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ABSTRACT. One introduces natural and simple methods to deduce Ls-L∞-re-
gularisation estimates for 1 ≤ s < ∞ of nonlinear semigroups holding uni-
formly for all time with sharp exponents from natural Gagliardo-Nirenberg in-
equalities. From Lq-Lr Gagliardo-Nirenberg inequalities, 1 ≤ q, r ≤ ∞, one
deduces Lq-Lr estimates for the semigroup. New nonlinear interpolation tech-
niques of independent interest are introduced in order to extrapolate such esti-
mates to Lq̃-L∞ estimates for some q̃, 1 ≤ q̃ < ∞. Finally one is able to extrapo-
late to Ls-L∞ estimates for 1 ≤ s < q. The theory developed in this monograph
allows to work with minimal regularity assumptions on solutions of nonlin-
ear parabolic boundary value problems as illustrated in a plethora of examples
including nonlocal diffusion processes.

CONTENTS

1. Introduction 2
1.1. The story 2
1.2. Main results 5
1.3. Acknowledgements 11
2. Framework 11
2.1. Nonlinear semigroup theory: old and new 11
2.2. Completely accretive operators 19
2.3. T-accretive operators in L1 with complete resolvent 23
3. Gagliardo-Nirenberg type inequalities & Lq-Lr-regularity 27
4. Nonlinear extrapolation 36
4.1. Extrapolation towards L1 37
4.2. A nonlinear interpolation theorem 38
4.3. Extrapolation towards L∞ 44
4.4. An alternative approach to arrive at L∞ 51
5. Application I: Mild solutions in L1 are weak energy solutions 55
5.1. The smooth case 58
5.2. Weak solutions for general φ and initial values in L∞ 65
5.3. Proof of Theorem 5.6 71
6. Examples 74
6.1. Parabolic problems involving p-Laplace type operators 75
6.2. Parabolic problems involving nonlocal operators 87

Date: April 29, 2016.
2010 Mathematics Subject Classification. 47H06,47H20,35K55,46B70,35B65.
Key words and phrases. Nonlinear semigroups, p-Laplace operator, porous media operator,

doubly nonlinear diffusion operator, nonlocal operators, regularity.
T.C.’s research was done while he was employed by the Australian National University and

was supported by an Australian Research Council (ARC) grant DP 130101302.
1



2 THIERRY COULHON AND DANIEL HAUER

6.3. Nonlinear diffusion equations in L1 99
7. Application II: Mild solutions in L1 are strong 108
Appendix A. More on accretive operators in L1 110
Appendix B. The link between mean spaces and Lp 118
References 120

1. INTRODUCTION

1.1. The story. It begins in the linear semigroup theory: let {Tt}t≥0 be a sym-
metric semigroup with infinitesimal generator −A of linear operators acting on
L2(Σ, µ), where (Σ, µ) is a σ-finite measure space. Assume that {Tt}t≥0 is sub-
markovian, meaning that 0 ≤ u ≤ 1 implies 0 ≤ Ttu ≤ 1 for all t > 0. If follows
that {Tt}t≥0 acts on Lq(Σ, µ) for all 1 ≤ q ≤ ∞.

In this framework, there has been many works in the last four decades that
connect a variety of Lq-Lr, 1 ≤ q < r ≤ ∞, regularisation properties of {Tt}t≥0
to a variety of abstract Sobolev type inequalities involving A. The first regu-
larisation property of {Tt}t≥0 that attracted much attention was the so-called
hypercontractivity: for some (all) 1 < q < r < ∞, there exists t0 = t0(q, r) > 0
such that Tt0 maps Lq to Lr and

(1.1) ‖Tt0‖q→r ≤ 1

where ‖T‖q→r := sup‖u‖q≤1‖Tu‖r denotes the operator norm of a linear bounded
operator T : Lq → Lr, 1 ≤ q, r ≤ ∞. The theory of hypercontractive semi-
groups was introduced by Nelson in [73], who also provided the most basic
example: for the harmonic oscillator A = − 1

2
d2

dx2 +
1
2 x2 − 1

2 on L2 equipped with
the Gaussian measure dµ = (2π)−1/2 exp(− 1

2 x2)dx on R, Tt is a linear contrac-
tion from L2 to L4 if e−t ≤ 1/

√
3 (cf. [73, 74]). One reason for the popularity of

hypercontractivity was its deep connection to constructive quantum field the-
ory. The ideas in [73] were followed up rapidly and further developed. For in-
stance, Simon and Høegh-Krohn [83] combined the property that the considered
semigroup ‖Tt‖q→r is contractive on Lq for all 1 ≤ q ≤ ∞ with Riesz-Thorin’s
and Stein’s interpolation techniques to extrapolate the Lq-Lr-regularisation esti-
mate (1.1) to an Lq̃-Lr̃-regularisation estimate ‖Tt0‖q̃→r̃ ≤ C̃ for some q̃, r̃ such
that 1 ≤ q̃ < q and r < r̃ < ∞. Hypercontractivity is a natural property of
some infinite-dimensional semigroups such as Ornstein-Uhlenbeck. Note that
Nelson [74] proved that the Ornstein-Uhlenbeck semigroup does not admit an
Lq-L∞-regularisation effect for 1 ≤ q < ∞.

In the mid 70’s, Gross [52] characterised hypercontractivity in terms of a single
logarithmic Sobolev inequality in L2. Then {Tt}t≥0 is hypercontractive if and only
if there is some C > 0 such that

(1.2)
∫

Σ
|u|2 log|u|dµ ≤ C 〈Au, u〉+ ‖u‖2

2 log‖u‖2

for every u ∈ D(A). Here, D(A) denotes the domain of A in L2(Σ, µ).
In the 80’s, in the context of heat kernels on Lie groups and manifolds, the

focus shifted towards a stronger property, namely ultracontractivity: for all t > 0,
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Tt maps L1 to L∞. The game is then to estimate ‖Tt‖1→∞ from above by an
explicit function of t. Of particular interest is the estimate

(1.3) ‖Tt‖1→∞ ≤ C t−d/2, for every t > 0,

where d > 0 plays the role of a dimension. Davis and Simon [44] (see also [43])
adapted Gross’ approach [52] to the ultracontractivity framework and estab-
lished the equivalence of estimates (1.3) with the following one-parameter fam-
ily of logarithmic Sobolev inequalities: for every ε > 0,

(1.4)
∫

Σ
|u|2 log|u|dµ ≤ ε 〈Au, u〉+ ε−d/4‖u‖2

2 + ‖u‖2
2 log‖u‖2

for every u ∈ D(A). Estimate (1.3) was also characterised in terms of (d-dimen-
sional) Sobolev inequalities: if there exists C > 0 such that

(1.5) ‖u‖2
2d

d−2
≤ C 〈Au, u〉 for every u ∈ D(A)

by Varopoulos [89] (see also [35], [36] for simplifications and further develop-
ments) and in terms of (d-dimensional) Nash inequalities by Carlen-Kusuoka-
Stroock [28]). Further, an intermediate property called supercontractivity was
also considered ([82]): for all 1 < q < r < ∞ and all t > 0, Tt maps Lq to Lr

with the polynomial estimate

(1.6) ‖Tt‖q→r ≤ C t−d
(

1
q−

1
r

)
for all t > 0.

Note that if the semigroup is uniformly bounded on L1 and L∞, then (1.6) implies
(1.3) (see [35]).

The above outlined development of characterising Lq-Lr-regularisation esti-
mates of the semigroup {Tt}t≥0 with abstract (logarithmic) Sobolev inequalities
is exclusively concerned with linear semigroups. Thus, it is interestingly enough
that prior to Varopoulos’ theorem [89], the fact that an abstract Sobolev type in-
equality associated with an operator A implies an L1-L∞regularisation effect for
the semigroup {Tt}t≥0 generated by −A had been discovered in the late 70’s
by Bénilan ([11], see also [90, p. 25]) in the context of nonlinear semigroups: let
{Tt}t≥0 be a semigroup of mappings Tt acting on Lq for all 1 ≤ q ≤ ∞, of a
σ-finite measure space (Σ, µ), with infinitesimal generator −A.

In the paper [11], Bénilan established first Lq-Lr-regularisation estimates (1 ≤
q < r ≤ ∞) of nonlinear semigroups {Tt}t≥0 generated either by operators of
similar type as the Dirichlet p-Laplace operator ∆D

p u = div(|∇u|p−2∇u), (1 <

p < ∞), or by operators similar to the Dirichlet porous media operator ∆D(um) =
div(∇um), (m > 0). Here, the name Dirichlet and the superscript D refer to the
fact that the differential operators ∆D

p and ∆D(·m) are equipped with homoge-
neous Dirichlet boundary conditions on a bounded domain Σ of Rd, and um is
the shorthand of |u|m−1u. Bénilan’s method employs a truncation technique on
the sublevel sets of the resolvent combined with the regularisation effect of the
resolvent given by the d-dimensional Sobolev inequality.

Only one year later, Véron [92] simplified Bénilan’s method essentially and
adapted it to the general nonlinear semigroup framework acting on Lq for 1 ≤
q ≤ ∞. Véron introduces an abstract Sobolev type inequality (similar to (1.5))
satisfied by the generator A, from which one can conclude an Lq-Lr regular-
ity estimate (1 ≤ q < r ≤ ∞) of the corresponding semigroup {Tt}t≥0. In
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particular, Lq-L∞ estimates (1 ≤ q < ∞) of {Tt}t≥0 are obtained by using a
one-parameter family of Sobolev type inequalities satisfied by A combined with an
iteration method in the time-variable of {Tt}t≥0. To be more precise, one easily
sees that, for instance, for 1 < p < d, the Dirichlet p-Laplace operator A = −∆D

p

on L2 satisfies the following one-parameter family (in q ≥ p) of Sobolev type
inequalities

(1.7) ‖u‖q
dq

d−p
≤ C 1

q−p+1

(
q
p

)p
〈−∆D

p u, uq−p+2〉

for every u ∈ D(A) ∩ L∞ and q ≥ p. To the best of our knowledge, it goes
back to Véron [92] who established that the semigroup {Tt}t≥0 generated by ∆D

p
satisfies the Lq-Lr-regularisation estimate

(1.8) ‖Ttu− Ttû‖r ≤ C t−δ ‖u− û‖γ
q

for every t > 0, u, û ∈ Lq with exponents δ, γ > 0 depending on d, p, r and q
for every q ≤ r ≤ ∞ (1 ≤ q ≤ ∞, 2 ≤ p < ∞), and that the semigroup {Tt}t≥0
generated by ∆D(·m) satisfies the Lq-Lr-regularisation estimate

(1.9) ‖Ttu‖r ≤ C t−δ ‖u‖γ
q

for every t > 0, u ∈ Lq, with q = 1, r = ∞ and exponents δ, γ > 0 depending
on r, q, m > 1 and d. Véron’s approach was quickly adapted to many nonlinear
parabolic problems (cf. for instance [1, 71]).

The analogue of estimates (1.3) and (1.6) concerning linear semigroups are in
the nonlinear semigroup theory the estimates (1.8) or (1.9). To emphasise the fact
that these estimates involving nonlinear semigroups appear with an exponent γ
at the initial datum u ∈ Lq, which is, in general, different of one, we avoid call-
ing the estimates (1.8) and (1.9) supercontractive or ultracontractive estimates,
but rather speak from an Lq-Lr regularisation estimate of the nonlinear semigroup
{Tt}t≥0 if 1 ≤ q < r ≤ ∞ (see also Remark 3.4 in Section 3).

In 2001, Cipriani and Grillo [33] adapted the approach by Davis and Simon [44]
to establish Lq-L∞-regularisation estimates of solutions of parabolic diffusion
equations involving quasilinear operators of p-Laplace type equipped with ho-
mogeneous Dirichlet boundary conditions on bounded domains. The approach
in [33] is essentially based on the following two steps (cf. [33]): firstly, one em-
ploys the classical Sobolev inequality

(1.10) ‖u‖ pd
d−p
≤ C ‖|∇u|‖p

with respect to the Lebesgue measure, in order to derive a one-parameter family
of logarithmic Sobolev inequalities in Lp (similar to (1.4) with 2 replaced by p) asso-
ciated with the energy functional of the Dirichlet-p-Laplace operator ∆D

p . Then
one uses this family of inequalities to show that for a solution u of the parabolic
equation under consideration the function

y(t) := log‖u(t)‖r(t) for t ≥ 0,

satisfies a differential inequality from which one can deduce an Lq-Lr-regulari-
sation estimate for 1 ≤ q < r ≤ ∞.

Comparing this method with the one by Véron, the approach in [92] seems to
be more direct in order to achieve Lq-Lr-regularisation estimates for 1 ≤ q < r ≤
∞ with optimal exponents.
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Many authors followed the approach in [33]; they derive from the classical
Sobolev inequality (1.10) new families of energy entropy inequalities (generalising
the logarithmic Sobolev inequality) and then apply these inequalities to nonlin-
ear parabolic problems (see, for instance, [47, 46, 84, 19, 20, 21, 69, 94]).

Another approach worth mentioning in this context is [81] by Porzio. In this
paper, Porzio employs directly the classical Sobolev inequality to establish Lq-
Lr-regularisation estimates (1 ≤ q < r ≤ ∞) for solutions of nonlinear para-
bolic equations involving non-autonomous quasilinear differential operators of
p-Laplace type.

In order to conclude this section, we want to emphasise that Lq-Lr-regularity
estimates of semigroups {Tt}t≥0 have many applications, such as new existence
results (see, for instance, [81]), global Hölder continuity (see, for instance, [49,
80, 93]) (and higher regularity (see [49])) of weak energy solutions of the un-
derlying parabolic boundary value problem (see Section 5 and Section 7 of this
monograph), finite time of extinction results with respect to the initial data (see,
for instance, [8, pp 234] or [91]) or uniqueness of solutions (see [60]), and others.

1.2. Main results. In the present monograph, rather than making a detour via a
family of Log-Sobolev inequalities, we shall use the tools that are more directly
relevant to establish general Lq-Lr-regularity estimates for 1 ≤ q, r ≤ ∞ and
Lq-L∞-regularisation estimates for 1 ≤ q < ∞ of nonlinear semigroups {Tt}t≥0,
namely, Sobolev type inequalities or, more generally, Gagliardo-Nirenberg type
inequalities

In the following, (Σ, µ) will be a σ-finite measure space. For 1 ≤ q ≤ ∞, we
shall say that A is an operator on Lq(Σ, µ) if A is a subset of Lq(Σ, µ)× Lq(Σ, µ).
Further notions and notation used throughout this monograph can be found in
Section 2.

Definition 1.1. Let 1 ≤ q < ∞ and 1 ≤ r ≤ ∞. We say an operator A on
Lq satisfies an Lq-Lr- Gagliardo-Nirenberg type inequality for some $ ≥ 0, σ > 0,
ω ∈ R and (u0, 0) ∈ A if there is a constant C > 0 such that

(1.11) ‖u− u0‖σ
r ≤ C

(
[u− u0, v]q + ω‖u− u0‖q

q

)
‖u− u0‖$

q

for every (u, v) ∈ A. Moreover, we say that an operator A on Lq satisfies an
Lq-Lr- Gagliardo-Nirenberg type inequality with differences for some $ ≥ 0, σ > 0
and ω ∈ R if there is a constant C > 0 such that

(1.12) ‖u− û‖σ
r ≤ C

(
[u− û, v− v̂]q + ω‖u− û‖q

q

)
‖u− û‖$

q

for every (u, v), (û, v̂) ∈ A.

For example, the negative Dirichlet p-Laplace operator −∆D
p satisfies the Ga-

gliardo-Nirenberg inequality (1.11) with u0 = 0 if 1 ≤ p < 2 and (1.12) if 2 ≤
p < ∞ (see Section 6.1) and for m > 0, the negative doubly nonlinear operator
−∆D

p (·m) equipped with Dirichlet boundary conditions satisfies the Gagliardo-
Nirenberg inequality (1.11) for u0 = 0 (see Section 6.3). Further examples of
operators and other type of boundary conditions are discussed in Section 6.
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In the paper, we intend to come back to Bénilan’s and Véron’s viewpoint, and
provide a systematic semigroup approach in order to establish Ls-L∞-regulari-
sation estimates of the form (1.8) and (1.9) for any 1 ≤ s < ∞ for (nonlin-
ear) semigroups {Tt}t≥0 under the assumption that the corresponding infinites-
imal generator−A satisfies an Lq-Lr-Gagliardo-Nirenberg type inequality either
without differences (1.11) or with differences (1.12) for some 1 ≤ q, r ≤ ∞.

We simplify Bénilan’s and Véron’s method by avoiding for a large class of op-
erators the construction of a one-parameter family of Sobolev inequalities (such
as the family of inequalities given by (1.7)) to establish Lq-L∞-regularisation es-
timates of semigroups {Tt}t≥0. We rather tried to make the extrapolation tech-
niques from the linear semigroup theory by Simon and Høegh-Krohn [83] avail-
able for the nonlinear semigroup theory. To achieve this, we have established a
new nonlinear interpolation theorem (see Theorem 4.6, Theorem 4.7 and The-
orem 4.8 in Section 4.2). Our techniques require the validity of only one Lq-Lr

Gagliardo-Nirenberg type inequality satisfied by the generator A for some 1 ≤
q, r ≤ ∞ in order to establish Ls-L∞-regularisation estimates for 1 ≤ s < ∞ of the
corresponding semigroup {Tt}t≥0. This simplifies essentially the known tech-
niques in the existing literature (cf. [11, 92, 52, 47, 46, 84, 19, 20, 21, 69, 94] and
many more), but also allows us to establish Lq-Lr-regularity estimates, 1 ≤ q,
r ≤ ∞, for solutions of nonlinear parabolic problems involving nonlocal diffu-
sion processes (see Section 6.2 and 6.2.2). Estimates of this type for solutions
of nonlinear nonlocal diffusion problems are know to hold only for the frac-
tional porous media equation on the whole space (cf. [45]). Further, we pro-
vide a nonlinear version of the methods from [35] and [36] to conclude that if
a semigroup {Tt}t≥0 satisfies a Lq-Lr-regularisation estimate of the form (1.8)
or (1.9) for some 1 < q < r ≤ ∞ then the semigroup admits, in particular,
a L1-Lr-regularisation estimate of the form (1.8) or (1.9) (see Theorem 4.1 and
Theorem 4.3 in Section 4.1).

Similar to [92], we focus our attention on two important classes of operators
generating nonlinear semigroups acting on Lq for all 1 ≤ q ≤ ∞:

• quasi m-completely accretive operators in Lq0 for some 1 ≤ q0 < ∞,
• quasi m-T-accretive operators in L1 with complete resolvent.

In order to keep this subsection for an overview of the main results of this
monograph, we refer for the definition of these two classes of operators to Sec-
tion 2.2 and Section 2.3 and note briefly that prototypes of the first class of oper-
ators are of the form A + F, where F is a Lipschitz continuous mapping on Lq0

and A is, for instance, the celebrated negative p-Laplace operator −∆p (see Sec-
tion 6.1) but also the negative nonlocal fractional p-Laplace operator −(−∆p)s

(see [68] and Section 6.2.2) respectively equipped with some boundary condi-
tions and the Dirichlet-to-Neumann operator associated with the p-Laplace op-
erator (see Section 6.2.1). Examples of the second class of operators are also
of the form A + F, where F is a Lipschitz continuous mapping on L1 and A
is, for instance, the negative porous media operator −∆(·m) and its nonlocal
counterpart ([45]) or, more generally, doubly nonlinear operators ∆p(·m) (see
Section 6.3), where each of them is equipped with some boundary conditions.

Our first main result is concerned with Lq-Lr-regularity estimates of semi-
groups {Tt}t≥0 generated by −A for an operator A of the first class satisfying
Lq-Lr-Gagliardo-Nirenberg type inequality (1.12) with differences.
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Theorem 1.2. For some q ∈ [1,+∞) and ω ≥ 0, let A + ωI be m-completely ac-
cretive in Lq(Σ, µ) with dense domain. If A satisfies the Gagliardo-Nirenberg type in-
equality (1.12) with parameters q, 1 ≤ r ≤ ∞, $ ≥ 0 and σ > 0, then the semigroup
{Tt}t≥0 generated by −A on Lq(Σ, µ) satisfies

(1.13) ‖Ttu− Ttû‖r ≤
(

C
q

)1/σ
t−α eω β t ‖u− û‖γ

q

for every t > 0, u, û ∈ Lq(Σ, µ) with exponents α = 1
σ , β = γ + 1 and γ = q+$

σ .
Moreover, if 1 ≤ r < ∞, γ r > q and there is (u0, 0) ∈ A for some u0 ∈ L1∩ L∞(Σ, µ),
then

(1.14) ‖Ttu− Ttû‖∞ . t−αs eω βs t ‖u− û‖γs
s

for every t > 0, u, û ∈ Ls(Σ, µ), 1 ≤ s ≤ γ r q−1 m0 satisfying γ(1− sq
γrm0

) < 1 for
every m0 ≥ q γ−1 satisfying

(1.15) (γ r
q − 1)m0 + q( 1

γ − 1) > 0,

with exponents

α∗ = σ−1 q γ−1

( γ r
q −1)m0+q( 1

γ−1)
, β∗ = γ2rq−1−1

( γ r
q −1)m0+q( 1

γ−1)
+ 1, γ∗ = (γrq−1−1)m0

( γ r
q −1)m0+q( 1

γ−1)
,

αs =
α∗

1−γ∗(1− sq
γrm0

)
, βs =

β∗2−1+γ∗ sq
γrm0

1−γ∗(1− sq
γrm0

)
, γs =

γ∗ sq
γrm0

1−γ∗(1− sq
γrm0

)
.

(1.16)

The proof of Theorem 1.2 follows by combining Theorem 3.3 (Section 3), The-
orem 4.10 (Section 4.3) and subsequently by applying Theorem 4.1 (Section 4.1).

Remark 1.3. At first glance, the condition γ r > q and the choice of m0 ≥ q γ−1

satisfying (1.15) in Theorem 1.2 and in the subsequent two theorems seem rather
mysterious. They are sufficient conditions to conclude an Ls-L∞ regularisation
estimate for s = γ r q−1 m0 from an Lq-Lr regularity estimate for some 1 ≤ q,
r < ∞ (cf. Remark 4.11 in Chapter 4.3). But on the other hand, the parameters
γ, r and q are intimately related with the given operator A. In fact, the condition
γ r > q changes if and only if A changes. This is not the case for the parameter m0
satisfying m0 ≥ q γ−1 and (1.15) since for sufficiently large m0 both conditions
always hold. In certain cases, but not all, m0 = q γ−1 satisfies (1.15), in which
case this choice of m0 is optimal. This is well demonstrated by the example of the
p-Laplace operator A = −∆Rd

p on Rd satisfying vanishing conditions at infinity
(see Theorem 6.1 in Section 6.1.1).

Our second main result is concerned with Lq-Lr-regularisation estimates of
semigroups {Tt}t≥0 generated by −A for an operator A of the first class but
satisfying the Gagliardo-Nirenberg type inequality (1.11) without differences.

Theorem 1.4. For some q ∈ [1,+∞) and ω ≥ 0, let A+ωI be m-completely accretive
in Lq(Σ, µ) with dense domain. If A satisfies the Gagliardo-Nirenberg type inequal-
ity (1.11) with parameters q, 1 ≤ r ≤ ∞, $ ≥ 0 and σ > 0 and some (u0, 0) ∈ A satis-
fying u0 ∈ L1 ∩ L∞(Σ, µ), then the semigroup {Tt}t≥0 generated by −A on Lq(Σ, µ)
satisfies

(1.17) ‖Ttu− u0‖r ≤
(

C
q

)1/σ
t−α eω β t ‖u− u0‖γ

q
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for every t > 0, u ∈ Lq(Σ, µ) with exponents α = 1
σ , β = γ + 1 and γ = q+$

σ .
Moreover, if 1 ≤ r < ∞ and γ r > q, then

(1.18) ‖Ttu− u0‖∞ . t−αs eω βs t ‖u− u0‖γs
s

for every t > 0, u ∈ Ls(Σ, µ), 1 ≤ s ≤ γ r q−1 m0 satisfying γ(1− sq
γrm0

) < 1 for
every m0 ≥ q γ−1 satisfying (1.15) with exponents (1.16).

The statements of Theorem 1.4 follows from Theorem 3.8 (Section 3) and by
Theorem 4.13 (Section 4.3) combined with Theorem 4.3 (Section 4.1).

The last main result of this monograph focuses on the Lq-Lr-regularisation es-
timates of semigroups {Tt}t≥0 generated by −A for an operator A in L1(Σ, µ)
of the second class satisfying the Gagliardo-Nirenberg type inequality (1.11)
without differences. However, applications show that operators A of the second
class, generally, do not satisfy the Gagliardo-Nirenberg type inequality (1.11) for
u ∈ D(A) ∩ Lq(Σ, µ) and some q > 1 but for u ∈ D(A) ∩ L∞(Σ, µ). Thus, it is
very useful to introduce the trace

A1∩∞ := A ∩ ((L1 ∩ L∞(Σ, µ))× (L1 ∩ L∞(Σ, µ)))

of A on L1 ∩ L∞(Σ, µ). Furthermore, note that the notion of c-complete resolvent
is defined in Section 2.3.

The nonlinear interpolation theorems used in the proofs of Theorems 1.2 and
1.4 (see Theorem 4.6, Theorem 4.7 and Theorem 4.8 in Section 4.2) cannot be
applied to semigroups {Tt}t≥0 generated by −A in L1 for operators of the sec-
ond class. One essential reason for this is that in the latter case each mapping
Tt : L1 ∩ L∞ → L1 ∩ L∞ is, in general, not Lipschitz continuous with respect to
the L∞-norm. Another important observation is that operators satisfying an Lq-
Lr Gagliardo-Nirenberg type inequality (1.12) with differences are necessarily
quasi-accretive in Lq. But there are operators of the second class, as for instance,
the negative porous media operator −∆(·m) (cf. [91]) that are not accretive in Lq

for q > 1. Hence we have to provide an alternative approach which applies to
the second class of operators.

Theorem 1.5. Let A + ωI be an m-T-accretive operator in L1(Σ, µ) for some ω ≥ 0
with complete resolvent (respectively, c-complete resolvent and ω = 0). Suppose the
trace A1∩∞ of A on L1 ∩ L∞(Σ, µ) satisfies the range condition

(1.19) L1 ∩ L∞(Σ, µ) ⊆ Rg(I + (A1∩∞ + ωI)).

and the Gagliardo-Nirenberg type inequality (1.11) for parameters 1 ≤ q, r ≤ ∞,
(q < ∞), σ > 0, $ ≥ 0 and some (u0, 0) ∈ A1∩∞ satisfying u0 ∈ L1 ∩ L∞(Σ, µ).
Then the semigroup {Tt}t≥0 generated by −A on D(A)L1 satisfies

(1.17) ‖Ttu− u0‖r ≤
(

C
q

)1/σ
t−α eω β t ‖u− u0‖γ

q

for every t > 0, u ∈ D(A)L1 ∩ L∞(Σ, µ) with exponents α = 1
σ , β = γ + 1 and

γ = q+$
σ . Moreover, if for parameters κ > 1, m > 0 and q0 ≥ p ≥ 1 satisfying

κmq0 ≥ 1 and

(1.20) (κ − 1)q0 + p− 1− 1
m > 0,
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the trace A1∩∞ satisfies the one-parameter family of Sobolev type inequalities

‖u− u0‖mq
κmq ≤ C (q/p)p

q−p+1

[
[u− u0, v](q−p+1)m+1 + ω‖u− u0‖(q−p+1)m+1

(q−p+1)m+1

]
(1.21)

for every (u, v) ∈ A1∩∞ and every q ≥ q0, then there is a β∗ ≥ 0 such that the
semigroup {Tt}t≥0 satisfies

(1.18) ‖Ttu− u0‖∞ . t−αs eω βs t ‖u− u0‖γs
s

for every u ∈ D(A)L1 ∩ L∞(Σ, µ), 1 ≤ s ≤ κmq0 satisfying γ∗
(

1− q
κmq0

)
< 1 with

exponents

α∗ = 1
m((κ−1)q0+p−1− 1

m )
, γ∗ = (κ−1)q0

(κ−1)q0+p−1− 1
m

,

αs =
α∗

1−γ∗
(

1− s
κmq0

) , βs =
β∗2−1+γ∗sκ−1m−1q−1

0

1−γ∗
(

1− s
κmq0

) , γs =
γ∗ s

κmq0(1−γ∗(1− s
κmq0

))
.

(1.22)

Suppose the domain D(A) of the operator A considered in Theorem 1.5 is
dense in L1(Σ, µ). If the measure space (Σ, µ) is finite then a standard den-
sity result yields the inequalities (1.17) and (1.18) in Theorem 1.5 hold for all
u ∈ Lq(Σ, µ), respectively, u ∈ Ls(Σ, µ). If Σ has infinite measure µ and if the
inequalities (1.17) and (1.18) hold for q = 1 and s = 1 then (1.17) and (1.18) hold
also for all u ∈ L1(Σ, µ).

By comparing Theorem 1.5 with Theorem 1.4, we note that quasi-m-completely
accretive operators A in Lq0 for some q0 ≥ 1 (that is, operators of the first class
considered in Theorem 1.4), it is not difficult to see that the trace A1∩∞ of A
in L1 ∩ L∞ satisfies the range condition (1.19). This is not immediately clear for
quasi-m-accretive operators A in L1 with complete resolvent (that is, the second
class of operators considered in Theorem 1.5). Thus, we provide in Proposi-
tion 2.18 sufficient conditions yielding that operators Aφ composed of an oper-
ator A of the first class and a monotone graph φ satisfies range condition (1.19).
On the other hand, there are operators of the first class which do not satisfy the
one-parameter family of Sobolev type inequalities 1.21 in Theorem 1.5 but they
do satisfy all assumptions in Theorem 1.4. Examples of such operators are the
nonlinear Dirichlet-to-Neumann operator associated with p-Laplace type oper-
ators (see Section 6.2.1) or the fractional p-Laplace operator equipped with some
boundary conditions (see Section 6.2.2). Here, it is interesting to note that both
operators are of nonlocal character (cf. [55, 68]).

The proof of Theorem 1.5 follows from Corollary 3.12 (respectively, Corol-
lary 3.13) and Theorem 4.15. Comparing Theorem 1.5 with the existing literature
(cf., for instance, [21, 22, 69, 84, 91]), we note that so far, in order to establish an
L1-L∞-regularisation estimate (1.9) for semigroups {Tt}t≥0 generated by doubly
nonlinear operators ∆p(·m) on L1(Rd), one had either to assume more regularity
on the solution of the associated parabolic problem (cf., for instance, [21, 69, 84])
or to approximate the semigroup {Tt}t≥0 on L1(Rd) by the semigroup {Tn

t }t≥0
generated by the Dirichlet-doubly nonlinear operator ∆D

p (·m) on L1(Σn) for a
sequence (Σn)n of open sets Σn ⊆ Rd with finite measure, smooth boundary,
and satisfying Σn ⊆ Σn+1 and

⋃
n≥1 Σn = Rd (cf., for instance, [91]). Our ap-

proach presented in Theorem 1.5 is different to this one and to the one given by
Véron [92]. Thus, the statement of Theorem 1.5 unfolds its complete strength in
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the case (Σ, µ) is an infinite measure space. It is based on the result stated in
Proposition 2.18. We emphasise that we generalise in Proposition 2.18 an idea
by Crandall and Pierre [41] for the composition Aφ of a nonlinear completely
accretive operator A and a non-decreasing function φ : R→ R.

As an application of the theory developed in this monograph, we provide in
Section 5 an abstract approach showing that a global L1-L∞-regularisation esti-
mate satisfied by a semigroup {Tt}t≥0 implies that the trajectories u(t) := Ttu0
in L1, t ≥ 0, for initial values u0 ∈ L1, are, in fact, weak energy solutions of the cor-
responding abstract initial value problem (see Definition 5.2 in Section 5). Here,
the semigroup {Tt}t≥0 is generated by a quasi-m-T-accretive operator in L1 of
the form A1∩∞φ + F, where A is the realisation in L2 of the Gâteaux-derivative
Ψ′ : V → V ′ of a convex real-valued functional Ψ defined on a Banach space
V ↪→ L2, and A has the property to be an m-completely accretive operator in
L2. Further, φ is assumed to be a continuous, strictly increasing function on R,
and F a Lipschitz mapping on L1. In the case F ≡ 0 and Aφ is the celebrated
negative porous media operator −∆φ, this result is well-known (see [9, 51, 91]).
Our results (Theorem 5.6, Theorem 5.7 and Theorem 5.9) in Section 5 extend
the known literature by providing a uniform approach which can be applied to
general quasi-m-T-accretive operators A1∩∞φ+ F in L1 where the operator A1∩∞
needs not to be linear, but has the important property to be completely accretive
in L2. Concerning the regularity of trajectories u(t) := Ttu0 in L1 generated by
operators−Aφ with similar characteristics as ∆pφ, the notion of entropy solutions
was developed (see [13, 5, 6]). Theorem 5.6 in Section 5 improves the regularity
of these trajectories u(t) := Ttu0 in L1 essentially.

We demonstrate the efficiency of the methods and techniques developed in
the Sections 3, 4.1, 4.3 and 4.4 with a plethora of examples gathered in Section 6.
Section 6.1 is concerned with establishing Lq-Lr-regularisation estimates of the
semigroup generated by a negative Leray-Lions type operator equipped with ei-
ther homogeneous Dirichlet, Neumann or Robin boundary conditions. Our re-
sults in this section improve some known results in the literature. For instance,
we prove that the exponents in the Lq-Lr-regularisation estimates remain un-
changed by adding a monotone (multi-valued) or a Lipschitz perturbation. Note
that our methods yield sharp exponents as one can see in Section 6.1. Section 6.2
is dedicated to establishing the Lq-Lr-regularisation estimates of two nonlocal
parabolic problems where known methods fail. In this section, we establish
the Lq-Lr-regularisation estimates of the semigroup generated by the negative
Dirichlet-to-Neumann operator associated with a Leray-Lions type operator and
of the semigroup generated by the fractional p-Laplace operator equipped with
either Dirichlet or Neumann boundary conditions. In Section 6.3, we establish
the Lq-Lr-regularisation estimates of mild solutions of parabolic problems in-
volving the negative doubly nonlinear operator −∆p(·m) for m > 0 equipped
with either homogeneous Dirichlet, Neumann or Robin boundary conditions.
In this section, we use the properties of the p-Laplace operator established in
Section 6.1, to construct the operator −∆pφ.

In Section 7, we employ the L1-L∞-regularisation estimate (1.18) satisfied by
the semigroup {Tt}t≥0 of the doubly nonlinear operator ∆p(·m) equipped with
either Dirichlet, Neumann or Robin boundary conditions to show that for every
given initial value u0 ∈ L1, the mild solution u(t) := Ttu0, t ≥ 0, in L1 is a
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strong energy solution (see Theorem 7.3). We give the exact definition of strong
solutions in the next section, where we set the general framework in which we
are working and briefly review some classical definitions and important results
in nonlinear semigroup theory.

1.3. Acknowledgements. Both authors are very grateful to Professor Michel
Pierre (ENS Cachan) for his tireless willingness to discuss important problems
concerning nonlinear semigroups generated by the porous media operator and
for his valuable suggestions.

2. FRAMEWORK

Throughout this monograph, (Σ, µ) denotes a σ-finite measure space and
M(Σ, µ) the space (of all classes) of measurable real-valued functions on Σ. We
denote by Lq(Σ, µ), 1 ≤ q ≤ ∞, the corresponding standard Lebesgue space with
norm ‖·‖q. For 1 ≤ q < ∞, we identify the dual space (Lq(Σ, µ))′ with Lq′ (Σ, µ)
and use the notation 〈u′ , u〉 to denote the natural pairing of u′ ∈ Lq′ (Σ, µ) and
u ∈ Lq(Σ, µ), where q′ is the conjugate exponent of q given by 1 = 1

q +
1
q′ . More

generally, for every topological vector space X ⊆ M(Σ, µ), we denote by 〈ψ, u〉
the value of ψ ∈ X′ at u ∈ X. In the case 1 < q < ∞, we shall write uq to denote
|u|q−2u for every u ∈ Lq(Σ, µ).

2.1. Nonlinear semigroup theory: old and new. Most of this section can be
skipped by readers familiar with classical nonlinear semigroup theory. Most
of the results of this theory can be found in the books [8] by Barbu, [70] by
Miyadera or in the famous draft [15] of the unpublished book by Bénilan, Cran-
dall and Pazy.

We call a mapping A from M(Σ, µ) into the set of all subsets of M(Σ, µ), de-
noted by 2M(Σ,µ), an operator on M(Σ, µ). As usual, we identify an operator A on
M(Σ, µ) with its graph, that is, with the set{

(u, v) ∈ M(Σ, µ)×M(Σ, µ)
∣∣ v ∈ Au

}
,

and thus, we shall say that (u, v) ∈ A if v ∈ Au. The effective domain D(A) of A
denotes the set of all u ∈ M(Σ, µ) satisfying Au 6= ∅ and the range Rg(A) of A
the set

⋃
u∈D(A) Au ⊆ M(Σ, µ). The inverse operator A−1 of A is given by the set of

all pairs (u, v) ∈ M(Σ, µ)×M(Σ, µ) satisfying u ∈ Av, hence D(A−1) = Rg(A)
and Rg(A−1) = D(A). Given two operators A and B on M(Σ, µ) and a scalar
α ∈ R, the operator A + αB is given by (A + αB)u = Au + α(Bu) for every
u ∈ D(A) ∩ D(B). Further, the composition AB := A ◦ B of two operators A and
B on M(Σ, µ) is defined by

AB =
{
(u, v) ∈ M(Σ, µ)×M(Σ, µ)

∣∣∣ there is z ∈ Bu such that v ∈ Az
}

.

Let X ⊆ M(Σ, µ) be a Banach space with norm ‖.‖X. Then, an operator A on
X, meaning that A ⊆ X × X, is said to be densely defined or with dense domain if
its effective domain D(A) is dense in X. We denote by A the closure of the graph
of A in X and call A the closure of A in X. We call A closed if A = A. Obviously,
the domain D(A) of the closure A of A in X is closed in X. For any sequence
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(An)n≥0 of operators An on X, the limit inferior of (An) denoted by lim infn→∞ An
is defined by{

(u, v) ∈ X× X
∣∣∣ there are (un, vn) ∈ An s. t. lim

n→∞
(un, vn) = (u, v) in X× X

}
.

Now, an operator A on X is called accretive (in X) if for every (u, v), (û, v̂) ∈ A
and every λ ≥ 0, one has

(2.1) ‖u− û‖X ≤ ‖u− û + λ(v− v̂)‖X.

In other words, A is accretive in X if and only if for every λ > 0, the resolvent
operator Jλ = (I + λA)−1 of A is a single-valued mapping from Rg(I + λA) to
D(A), which is contractive (also called nonexpansive) with respect to the norm of
X. Recall a mapping S : D(S) → X with domain D(S) ⊆ X is call contractive
with respect to the norm of X or a contraction in X if

‖Su− Sû‖X ≤ ‖u− û‖X,

for all u, û ∈ D(S). In order to better grasp the definition of accretive operators,
one might first consider accretive operators β on R. If X = R is equipped with
the absolute value |·| then for every (u, v) and (û, v̂) ∈ β, inequality (2.1) is
equivalent to the inequality

(2.2) (v− v̂)(u− û) ≥ 0.

This shows that a single-valued operator β on R is accretive if and only if β is
non-increasing. From now on we refer to accretive operators on R as monotone
graphs (cf. [15, Example (2.3)]). For a given monotone graph β on R and for every
1 ≤ q ≤ ∞, we denote by βq the associated accretive operator with β in Lq(Σ, dx)
given by

(2.3) βq =
{
(u, v) ∈ Lq × Lq(Σ, µ)

∣∣∣ v(x) ∈ β(u(x)) for a.e. x ∈ Σ
}

.

There are important characterisations of accretivity, which we use from time
to time throughout this paper. Here is the first one: an operator A is accretive in
X if and only if

(2.4)

{
for every (u, v), (û, v̂) ∈ A, there exists ψ ∈ J(u− û)
satisfying 〈ψ, v− v̂〉 ≥ 0,

where J : X → 2X′ denotes the duality mapping of X, which is given by

J(u) =
{

ψ ∈ X′
∣∣∣ 〈ψ, u〉 = ‖u‖X and ‖ψ‖X′ ≤ 1

}
for every u ∈ X (cf. [15, Theorem (2.15)] or [8, Proposition 3.1]).

Now, it is not difficult to verify (cf. [15, Example (2.11)]) that for q = 1, the
duality mapping J on L1(Σ, µ) is given by

J(u) =
{

ψ ∈ L∞(Σ, µ)
∣∣ψ(x) ∈ sign(u(x)) for a.e. x ∈ Σ

}
for every u ∈ L1(Σ, µ), where the multi-valued signum function is defined by

sign(s) :=


1 if s > 0,
[−1, 1] if s = 0,
−1 if s < 0
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for every s ∈ R, and for 1 < q < ∞, the duality mapping J on Lq(Σ, µ) is a
well-defined mapping J : Lq(Σ, µ)→ Lq′ (Σ, µ) given by

(2.5) J(u) = uq ‖u‖1−q
q

for every u ∈ Lq(Σ, µ). In the case q = 1, J(u) is multi-valued exactly when
the set {u = 0} has strictly positive µ-measure. However, the multi-valued
signum function sign(·) can be approximated by the sequence (γε)ε>0 of piece-
wise smooth functions γε : R→ R defined by

(2.6) γε(r) =


1 if r > ε,
r
ε if −ε ≤ r ≤ ε,
−1 if r < −ε.

For our purposes, it is convenient to introduce the notion of q-brackets. For
1 ≤ q < ∞, the q-bracket [·, ·]q : Lq(Σ, µ)× Lq(Σ, µ)→ R is defined by

[u, v]q = lim
λ→0+

1
q‖u + λv‖q

q − 1
q‖u‖

q
q

λ

for every u, v ∈ Lq(Σ, µ). For given u, v ∈ Lq(Σ, µ), the number [u, v]q is the
right-hand directional derivative of the function u 7→ 1

q‖u‖
q
q. Since the function

λ 7→ 1
q‖u + λv‖q

q is convex on R, we can define [·, ·]q, equivalently, by

(2.7) [u, v]q = inf
λ>0

1
q‖u + λv‖q

q − 1
q‖u‖

q
q

λ

for every u, v ∈ Lq(Σ, µ). The q-bracket [·, ·]q : Lq(Σ, µ)× Lq(Σ, µ)→ R is upper
semicontinuous (respectively, continuous if 1 < q < ∞) and

(2.8) [u, v]q = 〈uq, v〉 for every u, v ∈ Lq(Σ, µ) if 1 < q < ∞,

while for q = 1, [·, ·]1 reduces to the classical brackets [·, ·] on L1(Σ, µ) given by

(2.9) [u, v]1 =
∫
{u 6=0}

sign0(u) v dµ +
∫
{u=0}

|v|dµ

for every u, v ∈ L1(Σ, µ), where the restricted signum sign0 is defined by

sign0(s) =


1 if s > 0,
0 if s = 0,
−1 if s < 0

for every s ∈ R (cf. [15, Section 2.2 & Example (2.8)] or [8, pp 102]). By charac-
terisations (2.4), (2.5) and (2.8) if 1 < q < ∞, respectively, by [15, Theorem 2.14]
(or, alternatively, [8, p 103 formula (3.15)]) if q = 1, we see that an operator A on
Lq(Σ, µ) is accretive if and only if

[u− û, v− v̂]q ≥ 0 for every (u, v), (û, v̂) ∈ A.

In Section 3, we shall need the following two properties of q-brackets:

(2.10) [u, v]q ≤
1
q
‖u + v‖q

q −
1
q
‖u‖q

q for every u, v ∈ Lq(Σ, µ),

and

(2.11) [u, α v + ωu]q = α [u, v]q + ω ‖u‖q
q
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for every u, v ∈ Lq(Σ, µ), ω, α ∈ R. Here, note that inequality (2.10) is an im-
mediate consequence of (2.7). Property (2.11) is shown for q = 1 in [15, Proposi-
tion (2.5)] (or, alternatively, [8, Proposition 3.7]) and if 1 < q < ∞ then (2.11) can
be easily deduced from (2.8).

