)

)
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·
ki∏
j=1

(
(zrj,i+1 ⊗ t−rj,i−1)x(zj,1q

Mj,i+lj,i , t)x(zj,2q
Mj,i+lj,i+1, t)...x(zj,mjq

Mj,i+lj,i+mj,i−1, t)
))

,

lj,i = 0, ...,−rj,i − 1, Mj,i =

j−1∑
t=1

(−rt,i − 1), j = 1, .., ki, i = 1, ..., n. (3.18)

We can assume that the monomials Ai(z, t) are different. Consider the powers of q in the

arguments of the operators x( ) in (3.18),

qMj,i+lj,i , qMj,i+lj,i+1, ... , qMj,i+lj,i+mj,i−1. (3.19)

There exists an integer p such that qp appears in (3.19) for i = n and does not appear in

(3.19) for i = 1. Define the (invertible) operators E±1c (z) on (L0)
⊗c by

E±1c (z) = E−(zqp)±1 ⊗ E−(zqp+1)±1 ⊗ · · · ⊗ E−(zqp+c−1)±1.

Recall (1.12) and (1.13). Applying these operators on (3.16) we get

0 = E−1c (z)

(
n∑
i=1

γiAi(z, t)

)
Ec(z) =

n∑
i=1

γiE−1c (z)Ai(z, t)Ec(z) =
n∑
i=1

γiβiAi(z, t),

for some scalars βi, i = 1, 2, ..., n, such that β1 6= 0 and βn = 0, which is in contradiction to

minimality of n. �

As we observed earlier, the elements a(z, t), b(z, t) ∈ Bc,1 can be expressed as linear

combinations of monomials (3.9). Certain summands in such linear combinations for a(z, t)

and b(z, t) may coincide. However, each element in Bc,1 is uniquely determined by its leading

term; a(z, t) and b(z, t) are equal if and only if their leading terms are equal. Notice that

Lemmas 3.7 and 3.8 imply that all the elements in Bc,1 are nonzero.

We can introduce a linear ordering among leading terms. Let

A(z, t) = Ar11,0,m1
(z, t)−1A

r2
1,0,m2

(z, t)−1 · · ·Ark−1

k−1,0,mk−1
(z, t)−1A

rk
k,0,mk

(z, t);

B(z, t) = As11,0,n1
(z, t)−1A

s2
1,0,n2

(z, t)−1 · · ·Asl−1

l−1,0,nl−1
(z, t)−1A

sl
l,0,nl

(z, t).

We write

A(z, t) ≺ B(z, t) if
k∑
j=1

(mj − rj)− k <
l∑

j=1

(nj − sj)− l

or
k∑
j=1

(mj − rj)− k =
l∑

j=1

(nj − sj)− l

and (m1, r1,m2, r2, ...,mk, rk)

< (n1, s1, n2, s2, ..., nl, sl), (3.20)

where ”<” in (3.20) is the usual lexicographic ordering.

Lemma 3.9. The set Bc,1 is linearly independent.

Proof. Let
n∑
i=1

γiai(z, t) = 0

be a linear combination of different elements ai(z, t) ∈ Bc,1 such that the scalars γi are

nonzero. Suppose that the leading term of aj(z, t) is greater, regarding the ordering ”≺”,
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than the leading terms of ai(z, t), i 6= j. When we express ai(z, t), i 6= j, as a linear

combination of summands (3.9), none of these summands equals the leading term of aj(z, t).

Therefore, Lemma 3.8 implies γj = 0, which is in contradiction to our choice of scalars.

�

Finally, the main result of this section follows from Proposition 3.6 and Lemma 3.9:

Theorem 3.10. The set Bc,1 forms a basis for Vc,1.

The fact that we considered E(L)t instead of E(L) did not affect the form of the basis

Bc,1, i.e. the size of the space Vc,1:

Corollary 3.11. The set {a(z, t) |t=1 : a(z, t) ∈ Bc,1} is linearly independent.

Proof. By checking the proofs of Lemmas 3.7, 3.8 and 3.9, we see that all the arguments

except one remain valid for a(z, t) |t=1 . In the proof of Lemma 3.8, we considered linear

combination (3.16),
∑n

i=1 γiAi(z, t) = 0 and showed that we can assume that all the elements

Di, i = 1, 2, ..., n, defined by (3.17), are equal. Even though such a conclusion does not hold

for t = 1, we can always derive from (3.16) a new linear combination,
∑m

j=1 βj(z)Bj(z, t) = 0,

where βj(z) are nonzero polynomials in z−1, Bj(z, t) 6= Bk(z, t)z
l for all j, k = 1, 2, ...,m,

l ∈ Z, j 6= k and Bj(z, t) ∈ {A1(z, t), A2(z, t), ..., An(z, t)} for all j = 1, ...,m. Note that

βj(z)Bj(z, t) 6= 0 for all j = 1, ...,m. Now, with this linear combination, we can proceed in

the same way as in the proof of Lemma 3.8. �

Corollary 3.11 implies that the restriction of the evaluation homomorphism

ϕ : a(z)⊗ g(t) 7→ a(z)⊗ g(1)

on Vc,1 is injective, so ϕ : Vc,1 → Vc is an isomorphism of vector spaces Vc,1 and Vc = Imϕ.

Hence, we can define the structure of graded nonlocal q-vertex algebra on Vc ⊂ E(L) in the

following way:

Y (a(z), z0)b(z) =
∑
r∈Z

ϕ(ϕ−1(a(z))rϕ
−1(b(z)))z−r−10 ; (3.21)

1 = 1E(L); (3.22)

(Vc)(s) = ϕ((Vc,1)(s)) (3.23)

for all a(z), b(z) ∈ Vc, s ∈ Z. Note that x(z) is an element of Vc, so, in view of (3.21)–(3.23),

we can say that Vc is the graded nonlocal q-vertex algebra generated by x(z).

