SOLVABLE NORMAL SUBGROUPS OF 2-KNOT
GROUPS
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ABSTRACT. If X is an orientable, strongly minimal P D,-complex
and 71 (X) has one end then it has no nontrivial locally-finite nor-
mal subgroup. Hence if 7 is a 2-knot group then (a) if 7 is virtually
solvable then either 7 has two ends or m = @, with presentation
{a,t|ta = a®t), or 7 is torsion-free and polycyclic of Hirsch length
4; (b) either 7 has two ends, or 7 has one end and the centre {m
is torsion-free, or 7 has infinitely many ends and (= is finite; and
(¢) the Hirsch-Plotkin radical /7 is nilpotent.

The main result of this note (in §1) is that if X is an orientable PD,-
complex such that 7 (X) has one end and the equivariant intersection
pairing on my(X) is 0 then 7 (X') has no nontrivial locally-finite normal
subgroup. This has several applications to 2-knot groups and their
subgroups.

In §2 we show that if a 2-knot group w is virtually solvable then
either 7’ is finite or @ = ® = Zx,, with presentation (a,t|ta = a’t)
(the group of Fox’s Example 10), or 7 is torsion-free polycyclic and of
Hirsch length 4. Such groups are all known. (The final family was found
in [6].) More generally, if S is an infinite solvable normal subgroup and
7 is not itself solvable then S = Z? or is virtually torsion-free abelian
of rank 1. We show also that the Hirsch-Plotkin radical /7 of every
2-knot group is nilpotent. Finally we consider the centre (7. If 7w has
one end then (7 = Z? or is torsion-free, of rank < 1. In particular, this
is so if the commutator subgroup 7’ is infinite and (7 has rank > 0. If
7 has two ends {7 has rank 1, and may be either Z or Z® Z/2Z, while
if 7 has infinitely many ends (7 is finite. We extend a construction of
[12] to give examples with /7 cyclic of order ¢ or 2¢, with ¢ odd.

1. PD4s~COMPLEXES WITH x =0

A PDj-complex X with fundamental group 7 is strongly minimal
if the equivariant intersection pairing on mo(X) is 0, equivalently, if
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the homomorphism from H?(r;Z[x]) to H*(X;Z[r]) induced by the
classifying map cx : X — K(m, 1) is an isomorphism [5].

Lemma 1. Let G be a group. If T is a locally finite normal subgroup
of G then T acts trivially on H(G;Z[G)), for all j > 0.

Proof. If T is finite then H’(G;Z[G]) = H/(G/T;Z|G/T))), for all
j, and the result is clear. Thus we may assume that T and G are
infinite. Hence H°(G;Z[G]) = 0, and T acts trivially. We may write
T = U,>1T,, as a strictly increasing union of finite subgroups. Then
there are short exact sequences [8]

0 — lim' H*"Y(T,,; Z[n]) — H*(T; Z[x]) — lim H*(T,,; Z[x]) — 0.
Hence H*(T;Z[n]) = 0 if s # 1 and H'(T;Z[r]) = lim" H(T,,; Z[n]),

and so the LHS spectral sequence collapses to give H'(G;Z[G]) =
HI=YG)T; HY(T;Z|G))), for all j > 1. Let g € T. We may assume
that g € T), for all n, and so g acts trivially on H%(T),; ZG), for all j
and n. But then g acts trivially on T&llHO(Tn; Z[r]), by the functori-
ality of the construction. Hence every element of T" acts trivially on

H~Y(G/T; H\(T; Z|G))), for all j > 1. O

Theorem 2. Let X be an orientable PDs-complex with fundamental
group 7. If X 1is strongly minimal and 7 has one end then © has no
non-trivial locally-finite normal subgroup.

Proof. Since 7 has one end, Hy(X;Z[r]) = 0 for s # 0 or 2. Poincaré
duality and cy give an isomorphism Il = Hy(X; Z[r]) & H*(X;Z[r]).
Since X is strongly minimal, this in turn is isomorphic to H?(r; Z[x]).

Suppose that 7 has a nontrivial locally-finite normal subgroup 7.
Let g € T have prime order p, and let C' = (g) = Z/pZ. We apply
Lemma 2.10 of [4], to conclude that H; 3(C;Z) = H;(C;II) for all
1 > 2. Since C' has cohomological period 2 and acts trivially on II, by
Lemma 1, there is an exact sequence

0—Z/pZ =11 -1 — 0.