If X ⊆ M(Σ, µ) is a Banach lattice, then we shall denote the usual lattice
operations u ∨ û and u ∧ û to be the almost everywhere pointwise supremum
and infimum of u and û ∈ X. In addition, u+ = u ∨ 0 is the positive part,
u− = (−u) ∨ 0 the negative part, and |u| = u+ + u− the absolute value of an
element u ∈ X. For every u, û ∈ X, one denotes by u ≤ û the usual order relation
on X. In this framework, a mapping S : D(S) → X with domain D(S) ⊆ X is
called order preserving if Su ≤ Sû for every u ≤ û, positive if Su ≥ 0 for every
u ≥ 0, and a T-contraction if

‖[Su− Sû]+‖X ≤ ‖[u− û]+‖X

for every u, û ∈ D(S). Note that if S is T-contractive then it is order-preserving
and that the converse holds if S is contractive and satisfies u ∨ û and u ∧ û ∈
D(S) for every u, û ∈ D(S) (see [15, Lemma (19.11)]). We shall say that an
operator A on X is T-accretive if for every λ > 0, the resolvent Jλ of A defines a
T-contraction with domain D(Jλ) = Rg(I + λA).

Note, without further assumptions (cf. [15, Proposition (19.13)]), T-contractive
does not imply contractive, nor does T-accretive imply accretive, and vice-versa.
However, if the norm ‖·‖X on X satisfies the implication

(2.12) ‖u+‖X ≤ ‖û+‖X, ‖u−‖X ≤ ‖û−‖X implies ‖u‖X ≤ ‖û‖X

for every u, û, then every T-contraction is also a contraction (cf. [15, p 267]). One
easily verifies that this implication holds, for instance, for the space X = Lq(Σ, µ)
for every 1 ≤ q ≤ ∞. Thus, for the rest of this monograph, if we speak about
T-contractive or T-accretive operators on X, then we automatically assume that
the underlying space X is a Banach lattice satisfying (2.12).

In the space X = L1(Σ, µ), the property that an operator A in L1(Σ, µ) is T-
accretive can be characterised as follows: for every (u, v), (û, v̂) ∈ A, there is a
w ∈ L∞(Σ, µ) satisfying w(x) ∈ sign+(u(x)− û(x)) for a.e. x ∈ Σ and∫

Σ
w (v− v̂)dµ ≥ 0,

where for every s ∈ R,

sign+(s) :=


1 if s > 0,
[0, 1] if s = 0,
0 if s < 0,

or equivalently (cf. [10]) for every (u, v), (û, v̂) ∈ A, one has

[u− û, v− v̂]+ :=
∫
{u=û}

[v− v̂]+ dµ +
∫
{u>û}

(v− v̂)dµ ≥ 0.

In order to conclude that the sum A + B of two operators A and B in X is
accretive, the assumption that A and B are both accretive is not sufficient (cf. [15,
Exercise E2.3]). For this to be true, we need that at least one of the two operators



REGULARISATION EFFECTS OF NONLINEAR SEMIGROUPS 15

A and B admits the following stronger property. We call an operator A s-accretive
in X if for every (u, v), (û, v̂) ∈ A and for every ψ ∈ J(u− û),

〈ψ, v− v̂〉 ≥ 0.

Now, if A is an operator on X then the sum A + B is accretive in X for ev-
ery accretive operator B on X if and only if A is s-accretive (cf. [15, Proposi-
tion (2.20)]). Obviously, for 1 < q < ∞, every accretive operator A in Lq(Σ, µ) is
s-accretive in Lq(Σ, µ). Unfortunately, this is not true for accretive operators A
in L1(Σ, µ). A counter example is, for instance, given by the accretive operator
β1 in L1((−2, 1), dx) for β(s) := sign(s) (cf. [15, Exercise E2.25]). On the other
hand, a prototype of s-accretive operators in L1(Σ, µ) is provided by the accre-
tive operator β1 in L1(Σ, µ) associated with a non-decreasing function β : R→ R.
To see that β1 is s-accretive in L1(Σ, µ), we need to check that for every (u, v),
(û, v̂) ∈ β1 every ψ ∈ L∞(Σ, µ) satisfying ψ(x) ∈ sign(u(x) − û(x)) for a.e.
x ∈ Σ, one has

(2.13)
∫

Σ
ψ (v− v̂)dµ ≥ 0.

Since β is assumed to be real-valued function, we have that v = β(u) and
v̂ = β(û). Thus, and by the monotonicity of β, for a.e. x ∈ Σ, the condition
v(x) > v̂(x) implies u(x) > û(x) and so, ψ(x) = 1 hence ψ(x) (v(x)− v̂(x)) ≥ 0.
Analogously, for a.e. x ∈ Σ, the condition v(x) < v̂(x) implies u(x) < û(x) and
so ψ(x) = −1 hence ψ(x) (v(x)− v̂(x)) ≥ 0. Therefore, (2.13) holds.

Next, an operator A on X is called m-(T)-accretive in X if A is (T)-accretive in
X and satisfies the range condition

(2.14) Rg(I + λA) = X for some (or equivalently all) λ > 0.

Coming back to the example of a monotone graph β in R, we set β(r+) =
inf β(]r, ∞[) and β(r−) = sup β(] − ∞, r[) for every r ∈ R, where, as usual,
inf ∅ := +∞ and sup ∅ := −∞. Then, a monotone graph β in R is m-accretive
if and only if for every r ∈ R, one has

β(r) = [β(r−), β(r+)] ∩R.

Therefore, a monotone graph β in R is m-accretive if and only if the graph of β is
the maximal monotone set in R×R containing β itself. If β is m-accretive in R

and either (0, 0) ∈ β or (Σ, µ) is finite, then for every 1 ≤ q ≤ ∞, the associated
operator βq on Lq(Σ, µ) is m-T-accretive (cf. [15, Examples (8.4) & (8.5)] or [8,
Section 3.2]). Moreover, the resolvent operator Jλ of βq is given by (Jλu)(x) =

(1+ λβ)−1u(x) and the so-called Yosida operator βλ(·) := λ−1(I− Jλ) is given by
βλ(u)(x) = λ−1(1− (1 + λβ)−1)u(x) for a.e. x ∈ Σ. If 1 < q < ∞ then for a
given accretive operator A on Lq(Σ, µ), the sum A + βq is accretive in Lq(Σ, µ).
This is an immediate consequence of the fact that the duality mapping J of
Lq(Σ, µ) is single-valued on Lq(Σ, µ). However, in order to conclude that for an
m-accretive operator A in Lq(Σ, µ), (1 < q < ∞), satisfying D(A) ∩ D(βq) 6= ∅,
the sum A + βq is m-accretive in Lq(Σ, µ), one needs an additional condition. A
possible one is the following (cf. [8, Proposition 3.8]):

(2.15) [βλ(u), v]q ≥ 0 for every λ > 0, (u, v) ∈ A.
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Another important example of m-accretive operators in L2(Σ, µ) is given by
the subgradient

∂L2 Ψ :=
{
(u, v) ∈ L2 × L2(Σ, µ)

∣∣∣ 〈v, ξ − u〉 ≤ Ψ(ξ)−Ψ(u) for all ξ ∈ L2(Σ, µ)
}

in L2(Σ, µ) of a functional Ψ : L2(Σ, µ) → R ∪ {+∞} which is convex, lower
semicontinuous and proper (see [24] and also [31]).

More generally, an operator A on X is called quasi (T)-accretive if there is an
ω ∈ R such that A + ωI is (T)-accretive in X. Obviously, if A + ωI is (T)-
accretive for some ω ∈ R then A + ω̃I is (T)-accretive for every ω̃ ≥ ω. Thus,
there is no loss of generality in assuming that A + ωI is (T)-accretive for some
ω ≥ 0. Finally, we call A quasi m-(T)-accretive if A + ωI is m-(T)-accretive for
some ω ∈ R. It is easy to check that A + ωI is (T)-accretive for some ω ∈ R if
and only if for every λ > 0 satisfying λω < 1, the resolvent Jλ of A satisfies

‖Jλu− Jλû‖X ≤ (1− λω)−1 ‖u− û‖X

for every u, û ∈ Rg(I + λA) (respectively, one has

‖[Jλu− Jλû]+‖X ≤ (1− λω)−1 ‖[u− û]+‖X

for every u, û ∈ Rg(I + λA)). It is important to know that if A + ωI is m-
accretive for some ω ∈ R, then for every λ > 0 such that ωλ < 1 and u ∈ D(A)

X ,
the closure of D(A) in X, one has Jλu ∈ D(A) and

(2.16) lim
λ→0

Jλu = u in X

(cf. [15, Proposition (4.4)] or [8, Proposition 3.2]). Prototype examples of quasi
(T)-accretive operators A on X = Lq(Σ, µ), 1 ≤ q ≤ ∞, are of the form A =
B + F, where B denotes a (T)-accretive operator on Lq(Σ, µ) and F : Lq(Σ, µ) →
Lq(Σ, µ) is defined by F(u)(x) := f (x, u(x)) for every u ∈ Lq(Σ, µ) of a given
f : Σ×R → R with the properties that f (·, u) : Σ → R is measurable on Σ for
every u ∈ R, f (x, 0) = 0 for a.e. x ∈ Σ, and there is a constant ω ≥ 0 such that

(2.17) | f (x, u)− f (x, û)| ≤ L |u− û| for all u, û ∈ R and a.e. x ∈ Σ.

A real-valued function f satisfying such properties (or slightly weaker ones)
is also called a Carathéodory function, and the mapping F given by F(u)(x) :=
f (x, u(x)) for every u ∈ Lq(Σ, µ) the Nemytski operator on Lq(Σ, µ) associated
with f .

If q = 1 then an approximation argument with the sequence (γε)ε>0 given
by (2.6) and if 1 < q < ∞, using that the duality map J on Lq(Σ, µ) is single-
valued, one sees that the operator B + F + ωI is (T)-accretive in Lq(Σ, µ). On
the other hand, for the same ω, the operator F + ωI on Lq(Σ, µ) is accretive
and Lipschitz continuous. Hence a standard fixed point argument shows that
F+ωI is m-(T)-accretive in Lq(Σ, µ). Therefore, if B is m-(T)-accretive in Lq(Σ, µ)
for some 1 ≤ q < ∞, then B + F is quasi m-(T)-accretive in Lq(Σ, µ) (cf. [8,
Theorem 3.1]).

For an accretive operator A + ωI on X, ω ∈ R, one easily verifies that the
following properties hold (cf. [15, Proposition 2.18]):

The closure A + ωI of A + ωI in X coincides with A + ωI and is accretive.(2.18)

If A is closed, then Rg(I + λ(A + ωI)) is closed for every λ > 0.(2.19)
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If there is a λ > 0 such that Rg(I + λ(A + ωI)) is closed, then A is closed.(2.20)

If A ⊆ B, Rg(I + (B + ωI)) ⊆ Rg(I + (A + ωI)) and B + ωI is
accretive, then A = B.(2.21)

By the celebrated Crandall-Liggett theorem [40, Theorem I], the condition A
is quasi m-accretive in X ensures that for all u0 ∈ D(A)

X , the abstract initial value
problem

(2.22) du
dt + Au 3 0, u(0) = u0

is well-posed in the sense of mild solutions. In particular, if A is quasi m-T-
accretive in X, then for every u0, û0 ∈ D(A)

X satisfying u0 ≤ û0, the corre-
sponding mild solutions u and û of (2.22) satisfy u(t) ≤ û(t) for all t ≥ 0 (cf. [15,
Proposition (19.12)]). To be more precise, we first recall that for given u0 ∈ X,
a function u ∈ W1,1

loc ((0, ∞); X) ∩ C([0, ∞); X) satisfying u(0) = u0, u(t) ∈ D(A)

and − du
dt (t) ∈ Au(t) a strong solution of (2.22). Now, a mild solution u of Cauchy

problem (2.22) is a function u ∈ C([0, ∞); X) with the following property: for ev-
ery T, ε > 0, for every partition 0 = t0 < · · · < tN = T of the interval [0, T]
such that ti − ti−1 < ε for every i = 1, . . . , N, there exists a piecewise constant
function uε,N : [0, T]→ X given by

uε,N(t) = u0 1{t0=0}(t) +
N

∑
i=1

uε,i 1(ti−1,ti ](t)

where the values ui on (ti−1, ti] solve recursively the finite difference equation

ui + (ti − ti−1)Aui 3 ui−1 for every i = 1, . . . , N

and
sup

t∈[0,T]
‖u(t)− uε,N(t)‖X ≤ ε.

If A + ωI is m-accretive in X for some ω ∈ R, then for every element u0 of
D(A)

X , there is a unique mild solution u of (2.22) which can be given by expo-
nential formula

(2.23) u(t) = lim
n→∞

(
I + t

n A
)−n u0

uniformly in t on compact intervals. For every u0 ∈ D(A)
X , setting Ttu0 = u(t),

t ≥ 0, defines a (non-linear) strongly continuous semigroup {Tt}t≥0 of Lipschitz
continuous mappings Tt : D(A)

X → D(A)
X with constant eω t. More precisely,

there is a family {Tt}t≥0 of mappings Tt on D(A)
X obeying the following three

properties:
• (semigroup property)

(2.24) Tt+s = Tt ◦ Ts for every t, s ≥ 0,

• (strong continuity)

lim
t→0+
‖Ttu− u‖X = 0 for every u ∈ D(A)

X ,

• (exponential growth property in X)

‖Ttu− Ttv‖X ≤ eω t‖u− v‖X for all u, v ∈ D(A)
X , t ≥ 0.

In addition, if A is quasi m-T-accretive in X, then for every t ≥ 0, Tt satisfies
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• (exponential T-growth property in X)

‖[Ttu− Ttv]+‖X ≤ eω t‖[u− v]+‖X for all u, v ∈ D(A)
X , t ≥ 0,

in particular, the semigroup {Tt}t≥0 is order-preserving, that is, every Tt is order-
preserving.

To express that the semigroup {Tt}t≥0 has been obtained by the above con-
struction we say that {Tt}t≥0 has been generated by −A on D(A)

X and we denote
{Tt}t≥0 ∼ −A. If A is m-accretive in X, then each mapping Tt of the semigroup
{Tt}t≥0 ∼ −A becomes contractive in X.

With these preliminaries in mind, we turn now to one of the main topics of
this article. It is not difficult to see ([8, p. 130]) that every strong solution of
Cauchy problem (2.22) is a mild solution. But, it is still not well understood
under which conditions on the operator A and the Banach space X, for each
u0 ∈ D(A)

X , the mild solution u(t) = Ttu0, t ≥ 0, of (2.22) is a strong one.
Obviously, this problem involves a regularisation effect since the solution u gains
a posteriori in regularity, namely, the property to be differentiable at a.e. t > 0
with values in X. The current state of knowledge in the literature concerning this
problem is the following one (cf. [8, Theorem 4.6] or [15, Corollary (7.11)]): if A
is quasi-m-accretive in X and if the Banach space X and its dual X′ are uniformly
convex, then for every initial value u0 ∈ D(A) the mild solution u(t) := Ttu0,
t ≥ 0, of (2.22) belongs to the space W1,∞

loc ([0, ∞); X), is almost everywhere dif-
ferentiable on (0, ∞), differentiable from the right at every t ≥ 0, the right-hand
side derivative du

dt +(t) is right continuous on [0, ∞) and for every t ≥ 0,

(2.25) u(t) ∈ D(A) and d
dt+u(t) + A◦u(t) = 0.

Here, A◦ denotes the principal section of A which assigns to every u ∈ D(A) the
element A◦u of Au with minimal norm among all elements of Au. Thus, un-
der these assumptions, the mild solution u(t) = Ttu0, t ≥ 0, of (2.22) for every
u0 ∈ D(A) is a strong solution of (2.22). Recall that the space X = L1(Σ, µ) is
not uniformly convex. Further, it is natural to ask whether this statement holds
true if u0 ∈ D(A)

X for general quasi m-accretive operators A. Thanks to the pio-
neering result [23] by Brezis, the answer of this question is affirmative provided
A is the subgradient ∂L2 Ψ in L2(Σ, µ) of a convex, proper, lower semicontinuous
functional Ψ : L2(Σ, µ)→ R∪ {+∞}. Semigroups {Tt}t≥0 generated by positive
homogeneous operators A of order α > 0 with α 6= 1 on Lq(Σ, µ) for 1 < q < ∞
admit the same regularisation effect (cf. [14]). As a by-product of our other re-
sults (Theorem 1.5) we can show that the semigroup {Tt}t≥0 in L1(Σ, µ) has
also this regularisation effect provided its infinitesimal generator A is the clo-
sure (∂L2 Ψ)1∩∞φ of (∂L2 Ψ)1∩∞φ in L1(Σ, µ), where Ψ : L2(Σ, µ) → R ∪ {+∞}
is a convex, proper, lower semicontinuous functional and φ : R → R a strictly
increasing function such that φ and φ−1 are locally Lipschitz continuous (see
Theorem 5.7 for the exact statement).

As mentioned in the introduction, throughout this monograph, we deal with
the following two classes of accretive operators A on M(Σ, µ) generating non-
linear semigroups acting on all Lq spaces for 1 ≤ q ≤ ∞:

• quasi m-completely accretive operators in Lq0 for some 1 ≤ q0 < ∞
• quasi m-T-accretive operators in L1 with complete resolvent.
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Besides the already mentioned prototypes, typical examples of the first class
of operators are, for instance, quasi-linear operators of second order of p-Laplace
type (so-called Leray-Lions operators [63]), nonlocal diffusion operators of p-La-
place type (see, e.g., [7]), but also the total variational flow operator of local and
nonlocal type (cf., for instance, [6] and [56]). Typical examples of the second class
of operators are easily obtained by considering the composition operator Aφ in L1

of an m-completely accretive operator A in L1 and a strictly increasing function
φ : R → R satisfying φ(0) = 0. Operators of both classes are equipped with
some boundary conditions when required and may be perturbed by a monotone
(multi-valued) or Lipschitz continuous lower order term.

In the following two subsections, we introduce these two classes of operators
in more details and list some of their properties relevant for this monograph.
We establish Lq-Lr-regularisation estimates for several examples of both classes
in Section 6.

2.2. Completely accretive operators. The class of completely accretive operators
is the nonlinear analogue of the class of linear operators generating a submarko-
vian semigroup in the sense that the semigroup they generate extrapolates to
Lp, 1 < p < ∞ (see Proposition 2.8 below) and is order preserving. This class of
nonlinear operators was introduced by Benilan and Crandall [9].

The notion of complete accretivity we use is the same as in [9] and will be
introduced now. We denote by J0 the set of all convex, lower semicontinuous
functions j : R→ [0, ∞] satisfying j(0) = 0.

Definition 2.1. A mapping S : D(S) → M(Σ, µ) with domain D(S) ⊆ M(Σ, µ)
is called a complete contraction if∫

Σ
j(Su− Sû)dµ ≤

∫
Σ

j(u− û)dµ

for all j ∈ J0 and every u, û ∈ D(S).

Remark 2.2. Choosing j(·) = |[·]+|q ∈ J0 if 1 ≤ q < ∞ and j(·) = [[·]+− k]+ ∈ J0
for k ≥ 0 large enough if q = ∞ shows that each complete contraction S is T-
contractive in Lq(Σ, µ) for every 1 ≤ q ≤ ∞.

Now, we can state the definition of completely accretive operators.

Definition 2.3. An operator A on M(Σ, µ) is called completely accretive if for every
λ > 0, the resolvent operator Jλ of A is a complete contraction. If X is a linear
subspace of M(Σ, µ) and A an operator on X, then A is m-completely accretive on
X if A is completely accretive and satisfies the range condition (2.14). Further, we
call an operator A on M(Σ, µ) quasi completely accretive if there is an ω ∈ R such
that A + ωI is completely accretive. Finally, an operator A on a linear subspace
X is called quasi m-completely accretive if A + ωI is m-completely accretive on X
for some ω ∈ R.

As a matter of fact, in most applications the following characterisation is used
to verify whether a given operator A on X = Lq(Σ, µ) is completely accretive
(see also [7, Corollary A.43]). Here, we state [9, Proposition 2.2] only in a special
case since it is more convenient for us.

Proposition 2.4 ([9, Proposition 2.2]). Let P0 denote the set of all functions T ∈
C∞(R) satisfying 0 ≤ T′ ≤ 1, T′ is compactly supported, and x = 0 is not contained
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in the support supp(T) of T. Then for u, v ∈ L1(Σ, µ) + L∞(Σ, µ) with µ({|u| >
k}) < ∞ for all k > 0, one has∫

Σ
j(u) dµ ≤

∫
Σ

j(u + λv) dµ

for every j ∈ J0 and λ > 0 if and only if

(2.26)
∫

Σ
T(u) v dµ ≥ 0

for every T ∈ P0. As a consequence, an operator A on Lq(Σ, µ) for 1 ≤ q < ∞ is
completely accretive if and only if

(2.27)
∫

Σ
T(u− û)(v− v̂)dµ ≥ 0

for every T ∈ P0 and every (u, v), (û, v̂) ∈ A.

For any given monotone graph β on R and 1 ≤ q < ∞, the associated accretive
operator βq on Lq(Σ, µ) is, in fact, completely accretive. To see this, note first that
every T ∈ P0 is continuous and non-decreasing. Thus for all (u, v), (û, v̂) ∈ βq
and every T ∈ P0, one has

T(u− û)(v− v̂) ≥ 0 a.e. on Σ.

Integrating this inequality over Σ yields inequality (2.27) in Proposition 2.4.
Further, the property completely accretive is preserved under perturbation of a

Lipschitz continuous mapping. This result seems to be known, but we could not
find a reference in the literature. It provides an important example of completely
accretive operators (cf. [9, Corollary 2.4]).

Proposition 2.5. Let 1 ≤ q < ∞, B be a completely accretive operator on Lq(Σ, µ)
and F : Lq(Σ, µ) → Lq(Σ, µ) the Nemytski operator of a Carathéodory function f :
Σ×R→ R satisfying (2.17) for some constant ω ≥ 0 and F(0) ∈ Lq(Σ, µ). Then the
following statements hold:

(1) The operator A := B + F + ωI is completely accretive.
(2) Let 1 < q < ∞ and β be an m-accretive graph on R such that either (0, 0) ∈ β

or (Σ, µ) is finite. If B satisfies the range condition (2.14) in Lq(Σ, µ) with
D(B) ∩ D(βq) 6= ∅ and if the Yosida operator βλ(·) of βq satisfies

(2.28) [βλ(u), v]q ≥ 0 for all (u, v) ∈ A and λ > 0,

then A := B + βq + F is quasi m-completely accretive in Lq(Σ, µ).

Proof. Let T ∈ P0 and (u, v), (û, v̂) ∈ A. Then, in order to apply Proposition 2.4,
we need to show that inequality (2.27) holds. By assumption, there are w ∈ Bu
and ŵ ∈ Bû such that v = w + f (x, u) + L u and v̂ = ŵ + f (x, û). Also, T is
non-decreasing and T(0) = 0. Hence T(u− û) ≥ 0 if u ≥ û and T(u− û) ≤ 0 if
u < û. Using this together with inequality (2.17) and since, by assumption, B is
completely accretive, we see that∫

Σ
T(u− û)(v + ωu− (v̂ + ωû))dµ

=
∫

Σ
T(u− û) (w− ŵ)dµ +

∫
Σ

T(u− û) ( f (x, u)− f (x, û)dµ

+ L
∫

Σ
T(u− û) (u− û)dµ
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≥ −L
∫
{u≥û}

T(u− û) |u− û|dµ + L
∫
{u<û}

T(u− û) |u− û|dµ

+ L
∫

Σ
T(u− û) (u− û)dµ

= −L
∫

Σ
T(u− û) (u− û)dµ + L

∫
Σ

T(u− û) (u− û)dµ = 0.

Thus claim (1) holds. For any given monotone graph β on R, one sees by us-
ing (2.2) together with the fact that T ∈ P0 is monotonically increasing and by
proceeding as before that A is completely accretive. If B is m-accretive in Lq(Σ, µ)
and 1 < q < ∞, then we know that B + F + ωI is m-accretive in Lq(Σ, µ). Now,
under the assumptions of claim (2) and by using the definition of q-brackets
[·, ·]q, it follows by [8, Proposition 3.8], B+ F+ωI + βq is m-accretive in Lq(Σ, µ).
This completes the proof. �

The last proposition of this subsection states that a semigroup {Tt}t≥0 gen-
erated by a quasi m-completely accretive operator −A on Lq0(Σ, µ) for some
1 ≤ q0 < ∞ has, in fact, exponential growth in all Lq spaces.

Proposition 2.6. Let 1 ≤ q0 < ∞ and ω ∈ R such that A+ωI is completely accretive
in Lq0(Σ, µ). Then for every λ > 0 satisfying λ ω < 1, the resolvent operator Jλ of A
satisfies

(2.29) ‖Jλu− Jλû‖q̃ ≤ (1− λω)−1‖u− û‖q̃

for every u, û ∈ Rg(I + λA) and every 1 ≤ q̃ ≤ ∞. If A + ωI is m-completely
accretive in Lq0(Σ, µ), then for all 1 ≤ q̃ ≤ ∞, the semigroup {Tt}t≥0 ∼ −A on
D(A)Lq0 satisfies the ”exponential growth property”

(2.30) ‖Ttu− Ttû‖q̃ ≤ eω t‖u− û‖q̃

for every u, û ∈ D(A)Lq0 ∩ Lq̃(Σ, µ) and t > 0. Moreover, if there are u0 ∈ Lq0 ∩
L

q̃
(Σ, µ) and t ≥ 0 such that Ttu0 ∈ Lq̃(Σ, µ) then Tt can be uniquely extended to a

Lipschitz continuous mapping on D(A)Lq0 ∩ Lq̃(Σ, µ)
Lq̃

with constant eωt.

Remark 2.7. Throughout this monograph, we often assume that there is

(2.31) (u0, 0) ∈ A for some u0 ∈ Lq0 ∩ Lq̃(Σ, µ)

and some 1 ≤ q0, q̃ ≤ ∞ (see, for instance, Definition 1.1, Theorem 1.4 or Theo-
rem 1.5). Condition (2.31) is equivalent to u0 ∈ Lq0 ∩ Lq̃(Σ, µ) is a fixed point for
the resolvent Jλ of A, that is, Jλu0 = u0 for all λ > 0. Thus and by using the
exponential formula (2.23), one sees that condition (2.31) is equivalently to the
fact that u0 ∈ Lq0 ∩ Lq̃(Σ, µ) is a fixed point for the semigroup {Tt} ∼ −A, that is,
Ttu0 = u0 for all t ≥ 0. Moreover, it is worth noting that under condition (2.31),
the exponential growth property (2.30) of the semigroup {Tt} reduces to

(2.32) ‖Ttu− u0‖q̃ ≤ eω t‖u− u0‖q̃

for every u ∈ D(A)Lq0 ∩ Lq̃(Σ, µ) and t > 0.

Proof of Proposition 2.6. By assumption, the resolvent operator of A + ωI is a
complete contraction. Let 1 ≤ q̃ ≤ ∞ and λ > 0 such that λω < 1. Then by
Remark 2.2,

‖u− û‖q̃ ≤ ‖u− û + λ(ω(u− û) + (v− v̂))‖q̃
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for every (u, v), (û, v̂) ∈ A. Thus,

‖u− û + λ(v− v̂)‖q̃ = (1− λω)‖u− û + λ
1−λω (ω(u− û) + (v− v̂))‖q̃

≥ (1− λω) ‖u− û‖q̃

for every (u, v), (û, v̂) ∈ A and every λ > 0 such that λ ω < 1, proving that
the resolvent operator Jλ of A satisfies (2.29). In order to see that the semigroup
{Tt}t≥0 ∼ −A on D(A)Lq0 satisfies (2.30), for given t > 0 and n ∈ N large
enough, one takes λ = t/n such that t

n ω < 1. Then, replacing u and û by Jn−1
t/n u

and Jn−1
t/n û in (2.29) yields

‖Jn
t/nu− Jn

t/nû‖q̃ ≤ (1− t ω
n )−1‖Jn−1

t/n u− Jn−1
t/n û‖q̃

...

≤ (1− t ω
n )−n‖u− û‖q̃.

By the exponential formula (2.23), one has

lim
n→∞

Jn
t/nu− Jn

t/nû = Ttu− Ttû in Lq0(Σ, µ).

Since the Lq̃ norm on Lq0(Σ, µ) is lower semicontinuous, sending t → ∞ in
the previous estimates shows that inequality (2.30) holds. In order to see that
the last statement of this proposition holds, note that the existence of u0 ∈
Lq0 ∩ Lq̃(Σ, µ) and t ≥ 0 such that Ttu0 ∈ Lq̃(Σ, µ) together with (2.30) imply that
Tt maps D(A)Lq0 ∩ Lq̃(Σ, µ) into Lq0 ∩ Lq̃(Σ, µ). Thus (2.30) and a standard den-
sity argument yield that Tt has a unique Lipschitz continuous extension from

D(A)Lq0 ∩ Lq̃(Σ, µ)
Lq̃

to D(A)Lq0 ∩ Lq̃(Σ, µ)
Lq̃

with constant eωt. This completes
the proof. �

The fundamental property of completely accretive operators A is given by the
extrapolation property stated in the next proposition, which is especially meaning-
ful when (Σ, µ) is not a finite measure space. The first main steps towards the
statement of this proposition have been established by Bénilan and Crandall [9].
The main idea of the proof in [9] relies on the following fundamental property
of sequences of functions in Lq(Σ, µ) for 1 ≤ q < ∞:

for any sequence (un)n≥1 ⊆ Lq(Σ, µ) satisfying

(i)
∫

Σ
|un|q dµ ≤

∫
Σ
|u|q dµ for all n ≥ 1,

(ii) lim
n→∞

un(x) = u(x) for a.e. x ∈ Σ,

one has lim
n→∞

un = u in Lq(Σ, µ).

(2.33)

Statement (2.33) follows from Fatou’s lemma in combination with either the uni-
form convexity of Lq(Σ, µ) if q > 1 or with Young’s theorem (cf., for instance,
[17, Theorem 2.8.8]) if q = 1. Furthermore (2.33) yields the statements of our
next proposition. We leave its easy proof to the interested reader as an exercise.

Proposition 2.8. Let 1 ≤ q0 < ∞ and A be a m-completely accretive in Lq0(Σ, µ) with
dense domain and satisfying (0, 0) ∈ A. Let A1∩∞ be the trace of A on L1 ∩ L∞(Σ, µ)
and for 1 ≤ q < ∞, let A1∩∞

Lq be the closure of A1∩∞ in Lq(Σ, µ). Then the following
statements hold true.
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(1) For every 1 ≤ q < ∞, A1∩∞
Lq is m-completely accretive in Lq(Σ, µ) with dense

domain and (0, 0) ∈ A1∩∞
Lq .

(2) For every 1 ≤ q < ∞ and for all λ > 0, the resolvent Jλ of A admits a unique
extension on Lq(Σ, µ) and this extension coincides with the resolvent operator
Jq
λ of A1∩∞

Lq .
(3) For every 1 ≤ q < ∞ and for every t > 0, the mapping Tt of the semi-

group {Tt}t≥0 ∼ −A on Lq0(Σ, µ) admits a unique extension on Lq(Σ, µ)
and this extension coincides with the mapping Tq

t on Lq(Σ, µ) of the semigroup
{Tq

t }t≥0 ∼ −A1∩∞
Lq on Lq(Σ, µ).

If F : Lq0(Σ, µ)→ Lq0(Σ, µ) is a Lipschitz mapping satisfying F(0) = 0, then the same
statements hold for the quasi m-completely accretive operator A + F on Lq0(Σ, µ).

2.3. T-accretive operators in L1 with complete resolvent. The class of T-ac-
cretive operators in L1 with complete resolvent was developed in connection with
the porous media equation by Bénilan [10]. To the best of our knowledge, the
first important result in direction to this class of operators has been the inter-
polation theorem in [26] due to Brezis and Strauss in order to treat semilinear
elliptic equations in L1. This interpolation theorem has been extended by Béni-
lan and Crandall in [9] to introduce the class of completely accretive operators
and further investigated by many others (for instance, see also [10, Partie II],
[42, 41] and [91]).

For the sake of brevity, we merely state the results in this section and refer for
their proofs to Appendix A.

We begin by introducing the notion of complete maps on M(Σ, µ) in accordance
with [9, Definition 1.7] (see also [10, Définition 2.1]).

Definition 2.9. Let D(S) be a subset of M(Σ, µ). A mapping S : D(S)→ M(Σ, µ)
is called complete if

(2.34)
∫

Σ
j(Su)dµ ≤

∫
Σ

j(u)dµ

for every j ∈ J0 and u ∈ D(S). Further, letJ be the set of all convex, lower semi-
continuous functions j : R → [0, ∞]. We call a mapping S : D(S) → M(Σ, µ)
c-complete if S satisfies inequality (2.34) for all u ∈ D(S) and j ∈ J .

Since the set J0 is contained in J , every c-complete mapping is a complete
mapping. In particular, we have the following characterisation.

Proposition 2.10. Let P denote the set of all functions T ∈ C∞(R) satisfying 0 ≤
T′ ≤ 1 and T′ is compactly supported. Suppose (Σ, µ) is a finite measure space. Then
for u, v ∈ L1(Σ, µ), one has

(2.35)
∫

Σ
j(u) dµ ≤

∫
Σ

j(u + λv) dµ

for every j ∈ J and λ > 0 if and only if

(2.36)
∫

Σ
T(u) v dµ ≥ 0

for every T ∈ P. As a consequence, an operator A on L1(Σ, µ) has a c-complete resol-
vent if and only if inequality (2.36) holds for every (u, v) ∈ A.

For a proof of this characterisation we refer to Appendix A.
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Remark 2.11. By taking j(·) = |·|q ∈ J0 if 1 ≤ q < ∞ and j(·) = [|·| − k]+ ∈ J0
for k ≥ 0 large enough if q = ∞, we see that every complete mapping S has
non-increasing Lq norm for all 1 ≤ q ≤ ∞. More precisely,

‖Su‖q ≤ ‖u‖q

for all u ∈ D(S) and every 1 ≤ q ≤ ∞. More generally, since for every constant
c ∈ R and every 1 ≤ q < ∞, the function j(·) := |· − c|q ∈ J and since
j(·) := [|· − c| − k]+ ∈ J for every k ≥ 0, one has that if S is c-complete, then

‖Su− c‖q ≤ ‖u− c‖q

for all u ∈ D(S), c ∈ R and 1 ≤ q ≤ ∞.

Now, we can define the class of accretive operators in L1 with (c-)complete
resolvent.

Definition 2.12. An operator A on L1(Σ, µ) is called (m-) accretive in L1 with com-
plete resolvent if A is (m-) accretive in L1(Σ, µ) and for every λ > 0, the resolvent
operator Jλ : Rg(I + λA)→ D(A) of A is a complete mapping. Further, we call
an operator A on M(Σ, µ) quasi (m-) accretive in L1 with complete resolvent if there
exists ω ∈ R such that A + ωI is (m-) accretive in L1(Σ, µ) and for every λ > 0,
the resolvent Jλ of A + ωI is a complete mapping. Similarly, we call an operator
A on L1(Σ, µ) (m-) accretive in L1 with c-complete resolvent if A is (m-) accretive in
L1(Σ, µ) and for every λ > 0, the resolvent Jλ : Rg(I + λA) → D(A) of A is a
c-complete mapping.

Remark 2.13. Note that, in contrast to completely accretive operators in L1, an
accretive operator A in L1 with (c)-complete resolvent does not admit, in gen-
eral, an order-preserving resolvent Jλ on L1. For this, one needs the additional
assumption A is T-accretive in L1.

Note that it does not make much sense to introduce the notion of quasi (m-)
accretive operators in L1 with c-complete resolvent. This becomes more clear by the
following result due to Bénilan [10, Corollaire 2.3]. To be more precise, consider
the following situation. Let B = −∆N be the Neumann Laplace operator on
L1 on a bounded Lipschitz domain Σ ⊆ Rd and f a real-valued Carathéodory
function on Σ × R satisfying f (x, 0) = 0 for a.e. x ∈ Σ and Lipschitz condi-
tion (2.17) for some ω ≥ 0. Then B is accretive in L1 has a c-complete resolvent
and satisfies (2.37). Let F denote the Nemytski operator on L1 associated with f .
Then for ω = L, A + ωI is accretive in L1 and has a complete resolvent. If one
assumes that the resolvent of A is c-complete, then our next proposition implies
that f ≡ −ωIR.

Proposition 2.14 ([10]). Suppose that (Σ, µ) is a finite measure space and A is an
accretive operator in L1(Σ, µ) satisfying L∞(Σ, µ) ⊆ Rg(I + A). Then A has a c-
complete resolvent if and only if

(2.37) (c, 0) ∈ A for all c ∈ R.

Due to Proposition 2.14, a typical example of accretive operator in L1 with c-
complete resolvent on a finite measure space (Σ, µ) is given by any second order
(nonlinear) diffusion operator equipped with homogeneous Neumann bound-
ary conditions on a bounded Lipschitz domain.
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In the next proposition, we state some important properties of accretive oper-
ators in L1 with (c-)complete resolvent for later reference.

Proposition 2.15. If A+ωI is accretive in L1 with complete resolvent for some ω ∈ R,
then the closure A + ωI is accretive in L1 with complete resolvent. Further, if (Σ, µ)
is a finite measure space and A is accretive in L1 with c-complete resolvent, then the
closure A is accretive in L1 with c-complete resolvent.

Proof. The operator A + ωI is accretive in L1(Σ, µ) by (2.18) and since A + ωI =
A + ωI. Now, suppose that the resolvent Jλ of A + ωI is a complete mapping
Jλ : Rg(I + λ(ωI + A)) → D(A) for every λ > 0. Let (u, v) ∈ A. Then there
are sequences (un) and (vn) such that (un, vn) ∈ A and un converges to u and
vn converges to v in L1(Σ, µ). By assumption, for every λ > 0, the resolvent
operator Jλ of A + ωI is a complete mapping, that is, by Proposition 2.4, for
every (un, vn) ∈ A, one has

(2.38)
∫

Σ
T(un) (ωun + vn)dµ ≥ 0

for every T ∈ P0. Since every T ∈ P0 is Lipschitz continuous and bounded,

T(un)(un + λ(ωun + vn))→ T(un)(un + λ(ωun + vn))

in L1(Σ, µ) as n→ ∞. Thus, sending n→ ∞ in (2.38) yields∫
Σ

T(u) (ωu + v)dµ ≥ 0,

showing that the first statement of this proposition holds. In the case that the
measure space (Σ, µ) is finite and A with c-complete resolvent, the same argu-
ments show that A has a c-complete resolvent. �

A semigroup {Tt}t≥0 ∼ −A on D(A)L1 of a quasi m-accretive operator in L1

with complete resolvent has exponential growth in all Lq̃-norms

(2.39) ‖Ttu‖q̃ ≤ eω t‖u‖q̃ for all t > 0, u ∈ D(A)L1 ∩ Lq̃(Σ, µ),

and 1 ≤ q̃ ≤ ∞. Similarly, a semigroup {Tt}t≥0 ∼ −A on D(A)L1 of a m-
accretive operator in L1 with c-complete resolvent has modulo a constant ”c” non-
increasing Lq̃-norm

(2.40) ‖Ttu− c‖q̃ ≤ ‖u− c‖q̃ for all t > 0, u ∈ D(A)L1 ∩ Lq̃(Σ, µ),

c ∈ R and 1 ≤ q̃ ≤ ∞. We omit the proof of these statements since they are
shown similarly as the ones of Proposition 2.6.

Proposition 2.16. Let A + ωI be an (m-) accretive operator in L1 with complete resol-
vent for some ω ∈ R. Then for every λ > 0 such that λ ω < 1 and every 1 ≤ q̃ ≤ ∞,
the resolvent operator Jλ of A satisfies

(2.41) ‖Jλu‖q̃ ≤ (1− λω)−1‖u‖q̃

for every u ∈ Rg(I + λA) ∩ Lq̃(Σ, µ) and the semigroup {Tt}t≥0 ∼ −A on D(A)L1

satisfies (2.39). If A is (m-) accretive operator in L1 with c-complete resolvent, then for
every λ > 0 and 1 ≤ q̃ ≤ ∞, the resolvent operator Jλ of A satisfies

(2.42) ‖Jλu− c‖q̃ ≤ ‖u− c‖q̃
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for every c ∈ R, u ∈ Rg(I + λA) ∩ Lq̃(Σ, µ) and the semigroup {Tt}t≥0 ∼ −A on
D(A)L1 satisfies (2.40).

The next proposition outlines the construction of an operator of the second
class by taking the composition Aφ of an operator A of the first class and a
continuous non-decreasing function φ on R. In the case ε = 0, the statements of
this proposition are well-known (cf. [79, Proposition 11] or [10, Proposition 2.5]).

Proposition 2.17. Let A be an accretive operator in L1(Σ, µ) and φ : R → R be a
non-decreasing function. Suppose that one of the following hypotheses hold:

(i) A is s-accretive in L1(Σ, µ) and single-valued.
(ii) φ is injective.

Then, the following statements hold.

(1) For every ε ≥ 0, the operator εφ1 + Aφ is accretive in L1(Σ, µ).
(2) If, in addition, A has a complete resolvent and φ is continuous satisfying φ(0) =

0 (respectively, A has a c-complete resolvent and (Σ, µ) is a finite measure
space), then for every ε ≥ 0, εφ1 + Aφ is accretive in L1 with complete re-
solvent (respectively, with c-complete resolvent).

(3) If, in addition, A is T-accretive in L1(Σ, µ) and φ is injective, then for every
ε ≥ 0, εφ1 + Aφ is T-accretive in L1(Σ, µ).

Our next result provides sufficient conditions to ensure that the composition
operator Aφ of an operator A of the first class and a non-decreasing function
φ on R satisfies the range condition (2.14) and so, −Aφ generates a strongly
continuous semigroup on L1(Σ, µ). This result generalises [41, Proposition 2] to
operators Aφ for (possibly nonlinear) m-completely accretive operators A in L1. For
the proof of this result, we refer the interested reader to the Appendix A of this
monograph.

Proposition 2.18. Suppose A is an m-completely accretive operator in Lq(Σ, µ) for
some 1 < q < ∞ with (0, 0) ∈ A and A1∩∞ be the trace of A on L1 ∩ L∞(Σ, µ). Let
φ : R → R be a continuous, non decreasing function and for every λ > 0, βλ be the
Yosida operator of β = φ−1. Suppose that

(2.43) φ(0) = 0, A and βλ satisfy (2.15) in Lq, A1∩∞ and βλ satisfy (2.15) in L1,

and that one of the following hypotheses holds:
(i) φ is injective.

(ii) A is s-accretive in L1(Σ, µ) and single-valued, and there are r0 > 0, K > 0 such
that

|φ(s)| ≤ K |s| for every |s| ≤ r0.

(iii) A is s-accretive in L1(Σ, µ) and single-valued, and the measure space (Σ, µ) is
finite.

Then, the closure A1∩∞φ of A1∩∞φ in L1(Σ, µ) is m-accretive in L1(Σ, µ) with complete
resolvent. Moreover, under the hypotheses (ii) and (iii), one has

for every λ > 0, f ∈ L1 ∩ L∞(Σ, µ), there is u ∈ L1 ∩ L∞(Σ, µ)

such that φ(u) ∈ D(A1∩∞) with u + λA1∩∞φ(u) 3 f .
(2.44)
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The class of accretive operators in L1 with complete resolvent is invariant un-
der perturbation by a Lipschitz continuous mapping. This is shown similarly as
in the proof of Proposition 2.5. Thus, we omit the proof of the first statement of
the following proposition.

Proposition 2.19. Let A be an accretive operator in L1 with complete resolvent and
(0, 0) ∈ A. Further, suppose F : L1(Σ, µ) → L1(Σ, µ) is the Nemytski operator of
a Carathéodory function f : Σ ×R → R satisfying f (x, 0) = 0 for a.e. x ∈ Σ and
Lipschitz condition (2.17) for some constant ω ≥ 0. Then, the following statements
hold:

(1) The operator A + F + ωI is accretive in L1 with complete resolvent.
(2) Suppose A and φ : R → R satisfy the hypotheses of Proposition 2.18 and

A1∩∞φ be the closure of A1∩∞φ. Then, A1∩∞φ + F + ωI is m-accretive in
L1(Σ, µ) and for every λ > 0 satisfying λω < 1, one has that

(2.45) L1 ∩ L∞(Σ, µ) ⊆ Rg(I + λ(A1∩∞φ + F)).

Proof. By employing the same notation as in Proposition 2.18, A1∩∞φ is m-accre-
tive in L1(Σ, µ) with complete resolvent. Since F + ωI is accretive and Lipschitz
continuous in L1(Σ, µ), a standard fixed point argument shows that F + ωI is
m-accretive in L1(Σ, µ). By the continuity of F + ωI and since A1∩∞φ is m-
accretive in L1(Σ, µ), [8, Theorem 3.1] implies that A1∩∞φ+ F+ωI is m-accretive
in L1(Σ, µ).

