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Abstract. If X is an orientable, strongly minimal PD4-complex
and π1(X) has one end then it has no nontrivial locally-finite nor-
mal subgroup. Hence if π is a 2-knot group then (a) if π is virtually
solvable then either π has two ends or π ∼= Φ, with presentation
〈a, t|ta = a2t〉, or π is torsion-free and polycyclic of Hirsch length
4; (b) either π has two ends, or π has one end and the centre ζπ
is torsion-free, or π has infinitely many ends and ζπ is finite; and
(c) the Hirsch-Plotkin radical

√
π is nilpotent.

The main result of this note (in §1) is that if X is an orientable PD4-
complex such that π1(X) has one end and the equivariant intersection
pairing on π2(X) is 0 then π1(X) has no nontrivial locally-finite normal
subgroup. This has several applications to 2-knot groups and their
subgroups.

In §2 we show that if a 2-knot group π is virtually solvable then
either π′ is finite or π ∼= Φ = Z∗2, with presentation 〈a, t|ta = a2t〉
(the group of Fox’s Example 10), or π is torsion-free polycyclic and of
Hirsch length 4. Such groups are all known. (The final family was found
in [6].) More generally, if S is an infinite solvable normal subgroup and
π is not itself solvable then S ∼= Z2 or is virtually torsion-free abelian
of rank 1. We show also that the Hirsch-Plotkin radical

√
π of every

2-knot group is nilpotent. Finally we consider the centre ζπ. If π has
one end then ζπ ∼= Z2 or is torsion-free, of rank ≤ 1. In particular, this
is so if the commutator subgroup π′ is infinite and ζπ has rank > 0. If
π has two ends ζπ has rank 1, and may be either Z or Z⊕Z/2Z, while
if π has infinitely many ends ζπ is finite. We extend a construction of
[12] to give examples with

√
π cyclic of order q or 2q, with q odd.

1. PD4-complexes with χ = 0

A PD4-complex X with fundamental group π is strongly minimal
if the equivariant intersection pairing on π2(X) is 0, equivalently, if
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the homomorphism from H2(π;Z[π]) to H2(X;Z[π]) induced by the
classifying map cX : X → K(π, 1) is an isomorphism [5].

Lemma 1. Let G be a group. If T is a locally finite normal subgroup
of G then T acts trivially on Hj(G;Z[G]), for all j ≥ 0.

Proof. If T is finite then Hj(G;Z[G]) ∼= Hj(G/T ;Z[G/T ])), for all
j, and the result is clear. Thus we may assume that T and G are
infinite. Hence H0(G;Z[G]) = 0, and T acts trivially. We may write
T = ∪n≥1Tn as a strictly increasing union of finite subgroups. Then
there are short exact sequences [8]

0→ lim←−
1Hs−1(Tn;Z[π])→ Hs(T ;Z[π])→ lim←−H

s(Tn;Z[π])→ 0.

Hence Hs(T ;Z[π]) = 0 if s 6= 1 and H1(T ;Z[π]) = lim←−
1H0(Tn;Z[π]),

and so the LHS spectral sequence collapses to give Hj(G;Z[G]) ∼=
Hj−1(G/T ;H1(T ;Z[G])), for all j ≥ 1. Let g ∈ T . We may assume
that g ∈ Tn for all n, and so g acts trivially on H0(Tn;ZG), for all j
and n. But then g acts trivially on lim←−

1H0(Tn;Z[π]), by the functori-
ality of the construction. Hence every element of T acts trivially on
Hj−1(G/T ;H1(T ;Z[G])), for all j ≥ 1. �

Theorem 2. Let X be an orientable PD4-complex with fundamental
group π. If X is strongly minimal and π has one end then π has no
non-trivial locally-finite normal subgroup.

Proof. Since π has one end, Hs(X;Z[π]) = 0 for s 6= 0 or 2. Poincaré
duality and cX give an isomorphism Π = H2(X;Z[π]) ∼= H2(X;Z[π]).
Since X is strongly minimal, this in turn is isomorphic to H2(π;Z[π]).