Remark 3.12. It is not clear whether the techniques, which we used to prove the linear

independence of the set Bc,n for c ≥ 1, n = 1, can be applied to the case c > 1, n = 0.

The similar spanning set for Vc,0 can be easily constructed, but some of its elements have

zero leading terms and, furthermore, some different elements have equal (nonzero) leading

terms.

Recall the notation from Definition 3.1. The case c = 1, n = 0 was solved in [Ko3] using

the slightly different vertex algebraic setting. The results therein imply that the set

B1,0 =
{
x1,0(z, t)r1x1,0(z, t)r2 . . . x1,0(z, t)rk 1 : r1, ..., rk−1 ≤ −3, rk ≤ −1, k ∈ Z≥0

}
forms a basis for V1,0 and that the analogue of Corollary 3.11 holds. Moreover, the leading

terms of ϕ(B1,0) and ϕ(B1,1) coincide up to a nonzero multiplicative factor.
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Figure 1. Diagram for b(z, t) = x7(z, t)−3x4(z, t)−2x5(z, t)−2x6(z, t)−1 1

On the other hand, construction of similar bases for c ≥ 1, n > 1 is straightforward since,

due to the definition of the vertex operator products, quantum integrability relations (1.9)

are not applicable anymore. The set

Bc,n =
{
xm1,n(z, t)r1xm2,n(z, t)r2 . . . xmk,n(z, t)rk 1 :

r1, ..., rk−1 ≤ −2, rk ≤ −1, mj ≥ 1, j = 1, ..., k, k ∈ Z≥0
}

forms a basis of Vc,n and its linear independence can be proved by using the arguments from

Lemma 3.8.

3.3. Character formulae. Let

a(z, t) = xm1(z, t)r1xm2(z, t)r2 . . . xmk(z, t)rk 1 ∈ Bc,1 (3.24)

be an arbitrary basis element. We can associate a colored Young diagram with a(z, t) in the

following way. The diagram will have k columns: the first column will have −(r1 + ...+ rk)

rows, the second column will have −(r2 + ... + rk) rows, ..., the last column will have −rk
rows. Boxes in column j = 1, 2, ..., k will be labeled by mj.

For the basis element a(z, t) in (3.24) set

degq a(z, t) = −(r1 + 2r2 + 3r3 + ...+ krk). (3.25)

Note that degq a(z, t) is equal to the number of boxes in the diagram for a(z, t). Next, define

degq 1 = 0.

Example 1. The diagram for the basis element

b(z, t) = x7(z, t)−3x4(z, t)−2x5(z, t)−2x6(z, t)−1 1 ∈ Bc,1

is given in Figure 1. Of course, we assume here that c ≥ 7. The degree degq b(z, t) equals

17.

The space Vc,1 admits a decomposition

Vc,1 =
∐
r≥0

(Vc,1)r, (Vc,1)r =
{
a(z, t) ∈ Vc,1 : degq a(z, t) = r

}
,
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and all the subspaces (Vc,1)r are finite-dimensional. Hence, we can define

chq Vc,1 =
∑
r≥0

dim(Vc,1)r q
r.

Naturally, parameters q and q in the above formula are not related.

For the basis element a(z, t) in (3.24) and j = 1, 2, ..., k set

aj(z, t) = xmj(z, t)rjxmj+1
(z, t)rj+1

. . . xmk(z, t)rk 1 ∈ Bc,1;
ak+1(z, t) = 1 ∈ Bc,1.

Notice that the defining conditions for the basis Bc,1 in (3.7),

rj ≤ −2, for all j = 1, 2, ..., k − 1; (3.26)

rk ≤ −1 (3.27)

can be expressed in terms of degq by(
degq aj+1(z, t)− degq aj+2(z, t)

)
−
(

degq aj(z, t)− degq aj+1(z, t)
)
≤ −2 (3.28)

for all j = 1, ..., k − 1;

degq ak(z, t) ≤ −1. (3.29)

Theorem 3.13.

chq Vc,1 =
∑
r≥0

qr
2

(1− q)(1− q2) · · · (1− qr)
cr. (3.30)

Proof. Let c = 1. Coefficient of qn in the rth summand qr
2
(1 − q)−1 · · · (1 − qr)−1 equals

the number of partitions of n into r parts such that the difference among consecutive parts

is at least two. Therefore, equivalence of (3.26), (3.27) and (3.28), (3.29) implies that the

character formula (3.30) holds for c = 1. For an arbitrary level c, the basis Bc,1 consists of

monomials of quasi-particles, which have charges 1, 2, ..., c and satisfy the same conditions

(3.28) and (3.29), while the factor cr in (3.30) counts all the possible choices of charges in

a monomial consisting of r quasi-particles. �

Remark 3.14. In contrast to the function degq, defined in (3.25), the original grading for

Vc,1, which is given by the function wt in (2.4), depends on the labels m1, ...,mk of the

element a(z, t) in (3.24). Defining conditions (3.26) and (3.27) can be expressed in terms of

wt by

wt aj(z, t)− wt aj+1(z, t) ≥ mj + 1 for all j = 1, ..., k − 1;

wt ak(z, t) ≥ 1.

Furthermore, the value wt a(z, t) can be easily obtained from the corresponding diagram:

wt a(z, t) = (number of rows) − (number of columns) + (sum of labels).

For example (see Figure 1),

wt b(z, t) = 8 − 4 + (7 + 4 + 5 + 6) = 26.
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