Now, let λ > 0 such that λω < 1. Then, Proposition 2.16 yields that the
resolvent operator Jλ of A1∩∞φ + F satisfies (2.41) with respect to the L∞-norm.
Thus, for every v ∈ L1 ∩ L∞(Σ, µ), there is a u ∈ L∞(Σ, µ)∩D(A1∩∞φ) such that

u + λ(A1∩∞φ(u) + F(u)) = v and so, if JA1φ
λ denotes the resolvent of A1∩∞φ,

JA1∩∞φ
λ [v − λF(u)] = u. On the other hand, since v − λF(u) ∈ L1 ∩ L∞(Σ, µ)

and since A1∩∞φ satisfies the range condition (2.44), there is a ũ ∈ L1 ∩ L∞(Σ, µ)

such that φ(ũ) ∈ D(A1∩∞) and JA1φ
λ [v − λF(u)] = ũ. Since A1∩∞φ ⊆ A1∩∞φ,

the resolvents JA1∩∞φ
λ and JA1∩∞φ

λ coincide on Rg(I + λA1∩∞φ) and since JA1φ
λ

is contractive on L1(Σ, µ), we obtain that ũ = u, implying that u satisfies u +
λ(A1∩∞φ(u) + F(u)) = v. This shows that also the second statement of this
proposition holds. �

3. GAGLIARDO-NIRENBERG TYPE INEQUALITIES & Lq-Lr-REGULARITY

This section is concerned with establishing Lq-Lr-regularisation estimates for
1 ≤ q, r ≤ ∞ of semigroups {Tt}t≥0 provided their infinitesimal generator −A
satisfies a Gagliardo-Nirenberg type inequality of the form (1.11) or (1.12).

Remark 3.1. We note that for ω = 0, the Gagliardo-Nirenberg type inequal-
ity (1.11) reduces to

‖u− u0‖σ
r ≤ C [u− u0, v]q ‖u− u0‖$

q

for all (u, v) ∈ A, and the Gagliardo-Nirenberg type inequality with differ-
ences (1.12) becomes

(3.1) ‖u− û‖σ
r ≤ C [u− û, v− v̂]q ‖u− û‖$

q

for all (u, v), (û, v̂) ∈ A, which are similar to the classical one (cf. [75]).



28 THIERRY COULHON AND DANIEL HAUER

Further, similar to the classical case, for $ = 0, Gagliardo-Nirenberg type in-
equalities (1.11) and (1.12) reduce to the following so-called Sobolev type in-
equalities.

Definition 3.2. We say an operator A on Lq(Σ, µ) for some 1 ≤ q < ∞ satisfies a
Sobolev type inequality for some (u0, 0) ∈ A (respectively, with differences) if there
exist 1 ≤ r ≤ ∞, σ > 0, and C > 0 such that (u0, 0) ∈ A and

‖u− u0‖σ
r ≤ C

(
[u− u0, v]q + ω‖u− u0‖q

q

)
for every (u, v) ∈ A (respectively,

‖u− û‖σ
r ≤ C

(
[u− û, v− v̂]q + ω‖u− û‖q

q

)
for every (u, v), (û, v̂) ∈ A).

Our first main theorem of this section applies to the class of operators consid-
ered in Section 2.2.

Theorem 3.3. Let A+ωI be an m-accretive operator on Lq(Σ, µ) for some 1 ≤ q < ∞
and ω ≥ 0. Suppose A satisfies the Gagliardo-Nirenberg type inequality (1.12) for some
1 ≤ r ≤ ∞, $ ≥ 0 and σ > 0, and the semigroup {Tt}t≥0 ∼ −A on D(A)Lq

has
exponential growth (2.30) for q̃ = r. Then {Tt}t≥0 satisfies

(1.13) ‖Ttu− Ttû‖r ≤
(

C
q

)1/σ
t−α eω β t ‖u− û‖γ

q

for every t > 0 and u, û ∈ D(A)Lq
with exponents α = 1

σ , β = γ + 1 and γ = q+$
σ .

Remark 3.4. If 1 ≤ q < r ≤ ∞ and if there is an element u0 ∈ D(A)Lq
such that

Ttu0 ∈ Lr(Σ, µ) for some (all) t > 0, then inequality (1.13) implies that {Tt}t≥0
enjoys an Lq-Lr-regularisation effect in the sense that for some (all) t > 0, Tt maps
D(A)Lq

into Lr(Σ, µ). Thus we call inequality (1.13) an Lq-Lr-regularisation esti-
mate if r > q. If q ≥ r then we call (1.13) an Lq-Lr-regularity estimate. For example,
the semigroup {Tt}t≥0 associated with the total variational flow (see [56]) satis-
fies inequality (1.13) for some r < q and some u0 ∈ D(A)Lq ∩ L∞(Σ, µ) satisfying
Ttu0 = u0 for all t ≥ 0.

Remark 3.5. We want to emphasise that Theorem 3.3 implies that the parameters
1 ≤ r ≤ ∞, 1 ≤ q < ∞ and exponents σ > 0 and $ ≥ 0 in Lq-Lr-regularisation es-
timate (1.13) are stable under a monotone or Lipschitz continuous perturbation.
To be more specific, suppose B is an accretive operator on Lq(Σ, µ) satisfying
the Gagliardo-Nirenberg type inequality (3.1), F be the Nemytski operator on
Lq(Σ, µ) of a Carathéodory function f : Σ ×R → R satisfying f (x, 0) = 0 for
a.e. x ∈ Σ and Lipschitz condition (2.17) for some constant ω ≥ 0 and βq the ac-
cretive operator on Lq(Σ, µ) associated with a monotone graph β on R (if q = 1
suppose, in addition, that B + β1 is accretive). We set A := B + βq + F. Then,
by property (2.11) of the q-bracket [·, ·]q and since βq and F + ωI are accretive in
Lq(Σ, µ), we see that

[u− û, (v1 + v2 + F(u))− (v̂1 + v̂2 + F(û))]q + ω‖u− û‖q
q

= [u− û, v1 − v̂1]q + [u− û, v2 − v̂2]q

+ [u− û, (F(u) + ωu)− (F(û) + ωû)]q
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≥ [u− û, v1 − v̂1]q

for every u, û ∈ D(A) ∩ D(βq), v1 ∈ Bu, v̂1 ∈ Bû, v2 ∈ βq(u), v̂2 ∈ βq(û).
Thus, the Lq-Lr-regularisation effect (1.13) for 1 ≤ q < r ≤ ∞ of a semigroup
{Tt}t≥0 ∼ −A for A = B + F is only determined by B.

Remark 3.6. The statement of Theorem 3.3 remains unchanged if one replaces
the constant eωt in condition (2.30) for q̃ = s by M eωt for some constant M > 0.
Then the constant C in (1.13) has to be changed accordingly.

A common situation in applications is the one where A is quasi m-completely
accretive on L2(Σ, µ). Also, we shall see in Section 6.1 how to derive a Gagliardo-
Nirenberg type inequality (1.12) for q = 2. Therefore in practice we shall often
use the following special case of Theorem 3.3.

Corollary 3.7. Let A + ωI be an m-completely accretive operator on L2(Σ, µ) for some
ω ≥ 0. Suppose there are 1 ≤ r ≤ ∞, $ ≥ 0, σ > 0 and C > 0 such that

(3.2) ‖u− û‖σ
r ≤ C

[
[u− û, v− v̂]2 + ω‖u− û‖2

2

]
‖u− û‖$

2

for every (u, v), (û, v̂) ∈ A. Then the semigroup {Tt}t≥0 ∼ −A on D(A)L2 satisfies

‖Ttu− Ttû‖r ≤
(C

2

)1/σ
t−α eω β t ‖u− û‖γ

2

for every t > 0 and u, û ∈ D(A)L2 with α = 1
σ , β = γ + 1 and γ = 2+$

σ .

Now, we turn to the proof of Theorem 3.3. For this, we first consider the
case q > 1. Then by (2.8), the q-brackets [u − û, v − v̂]q can be replaced by
〈(u− û)q, v− v̂〉 in inequality (1.12). Moreover, the Lebesgue space Lq(Σ, µ) and
its dual space are uniformly convex Banach spaces and so for every u ∈ D(A),
the mild solution t 7→ Ttu is almost everywhere differentiable, everywhere dif-
ferentiable from the right on [0, ∞) with values in Lq(Σ, µ), and satisfies (2.25).
Using this leads to the following short proof of Theorem 3.3 in this situation (cf.
[36] in the case of linear semigroups for ω = 0 and $ = 1).

First proof of Theorem 3.3 for q > 1. First, let u, û ∈ D(A). By hypothesis, one has

(3.3) ‖Ttu− Ttû‖q̃ ≤ eω(t−s)‖Tsu− Tsû‖q̃

for every t ≥ s > 0 and for every q̃ ∈ {q, r}. Combining this with inequal-
ity (1.12) and the fact that d

dt+Ttu = −A0Ttu for every t ≥ 0 (cf. (2.25)), we see
that

‖u− û‖q+$
q ≥

[
‖u− û‖q

q − e−ω q t‖Ttu− Ttû‖q
q

]
‖u− û‖$

q

=
[
−
∫ t

0

d
ds

(
e−ω q s‖Tsu− Tsû‖q

q
)

ds
]
‖u− û‖$

q

=
[
q
∫ t

0
e−ω q s(〈(Tsu− Tsû)q, A◦Tsu− A◦Tsû〉

+ ω ‖Tsu− Tsû‖q
q
)
ds
]
‖u− û‖$

q

≥ q
∫ t

0
e−ω (q+$) s

[
〈(Tsu− Tsû)q, A◦Tsu− A◦Tsû〉

+ ω ‖Tsu− Tsû‖q
q

]
‖Tsu− Tsû‖$

q ds
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≥ q
C

∫ t

0
e−ω (q+$) s‖Tsu− Tsû‖σ

r ds

≥ q
C

(∫ t

0
e−ω (q+$) s e−ω(t−s)σ ds

)
‖Ttu− Ttû‖σ

r .

≥ q
C

(∫ t

0
e−ω (q+$) s e−ωtσ ds

)
‖Ttu− Ttû‖σ

r .

≥ q
C′

t e−ω(q+$+σ) t ‖Ttu− Ttû‖σ
r ,

showing that inequality (1.13) holds for u, û ∈ D(A).
Now, let u, û ∈ D(A)Lq

. Then, there are sequences (un) and (ûn) in D(A) such
that un converges to u and ûn converges to û in Lq(Σ, µ). Since the semigroup
{Tt}t≥0 has exponential growth (2.30) for q̃ = q, for every t ≥ 0, the sequence
Sn(t) := Ttun − Ttûn converges to S(t) := Ttu− Ttû in Lq(Σ, µ). Moreover, by
the first step of this proof, inequality (1.13) implies that

‖Sn(t)‖r ≤
(

C
q

)1/σ
t−α eω

q+$+σ
σ t ‖un − ûn‖

q+$
σ

q

for every n. Since the Lr-norm is lower semicontinuous on Lq(Σ, µ), sending
n→ ∞ in the previous inequality yields S(t) ∈ Lr(Σ, µ) and

‖S(t)‖r ≤
(

C
q

)1/σ
t−α eω

q+$+σ
σ t ‖u− û‖

q+$
σ

q .

Therefore inequality (1.13) holds for every u, û ∈ D(A)Lq
, completing the proof

of Theorem 3.3 for q > 1. �

Our second proof of Theorem 3.3 is rather technical and uses the definition of
mild solutions (cf. [92] in the case ω = $ = 1).

Second proof of Theorem 3.3. Let u, û ∈ D(A)Lq
. For given t > 0, we choose N ≥ 1

large enough such that ω q t
N < 1

2 and set tn = n t
N for every n = 0, . . . , N, u0 = u

and û0 = û. By hypothesis, Rg(I + λ
1−λω A) = Lq(Σ, µ) for every 0 < λ < 1

ω .
Thus, there are u1, û1 ∈ D(A) solving u1 +

t
N Au1 3 u0 and û1 +

t
N Aû1 3 û0.

Iteratively, for every n = 1, . . . , N, there are solutions un and ûn ∈ D(A) of

(3.4) un +
t
N Aun 3 un−1 and ûn +

t
N Aûn 3 ûn−1,

respectively. We set

UN(s) = u01{t0=0}(s) +
N

∑
n=1

un 1(tn−1,tn](s)

and

ÛN(s) = û01{t0=0}(s) +
N

∑
n=1

ûn 1(tn−1,tn](s)

for every s ∈ [0, t]. Further, for vn = (un−1 − un)
N
t and v̂n = (ûn−1 − ûn)

N
t , both

inclusions in (3.4) can be rewritten as vn ∈ Aun and v̂n ∈ Aûn, or as Jt/Nun−1 =
un and Jt/N ûn−1 = ûn for every n = 1, . . . , N. Hence by Gagliardo-Nirenberg
type inequalities (1.12), (2.11) and (2.10), we see that

‖un − ûn‖σ
r
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≤ C
(
[un − ûn, vn − v̂n]q + ω‖un − ûn‖q

q

)
‖un − ûn‖$

q

= C N
t

(
[un − ûn, (un−1 − un)− (ûn−1 − ûn)]q +

ω t
N ‖un − ûn‖q

q

)
‖un − ûn‖$

q

= C N
t

(
[un − ûn, (un−1 − ûn−1)− (un − ûn)]q +

ω t
N ‖un − ûn‖q

q

)
‖un − ûn‖$

q

≤ C N
t

(
1
q‖un−1 − ûn−1‖

q
q − (1− ω q t

N ) 1
q‖un − ûn‖q

q

)
‖un − ûn‖$

q

for every n = 1, . . . , N. By assumption, Jt/N satisfies inequality (2.29) for q̃ = q.
Hence

‖un − ûn‖q = ‖Jt/Nun−1 − Jt/N ûn−1‖q

≤ (1− tω
N )−1 ‖un−1 − ûn−1‖q

...

≤ (1− tω
N )−n‖u0 − û0‖q

≤ (1− tω
N )−N‖u0 − û0‖q

Using this in order to estimate the term ‖un − ûn‖$
q in the previous inequality

and multiplying the resulting inequality by t
N (1− ω q t

N )−1 yields

t
N (1− ω q t

N )−1‖un − ûn‖σ
r

≤ C
(
(1− ω q t

N )−1 1
q‖un−1 − ûn−1‖

q
q − 1

q‖un − ûn‖q
q

)
× (1− tω

N )−N$‖u0 − û0‖$
q .

Rearranging the last inequality gives

1
q‖un − ûn‖q

q ≤ (1− ω q t
N )−1 1

q‖un−1 − ûn−1‖
q
q + bn

for every n = 1, . . . , N, where we set

(3.5) bn := − t
N (1− ω q t

N )−1 ‖un − ûn‖σ
r C−1 (1− tω

N )N$ ‖u0 − û0‖−$
q .

It is easy to see that

(3.6)


for sequences (λn) ⊆ [0, ∞) and (an), (bn) ⊆ R satisfying
an ≤ λnan−1 + bn for all n = 1, . . . , N, one has that

aN ≤ a0

(
N

∏
n=1

λn

)
+

N

∑
n=1

bn

(
N

∏
k=n+1

λn

)

(cf. [15, Exercise E3.8]). Applying this to λn = (1− ω q t
N )−1, an = 1

q‖un − ûn‖q
q

and bn given by (3.5), we obtain

1
q‖un − ûn‖q

q ≤ (1− ω q t
N )−N 1

q‖u0 − û0‖q
q +

N

∑
n=1

(1− ω q t
N )−(N−(n+1))bn.

Using that (1− ω q t
N )n ≤ (1− ω q t

N )N and rearranging this inequality yields

(1− ω q t
N )N 1

q‖un − ûn‖q
q
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+ C−1 (1− tω
N )N$ ‖u0 − û0‖−$

q (1− ω q t
N )N

N

∑
n=1

t
N‖un − ûn‖σ

r

≤ 1
q‖u0 − û0‖q

q

so that

(1− ω q t
N )N 1

q‖UN(t)− ÛN(t)‖q
q

+ C−1 (1− tω
N )N$ ‖u− û‖−$

q (1− ω q t
N )N

∫ t

0
‖UN(s)− ÛN(s)‖σ

r ds

≤ 1
q‖u− û‖q

q

By the Crandall-Liggett theorem,

lim
N→∞

UN = Ttu in Lq(Σ, µ) and lim
N→∞

ÛN = Ttû in Lq(Σ, µ)

respectively uniformly on [0, t]. Thus, sending N → ∞ in the previous estimate
and using the lower semicontinuity of the Lr-norm on Lq(Σ, µ) yields

e−ω q t 1
q‖Ttu− Ttû‖q

q + C−1 e−ω $ t ‖u− û‖−$
q e−ω q t

∫ t

0
‖Tsu− Tsû‖σ

r ds

≤ 1
q‖u− û‖q

q

and so

C−1 e−ω $ t ‖u− û‖−$
q e−ω q t

∫ t

0
‖Tsu− Tsû‖σ

r ds ≤ 1
q‖u− û‖q

q

By assumption, {Tt}t≥0 satisfies (3.3) for q̃ = r from where we can deduce that
(1.13) holds. �

Even for the class of quasi-m-accretive operators A on Lq, there are situations
in which the operator A merely satisfies the Gagliardo-Nirenberg type inequal-
ity (1.11) for some (u0, 0) ∈ A. In this situation, we can state the following result.

Theorem 3.8. Let A+ωI be an m-accretive operator on Lq(Σ, µ) for some 1 ≤ q < ∞
and ω ≥ 0. Suppose A satisfies the Gagliardo-Nirenberg type inequality (1.11) for
parameters 1 ≤ r ≤ ∞, $ ≥ 0, σ > 0 and some (u0, 0) ∈ A satisfying u0 ∈ Lq ∩
Lr(Σ, µ), and the semigroup {Tt}t≥0 ∼ −A on D(A)Lq

has exponential growth (2.30)
for q̃ = r. Then the semigroup {Tt}t≥0 satisfies

( 1.17) ‖Ttu− u0‖r ≤
(

C
q

)1/σ
t−α eωβt ‖u− u0‖γ

q

for every t > 0, u ∈ Lq(Σ, µ) with exponents α = 1
σ , β = γ + 1 and γ = q+$

σ .

We omit the proof of Theorem 3.8 since it proceeds along the lines of the sec-
ond proof of Theorem 3.3.

Analogously, as above, the important case q = 2 and A is quasi m-completely
accretive operator on L2(Σ, µ) follows immediately from Theorem (3.8).

Corollary 3.9. Let A + ωI be m-completely accretive operator on L2(Σ, µ) for some
ω ≥ 0. Suppose there are (u0, 0) ∈ A, 2 < r ≤ ∞, $ ≥ 0, σ > 0 and C > 0 such that

(3.7) ‖u− u0‖σ
r ≤ C

[
[u− u0, v]2 + ω‖u− u0‖2

2

]
‖u− u0‖$

2
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for every (u, v) ∈ A. Then the semigroup {Tt}t≥0 ∼ −A on D(A)L2 satisfies

‖Ttu− u0‖r ≤
(C

2

)1/σ
t−α eωβt ‖u− u0‖γ

2

for every t > 0 and u ∈ D(A)L2 with exponents α = 1
σ , β = γ + 1 and γ = 2+$

σ .

Our third main theorem of this section considers the second class of operators
introduced in Section 2.3. As a matter of fact, many examples show that the
Gagliardo-Nirenberg type inequality (1.11) is not satisfied by a quasi m-accretive
operator A in L1(Σ, µ) with (c-)complete resolvent. But in order to obtain Lq-Lr-
regularisation estimates with 1 ≤ q, r ≤ ∞ for the semigroup {Tt}t≥0 ∼ −A on
D(A)L1 , it turns out that it is sufficient that for some 1 ≤ q ≤ q0 ≤ ∞, the trace

A1∩q0 := A ∩ ((L1 ∩ Lq0(Σ, µ))× (L1 ∩ Lq0(Σ, µ))

of A on L1 ∩ Lq0(Σ, µ) satisfies (1.11). Note that, for 1 ≤ q ≤ q0 ≤ ∞, L1 ∩
Lq0(Σ, µ) injects continuously into Lq(Σ, µ). Hence, then trace A1∩q0 is contained
in the part Aq := A ∩ (Lq × Lq(Σ, µ)) of A in Lq(Σ, µ).

Theorem 3.10. Let A + ωI be m-accretive in L1(Σ, µ) for some ω ≥ 0. Suppose, there
are 1 ≤ q ≤ q0 ≤ ∞, (q < ∞), such that the trace A1∩q0 of A on L1 ∩ Lq0(Σ, µ)
satisfies the range condition

(3.8) L1 ∩ Lq0(Σ, µ) ⊆ Rg(I + (A1∩q0 + ωI)),

and the Gagliardo-Nirenberg type inequality (1.11) for some 1 ≤ r ≤ ∞, $ ≥ 0, σ > 0
and (u0, 0) ∈ A1∩q0 , and for every λ > 0 satisfying λω < 1, the resolvent Jλ of A
satisfies

(3.9) ‖Jλu− u0‖q̃ ≤ (1− λω)−1 ‖u− u0‖q̃

for q̃ = r, every u ∈ Rg(I + λA1∩q0), and for q̃ = q provided $ > 0. Then the
semigroup {Tt}t≥0 ∼ −A on D(A)L1 satisfies inequality (1.17) for every t > 0 and
u ∈ D(A)L1 ∩ Lq0(Σ, µ) with exponents α = 1

σ , β = γ + 1 and γ = q+$
σ .

Remark 3.11. One easily verifies that a similar statement as given in Remark 3.5
holds for accretive operators in L1(Σ, µ). More precisely, for an m-accretive op-
erator A on L1(Σ, µ) satisfying the hypotheses of Theorem 3.10 with ω = 0 and
a Lipschitz continuous mapping F : L1(Σ, µ)→ L1(Σ, µ) with F(0) = 0 and Lip-
schitz constant L > 0, if the trace A1∩q0 of A on L1 ∩ Lq0(Σ, µ) satisfies (3.8) for
ω = 0 and satisfies the Gagliardo-Nirenberg type inequality (1.11) for (u0, 0) and
ω = 0, then A1∩q0 + F satisfies the Gagliardo-Nirenberg type inequality (1.11)
for (u0, 0) and ω = L.

From Theorem 3.10, we can immediately conclude the following result con-
cerning quasi m-accretive operators in L1 with complete resolvent.

Corollary 3.12. Let A + ωI be m-accretive operator in L1(Σ, µ) with complete resol-
vent for some ω ≥ 0. Suppose, there are 1 ≤ q ≤ q0 ≤ ∞, (q < ∞), such that the trace
A1∩q0 of A in L1 ∩ Lq0(Σ, µ) satisfies range condition (3.8) and Gagliardo-Nirenberg
type inequality (1.11) for some 1 ≤ r ≤ ∞, $ ≥ 0, σ > 0 and (0, 0) ∈ A1∩q0 . Then the
semigroup {Tt}t≥0 ∼ −A on D(A)L1 satisfies

(3.10) ‖Ttu‖r ≤
(

C
q

)1/σ
eω(γ+1)t t−α‖u‖γ

q
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for every t > 0 and u ∈ D(A)L1 ∩ Lq0(Σ, µ) with exponents α = 1
σ , β = γ + 1 and

γ = q+$
σ .

Furthermore, by Theorem 3.10, we can deduce the following result concern-
ing m-accretive operators in L1 with c-complete resolvent.

Corollary 3.13. Let A be an m-accretive operator in L1(Σ, µ) with c-complete resol-
vent. Suppose, there are 1 ≤ q ≤ q0 ≤ ∞, (q < ∞), such that the trace A1∩q0 of A
on L1 ∩ Lq0(Σ, µ) satisfies the range condition (3.8) and the Gagliardo-Nirenberg type
inequality (1.11) for some 1 ≤ r ≤ ∞, $ ≥ 0, σ > 0 and c ∈ R with (c, 0) ∈ A1∩q0 .
Then the semigroup {Tt}t≥0 ∼ −A on D(A)L1 satisfies

‖Ttu− c‖r ≤
(

C
q

)1/σ
t−α‖u− c‖γ

q

for every t > 0 and u ∈ D(A)L1 ∩ Lq0(Σ, µ) with exponents α = 1
σ and γ = q+$

σ .

Proof of Theorem 3.10. Let u ∈ D(A)L1 ∩ Lq0(Σ, µ) and for given t > 0, let N ≥ 1
be large enough such that t ω q

N < 1
2 . Then, we set tn = n t

N for every n = 0, . . . , N
and û0 = u. By range condition (3.8), for every n = 1, . . . , N, there is iteratively
a ûn ∈ D(A1∩q0) satisfying

(3.11) ûn +
t
N A1∩q0 ûn 3 ûn−1.

We set

ÛN(s) = û01{t0=0}(s) +
N

∑
n=1

ûn 1(tn−1,tn](s)

for every s ∈ [0, t] and v̂n = (ûn−1− ûn)
N
t . Then, inclusions (3.11) can be rewrit-

ten as v̂n ∈ A1∩q0 ûn or as Jt/N ûn−1 = ûn for every n = 1, . . . , N. Hence, since
A1∩q0 satisfies Gagliardo-Nirenberg type inequalities (1.11) with (u0, 0) ∈ A1∩q0 ,
we see that by using (2.11) and (2.10) that

‖ûn − u0‖σ
r

≤ C
(
[ûn − u0, v̂n]q + ω‖ûn − u0‖q

q

)
‖ûn − u0‖$

q

= C N
t

(
[ûn − u0, ûn−1 − ûn]q +

ω t
N ‖ûn − u0‖q

q

)
‖ûn − u0‖$

q

= C N
t

(
[ûn − u0, (ûn−1 − u0)− (ûn − u0)]q +

ω t
N ‖ûn − u0‖q

q

)
‖ûn − u0‖$

q

≤ C N
t

(
1
q‖ûn−1 − u0‖q

q − (1− ω q t
N ) 1

q‖ûn − u0‖q
q

)
‖ûn − u0‖$

q

for every n = 1, . . . , N. By assumption, the resolvent operator Jt/N of A satisfies
inequality (3.9) for q̃ = q provided $ > 0. Then,

‖ûn − u0‖q = ‖Jt/N ûn−1 − u0‖q

≤ (1− tω
N )−1 ‖ûn−1 − u0‖q

...

≤ (1− tω
N )−n‖û0 − u0‖q

≤ (1− tω
N )−N‖û0 − u0‖q.
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Applying this to the previous inequality, in order to estimate ‖ûn − u0‖$
q and

multiplying the resulting inequality by t
N (1− ω q t

N )−1 yields

t
N (1− ω q t

N )−1‖ûn − u0‖σ
r

≤ C
(
(1− ω q t

N )−1 1
q‖ûn−1 − u0‖q

q − 1
q‖ûn − u0‖q

q

)
× (1− tω

N )−N$‖û0 − u0‖$
q .

Rearranging this inequality yields

1
q‖ûn − u0‖q

q ≤ (1− ω q t
N )−1 1

q‖ûn−1 − u0‖q
q + bn

with

bn := − t
N (1− ω q t

N )−1 ‖ûn − u0‖σ
r C−1 (1− tω

N )N$ ‖û0 − u0‖−$
q .

for every n = 1, . . . , N. By auxiliary inequality (3.6),

1
q‖ûn − u0‖q

q ≤ (1− ω q t
N )−N 1

q‖û0 − u0‖q
q +

N

∑
n=1

(1− ω q t
N )−(N−(n+1))bn.

Rearranging this inequality and using that (1− ω q t
N )n ≤ (1− ω q t

N )N gives

(1− ω q t
N )N 1

q‖ûn − u0‖q
q

+ C−1 (1− tω
N )N$ ‖û0 − u0‖−$

q (1− ω q t
N )N

N

∑
n=1

t
N‖ûn − u0‖σ

r

≤ 1
q‖û0 − u0‖q

q

and so,

(1− ω q t
N )N 1

q‖ÛN(t)− u0‖q
q

+ C−1 (1− tω
N )N$ ‖u− u0‖−$

q (1− ω q t
N )N

∫ t

0
‖ÛN(s)− u0‖σ

r ds

≤ 1
q‖u− u0‖q

q.

(3.12)

Recall that A1∩q0 ⊆ A and, by assumption, A + ωI is m-accretive in L1(Σ, µ).
Thus, the Crandall-Liggett theorem yields

lim
N→∞

ÛN = Ttu in L1(Σ, µ) uniformly on [0, t].

Since the Lr- and Lq-norm on L1(Σ, µ) are lower semicontinuous in L1(Σ, µ),
sending N → ∞ in (3.12) and applying Fatou’s Lemma yields

e−ω q t 1
q‖Ttu− u0‖q

q + C−1 e−ω $ t ‖u− u0‖−$
q e−ω q t

∫ t

0
‖Tsu− u0‖σ

r ds

≤ 1
q‖u− u0‖q

q

and so

(3.13) C−1 e−ω $ t ‖u− u0‖−$
q e−ω q t

∫ t

0
‖Tsu− u0‖σ

r ds ≤ 1
q‖u− u0‖q

q.
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Now, fix ũ ∈ D(A)L1 ∩ Lr(Σ, µ). Then, applying (3.9) iteratively for q̃ = r, we
see that

‖Jn
t/nũ− u0‖r = ‖Jn−1

t/n (Jt/nũ)− u0‖r

≤ (1− tω
n )−1 ‖Jn−1

t/n ũ− u0‖r

...

≤ (1− tω
n )−n‖ũ− u0‖r

(3.14)

for every t > 0 and integer n ≥ 1 such that t
n ω < 1. By Euler’s formula (2.23)

and since ũ ∈ D(A)L1 ,

lim
n→∞

Jn
t/nũ = Ttũ in L1(Σ, µ)

for every t > 0. Since the Lr-norm is lower semicontinuous on L1(Σ, µ), sending
n→ ∞ in (3.14) yields

‖Ttũ− u0‖r ≤ eωt‖ũ− u0‖r

for every t > 0 hence, by using the semigroup property of {Tt}t≥0, it follows
that

‖Ttũ− u0‖r ≤ eω(t−s)‖Tsũ− u0‖r

for every t ≥ s > 0 and ũ ∈ D(A)L1 ∩ Lr(Σ, µ). Applying this inequality to the
integrand in (3.13), we see that (1.17) holds. �

4. NONLINEAR EXTRAPOLATION

The aim of this section is to provide simple and sufficient conditions such
that an Lq-Lr-regularisation estimate of the type (1.13) or (1.17) for some 1 < q <
r ≤ ∞ satisfied by a nonlinear semigroup {Tt}t≥0 can be extrapolated to an Ls-
Lr-regularisation estimate for every 1 ≤ s < q (this we call below extrapolation
towards L1) and such that an Lq-Lr-regularity estimate of the type (1.13) or (1.17)
for some 1 < q, r < ∞ can be extrapolated to an Lq̃-L∞-regularisation estimate
for some 1 ≤ q̃ < ∞ (extrapolation towards L∞). We note that in order to extrapo-
late towards L∞, the relation r > q is not important, but one rather needs that the
relation γr > q holds for the exponent γ > 0 in the estimates (1.13) and (1.17)
(cf. Theorems 1.2 and 1.4 or Theorems 4.10 and 4.13). Further, the iteration
method (Lemma 4.12 and Lemma 4.14) used to establish Lq̃-L∞-regularisation
works if 1 ≤ q̃ < ∞ is chosen sufficiently large. Thus, if one starts from an Lq-Lr-
regularity estimate for some 1 < q, r < ∞ then, first, one extrapolates towards
L∞, and then one extrapolates towards L1.

The extrapolation towards L∞ being more involved, we shall begin in Section
4.1 by extrapolating towards L1, or, more precisely, towards Ls for any 1 ≤ s < q.
Section 4.2 is concerned with a new nonlinear interpolation result which pro-
vides the fundamental auxiliary tool to establish our extrapolation result towards
L∞ presented in Section 4.3.
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4.1. Extrapolation towards L1. This subsection is dedicated to giving a nonlin-
ear version of [35, Lemme 1] (see also [36, Section I]). The first extrapolation
result of this subsection is adapted to semigroups generated by completely ac-
cretive operators (see Section 2.2) satisfying the Lq-Lr-regularising effect (1.13)
for differences and 1 < q < r ≤ ∞.

Theorem 4.1. Let 1 ≤ s < q < r ≤ ∞ and {Tt}t≥0 be a semigroup acting on
some subset D of Lq(Σ, µ) with exponential growth (2.30) for q̃ = s and some ω ≥ 0.
Suppose there exist α > 0, β, γ > 0 and C > 0 such that

(1.13) ‖Ttu− Ttû‖r ≤ C t−α eωβt ‖u− û‖γ
q

for every t > 0 and u, û ∈ D. For θs = (r−q)s
q(r−s) > 0 if r < ∞ and θs = s

q if r = ∞,
assume that

(4.1) γ(1− θs) < 1.

Then one has

(4.2) ‖Ttu− Ttû‖r ≤ (C 2
α

1−γ(1−θs) )
1

1−γ(1−θs) t−αs eωβst‖u− û‖γs
s

for every t > 0 and u, û ∈ D ∩ Ls(Σ, µ) with exponents

(4.3) αs =
α

1− γ(1− θs)
, βs =

(β/2) + γ θs

1− γ(1− θs)
, γs = γ

θs

1− γ(1− θs)
.

Remark 4.2. The statement of Theorem 4.1 remains unchanged if one replaces
the constant eωt in condition (2.30) for q̃ = s by M eωt for some constant M > 0.
Then the constant C in (4.2) has to be changed accordingly.

Proof of Theorem 4.1. We outline the proof only for r < ∞ since the case r = ∞
is treated similarly. Then, set θs = (r−q)s

q(r−s) and assume that (4.1) holds. For θ :=
1− γ(1− θs), u, û ∈ Ls(Σ, µ) ∩ D satisfying u 6= û and T > 0, set

Cu,û,T := sup
t∈[0,T]

tα/θ‖Ttu− Ttû‖r

eωγst ‖u− û‖γs
s

.

By (1.13) and since θs satisfies 1
q = (1−θs)

r + θs
s , Hölder’s inequality imply

‖Ttu− Ttû‖r ≤ C eωβ t
2
( t

2

)−α ‖Tt/2u− Tt/2û‖γ
q

≤ C eωβ t
2
( t

2

)−α ‖Tt/2u− Tt/2û‖γ(1−θs)
r ‖Tt/2u− Tt/2û‖γθs

s

Since {Tt}t≥0 satisfies (2.30) for q̃ = s and some ω ≥ 0,

‖Ttu− Ttû‖r ≤ C eω(β+γθs)
t
2
( t

2

)−α ‖Tt/2u− Tt/2û‖γ(1−θs)
r ‖u− û‖γθs

s

and so by definition of Cu,û,T,

‖Ttu− Ttû‖r ≤ C eω(β+γθs+γsγ(1−θs))
t
2
( t

2

)−α−α
γ(1−θs)

θ Cγ(1−θs)
u,û,T ‖u− û‖γ(θs+γ0(1−θs))

s

for every t ∈ [0, 2T]. Since γθs + γsγ(1 − θs) = γs and 1 + γ(1−θs)
θ = 1

θ , the
previous estimate becomes

‖Ttu− Ttû‖r ≤ C eω(β+γs)
t
2 2

α
θ t−

α
θ Cγ(1−θs)

u,û,T ‖u− û‖γs
s

and so
‖Ttu− Ttû‖r ≤ C eωβ t

2 2
α
θ Cγ(1−θs)

u,û,T eωγst t−
α
θ ‖u− û‖γs

s
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for every t ∈ [0, T]. Dividing this inequality by eωγst t−
α
θ ‖u− û‖γs

s and taking
the supremum over [0, T] on the left hand-side of the resulting inequality yields

Cu,û,T ≤ C eωβ T
2 2

α
θ Cγ(1−θs)

u,û,T .

Since γ(1 − θs) < 1, this implies that Cu,û,T is uniformly bounded in u, û by
constant (C 2

α
θ )

1
θ eω

β
θ

T
2 > 0 with θ = 1− γ(1− θs). In other words,

‖Ttu− Ttû‖r ≤ (C 2
α
θ )

1
θ eω

β
θ

T
2 eωγst t−

α
θ ‖u− û‖γs

s

for every t ∈ [0, T] and u, û ∈ D ∩ Ls(Σ, µ), where T > 0 was arbitrary. Taking
t = T in this inequality, we can conclude that inequality (4.2) holds for every
t > 0 and u, û ∈ D ∩ Ls(Σ, µ). �

Our second extrapolation result of this subsection is adapted to semigroups
enjoying the Lq-Lr-regularising effect (1.17) for 1 < q < r ≤ ∞ and some
u0 ∈ Lr ∩ Ls(Σ, µ) generated by either quasi m-completely accretive operators
on Lq(Σ, µ) (Section 2.2) or quasi m-accretive operators in L1 with (c-)complete
resolvent (Section 2.3).

Theorem 4.3. Let 1 ≤ s < q < r ≤ ∞ and {Tt}t≥0 be a semigroup acting on a subset
D of Lq(Σ, µ) and satisfies the exponential growth property (2.32) for q̃ = s, some
ω ≥ 0 and u0 ∈ Ls ∩ Lr(Σ, µ), {Tt}t≥0. Suppose there exist C > 0 and exponents
α > 0, β, γ > 0 such that

(1.17) ‖Ttu− u0‖r ≤ C t−α eωβt ‖u− u0‖γ
q

for every t > 0 and u ∈ D. For θs =
(r−q)s
q(r−s) > 0 if r < ∞ and θs =

s
q if r = ∞, assume

that γ(1− θs) < 1. Then one has

(4.4) ‖Ttu− u0‖r ≤ (C 2
α

1−γ(1−θs) )
1

1−γ(1−θs) t−αs eωβst ‖u− u0‖γs
s

for every t > 0 and u ∈ D ∩ Lq0(Σ, µ) with exponents (4.3).

Proof of Theorem 4.3. By using the same arguments as outlined in the proof of
Theorem 4.1, where one replaces û and Ttû by u0 and condition (2.30) by (2.32),
one sees that the statement of Theorem 4.3 holds. �

We continue this section by establishing a new nonlinear interpolation theo-
rem of independent interest.

4.2. A nonlinear interpolation theorem. In this subsection, we state our non-
linear interpolation theorem, which generalises both Peetre’s ([77, Theorem 3.1])
and Tartar’s (cf. [85, Théorème 4]) nonlinear interpolation results. Our non-
linear interpolation theorem complements the existing literature in three ways,
namely, by introducing additional parameters p0, r0, r1, by treating the border-
line cases p0 = ∞, p1 < ∞ and p0 < ∞, p1 = ∞, and by giving exact constants.

We begin by recalling some basic definitions, notations and results from the
classical interpolation theory (cf., for instance, [78] or [27, Chapter 3]). Let X0
and X1 be two real or complex Banach spaces such that both are continuously
embedded into a Hausdorff topological vector space X . A pair {X0, X1} of Ba-
nach spaces X0 and X1 satisfying these conditions is called an interpolation couple.
We equip the intersection space X0 ∩ X1 and the sum space

X0 + X1 :=
{

x
∣∣∣ there are x0 ∈ X0, x1 ∈ X1 s.t. x = x0 + x1

}
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respectively with the norm ‖x‖X0∩X1 := max{‖x‖X0 , ‖x‖X1} and

‖x‖X0+x1 := inf
{
‖x0‖X0 + ‖x1‖X1

∣∣∣ x = x0 + x1, x0 ∈ X0, x1 ∈ X1

}
.

Then X0 ∩ X1 and X0 + X1 are Banach spaces and

(4.5) X0 ∩ X1 ↪→ Z ↪→ X0 + X1

for Z = X0 and Z = X1 each with linear continuous embeddings (cf. [27, Propo-
sition 3.2.1]). A Banach space Z satisfying (4.5) is called an intermediate space (of
X0 and X1).

For any Banach space X equipped with norm ‖·‖X and for every 1 ≤ q ≤ ∞,
we denote by Lq

∗(X) the Banach space of all (classes of) strongly dt/t-measurable
functions f : (0, ∞)→ X having finite norm

‖ f ‖Lq
∗(X) :=


{ ∫ ∞

0
‖ f (t)‖q

X
dt
t

}1/q

if 1 ≤ q < ∞,

ess sup
t∈(0,∞)

‖ f (t)‖X if q = ∞.

We shall make use of the so-called mean-method, which was introduced by J.-L.
Lions and Peetre ([65, 66]) and further elaborated, for instance, in [76, 61].

We begin by introducing the mean spaces (espaces de moyennes). Let (X0, X1) be
an interpolation couple. Then for every 0 < θ < 1 and 1 ≤ p0, p1 ≤ ∞, the mean
space (X0, X1)θ,p0,p1 is defined by the space of all elements u ∈ X0 + X1 with the
property

(4.6)


for i = 0, 1, there is a measurable function vi : (0, ∞)→ Xi

satisfying u = v0(t) + v1(t) in X0 + X1 for a.e. t ∈ (0, ∞),
t−θv0 ∈ Lp0

∗ (X0) and t1−θv1 ∈ Lp1
∗ (X1).

We equip the mean space (X0, X1)θ,p0,p1 with the norm

‖u‖θ,p0,p1 := inf
a=v0(t)+v1(t)

max
{
‖t−θv0‖Lp0

∗ (X0)
, ‖t1−θv1‖Lp1∗ (X1)

}
,

where the infimum is taken of all representation pairs (v0, v1) satisfying (4.6).
Then, it is not difficult to see that each mean space (X0, X1)θ,p0,p1 is an inter-
mediate space (cf. [65, p. 9]). Moreover, the spaces (X0, X1)θ,p0,p1 admits the
so-called interpolation property (cf. [88, p. 63]), that is, for every linear mapping
T : X0 + X1 → X0 + X1 such that its restriction to Xi yields a linear and bounded
operator from Xi into itself, where i = 0, 1, one has that the restriction of T to
(X0, X1)θ,p0,p1 Xi yields a linear and bounded operator from (X0, X1)θ,p0,p1 into
itself ([65, Théorème (3.1)]). In particular, one has

(4.7) ‖u‖θ,p0,p1 = inf
a=v0(t)+v1(t)

‖t−θv0‖1−θ

Lp0
∗ (X0)

‖t1−θv1‖θ
Lp1∗ (X1)

,

for every u ∈ (X0, X1)θ,p0,p1 , where the infimum is taken of all representation
pairs (v0, v1) satisfying (4.6) (cf. [65, Lemme (3.1)]). In addition, the following
continuous embedding is valid.
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Lemma 4.4 ([65, Théorème (5.3)]). Let 0 < θ < 1 and 1 ≤ p0, p1, s0, s1 ≤ ∞. Then
for s0 ≤ p0 and s1 ≤ p1, one has

‖u‖θ,p0,p1 ≤ Cθ,r0,r1 ‖u‖θ,s0,s1

for all u ∈ (X0, X1)θ,s0,s1 , where the constant

Cθ,r0,r1 :=



1 if s0 = p0 and s1 = p1,

inf
ϕ∈D+

‖t−θ ϕ‖1−θ

Lr0
∗ (R)

if s1 = p1

inf
ϕ∈D+

‖t1−θ ϕ‖θ
Lr1∗ (R)

if s0 = p0

inf
ϕ∈D+

‖t−θ ϕ‖1−θ

Lr0
∗ (R)
‖t1−θ ϕ‖θ

Lr1∗ (R)
if otherwise

with 1
r0
= 1−

[
1
s0
− 1

p0

]
and 1

r1
= 1−

[
1
s1
− 1

p1

]
,

(4.8)

and D+ denotes the set of all test functions ϕ ∈ C∞
c ((0, ∞)) satisfying ϕ ≥ 0 and∫ ∞

0 ϕ( 1
t )

dt
t = 1.

Due to the result [76, Théorème 3.1] by Peetre, for every 0 < θ < 1 and 1 ≤
p0, p1, p ≤ ∞ satisfying 1

p = 1−θ
p0

+ θ
p1

, the mean space (X0, X1)θ,p0,p1 coincides
with the (classical) real interpolation space (X0, X1)θ,p with equivalent norms. For
the definition of the interpolation space (X0, X1)θ,p we refer, for instance, to [27,
Definition 3.2.4]. Combining this together with the density result [87, Theo-
rem 1.6.2], we can state the following extended version of the density result [65,
Théorème 2.1].

Lemma 4.5. Let (X0, X1) be an interpolation couple and suppose that one of the follow-
ing cases holds:

(i) 1 ≤ p0, p1 < ∞
(ii) 1 ≤ p0 < ∞ and p1 = ∞

(iii) 1 ≤ p1 < ∞ and p0 = ∞.
Then, for every 0 < θ < 1, the intersection space X1 ∩ X2 is dense in (X0, X1)θ,p0,p1 .

Now, we are in a position to state our first nonlinear interpolation theorem.