Suppose that π has a nontrivial locally-finite normal subgroup T .
Let g ∈ T have prime order p, and let C = 〈g〉 ∼= Z/pZ. We apply
Lemma 2.10 of [4], to conclude that Hi+3(C;Z) ∼= Hi(C; Π) for all
i ≥ 2. Since C has cohomological period 2 and acts trivially on Π, by
Lemma 1, there is an exact sequence

0→ Z/pZ → Π→ Π→ 0.

But Π ∼= H2(π;Z[π]) is torsion-free, by Proposition 13.7.1 of [2], since
π is finitely presentable. Hence T has no such element g and so π has
no such finite normal subgroup. �

Corollary 2.1. Every locally-finite ascending subgroup of π is trivial.

Proof. If T is a locally-finite ascending subgroup of π then a transfinite
induction shows that the normal closure of T in π is locally finite. �

Let β
(2)
i (X) be the ith L2 Betti number of X. (See [9] for a compre-

hensive exposition of L2-theory.)
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Lemma 3. Let X be a finite PD4-complex with fundamental group π.

If χ(X) = 0 and β
(2)
1 (π) = 0 then X is strongly minimal.

Proof. Since X is a finite complex the L2-Euler characteristic formula

holds, and so χ(X) = β
(2)
2 (X) − 2β

(2)
1 (X). Hence β

(2)
2 (X) = 0 also.

Since β
(2)
1 (X) = β

(2)
1 (π) = 0, β

(2)
2 (X) ≥ β

(2)
2 (π) ≥ 0 and χ(X) = 0, it

follows that β
(2)
2 (X) = β

(2)
2 (π). Hence H2(cX ;Z[π]) is an isomorphism,

by part (3) of Theorem 3.4 of [4]. �

We shall apply these results to 2-knot groups in the next section.

2. centres, hirsch-plotkin radicals and virtually
solvable 2-knot groups

Let K be a 2-knot with exterior X(K) = S4\K and group π = πK =
π1(X(K)), and let M(K) = X(K)∪ S1 ×D3 be the closed 4-manifold
obtained by elementary surgery on K in S4. Then π1(M(K)) ∼= π and
χ(M(K)) = 0.

Let ζG,G′ and
√
G denote the centre, commutator subgroup and

Hirsch-Plotkin radical of a group G, respectively. If G is elementary
amenable then it has a well-defined Hirsch length h(G) ∈ N ∪ {∞}.
(See [7] or Chapter 1 of [4].)

Theorem 4. Let K be a 2-knot with group π = πK. If π has normal
subgroups A ≤ E with A a nontrivial abelian group and E an infinite
elementary amenable group then either π′ is finite or E is virtually
torsion-free solvable. If h(E) = 1 then E is abelian or virtually Z;
if h(E) = 2 then E ∼= Z2, and if h(E) > 2 then E is torsion-free
polycyclic, and h(E) = 3 or 4.

Proof. We may assume that π′ is infinite. Then π has one end, and

β
(2)
1 (π) = 0, since π has an infinite elementary amenable normal sub-

group. Since M(K) is a closed 4-manifold, it is homotopy equivalent
to a finite PD4-complex, and so is strongly minimal, by Lemma 3. The
torsion subgroup of A is characteristic, and so is normal in π. Hence
A is torsion-free, by Theorem 2. Therefore either π ∼= Φ or M(K) is
aspherical or A ∼= Z and π/A has infinitely many ends, by Theorem
15.8 of [4]. In all cases E is in fact virtually torsion-free solvable. (This
is Corollary 1.9.2 of [4] when M(K) is aspherical.)