But I1 & H?(r;Z[r]) is torsion-free, by Proposition 13.7.1 of [2], since
7 is finitely presentable. Hence T has no such element g and so 7 has
no such finite normal subgroup. U

Corollary 2.1. FEvery locally-finite ascending subgroup of m is trivial.

Proof. If T' is a locally-finite ascending subgroup of 7 then a transfinite
induction shows that the normal closure of T" in 7 is locally finite. [J

Let 5@'(2) (X) be the ith L? Betti number of X. (See [9] for a compre-
hensive exposition of L?-theory.)
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Lemma 3. Let X be a finite PD4-complex with fundamental group .
If x(X) =0 and ﬁ£2)(71') =0 then X is strongly minimal.

Proof. Since X is a finite complex the L2-Euler characteristic formula
holds, and so x(X) = 652)()() - 269) (X). Hence 652) (X) = 0 also.
Since §”(X) = 417 (r) = 0, 37(X) > B”(m) > 0 and x(X) = 0, it
follows that BSQ)(X )= 652) (7). Hence H?(cx;Z[x]) is an isomorphism,
by part (3) of Theorem 3.4 of [4]. O

We shall apply these results to 2-knot groups in the next section.

2. CENTRES, HIRSCH-PLOTKIN RADICALS AND VIRTUALLY
SOLVABLE 2-KNOT GROUPS

Let K be a 2-knot with exterior X (K) = S*\ K and group 7 = 7K =
(X (K)), and let M(K) = X(K)US! x D? be the closed 4-manifold
obtained by elementary surgery on K in S*. Then m(M(K)) = 7 and
Y(M(K)) = 0.

Let ¢G,G" and v/G denote the centre, commutator subgroup and
Hirsch-Plotkin radical of a group G, respectively. If GG is elementary
amenable then it has a well-defined Hirsch length h(G) € N U {o0}.
(See [7] or Chapter 1 of [4].)

Theorem 4. Let K be a 2-knot with group m = wK. If m has normal
subgroups A < E with A a nontrivial abelian group and E an infinite
elementary amenable group then either ©' is finite or E is virtually
torsion-free solvable. If h(E) = 1 then E is abelian or virtually Z;
if W(E) = 2 then E = 72, and if h(E) > 2 then E is torsion-free
polycyclic, and h(E) =3 or 4.

Proof. We may assume that 7’ is infinite. Then 7 has one end, and

9(#) = 0, since 7 has an infinite elementary amenable normal sub-
group. Since M (K) is a closed 4-manifold, it is homotopy equivalent
to a finite PD,-complex, and so is strongly minimal, by Lemma 3. The
torsion subgroup of A is characteristic, and so is normal in 7. Hence
A is torsion-free, by Theorem 2. Therefore either 7 =2 & or M(K) is
aspherical or A = Z and 7/A has infinitely many ends, by Theorem
15.8 of [4]. In all cases E is in fact virtually torsion-free solvable. (This
is Corollary 1.9.2 of [4] when M (K) is aspherical.)

If £ is infinite then 7 has one or two ends. Hence if h(E) = 1
and 7’ is infinite then E has no finite normal subgroup, and so must
have a torsion-free abelian subgroup of index < 2. If F is not finitely
generated then m = ® or M (K) is aspherical, by Theorem 15.8 of [4],
and so 7 is torsion-free. Hence S must be abelian.
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If h(F) = 2 then M(K) is aspherical and F is torsion-free and vir-
tually Z?, by Theorems 9.1 and 16.2 of [4]. Since M(K) is orientable,
F cannot be the Klein bottle group, and so £ = Z2. If h(F) > 2 then
7 is torsion-free polycyclic and h(w) = 4, by Theorem 8.1 of [4], so
h(E) =3 or 4. O

We do not know whether £ must be abelian when 7’ is infinite, F is
finitely generated and h(E) =1 or 2.

Corollary 4.1. If 7w is virtually solvable then either ©' is finite or
T =2 ® or 7 is torsion-free polycyclic and h(mw) = 4.