Theorem 4.6. Let (X0, X1) and (Y0, Y1) be two interpolation couples and T be a map-
ping from X0 + X1 into Y0 + Y1 with domain containing X0 ∩ X1. Suppose there are
exponents 0 < α0, α1 < ∞ and constants M0, M1 ≥ 0 such that

(4.9) ‖Tu− Tû‖Y0 ≤ M0 ‖u− û‖α0
X0

for all u, û ∈ X0 ∩ X1 and

(4.10) ‖Tu− Tû‖Y1 ≤ M1 ‖u− û‖α1
X1

for all u, û ∈ X0 ∩ X1. For every 0 < θ < 1 and 1 ≤ q0, q1 ≤ ∞ (excluding
q0 = q1 = ∞) satisfying q0 ≥ 1

α0
and q1 ≥ 1

α1
, let 1 ≤ q, p0, p1 ≤ ∞, 0 < η < 1,

0 < α < ∞ be given by

(4.11)
1
q = 1−θ

q0
+ θ

q1
, p0 = α0q0, p1 = α1q1,

η = θ α1
(1−θ)α0+θα1

, α = (1− θ)α0 + θα1

and let 1 ≤ s0 ≤ p0 and 1 ≤ s1 ≤ p1. Then the following statements hold.
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(1) One has

(4.12) ‖Tu− Tû‖(Y0,Y1)θ,q0,q1
≤
(

η α0
θ

) 1
q

M1−θ
0 Mθ

1 Cα
η,r0,r1
‖u− û‖α

(X0,X1)η,s0,s1

for every u, û ∈ X0 ∩ X1, where the constant Cη,r0,r1 is given by (4.8).
(2) If there is a u0 ∈ X0∩X1 such that Tu0 ∈ (Y0, Y1)θ,q0,q1 , then T can be uniquely

extended to a mapping T : (X0, X1)η,s0,s1 → (Y0, Y1)θ,q0,q1 satisfying inequal-
ity (4.12) for all u, û ∈ (X0, X1)η,s0,s1 .

By using the preliminaries of this subsection, we can now outline the proof of
this nonlinear interpolation theorem.

Proof of Theorem 4.6. First, we fix û ∈ X0 ∩ X1 and show that

(4.13) ‖T(u + û)− Tû‖(Y0,Y1)θ,q0,q1
≤
(

η α0
θ

) 1
q

M1−θ
0 Mθ

1 ‖u‖α
(X0,X1)η,p0,p1

for all u ∈ X0 ∩ X1. To do so, let u ∈ X0 ∩ X1. Since X0 ∩ X1 is continuously
injected into (X0, X1)η,p0,p1 , there is a pair (v0, v1) of measurable functions satis-
fying (4.6). Since u ∈ X0 ∩ X1 and u = v0 + v1, it follows that vi(t) ∈ X0 ∩ X1 for
a.e. t ∈ (0, ∞) and every i = 0, 1. For λ := θ

η α0
> 0, we set

w0(t) = T(v0(tλ) + û)− Tû and w1(t) = T(u + û)− Tû− w0(t)

for a.e. t ∈ (0, ∞). Then, T(u + û) − Tû = w0(t) + w1(t) for a.e. t ∈ (0, ∞),
and by using (4.9) and (4.10), one sees that the functions wi : (0, ∞) → Yi are
measurable and satisfy

(4.14) ‖wi(t)‖Yi ≤ Mi ‖vi(tλ)‖αi
Xi

for a.e. t ∈ (0, ∞) and each i = 0, 1. Since we have chosen λ = θ
η α0

and p0 =

q0α0, we obtain by applying inequality (4.14) and substituting s = tλ that

‖t−θw0‖Lq0
∗ (Y0)

≤ M0

(
η α0

θ

) 1
q0 ‖s−ηv0‖α0

Lp0 (X0)
.

On the other hand, η = θ α1
(1−θ)α0+θα1

is equivalent to 1−η
η = (1−θ)α0

θα1
hence λ =

1−θ
(1−η)α1

. Using this together with inequality (4.14), the fact that p1 = q1α1, and

applying the substitution s = tλ, we see that

‖t1−θw1‖Lq1∗ (Y1)
≤ M1

(
η α0

θ

) 1
q1 ‖s1−ηv1‖α1

Lp1 (X1)
.

Thus T(u + û)− Tû ∈ (Y1, Y2)θ,q0,q1 . Combining the last two estimates together
with (4.7) yields

‖T(u + û)− Tû‖(Y0,Y1)θ,q0,q1

≤ M1−θ
0 Mθ

1

(
η α0

θ

) 1
q ‖s−ηv0‖(1−θ)α0

Lp0 (X0)
‖s1−ηv1‖θα1

Lp1 (X1)

≤ M1−θ
0 Mθ

1

(
η α0

θ

) 1
q

max
{
‖s−ηv0‖Lp0 (X0), ‖s

1−ηv1‖Lp1 (X1)

}α
.
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Taking the infimum over all representation pairs (v0, v1) satisfying (4.6) shows
that inequality (4.13) holds. Now, for every u, û ∈ X0 ∩ X1, replacing u by u−
û ∈ X0 ∩ X1 in (4.13) gives

(4.15) ‖Tu− Tû‖(Y0,Y1)θ,q0,q1
≤
(

η α0
θ

) 1
q

M1−θ
0 Mθ

1 ‖u− û‖α
(X0,X1)η,p0,p1

for all u, û ∈ X0 ∩ X1. Applying Lemma 4.4 yields inequality (4.12) for every u,
û ∈ X0 ∩ X1, proving that the first statement of this theorem holds.

Under the assumption, there is a u0 ∈ X0 ∩ X1 such that Tu0 ∈ (Y0, Y1)θ,q0,q1 ,
inequality (4.12) implies that the mapping T maps X0 ∩ X1 equipped with the
(X0, X1)η,p0,p1-norm into (Y0, Y1)θ,q0,q1 . Thus by Lemma (4.5) and since the spaces
(X0, X1)η,p0,p1 and (Y0, Y1)θ,q0,q1 are complete, we can conclude that T admits a
unique Hölder-continuous extension from (X0, X1)η,p0,p1 to (Y0, Y1)θ,q0,q1 satisfy-
ing (4.15) for all u, û ∈ (X0, X1)η,p0,p1 . This completes the proof of this theo-
rem. �

In our second nonlinear interpolation theorem, we consider the situation when
the mapping T admits an element u0 ∈ X0 ∩ X1 such that Tu0 ∈ Y0 ∩Y1.

Theorem 4.7. Let (X0, X1) and (Y0, Y1) be two interpolation couples and T a mapping
from X0 + X1 into Y0 + Y1 with domain containing X0 ∩ X1. Suppose T is continuous
from X0 ∩ X1 equipped with the X0-norm to Y0 and there are u0 ∈ X0 ∩ X1 satisfying
Tu0 ∈ Y0 ∩Y1, exponents 0 < α0, α1 < ∞, and constants M0, M1 ≥ 0 such that

(4.16) ‖Tu− Tu0‖Y0 ≤ M0 ‖u− u0‖α0
X0

for all u ∈ X0 ∩ X1

and

(4.17) ‖Tu− Tû‖Y1 ≤ M1 ‖u− û‖α1
X1

for all u, û ∈ X0 ∩ X1.

For every 0 < θ < 1 and 1 ≤ q0, q1 ≤ ∞ (excluding q0 = q1 = ∞) satisfying q0 ≥ 1
α0

and q1 ≥ 1
α1

, let 1 ≤ q, p0, p1 ≤ ∞, 0 < η < 1, 0 < α < ∞ given by (4.11), and let
1 ≤ s0 ≤ p0 and 1 ≤ s1 ≤ p1. Then one has

(4.18) ‖Tu− Tu0‖(Y0,Y1)θ,q0,q1
≤
(

η α0
θ

) 1
q

M1−θ
0 Mθ

1 Cα
η,r0,r1
‖u− u0‖α

(X0,X1)η,s0,s1

for every u ∈ X0 ∩ X1, where the constant Cη,r0,r1 is given by (4.8).

Proof of Theorem 4.7. Let u ∈ X0 ∩ X1. Since X0 ∩ X1 is continuously injected
into (X0, X1)η,p0,p1 , there are measurable functions vi : (0, ∞) → Xi for i = 0, 1
satisfying u− u0 = v0(t) + v1(t) in X0 + X1 for a.e. t ∈ (0, ∞),

(4.19) t−θv0 ∈ Lp0
∗ (X0) and t1−θv1 ∈ Lp1

∗ (X1).

For λ := θ
η α0

> 0, we set

w0(t) = T(v0(tλ) + u0)− Tu0 and w1(t) = Tu− Tu0 − w0(t)

for a.e. t ∈ (0, ∞). By construction, Tu− Tu0 = w0(t) + w1(t) for a.e. t ∈ (0, ∞).
Since by assumption, T is continuous from X0 ∩ X1 equipped with the X0-norm
to Y0, the function w0 : (0, ∞) → Y0 is strongly measurable. By (4.10), T is
Hölder-continuous from X0 ∩ X1 equipped with the X1-norm to Y1. Thus, the
function w1 : (0, ∞)→ Y1 is strongly measurable. Moreover, by (4.16) and (4.17),
we have that the inequalities (4.14) hold for i = 0, 1. Now, we can proceed
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as in the proof of Theorem 4.6 to conclude that inequality (4.18) holds for all
u ∈ X0 ∩ X1. �

In some applications, the assumption that the mapping T is continuous from
X0 ∩ X1 equipped with the X0-norm topology to Y0 in Theorem 4.7 is too strong.
This can be circumvented, for instance, by the following result.

Theorem 4.8. Let (X0, X1) and (Y0, Y1) be two interpolation couples, Y0 being a sep-
arable Banach space. Let T be a mapping from X0 + X1 into Y0 + Y1 with domain
containing X0 ∩ X1. Suppose there is some u0 ∈ X0 ∩ X1 such that Tu0 ∈ Y0 ∩Y1 and
T satisfies the following three conditions.

• T is continuous from X0 ∩ X1 equipped with the X0-norm to Y0 equipped with
the weak topology,
• there are exponents 0 < α0, α1 < ∞ and constants M0, M1 ≥ 0 such that T

satisfies (4.16) and (4.17).
For every 0 < θ < 1 and 1 ≤ q0, q1 ≤ ∞ (excluding q0 = q1 = ∞) satisfying
q0 ≥ 1

α0
and q1 ≥ 1

α1
, let 1 ≤ q, p0, p1 ≤ ∞, 0 < η < 1, 0 < α < ∞ given by (4.11),

and let 1 ≤ s0 ≤ p0 and 1 ≤ s1 ≤ p1. Then T satisfies inequality (4.18) for every
u ∈ X0 ∩ X1, where the constant Cη,r0,r1 is given by (4.8).

Remark 4.9. Consider the following situation: For 1 ≤ q, r < ∞, let X0 =
Lq(Σ, µ), X1 = L∞(Σ, µ), Y0 = Lr(Σ, µ) and Y1 = L∞(Σ, µ), where one assumes
that (Σ, µ) is a separable measure space (cf, [25, Definition on p.98]). Suppose T
satisfy the assumptions of Theorem 4.8 and we choose

q0 = r, q1 = ∞, p0 = β q0 = β r > q ≥ 1,
p1 = q1 = ∞, s0 = q < β r = p0, s1 = ∞.

Then, by Corollary B.2,

(X0, X1)η,s0,s1 = L
q

(1−η) (Σ, µ) and (Y0, Y1)θ,q0,q1 = L
r

(1−θ) (Σ, µ)

with equal norms for every 0 < θ, η < 1 and so Theorem 4.8 yields

‖Tu− u0‖ r
1−θ

≤
[

β
(1−θ)β+θ

] 1−θ
r

M1−θ
0 Mθ

1 C(1−θ)β+θ
η,r0,1 ‖u− u0‖(1−θ)β+θ

q
1−η(θ)

(4.20)

for every u ∈ Lq(Σ, µ) ∩ L∞(Σ, µ) and every 0 < θ < 1, where r0 = q β r
βr(q−1)+q . In

addition, to the above assumptions, we suppose

T is continuous from L
q

1−η(θ) (Σ, µ) to L
q

1−η(θ) (Σ, µ).

Since Lq(Σ, µ) ∩ L∞(Σ, µ) is dense in L
q

1−η(θ) (Σ, µ), for every u ∈ L
q

1−η(θ) (Σ, µ),
there is a sequence (un) in Lq(Σ, µ) ∩ L∞(Σ, µ) such that un converges to u in

L
q

1−η(θ) (Σ, µ) and so Tun converges to Tu in L
q

1−η(θ) (Σ, µ). By (4.20), (Tun) is
bounded in L

r
1−θ (Σ, µ) and hence, after eventually passing to a subsequence of

(un), we may assume that Tun converges weakly to v in L
r

1−θ (Σ, µ) for some

v ∈ L
r

1−θ (Σ, µ). Since L
q

1−η(θ) (Σ, µ) and L
r

1−θ (Σ, µ) are both continuously embed-
ded into Lm

loc(Σ, µ), with m := min{ q
1−η(θ)

, r
1−θ}, we obtain v = Tu a.e. on Σ

and so, sending n → ∞ in (4.20) for u = un and using Fatou’s lemma shows

that (4.20) holds for all u ∈ L
q

1−η(θ) (Σ, µ).



44 THIERRY COULHON AND DANIEL HAUER

Proof of Theorem 4.8. Let u ∈ X0 ∩ X1 and for i = 0, 1, let vi : (0, ∞) → Xi
be measurable such that u − u0 = v0(t) + v1(t) in X0 + X1 for a.e. t ∈ (0, ∞)
and (4.19) holds. For λ := θ

η α0
> 0, we set

w0(t) = T(v0(tλ) + u0)− Tu0 and w1(t) = Tu− Tu0 − w0(t)

for a.e. t ∈ (0, ∞). By construction, Tu− Tu0 = w0(t) + w1(t) for a.e. t ∈ (0, ∞).
By assumption, T is continuous from X0 ∩X1 equipped with the X0-norm topol-
ogy to Y0 equipped with the weak-topology. Hence w0 is weakly measurable.
But since by assumption, Y0 is separable, the function w0 : (0, ∞) → Y0 is
strongly measurable due to Pettis’s theorem ([58, Theorem 3.5.3]). By (4.10), T
is Hölder-continuous from X0 ∩ X1 equipped with the X1-norm to Y1. Thus, the
function w1 : (0, ∞)→ Y1 is strongly measurable. Moreover, by (4.16) and (4.17),
we have that the inequalities (4.14) hold for i = 0, 1. Now, we can proceed as in
the proof of Theorem 4.6 and see that the statement of this theorem holds. �

4.3. Extrapolation towards L∞. To the best of our knowledge, first extrapola-
tion results towards L∞ in the context of linear semigroups and employing Riesz-
Thorin’s or Stein’s linear interpolation theorems go back to the pioneering work
[83] by Simon and Høegh-Krohn (see also [44, Theorem 3.3]). An alternative
approach using a duality argument has been given in [35, Lemme 1]. However,
in this article, we are confronted with a much more difficult situation, since the
family of operators {Tt}t≥0 are (in general) nonlinear. Hence neither a duality
argument or a linear Riesz-Thorin interpolation theorem can be used.

Our extrapolation result towards L∞ is a nonlinear generalisation of the tech-
niques developed in [83, 44, 35]. Our proof relies essentially on the nonlinear
interpolation results Theorem 4.6 and Theorem 4.8, as well as the fact that the
mean spaces involving Lp0(Σ, µ) and Lp1(Σ, µ) spaces are isometrically isomor-
phic to an appropriate Lp(Σ, µ) space (cf. Corollary B.2).

Here, we shall use the notation u . v to say that there exists a constant C
(independent of the important parameters) such that u ≤ Cv.

Our first extrapolation result towards L∞ is adapted to semigroups gener-
ated by completely accretive operators (Section 2.2) satisfying the Lq-Lr-regulari-
sation effect (1.13) for differences and 1 ≤ q, r < ∞.

Theorem 4.10. Let 1 ≤ q, r < ∞ and {Tt}t≥0 be a semigroup acting on Lq∩ L∞(Σ, µ).
Suppose {Tt}t≥0 satisfies exponential growth (2.30) for q̃ = ∞ and some ω ≥ 0, and
there exist C > 0 and exponents α, β, γ > 0 such that the estimate

(1.13) ‖Ttu− Ttû‖r ≤
(

C
q

)1/σ
t−α eωβt ‖u− û‖γ

q

holds for every t > 0 and u, û ∈ Lq(Σ, µ) ∩ L∞(Σ, µ). If

(4.21) γ r > q

then

(4.22) ‖Ttu− Ttû‖∞ . t−α∗ eωβ∗t ‖u− û‖γ∗

γ r q−1 m0



REGULARISATION EFFECTS OF NONLINEAR SEMIGROUPS 45

for every t > 0 and u, û ∈ Lγ r q−1 m0(Σ, µ), with exponents

(4.23)
α∗ =

α q γ−1

(γ r
q − 1)m0 + q( 1

γ − 1)
, γ∗ =

(γ r
q − 1)m0

(γ r
q − 1)m0 + q( 1

γ − 1)
,

β∗ =
(β− 1)γ r q−1 + γ− β

(γ r
q − 1)m0 + q( 1

γ − 1)
+ 1,

and m0 ≥ q γ−1 such that

(4.24) (γ r
q − 1)m0 + q( 1

γ − 1) > 0.

Remark 4.11. The two conditions (4.21) and (4.24) are heavily involved in the
recursive construction

(4.25) mn+1 = mn κ − r κ−1 (γ− 1), (n ≥ 1),

of a strictly increasing sequence (mn)n≥0 ⊆ (1,+∞) satisfying limn→+∞ mn =
+∞. If one chooses κ by

(4.26) κ =
γ r
q

then condition (4.21) yields κ > 1. If, in addition, m0 satisfies (4.24) then (mn)n≥0
is strictly increasing and limn→+∞ mn = +∞. Inserting the sequence (mn)n≥0
into inequality (4.28) and using the semigroup property of {Tt}t≥0, one obtains
an Lq̃-L∞ regularisation effect of the {Tt}t≥0 for some q̃ = γ r q−1 m0 ∈ [1, ∞).

Proof of Theorem 4.10. We intend to apply Theorem 4.6 to the following situation:
let X0 = Lq(Σ, µ), X1 = L∞(Σ, µ), Y0 = Lr(Σ, µ), Y1 = L∞(Σ, µ), and for any
fixed t > 0, let T = Tt. By assumption, Tt satisfies (1.13) and has exponen-
tial growth (2.30) for q̃ = ∞ and some ω ≥ 0. Hence the mapping T satisfies
inequality (4.9) with α0 = γ > 0, M0 = C eωβt t−α and inequality (4.10) with
α1 = 1, M1 = eωt. Further, we choose

q0 = r, q1 = ∞, p0 = γ q0 = γ r > q ≥ 1,
p1 = q1 = ∞, s0 = q < γ r = p0, s1 = ∞.

Then, by Corollary B.2,

(X0, X1)η,s0,s1 = L
q

(1−η) (Σ, µ) and (Y0, Y1)θ,q0,q1 = L
r

(1−θ) (Σ, µ)

with equal norms for every 0 < θ, η < 1. Thus, Theorem 4.6 yields

‖Ttu− Ttû‖ r
1−θ
≤
[

γ
(1−θ)γ+θ

] 1−θ
r [

C eωβt t−α
]1−θ eωθt×

×
[

inf
ϕ∈D+

‖s−θ ϕ‖1−θ

Lr0
∗ (R)

](1−θ)γ+θ ‖u− û‖(1−θ)γ+θ
q

1−η(θ)

for every t > 0, u, û ∈ Lq(Σ, µ) ∩ L∞(Σ, µ) and every 0 < θ < 1, where

r0 =
q γ r

γr(q− 1)r + q
.

Next, we choose a test function ρ ∈ C∞
c ((0, ∞)) with ρ ≥ 0 and support

supp(ϕ) in the closed interval [1, 3] satisfying

e−
4
3 log 5

3 ≤
∫ ∞

0
ρ( 1

s )
ds
s ≤ e−1 log 3.
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Then ϕ∗ :=
(∫ ∞

0 ρ( 1
t )

dt
t

)−1
ρ ∈ D+ and there are Cϕ∗,1, Cϕ∗,2 > 0 such that

Cϕ∗,1 ≤ ‖t−θ ϕ∗‖Lr0
∗ (R) ≤ Cϕ∗,2

hence

‖Ttu− Ttû‖ r
1−θ
≤
[

γ
(1−θ)γ+θ

] 1−θ
r [

C eωβt t−α
]1−θ eωθt×

× ‖s−θ ϕ∗‖(1−θ)((1−θ)γ+θ)

Lr0
∗ (R)

‖u− û‖(1−θ)γ+θ
q

1−η(θ)

for every t > 0, u, û ∈ Lq(Σ, µ) ∩ L∞(Σ, µ) and every 0 < θ < 1.
Next, we choose κ by (4.26) and set

θm = 1− 1
m

r
κ

for every m > r κ−1 =
q
γ

.

Then by hypothesis (4.21), κ > 1 and for all m > r κ−1, one has

0 < θm < 1, 1− θm =
1
m

r
κ

,

1− η(θm) =
r κ−1γ

m + rκ−1(γ− 1)
,

γ

(1− θm)γ + θm
=

γ m
m + rκ−1(γ− 1)

> 0.

Further, we set for all m > r κ−1,

Cϕ∗,m := ‖s 1
m

r
κ−1ϕ∗‖Lr0

∗ (R).

With this setting in mind, the previous inequality reduces to inequality (4.28)
below for every t > 0, u, û ∈ Lq(Σ, µ) ∩ L∞(Σ, µ) and for all m > r κ−1.

Finally, we choose m0 ≥ r κ−1 such that (4.24) holds (where one notes that
with the setting of this proof, condition (4.24) coincides with (4.27) below) and
let m > m0. The condition on m0 is sufficient to run an iteration in the time-
variable. This is the contents of the next iteration lemma and from there we can
conclude that the statement of this theorem holds. �

Lemma 4.12. Suppose there are κ > 1, β, γ > 0, 1 ≤ r < ∞ and m0 ≥ r K−1 such
that

(4.27) (κ − 1)m0 + r κ−1(1− γ) > 0.

Let {Tt}t≥0 be a semigroup acting on Lκm0(Σ, µ) ∩ L∞(Σ, µ) such that

‖Ttu− Ttû‖m κ ≤
[

γ m
m+rκ−1(γ−1)

] 1
m κ [

C eωβt t−α
] 1

m
r
κ eω(1− 1

m
r
κ )t×

× C
1
m

r
κ (

1
m

r
κ (γ−1)+1)

ϕ∗,m ‖u− û‖
1
m r κ−1(γ−1)+1
m+r κ−1(γ−1)

(4.28)

for every u, û ∈ Lκm0(Σ, µ) ∩ L∞(Σ, µ), t > 0 and m ≥ m0, where Cϕ∗,m satisfies

(4.29) Cϕ∗,1 ≤ Cϕ∗,m ≤ Cϕ∗,2

for some constants Cϕ∗,1, Cϕ∗,2 > 0 independent of m ≥ m0 . Then

‖Ttu− Ttû‖∞ . e
ω
(

(β−1)κ+γ−β

(κ−1)m0+r κ−1(1−γ)
+1
)

t
t
− α r κ−1

(κ−1)m0+r κ−1(1−γ)×

× ‖u− û‖
(κ−1)m0

(κ−1)m0+r κ−1(1−γ)
κm0

(4.30)

for every u, û ∈ Lκm0(Σ, µ) and every t > 0.
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For the proof of this lemma, we simplify some techniques from [92] and ex-
tend them to semigroups satisfying exponential growth condition (2.30) (see
also [38] in the linear case).

Proof. For m0 ≥ r κ−1 such that (4.27) holds, we construct a sequence (mn)n≥0
recursively by (4.25). Then

(4.31) mn+1 = κ mn + r κ−1(1− γ)

for every integer n ≥ 0 and so, an induction over n ∈N0 yields

(4.32) mn = κn[m0 + r κ−1 (γ− 1)] + r κ−1(1− γ)
n

∑
ν=0

κν,

that is

(4.33) mn = κn (κ − 1)m0 + r κ−1(1− γ)

κ − 1
− r κ−1(1− γ)

κ − 1
.

Using (4.32), we see that

mn+1 −mn = κn
[
(κ − 1)m0 + r κ−1(1− γ)

]
hence the sequence (mn)n≥0 is strictly increasing if and only if m0 satisfies con-
dition (4.27). Moreover, by (4.33), since κ > 1, and by (4.27), we see that

(4.34) lim
n→∞

mn = ∞

and

(4.35) lim
n→∞

mn

κn =
(κ − 1)m0 + r κ−1(1− γ)

κ − 1
.

Since
1

mn
r κ−1(γ− 1) + 1 =

κ mn−1

mn
and

γ mn

mn + rκ−1(γ− 1)
=

γ mn

mn−1κ
,

inserting the sequence (mn)n≥0 into (4.28) yields

(4.36) ‖Ttu− Ttû‖κmn ≤ C
1

mn κ
mn t−

α r
mn κ eω(β−1) r

mn κ t eωt C
r

mnκ

κ mn−1
mn

ϕ∗,mn
‖u− û‖

κ mn−1
mn

mn−1 κ

for every t > 0, u, û ∈ Lκm0(Σ, µ) ∩ L∞(Σ, µ), and n ≥ 1, where

Cmn := γ mn
mn−1κ Cr.

Now, let (tν)ν≥0 be a sequence in [0, 1] such that ∑∞
ν=0 tν = 1 which we will

specify below. By assumption, {Tt}t≥0 is a semigroup and Ttu, Ttû ∈ Lκm0(Σ, µ)∩
L∞(Σ, µ) for every t ≥ 0. Thus, we can iterate (4.36) and obtain

‖Tt ∑n
ν=0 tν

u− Tt ∑n
ν=0 tν

û‖κmn+1

≤
n+1

∏
ν=1

C
κn−ν

mn+1
mν

n

∏
ν=0

t
− α r

κ
κn−ν

mn+1
ν eω(β−1) r

κmn+1
∑n

ν=0 tνκn−νt×

× eω 1
mn+1

∑n
ν=0 tνκn−νmν+1t

n+1

∏
ν=1

C
r

mν

κn+1−νmν−1
mn+1

ϕ∗,mν
t−

α r
κ mn+1

∑n
ν=0 κν

‖u− û‖
m0

κn+1
mn+1

κm0 .

(4.37)
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Since by assumption, κ > 1, by (4.33), and by (4.27), we see that

(4.38) lim
n→∞

1
mn+1

n

∑
ν=0

κν =
1

(κ − 1)m0 + r κ−1(1− γ)
.

Thus

(4.39) lim
n→∞

t−
α r
κ

1
mn+1

∑n
ν=0 κn−ν

= t
− α r

κ
1

(κ−1)m0+r κ−1(1−γ) for every t > 0.

If we choose, for instance, tν = 2−ν−1, then
n

∏
ν=0

t
− αr

κ
κn−ν

mn+1
ν = 2

αr
κ

κn
mn+1

∑n
ν=0(ν+1)κ−ν

.

Using
∞

∑
ν=0

(ν + 1)κ−ν =
κ2

(κ − 1)2

and (4.35), one obtains

(4.40) lim
n→∞

κn

mn+1

n

∑
ν=0

(ν + 1)κ−ν =
κ

κ − 1
1

(κ − 1)m0 + r κ−1(1− γ)
,

therefore

(4.41) lim
n→∞

n

∏
ν=0

t
− αr

κ
κn−ν

mn+1
ν = 2

αr
κ

κ
κ−1

1
(κ−1)m0+r κ−1(1−γ) .

Using again that tν = 2−ν−1 together with (4.33) and (4.35), gives

lim
n→∞

1
κmn+1

n

∑
ν=0

tνκn−ν =
κ−1(κ − 1)(2κ − 1)−1

(κ − 1)m0 + rκ−1(1− γ)

and so

(4.42) lim
n→∞

eω(β−1) r
κmn+1

∑n
ν=0 tνκn−νt

= e
ω(β−1) rκ−1(κ−1)(2κ−1)−1

(κ−1)m0+rκ−1(1−γ)
t
.

Similarly, we obtain that

lim
n→∞

1
mn+1

n

∑
ν=0

tνκn−νmν+1 = 1− r(1− γ)κ−1(2κ − 1)−1

(κ − 1)m0 + rκ−1(1− γ)

and so

(4.43) lim
n→∞

eω 1
mn+1

∑n
ν=0 tνκn−νmν+1t

= e
ω
(

1− r(1−γ)κ−1(2κ−1)−1

(κ−1)m0+rκ−1(1−γ)

)
t
.

Next, by (4.29), one has

(4.44) C
rκn+1
mn+1

∑n+1
ν=1

mν−1
κνmν

ϕ∗,1 ≤
n+1

∏
ν=1

C
r

mν

κn+1−νmν−1
mn+1

ϕ∗,mν
≤

n+1

∏
ν=1

C
rκn+1
mn+1

∑n+1
ν=1

mν−1
κνmν

ϕ∗,2 .

Since by (4.33), one has that aν := mν−1
κνmν

satisfies limν→∞| aν+1
aν
| = 1

κ , the ratio test
implies that the series ∑∞

ν=1
mν−1
κνmν

converges. Furthermore, (4.35) yields

(4.45) lim
n→∞

κn+1

mn+1
=

(κ − 1)
(κ − 1)m0 + r κ−1(1− γ)

.
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Thus

lim
n→∞

rκn+1

mn+1

n+1

∑
ν=1

mν−1

κνmν
=

r(κ − 1)
(κ − 1)m0 + r κ−1(1− γ)

∞

∑
ν=1

mν−1

κνmν

so that sending n→ ∞ in (4.44) yields

C
r(κ−1)

(κ−1)m0+r κ−1(1−γ)
∑∞

ν=1
mν−1
κνmν

ϕ∗,1 ≤ lim inf
n→∞

n+1

∏
ν=1

C
r

mν

κn+1−νmν−1
mn+1

ϕ∗,mν

≤ lim sup
n→∞

n+1

∏
ν=1

C
r

mν

κn+1−νmν−1
mn+1

ϕ∗,mν

≤ C
r(κ−1)

(κ−1)m0+r κ−1(1−γ)
∑∞

ν=1
mν−1
κνmν

ϕ∗,2 .

(4.46)

Using again (4.45), we see that

(4.47) lim
n→∞
‖u− û‖

m0
κn+1
mn+1

κm0 = ‖u− û‖
(κ−1)m0

(κ−1)m0+r κ−1(1−γ)
κm0 .

It remains to control the product
n+1

∏
ν=1

C
κn−ν

mn+1
mν

=
n+1

∏
ν=1

[
β mn

mn−1κ

] κn−ν

mn+1 × C
r ∑n+1

ν=1 κn−ν

mn+1(4.48)

as n→ ∞. Since κ > 1 and by (4.35),

(4.49) lim
n→∞

1
mn+1

n+1

∑
ν=1

κn−ν =
κ−1

(κ − 1)m0 + r κ−1(1− γ)

and so

(4.50) lim
n→∞

C
r ∑n+1

ν=1 κn−ν

mn+1 = C
r κ−1

(κ−1)m0+r κ−1(1−γ) .

For every n ≥ 1, the quotient γ mn
mn−1κ = γ mn

mn+rκ−1(γ−1) can be controlled by

γ < γ mn
mn−1κ <

γ

1 + r
m0

κ−1(γ− 1)
if 0 < γ < 1

and by
γ

1 + r
m0

κ−1(γ− 1)
< γ mn

mn−1κ < γ if γ ≥ 1.

Thus for general γ > 0, there are constants C1, C2 > 0 such that

(4.51) C
1

mn+1
∑n+1

ν=1 κn−ν

1 ≤
n+1

∏
ν=1

[
γ mn

mn−1κ

] κn−ν

mn+1 ≤ C
1

mn+1
∑n+1

ν=1 κn−ν

2

for every n ≥ 0 and so by (4.49), sending n→ ∞ in (4.51) yields

C
κ−1

(κ−1)m0+r κ−1(1−γ)

1 ≤ lim inf
n→∞

n+1

∏
ν=1

[
γ mn

mn−1κ

] κn−ν

mn+1 ≤ lim sup
n→∞

n+1

∏
ν=1

C
κn−ν

mn+1
mν

≤ C
κ−1

(κ−1)m0+r κ−1(1−γ)

2 .

Thus sending n→ ∞ in inequality (4.37) and using (4.39), (4.41), (4.42), (4.43),
(4.47), (4.50), (4.46) together with the fact that mn ↗ ∞ as n→ ∞ yields

‖Ttu− Ttû‖∞ ≤
[
C2 Cr

] r κ−1

(κ−1)m0+r κ−1(1−γ) e
ω

(
(β−1)κ+γ−β

(κ−1)m0+r κ−1(1−γ)
+1
)

t
t
− α r κ−1

(κ−1)m0+r κ−1(1−γ)×
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× C
r(κ−1)

(κ−1)m0+r κ−1(1−γ)
∑∞

ν=1
mν−1
κνmν

ϕ∗,2 ‖u− û‖
(κ−1)m0

(κ−1)m0+r κ−1(1−γ)
κm0

showing that inequality (4.30) holds for u, û ∈ Lκm0 ∩ L∞(Σ, µ). By hypothe-
sis, the semigroup {Tt} acts on Lκm0 ∩ L∞(Σ, µ), that is, every Tt maps Lκm0 ∩
L∞(Σ, µ) to Lκm0 ∩ L∞(Σ, µ). Since Lκm0 ∩ L∞(Σ, µ) is dense in Lκm0(Σ, µ), a stan-
dard approximation argument shows that the first claim of this iteration lemma
holds. This completes the proof. �

Our second extrapolation result towards L∞ is adapted to semigroups enjoy-
ing the Lq-Lr-regularising effect (1.17) for 1 ≤ q, r < ∞ and some u0 ∈ Lr ∩
Lq0(Σ, µ) generated by quasi m-completely accretive operators A on Lq(Σ, µ)
(Section 2.2).

Theorem 4.13. Let (Σ, µ) be a separable measure space, 1 ≤ q, r < ∞, and {Tt}t≥0 be
a semigroup acting on Lq ∩ L∞(Σ, µ) with exponential growth (2.30) for some ω ≥ 0
and every q ≤ q̃ ≤ ∞. Further, suppose there exists u0 ∈ Lq ∩ L∞(Σ, µ) satisfying
Ttu0 = u0 for all t ≥ 0, and there exist C > 0 and exponents α, β, γ > 0 such that

(1.17) ‖Ttu− u0‖r ≤
(

C
q

)1/σ
t−α eωβt ‖u− u0‖γ

q

holds for every t > 0 and u ∈ Lq(Σ, µ) ∩ L∞(Σ, µ). If the parameter γ, r, q sat-
isfy (4.21), then

‖Ttu− u0‖∞ . eω(γ∗+1)t t−δ ‖u− u0‖γ
γ r q−1 m0

for every t > 0 and u ∈ Lγ r q−1 m0(Σ, µ), where δ, γ and β∗ are given by (4.23) and
m0 ≥ q γ−1 such that (4.24) holds.

The proof of this theorem proceeds analogously as the one for Theorem 4.10,
where one replaces the application of interpolation Theorem 4.6 by Theorem 4.7
or Theorem 4.8. Furthermore, one applies the extrapolation argument from Re-
mark 4.9 and replaces Lemma 4.12 by the following one. We leave the details of
the proof to the interested reader.

Lemma 4.14. Suppose there exist κ > 1, β, γ > 0, 1 ≤ r < ∞ and m0 ≥ r K−1

such that (4.27) holds. Let {Tt}t≥0 be a semigroup acting on Lκm0(Σ, µ) ∩ L∞(Σ, µ)
satisfying

‖Ttu− u0‖m κ ≤
[

γ m
m+rκ−1(γ−1)

] 1
m κ [

C eωβt t−α
] 1

m
r
κ eω(1− 1

m
r
κ )t×

× C
1
m

r
κ (

1
m

r
κ (γ−1)+1)

ϕ∗,m ‖u− u0‖
1
m r κ−1(γ−1)+1
m+r κ−1(γ−1)

for every u ∈ Lκm0(Σ, µ)∩ L∞(Σ, µ), t > 0, m > m0 and some u0 ∈ Lκm0 ∩ L∞(Σ, µ),
where Cϕ∗,m satisfies (4.29) for some constants Cϕ∗,1, Cϕ∗,2 > 0 independent of m. Then

‖Ttu− u0‖∞ . e
ω
(

(β−1)κ+γ−β

(κ−1)m0+r κ−1(1−γ)
+1
)

t
t
− α r κ−1

(κ−1)m0+r κ−1(1−γ)×

× ‖u− u0‖
(κ−1)m0

(κ−1)m0+r κ−1(1−γ)
κm0 .

for every u ∈ Lκm0(Σ, µ) and every t > 0.

The proof of Lemma 4.14 proceeds as the one of Lemma 4.12. We omit the
details.
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4.4. An alternative approach to arrive at L∞. It is a fundamental fact that semi-
groups {Tt}t≥0 generated by operators −A in L1 with a (c-)complete resolvent (
Section 2.3) are not, in general, contractive with respect to the L∞-norm (cf. [91,
Section A.11]). Thus, if one wants to extend the Lq-Lr-regularisation effect of
{Tt}t≥0 to an Lq-L∞-regularisation effect, one needs to proceed by an alterna-
tive approach. One possible way is the following one: firstly, show that A sat-
isfies a one-parameter family of Gagliardo-Nirenberg type inequalities, and then by
employing Theorem 3.10, deduce that the semigroup {Tt} satisfies a sequence of
Lqn -Lqn+1-regularisation effects for some sequence (qn)n≥1 ⊆ (1, ∞) with qn ↗ ∞.
This method has been employed in the past by many authors. But to the best of
our knowledge, Véron has been the first to use this method in [92] in the context
of nonlinear semigroups of contractive mappings on L1(Σ, µ) (see also [38] for an-
other use of this type of argument in linear semigroup theory). Here, we extend
and simplify this method to nonlinear semigroups {Tt}t≥0 of Lipschitz continu-
ous mappings Tt on L1(Σ, µ) with constant eωt, in other words, of exponential
growth (2.30) for q = 1.

Theorem 4.15. Let A + ωI be m-accretive in L1(Σ, µ) for some ω ≥ 0 with trace
A1∩∞ of A on L1 ∩ L∞(Σ, µ) satisfying range condition (1.19). Suppose there exist
κ > 1, m > 0, and q0 ≥ p ≥ 1 such that κmq0 ≥ 1 and

(1.20) (κ − 1)q0 + p− 1− 1
m > 0,

and there exist C > 0 and (u0, 0) ∈ A1∩∞ such that for every q ≥ q0, the trace A1∩∞
satisfies Sobolev type inequality

‖u− u0‖mq
κmq ≤ C (q/p)p

q−p+1

[
[u− u0, v](q−p+1)m+1 + ω‖u− u0‖(q−p+1)m+1

(q−p+1)m+1

]
(1.21)

for every (u, v) ∈ A1∩∞, and for every λ > 0 satisfying λω < 1, the resolvent Jλ

of A satisfies (3.9) for q̃ = κmq. Then, there is a β∗ ≥ 0 such that the semigroup
{Tt}t≥0 ∼ −A on D(A)L1 satisfies

(4.52) ‖Ttu− u0‖∞ . eωβ∗t t
− 1

m((κ−1)q0+p−1− 1
m ) ‖u− u0‖

(κ−1)q0
(κ−1)q0+p−1− 1

m
κmq0

for every t > 0 and u ∈ D(A)L1 ∩ L∞(Σ, µ).

Proof. From Theorem 3.10, we can conclude that the semigroup {Tt}t≥0 satisfies
inequality (4.53) below for every t > 0, u ∈ D(A)L1 ∩ L∞(Σ, µ) and q ≥ q0.
Thus, we can deduce the claim of this theorem from the subsequent iteration
Lemma 4.16. �

Lemma 4.16. Suppose there exist κ > 1, m > 0, q0 ≥ p ≥ 1 such that κmq0 ≥ 1
and (1.20) hold. Furthermore, suppose, there exists C > 0 such that the semigroup
{Tt}t≥0 on D(A)L1 satisfies

‖Ttu− u0‖κqm ≤
[

C (q/p)p

(q−p+1)((q−p+1)m+1)

] 1
qm eω( (q−p+1)m+1

qm +1)t×

× t−
1

qm ‖u− u0‖
(q−p+1)m+1

qm

(q−p+1)m+1

(4.53)

for every u ∈ D(A)L1 ∩ L∞(Σ, µ) and q ≥ q0. Then there is a β∗ ≥ 0 such that
the semigroup {Tt}t≥0 ∼ −A on D(A)L1 satisfies inequality (4.52) for every u ∈
D(A)L1 ∩ L∞(Σ, µ) and every t > 0.
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Proof. We fix some q0 ≥ p and set

qn+1 = κ qn + p− 1− 1
m

for every n ∈N0.

Then one can show by induction over n ∈N0 that

qn = κn(q0 − ((p− 1)− 1
m )) + ((p− 1)− 1

m )
n

∑
ν=0

κν,

that is

(4.54) qn =
κn

κ − 1
[
(κ − 1)q0 + p− 1− 1

m

]
−

p− 1− 1
m

κ − 1
.

Using (4.54), we see that

qn+1 − qn = κn
[
(κ − 1)q0 + p− 1− 1

m

]
hence the sequence (qn)n≥0 is strictly increasing if and only if q0 satisfies condi-
tion (4.27). Moreover, by (4.54), since κ > 1, and by (4.27), we see that qn → ∞
as n→ ∞ and

(4.55) lim
n→∞

qn

κn =
(κ − 1)q0 + p− 1− 1

m
κ − 1

.

Now, let u ∈ D(A)L1 ∩ Lκq0m(Σ, µ). Then, by construction of q1, we find that
u ∈ L(q1−p+1)m+1(Σ, µ) and so by (4.53), Ttu ∈ D(A)L1 ∩ Lκq1m(Σ, µ) for all t > 0.
By construction of (qn)n≥1 and since {Tt}t≥0 is a semigroup satisfying (4.53), we
see that Ttu ∈ D(A)L1 ∩ Lκqnm(Σ, µ) for all n ≥ 1 and t > 0. Thus, inserting the
sequence (qn)n≥0 into (4.53) yields

(4.56) ‖Ttu− u0‖κmqn+1 ≤ Cqn+1 t−1/mqn+1 eω( κmqn
mqn+1

+1)t ‖u− u0‖κqn/qn+1
κmqn

for every t > 0 with

Cqn+1 = C
1

mqn+1

[
(

qn+1
p )p

(qn+1−p+1)(κmqn)

] 1
mqn+1

for every n ∈ N0. Let (tν)ν≥0 be any sequence in [0, 1] such that ∑∞
ν=0 tν = 1,

which will be specified below. Then by (4.56), we obtain that

‖Tt ∑n
ν=0 tν

u− u0‖κqn+1 ≤
n+1

∏
ν=1

C
κn+1−ν qν

qn+1
qν

n

∏
ν=0

t
− κn−ν

mqn+1
ν t−

1
mqn+1

∑n
ν=0 κν

×

× eω ∑n
ν=0 tν(

κqν
qν+1

+1)
κn−νqν+1

qn+1
t ‖u− u0‖κn+1q0/qn+1

κmq0 .

(4.57)

Since κ > 1, by (4.55), qn → ∞ as n → ∞ and since (κ − 1)q0 + p − 2 > 0 by
assumption (4.27), we see that

(4.58) lim
n→∞

1
qn+1

n

∑
ν=0

κν =
1

(κ − 1)q0 + p− 1− 1
m

.

Thus

(4.59) lim
n→∞

t−
1

mqn+1
∑n

ν=0 κν

= t
− 1

m((κ−1)q0+p−1− 1
m ) for every t > 0.
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If we choose, for instance, tν = 2−ν−1, then
n

∏
ν=0

t
− κn−ν

mqn+1
ν = 2

κn ∑n
ν=0(ν+1)κ−ν

mqn+1 .

Using

(4.60)
∞

∑
ν=0

(ν + 1)κ−ν =
κ2

(κ − 1)2

and (4.55), one obtains

(4.61) lim
n→∞

κn ∑n
ν=0(ν + 1)κ−ν

mqn+1
=

κ

m(κ − 1)
1

(κ − 1)q0 + p− 1− 1
m

and so

(4.62) lim
n→∞

n

∏
ν=0

t
− κn−ν

mqn+1
ν = 2

κ

m(κ−1)[(κ−1)q0+p−1− 1
m ] .

Next, by (4.55), we see that

lim
n→∞

κn+1 q0

qn+1
=

(κ − 1)q0

(κ − 1)q0 + p− 1− 1
m

,

thus

(4.63) lim
n→∞
‖u− u0‖κn+1q0/qn+1

κmq0 = ‖u− u0‖
(κ−1)q0/((κ−1)q0+p−1− 1

m )
κmq0 .