If E is infinite then π has one or two ends. Hence if h(E) = 1
and π′ is infinite then E has no finite normal subgroup, and so must
have a torsion-free abelian subgroup of index ≤ 2. If E is not finitely
generated then π ∼= Φ or M(K) is aspherical, by Theorem 15.8 of [4],
and so π is torsion-free. Hence S must be abelian.
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If h(E) = 2 then M(K) is aspherical and E is torsion-free and vir-
tually Z2, by Theorems 9.1 and 16.2 of [4]. Since M(K) is orientable,
E cannot be the Klein bottle group, and so E ∼= Z2. If h(E) > 2 then
π is torsion-free polycyclic and h(π) = 4, by Theorem 8.1 of [4], so
h(E) = 3 or 4. �

We do not know whether E must be abelian when π′ is infinite, E is
finitely generated and h(E) = 1 or 2.

Corollary 4.1. If π is virtually solvable then either π′ is finite or
π ∼= Φ or π is torsion-free polycyclic and h(π) = 4.

Proof. If π is virtually solvable it has a solvable normal subgroup S of
finite index. The lowest nontrivial term of the derived series for S is
characteristic in S, and so normal in π. Hence the theorem applies. �

It is enough to assume that π is elementary amenable and has a
nontrivial abelian normal subgroup. Can we relax “virtually solvable”
further to just “elementary amenable”?

If π ∼= Φ then K is TOP isotopic to Fox’s Example 10 (or its reflec-
tion) [5], while if π is torsion-free polycyclic then it determines M(K)
is determined up to homeomorphism, by Theorem 17.4 of [4].

The product of locally-nilpotent normal subgroups of a group G is
again a locally-nilpotent normal subgroup, by the Hirsch-Plotkin The-
orem, and the Hirsch-Plotkin radical

√
G is the (unique) maximal such

subgroup. (See Proposition 12.1.2 of [10].) This subgroup contains all
the nilpotent normal subgroups of G, and is clearly nilpotent if it is
finitely generated. However in general

√
G need not be nilpotent.

Corollary 4.2. The Hirsch-Plotkin radical
√
π is nilpotent.

Proof. Since
√
π is locally nilpotent it has a maximal locally-finite nor-

mal subgroup T with torsion-free quotient. If
√
π is finitely generated

there is nothing to prove. Otherwise, π has one end and so T is triv-
ial, by Theorem 3. If T = 1 and h(

√
π) ≤ 2 then

√
π is abelian; if

h(
√
π) > 2 then π is virtually polycyclic and h(π) = 4, by Theorem

15.8 of [4]. In each case
√
π is nilpotent. �

Every finitely generated abelian group is the centre of some high-
dimensional knot group [3]. On the other hand, the only classical knots
whose groups have nontrivial abelian normal subgroups are the torus
knots, for which

√
π = ζπ ∼= Z and ζπ ∩ π′ = 1. The intermediate case

of 2-knots is less clear. If ζπ has rank > 1 then it is Z2; most twist
spins of torus knots have such groups. There are examples with centre
1, Z/2Z, Z or Z⊕ Z/2Z. (See Chapters 15–17 of [4].)
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Corollary 4.3. Let K be a 2-knot with group π = πK. Then

(1) if π has two ends then ζπ ∼= Z ⊕ Z/2Z if π′ has even order;
otherwise ζπ ∼= Z;

(2) if π has one end then ζπ ∼= Z2, or is torsion-free of rank ≤ 1;
(3) if π has infinitely many ends then ζπ is finite.

Proof. If π has two ends then π′ is finite, and so ζπ is finitely generated
and of rank 1. It follows from the classification of such 2-knot groups
(see §4 of Chapter 15 of [4]) that ζπ ∼= Z⊕ Z/2Z if π′ has even order,
and otherwise ζπ ∼= Z.

Part (2) follows from Theorem 4, while part (3) is clear. �

Note that π has finitely many ends if π′ is finitely generated, or if
ζπ is infinite. When π has more than one end Lemma 2.10 of [4] either
does not lead to a contradiction or does not apply.