Proof. If 7 is virtually solvable it has a solvable normal subgroup S of
finite index. The lowest nontrivial term of the derived series for S is
characteristic in .S, and so normal in 7w. Hence the theorem applies. [

It is enough to assume that 7 is elementary amenable and has a
nontrivial abelian normal subgroup. Can we relax “virtually solvable”
further to just “elementary amenable”?

If 7 =2 ® then K is TOP isotopic to Fox’s Example 10 (or its reflec-
tion) [5], while if 7 is torsion-free polycyclic then it determines M (K)
is determined up to homeomorphism, by Theorem 17.4 of [4].

The product of locally-nilpotent normal subgroups of a group G is
again a locally-nilpotent normal subgroup, by the Hirsch-Plotkin The-
orem, and the Hirsch-Plotkin radical v/G is the (unique) maximal such
subgroup. (See Proposition 12.1.2 of [10].) This subgroup contains all
the nilpotent normal subgroups of G, and is clearly nilpotent if it is
finitely generated. However in general v/G need not be nilpotent.

Corollary 4.2. The Hirsch-Plotkin radical /7 is nilpotent.

Proof. Since /7 is locally nilpotent it has a maximal locally-finite nor-
mal subgroup 7" with torsion-free quotient. If /7 is finitely generated
there is nothing to prove. Otherwise, 7 has one end and so 7' is triv-
ial, by Theorem 3. If T = 1 and h(y/7m) < 2 then /7 is abelian; if
h(y/7) > 2 then 7 is virtually polycyclic and h(w) = 4, by Theorem
15.8 of [4]. In each case /7 is nilpotent. O

Every finitely generated abelian group is the centre of some high-
dimensional knot group [3]. On the other hand, the only classical knots
whose groups have nontrivial abelian normal subgroups are the torus
knots, for which /7 = (7w 2 Z and {(x N7’ = 1. The intermediate case
of 2-knots is less clear. If (7 has rank > 1 then it is Z?; most twist

spins of torus knots have such groups. There are examples with centre
1,Z/2Z,Z or Z® Z/2Z. (See Chapters 15-17 of [4].)
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Corollary 4.3. Let K be a 2-knot with group m = 7K. Then

(1) if ™ has two ends then (m = Z & Z/2Z if 7' has even order;
otherwise (m = 7Z;

(2) if  has one end then (m =2 72, or is torsion-free of rank < 1;

(8) if ™ has infinitely many ends then (m is finite.

Proof. If w has two ends then #’ is finite, and so {7 is finitely generated
and of rank 1. It follows from the classification of such 2-knot groups
(see §4 of Chapter 15 of [4]) that (m 2 Z @ Z/2Z if 7’ has even order,
and otherwise (7 = Z.

Part (2) follows from Theorem 4, while part (3) is clear. O

Note that 7 has finitely many ends if 7’ is finitely generated, or if
¢m is infinite. When 7 has more than one end Lemma 2.10 of [4] either
does not lead to a contradiction or does not apply.

If (m is a nontrivial torsion group then it is finite. Yoshikawa con-
structed an example of a 2-knot whose group 7 has centre of order 2
[13]. Tt is easy to see that /7 = (7 in this case. The construction may
be extended as follows. Let ¢ > 0 be odd and let k; be a 2-bridge knot
such that the 2-fold branched cyclic cover of S®, branched over k, is
a lens space L(3¢,r), for some r relatively prime to ¢. Let K; = mk,
be the 2-twist spin of k,, and let Ky = 73k be the 3-twist spin of a
nontrivial knot k. Let « be a simple closed curve in X (K7) with image
[v] € 7K of order 3¢, and let w be a meridian for K. Then w? is
central in wK5. The group of the satellite of K; about Kj relative to
v is the generalized free product

T = 7Ky /(W) %y TK.

(see §14.3 of [4].) Hence /7 = (w®) = Z/qZ, while (m = 1.

If we use a 2-knot K; with group (Q(8) x Z/3qZ) x¢ Z instead
and choose 7 so that [y] has order 6¢ then we obtain examples with
VT = Z/2qZ and (7 = Z/2Z. (Knots K; with such groups may be
constructed by surgery on sections of mapping tori of homeomorphisms
of 3-manifolds with fundamental group Q(8) x Z/3¢Z [12].)

If (7 has rank 1 and nontrivial torsion then 7’ is finite, and (x is
finitely generated.