Further, since for aν := 2−ν( κqν

qν+1
+ 1)κ−νqν+1 for every ν ≥ 0, (4.54) yields

lim
ν→∞

∣∣∣∣ aν+1

aν

∣∣∣∣ = 1
2

,

the ratio test implies that the series

1
2

∞

∑
ν=0

2−ν

(
κqν

qν+1
+ 1
)

κ−νqν+1

converges; we denote the sum of the series by S ≥ 0. Thus, by (4.55),

lim
n→∞

κn+1

qn+1

1
2κ

∞

∑
ν=0

2−ν

(
κqν

qν+1
+ 1
)

κ−νqν+1 =
κ − 1

(κ − 1)q0 + p− 1− 1
m

1
2κ

S =: β∗

and so

(4.64) lim
n→∞

eω ∑n
ν=0 tν(

κqν
qν+1

+1)
κn−νqν+1

qn+1
t
= eωβ∗t.

It remains to show that we can control the product

(4.65)
n+1

∏
ν=1

C
κn+1−νqν

qn+1
qν

=
n+1

∏
ν=1

C
κn+1−ν

mqn+1 ×
n+1

∏
ν=1

[
(

qn+1
p )

(qn+1−p+1)(κmqn)

] κn+1−ν

mqn+1

as n→ ∞. First, note that
n+1

∏
ν=1

C
κn+1−ν

mqn+1 = e
log C

mqn+1
∑n+1

ν=1 κn+1−ν

= e
log C

mqn+1
∑n

ν=0 κν

.
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Thus by (4.58),

(4.66) lim
n→∞

n+1

∏
ν=1

C
κn+1−ν

mqn+1 = C
1

m((κ−1)q0+p−1− 1
m ) .

By (4.54), we have that

qν =
κν[(κ − 1)q0 + p− 1− 1

m ]− ((p− 1)− 1
m )

κ − 1

for every ν ∈N0. From this, we conclude that

(4.67) qν ≤ M κν

for every ν ∈N0, where

M :=

{
[(κ−1)q0+p−1− 1

m ]
κ−1 if (p− 1)− 1

m ≥ 0, and
q0 if (p− 1)− 1

m < 0.

Applying (4.67) and using that qν ≥ q0 ≥ p > 1 and κm > 1, one sees that on
the one hand

n+1

∏
ν=1

[
(qν/p)p

(qν−p+1)κmqν

] κn+1−ν

mqn+1 ≤
n+1

∏
ν=1

(
M
p

) pκn+1−ν

mqn+1
n+1

∏
ν=1

κ
νκn+1−ν

mqn+1 ,

and by (4.58), (4.60), and (4.55), one has

lim
n→∞

n+1

∏
ν=1

(
M
p

) pκn+1−ν

mqn+1 =
(

M
p

) p
m((κ−1)q0+p−1− 1

m )

and

lim
n→∞

n+1

∏
ν=1

κ
νκn+1−ν

mqn+1 = κ
κ

(κ−1)m((κ−1)q0+p−1− 1
m ) .

On the other hand, by using that qν − p + 1 ≤ qν, qν ≥ p and (4.67), one finds

n+1

∏
ν=1

[
(qν/p)p

(qν−p+1)κmqν

] κn+1−ν

mqn+1 ≥
n+1

∏
ν=1

(M3K)−
κn+1−ν

mqn+1

n+1

∏
ν=1

κ
−2ν κn+1−ν

mqn+1

with

lim
n→∞

n+1

∏
ν=1

(M3K)−
κn+1−ν

mqn+1 = (M3K)
− 1

m((κ−1)q0+p−1− 1
m )

and

lim
n→∞

n+1

∏
ν=1

κ
−2ν κn+1−ν

mqn+1 = κ
− 2κ

(κ−1)m((κ−1)q0+p−1− 1
m ) .

Thus, by taking

M1 =
(

M
p

) p
m((κ−1)q0+p−1− 1

m ) κ
κ

(κ−1)m((κ−1)q0+p−1− 1
m )

and

M2 = (M3K)
− 1

m((κ−1)q0+p−1− 1
m ) κ

− 2κ

(κ−1)m((κ−1)q0+p−1− 1
m ) ,
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we have that

0 < M1 ≤ lim inf
n→∞

n+1

∏
ν=1

[
(qν/p)p

(qν−p+1)κmqν

] κn+1−ν

mqn+1

≤ lim sup
n→∞

n+1

∏
ν=1

[
(qν/p)p

(qν−p+1)κmqν

] κn+1−ν

mqn+1 ≤ M2 < ∞

hence by (4.65) and (4.66),

0 < C
1

m((κ−1)q0+p−1− 1
m ) M1 ≤ lim inf

n→∞

n+1

∏
ν=1

C
κn+1−νqν

qn+1
qν

≤ lim sup
n→∞

n+1

∏
ν=1

C
κn+1−νqν

qn+1
qν

≤ C
1

m((κ−1)q0+p−1− 1
m ) M2 < ∞.

Thus sending n→ ∞ in inequality (4.57) and using the limits (4.59), (4.62), (4.63)
and (4.64) together with the fact that qn ↗ ∞ as n → ∞ yields the desired
inequality (4.52). This completes the proof of the lemma. �

5. APPLICATION I: MILD SOLUTIONS IN L1 ARE WEAK ENERGY SOLUTIONS

This section is concerned with illustrating a first application of the L1-L∞ reg-
ularisation estimate

(5.1) ‖Ttu‖∞ ≤ C̃ t−α eω β t ‖u‖γ
1 , holding for all t > 0, u ∈ D(A1∩∞φ)L1

for some exponents α, β, γ > 0, and a constant C̃ > 0, satisfied by the semigroup
{Tt} ∼ −(A1∩∞φ + F) on D(A1∩∞φ)L1 .

Let A be an m-completely accretive operator on L2(Σ, µ) and which is the
realisation in L2(Σ, µ) of a monotone operator Ψ′ : V → V ′ of a convex, Gâteaux-
differentiable real-valued functional Ψ defined on a reflexive Banach space V
(see the precise hypotheses on A and V below). Further,
(Ha) let φ be a strictly increasing continuous functions on R with Yosida oper-

ator βλ of β = φ−1 satisfying condition (2.43), (λ > 0),
(Hb) let F be the Nemytski operator in Lq(Σ, µ), (1 ≤ q ≤ ∞), of a Carathéodory

function f : Σ × R → R satisfying Lipschitz condition (2.17) for some
ω ≥ 0 and f (x, 0) = 0 for a.e. x ∈ Σ.

Then, the aim of this section is to show that for every initial value u0 ∈
D(A1∩∞φ)L1 , the mild solution u of Cauchy problem

(5.2)

{
du
dt + A1∩∞φu + F(u) = 0 in L1(Σ, µ) on (0,+∞),

u(0) = u0

is, in fact, a weak energy solution of problem

(5.3)

{
du
dt + Ψ′(φ(u)) + F(u) = 0 in V ′ on (0, ∞),

u(0) = u0

in the sense of Definition 5.2 below.

In this section, we work in the following framework. We assume that the
classical Lebesgue space Lq(Σ, µ), 1 ≤ q ≤ ∞, is defined on a finite measure
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space (Σ, µ), and V be a reflexive Banach space such that there are a ≥ 0 and a
semi-norm |·|V on V such that

|·|V + a‖·‖2

defines an equivalent norm on V. Further, suppose the continuous embedding
i : V → L2(Σ, µ) has a dense image. Then, the adjoint operator i∗ of i from the
dual space (L2(Σ, µ))′ of L2(Σ, µ) to the dual space V ′ of V is also an injective
linear bounded operator. After identifying L2(Σ, µ) with (L2(Σ, µ))′, we see that

V ↪→ L2(Σ, µ) ↪→ V ′,

where each inclusion ”↪→” denotes a continuous embedding with a dense im-
age. Moreover, the duality brackets 〈·, ·〉V′,V of V × V ′ and the inner product
〈·, ·〉 on L2(Σ, µ) coincide whenever both make sense (cf. [25, Remark 3, Chap-
ter 5.2]), that is

(5.4) 〈u, v〉V′,V = 〈u, v〉 for all u ∈ L2(Σ, µ) and v ∈ V.

Thus, in order to keep our notation simple, we only employ the brackets 〈·, ·〉.

Further, we assume that Ψ : V → R is a convex, lower semicontinuous, and
Gâteaux differentiable functional satisfying

(Hi): there are 1 < p < ∞, η > 0, C > 0 such that

〈Ψ′(v), v〉 ≥ η|v|pV and(5.5)

‖Ψ′(v)‖V′ ≤ C |v|p−1
V for every v ∈ V,(5.6)

(Hii): Ψ′ : V → V ′ is hemicontinuous, that is, for every u, v, w ∈ V, the function
λ 7→ 〈Ψ′(v + λu), w〉 is continuous on R,

(Hiii): there is a ε > 0 such that Ψ + ε‖·‖2
2 is weakly coercive in V, that is, for every

c ∈ R, the sub-level set Ec := {v ∈ V |Ψ(v) + ε‖v‖2
2 ≤ c} is relatively

compact with respect to the weak topology on V.
(Hiv): the subgradient A := ∂L2 ΨL2

in L2(Σ, µ) of the extended functional ΨL2
of Ψ

on L2(Σ, µ) is an m-completely accretive operator in L2(Σ, µ).
(Hv): the functional Ψ is related to a ”Poincaré type inequality”

(5.7) ‖u‖p ≤ C Ψ(u) for all u ∈ V,

where the constant C > 0 is independent of u ∈ V.

Remark 5.1. We note that hypothesis (Hiii) is needed only to ensure that that the
extended functional ΨL2

of Ψ on L2(Σ, µ) is lower semicontinuous on L2(Σ, µ).
For a more detailed discussion on this, we refer the interested reader to [31].

Definition 5.2. Let 1 < p < ∞ with conjugate exponent p′ = p
p−1 , T > 0,

the operator Ψ′ : V → V ′ satisfy the hypotheses (Hi) and (Hii), and φ be a
continuous function on R. Then for given u0 ∈ D(A1∩∞φ)L1 ∩ L∞(Σ, µ), we call
a function u ∈ C([0, T]; L1(Σ, µ)) a weak energy solution of (5.3) if u(0) = u0 in
L1(Σ, µ), and for every 0 < δ < T,

du
dt
∈ Lp′ (δ, T; V ′), φ(u) ∈ Lp(δ, T; V),
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and ∫ T

δ

{〈du
dt

, v
〉

V′,V
+ 〈Ψ′φ(u(t)), v〉+ 〈F(u(t)), v〉

}
dt = 0

for all v ∈ Lp(δ, T; V).

Remark 5.3. To the best of our knowledge, the notion of weak energy solution was
introduced in [91, Section 5.3.2] in connection with the porous media operator
Aφ = ∆φ. The word energy in this notion indicates that the solution u of (5.3)
has the property∫ t

δ
Ψ(φ(u(t)))dµ ds is finite for every 0 < δ < t.

Remark 5.4. We note that under the additional assumptions that φ is non-decreas-
ing on R and the weak energy solution u of problem (5.3) is in L∞(0, T; L∞(Σ, µ)),
Lemma 5.11 below yields for the primitive

(5.8) Φ(s) :=
∫ s

0
φ(r)dr, (s ∈ R),

of φ that ∫
Σ

Φ(u)dµ ∈W1,1(0, 1)

and integration by parts rule (5.43) from Section 5.2 holds.

Definition 5.5. For a given continuous function φ on R satisfying φ(0) = 0 and
every ε > 0, we call the function

φε(s) := 1
ε

∫
R

φ(r) ρ( s−r
ε ) dr + εs + cε for every s ∈ R,

the regularisation of φ. Here, the constant cε is chosen such that φε(0) = 0 and
ρ ∈ C∞(R), ρ ≥ 0,

∫
R

ρdr = 1, ρ ≡ 0 on R \ [−1, 1].

The following theorem is the main result of this section, which provides suf-
ficient conditions that mild solutions are weak energy solutions.

Theorem 5.6. Let Ψ : V → R be a convex, lower semicontinuous, and Gâteaux dif-
ferentiable functional satisfying the hypotheses (Hi)-(Hv), φ be a strictly increasing
continuous function on R satisfying (Ha) and F be an operator on Lq(Σ, µ) satisfy-
ing (Hb). Further, suppose that there are exponents α, β, γ > 0 and a constant C̃ > 0
such that the semigroup {Tt} ∼ −(A1∩∞φ + F) on D(A1∩∞φ)L1 satisfies L1-L∞ reg-
ularisation estimate (5.7). Then, the following statements hold:

(1) For every initial value u0 ∈ D(A1∩∞φ)L1 , the mild solution u(t) = Ttu0,
(t ≥ 0), of Cauchy problem (5.2) in L1(Σ, µ) is a weak energy solution of
Cauchy problem (5.3) satisfying

1
2

∫ t

0
sα(p′−1)+1Ψ(φ(u(s)))ds + tα(p′−1)+1

∫
Σ

Φ(u(t))dµ

≤ (α(p′−1)+1)p Cp−1

p′ (4−1 p)p−1

∫ t

0
eω (β (p′−1)+1) s ds ‖u0‖γ (p′−1)+1

1

+ ωp Cp−1

p′ (4−1 p)p−1

∫ t

0
s eω (β (p′−1)+1) s ds ‖u0‖γ (p′−1)+1

1 .

(5.9)

for every t > 0.
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(2) If, in addition, φ′ ∈ L∞(R), φ−1 is locally bounded and 0 < α ≤ 1 in esti-
mate (5.7), then for every initial value u0 ∈ D(A1∩∞φ)L1 , the mild solution
u(t) = Ttu0, (t ≥ 0), of Cauchy problem (5.2) in L1(Σ, µ) is a strong solution
of (5.2) in L1(Σ, µ) with the following properties:
(a) One has

u ∈W1,2
loc ((0, ∞); L2(Σ, µ))

(b) the function φ(u) ∈W1,2
loc ((0, T]; L2(Σ, µ)) with weak derivative

(5.10)
d
dt

φ(u(t)) = φ′(u(t))
du
dt

(t) in L2(Σ, µ) for a.e. t > 0,

(c) for a.e. t > 0, one has φ(u(t)) ∈ D(A) and

(5.11) du
dt (t) + Aφ(u(t)) + F(u(t)) 3 0 in L2(Σ, µ),

(d) the real-valued function t 7→ Ψ(φ(u(t))) is locally absolutely continuous
on (0, ∞) satisfying for a.e. t > 0,

(5.12) d
dt Ψ(φ(u(t))) = −‖ du

dt (t)
√

φ′(u(t))‖2
2 − 〈F(u(t)), du

dt (t) φ′(u(t))〉,

(e) for every t > 0,

1
2

∫ t

0
sα(p′−1)+2

∫
Σ

φ′(u(s))
∣∣∣∣du

ds
(s)
∣∣∣∣2 dµ ds + tα(p′−1)+2 Ψ(φ(u(t)))

≤ (α(p′−1)+2) 2
p′

[
(k+1)p Cp−1

(4−1 p)p−1

∫ t

0
eω (β (p′−1)+1) s ds ‖u0‖γ (p′−1)+1

1

+ ωp Cp−1

(4−1 p)p−1

∫ t

0
s eω (β (p′−1)+1) s ds ‖u0‖γ (p′−1)+1

1

+ (α(p′−1)+1)p Cp

p′ (2−1 p)p−1

∫ t

0
eω β(p′−1) s ds‖u0‖γ(p′−1)+1

1

]
+ ω2 C̃

2 ‖φ
′‖∞

∫ t

0
s1−α eω(β+1) s ds ‖u0‖γ+1

1 .

(5.13)

The proof of Theorem 5.9 is divided into three steps. The first step is to con-
sider the smooth case, that is, under the assumption that φ and its inverse φ−1

are locally Lipschitz continuous (see Theorem 5.7). Then, in the second step, we
consider a general continuous strictly increasing function φ but we take initial val-
ues u0 ∈ D(A1∩∞φ)L1 ∩ L∞(Σ, µ) (see Theorem 5.9). In the last and third step,
one uses the estimates established in step two to conclude by using the continu-
ous dependence of the semigroup {Tt}t≥0 and the its L1-L∞ regularisation effect
to conclude the statement of the main theorem (Theorem 5.6).

5.1. The smooth case. We begin by considering the smooth case. Here, the
statement of our following theorem confirms positively a conjecture stated in
[10, Remarque 2.13] and generalises the results in [10, Proposition 2.18] and par-
tially some results in [51, Section 3] to the general subgradient setting. Our next
theorem is the main results in this subsection.

Theorem 5.7. Let Ψ : V → R be a convex, lower semicontinuous, and Gâteaux dif-
ferentiable functional satisfying (Hiii) and (Hiv). Further, let φ be a strictly increasing
function on R such that φ and φ−1 are locally Lipschitz continuous, and the Yosida
operator βλ of β = φ−1 satisfies condition (2.43), (λ > 0), and F be an operator on
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Lq(Σ, µ) satisfying (Hb). We set Φ(r) =
∫ r

0 φ(s)ds for every r ∈ R. Then, for
every u0 ∈ D(A1∩∞φ)L1 ∩ L∞(Σ, µ), the mild solution u(t) = Ttu0, (t ≥ 0), of
problem (5.2) in L1(Σ, µ) is a strong solution of

(5.14) du
dt + Aφ(u) + F(u) 3 0 in L2(Σ, µ) on (0, T), u(0) = u0

with the regularity

(5.15) u ∈ C([0, T]; Lq(Σ, µ)) ∩W1,2
loc ((0, T]; L2(Σ, µ)) ∩ L∞([0, T]; L∞(Σ, µ))

for every 1 ≤ q < ∞ and satisfying

(1) the function φ(u) ∈W1,2
loc ((0, T]; L2(Σ, µ)) with weak derivative (5.10),

(2) for a.e. t > 0, one has φ(u(t)) ∈ D(A) and (5.11) holds,
(3) the real-valued function t 7→ Ψ(φ(u(t))) is locally absolutely continuous on

(0, ∞) satisfying (5.12) for a.e. t > 0,
(4) for every k ≥ 0 and t > 0, one has∫ t

0
sk+1Ψ(φ(u(s)))ds + tk+1

∫
Σ

Φ(u(t))dµ

≤ (k + 1)
∫ t

0
sk
∫

Σ
φ(u(t)) u(t)dµds

−
∫ t

0
sk+1

∫
Σ

F(u(s))φ(u(s))dµ ds.

(5.16)

and

1
2

∫ t

0
sk+2

∫
Σ

φ′(u(s))
∣∣∣∣du

ds
(s)
∣∣∣∣2 dµ ds + tk+2 Ψ(φ(u(t)))

≤ (k + 2)(k + 1)
∫ t

0
sk
∫

Σ
φ(u(t)) u(t)dµ ds

− (k + 2)
∫ t

0
sk+1

∫
Σ

F(u(s))φ(u(s))dµ ds

+ 1
2

∫ t

0
s
∫

Σ
φ′(u(s)) |F(u(s))|2 dµ ds.

(5.17)

Before outlining the proof of Theorem 5.7, we recall the following convergence
result (cf. [8, Proposition 4.4 & Theorem 4.14]), which we state in a version suit-
able for the framework of this paper.

Theorem 5.8. For ω ∈ R and 1 ≤ q ≤ ∞, let (An)n≥1 be a sequence of operators An

on Lq(Σ, µ) such that An + ωI is accretive in Lq(Σ, µ). For given u0,n ∈ D(An)
Lq

, let
un be the unique mild solution of initial value problem

dun
dt + Anun 3 0 on (0, T) and un(0) = u0,n.

Further, let A be an operator on Lq(Σ, µ) such that A + ωI is accretive in Lq(Σ, µ) and
for given u ∈ D(A)Lq

, let u be the unique mild solution of
du
dt + Au 3 0 on (0, T) and u(0) = u0.

Suppose that limn→∞ u0,n = u0 in Lq(Σ, µ) and for every λ > 0 satisfying λω < 1,
the resolvent JA

λ of A and the resolvent JAn
λ of An satisfy

(5.18) lim
n→∞

JAn
λ x → JA

λ x in Lq(Σ, µ) for every x ∈ Lq(Σ, µ),
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then un → u in C([0, T]; Lq(Σ, µ)).

Our proof of Theorem 5.7 improves an idea from [10].

Proof of Theorem 5.7. By Proposition 2.19, A1∩∞φ + F is m-accretive in L1 with
complete resolvent and for every λ > 0 such that ωλ < 1, A1∩∞φ + F satisfies
range condition (2.45). In particular,−(Aφ+ F) generates a strongly continuous
semigroup {Tt}t≥0 on D(A1∩∞φ)L1 . Therefore, for u0 ∈ D(A1∩∞φ)L1 ∩ L∞(Σ, µ),
the function u(t) := Ttu0 for every t ≥ 0 is the unique mild solution of prob-
lem (5.2) in L1(Σ, µ) and by Proposition 2.16, one has

(5.19) ‖u(t)‖q ≤ eωt‖u0‖q for every t ≥ 0 and 1 ≤ q ≤ ∞,

where ω ≥ 0 is the Lipschitz constant of F. Fix T > 0 and set M := eωT‖u0‖∞.
Then, the values of φ(s) ∈ R for |s| ≥ M do not intervene if one considers the
solutions merely on the time interval [0, T]. Thus, there is no loss of generality if
we assume, φ and φ−1 are globally Lipschitz continuous on R.

Now, for every λ > 0, let Ψλ : L2(Σ, µ)→ R+ denote the Moreau regularisation
of Ψ on L2(Σ, µ) (cf. [24, Proposition 2.11]). Then, Ψλ is continuously Fréchet-
differentiable on L2(Σ, µ) and the Fréchet-derivative Ψ′λ of Ψ coincides with the
Yosida operator Aλ := 1

λ (I− Jλ) of A in L2(Σ, µ). Since the resolvent operator Jλ

of A is contractive on L2(Σ, µ) and since φ is globally Lipschitz continuous, the
composition operator Jλφ is globally Lipschitz continuous on L2(Σ, µ). Hence
by [24, Corollaire 1.1], for every λ > 0, there is a unique strong solution

uλ ∈ C1([0, T]; L2(Σ, µ))

of the Cauchy problem

(5.20)

{
duλ
dt + Aλφ(uλ) + F(uλ) = 0 in L2(Σ, µ) on (0, T),

uλ(0) = u0.

Since A is accretive in L1(Σ, µ), one easily verifies that for every λ > 0, the
Yosida operator Aλ is also accretive in L1(Σ, µ). Moreover, for every p ∈ P0,
there is a θ(x) ∈ (0, 1) such that∫

Σ
p(u)Aλu dµ =

∫
Σ

p(Jλu)Aλu dµ + λ
∫

Σ
p′(θu + (1− θ)Jλu)|Aλu|2 dµ

≥
∫

Σ
p(Jλu)Aλu dµ.

Since Aλu ∈ A(Jλu) and since A has a complete resolvent,∫
Σ

p(Jλu)Aλu dµ ≥ 0

yielding the Yosida operator Aλ has a complete resolvent. Thus by Proposi-
tion 2.19, the operator Aλφ + F is quasi accretive in L1(Σ, µ) with complete re-
solvent. Thus,

(5.21) ‖uλ(t)‖q ≤ eωt ‖u0‖q for every t ∈ [0, T], λ > 0, 1 ≤ q ≤ ∞.

and in particular, ‖uλ(t)‖∞ ≤ M.
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Next, let ρ > 0 such that ρ ω < 1 and x ∈ L1 ∩ L∞(Σ, µ). Then, by range con-
dition (2.45), there is uρ ∈ D(A1∩∞φ) such that uρ = JA1∩∞φ+F

ρ x or, equivalently,

(5.22) uρ = x− ρ(Aφ(uρ) + F(uρ)).

Since Aλφ+ F +ωI is Lipschitz continuous and accretive in L1(Σ, µ), Aλφ+ F +
ωI is m-accretive in L1(Σ, µ). Thus for every λ > 0, there is uρ,λ ∈ D(Aλφ) such
that uρ,λ = JAλφ+F

ρ x or, equivalently,

(5.23) uρ,λ = x− ρ(Aλφ(uρ,λ) + F(uρ,λ)),

and

(5.24) ‖uρ,λ‖q ≤ (1− ρ ω)−1‖x‖q

for every 1 ≤ q ≤ ∞. Now, by the two equations (5.22) and (5.23), since

Aλ(φ(uρ,λ)) ∈ A(Jλφ(uρ,λ)),

since the operators A and F + ωI are accretive in L2(Σ, µ), φ is non-decreasing,
and F Lipschitz continuous with constant ω ≥ 0, we see

(1− ρω)
∫

Σ
(uρ,λ − uρ)(φ(uρ,λ)− φ(uρ))dµ

= −ρ
∫

Σ

[
(Aλφ(uρ,λ) + F(uρ,λ) + ωuρ,λ)− (Aφ(uρ) + F(uρ) + ωuρ)

]
×

× (φ(uρ,λ)− φ(uρ))dµ

= −ρ
∫

Σ

[
Aφ(uρ)− Aλφ(uρ,λ)

]
×

× (φ(uρ)− JA
λ φ(uρ,λ) + JA

λ φ(uρ,λ)− φ(uρ,λ))dµ

− ρ
∫

Σ

[
(F(uρ,λ) + ωuρ,λ)− (F(uρ) + ωuρ)

]
(φ(uρ,λ)− φ(uρ))dµ

≤ ρ λ
∫

Σ

(
Aφ(uρ)− Aλφ(uρ,λ)

)
Aλφ(uρ,λ)dµ

= −λ
∫

Σ
(uρ − uρ,λ) Aλφ(uρ,λ)dµ

− ρ λ
∫

Σ
(F(uρ)− F(uρ,λ)) Aλφ(uρ,λ)dµ

≤ λ (1 + ρ ω)
∫

Σ
|uρ − uρ,λ| |Aλφ(uρ,λ)|dµ

≤ λ
(1 + ρ ω) 2
ρ (1− ρω)

‖x‖∞

∫
Σ
|uρ,λ − x + ρ F(uρ,λ)|dµ

≤ λ
(1 + ρ ω) 2
ρ (1− ρω)

‖x‖∞

(∫
Σ
|uρ,λ|dµ +

∫
Σ
|x|dµ + ρ ω

∫
Σ
|uρ,λ|dµ

)
and so by (5.24),∫

Σ
(uρ,λ − uρ)(φ(uρ,λ)− φ(uρ))dµ

≤ λ
(1 + ρ ω) 2
ρ (1− ρω)2 ‖x‖∞

(
1

(1− ρω)
+ 1 +

ρω

(1− ρω)

) ∫
Σ
|x|dµ

(5.25)
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From this we can conclude that limλ→0 uρ,λ = uρ a.e. on Σ since φ is continuous,
strictly increasing and φ(s) = 0 if and only if s = 0. Since (Σ, µ) is finite and
by (5.24), Lebesgue’s dominated convergence theorem yields

lim
λ→0+

JAλφ+F
ρ x = lim

λ→0+
uρ,λ = uρ = J

A1∩φφ+F
ρ x in L1(Σ, µ)

for every x ∈ L1 ∩ L∞(Σ, µ) and ρ > 0. Since L1 ∩ L∞(Σ, µ) is dense in L1(Σ, µ)

and JA1∩∞φ+F
ρ and JAλφ+F

ρ are Lipschitz continuous, a standard density argument
shows that the hypothesis (5.18) in Theorem 5.8 for q = 1 holds. Therefore,

lim
λ→0+

uλ = u in C([0, T]; L1(Σ, µ)).

and by (5.19) and (5.21), for the strong solution uλ of (5.20) and the mild solution
u of (2.22), one has

(5.26) lim
λ→0+

uλ = u in C([0, T]; Lq(Σ, µ)) for all 1 ≤ q < ∞.

Next, we show that

(5.27) u ∈W1,2
loc ((0, T]; L2(Σ, µ))

By the Lipschitz continuity of the Nemytski operator F on L2(Σ, µ) and since uλ

belongs to C([0, T]; L2(Σ, µ)), we have that F(uλ) ∈ C([0, T]; L2(Σ, µ)). Further,
since φ is Lipschitz continuous, φ(0) = 0, and uλ ∈ C1([0, T]; L2(Σ, µ)), we can
conclude that the function φ(uλ) ∈W1,2(0, T; L2(Σ, µ)) with weak derivative

(5.28)
d
dt

φ(uλ(t)) = φ′(uλ(t))
duλ

dt
(t) for a.e. t ∈ (0, T).

By equation (5.20) and by Aλ = Ψ′λ, [24, Lemme 3.3] implies that the function
Ψλ(φ(uλ)) : [0, T]→ R is absolutely continuous and

d
dt

Ψλ(φ(uλ(t))) = 〈Aλφ(uλ(t)) ,
d
dt

φ(uλ(t))〉 = 〈Aλφ(uλ(t)) , φ′(uλ(t))
duλ

dt
(t)〉

for a.e. t ∈ (0, T). Let k ≥ 0 and multiply equation (5.20) by sk+2 d
ds φ(uλ(s)) with

respect to the L2-inner product and integrating over (0, t), for some 0 < t < T.
Then∫ t

0
sk+2

∫
Σ

φ′(uλ(s))
∣∣∣∣duλ

ds
(s)
∣∣∣∣2 dµ ds + tk+2 Ψλ(φ(uλ(t)))

= (k + 2)
∫ t

0
sk+1ψλ(φ(uλ(s)))ds−

∫ t

0
sk+2

∫
Σ

F(uλ(s))φ′(uλ(s))
duλ

ds
(s)dµ ds.

Since φ′(uλ) ≥ 0, Young’s inequality gives

1
2

∫ t

0
sk+2

∫
Σ

φ′(uλ(s))
∣∣∣∣duλ

ds
(s)
∣∣∣∣2 dµ ds + tk+2 Ψλ(φ(uλ(t)))

≤ (k + 2)
∫ t

0
sk+1ψλ(φ(uλ(s)))ds

+ 1
2

∫ t

0
sk+2

∫
Σ
|F(uλ(s))|2φ′(uλ(s))dµ ds.

(5.29)
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for every 0 < t ≤ T. On the other hand, the Yosida operator Aλ is the subgradi-
ent ∂L2 Ψλ of Ψλ, and Aλ(0) = 0 and Ψλ(0) = 0. Thus

〈Aλφ(uλ(t)) , 0− φ(uλ(t))〉 ≤ Ψλ(0)−Ψλ(φ(uλ(t)))

for every 0 < t < T. Multiplying this inequality by (−1) and taking advantage
of equation (5.20) yields

(5.30) Ψλ(φ(uλ(t))) ≤ −〈 duλ
dt (t) , φ(uλ(t))〉 − 〈F(uλ(t)) , φ(uλ(t))〉

for every 0 < t < T. Since φ is non-decreasing on R and Φ(0) = 0, one has
Φ(r) ≤ φ(r)r for every r ∈ R. Thus, by integrating inequality (5.30) over (0, t)
for some t ∈ (0, T], we obtain∫ t

0
Ψλ(φ(uλ(s)))ds +

∫
Σ

Φ(uλ(t))dµ

≤
∫

Σ
Φ(uλ(t))dµ−

∫ t

0

∫
Σ

F(uλ(s))φ(uλ(s))dµ ds.

Similarly, multiplying inequality (5.30) by sk+1 and subsequently integrating
over (0, t) for some t ∈ (0, T] gives∫ t

0
sk+1Ψλ(φ(uλ(s)))ds + tk+1

∫
Σ

Φ(uλ(t))dµ

≤ (k + 1)
∫ t

0
sk
∫

Σ
Φ(uλ(t))dµds

−
∫ t

0
sk+1

∫
Σ

F(uλ(s))φ(uλ(s))dµ ds

≤ (k + 1)
∫ t

0
sk
∫

Σ
φ(uλ(t)) uλ(t)dµds

−
∫ t

0
sk+1

∫
Σ

F(uλ(s))φ(uλ(s))dµ ds

(5.31)

for every 0 < t ≤ T. Since φ(0) = 0 and φ is non-decreasing on R, one has that
the function Φ(r) ≥ 0 for every r ∈ R and so,∫

Σ
Φ(uλ(t))dµ ≥ 0.

Thus, applying estimate (5.31) to the right hand-side of (5.29) yields

1
2

∫ t

0
sk+2

∫
Σ

φ′(uλ(s))
∣∣∣∣duλ

ds
(s)
∣∣∣∣2 dµ ds + tk+2 Ψλ(φ(uλ(t)))

≤ (k + 2)(k + 1)
∫ t

0
sk
∫

Σ
φ(uλ(t)) uλ(t)dµ ds

− (k + 2)
∫ t

0
sk+1

∫
Σ

F(uλ(s))φ(uλ(s))dµ ds

+ 1
2

∫ t

0
s
∫

Σ
φ′(uλ(s)) |F(uλ(s))|2 dµ ds.

(5.32)

By assumption, there are constants α1, α2 > 0 such that α1 ≤ φ′(s) ≤ α2 for
all s ∈ [−M, M], by the boundedness of φ on [−M, M], by the continuity of
F : L2(Σ, µ) → L2(Σ, µ), and by (5.19) and (5.21), we can conclude from esti-
mate (5.32) that the sequence (uλ)λ>0 is bounded in W1,2

loc ((0, T]; L2(Σ, µ)). Thus,
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for every sequence (λn) ∈ (0, 1) such that λn → 0 as n → ∞, there is w ∈
L2

loc((0, T]; L2(Σ, µ)) and after eventually passing to a subsequence, duλn
dt ⇀ w

weakly in L2([δ, T]; L2(Σ, µ) for every δ ∈ (0, T). Hence, sending n→ ∞ in

uλn(t)− uλn(s) =
∫ t

s

duλn

dr
(r)dr

and using (5.26) yields w(t) = du
dt (t) in L2(Σ, µ) for a.e. t ∈ (0, T). Therefore,

(5.27) holds and

(5.33) lim
λ→0+

duλn

dt
=

du
dt

weakly in L2
loc((0, T]; L2(Σ, µ)).

Next, by (5.26) and since φ is Lipschitz continuous,

lim
λ→0+

φ(uλ) = φ(u) in C([0, T]; L2(Σ, µ)).

In particular, φ(u(t)) ∈ L2(Σ, µ) for every t ∈ [0, T]. By assumption, Ψ is densely
defined on L2(Σ, µ) and so by [24, Proposition 2.11 & Théorème 2.2], the resol-
vent operator Jλ of A satisfies

lim
λ→0+

Jλφ(u(t)) = φ(u(t)) in L2(Σ, µ) for every t ∈ [0, T].

Thus and since for every t ∈ [0, T],

‖Jλφ(uλ(t))− φ(u(t))‖2

≤ ‖Jλφ(uλ(t))− Jλφ(u(t))‖2 + ‖Jλφ(u(t))− φ(u(t))‖2

≤ ‖φ(uλ(t))− φ(u(t))‖2 + ‖Jλφ(u(t))− φ(u(t))‖2,

we can conclude that

(5.34) lim
λ→0+

Jλφ(uλ(t)) = φ(u(t)) in L2(Σ, µ) for every t ∈ [0, T].

Now, let (ŵ, v̂) ∈ A and t ∈ (0, T) such that du
dt (t) exists in L2(Σ, µ). Since

Aλ(φ(uλ(t))) ∈ A(Jλφ(uλ))

and since A is accretive in L2(Σ, µ), one has[
Jλφ(uλ(t))− ŵ,

(
−F(uλ(t))−

duλ

dt
(t)
)
− v̂
]

2
≥ 0

Sending λ→ 0+ in this inequality and using (5.33) and (5.34) yields[
φ(uλ(t))− ŵ,

(
−F(u(t))− du

dt
(t)
)
− v̂
]

2
≥ 0.

Since (ŵ, v̂) ∈ A was arbitrary, A is m-accretive in L2(Σ, µ) and du
dt (t) exists

in L2(Σ, µ) for a.e. t ∈ (0, T), we can conclude that for a.e. t ∈ (0, T), one
has φ(u(t)) ∈ D(A) satisfying inclusion (5.14), showing that u is a strong so-
lution of (5.14) in L2(Σ, µ). Now, proceeding as in the previous steps of this
proof, one sees that chain rule (5.28) and estimates (5.29) and (5.31) satisfied by
uλ hold, in particular, for u, proving that φ(u) ∈ W1,2

loc ((0, T]; L2(Σ, µ)), chain
rule (5.10) and the estimates (5.16) and (5.17) hold. Moreover, by (5.21), (5.26),
and (5.27), we see that u has the regularity as stated in (5.15). Next, recall that
A is the subgradient ∂L2 Ψ in L2(Σ, µ) of a convex, proper, lower semicontin-
uous functional Ψ on L2(Σ, µ). Further, for every 0 < δ < T, the function
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v := φ(u) ∈ W1,2([δ, T]; L2(Σ, µ)) and inclusion (5.14) yields g := −F(u)− du
dt ∈

L2([δ, T]; L2(Σ, µ)) and satisfies g(t) ∈ Av(t) for a.e. t ∈ (δ, T). Thus for every
0 < δ < T, by [24, Lemme 3.3], the function t 7→ Ψ(v(t)) is absolutely continu-
ous on [δ, T] and for a.e. t ∈ (δ, T),

d
dt Ψ(v(t)) = 〈g(t), dv

dt (t)〉.
Combining this together with chain rule (5.10), we see that equation (5.12) holds.

�

5.2. Weak solutions for general φ and initial values in L∞. This subsection is
concerned with the second major step toward the proof of Theorem 5.6. Our
next results shows that mild solutions are, in fact, weak energy solutions for
initial values u0 ∈ D(A1∩∞φ)L1 ∩ L∞(Σ, µ). This is known to be true for the
homogeneous porous media equation (cf. [10, 91]), and generalises this result to
general quasi-m-accretive operators in L1 with complete resolvent of the form
A1∩∞φ.

Theorem 5.9. Let Ψ : V → R be a convex, lower semicontinuous, and Gâteaux dif-
ferentiable functional satisfying the hypotheses (Hi)-(Hiv), φ be a strictly increasing
continuous function on R satisfying (Ha) and F be an operator on Lq(Σ, µ) satisfy-
ing (Hb). Then, for every u0 ∈ D(A1∩∞φ)L1 ∩ L∞(Σ, µ) and T > 0, the mild solution
u(t) = Ttu0, (t ≥ 0), of Cauchy problem (5.2) in L1(Σ, µ) is a weak energy solution of
Cauchy problem (5.3) satisfying

(5.35) u ∈ C([0, T]; Lq(Σ, µ)) ∩ L∞(0, T; L∞(Σ, µ)),

for every 1 ≤ q < ∞,

(5.36) du
dt ∈ Lp′ (0, T; V ′), φ(u) ∈ Lp(0, T; V)

and identity

(5.37)
∫ T

0

{〈
du
dt , v

〉
V′,V

+ 〈Ψ′φ(u(t)), v〉+ 〈F(u(t)), v〉
}

dt = 0

holds for every v ∈ Lp(0, T; V). In particular, for the function Φ given by (5.8), one
has that

(5.38) Φ(u) ∈ C([0, T]; L1(Σ, µ)) with
∫

Σ
Φ(u)dµ ∈W1,1(0, T),

”integration by parts rule” (5.43) holds, and for every k ≥ 0 and t > 0, inequality (5.16)
and energy estimate∫ t

0
Ψ(φ(u(s)))ds +

∫
Σ

Φ(u(t))dµ

≤
∫

Σ
Φ(u0)dµ−

∫ t

0

∫
Σ

F(u(s))φ(u(s))dµ ds,
(5.39)

holds.

For the proof of this result, we need the following approximation result.

Lemma 5.10. Let A be an m-completely accretive operator in L2(Σ, µ) of a finite mea-
sure space (Σ, µ), F be the Nemytski operator of a Carathéodory function f : Σ×R→
R satisfying (2.17), and φ be a strictly increasing continuous function on R such that
for every λ > 0, the Yosida operator βλ of β = φ−1 and of β = φ−1

ε the regularisation
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(φε) of φ satisfy condition (2.43). Further, for every λ > 0, let Jε
λ denote the resolvent

operator of A1∩∞φε + F and Jλ the resolvent operator of A1∩∞φ + F. Then, for every
λ > 0 such that ωλ < 1 and u ∈ L1 ∩ L∞(Σ, µ), one has

(5.40) lim
ε→0

Jε
λu = Jλu in Lq(Σ, µ) for every 1 ≤ q < ∞.

Proof of Lemma 5.10. By Proposition 2.19, A1∩∞φ + F is m-accretive in L1 with
complete resolvent and for every λ > 0 such that ωλ < 1, A1∩∞φ + F satisfies
the range condition (2.45). Moreover, since one has that

A1∩∞φε ⊆ A1∩∞φε and A1∩∞φ ⊆ A1∩∞φ,

the range condition (2.45) yields that the resolvent Jε
λ coincides with the resol-

vent of A1∩∞φε on L1 ∩ L∞(Σ, µ) and the resolvent Jλ of A1∩∞φ coincides with
the resolvent of A1∩∞φ on L1 ∩ L∞(Σ, µ). Thus, for every λ > 0 such that
ωλ < 1 and every u ∈ L1 ∩ L∞(Σ, µ), ε > 0, there are (uε, vε) ∈ A1∩∞φε and
(u0, v0) ∈ A1∩∞φ satisfying

(5.41) uε + λ(vε + F(uε)) = u and u0 + λ(v0 + F(u0)) = u,

or equivalently, uε = Jε
λu for every ε > 0 and u0 = Jλu. Now, by using (5.41) and

since A and F + ωI are accretive operators in L2(Σ, µ), we see that

(1−ωλ)
∫

Σ
(uε − u0)(φ(uε)− φ(u0))dµ

= (1−ωλ)
∫

Σ
(uε − u0)(φε(uε)− φ(u0))dµ

−
∫

Σ
(uε − u0)(φ(uε)− φε(uε))dµ

= −λ
∫

Σ

[
vε + F(uε) + ωuε − (v0 + F(u0) + ωu0)

]
×

× (φε(uε)− φ(u0))dµ

−
∫

Σ
(uε − u0)(φ(uε)− φε(uε))dµ

= −λ
[
φε(uε)− φ(u0), vε − v0

]
2

− λ
[
φε(uε)− φ(u0), (F(uε) + ωuε)− (F(u0) + ωu0)

]
2

−
∫

Σ
(uε − u0)(φ(uε)− φε(uε))dµ

≤ −
∫

Σ
(uε − u0)(φ(uε)− φε(uε))dµ.

By Proposition 2.16,

(5.42) ‖uε‖q ≤ (1− λ ω)−1‖u‖q =: M

for all ε ≥ 0 and 1 ≤ q ≤ ∞ and so,

0 ≤
∫

Σ
(uε − u0)(φ(uε)− φ(u0))dµ ≤ 2‖u‖1

(1− λ ω)2 ‖φε − φ‖L∞(−M,M).

Since φε → φ uniformly on compact subsets of R, since φ is strictly increasing
on R and φ(s) = 0 if and only if s = 0, it follows that limε uε = u0 a.e. on Σ.
Using again (5.42) and that the measure space (Σ, µ) is finite, we can conclude
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that (5.40) holds for u ∈ L1 ∩ L∞(Σ, µ). A standard density argument yields the
statement of this lemma. �

The following integration by parts rule is an important tool in the proof of Theo-
rem 5.9. It also appears in different versions in the literature (cf., for instance, [2,
p. 366]).

Lemma 5.11. Let φ : R → R be a non-decreasing continuous function and u ∈
L∞(0, T; L∞(Σ, µ)) ∩ C([0, T]; L1(Σ, µ)) such that du

dt ∈ Lp′ (0, T; V ′) and φ(u) ∈
Lp(0, T; V). Set Φ(r) =

∫ r
0 φ(s)ds for every r ∈ R. Then,

(5.43)
∫ t2

t1

〈du
dt

, φ(u)
〉

V,V
dt =

∫
Σ

Φ(u(t2))dµ−
∫

Σ
Φ(u(t1))dµ

for every 0 ≤ t1 < t2 ≤ T.

Proof. By assumption, there is a constant M = ‖u‖L∞(0,T;L∞(Σ,µ)) ≥ 0 such that φ

is bounded on [−M, M] with constant Lφ > 0. From this, we easily obtain that

(5.44) ‖Φ(u(t))−Φ(u(s))‖1 ≤ Lφ M ‖u(t)− u(s)‖1

for every t, s ∈ [0, T] and so Φ(u) ∈ C([0, T]; L1(Σ)). Furthermore, Hölder’s
inequality yields 〈 du

dt , φ(u)〉V′;V ∈ L1(0, T). Thus, both sides of equation (5.43)
are finite. Now, let 0 ≤ t1 < t2 ≤ T. For every h > 0 and for t1 < t < t2 such
that h < t2−t, the Steklov average [ du

dt ]h of du
dt is given by[du

dt

]
h
(t) :=

1
h

∫ t+h

t

du
ds

(s)ds in V ′.

Since du
dt ∈ Lp′ (0, T; V ′), one easily checks that

lim
h→0+

[du
dt

]
h
=

du
dt

in Lp′ (t1, t2; V ′)

and so,

(5.45) lim
h→0+

∫ t2

t1

〈[du
dt

]
h
, φ(u)

〉
V′,V

dt =
∫ t2

t1

〈du
dt

, φ(u)
〉

V,V
dt.