If ζπ is a nontrivial torsion group then it is finite. Yoshikawa con-
structed an example of a 2-knot whose group π has centre of order 2
[13]. It is easy to see that

√
π = ζπ in this case. The construction may

be extended as follows. Let q > 0 be odd and let kq be a 2-bridge knot
such that the 2-fold branched cyclic cover of S3, branched over kq is
a lens space L(3q, r), for some r relatively prime to q. Let K1 = τ2kq
be the 2-twist spin of kq, and let K2 = τ3k be the 3-twist spin of a
nontrivial knot k. Let γ be a simple closed curve in X(K1) with image
[γ] ∈ πK1 of order 3q, and let w be a meridian for K2. Then w3 is
central in πK2. The group of the satellite of K1 about K2 relative to
γ is the generalized free product

π = πK2/〈〈w3q〉〉 ∗w=[γ] πK1.

(see §14.3 of [4].) Hence
√
π = 〈w3〉 ∼= Z/qZ, while ζπ = 1.

If we use a 2-knot K1 with group (Q(8) × Z/3qZ) oθ Z instead
and choose γ so that [γ] has order 6q then we obtain examples with√
π ∼= Z/2qZ and ζπ = Z/2Z. (Knots K1 with such groups may be

constructed by surgery on sections of mapping tori of homeomorphisms
of 3-manifolds with fundamental group Q(8)× Z/3qZ [12].)

If ζπ has rank 1 and nontrivial torsion then π′ is finite, and ζπ is
finitely generated.

If ζπ has rank 1 but is not finitely generated then M(K) is aspherical.
It is not known whether there are such 2-knots (nor, more generally,
whether abelian normal subgroups of rank 1 in PDn-groups with n > 3
must be finitely generated). What little we know about this case is as
follows. Since ζπ < π′ and π/π′ ∼= Z, we must have ζπ ≤ π′′. Since ζπ
is torsion-free of rank 1 but is not finitely generated, c.d.ζπ = 2. Hence
if G is a nonabelian subgroup which contains ζπ then c.d.G ≥ 3, by
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Theorem 8.6 of [1]. If H is a subgroup of π such that H ∩ ζπ = 1 then
H.ζπ ∼= H × ζπ is not finitely generated, and so has infinite index in
π. Hence c.d.H × Z ≤ c.d.H × ζπ ≤ 3 [11]. Theorem 5.5 of [1] gives,
firstly, that c.d.H ≤ 2, and then, that if H is FP2 then c.d.H ≤ 1, and
so H is free. Thus if π is almost coherent every subgroup either meets
ζπ nontrivially or is locally free.

If ζπ has rank> 1 thenM(K) is aspherical and ζπ ∼= Z2, by Theorem
16.3 of [4].

The following questions remain open:

(i) if ζπ has rank 1, must it be finitely generated?
(ii) if ζπ is finite, must it be Z/2Z or 1?

(iii) is there a 2-knot group π with
√
π a non-cyclic finite group?

(iv) if π is elementary amenable is it virtually solvable?

In each case the answer is “yes” if π′ is finitely presentable, for then the
infinite cyclic cover M(K)′ is homotopy equivalent to a PD3-complex,
by Theorem 4.5 of [4].

At the time of writing, the largest known class of groups for which
4-dimensional TOP surgery works is the class SA obtained from subex-
ponential groups by taking increasing unions and extensions. Are there
2-knot groups in this class which are not virtually solvable?
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modules, Lecture Notes in Mathematics 254,
Springer-Verlag, Berlin – Heidelberg – New York (1972).

[9] Lück, W. L2-Invariants: Theory and Applications to Geometry and K-Theory,
Ergebnisse der Mathematik und ihrer Grenzgebiete 3 Folge, Bd. 44,
Springer-Verlag, Berlin - Heidelberg - New York (2002).

[10] Robinson, D.J.S. A Course in the Theory of Groups,
Graduate Texts in Mathematics 80,
Springer-Verlag, Berlin – Heidelberg – New York (1982).

[11] Strebel, R. A remark on subgroups of infinite index in Poincaré duality groups,
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