If {7 has rank 1 but is not finitely generated then M (K) is aspherical.
It is not known whether there are such 2-knots (nor, more generally,
whether abelian normal subgroups of rank 1 in PD,,-groups with n > 3
must be finitely generated). What little we know about this case is as
follows. Since (7 < 7" and 7 /7’ = Z, we must have (7 < 7. Since (7
is torsion-free of rank 1 but is not finitely generated, c.d.(m = 2. Hence
if G is a nonabelian subgroup which contains (7 then c.d.G > 3, by
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Theorem 8.6 of [1]. If H is a subgroup of 7 such that H N {w = 1 then
H.(m = H x (7 is not finitely generated, and so has infinite index in
7. Hence c.d.H x Z < c.d.H x {(m < 3 [11]. Theorem 5.5 of [1] gives,
firstly, that c.d.H < 2, and then, that if H is F'P, then c.d.H < 1, and
so H is free. Thus if 7 is almost coherent every subgroup either meets
(7 nontrivially or is locally free.

If (7 has rank > 1 then M (K) is aspherical and (7 = Z?, by Theorem
16.3 of [4].

The following questions remain open:

(i) if ¢ has rank 1, must it be finitely generated?

(ii) if ¢7 is finite, must it be Z/2Z or 17

(iii) is there a 2-knot group = with /7 a non-cyclic finite group?

(iv) if 7 is elementary amenable is it virtually solvable?
In each case the answer is “yes” if 7’ is finitely presentable, for then the
infinite cyclic cover M (K" is homotopy equivalent to a PDs-complex,
by Theorem 4.5 of [4].

At the time of writing, the largest known class of groups for which
4-dimensional TOP surgery works is the class SA obtained from subex-
ponential groups by taking increasing unions and extensions. Are there
2-knot groups in this class which are not virtually solvable?



(1]
2]

[10]

[11]
[12]

[13]

SOLVABLE NORMAL SUBGROUPS OF 2-KNOT GROUPS 7

REFERENCES

Bieri, R. Homological Dimension of Discrete Groups,

Queen Mary College Lecture Notes in Mathematics, London (1976).
Geoghegan, R. Topological Methods in Group Theory,

Graduate Texts in Mathematics 243,

Springer-Verlag, Berlin — Heidelberg — New York (2008).

Hausmann, J.-C. and Kervaire, M. Sur le centre des groupes de noeuds
multidimensionelles, C.R. Acad. Sci. Paris 287 (1978), 699-702.

Hillman, J. A. Four-Manifolds, Geometries and Knots,

Geometry and Topology Monographs 5,

Geometry and Topology Publications (2002). (Revisions 2007 and 2014).
Hillman, J.A. Strongly minimal PD4-complexes,

Top. Appl. 156 (2009), 1565-1577.

Hillman, J.A. and Howie, J. Seifert fibred knot manifolds,

J. Knot Theory Ramif. 22 (2013), 1350082.

Hillman, J.A. and Linnell, P.A. Elementary amenable groups of finite Hirsch
length are locally finite by virtually solvable,

J. Austral. Math. Soc. 52 (1992), 237-241.

Jensen, C.U. Les foncteurs dérivées de I&H et ses applications a la théorie des
modules, Lecture Notes in Mathematics 254,

Springer-Verlag, Berlin — Heidelberg — New York (1972).

Liick, W. L2-Invariants: Theory and Applications to Geometry and K - Theory,
Ergebnisse der Mathematik und ihrer Grenzgebiete 3 Folge, Bd. 44,
Springer-Verlag, Berlin - Heidelberg - New York (2002).

Robinson, D.J.S. A Course in the Theory of Groups,

Graduate Texts in Mathematics 80,

Springer-Verlag, Berlin — Heidelberg — New York (1982).

Strebel, R. A remark on subgroups of infinite index in Poincaré duality groups,
Comment. Math. Helvetici 52 (1977), 317-324.

Yoshikawa, K. On 2-knot groups with the finite commutator subgroups,
Math. Seminar Notes Kobe University 8 (1980), 321-330.

Yoshikawa, K. On a 2-knot group with nontrivial centre,

Bull. Austral.Math. Soc. 25 (1982), 321-326.

SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SYDNEY, NSW
2006, AUSTRALIA
E-mail address: jonathan.hillman@sydney.edu.au