Furthermore, for every t ∈ (0, T− h), [ du
dt ]h(t) = h−1(u(t+ h)− u(t)). Using this

together with the convexity of Φ and (5.4), we see that∫ t2

t1

〈[du
dt

]
h
, φ(u)

〉
V′,V

dt ≤
∫ t2

t1

h−1
∫

Σ
(Φ(u(t + h))−Φ(u(t)))dµ dt

=
∫ t2

t1

∫
Σ

d
dt

Φh(u(t))dµ dt
(5.46)

By (5.44), we can apply Fubini’s Theorem, to conclude that∫ t2

t1

∫
Σ

d
dt

Φh(u(t))dµ dt =
∫

Σ
Φh(u(t2))dµ−

∫
Σ

Φh(u(t2))dµ

for every h > 0. Since Φ(u) ∈ C([0, T]; L1(Σ)), one has that

lim
h→0+

Φh(u(t2)) in C([t1, t2]; L1(Σ))
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(cf. [54, Lemma 3.3.4] for V = R and note that the general Banach space-valued
case V is shown analogously). Thus, sending h → 0+ in (5.46) and using (5.45)
yields ∫ t2

t1

〈du
dt

, φ(u)
〉

V′,V
dt ≤

∫
Σ

Φ(u(t1))dµ−
∫

Σ
Φ(u(t2))dµ.

In order to see that the reverse inequality holds as well, we take h < 0 such that
0 < −h < t1. Then by the convexity of Φ and since h−1 < 0, we obtain that∫ t2

t1

〈[du
dt

]
h
, φ(u)

〉
V′,V

dt =
∫ t2

t1

h−1〈u(t + h)− u(t), φ(u(t))〉dt

≥
∫ t2

t1

h−1
∫

Σ
(Φ(u(t + h))−Φ(u(t)))dµ dt

=
∫ t2

t1

∫
Σ

d
dt

Φh(u(t))dµ dt.

Now, proceeding as in the first part of this proof, we see that (5.43) holds. �

With the above preliminaries, we can now outline the proof of Theorem 5.9.

Proof of Theorem 5.9. Let φ : R → R be strictly increasing continuous and for
every ε > 0 and φε be the regularisation of φ satisfying the assumptions of this
theorem. Since A1∩∞φ + F and A1∩∞φε + F are quasi m-accretive in L1(Σ, µ),
the Crandall-Liggett theorem yields the existence of strongly continuous semi-
groups {Tt}t≥0 ∼ −(A1∩∞φ + F) on D(A1∩∞φ) and {Tε

t }t≥0 ∼ −(A1∩∞φε + F)
on D(A1∩∞φε). Since A1∩∞φ + F and A1∩∞φε + F have each a complete resol-
vent, Proposition 2.16 yields

(5.47) ‖uε(t)‖q ≤ eωt‖u0‖q and ‖u(t)‖q ≤ eωt‖u0‖q

for every t ≥ 0, ε > 0 and 1 ≤ q ≤ ∞. Moreover, by Lemma 5.10 and Theo-
rem 5.8, one has for every T > 0 that

(5.48) lim
ε→0

uε = u in C([0, T]; L1(Σ, µ)).

Combining this with (5.47) and Hölder’s inequality, we find

(5.49) lim
ε→0

uε = u in C([0, T]; Lq(Σ, µ)), for every 1 ≤ q < ∞ and T > 0.

Now, we fix T > 0 and set
M = eωT‖u0‖∞.

By (5.47), the values of uε and u do not exceed the interval [−M, M]. Since the
measure space (Σ, µ) is finite, we see that

‖φε(uε(t))− φ(u(t))‖q ≤ ‖φε(uε(t))− φ(uε(t))‖q + ‖φ(uε(t))− φ(u(t))‖q

≤ µ(Σ)1/q ‖φε − φ‖L∞(−M,M) + ‖φ(uε(t))− φ(u(t))‖q

and so, the uniform convergence of φε → φ on [−M, M] as ε → 0+, the conti-
nuity of φ combined with (5.47), (5.49), and Lebesgue’s dominated convergence
theorem imply

(5.50) lim
ε→0

φε(uε) = φ(u) in C([0, T]; Lq(Σ, µ)) for every 1 ≤ q < ∞.
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Since F is Lipschitz continuous in all Lq-spaces, (5.49) and (5.50) imply

(5.51) lim
ε→0

∫ t

0
sk+1

∫
Σ

F(uε)φε(uε)dµ ds =
∫ t

0
sk+1

∫
Σ

F(u)φ(u)dµ ds

for every t ∈ (0, T] and k ≥ −1. We set

Φε(s) =
∫ s

0
φε(r)dr for every s ∈ R.

Since φε → φ uniformly on [−2M, 2M] as ε→ 0+, there is some ε0 > 0 such that
the sequence (φε)ε>ε0 is bounded L∞(−2M, 2M). Thus and by the mean-value
theorem, we obtain that

‖Φε(uε(t))−Φ(u(t))‖1

≤ ‖Φε(uε(t))−Φε(u(t))‖1 + ‖Φε(u(t))−Φ(u(t))‖1

≤ sup
ε≥ε0

‖φε‖L∞(−M,M) ‖uε(t)− u(t)‖1 + ‖φε − φ‖L∞(−M,M) eωT‖u0‖1.

Applying to this limit (5.49) and the uniform convergence of φε → φ on [−M, M]
as ε→ 0+, we obtain that

(5.52) lim
ε→0

Φε(uε) = Φ(u) in C([0, T]; L1(Σ, µ)).

By Theorem 5.7, every uε is a strong solution of Cauchy problem (5.10) for φ
replaced by φε and has the same regularity as stated in (5.15). Moreover, every
uε satisfies inequality (5.39), that is,∫ t

0
Ψ(φε(uε(s)))ds +

∫
Σ

Φε(uε(t))dµ

≤
∫

Σ
Φε(u0)dµ−

∫ t

0

∫
Σ

F(uε(s))φε(uε(s))dµ ds
(5.53)

and inequality (5.16), that is,∫ t

0
sk+1Ψ(φε(uε(s)))ds + tk+1

∫
Σ

Φε(uε(t))dµ

≤ (k + 1)
∫ t

0
sk
∫

Σ
φε(uε(t)) uε(t)dµ ds

−
∫ t

0
sk+1

∫
Σ

F(uε(s)) φε(uε(s))dµ ds

(5.54)

for every t ∈ (0, T] and ε > 0, where k ≥ 0 is fixed. Since Φε ≥ 0, inequal-
ity (5.53) together with (5.47) and the two limits (5.50) and (5.51) imply that the
sequence (φε(uε))ε>0 is bounded in Lp(0, T; V) and so by (5.6), (Ψ′φε(uε))ε>0 is
bounded in Lp′ (0, T; V ′). In particular, by equation (5.11) we have that

( duε
dt

)
ε>0

is bounded in Lp′ (0, T; V ′). By the continuous embedding of V into L2(Σ, µ)
and by (5.50), for any sequence (εn)n≥1 of the open interval (0, 1) satisfying
limn→∞ εn = 0, there are ν and χ ∈ Lp′ (0, T; V ′) and a subsequence of (uεn)n≥1,
which we denote again by (uεn)n≥1 such that

lim
n→∞

φεn(uεn) = φ(u) weakly in Lp(0, T; V),(5.55)

lim
n→∞

duεn
dt = ν weakly in Lp′ (0, T; V ′),(5.56)

lim
n→∞

Ψ′φεn(uεn) = χ weakly in Lp′ (0, T; V ′).(5.57)
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By (5.49) and (5.56) combined with standard techniques employed for vector-
valued distributions (see, for instance, [53, pp 36]), one sees that

ν =
du
dt

in Lp′ (0, T; V ′).

By (5.4) and Lipschitz continuity of F on Lp′ (0, T; L2(Σ, µ)), we may multiply
equation (5.11) by v ∈ C1

c (0, T; V) and subsequently integrate over (0, T). Then,∫ T

0

〈
duεn

dt
, v
〉

V′,V
dt +

∫ T

0
〈Ψ′φεn(uεn), v〉V′,V dt +

∫ T

0
〈F(uεn), v〉dt = 0

for every n ≥ 1. Sending n → ∞ in the latter equation and employing (5.49),
(5.56), (5.57) and the Lipschitz continuity of F on Lp′ (0, T; L2(Σ, µ)) yields

(5.58)
du
dt

+ χ + F(u) = 0 in Lp′ (0, T; V ′).

It remains to show that χ = Ψ′(u). To see this, let 0 < t1 < t2 < T and take
w ∈ Lp(0, T; V). By convexity of Ψ, we have that∫ t2

t1

〈Ψ′(φεn(uεn))−Ψ′(w), φεn(uεn)− w〉dt ≥ 0.

Now, using that uεn is a solution of equation (5.11), the latter inequality can be
rewritten as∫ t2

t1

∫
Σ

F(uεn)(φεn(uεn)− w)dµdt +
∫

Σ
Φ(uεn)dµ

∣∣∣t2

t1

+
∫ t2

t1

〈 duεn
dt , w〉dt

≤ −
∫ t2

t1

〈Ψ′(w), φεn(uεn)− w〉dt.

Sending n → ∞ in this inequality and using (5.49), (5.51) for k = −1, (5.55),
(5.56), and (5.52), we obtain∫ t2

t1

∫
Σ

F(u)(φ(u)− w)dµdt +
∫

Σ
Φ(u)dµ

∣∣∣t2

t1

+
∫ t2

t1

〈 du
dt , w〉dt

≤ −
∫ t2

t1

〈Ψ′(w), φ(u)− w〉dt.

On the other hand, if we first multiply equation (5.58) with φ(u), and then in-
tegrate over (t1, t2) for 0 < t1 < t2 < T and apply integration by parts formula
(Lemma 5.11) yields∫

Σ
Φ(u)dµ

∣∣∣t2

t1

+
∫ t2

t1

〈χ, φ(u)〉dt +
∫ t2

t1

∫
Σ

F(u(t))φ(u(t))dµ dt = 0.

Using this, we can rewrite the latter inequality as∫ t2

t1

〈χ−Ψ′(w), φ(u)− w〉dt ≥ 0.

Since w ∈ Lp(0, T; V ′) was arbitrary, taking w = φ(u)− λξ for any λ > 0 and for
some general ξ ∈ Lp(t1, t2; V) in this inequality and applying the hemicontinuity
of Ψ′ (hypothesis (Hii)) yields∫ t2

t1

〈χ−Ψ′(φ(u)), ξ〉dt ≥ 0
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for all ξ ∈ Lp(t1, t2; V). Therefore and since 0 < t1 < t2 < T were arbitrary,
χ = Ψ′(φ(u)) in V ′ for a.e. t ∈ (0, T), showing that u is a weak energy solution
of Cauchy problem (5.3).

It remains to show that u satisfies the energy inequalities (5.39) and (5.16).
To see this, we send ε → 0 in the two inequalities (5.53) and (5.54) and apply
limit (5.55) together with Fatou’s lemma (note Ψ ≥ 0 by assumption) and the
lower semicontinuity of ψ, limit (5.49), (5.50), (5.51) and (5.52). This completes
the proof of this theorem. �

5.3. Proof of Theorem 5.6. This subsection is dedicated to outlining the proof
of Theorem 5.6.

Proof of Theorem 5.6. Let u0 ∈ D(A1∩∞φ)L1 and {Tt}t≥0 be the semigroup gener-
ated by −(A1∩∞φ + F) on D(A1∩∞φ)L1 . By assumption, the semigroup {Tt}t≥0
satisfies the L1-L∞-regularisation estimate (1.18) (for u0 = 0 and s = 1). Thus
Ttu0 ∈ D(A1∩∞φ)L1 ∩ L∞(Σ, µ) for every t > 0 and the strong continuity of
{Tt}t≥0 in L1(Σ, µ) yields the existence of a sequence (u0,n)n≥1 with elements
u0,n ∈ D(A1∩∞φ)L1 ∩ L∞(Σ, µ) such that u0,n = Ttn u0 for some sequence (tn)n≥1
satisfying 0 < tn+1 < tn, limn→∞ tn = 0, and limn→∞ u0,n = u0 in L1(Σ, µ). We
set u(t) = Ttu0, (t ≥ 0), to be the unique mild solution of problem (5.2) in L1

with initial value u0 and un(t) = Ttu0,n, (t ≥ 0), the unique mild solution of
problem (5.2) in L1 with initial value u0,n. By Theorem 5.9, the mild solution un
of (5.2) is a weak energy solution of problem (5.3) with regularity (5.35)–(5.36),
satisfying (5.37) and (5.38). Now, the semigroup property (2.24) and the expo-
nential growth property in L1 (that is, q̃ = 1 in (2.30)) yield that

(5.59) u(t + tn) = un(t) for all t ≥ 0 and n ≥ 1.

Thus, if one replaces the interval [0, T) by [tn, T) for every n ≥ 1, the mild so-
lution u is a weak energy solution of problem (5.3) with regularity (5.35)–(5.36),
satisfying (5.37) and (5.38).

It remains to show that energy estimates (5.9) holds. For this, recall that by
Theorem 5.9, un satisfies (5.16) for every k ≥ 0, that is,∫ t

0
sk+1Ψ(φ(un(s)))ds + tk+1

∫
Σ

Φ(un(t))dµ

≤ (k + 1)
∫ t

0
sk
∫

Σ
φ(un(t)) un(t)dµ ds

−
∫ t

0
sk+1

∫
Σ

F(un(s))φ(un(s))dµ ds.

(5.60)

By using that F is Lipschitz continuous, Hölder’s and Young’s inequality, and
then Poincaré type inequality (5.7), we see that

±
∫ t

0
sk+1

∫
Σ

F(un(s))φ(un(s))dµ ds

≤ ω
∫ t

0
sk+1‖un(s)‖p′ ‖φ(un(s))‖p ds

≤ ε
∫ t

0
sk+1Ψ(φ(un(s)))ds + ωp Cp−1

p′ (ε p)p−1

∫ t

0
sk+1‖un(s)‖p′

p′ ds

(5.61)
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for every ε > 0. Similarly,

(k + 1)
∫ t

0
sk
∫

Σ
φ(un(s)) un(s)dµ ds

≤ (k + 1)
∫ t

0
sk‖un(s)‖p′ ‖φ(un(s))‖p ds

≤ ε
∫ t

0
sk+1Ψ(φ(un(s)))ds + (k+1)p Cp−1

p′ (ε p)p−1

∫ t

0
sk‖un(s)‖p′

p′ ds

(5.62)

Choosing ε = 1
4 in these two estimates and apply them to the right hand-side of

inequality (5.60), we obtain

1
2

∫ t

0
sk+1Ψ(φ(un(s)))ds + tk+1

∫
Σ

Φ(un(t))dµ

≤ (k+1)p Cp−1

p′ (4−1 p)p−1

∫ t

0
sk‖un(s)‖p′

p′ ds + ωp Cp−1

p′ (4−1 p)p−1

∫ t

0
sk+1‖un(s)‖p′

p′ ds.
(5.63)

By assumption, there are exponents α, β, γ > 0 and a constant C̃ > 0 such that
the semigroup {Tt}t≥0 satisfies L1-L∞ regularisation estimate (5.7). Now, we
choose k = α(p′ − 1) > 0. Then, by Hölder’s inequality, by using that

‖un(t)‖1 ≤ eωt ‖u0,n‖1 for every t ≥ 0,

and by L1-L∞ regularisation estimate (5.7), we see that∫ t

0
sα(p′−1)‖un(s)‖p′

p′ ds ≤
∫ t

0
sα(p′−1)‖un(s)‖(p′−1)

∞ ‖un(s)‖1 ds

≤
∫ t

0
sα(p′−1)‖un(s)‖(p′−1)

∞ eωs ds ‖u0,n‖1

≤
∫ t

0
eω(β (p′−1)+1) s ds ‖u0,n‖γ (p′−1)+1

1

and ∫ t

0
sα(p′−1)+1 ‖un(s)‖p′

p′ ds ≤
∫ t

0
s eω (β (p′−1)+1) s ds ‖u0,n‖γ (p′−1)+1

1 .

Applying these to estimate (5.63), we obtain

1
2

∫ t

0
sα(p′−1)+1Ψ(φ(un(s)))ds + tα(p′−1)+1

∫
Σ

Φ(un(t))dµ

≤ (α(p′−1)+1)p Cp−1

p′ (4−1 p)p−1

∫ t

0
eω (β (p′−1)+1) s ds ‖u0,n‖γ (p′−1)+1

1

+ ωp Cp−1

p′ (4−1 p)p−1

∫ t

0
s eω (β (p′−1)+1) s ds ‖u0,n‖γ (p′−1)+1

1 .

Inserting relation (5.59) into this inequality yields

1
2

∫ t

0
sα(p′−1)+1Ψ(φ(u(s + tn)))ds + tα(p′−1)+1

∫
Σ

Φ(u(t + tn))dµ

≤ (α(p′−1)+1)p Cp−1

p′ (4−1 p)p−1

∫ t

0
eω (β (p′−1)+1) s ds ‖u(tn)‖γ (p′−1)+1

1

+ ωp Cp−1

p′ (4−1 p)p−1

∫ t

0
s eω (β (p′−1)+1) s ds ‖u(tn)‖γ (p′−1)+1

1 .
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for every t > 0 and n ≥ 1. By the continuity of φ, since u ∈ C([0, ∞); L1(Σ, µ)),
the lower semicontinuity of Ψ, and since

lim
n→∞

∫
Σ

Φ(u(t + tn))dµ→
∫

Σ
Φ(u(t))dµ

for every t > 0, sending n→ ∞ in the last inequality yields inequality (5.9).
Next, suppose that φ′ ∈ L∞(R), (φ−1)′ is locally bounded, and exponent 0 <

α ≤ 1 in estimate (5.1). By Theorem 5.7, the function un given by (5.59) is a strong
solution of Cauchy problem (5.14) with initial value un(0) = u0,n = Ttn u0 for
some sequence (tn)n≥1 ⊆ (0, ∞) satisfying tn ↓ 0+ as n → ∞. By Theorem 5.7,
the function un has regularity (5.15) satisfying the properties (1)–(4) of in this
theorem. Thus, by (5.59), the mild solution u is also a strong solution of Cauchy
problem (5.14) on the interval [tn, T) admitting regularity (5.15) on [tn, T) for
every n ≥ 1 large enough.

It remains to show that u satisfies energy inequality (5.13). To see this, we use
that by Theorem 5.7, un satisfies inequality (5.17) for every k ≥ 0 and t > 0, that
is,

1
2

∫ t

0
sk+2

∫
Σ

φ′(un(s))
∣∣∣∣dun

ds
(s)
∣∣∣∣2 dµ ds + tk+2 Ψ(φ(un(t)))

≤ (k + 2)(k + 1)
∫ t

0
sk
∫

Σ
φ(un(t)) un(t)dµ ds

− (k + 2)
∫ t

0
sk+1

∫
Σ

F(un(s))φ(un(s))dµ ds

+ 1
2

∫ t

0
s
∫

Σ
φ′(un(s)) |F(un(s))|2 dµ ds.

(5.64)

Applying the two estimates (5.61) and (5.62) to the right hand side of inequal-
ity (5.64) yields

1
2

∫ t

0
sk+2

∫
Σ

φ′(un(s))
∣∣∣∣dun

ds
(s)
∣∣∣∣2 dµ ds + tk+2 Ψ(φ(un(t)))

≤ (k + 2) 2
[

ε
∫ t

0
sk+1Ψ(φ(un(s)))ds + (k+1)p Cp−1

p′ (ε p)p−1

∫ t

0
sk‖un(s)‖p′

p′ ds
]

+ 1
2

∫ t

0
s
∫

Σ
φ′(un(s)) |F(un(s))|2 dµ ds.

for every ε > 0 and k ≥ 0. Now, taking k = α(p′ − 1) and ε = 1
2 , then by inequal-

ity (5.9), the Lipschitz continuity of F, Hölder’s inequality, since by assumption
φ′ ∈ L∞(R), by the L1-L∞ regularisation estimate (5.1), and by the exponential
growth property

‖u(t)‖1 ≤ eωt ‖u0‖1 for all t ≥ 0,
we see that

1
2

∫ t

0
sα(p′−1)+2

∫
Σ

φ′(un(s))
∣∣∣∣dun

ds
(s)
∣∣∣∣2 dµ ds + tα(p′−1)+2 Ψ(φ(un(t)))

≤ (α(p′−1)+2) 2
p′

[
(α(p′−1)+1)p Cp−1

(4−1 p)p−1

∫ t

0
eω (β (p′−1)+1) s ds ‖u0,n‖γ (p′−1)+1

1

+ ωp Cp−1

(4−1 p)p−1

∫ t

0
s eω (β (p′−1)+1) s ds ‖u0,n‖γ (p′−1)+1

1
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+ (α(p′−1)+1)p Cp−1

(2−1 p)p−1

∫ t

0
sα(p′−1)‖un(s)‖p′−1

∞ ‖un(s)‖1 ds
]

+ ω2

2 ‖φ
′‖∞

∫ t

0
s ‖un(s)‖∞ ‖un(s)‖1 ds.

≤ (α(p′−1)+2) 2
p′

[
(k+1)p Cp−1

(4−1 p)p−1

∫ t

0
eω (β (p′−1)+1) s ds ‖u0,n‖γ (p′−1)+1

1

+ ωp Cp−1

(4−1 p)p−1

∫ t

0
s eω (β (p′−1)+1) s ds ‖u0,n‖γ (p′−1)+1

1

+ (α(p′−1)+1)p Cp

p′ (2−1 p)p−1

∫ t

0
eω β(p′−1) s ds‖u0,n‖γ(p′−1)+1

1

]
+ ω2 C̃

2 ‖φ
′‖∞

∫ t

0
s1−α eω(β+1) s ds‖u0,n‖γ+1

1 .

From this estimate, the assumptions on φ and by inequality (5.1), it is not difficult
to deduce that inequality (5.13) holds and u admits the stated properties. This
concludes the proof of this theorem. �

6. EXAMPLES

This section is devoted to illustrating the power of the theory developed in the
preceding sections. By using the abstract theory of nonlinear semigroups, we
show in this section that mild solutions of nonlinear parabolic initial boundary-
value problems satisfy an L1-L∞-regularisation effect provided the involved dif-
fusion operator satisfies a Gagliardo-Nirenberg type inequality. Comparing our
first examples with the results from the known literature, one sees that the meth-
ods developed in Section 3 and Section 4 yield sharp exponents and extend these
results for solutions with exponential growth.

Note that in principle our theory could work for non-linear operators on
non-compact manifolds, such as the porous media operators associated with
the Laplace-Beltrami operator or the p-Laplace operator (for the latter see [34]).
Here the Sobolev inequalities for the gradient depend on the geometry of the
manifold (see [39]), the main task is to deduce Gagliardo-Nirenberg inequalities
for the operator under consideration by adapting the methods of the present
section, then one applies the above machinery. We leave this for future work.

In order to keep our examples simple and to focus on the essential, namely,
the regularisation effect of solutions of parabolic boundary-value problems, we
shall assume that Σ is an open subset of the d-dimensional Euclidean space Rd

for d ≥ 2. We shall specify at the beginning of each example which further
assumptions we impose on the boundary ∂Σ of Σ. We choose µ to be the d-
dimensional Lebesgue measure on Σ and denote by H = Hd−1

|∂Σ the (d − 1)-

dimensional Hausdorff measureHd−1 restricted to the boundary ∂Σ.
Under this assumptions, we simplify our notation and write Lq(Σ) to denote

the Lebesgue space Lq(Σ, µ), Lq(∂Σ) to denote the Lebesgue space Lq(∂Σ,H),
and Lq

0(Σ, µ) the closed linear subspace u ∈ Lq(Σ, µ) with mean value u :=
1
|Σ|
∫

Σ u dx = 0 for 1 ≤ q ≤ ∞.
Here, we employ the following notation: for 1 ≤ p, q ≤ ∞, let W1

p,q(Σ) be
the linear subspace of all functions u ∈ Lq(Σ) having weak partial derivatives
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∂u
∂x1

, . . . , ∂u
∂xd
∈ Lp(Σ) equipped with the norm

‖u‖W1
p,q

:= ‖u‖q + ‖|∇u|‖p.

Moreover, for 1 ≤ p, q < ∞, we denote by Ẇ1
p,q(Σ) the closure of the set of

test functions C∞
c (Σ) in W1

p,q(Σ), W1
p,q,m(Σ) the space Lq

0(Σ) ∩W1
p,q(Σ), and for

0 < s < 1, Ws
p,q(Σ) denotes the set of all u ∈ Lq(Σ) with finite semi-norm

|u|ps,p :=
∫

Σ

∫
Σ

|u(x)−u(y)|p
|x−y|d+sp dxdy.

We equip Ws
p,q(Σ) with the norm ‖u‖s,p,q = ‖u‖q + |u|s,p. Further, we denote by

Ẇs
p,q(Σ) the closure of C∞

c (Σ) in Ws
p,q(Σ). For subsets ∂Σ in Rd−1, we denote by

W1−1/p,p(∂Σ) the Sobolev-Slobodeckij space given by the set of all u ∈ Lp(∂Σ)
having finite semi-norm

|u|pp :=
∫

∂Σ

∫
∂Σ

|u(x)−u(y)|p
|x−y|d+p−2 dH(x)dH(y).

In the following, F : Lq(Σ, µ) → Lq(Σ, µ) be the Nemytski operator of a
Carathéodory function f : Σ×R→ R satisfying (2.17) for some constant L > 0
and f (·, 0) = 0 and β be an m-accretive graph in R with domain D(β) = R and
(0, 0) ∈ β.

We begin to illustrate our theory on the following classical example.

6.1. Parabolic problems involving p-Laplace type operators. The Lq-Lr-regu-
larisation effect for 1 ≤ q < r ≤ ∞ of solutions of parabolic equations associated
with the celebrated p-Laplace operators equipped with homogeneous Dirichlet
boundary conditions has been first established by Véron [92]. The ideas in [92]
were followed up and extended rapidly by Alikakos and Rostamian [1] and
more recently in [30, 71]. By using the logarithmic Sobolev approach, Cipriani
and Grillo [33] revisited the Lq-Lr-regularisation effect for solutions of parabolic
equations involving p-Laplace operators equipped with homogeneous bound-
ary conditions. Then many papers followed on this topic by using the same
method (see, for instance, [84, 69, 47, 81], and more recently, [94] for homoge-
neous Robin boundary conditions with a nonlocal term).

To the best of our knowledge, our results stated in this section complement the
existing literature in several ways: namely, by adding (possibly multi-valued)
monotone and Lipschitz continuous perturbations and by providing a simpli-
fied approach to a Lq-Lr-regularisation effect of solutions of parabolic boundary-
value problems associated with p-Laplace type operators.

Further, the examples in this subsection show that the parameter m0 appear-
ing in the two main theorems Theorem 1.2 and Theorem 1.4 is optimal if m0 =
q γ−1 (cf. Remark 1.3). To be more precise, consider the case 1 < p < d and let
{Tt}t≥0 be the semigroup generated by the negative p-Laplace operator −∆Rd

p

on L2(Rd). Then, we show in the proof of Theorem 6.1 below that {Tt}t≥0 satis-
fies Lq-Lr regularity estimate (1.18) for u0 = 0 with parameters r = pd

d−p , q = 2
and exponent γ = 2

p . One easily sees that γ r > q and so one can deduce an
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Ls-L∞ regularisation estimate for s = γ r q−1 m0 = dm0
d−p and sufficiently large

m0 ≥ q γ−1 = p. By Theorem 6.1, if 2d
d+2 < p < d then m0 = p satisfies (1.15),

and if 2d
d+1 < p < d then for m0 = p, the semigroup {Tt}t≥0 ∼ −∆Rd

p for satisfies
L1-L∞-regularisation estimate (1.18) with exponent α1 = d

d(p−2)+p und u0 = 0.

The exponent α1 coincides with exponent d
λ in the Barenblatt solution

Γp(x, t) := t−
d
λ

[
1 + Cp

(
|x|
t

1
λ

) p
p−1
] p−1

p−2

+

, for t > 0,

with λ = d(p− 2) + p, Cp =

(
1
λ

) 1
p−1 2− p

p
,

(6.1)

to the prototype parabolic p-Laplace equation

∂tu− ∆Rd

p u = 0 on Rd × (0, ∞).

Note, the Barenblatt solution (6.1) also holds for the singular range 1 < p < 2
provided the parameter λ > 0. Moreover, λ > 0 if and only if 2d

d+1 < p < 2
(see [50, Chapter 7.4] ). It is worth noting that for singular 1 < p < 2, the
existence of a Barenblatt solution coincides with the fact that semigroup {Tt}t≥0

generated by the negative p-Laplace operator −∆Rd

p on L2(Rd) satisfies L1-L∞-
regularisation estimate (1.18) for u0 = 0 with exponent α1 = d

d(p−2)+p , but also

that for the same range 2d
d+1 < p < 2, every positive weak energy solutions of

problem (6.2) (below) satisfy a Harnack inequality (cf. [50, Chapter 7.4]). In the
degenerated range 2 < p < ∞, the comparison of the optimal exponents α1 has
been considered, for instance, in [21].

Throughout this section, let 1 < p < ∞. Then for given initial value u0 ∈
Lq(Σ), we intend to establish the regularisation effect of solutions u(t) = u(x, t)
for t > 0 of the parabolic initial value problem

(6.2)

{
∂tu− div(a(x,∇u)) + β(u) + f (x, u) 3 0 on Σ× (0, ∞),
u(·, 0) = u0 on Σ,

respectively equipped with one of the following types of boundary conditions:

u = 0 on ∂Σ× (0, ∞), if Σ ⊆ Rd,(6.3)

a(x,∇u) · ν = 0 on ∂Σ× (0, ∞), if µ(Σ) < ∞,(6.4)

a(x,∇u) · ν + b(x)|u|p−1u + d θp(u) = 0 on ∂Σ× (0, ∞), if µ(Σ) < ∞.(6.5)

Here, we suppose that a : Σ×Rd → Rd is a Carathéodory function satisfying
the following p-coercivity, growth and monotonicity conditions

a(x, ξ)ξ ≥ η|ξ|p(6.6)

|a(x, ξ)| ≤ c1|ξ|p−1 + h(x)(6.7)

(a(x, ξ1)− a(x, ξ2))(ξ1 − ξ2) > 0(6.8)
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for a.e. x ∈ Σ and all ξ, ξ1, ξ2 ∈ Rd with ξ1 6= ξ2, where h ∈ Lp′ (Σ) and c1, η > 0
are constants independent of x ∈ Σ and ξ ∈ Rd. Under these assumptions, the
second order quasi linear operator

(6.9) Bu := −div(a(x,∇u)) in D′(Σ)

for u ∈ W1,p
loc (Ω) belongs to the class of Leray-Lions operators (cf. [63]), of which

the p-Laplace operator ∆pu = div(|∇u|p−2∇u) is a classical prototype.
In some situations, one can replace (6.8) by

(6.10) (a(x, ξ1)− a(x, ξ2))(ξ1 − ξ2) ≥ η̃ |ξ1 − ξ2|p

for a.e. x ∈ Σ and all ξ1, ξ2 ∈ Rd. In fact, it is well-known ([49]) that for p ≥ 2,
the p-Laplace operator satisfies inequality (6.10) with constant η̃ = 22−p.

Regarding homogeneous Dirichlet boundary conditions (6.3), we assume that Σ is
an open subset of Rd and impose no further assumptions on the boundary ∂Σ
of Σ. In the case Σ = Rd, the homogeneous Dirichlet boundary conditions (6.3)
become the following vanishing at infinity condition

(6.11) lim
|x|→∞

u(x, t) = 0 for every t > 0, if Σ = Rd.

Concerning homogeneous Neumann boundary conditions (6.4), we assume that Σ
is an open bounded domain with a Lipschitz boundary ∂Σ (in the sense of [72,
Sect. 1.3]). We denote by ν the (weak) outward pointing unit normal vector
on ∂Σ. Under this assumption, it is not clear whether the co-normal derivative
a(x,∇u) · ν on ∂Σ exists. Thus, the Neumann boundary condition (6.4) needs to
be understood in a weak sense and so, we denote by a(x,∇u) · ν the generalised
co-normal derivative of u at ∂Σ associated with the operator B (as, for instance,
described in [32]).

Considering homogeneous Robin boundary conditions (6.5), we assume that Σ
is a open bounded domain with a Lipschitz boundary ∂Σ, d ≥ 0 is a constant,
b ∈ L∞(∂Σ) such that b(x) ≥ b0 > 0 forH-a.e. x ∈ ∂Σ. The operator θp describes
the nonlocal term on ∂Σ and is given by

(6.12) 〈θp(u), v〉 =
∫

∂Σ

∫
∂Σ

|u(x)−u(y)|p−2(u(x)−u(y))
|x−y|d+p−2 (v(x)− v(y))dH(x)dH(y)

for every u, v ∈W1−1/p,p(∂Σ).

6.1.1. Homogeneous Dirichlet boundary conditions. Let Σ be an open subset of Rd.
It is well-known (cf. [12]), at least in the case when Σ is bounded that the Leray-
Lions operator B given by (6.9) equipped with homogeneous Dirichlet bound-
ary conditions can be realised as follows:

BD =
{
(u, v) ∈ L2(Σ)× L2(Σ)

∣∣∣ u ∈ Ẇ1
p,2(Σ) such that∫

Σ
a(x,∇u)∇ξdx =

∫
Σ

v ξdx for all ξ ∈ Ẇ1
p,2(Σ)

}
.

(6.13)

We call BD the Dirichlet-Leray-Lions operator in L2(Σ). Note that, since the set of
test functions C∞

c (Σ) is contained in Ẇ1
p,2(Σ) and dense in L2(Σ), BD defines a

single-valued operator on L2(Σ) and by using (6.6), one obtains that the domain
D(BD) is dense in L2(Σ). Furthermore, condition (6.6) yields a(x, 0) = 0 a.e. on
Σ hence, (0, 0) ∈ BD.
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In the case Σ = Rd, the space Ẇ1
p,2(Σ) = W1

p,2(R
d). Hence the operator BD

becomes a realisation in L2(Σ) of the Leray-Lions operator B equipped with
vanishing conditions (6.11).

To see that BD is completely accretive in L2(Σ), let T ∈ C∞(R) be such that
the derivative 0 ≤ T′ ≤ 1 with compact support supp(T′) and T(0) = 0. Since
for every u, û ∈ Ẇ1

p,2(Σ), T(u− û) ∈ Ẇ1
p,2(Σ) with

∇T(u− û) = T′(u− û)∇(u− û)

and by monotonicity condition (6.8), one sees that∫
Σ

T(u− û)(BDu− BDû)dx

=
∫

Σ
(a(x,∇u)− a(x,∇û))∇(u− û)T′(u− û)dx ≥ 0.

Thus, by Proposition 2.4, the operator BD is completely accretive.
Under the assumptions (6.6)-(6.8), the restriction of the operator I + BD on the

reflexive Banach space V = Ẇ1
p,2(Σ) satisfies the hypotheses of [63, Théorème 1].

Recall that an operator I + B on some Banach space V is coercive in V if

(6.14) lim
‖u‖V→∞

〈(I + B)u, u〉V′,V
‖u‖V

= ∞,

where we denote by 〈v′, v〉V′,V the value of v′ ∈ V ′ at v ∈ V. In practice, it
is often easier to verify that the following statement holds, which is equivalent
to (6.14): for every α ∈ R, the set of all u ∈ V satisfying

〈(I + B)u, u〉V′,V
‖u‖V

≤ α

is bounded in V. For the operator B = BD, the latter statement holds since for
every α ∈ R+ := [0, ∞), the set {(a, b) ∈ R2

+ |a2 + bp ≤ α(a + b) } is bounded in
R2. Thus and since Ẇ1

p,2(Σ) is continuously and densely embedded into L2(Σ),
it follows that BD satisfies the range condition (2.14) for X = L2(Σ).

By hypothesis on the m-accretive graph β on R, one has that the domain
D(β2) of the associated accretive operator β2 in L2(Σ) contains the set of test
functions C∞

c (Σ). Recall, for every λ > 0, the Yosida operator β2,λ of β2 is given
by (β2,λu)(x) = βλ(u(x)) for a.e. x ∈ Σ, where βλ denotes the Yosida operator
of β on R. Since the Yosida operator βλ : R → R of β is monotone, Lips-
chitz continuous and satisfies βλ(0) = 0, one has that for every u ∈ Ẇ1

p,2(Σ),
β2,λ(u) ∈ Ẇ1

p,2(Σ) with ∇β2,λ(u) = β′λ(u)∇u a.e. on Σ for all λ > 0. Thus, by
definition of BD and by (6.6),

[v, β2,λ(u)]2 =
∫

Σ
a(x,∇u)∇β2,λ(u)dx ≥ η

∫
Σ
|∇u|pβ′λ(u)dx ≥ 0

for every (u, v) ∈ BD. Therefore, by Proposition 2.5, the operator

(6.15) AD := BD + β2 + F

is quasi m-completely accretive in L2(Σ) with dense domain.
By the Crandall-Liggett theorem [40], −AD generates a strongly continuous

semigroup {Tt}t≥0 on L2(Σ) of Lipschitz continuous mappings Tt : L2(Σ) →
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L2(Σ). Since −AD is completely accretive, each mapping Tt has a unique Lip-
schitz continuous extension on Lq(Σ) for all 1 ≤ q < ∞ and on L2 ∩ L∞(Σ)L∞

if
q = ∞, respectively with constant eωt.

The complete description of the Lq-L∞-regularisation effect of the semigroup
{Tt}t≥0 ∼ −AD is as follows.

Theorem 6.1. Suppose the Carathéodory function a : Σ × Rd → Rd satisfies the
conditions (6.7), (6.10) and a(x, 0) = 0 for a.e. x ∈ Σ. Then the semigroup {Tt}t≥0 ∼
−AD for the operator AD given by (6.15) satisfies the following Lq-Lr regularisation
estimates.

(1) If 1 < p < d, then (1.14) holds for

αs =
α∗

1−γ∗
(

1− s(d−p)
dm0

) , βs =
β∗
2 +γ∗ s(d−p)

dm0

1−γ∗
(

1− s(d−p)
dm0

) , γs =
γ∗ s(d−p)

dm0

(
1−γ∗

(
1− s(d−p)

dm0

))
for every m0 ≥ p satisfying ( d

d−p − 1)m0 + p− 2 > 0, and every 1 ≤ s ≤ dm0
d−p

satisfying s > d(2−p)
p , where

α∗ = d−p
pm0+(d−p)(p−2) , β∗ =

( 2
p−1)d+p

pm0+(d−p)(p−2) + 1, γ∗ = pm0
pm0+(d−p)(p−2) .

Moreover, if 2d
d+2 < p < d then one can take m0 = p and if 2d

d+1 < p < d,
then (1.14) holds for every 1 ≤ s ≤ dp

d−p .
(2) If p = d ≥ 2, then for every 0 < θ < 1, inequality (1.14) holds with exponents

αs =
α∗θ

1−γ∗θ (1−
s(1−θ)

2 )
, βs =

β∗
2 +γ∗θ

s(1−θ)
2

1−γ∗θ (1−
s(1−θ)

2 )
, γs =

γ∗θ
s(1−θ)

2

1−γ∗θ (1−
s(1−θ)

2 )

for every 1 ≤ s ≤ 2
1−θ , where

α∗θ = [2θ+p(1−θ)](1−θ)
θ2 , β∗θ = [2θ+p(1−θ)]2−(1−θ)p2

p22θ
+ 1, γ∗θ = 2θ2

2θ+p(1−θ)
.

(3) If d < p < ∞, then inequality (1.14) holds with exponents

αs =
α∗

1−γ∗(1− s
2 )

, βs = 1−γ∗(1− s
2 )

, γs =
γ∗s

2(1−γ∗(1− s
2 ))

for every 1 ≤ s ≤ 2, where

α∗ = d
pd+2(p−d) , β∗ = γ∗ + 1, γ∗ = 2θ0+p(1−θ0)

p , θ0 = pd
pd+2(p−d) .

Under the assumptions that a satisfies (6.6)-(6.8), the statements (1)-(3) remain true
with (1.14) replaced by (1.18) and for u0 = 0.

For the proof of this theorem, we employ the classical Gagliardo-Nirenberg
inequalities ([75], see also [37]). The Gagliardo-Nirenberg inequalities are valid
for functions u ∈ W1

p,q(R
d) and so, in particular, for test functions u ∈ C∞

c (Σ).
Thus we can use of the following version of Gagliardo-Nirenberg inequalities.

Lemma 6.2 ([75]). For 1 ≤ q, p ≤ ∞, let u ∈ Ẇ1
p,q(Σ). Then there is a constant C > 0

depending only on d, q, p, θ such that

(6.16) ‖u‖p∗ ≤ C ‖|∇u|‖θ
p ‖u‖1−θ

q ,
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where

(6.17) 1
p∗ = θ

(
1
p −

1
d

)
+ (1− θ) 1

q ,

for all θ ∈ [0, 1] with the following exceptional cases:
(1) If p < d and q = ∞, then we make the additional assumption that either u

tends to zero at infinity or u ∈ Lq̃(Rd) for some finite q̃ > 0.
(2) If 1 < p < ∞ and 1− d/p is a non negative integer, then (6.16) holds only for

θ ∈ [0, 1).
(3) If Σ is a bounded domain with a Lipschitz boundary, then inequality (6.16) is

replaced by

(6.18) ‖u‖p∗ ≤ C
(
‖|∇u|‖θ

p ‖u‖1−θ
q + ‖u‖q̃

)
,

for every u ∈ W1
p,q(Σ) ∩ Lq̃(Σ) and any q̃ > 0, where p∗ is given by (6.17) for

every θ ∈ [0, 1] with the exceptional cases (1) and (2), and the constant C > 0
also depends on the domain.

Proof of Theorem 6.1. We begin to consider the case 1 < p < d. Then by Lemma 6.2,
there is a constant C > 0 such that

(6.19) ‖u‖ pd
d−p
≤ C‖|∇u|‖p

for every u ∈ Ẇ1
p,2(Σ). Thus, by definition of the operator BD and by (6.10),

‖u− û‖p
pd

d−p
≤ C ‖|∇(u− û)|‖p

p

≤ C η̃−1
∫

Σ
(a(x,∇u)− a(x,∇û))∇(u− û)dx

= C η̃−1〈u− û, BDu− BDû〉

for every u, û ∈ D(BD). Now, Remark 3.5 yields the operator AD given by (6.15)
satisfies the Gagliardo-Nirenberg inequality (3.2) with parameters

(6.20) r =
pd

d− p
, σ = p, $ = 0, and ω = L.

For γ = 2
p , one has γ r > 2 and m0 = 2γ−1 = p satisfies (1.15) if and only if

p > 2d/(d + 2). Thus, Theorem 1.2 yields the first statement of this theorem.
Next, consider the case p = d ≥ 2. By Lemma 6.2,

‖u‖ 2
1−θ
≤ C‖|∇u|‖θ

p ‖u‖1−θ
2

for every u ∈ Ẇ1
p,2(Σ), 0 ≤ θ < 1 and some constant C > 0. Let 0 < θ < 1. Then

by definition of the operator BD and by (6.10),

‖u− û‖
p
θ

2
1−θ

≤ C
p
θ ‖|∇(u− û)|‖p

p ‖u− û‖
p(1−θ)

θ
2

≤ C
p
θ η̃−1

∫
Σ
(a(x,∇u)− a(x,∇û))∇(u− û)dx ‖u− û‖

p(1−θ)
θ

2

= C
p
θ η̃−1 〈u− û, BDu− BDû〉 ‖u− û‖

p(1−θ)
θ

2
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for every u, û ∈ D(BD). Thus, by Remark 3.5, the operator AD given by (6.15)
satisfies the Gagliardo-Nirenberg inequality (3.2) with parameters

(6.21) rθ =
2

1− θ
, σθ =

p
θ

, $θ =
p(1− θ)

θ
, ω = L for every 0 < θ < 1.

For 0 < θ < 1, γθ := 2θ+p(1−θ)
p satisfies γθ rθ > 2 and by taking m0 = 2γ−1

θ =
2p

2θ+p(1−θ)
, one has (γθrθ

2
− 1
)

m0 + 2
(

1
γθ
− 1
)
=

2θ

1− θ
> 0

hence, condition (1.15) holds. Moreover, since 0 < γθ ≤ 1, one easily sees that
γθ(1− s

rθ
) < 1 for every 1 ≤ s ≤ 2−1γθrθm0 = rθ . Therefore by Theorem 1.2, the

second statement of this theorem holds.
Finally, let d < p < ∞. Then there is an 0 < θ0 < 1 such that θ0(

1
p −

1
d ) +

(1− θ0)
1
2 = 0 or equivalently, θ0 = pd

pd+2(p−d) . We apply Lemma 6.2 for this θ0,
to conclude that there is a constant C > 0 such that

‖u‖∞ ≤ C‖|∇u|‖θ0
p ‖u‖

1−θ0
2

for every u ∈ Ẇ1
p,2(Σ). Proceeding as in the previous step, we see that by (6.10)

and by Remark 3.5, the operator AD satisfies the Gagliardo-Nirenberg inequal-
ity (3.2) with parameters

(6.22) r = ∞, σ =
p
θ0

, $ =
p(1− θ0)

θ0
, and ω = L.

Then, by the first statement of Theorem 1.2, γ∗ = 2+$
σ = 2θ0+p(1−θ0)

p , α∗ = θ0
p and

β∗ = γ∗ + 1. Moreover, since 1
p < γ∗ < 2

p < 1, one has for all 1 ≤ s ≤ 2 that
γ(1− s

2 ) < 1. Thus, Theorem 4.1 implies that the third statement of this theorem
holds. �

6.1.2. Homogeneous Neumann boundary conditions. In this subsection, we assume
that Σ is a bounded domain with a Lipschitz boundary.

Further, we assume that the monotone graph β on R either satisfies

(6.23) (v− v̂)(u− û) ≥ η0|u− û|p

or

(6.24) vu ≥ η0|u|p

for every (u, v), (û, v̂) ∈ β.
We define the realisation BN in L2(Σ) of the Leray-Lions operator B equipped

with homogeneous Neumann boundary conditions (6.4) by

BN =
{
(u, v) ∈ L2(Σ)× L2(Σ)

∣∣∣ u ∈W1
p,2(Σ) such that∫

Σ
a(x,∇u)∇ξdx =

∫
Σ

v ξdx for all ξ ∈W1
p,2(Σ)

}
.

(6.25)

Under the assumption that u, ξ and a(·,∇u) are smooth functions up to the
boundary ∂Σ and ν denotes the outward pointing unit normal vector on ∂Σ, the
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application of Green’s first identity yields∫
Σ

a(x,∇u)∇ξ dx = −
∫

Σ
div (a(x,∇u)) ξ dx +

∫
∂Σ

a(x,∇u) · ν ξdH.

Thus, if u ∈ D(BN), one has that v = −div (a(x,∇u)) and a(x,∇u) · ν = 0 for
Hd−1-a.e. x ∈ ∂Σ, showing that our definition of the operator BN is consistent
with the smooth situation. We call BN the Neumann Leray-Lions operator in L2(Σ).

In order to see that BN is m-completely accretive in L2(Σ) and that the mono-
tone graph β2 in L2(Σ) satisfies the hypothesis (2.28) in Proposition 2.5 with
respect to the operator BN , one proceeds as in the previous example (for ho-
mogeneous Dirichlet boundary conditions), but here one needs to replace the
space Ẇ1

p,2(Σ) by W1
p,2(Σ). In addition, it is not difficult to check that the domain

D(BN) is dense in L2(Σ). Therefore, the operator

(6.26) AN := BN + β2 + F

is quasi m-completely accretive in L2(Σ) with dense domain. By the Cran-
dall-Liggett theorem, −AN generates a strongly continuous semigroup {Tt}t≥0
on L2(Σ) of Lipschitz continuous mappings Tt on L2(Σ). The space L∞(Σ)
is continuously embedded into L2(Σ) since Σ is bounded. Thus, and since
Tt : Lq ∩ L2(Σ) → Lq ∩ L2(Σ) is Lipschitz continuous with respect to the Lq-
norm with constant eωt for 1 ≤ q ≤ ∞, Tt admits a unique Lipschitz continuous
extension on Lq(Σ) with the same Lipschitz constant eωt for every 1 ≤ q ≤ ∞.

Now, we state the complete description of the Lq-L∞-regularisation effect of
the semigroup {Tt}t≥0 ∼ −AN .

Theorem 6.3. Suppose the Carathéodory function a : Σ×Rd → Rd satisfies growth
condition (6.7), AN

φ is the operator given by (6.15), and u := 1
µ(Σ)

∫
Σ u dx for any

u ∈ L1(Σ). Then the following statements hold:
(1) If a satisfies the strong monotonicity condition (6.10), a(x, 0) = 0 for a.e. x ∈

Σ, and the monotone graph β satisfies (6.23), then the semigroup {Tt}t≥0 ∼
−AN

φ on L2(Σ) satisfies the regularisation estimates (1.13) and (1.14) with the
same exponents as the semigroup generated by −AD.

(2) If a satisfies (6.6)-(6.8), and the monotone graph β satisfies (6.24), then the semi-
group {Tt}t≥0 ∼ −AN

φ on L2(Σ) satisfies the regularisation estimates (1.17)
and (1.18) with the same exponents as the semigroup generated by−AD. More-
over, the semigroup {Tt}t≥0 ∼ −BN on L2(Σ) satisfies

(6.27) ‖Ttu− u‖∞ . t−αs eωβst ‖u− u‖γs
s

for every t > 0, u ∈ Ls(Σ) for 1 ≤ s < ∞ and exponents αs, βs and γs as
given in Theorem 6.1 for the semigroup generated by −AD.

For the proof of this theorem, Lemma 6.2 provides the crucial estimates.

Proof of Theorem 6.3. First, let 1 < p < d. Then by Lemma 6.2, there is a constant
C > 0 such that

(6.28) ‖u‖ pd
d−p
≤ C

(
‖|∇u|‖p + ‖u‖p

)
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for every u ∈ W1
p,p(Σ). Taking pth power on both sides of this inequality, using

that for q > 1,

(6.29) (a + b)q ≤ 2q−1(aq + bq) for every a, b ≥ 0,

by definition of the operator BN and by (6.10) and (6.23), we see that

‖u− û‖p
pd

d−p
≤ C

(
‖|∇(u− û)|‖p

p + ‖u− û‖p
p
)

≤ C η̃−1
∫

Σ
(a(x,∇u)− a(x,∇û))∇(u− û)dx

+ C η−1
0

∫
Σ
(v− v̂)(u− û)dx

= C max{η̃−1, η−1
0 } 〈u− û, BNu + v− (BN û + v̂)〉

for every u, û ∈ D(BN), v ∈ β2(u), v̂ ∈ β2(û). Now, Remark 3.5 yields that the
operator AN given by (6.26) satisfies the Gagliardo-Nirenberg inequality (3.2)
with parameters (6.20). Thus, Theorem 1.2 yields the first statement of this the-
orem for 1 < p < d.

Next, let p = d ≥ 2. Then by Lemma 6.2, there is a constant C > 0 such that

‖u‖ 2
1−θ
≤ C

(
‖|∇u|‖θ

p ‖u‖1−θ
2 + ‖u‖q̃

)
for every u ∈ Ẇ1

p,2(Σ) ∩ Lq̃(Σ), 0 ≤ θ < 1, and q̃ > 0. Thus, if p = d = 2,
we choose q̃ = 2 and use that ‖u‖2 = ‖u‖θ

2 ‖u‖1−θ
2 for every 0 ≤ θ < 1, and if

p = d > 2 then we choose q̃θ by 1
q̃θ

= θ
p +

1−θ
2 for any given 0 < θ < 1 and apply

Hölder’s inequality. Then, in both cases, we obtain

(6.30) ‖u‖ 2
1−θ
≤ C

(
‖|∇u|‖θ

p + ‖u‖θ
p

)
‖u‖1−θ

2

for every u ∈W1
p,2(Σ). Thus, by definition of the operator BN , (6.10) and (6.23),

‖u− û‖
p
θ

2
1−θ

≤ C
p
θ 2

p
θ−1 (‖|∇(u− û)|‖p

p + ‖u− û‖p
p
)
‖u− û‖

p(1−θ)
θ

2

≤ C
p
θ 2

p
θ−1

(
η−1

∫
Σ
(a(x,∇u)− a(x,∇û))∇(u− û)dx

+η̃−1
0

∫
Σ
(v− v̂)(u− û)dx

)
‖u− û‖

p(1−θ)
θ

2

≤ C
p
θ 2

p
θ−1 max{η̃−1, η−1

0 }〈u− û, BNu + v− (BN û + v̂)〉‖u− û‖
p(1−θ)

θ
2

By Remark 3.5, AN satisfies the Gagliardo-Nirenberg inequality (3.2) with pa-
rameters (6.21) hence, Theorem 1.2 yields the first statement of this theorem for
p = d.

Now, let d < p < ∞. Then, there is an 0 < θ0 < 1 such that θ0(
1
p −

1
d ) + (1−

θ0)
1
2 = 0 or equivalently, θ0 = pd

pd+2(p−d) . We apply Lemma 6.2 for θ0, q̃ given by
1
q̃ = θ0

p + 1−θ0
2 and apply Hölder’s inequality. Then,

(6.31) ‖u‖∞ ≤ C
(
‖|∇u|‖θ0

p + ‖u‖θ0
p

)
‖u‖1−θ0

2
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for every u ∈ Ẇ1
p,2(Σ) and some constant C > 0. Proceeding as in the first step of

this proof, we see that by (6.10), (6.23) and Remark 3.5, the operator AN satisfies
the Gagliardo-Nirenberg inequality (3.2) with parameters (6.22). Therefore, by
Theorem 4.1, the first statement of this theorem holds for p > d.

Under the assumption that merely the hypotheses (6.6)-(6.8) are satisfied, one
proceeds as in the previous three steps of this proof and applies Theorem 1.4
with u0 = 0. Thus, the second statement of this theorem holds.

To see that also the last claim of this theorem holds, one combines the Gagliardo-
Nirenberg inequality (6.18) with the Poincaré inequality

(6.32) ‖u− u‖p ≤ CN ‖|∇u|‖p,

which holds for all u ∈ W1
p,p(Σ) and some constant CN > 0 independent of u.

Then, for 1 < p < d, inequality (6.28) reduces to

(6.33) ‖u− u‖ pd
d−p
≤ C‖|∇u|‖p

for every u ∈W1
p,p(Σ), if p = d ≥ 2 then inequality (6.30) reduces to

(6.34) ‖u− u‖ 2
1−θ
≤ Cθ ‖|∇u|‖θ

p ‖u− u‖1−θ
2

for every u ∈ W1
p,2(Σ) and 0 < θ < 1, and if d < p < ∞ then inequality (6.31)

reduces to
‖u− u‖∞ ≤ C ‖|∇u|‖θ0

p ‖u− u‖1−θ0
2

for every u ∈ W1
p,2(Σ), where θ0 = pd

pd+2(p−d) and the constant C can differ from
line to line. Now, proceeding as in the first three steps of this proof and using
the inequalities (6.32)-(6.34) instead of (6.28), (6.30) and (6.31), and noting that
for every u ∈ L2(Σ), the element (u, 0) ∈ BN , then one obtains that for all 1 <
p < ∞, the operator BN satisfies the Gagliardo-Nirenberg inequality (3.7) for the
same exponents as found in the first three steps of this proof. Thus Theorem 1.4
yields the third statement of this theorem. �

6.1.3. Homogeneous Robin boundary conditions. In this subsection, we assume that
Σ is a bounded domain with a Lipschitz boundary. Then the mapping u 7→ u|∂Σ

from C0,1(Σ) to C0,1(∂Ω) has a unique continuous and surjective extension

Tr : W1
p,p(Σ)→W1−1/p,p(∂Σ)

called trace operator (cf. [72, Théorème 4.2, 4.6, and Section 3.8]). For convenience,
we write u|∂Ω := Tr(u) for u ∈W1

p,p(Σ) even if u does not belong to C(Σ) and call
u|∂Ω the trace of u. Thus, if θ denotes the boundary operator given by (6.12) then
〈θ(u), u〉 is finite for every u ∈ W1

p,p(Σ) hence, under the assumptions of this
section, we can define the realisation BR in L2(Σ) of the Leray-Lions operator B
equipped with homogeneous Robin boundary conditions (6.5) by

BR =
{
(u, v) ∈ L2 × L2(Σ)

∣∣∣ u ∈W1
p,p(Σ) s.t. for all ξ ∈W1

p,p ∩ L2(Σ)∫
Σ

a(x,∇u)∇ξdx +
∫

∂Σ
b|u|p−2uξdH+ d〈θ(u), ξ〉 =

∫
Σ

vξdx
}

.
(6.35)

We call BR the Robin Leray-Lions operator in L2(Σ).
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Since C∞(Σ) is contained in W1
p,p ∩ L2(Σ) and dense in L2(Σ), BR defines a

single-valued and densely defined operator on L2(Σ). To see that BR is com-
pletely accretive, let T ∈ P0. Then by definition of BR, by (6.8) and since T is
monotonically increasing and Lipschitz continuous on R, and since s 7→ |s|p−2s
is monotonically increasing, we have that∫

Σ
T(u− û)(BRu− BRû)dx

=
∫

Σ
(a(x,∇u)− a(x,∇û))∇(u− û)T′(u− û)dx

+
∫

∂Σ
b(x)(|u|p−2u− |û|p−2û)T(u− û)dH

+ d
∫

∂Σ

∫
∂Σ

|u(x)−u(y)|p−2(u(x)−u(y))−|û(x)−û(y)|p−2(û(x)−û(y))
|x−y|d+p−2 ×

× T((u(x)− u(y))− (û(x)− û(y)))dH(x)dH(y)
≥ 0

for every u, û ∈ D(BR). Thus, BR is completely accretive. Since for every λ > 0,
the Yosida operator βλ : R → R of β is monotonically increasing and Lipschitz
continuous and since Σ is bounded, we may replace T by βλ in the previous
calculation, showing that the m-accretive graph β on R satisfies condition (2.28)
in Proposition 2.5.

In order to see that BR satisfies the range condition (2.14) for X = L2(Σ), we
employ the following p-variant of Maz’ya’s inequality

(6.36) ‖u‖ pd
d−1
≤ C

(
‖|∇u|‖p + ‖u|∂Σ‖p

)
holding for all u ∈ W1

p,p(Σ) provided 1 ≤ p < ∞. Here the constant C > 0
depends on p, the volume |Σ|, and the isoperimetric constant C(d) (cf. [67, Cor.
3.6.3] and see also [55, Section 2.1]). Now, let V = W1

p,p(Σ) ∩ L2(Σ) be equipped
with the sum norm. Then by (6.6), since for every u ∈ V, 〈θ(u), u〉 ≥ 0, since
b(x) ≥ b0 > 0 a.e. on ∂Σ and by (6.36), we obtain that

〈(I + BR)u, u〉 ≥ ‖u‖2
2 +

η
2‖|∇u|‖p

p + C1‖u‖
p
p

≥ C2
(
‖u‖2

2 + ‖|∇u|‖p
p + ‖u‖

p
p
)

for every u ∈ V. Thus, the restriction of the operator I + BR on V satisfies condi-
tion (6.14) and so, the operator I + BR : V → V ′ is surjective by [63, Théorème 1],
proving that BR satisfies the range condition (2.14) in L2(Σ).

Therefore, by Proposition 2.5, the operator

(6.37) AR := BR + β2 + F

is quasi m-completely accretive in L2(Σ) with dense domain and so by the Cran-
dall-Liggett theorem, −AR generates a strongly continuous semigroup {Tt}t≥0
on L2(Σ) of Lipschitz continuous mappings Tt on L2(Σ), and each mapping Tt
admits a unique Lipschitz continuous extension on Lq(Σ) with constant eωt for
every 1 ≤ q ≤ ∞.

Here, we state the complete description of the Lq-Lr-regularisation effect of
the semigroup {Tt}t≥0 ∼ −AR.
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Theorem 6.4. Suppose the Carathéodory function a : Σ×Rd → Rd satisfies growth
conditions (6.7). Further, suppose b ∈ L∞(∂Σ) such that b(x) ≥ b0 > 0 a.e. on ∂Σ,
d ≥ 0, and AR is the operator given by (6.37). Then the following statements hold:

(1) If a satisfies the strong monotonicity condition (6.10) and a(x, 0) = 0 for a.e.
x ∈ Σ, then the semigroup {Tt}t≥0 ∼ −AR on L2(Σ) satisfies the regular-
isation estimates (1.13) and (1.14) with the same exponents as the semigroup
generated by −AD.

(2) If a satisfies (6.6)-(6.8), then the semigroup {Tt}t≥0 ∼ −AR on L2(Σ) satisfies
the regularisation estimates (1.17) and (1.18) with the same exponents as the
semigroup generated by −AD.

Proof of Theorem 6.4. Note that, for every q > 1, there is a constant Cq > 0 such
that

(6.38) (|s|q−2s− |t|q−2t)(s− t) ≥ Cq|s− t|q

for all s, t ∈ R (cf. [29, Appendix]). Due to inequality (6.38), we can show that the
semigroup {Tt}t≥0 ∼ −AR satisfies inequality (1.14) provided the Carathéodory
function a satisfies (6.10).

First, let 1 < p < d. By Lemma 6.2, we have that inequality (6.28) holds.
Applying Maz’ya’s inequality (6.36) to estimate the term ‖u‖p in (6.28) gives

(6.39) ‖u‖ pd
d−p
≤ C

(
‖|∇u|‖p + ‖u|∂Σ‖p

)
for every u ∈ W1

p,p(Σ), where the constant C can be different from the one
in (6.28). Taking pth power on both sides of the last inequality, applying (6.29)
and using the definition of the operator BR combined with (6.10) and (6.38)
shows that

‖u− û‖p
pd

d−p
≤ C

(
‖|∇(u− û)|‖p

p + ‖u|∂Σ − û|∂Σ‖
p
p
)

≤ C η̃−1
∫

Σ
(a(x,∇u)− a(x,∇û))∇(u− û)dx

+ C b−1
0 C−1

p

∫
∂Σ

b(x) (|u|p−2u− |û|p−2û)(u− û)dH

≤ C max{η̃−1, (b0Cp)
−1} 〈u− û, BRu− BRû〉

for every u, û ∈ D(BR). Thus, Remark 3.5 yields the operator AR given by (6.37)
satisfies the Gagliardo-Nirenberg inequality (3.2) with parameters (6.20). By
Theorem 1.2, the first statement of this theorem holds for 1 < p < ∞.

If p = d ≥ 2, then applying Maz’ya’s inequality (6.36) to (6.30) yields

‖u‖ 2
1−θ
≤ C

(
‖|∇u|‖θ

p + ‖u|∂Σ‖θ
p

)
‖u‖1−θ

2

for every u ∈ W1
2,p(Σ) and 0 < θ < 1. Thus by (6.29), the definition of BR, (6.10)

and by inequality (6.38) for q = p shows that

‖u− û‖
p
θ

2
1−θ

≤ C
p
θ 2

p
θ−1 (‖|∇(u− û)|‖p

p + ‖u− û‖p
p
)
‖u− û‖

p(1−θ)
θ

2

≤ C
p
θ 2

p
θ−1

(
η−1

∫
Σ
(a(x,∇u)− a(x,∇û))∇(u− û)dx
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+(a0 Cp)
−1
∫

∂Σ
a (|u|p−2u− |û|p−2û)(u− û)dH

)
‖u− û‖

p(1−θ)
θ

2

≤ C
p
θ 2

p
θ−1 max{η̃−1, (a0 Cp)

−1}〈u− û, BRu− BRû〉‖u− û‖
p(1−θ)

θ
2

By Remark 3.5, the operator AR satisfies the Gagliardo-Nirenberg inequality (3.2)
with

rθ =
2

1− θ
, σθ =

p
θ

, $θ =
p(1− θ)

θ
, ω = L for every 0 < θ < 1.

Therefore, by Theorem 1.2, the first statement of this theorem holds for p = d.
Next, let d < p < ∞. Applying Maz’ya’s inequality (6.36) to (6.31) with θ0 =

pd
pd+2(p−d) and subsequently taking pth power and employing inequality (6.29)
gives

‖u‖∞ ≤ C
(
‖|∇u|‖θ0

p + ‖u|∂Σ‖θ0
p

)
‖u‖1−θ0

2

for every u ∈ Ẇ1
p,2(Σ). Proceeding as above, we see that by (6.10), (6.38) and by

Remark 3.5, the operator AR satisfies the Gagliardo-Nirenberg inequality (3.2)
with parameters r, σ, $ and ω as given in (6.22). By Theorem 4.1, the first state-
ment of this theorem holds for p > d.

Under the assumption that merely the hypotheses (6.6)-(6.8) are satisfied, one
proceeds as in the previous threes steps of this proof and applies Theorem 1.4
with u0 = 0. Thus, the second statement of this theorem holds as well, complet-
ing the proof. �

6.2. Parabolic problems involving nonlocal operators. In the following two
subsections, we outline two examples currently attracting much interest. We
begin in Subsection 6.2.1 by establishing the Lq-Lr-regularisation estimates for
the semigroup generated by the Dirichlet-to-Neumann operator associated with a Leray-
Lions operator (cf, for instance, [55] and the references therein). Subsection 6.2.2
is dedicated to the Lq-Lr-regularisation estimates for the semigroup generated by
the fractional p-Laplace operator equipped with either homogeneous Dirichlet or
Neumann boundary conditions (cf, for instance, [16, 68]). One can easily see in
both examples that the standard construction of a one-parameter family of Sobolev
type inequalities fails. Recall, this is an important intermediate step in the known
literature to achieve an Lq-L∞-regularisation estimates for 1 ≤ q < ∞ of the
semigroup (cf Section 1.1).

For instance, consider the example of the semigroup generated by the Dirichlet-
to-Neumann operator associated with a Leray-Lions operator (6.9) satisfying the
hypotheses (6.6)- (6.8). The construction of this Dirichlet-to-Neumann operator
proceeds in two steps. First, one needs to know the solvability of Dirichlet prob-
lem

(6.40)

{
−div(a(x,∇u)) = 0 in Σ,

u = ϕ on ∂Σ

for every boundary function ϕ ∈ W1−1/p,p(∂Σ). For given boundary-value ϕ,
let Pϕ := u be the unique weak energy solution u of (6.40). Then, in order to
construct a one-parameter family of Sobolev type inequalities, one needs that

P(|ϕ|q−p ϕ) = |Pϕ|q−pPϕ for every q ≥ p > 1.
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However, this does not hold in general. Thus, our next example demonstrates
the strength of Theorem 1.2 and Theorem 1.4.

6.2.1. The Dirichlet-to-Neumann operators associated with Leray-Lions operators. In
this subsection, we suppose that Σ is either the half space Rd

+ := Rd−1 × (0, ∞)
or a bounded domain with a Lipschitz boundary.

We begin by outlining the construction of the Dirichlet-to-Neumann operator
in the case Σ is a bounded domain with a Lipschitz continuous boundary. The
construction of the operator on the half space Σ = Rd

+ proceeds similarly (see
also Remark 6.5 below). Under this assumption on Σ, the trace operator Tr :
W1

p,p(Σ)→W1−1/p,p(∂Σ) has a linear bounded right inverse

Z : W1−1/p,p(∂Σ)→W1,p(Σ)

(cf. [72, Théorème 5.7]) and the kernel of Tr coincides with Ẇ1
p,p(Σ). If the

Carathéodory function a : Σ ×Rd → Rd satisfies (6.6)-(6.8), then by the clas-
sical theory of monotone operators ( [63, Théorème 1]), we have that for every
given boundary value ϕ ∈ W1−1/p,p(∂Ω), the Dirichlet problem (6.40) admits
a unique weak solution u ∈ W1

p,p(Σ) in the following sense: for given bound-
ary value ϕ ∈ W1−1/p,p(∂Σ), a function u ∈ W1

p,p(Σ) is a weak energy solution of
Dirichlet problem (6.40) on Σ if u− Zϕ ∈ Ẇ1

p,p(Σ) and∫
Σ

a(x,∇u)∇ξ dx = 0

for all ξ ∈ Ẇ1
p,p(Σ). Let P : W1−1/p,p(∂Σ) → W1

p,p(Σ) be the mapping which
assigns to each boundary value ϕ ∈W1−1/p,p(∂Σ) the unique weak energy solu-
tion u ∈ W1

p,p(Σ) of (6.40). Then P is injective and continuous. Furthermore, for
every ϕ ∈ W1−1/p,p(∂Σ) and Φ ∈ W1

p,p(Σ) satisfying Φ|∂Σ = ϕ, there is a unique
uΦ ∈ Ẇ1

p,p(Σ) such that

(6.41) Pϕ = uΦ + Φ

(cf. [55, Lemma 2.5]).
The Dirichlet-to-Neumann operator associated with the operator B defined

in (6.9) assigns to each Dirichlet boundary data ϕ the corresponding co-normal
derivative a(x,∇Pϕ) · ν =: Λϕ on ∂Σ.

If Pϕ and a(·,∇Pϕ) are smooth enough up to the boundary ∂Σ, Green’s for-
mula yields ∫

∂Σ
Λϕ ξ dH =

∫
Σ

a(x,∇Pϕ)∇ξ dx

for every ξ ∈ C∞(Σ) and if Λϕ ∈ Lp′(∂Σ), then an approximation argument
shows that ∫

∂Σ
Λϕ ξ dH =

∫
Σ

a(x,∇Pϕ)∇Zξ dx

for every ξ ∈ W1−1/p,p(∂Σ). Even if ϕ and ξ merely belong to W1−1/p,p(∂Σ),
the integral on the right-hand side of this equation exists. Thus, we can use
this integral to define the operator Λ for the more general class of functions
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W1−1/p,p(∂Σ). By linearity of Z and by using Hölder’s inequality together with
growth condition (6.7), one easily sees that the functional

ψ 7→
∫

Ω
a(x,∇Pϕ)∇Zψ dx

belongs to the dual space W−(1−1/p),p′(∂Ω). This justifies to define the Dirichlet-
to-Neumann operator associated with the quasi-linear operator B as the operator Λ :
W1−1/p,p(∂Σ)→W−(1−1/p),p′(∂Σ) defined by

〈Λϕ, ξ〉 =
∫

Σ
a(x,∇Pϕ)∇Zξ dx

for every ϕ, ξ ∈W1−1/p,p(∂Σ). The Dirichlet-to-Neumann operator Λ realised as
an operator on L2(∂Σ) is given by the restriction Λ2 := Λ ∩ (L2(∂Σ))× L2(∂Σ)).
In fact, one can show (cf. [55, Proposition 3.9]) that

Λ2 =
{
(ϕ, ψ) ∈ L2(∂Σ)× L2(∂Σ)

∣∣∣ ϕ ∈W1−1/p,p(∂Σ) such that∫
Σ

a(x,∇Pϕ)∇Zξdx =
∫

Σ
ψ ξdx for all ξ ∈W1−1/p,p(∂Σ) ∩ L2(∂Σ)

}
.

It is well-known (cf. [55, Proposition 3.9] or [4]), that Λ2 is completely accre-
tive. To see that Λ2 satisfies the range condition (2.14) for X = L2(∂Σ), we take
V = W1−1/p,p(∂Σ) ∩ L2(∂Σ) equipped with the sum norm. Then, by (6.41),

〈ψ, ϕ〉V′,V =
∫

Σ
a(x,∇Pϕ)∇Pϕ dx

for every (ϕ, ψ) ∈ Λ2. By using Maz’ya’s inequality (6.36) and Poincaré’s in-
equality on W1

p,p(Σ), one can deduce the following useful inequality

(6.42) ‖u‖p ≤ C̃
(
‖|∇u|‖p + ‖u|∂Σ‖L2(∂Σ)

)
holding for all u ∈ W1

p,p(Σ) with trace u|∂Ω ∈ L2(∂Ω) (cf. [55, Section 2]). Now,
let α ∈ R and ϕ ∈ V. Then, by using (6.6), the boundedness of the trace operator
Tr and inequality (6.42), we see that

‖ϕ|∂Σ‖2
2 + η‖|∇Pϕ|‖p

p ≤ 〈(I + Λ2)ϕ, ϕ〉V′,V
≤ α C(‖ϕ|∂Σ‖+ ‖Pϕ‖p + ‖|∇Pϕ|‖p)

≤ α C̃(‖ϕ|∂Σ‖+ ‖|∇Pϕ|‖p)

Thus, the restriction of the operator I + Λ2 on V satisfies condition (6.14) hence
I + Λ2 : V → V ′ is surjective by [63, Théorème 1], proving that Λ2 satisfies the
range condition (2.14) in X = L2(∂Σ).

By hypothesis on the m-accretive graph β on R, the domain D(β2) of the asso-
ciated accretive operator β2 in L2(∂Σ) contains the set {v|∂Σ | v ∈ C∞(Σ)}. Thus,
the domain D(β2) is dense in L2(∂Σ) (cf. [55, Lemma 2.1 2]). For every λ > 0, the
Yosida operator βλ of β is Lipschitz continuous, βλ(0) = 0, and the Yosida op-
erator β2,λ of the operator β2 is given by (β2,λ ϕ)(x) = βλ(ϕ(x)) for a.e. x ∈ ∂Σ
and every ϕ ∈ L2(∂Σ). Therefore, β2,λ(ϕ) ∈ W1−1/p,p(∂Σ) ∩ L2(∂Σ) for every
ϕ ∈W1−1/p,p(∂Σ)∩ L2(∂Σ). Moreover, by (6.41), there is a unique uΦ ∈ Ẇ1

p,p(Σ)
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such that P(βλ(ϕ)) = uΦ + βλ(Pϕ) for Φ = βλ(Pϕ). Combining this with the
definition of Λ2, (6.6), and the fact that β′λ ≥ 0, we see that

[ψ, βλ(ϕ)]2 =
∫

Σ
a(x,∇Pϕ)∇βλ(Pϕ)dx ≥ η

∫
Σ
|∇Pϕ|pβ′λ(Pϕ)dx ≥ 0

for every (ϕ, ψ) ∈ Λ2. Therefore, by Proposition 2.5, the operator

(6.43) AΛ := Λ2 + β2 + F

is quasi m-completely accretive in L2(∂Σ) with dense domain.
By the Crandall-Liggett theorem [40], −AΛ generates a strongly continuous

semigroup {Tt}t≥0 on L2(∂Σ) of Lipschitz continuous mappings Tt, which ad-
mits a unique Lipschitz continuous extension on Lq(∂Σ) with constant eωt for all
1 ≤ q ≤ ∞.

Remark 6.5. In the case Σ is the half space Rd
+, the construction is of Λ2 is exactly

the same. But one needs to replace the space W1
p,p(Σ) by the space D1,p(Rd

+)

which is the completion of the space of all u ∈ C∞
c (Rd

+) with respect to ‖|∇u|‖p

and the space W1−1/p,p(Rd−1) needs to be replaced by the completion of the
space of all ϕ ∈ C∞

c (Rd−1) with respect to |ϕ|p. We leave the details to the
interested reader.

Here is the complete description of the Lq-L∞-regularisation effect of the semi-
group {Tt}t≥0 ∼ −AΛ.

Theorem 6.6. Suppose the Carathéodory function a : Σ×Rd → Rd satisfies growth
conditions (6.7) and AΛ be the operator given by (6.43). Then the following statements
are true.

(1) Suppose Σ is a bounded domain with a Lipschitz boundary, a satisfies (6.10)
with a(x, 0) = 0 for a.e. x ∈ Σ, and the monotone graph β satisfies (6.23).
Then

(i) for 1 < p < d, the semigroup {Tt}t≥0 ∼ −AΛ on L2(∂Σ) satisfies
estimate (1.14) with exponents

αs =
α∗

1−γ∗
(

1− s(d−p)
(d−1)m0

) , βs =
β∗
2 +γ∗ s(d−p)

(d−1)m0

1−γ∗
(

1− s(d−p)
(d−1)m0

) , γs =
γ∗ s(d−p)

(d−1)m0

1−γ∗
(

1− s(d−p)
(d−1)m0

) ,

α∗ = d−p
(p−1)m0+(d−p)(p−2) , β∗ =

( 2
p−1)d+p− 2

p
(p−1)m0+(d−p)(p−2) + 1,

γ∗ = (p−1)m0
(p−1)m0+(d−p)(p−2) .

for m0 ≥ p satisfying ( d−1
d−p − 1)m0 + p− 2 > 0, and for every 1 ≤ s ≤

(d−1)m0
d−p satisfying s > (2−p)(d−1)

p−1 . Moreover, if 2d
d+1 < p < d then one

can take m0 = p and if 2d−1
d < p < d, then estimate (1.14) holds with the

same exponents for every 1 ≤ s ≤ (d−1)p
d−p .

(ii) for p = d ≥ 2, the semigroup {Tt}t≥0 ∼ −AΛ on L2(∂Σ) satisfies
estimate (1.14) with exponents

αs =
α∗θ

1−γ∗θ (1−s(1−θ))
, βs =

β∗
θ

2 +γ∗θ s(1−θ)
1−γ∗θ (1−s(1−θ))

, γs =
γ∗θ s(1−θ)

1−γ∗θ (1−s(1−θ))
,

α∗θ = 1
1

1−θ−2
, β∗θ =

2
p2

1
1−θ−1
1

1−θ−2
+ 1, γ∗θ =

1
1−θ−p

1
1−θ−2

,
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for every 1− 1
p < θ < 1 and 1 ≤ s ≤ 1

1−θ .
(iii) for d < p < ∞, the semigroup {Tt}t≥0 ∼ −AΛ on L2(∂Σ) satisfies

estimate (1.14) with exponents

αs =
1

p−2+s , βs =
2+p

2 +s
p−2+s , γs =

s
p−2+s

for every 1 ≤ s ≤ 2.
(2) Suppose Σ is a bounded domain with a Lipschitz boundary, a satisfies (6.6)-(6.8)

and β satisfies (6.24). Then the following holds:
(i) The semigroup {Tt}t≥0 ∼ −AΛ satisfies estimate (1.18) with u0 = 0 for

the same exponents as given in the statements (1i)-(1iii).
(ii) The semigroup {Tt}t≥0 ∼ −Λ2 satisfies

‖Tt ϕ|∂Σ − ϕ|∂Σ‖∞ . eωβqt t−δq ‖ϕ|∂Σ − ϕ|∂Σ‖
γq
q

for every t > 0 and ϕ ∈ Lq(∂Σ), where ϕ|∂Σ := 1
H(∂Σ)

∫
∂Σ ϕ dH and the

exponents αs, βs and γs are the same as given in the statements (1i)-(1iii).
(3) Suppose Σ is the half space Rd

+.
(vi) If a satisfies (6.10) with a(x, 0) = 0 for a.e. x ∈ Σ and without any

further assumptions on β, then for 1 < p ≤ d, the semigroup {Tt}t≥0 ∼
−AΛ satisfies estimate (1.14) with the same exponents as given in the
statements (1i)-(1iii).

(vii) If a satisfies (6.6)-(6.8) and without any further assumptions on β, then
for 1 < p ≤ d the semigroup {Tt}t≥0 ∼ −AΛ satisfies estimate (1.18)
with u0 = 0 for the same exponents as given in (2ii).

Since we are not aware about the existence of Gagliardo-Nirenberg inequali-
ties involving the trace operator, we need to construct in each case 1 < p < d,
p = d and p > d the sufficient inequality from the known Sobolev-trace inequal-
ity ([72, Chapter 2, Sect. 4]).

Proof of Theorem 6.6. First, let 1 < p < d. Then, by the Sobolev-trace inequal-
ity [72, Théorème 4.2] and by Maz’ya’s inequality (6.36),

(6.44) ‖u|∂Σ‖ p(d−1)
d−p
≤ C

(
‖|∇u|‖p + ‖u|∂Σ‖p

)
for every u ∈ W1

p,p(Σ) and some constant C > 0 independent of u. Taking pth
power on both sides of this inequality, applying (6.29) and using the definition
of the operator Λ2 combined with (6.10) and (6.23) gives

‖ϕ|∂Σ − ϕ̂|∂Σ‖
p
p(d−1)

d−p

≤ C̃
(
‖|∇(Pϕ− Pϕ̂)|‖p

p + ‖ϕ|∂Σ − ϕ̂|∂Σ‖
p
p
)

≤ C̃ η̃−1
∫

Σ
(a(x,∇Pϕ)− a(x,∇Pϕ̂))∇(Pϕ− Pϕ̂)dx

+ C̃ η−1
0

∫
∂Σ
(v− v̂)(ϕ− ϕ̂)dH

≤ C̃ max{η̃−1, η−1
0 } 〈ϕ− ϕ̂, (Λ2ϕ + v− (Λ2 ϕ̂ + v̂)〉

for every ϕ, ϕ̂ ∈ D(Λ2) and v ∈ β2(ϕ), v̂ ∈ β2(ϕ̂). Thus, by Remark 3.5, the
operator AR satisfies the Gagliardo-Nirenberg inequality (3.2) with

r =
p(d− 1)

d− p
, σ = p, $ = 0, and ω = L
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hence the first statement of this theorem holds by Theorem 1.2.
If p = d ≥ 2, then by the Sobolev inequality for trace operators [72, Théorème 4.6]

and by Maz’ya’s inequality (6.36), for every 0 ≤ θ < 1, there is a constant C > 0
such that

(6.45) ‖u|∂Σ‖ 1
1−θ
≤ C

(
‖|∇u|‖p + ‖u|∂Σ‖p

)
for every u ∈W1

p,p(Σ). Proceeding as in the first step of this proof yields that the
operator AΛ satisfies the Gagliardo-Nirenberg inequality (3.2) with

r =
1

1− θ
, σ = p, $ = 0, and ω = L for every 0 < θ < 1.

Therefore by Theorem 1.2, the second statement of this theorem holds.
Next, let d < p < ∞. Then, by the classical Sobolev-Morrey inequality [72,

Théorème 3.8] and by Maz’ya’s inequality (6.36), there is a constant such that

(6.46) ‖u|∂Σ‖∞ ≤ C
(
‖|∇u|‖p + ‖u|∂Σ‖p

)
for every u ∈ Ẇ1

p,p(Σ). By proceeding as in the first step of this proof, we see
that the operator AΛ satisfies the Gagliardo-Nirenberg inequality (3.2) with

r = ∞, σ = p, $ = 0, and ω = L.

Therefore, by Theorem 1.2, the third statement of this theorem holds.
Under the assumption that the Carathéodory function a satisfies (6.6)-(6.8)

and the accretive graph β satisfies (6.24), one proceeds as in the first three steps
and applies Theorem 1.4 with u0 = 0. Thus, statement (2i) of this theorem holds.

To see that the last statement holds, one applies Poincaré’s inequality

‖u|∂Σ − u|∂Σ‖p ≤ C ‖|∇u|‖p

holding for all u ∈ W1
p,p(Σ) with mean value u|∂Σ := 1

H(∂Σ)

∫
∂Σ u dH, for some

constant C > 0 (cf. [55, Lemma 2.5]) to the Sobolev-trace inequalities (6.44),
(6.45) and (6.46). Then for 1 < p < d, inequality (6.44) reduces to

‖u|∂Σ − u|∂Σ‖ p(d−1)
d−p
≤ C‖|∇u|‖p

for every u ∈W1
p,p(Σ), if p = d ≥ 2 then inequality (6.45) reduces to

‖u|∂Σ − u|∂Σ‖ 1
1−θ
≤ Cθ ‖|∇u|‖p

for every u ∈W1
p,p(Σ) and 0 ≤ θ < 1, and if d < p < ∞, inequality (6.46) reduces

to
‖u|∂Σ − u|∂Σ‖∞ ≤ C ‖|∇u|‖p

for every u ∈ W1
p,p(Σ), where the constant C can differ from line to line. Now,

by proceeding as in the first three steps of this proof, where one employs these
three new Sobolev-trace inequalities involving the average value u|∂Σ and by
noting that for every ϕ ∈ L2(∂Σ), the element (ϕ|∂Σ, 0) ∈ Λ2, one sees that for all
1 < p < ∞, the operator Λ2 satisfies the Gagliardo-Nirenberg inequality (1.11)
with the same exponents as in the statements (1i)-(1iii). This proves that state-
ment (2ii) of this theorem holds.
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If Σ is the half space Rd
+, then one replaces the above used Sobolev-trace in-

equalities with the ones given in [62, Theorem 15.17 & Exercise 15.19] and pro-
ceeds as the first two steps of this proof. This completes the proof of this theo-
rem. �

6.2.2. Parabolic problems involving the fractional p-Laplace operator. Let Σ be an
open subset of Rd, 1 < p < ∞ and 0 < s < 1. Then, for given initial value
u(0) ∈ Lq(Σ), we intend to establish the Lq-Lr-regularisation estimates of solu-
tions u(t) = u(x, t) for t > 0 of the nonlocal diffusion equation

(6.47) ∂tu− (−∆p)
su + β(u) + f (x, u) 3 0 on Σ× (0, ∞),

equipped with either homogeneous Dirichlet boundary conditions

(6.48) u = 0 on Rd \ Σ × (0, ∞),

or with homogeneous Neumann boundary conditions, that is, equation (6.47) with-
out any further conditions. We refer the interested reader to [5] for a thorough
discussion on Neumann boundary conditions in nonlocal diffusion problems.

Concerning homogeneous Dirichlet boundary conditions (6.48), we impose
no further regularity conditions on the boundary ∂Σ of Σ. Note that, if Σ = Rd,
then the homogeneous Dirichlet boundary conditions become vanishing condi-
tions near infinity (6.11). In the case of homogeneous Neumann boundary condi-
tions, we assume that Σ is a bounded domain with a Lipschitz boundary.

The operator (−∆p)s in equation (6.47) denotes the fractional p-Laplace operator
defined by

(6.49) (−∆p)
su(x) = P.V.

∫
Σ

|u(y)− u(x)|p−2(u(y)− u(x))
|y− x|d+sp dy

for a.e. x ∈ Σ and any sufficiently regular function u : Σ→ R. The notation P.V.
in (6.49) indicates that the integral at the right hand side is to be understood in
the Cauchy principal value sense, that is, for given x ∈ Σ, the value (−∆p)su(x)
denotes the limit

lim
ε→0+

∫
Σ\Bε(x)

|u(y)− u(x)|p−2(u(y)− u(x))
|y− x|d+sp dy

provided the limit exists. For every u ∈Ws
p,q(Σ), (q ≥ 1), such that

(6.50) (x, y) 7→ |u(y)− u(x)|p−1

|y− x|d+sp belongs to L1(Σ× Σ),

Fubini’s theorem yields that (−∆p)su ∈ L1(Σ) and

(−∆p)
su(x) =

∫
Σ

|u(y)− u(x)|p−2(u(y)− u(x))
|y− x|d+sp dy

for a.e. x ∈ Σ. In other words, the integral on the right hand side of (6.49) holds
without the P.V.-symbol. Employing Fubini’s theorem again, subsequently in-
terchanging x and y, and using the symmetry of the kernel |y − x|−(d+sp), one
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sees that ∫
Σ
−(−∆p)

su ξ dx

=
1
2

∫
Σ

∫
Σ

|u(y)− u(x)|p−2(u(y)− u(x))
|y− x|d+sp (ξ(y)− ξ(x))dy dx

(6.51)

for every ξ ∈ C∞
c (Σ). Since the double integral in the right hand side of (6.51)

exists merely for u, ξ ∈Ws
p,q(Σ), it makes sense to employ this double integral in

order to define the fractional p-Laplace operator (−∆p)s in a weak sense. In par-
ticular, the previous calculation shows that our next definition of the fractional
p-Laplace operator is consistent with the smooth case, that is, when u ∈ Ws

p,q
satisfies (6.50).

For any open subset Σ of Rd, we define the realisation of the Dirichlet-fractional
p-Laplace operator (−∆D

p )
s in L2(Σ) by

(−∆D
p )

s =

{
(u, v) ∈ L2 × L2(Σ)

∣∣∣ u ∈ Ẇs
p,2(Σ) s.t. for all ξ ∈ Ẇs

p,2(Σ)

− 1
2

∫
Σ

∫
Σ

|u(y)− u(x)|p−2(u(y)− u(x))
|y− x|d+sp (ξ(y)− ξ(x))dy dx =

∫
Σ

v ξ dx

}
.

If Σ is a bounded Lipschitz domain, then we define the realisation of the
Neumann-fractional p-Laplace operator (−∆N

p )
s in L2(Σ) by

(−∆N
p )

s =

{
(u, v) ∈ L2 × L2(Σ)

∣∣∣ u ∈Ws
p,2(Σ) s.t. for all ξ ∈Ws

p,2(Σ)

− 1
2

∫
Σ

∫
Σ

|u(y)− u(x)|p−2(u(y)− u(x))
|y− x|d+sp (ξ(y)− ξ(x))dy dx =

∫
Σ

v ξ dx

}
.

Both operators −(−∆D
p )

s and −(−∆N
p )

s are completely accretive in L2(Σ)
(cf. [68]). We show this only at the operator −(−∆D

p )
s since the proof for the

operator −(−∆N
p )

s proceeds similarly. Let (u, v), (û, v̂) ∈ (−∆D
p )

s and T ∈ P0.
By the Lipschitz property of T and since T(0) = 0, one has that T ◦ u ∈ Ẇs

p,2(Σ).
Furthermore, since T and s 7→ |s|p−2s are monotonically increasing on R,∫

Σ
T(u− û)((−v)− (−v̂))dx

=
1
2

∫
Σ

∫
Σ

|u(x)−u(y)|p−2(u(x)−u(y))−|û(x)−û(y)|p−2(û(x)−û(y))
|x−y|d+sp ×

× T((u(x)− u(y))− (û(x)− û(y)))dxdy ≥ 0,

proving that −(−∆N
p )

s is completely accretive by Proposition 2.4.
Further, for any given m-accretive graph β on R satisfying 0 ∈ β(0), one has

for every λ > 0 that the Yosida operator βλ : R → R of β is monotonically in-
creasing, Lipschitz continuous and satisfies βλ(0) = 0. Therefore, taking T = βλ

in the previous calculation shows that the monotone graph β2 in L2(Σ) satisfies
condition (2.28) in Proposition 2.5.
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To see that −(−∆D
p )

s satisfies the range condition (2.14) for X = L2(Σ), we
take V = Ẇs

p,2(Σ). If for every α ∈ R+, Eα denotes the set of all u ∈ V satisfying

〈(I − (−∆D
p )

s)u, u〉V′,V
‖u‖V

≤ α ,

then by

〈(I − (−∆D
p )

s)u, u〉V′,V = ‖u‖2
2 + |u|

p
s,p,

one has
‖u‖2

2 + |u|
p
s,p ≤ α(‖u‖2 + |u|s,p)

for every u ∈ Eα, implying that Eα is bounded in V. Thus, the operator (I −
(−∆D

p )
s) : V → V ′ is surjective by [63, Théorème 1], proving that −(−∆D

p )
s

satisfies the range condition (2.14) in X = L2(Σ). Analogously, one shows that
−(−∆N

p )
s is m-completely accretive in L2(Σ). Moreover, both operators have a

dense domain in L2(Σ) as proven in [68].
Therefore, by Proposition 2.5, the operators

(6.52) AD,s := −(−∆D
p )

s + β2 + F

and

(6.53) AN,s := −(−∆N
p )

s + β2 + F

are quasi m-completely accretive in L2(Σ) with dense domain in L2(Σ). By the
Crandall-Liggett theorem, −AD,s and −AN,s generate respectively a strongly
continuous semigroup {Tt}t≥0 on L2(Σ) of Lipschitz continuous mappings Tt,
which admits a unique Lipschitz continuous extension on Lq(Σ) for all 1 ≤ q <

∞ and on L2 ∩ L∞(Σ)L∞
if q = ∞, respectively with constant eωt.

We begin by giving the complete description of the Lq-Lr-regularisation esti-
mates of the semigroup {Tt}t≥0 ∼ −AD,s on L2(Σ).

Theorem 6.7. Let 1 < p < ∞, 0 < s < 1, Σ be an open subset of Rd and AD,s given
by (6.52). Then the following statements are true.

(1) For 1 < sp < d, the semigroup {Tt}t≥0 ∼ −AD,s on L2(Σ) satisfies (1.14) for

αq =
α∗

1−γ∗(1− q(d−sp)
dm0

)
, βq =

β∗
2 +γ∗ q(d−sp)

dm0

1−γ∗(1− q(d−sp)
dm0

)
, γq =

γ∗ q(d−sp)
dm0

1−γ∗(1− q(d−sp)
dm0

)

for every m0 ≥ p satisfying spm0 + (p− 2)(d− sp) > 0 and 1 ≤ q ≤ dm0
d−sp

satisfying q > sp
d + (p− 2)− d 2+p

sp , where

α∗ = 1
( d

d−sp−1)m0+p−2
, β∗ =

2
p

d
d−sp−1

( d
d−sp−1)m0+p−2

+ 1,

γ∗ =
( d

d−sp−1)m0

( d
d−sp−1)m0+p−2

.

Moreover, if 2d
d+2s < p < d then one can take m0 = p and if 2d

d+s < p < d,
then (1.14) holds for every 1 ≤ q ≤ dp

d−sp .
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(2) For sp = d, suppose that either Σ is unbounded and β satisfies (6.23) or Σ
is bounded and no further assumptions on β. Then the semigroup {Tt}t≥0 ∼
−AD,s satisfies (1.14) with exponents

αq =
α∗θ

1−γ∗θ (1−
q(1−θ)

p )
, βq =

β∗
θ

2 +γ∗θ
q(1−θ)

p

1−γ∗θ (1−
q(1−θ)

p )
, γq =

γ∗θ
q(1−θ)

p

1−γ∗θ (1−
q(1−θ)

p )

for every 1 ≤ q ≤ p
1−θ and max{1− p

2 , 2− p, 0} < θ < 1, where

α∗θ = 1
p

1−θ−2
, β∗θ =

2
1−θ−1

p
1−θ−2

+ 1, γ∗θ =
( 1

1−θ−1)p
p

1−θ−2
.

(3) For d < sp < ∞, suppose that either Σ is unbounded and β satisfies (6.23) or
Σ is bounded and no further assumptions on β. Then the semigroup {Tt}t≥0 ∼
−AD,s satisfies (1.14) with exponents

αq =
1

p−2(1− q
2 )

, βq =
1+ p

2 +q
p−2(1− q

2 )
, γq =

q
p−2(1− q

2 )

for every 1 ≤ q ≤ 2.

Since we could not find an appropriate reference to Gagliardo-Nirenberg in-
equalities available for Sobolev or Besov spaces of fractional order in the spirit
of the classical ones (cf. Lemma 6.2), we construct in each case 1 < sp < d,
sp = d and sp > d our sufficient inequalities from the known Sobolev inequality
for fractional Sobolev spaces partially combined with Poincaré inequalities.

Proof of Theorem 6.7. First, let 1 < sp < d. Then, by [62, Theorem 14.29], there is
a constant C > 0 such that

‖u‖ pd
d−sp
≤ C|u|s,p

for every u ∈ Ẇs
p,q(Σ) and q ≥ 1. Taking pth power on both sides of this in-

equality and applying (6.38) to a = u(x)− u(y) and b = û(x)− û(y) yields

‖u− û‖p
pd

d−sp

≤ C
∫

Σ

∫
Σ

|(u(x)−û(x))−(u(y)−û(y)|p
|x−y|d+sp dx dy

≤ C̃
1
2

∫
Σ

∫
Σ

|u(x)−u(y)|p−2(u(x)−u(y))−|û(x)−û(y)|p−2(û(x)−û(y))
|x−y|d+sp

× ((u(x)− u(y))− (û(x)− û(y)))dx dy

= C̃ 〈u− û, (−(−∆D
p )

su)− (−(−∆D
p )

sû)〉

for every u, û ∈ D((−∆D
p )

s). Thus, by Remark 3.5, the operator AD,s given
by (6.52) satisfies the Gagliardo-Nirenberg inequality (3.2) with parameters

(6.54) r =
pd

d− sp
, σ = p, and $ = 0,

hence the first statement of this theorem holds by Theorem 1.2.
Next, let sp = d ≥ 2. By [48, Theorem 6.9], there is a constant C = C(d, p, s) >

0 such that

(6.55) ‖u‖ p
1−θ
≤ C

(
|u|s,p + ‖u‖p

)
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for every u ∈ C∞
c (Σ) and by a standard approximation argument we see that

this inequality holds for all u ∈ Ẇs
p,p(Σ) and every 0 ≤ θ < 1. If Σ is unbounded

and β satisfies (6.23), then taking pth power on both sides of inequality (6.55)
and applying (6.38) to a = u(x)− u(y) and b = û(x)− û(y) together with (6.23)
yields

‖u− û‖p
p

1−θ

≤ C
(∫

Σ

∫
Σ

|(u(x)−û(x))−(u(y)−û(y)|p
|x−y|d+sp dx dy +

∫
Σ
|u− û|p dx

)
≤ C

(
2

1
2

∫
Σ

∫
Σ

|u(x)−u(y)|p−2(u(x)−u(y))−|û(x)−û(y)|p−2(û(x)−û(y))
|x−y|d+sp

× ((u(x)− u(y))− (û(x)− û(y)))dx dy

+η−1
0

∫
Σ
(v− v̂)(u− û)dx

)
≤ C max{2, η−1

0 } 〈u− û, (−(−∆D
p )

su + v)− (−(−∆D
p )

sû + v̂)〉

for every u, û ∈ D((−∆D
p )

s), v ∈ β2(u), v̂ ∈ β2(û) and some constant C > 0
which might be different from line to line. Therefore, by Remark 3.5, the oper-
ator AD,s given by (6.52) satisfies the Gagliardo-Nirenberg inequality (3.2) with
parameters

(6.56) r =
p

1− θ
, σ = p, and $ = 0, for every 0 ≤ θ < 1.

If Σ is bounded, then by [64, Theorem 5], the first eigenvalue of −(−∆D
p )

s is
positive hence the following Poincaré inequality

(6.57) ‖u‖p ≤ C |u|s,p

holds for every u ∈ Ẇs
p,p(Σ), 1 < p < ∞ and 0 < s < 1. Using (6.57) to estimate

the term ‖u‖p in (6.55) yields

‖u‖ p
1−θ
≤ C |u|s,p

for every u ∈ Ẇs
p,2(Σ). Now, proceeding as previously, we see that the opera-

tor AD,s satisfies the Gagliardo-Nirenberg inequality (3.2) with exponents (6.56).
Therefore by Theorem 1.2, the second statement of this theorem holds.

Next, let d < sp. Then, by [48, Theorem 8.2], there is a constant C = C(d, p, s) >
0 such that

(6.58) ‖u‖∞ ≤ C
(
|u|ps,p + ‖u‖

p
p
)1/p

for every u ∈ Ẇs
p,p(Σ). If Σ is unbounded but β satisfies (6.23), then proceeding

as in the case sp = d, we obtain that

‖u− û‖p
∞

≤ C max{2, η−1
0 } 〈u− û, (−(−∆D

p )
su + v)− (−(−∆D

p )
sû + v̂)〉

for every u, û ∈ D((−∆D
p )

s) and v ∈ β2(u), v̂ ∈ β2(û). Thus, Remark 3.5
implies that the operator AD,s satisfies the Gagliardo-Nirenberg inequality (3.2)
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with exponents

(6.59) r = ∞, σ = p, and $ = 0.

If Σ is bounded, then we apply Poincaré inequality (6.57) to estimate the term
‖u‖p in (6.58) and obtain

‖u‖∞ ≤ C|u|s,p

for every u ∈ Ẇs
p,2(Σ). Proceeding as above, we see that the operator AD,s sat-

isfies the Gagliardo-Nirenberg inequality (3.2) with exponents (6.59). Therefore
by Theorem 1.2, the third statement of this theorem holds. This completes the
proof. �

Next, we state the Lq-Lr-regularisation estimates of the semigroup {Tt}t≥0 ∼
−AN,s on L2(Σ).

Theorem 6.8. Let Σ be a bounded domain of Rd with a Lipschitz continuous boundary.
Then the following statements are true.

(1) Suppose the monotone graph β satisfies (6.23) and AN,s is given by (6.53). Then,
for every 1 < p < ∞ and 0 < s < 1, the semigroup {Tt}t≥0 ∼ −AN,s

satisfies (1.14) with the same exponents as satisfied by the semigroup {Tt}t≥0 ∼
−AD,s in the statements (1)-(3) of Theorem 6.7.

(2) Suppose the monotone graph β satisfies (6.24) and AN,s is given by (6.53). Then,
for every 1 < p < ∞ and 0 < s < 1, the semigroup {Tt}t≥0 ∼ −AN,s satisfies
estimate (1.18) for u0 = 0 with the same exponents as satisfied by the semigroup
{Tt}t≥0 ∼ −AD,s in the statements (1)-(3) of Theorem 6.7.

(3) For every 1 < p < ∞ and 0 < s < 1, the semigroup {Tt}t≥0 ∼ (−∆N
p )

s

satisfies (6.27) with the same exponents as given in the statements (1)-(3) of
Theorem 6.7.

In particular, concerning Neumann boundary condition, we need to construct
for each case 1 < sp < d, sp = d and sp > d our sufficient inequalities from
the known Sobolev inequalities for fractional Sobolev spaces partially combined
with a Poincaré inequalities.

Proof of Theorem 6.8. We only derive the Sobolev inequalities in each case 1 <
sp < d, sp = d and sp > d needed to deduce the Lq-Lr- regularity estimates for
the semigroups, since then one proceeds as in the proof of Theorem 6.7.

First, let 1 < sp < d. Then, by [48, Theorem 6.9], there is a constant C > 0
such that

(6.60) ‖u‖ pd
d−sp
≤ C(|u|s,p + ‖u‖p)

for every u ∈Ws
p,p(Σ). Now, one takes pth power on both sides of this inequality

and applies assumption (6.23) and inequality (6.38) for s = u(x) − u(y) and
t = û(x)− û(y). This, together with Remark 3.5 yields the operator AN,s satisfies
Gagliardo-Nirenberg inequality (3.2) with exponents (6.54). If β satisfies (6.24),
then one does not need inequality (6.38) to show that AN,s satisfies Gagliardo-
Nirenberg inequality (1.11) with exponents (6.54).

In the case sp = d ≥ 2, one uses the Sobolev inequality [48, Theorem 6.10]

(6.61) ‖u‖ p
1−θ
≤ C(|u|s,p + ‖u‖p),
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which holds for all u ∈ Ws
p,p(Σ) and any θ ∈ [0, 1), where the constant C is

independent of θ and u. In the case and d < sp, one employs the Sobolev in-
equality [48, Theorem 8.2])

(6.62) ‖u‖∞ ≤ C(|u|ps,p + ‖u‖
p
p)

1/p

holding for all u ∈ Ws
p,p(Σ). In both cases, one proceeds analogously as in the

proof of Theorem 6.7. If β satisfies (6.23), then one sees that operator AN,s satis-
fies the Gagliardo-Nirenberg inequality (3.2) with exponents (6.56) and (6.59),
respectively. If β satisfies (6.24), then by proceeding as in the previous case
but without using inequality (6.38) one sees that AN,s satisfies the Gagliardo-
Nirenberg inequality (1.11) with exponents (6.56) and (6.59), respectively. This
shows that the first and the second statement of this theorem holds.

In order to see that the last statement holds, one employs the following Poincaré
inequality (see, for instance, [59])

‖u− u‖p ≤ C |u|s,p

holding for all u ∈ W1
p,p(Σ) and some constant C > 0, to estimate the term ‖u‖p

in (6.60), (6.61) and (6.62). Then, one proceeds as in the previous steps of this
proof and obtains that the operator (−∆N

p )
s satisfies the Gagliardo-Nirenberg

inequality (3.2) with exponents (6.54) if 1 < sp < d, (6.56) if ps = d ≥ 2 and
(6.59) if sp > d. Therefore by Theorem 1.2, the third statement of this theorem
holds. �

6.3. Nonlinear diffusion equations in L1. This subsection is concerned with
the application of our theory developed in Section 3 and Section 4 to semi-
groups generated by quasi accretive operator in L1. The here established L1-
L∞-regularisation estimates are used in the subsequent Section 7 to show that
mild solutions are strong.

For the sake of readability, we outline the example here only on the p-Laplace
operator but we emphasise that it is clear that this example and the correspond-
ing results hold very well for the general Leray-Lions operator considered in
Section 6.1.

Let 1 < p < ∞, m > 0, and φ ∈ C(R) ∩ C1(R \ {0}) be a non-decreasing
function satisfying

(6.63) φ(0) = 0 and φ′(s) ≥ C |s|m−1 for every s 6= 0,

for some C > 0 independent of s ∈ R.

Remark 6.9. Typical examples of non-decreasing functions φ ∈ C(R) ∩ C1(R \
{0}) satisfying the two conditions in (6.63) are φ1(s) = |s|m−1s, (s ∈ R), for any
m > 0 or for m = 1, φ2(s) := a s+ − b s−, (s ∈ R), for a, b > 0. Note that for
the function φ1, the operator ∆pφ1 coincides with the celebrated doubly nonlinear
operator ∆p(·m) (cf. [21]).

Then, for given initial value u0 ∈ L1(Σ), we investigate in this subsection the
regularisation effect of mild solutions u(t) = u(x, t) for t > 0 of the parabolic
initial value problem

(6.64)

{
∂tu− div(|∇φ(u)|p−2∇φ(u)) + f (x, u) 3 0 on Σ× (0, ∞),

u(·, 0) = u0 on Σ,
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respectively equipped with one of the following types of boundary conditions:

u = 0 on ∂Σ× (0, ∞), if Σ ⊆ Rd,(6.65)

|∇φ(u)|p−2∇φ(u) · ν = 0 on ∂Σ× (0, ∞), if µ(Σ) < ∞,(6.66)

|∇φ(u)|p−2∇φ(u) · ν + a|φ(u)|p−1 = 0 on ∂Σ× (0, ∞), if µ(Σ) < ∞.(6.67)

Concerning homogeneous Dirichlet boundary condition (6.65), we make no
further assumptions on the boundary of Σ. However, regarding homogeneous
Neumann or Robin boundary conditions (6.66) and (6.67), respectively, we need
to ensure the validity of the Gagliardo-Nirenberg inequalities (6.16) hence, we
assume that Σ is a bounded domain with a Lipschitz boundary. In addition,
concerning homogeneous Neumann boundary conditions (6.66), we state the
Lq-Lr regularisation effect merely for initial values u0 ∈ Lq

0(Σ) for 1 ≤ q ≤ ∞.

Remark 6.10. If Σ is unbounded, then the Dirichlet boundary conditions (6.65)
become vanishing conditions at infinity (6.11). It is well-known (cf. [91, Theo-
rem 9.12] for the case p = 2 and the references therein) that the Lq-Lr-regularisa-
tion effect of mild (respectively, strong) solutions of problem (6.64) for Σ = Rd

has been deduced from the uniform estimates obtained in the case Σn = B(0, n)
the open ball centred at x = 0 and radius r = n ≥ 1, or for p 6= 2 under the
assumption that the solutions have enough regularity (cf., for instance, [21, 18]).
In this monograph, we show that we do not need to proceed in this way. We
treat the case of Dirichlet boundary condition (6.65) for general open subsets Σ
of Rd at once. This simplifies essentially the known approaches in the literature
and has the great advantage that we know the infinitesimal generator of the
nonlinear semigroup.

Now, let A denote either the negative Dirichlet p-Laplace operator −∆D
p on

L2(Σ), the negative Neumann p-Laplace operator −∆N
p on L2(Σ) or on L2

m(Σ),
or the negative Robin p-Laplace operator −∆R

p realised on L2(Σ). Then, A is
a single-valued, m-completely accretive operators in L2(Σ) satisfying A0 = 0
(cf. Section 6.1.1 and 6.1.3). Furthermore, let A1∩∞ be the trace of A on L1 ∩
L∞(Σ, µ). Then, by Proposition 2.8, the closure A1∩∞ in L1(Σ) of the trace A1∩∞
is m-completely accretive in L1(Σ) with dense domain. In the specific case A =
−∆N

p on L2
m(Σ), Proposition 2.14 yields that A1∩∞ is m-completely accretive in

L1
m(Σ) with dense domain and with c-complete resolvent.
Next, we first consider the case when φ : R → R is a general continuous,

non-decreasing function satisfying φ(0) = 0. For every λ > 0, let βλ(s) =
(1 + λβ)−1(s), (s ∈ R), denote the Yosida operator of β := φ−1. Then, by the
Lipschitz continuity of βλ : R→ R, since βλ(0) = 0 and since βλ monotonically
increasing,

[βλ(u), A(u)]2 =
∫

Σ
|∇u|p−2∇u∇βλ(u)dx + a

∫
∂Σ
|u|p−2uβλ(u)dH

=
∫

Σ
|∇u|pβ′λ(u)dx + a

∫
∂Σ
|u|p−2uβλ(u)dH

≥ 0,

for every u ∈ D(A) and λ > 0 provided A is one of the three operators −∆D
p ,

−∆N
p or −∆R

p , where a = 0 if A is not −∆R
p . Thus, condition (2.28) holds for



REGULARISATION EFFECTS OF NONLINEAR SEMIGROUPS 101

q = 2. To see that the trace A1∩∞ of A in L1 ∩ L∞(Σ, µ) satisfies (2.28) for q = 1,
let (γε)ε>0 be the sequence given by (2.6), then by the Lipschitz continuity of γε

and βλ on R, since γε(0) = 0 and βλ(0) = 0, and by the monotonicity of γε and
βλ on R,∫

Σ
γε(βλ(u)) A1∩∞(u)dµ

=
∫

Σ
|∇u|p−2∇u∇γε(βλ(u))dx + a

∫
∂Σ
|u|p−2uγε(βλ(u))dH

=
∫

Σ
|∇u|pγ′ε(βλ(u))β′λ(u)dx + a

∫
∂Σ
|u|p−2uγε(βλ(u))dH

≥ 0,

for every u ∈ D(A1∩∞), λ > 0 and ε > 0. Since

lim
ε→0+

γε(βλ(u(x))) = sign0(βλ(u(x))) for a.e. x ∈ Σ,

and |γε(βλ(u)) A1∩∞(u)| ≤ |A1∩∞(u)| ∈ L1(Σ), Lebesgue’s dominated conver-
gence theorem yields

lim
ε→0+

∫
Σ

γε(βλ(u)) A1∩∞(u)dµ =
∫

Σ
sign0(βλ(u(x)))A1∩∞(u)dµ.

Thus,
[βλ(u), A1∩∞(u)]1 ≥ 0 for all u ∈ D(A1∩∞) and λ > 0.

Therefore, if A is one of the three operators −∆D
p , −∆N

p or −∆R
p then for ev-

ery continuous non-decreasing function φ on R satisfying φ(0) = 0, one has
that condition (2.43) of Proposition 2.18 holds and so, under either hypothe-
sis (i), hypothesis (ii) or hypothesis (iii) of Proposition 2.18, we can conclude
that the closure A1∩∞φ of A1∩∞φ in L1(Σ, µ) is an m-accretive operator in L1(Σ)
with complete resolvent. In particular, for A = −∆N

p , the operator A1∩∞φ is
m-accretive in L1

m(Σ) with c-complete resolvent. If φ satisfies either hypothe-
sis (ii) or hypothesis (iii) holds, then A1∩∞φ satisfies the range condition (2.44),
which is important in order to apply Theorem 1.5. Therefore, if either φ(s) is
locally Lipschitz continuous or A is defined on L2(Σ) with Σ an open subset of
Rd of finite Lebesgue measure, then A1∩∞φ satisfies the range condition (2.44).
Moreover, we can state the following result.

Lemma 6.11. Let φ be a continuous non-decreasing function satisfying φ(0) = 0 and Σ
an open subset of Rd. Let A be the negative Dirichlet-p-Laplace operator−∆D

p on L2(Σ)
and A1∩∞ the trace of A on L1 ∩ L∞(Σ). Then, A1∩∞φ satisfies range condition (2.44).

By using that A1∩∞φ satisfies the range condition (2.44) and under the as-
sumption that φ is a continuous strictly increasing function satisfying φ(0) = 0
and Σ be either an open bounded subset of Rd or Rd, it is not difficult to see that
the domain D(A1∩∞φ) is dense in L1(Σ).

We briefly outline the proof of Lemma (6.11).

Proof of Lemma 6.11. Let (Σn)n≥1 be a sequence of subsets Σn ⊆ Σ satisfying
Σn ⊆ Σn+1 and

⋃
n≥1 Σn = Σ. Let ∆D,n

p be the Dirichlet-p-Laplace operator on
L2(Σn) and An the trace of ∆D,n

p on L1 ∩ L∞(Σn). Since Σn has finite Lebesgue
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measure, Proposition 2.18 implies that the operator Anφ satisfies range condi-
tion (2.44). For every λ > 0, let Jn

λ be the resolvent operator of A1∩∞φ.
Now, let f ∈ L1 ∩ L∞(Σ), λ > 0 and for every n ≥ 1, set fn = f1Σn , un =

Jn
λ [ f|Σn ] and ũn the extension of un on Rd by zero. Then, our first aim is to show

that there is u ∈ D(A1∩∞φ) satisfying u + λA1∩∞φ(u) 3 f and after eventually
passing to a subsequence,

(6.68) lim
n→∞

ũn = u in L1(Σ).

Since f ∈ L1 ∩ L∞(Σ) and A1∩∞φ has a complete resolvent, it follows that

(6.69) ‖ũn‖q ≤ ‖ f ‖q for every n ≥ 1

and all 1 ≤ q ≤ ∞. By reflexivity of Lq(Σ) for q > 1, there is u ∈ Lq(Σ) such that
after eventually passing to a subsequence ũn converges to u weakly in Lq(Σ) and
‖u‖q ≤ ‖ f ‖q. Moreover, since for every ε > 0 and for every A ⊆ Σ satisfying
|A| < δ(ε) := ‖ f ‖−1

∞ ε, one sees that
∫

A|ũn|dx ≤ ε for all n ≥ 1. Thus the
Dunford-Pettis theorem implies u ∈ L1(Σ), ‖u‖1 ≤ ‖ f ‖1 and ũn converges to u
weakly in L1(Σ) after passing eventually to a subsequence of (ũn)n≥1. If f ≥ 0,
then by the T-accretivity of An, we have that 0 ≤ ũn ≤ ũn+1 a.e. on Σ for every
n ≥ 1. Moreover, by (6.69) for q = 1, Beppo-Levi’s monotone convergence
theorem yields (6.68) for some u ∈ L1(Σ) satisfying u ≥ 0 provided f ≥ 0.
Similar arguments show that ũn+1 ≤ ũn ≤ 0 and (6.68) holds for some u ∈ L1(Σ)
satisfying u ≤ 0 provided f ≤ 0. Since − f− ≤ f ≤ f+, the T-accretivity of An
yields Jn

λ [− f−|Σn
] ≤ un ≤ Jn

λ [ f+|Σn
] a.e. on Σ. Let ũ−,n denote the extension on Σ of

Jn
λ [− f−|Σn

] by zero and ũ+,n denote the extension on Σ of Jn
λ [ f+|Σn

] by zero. Then,

there are u− and u+ ∈ L1(Σ) such that limn→∞ ũ−,n = u− and limn→∞ ũ+,n = u+

in L1(Σ). By the monotonicity of (ũ−,n)n≥1 and (ũ+,n)n≥1, we obtain u− ≤ ũn ≤
u+ a.e. on Σ for all n ≥ 1. Thus, by Lebesgue’s dominated convergence theorem,
(6.68) holds provided ũn converges to u a.e. on Σ.

We multiply equation un + λAnφ = fn by φ(un) with respect to the L2-inner
product. Then coercivity condition (6.6) yields (φ(ũn))n≥1 is bounded in W1,p

0 (Σ).
Hence and by using Rellich-Kondrachov’s compactness result combined with a
diagonal-sequence argument yields the existence of a subsequence of (ũn)n≥1,
which we denote again by (ũn)n≥1 and some v ∈ W1,p

0 (Σ) such that φ(ũn) con-
verges weakly to v in W1,p

0 (Σ) and strongly in Lp
loc(Σ). By the continuity of φ−1

on R, it follows that ũn = φ−1(φ(ũn)) converges to φ−1(v) in Lp
loc(Σ) and a.e. on

Σ after passing again to a subsequence. Comparing this with the weak limit u of
(ũn) in Lq(Σ), it follows that φ−1(v) = u and that limit (6.68) holds. Now, by us-
ing classical monotonicity arguments due to Leray-Lions [63] (as employed, for
instance, in [55, Lemma 2.5]) yields u ∈ D(A1∩∞φ) with u+λA1∩∞φ(u) 3 f . �

Remark 6.12. Note that, for A = −∆D
p , the operator A1∩∞φ coincides with the

associated entropy solution operator of the composition −∆D
p φ. This has been

investigate in the celebrated paper [13].

Let F denote the Nemytski operator on L1(Σ) associated with a Carathéodory
function f : Σ×R → R satisfying (2.17) for some Lipschitz constant L > 0. If
∆D

p,1, ∆N
p,1 and ∆R

p,1 are respectively the traces on L1 ∩ L∞(Σ, µ) of the operators



REGULARISATION EFFECTS OF NONLINEAR SEMIGROUPS 103

∆D
p , ∆N

p or ∆R
p , and if φ ∈ C(R) is a non-decreasing function satisfying φ(0) = 0

then, by Proposition 2.19 and Lemma 6.11, the operators

AD
φ := (−∆D

p,1)φ + F on L1(Σ), AN
φ := (−∆N

p,1)φ + F on L1
m(Σ),

AR
φ := (−∆R

p,1)φ + F on L1(Σ),

are quasi-m-accretive in L1 with complete resolvent. By the Crandall-Liggett
theorem, the operators −AD

φ , −AN
φ and −AR

φ generate a strongly continuous

semigroup {Tt}t≥0 on D(A1∩∞φ)L1 of Lipschitz continuous mappings Tt on the
set D(A1∩∞φ)L1 with constant eωt and satisfying exponential growth (2.39) with
respect to the Lq̃-norm for all 1 ≤ q̃ ≤ ∞.

Here, we state the complete description of the Lq-Lr-regularisation effect of
the Dirichlet-semigroup {Tt}t≥0 ∼ −AD

φ on D(AD
φ )

L1
for a non-decreasing func-

tion φ ∈ C(R) ∩ C1(R \ {0}) satisfying (6.63) for some m > 0 and C > 0.

Theorem 6.13. Let φ ∈ C(R) ∩ C1(R \ {0}) be non-decreasing function satisfy-
ing (6.63) for some m > 0 and C > 0, and let Σ be an arbitrary open set of Rd. Then,
the semigroup {Tt}t≥0 ∼ −AD

φ on D(AD
φ )

L1
satisfies the following regularisation esti-

mates.
(1) If 1 < p < d, then there is β∗ ≥ 0 such that the semigroup {Tt}t≥0 satisfies

estimate (1.18) with u0 = 0 for every u ∈ D(AD
φ )

L1 ∩ L∞(Σ) with exponents

αs =
α∗

1−γ∗
(

1− s(d−p)
dmq0

) , βs =
β∗
2 +γ∗ s(d−p)

dmq0

1−γ∗(1− s(d−p)
dmq0

)
, γs =

γ∗ s
dmq0
(d−p)

(
1−γ∗(1− s(d−p)

dmq0
)
)

for every q0 ≥ p satisfying pq0
d−p + p− 1− 1

m > 0 and 1 ≤ s ≤ dm q0
d−p satisfying

γ∗(1− s(d−p)
dmq0

) < 1, where

α∗ = 1
mp

d−p q0+mp−m−1
, and γ∗ = p q0

p q0+(d−p)(p−1− 1
m )

.

Moreover, for d(1+ 1
m )

1+d+ 1
m
< p < d, one can take q0 = p and for d(m+1)

dm+1 < p < d,

the semigroup {Tt}t≥0 satisfies (1.18) for every u ∈ D(AD
φ )

L1 ∩ L∞(Σ) and

1 ≤ s ≤ dm q0
d−p .

(2) If p = d ≥ 2 and Σ has finite Lebesgue measure, then for every θ ∈ (0, 1),
there is a β∗θ ≥ 0 such that the semigroup {Tt}t≥0 satisfies estimate (1.18) with
u0 = 0 for every u ∈ D(AD

φ )
L1 ∩ L∞(Σ) with exponents

αs =
α∗

1−γ∗θ

(
1− s(1−θ)

mq0

) , βs =
β∗
2 +γ∗θ

s(1−θ)
mq0

1−γ∗θ (1−
s(θ−1)

mq0
)
, γs =

γ∗θ s
mq0
(1−θ)

(1−γ∗θ (1−
s(1−θ)

mq0
))

for every q0 ≥ p satisfying θq0
1−θ + p− 1− 1

m > 0 and 1 ≤ s ≤ m q0
1−θ , where

α∗θ = 1
m(

θq0
1−θ +p−1− 1

m )
, and γ∗θ =

θ
1−θ q0

θq0
1−θ +p−1− 1

m

.
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If one takes max
{

0, 1+m(1−p)
m+1

}
< θ < 1, then one can take q0 = p and the

semigroup {Tt}t≥0 satisfies estimate (1.18) with s = 1 for every u ∈ D(AD
φ )

L1
.

(3) If p > d, then the semigroup {Tt}t≥0 satisfies estimate (1.18) for every u ∈
D(AD

φ )
L1 ∩ L∞(Σ) with exponents

αs =
α∗

1− γ∗(1− s
m+1 )

, βs =
β∗
2 +γ∗

s
m+1

1−γ∗(1− s
m+1 )

, γs =
γ∗ s

m+1
1−γ∗(1− s

m+1 )
,

for every 1 ≤ s ≤ m + 1, where

(6.70) α∗ = 1
pm(1−m+1

mp +m+1
md )

, β∗ = γ∗ + 1 and γ∗ = m+1
dm(1−m+1

mp +m+1
md )

.

We outline the proof of Theorem 6.13.

Proof of Theorem 6.13. By Lemma 6.11, the operator (−∆D
p,1)φ satisfies range con-

dition (2.44) in Proposition 2.18. Hence, we intend to apply Theorem 1.5.
We begin by considering the case 1 < p < d. Then by Lemma 6.2, there

is a constant C > 0 such that inequality (6.19) holds for every u ∈ Ẇ1
p,2(Σ).

For every (u, v) ∈ (−∆D
p,1)φ, one has φ(u) ∈ Ẇ1

p,∞(Σ). By classical interior
regularity results (see [86]) and since φ′(r) > 0 for all r 6= 0, one has u ∈ C(Σ) ∩
C1,α({u 6= 0}) and ∇u ≡ 0 on the level set {u = 0}. Combining this with
coercivity condition (6.63) and Gagliardo-Nirenberg inequality (6.16) for 1 <
p < d, we see that

[u, v](q−p+1)m+1 =
∫

Σ
|∇φ(u)|p−2∇φ(u)∇(|u|((q−p+1)m+1)−2u)dx

= (q− p + 1)m
∫
{u 6=0}

|u|(q−p+1)m−1|∇u|p [φ′]p−1(u)dx

≥ Cp−1 (q− p + 1)m
∫
{u 6=0}

|u|qm−p|∇u|p dx

=

[
C
m

]p−1 (q− p + 1)pp

qp ‖|∇(|u|
qm+p

p −2u)|‖p
p

≥
[

C
m

]p−1 (q− p + 1)pp

qp C̃−p ‖|u|
qm+p

p −2u‖p
pd

d−p

=

[
C
m

]p−1 (q− p + 1)pp

qp C̃−p ‖u‖qm
qmd
d−p

for every q ≥ p. Here, the constant C̃ > 0 is the one given by Gagliardo-
Nirenberg inequality (6.16) and is independent of Σ. Remark 3.5 yields that
the operator AD

φ satisfies the one-parameter family of Gagliardo-Nirenberg type
inequalities (1.21) with u0 = 0 and κ = d

d−p > 1 and so Theorem 1.5 yields the
first statement of this theorem.

Next, we consider the case p = d and suppose that Σ is a general open subset
of Rd with finite Lebesgue measure. By Lemma 6.2, for every 1 ≤ q ≤ ∞ and
every θ ∈ [0, 1), there is a constant C̃ = C̃(q, d, θ) > 0 such that

‖u‖
d
θ

q
1−θ

≤ C̃ ‖|∇u|‖d
d ‖u‖

d 1−θ
θ

q
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for every u ∈ Ẇ1
p,q(Σ). For functions u ∈ C∞

c (Σ), Maz’ya’s inequality (6.36)

reduces to a Poincaré inequality, which we apply to estimate ‖u‖d 1−θ
θ

q for q = d
in the last inequality. Then for every θ ∈ [0, 1), there is a constant C̃ > 0, which
might be different to the one given in the previous inequality, such that

(6.71) ‖u‖d
d

(1−θ)

≤ C̃ ‖|∇u|‖d
d

for every u ∈ C∞
c (Σ). Since for 1 ≤ q < ∞, Ẇ1

p,q(Σ) is the closure of C∞
c (Σ) in

W1
p,q(Σ), an approximation argument shows that (6.71) holds also for functions

u ∈ Ẇ1
p,q(Σ). Now, proceeding as in the case 1 < p < d and using (6.71), yields

[u, v](q−d+1)m+1 ≥
[

C
m

]p−1 (q− d + 1)dd

qd C̃−p ‖|u|
qm+d

d −2u‖d
d

(1−θ)

=

[
C
m

]p−1 (q− d + 1)dd

qd C−p ‖u‖qm
qm

(1−θ)

for every (u, v) ∈ ((−∆D
p,1)φ)1 and q ≥ p = d, where for every θ ∈ [0, 1), the

constant C > 0 depends on the measure of Σ, θ and p = d. Remark 3.5 yields
that the operator AD

φ satisfies the one-parameter family of Gagliardo-Nirenberg
type inequalities (1.21) with u0 = 0 and κ = 1

1−θ > 1 and so Theorem 1.5 yields
the third statement of this theorem.

Now, let p > d. Then by Lemma 6.2 there is a θ0 ∈ (0, 1) satisfying

θ0(
1
p −

1
d ) + (1− θ0)

m
m+1 = 0

and a constant C̃ > 0 such that

(6.72) ‖u‖∞ ≤ C̃ ‖|∇u|‖θ0
p ‖u‖

1−θ0
m+1

m

for every u ∈ Ẇ1
p, m+1

m
(Σ). By applying (6.72) and the coercivity condition (6.63)

of φ, we see that

[u, v]m+1 ‖u‖
mp 1−θ0

θ0
m+1 = m

∫
{u 6=0}

|∇u|p[φ′(u)]p−1 |u|m−1dx ‖um+1‖
p 1−θ0

θ0
m+1

m

≥ m Cp−1
∫
{u 6=0}

|∇u|p |u|p(m−1)dx ‖um+1‖
p 1−θ0

θ0
m+1

m

=

[
C
m

]p−1 ∫
Σ
|∇um+1|pdx ‖um+1‖

p 1−θ0
θ0

m+1
m

≥
[

C
m

]p−1

C̃−
p

θ0 ‖um+1‖
p

θ0
∞

= C̃−
p

θ0 ‖u‖
pm
θ0

∞

for every (u, v) ∈ ((−∆D
p,1)φ)1. Since θ0 = (1 − m+1

mp + m+1
md )−1 and by Re-

mark 3.5, AD
φ satisfies Gagliardo-Nirenberg type inequality (1.11) with

r = ∞, σ = pm(1− m+1
mp + m+1

md ), q = m + 1, $ = mp
1− θ0

θ0
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and so by Theorem 1.5 and Theorem 4.3, the semigroup {Tt}t≥0 ∼ −AD
φ satisfies

inequality (1.18) with u0 = 0, r = ∞, q = m+ 1 and α∗, β∗ and γ∗ given by (6.70).
Since for m ≥ 1, γ∗(1− 1

m+1 ) < 1, Theorem 4.3 completes the proof of the last
claim of this theorem. �

Next, we state the complete description of the Lq-Lr-regularisation estimates
of the semigroup {Tt}t≥0 ∼ −AN

φ on L1
m(Σ). Here, we denote by L1

m(Σ) the
space of all functions u ∈ L1(Σ) with mean value u := 1

|Σ|
∫

Σ u dx = 0.

Theorem 6.14. Let Σ be a bounded domain with Lipschitz boundary and φ ∈ C(R) ∩
C1(R \ {0}) be a non-decreasing function satisfying (6.63) for some m > 0 and C > 0.
Then, for 1 < p < ∞, the semigroup {Tt}t≥0 ∼ −AN

φ on L1
m(Σ) satisfies the Lq-Lr-

regularisation estimate (1.18) with u0 = 0 for every u ∈ L1
m(Σ)∩ L∞(Σ) with the same

exponents and conclusions as for the semigroup generated by −AD
φ on D(AD

φ )
L1

stated
in Theorem 6.13.

For the proof, we proceed similarly as in the proof of Theorem 6.13.

Proof of Theorem 6.14. If 1 < p < d, then inequality (6.33) reduces to Sobolev
inequality (6.19) by using functions u ∈ W1

p,p,m(Σ). If p ≥ d, then applying
Poincaré inequality (6.32) for functions u ∈ W1

p,p,m(Σ) to Gagliardo-Nirenberg
inequality (6.18) yields inequality (6.71) and (6.72). Thus, proceeding as in the
proof of Theorem 6.13, we see that the statement of this theorem holds. �

To complete this subsection, we state the complete description of the Lq-Lr-
regularisation effect of the semigroup {Tt}t≥0 ∼ −AR

φ on L1(Σ) and φ(s) =

|s|m−1s for m > 0.

Theorem 6.15. Let Σ be a bounded domain with Lipschitz boundary and φ ∈ C(R) ∩
C1(R \ {0}) be a non-decreasing function satisfying (6.63) for some m > 0 and C > 0.
Then, for 1 < p < ∞, the semigroup {Tt}t≥0 ∼ −AR

φ on L1(Σ) satisfies the Lq-Lr-
regularisation estimate (1.18) with u0 = 0 for every u ∈ L1(Σ)∩ L∞(Σ) with the same
exponents and conclusions and as for the semigroup generated by −AD

φ on D(AD
φ )

L1

stated in Theorem 6.13.

We proceed as in the proof of Theorem 6.13.

Proof of Theorem 6.15. We begin by considering the case 1 < p < d. Note that by
coercivity condition (6.63) of φ, one has

(6.73) φ(s) ≥ C
m |s|

m−1s for all s ∈ R.

Combining this with (6.63) and Sobolev inequality (6.39), we see that

[u, v](q−p+1)m+1 ≥
[

C
m

]p−1 (q− p + 1)pp

qp ‖|∇(|u|
qm+p

p −2u)|‖p
p

+ a
[

C
m

]p−1 ∫
∂Σ

u(q−p+1)m+1|um+1|p−2um+1 dH

=

[
C
m

]p−1 (q− p + 1)pp

qp ‖|∇(|u|
qm+p

p −2u)|‖p
p
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+ a
[

C
m

]p−1 ∫
∂Σ
||u|

qm+p
p −2u|p dH

≥
[

C
m

]p−1

min
{

(q−p+1)pp

qp , a
}

C̃−p‖|u|
qm
p ‖p

pd
d−p

=

[
C
m

]p−1

min
{

(q−p+1)pp

qp , a
}

C̃−p ‖u‖qm
qmd
d−p

for every q ≥ p and (u, v) ∈ (−∆R
p,1)φ. Remark 3.5 yields that the operator

AR
φ satisfies the one-parameter family of Gagliardo-Nirenberg type inequali-

ties (1.21) with u0 = 0 and κ = d
d−p > 1 and so by Theorem 1.5, the statement of

this theorem holds for 1 < p < d.
Next, for p = d, then by Lemma 6.2, for every 1 ≤ q ≤ ∞ and every θ ∈ [0, 1),

there is a constant C = C(d, θ) > 0 such that

‖u‖ d
1−θ
≤ C

(
‖|∇u|‖θ

d ‖u‖1−θ
d + ‖u‖d

)
for every u ∈ W1

d,d(Σ). Applying Maz’ya’s inequality (6.36) and Young’s in-
equality to the latter inequality and subsequently raising to the dth power yields

‖u‖d
d

1−θ

≤ C
(
‖|∇u|‖d

d + ‖u|∂Σ‖d

)d

for every u ∈ W1
d,d(Σ), where the constant C > 0 can differ from the previous

one. By this Sobolev type inequality, we can proceed as above and see that also
for p = d, the statement of this theorem holds.

Now, let p > d. Then by Lemma 6.2 there is a θ0 ∈ (0, 1) satisfying

θ0(
1
p −

1
d ) + (1− θ0)

m
m+1 = 0

and for every q̃ > 0, there is a constant C := C(θ0, p, d, q̃) > 0 such that

‖u‖∞ ≤ C
(
‖|∇u|‖θ0

p ‖u‖
1−θ0
m+1

m
+ ‖u‖q̃

)
for every u ∈W1

p, m+1
m
(Σ) ∩ Lq̃(Σ). Taking q̃ such that 1

q̃ = θ0
p + 1−θ0

m+1
m

yields

‖u‖∞ ≤ C
(
‖|∇u|‖θ0

p + ‖u‖θ0
p

)
‖u‖1−θ0

m+1
m

and so by Maz’ya’s inequality (6.36), and subsequently raising to the p
θ0

th power,
we obtain that

‖u‖
p

θ0
∞ ≤ C

(
‖|∇u|‖p

p + ‖u|∂Σ‖
p
p
)
‖u‖

p 1−θ0
θ0

m+1
m

for every u ∈ W1
p, m+1

m
(Σ), where the constant can differ from the previous one.

By using this Gagliardo-Nirenberg type inequality together with (6.73), we see
that

[u, v]m+1 ‖u‖
m p 1−θ0

θ0
m+1 ≥

(
m Cp−1

∫
{u 6=0}

|∇u|p |u|p(m−1)dx

+

[
C
m

]p−1

a
∫

∂Σ
|u|pm dH

)
‖um+1‖

p 1−θ0
θ0

m+1
m
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=

[
C
m

]p−1 (
‖∇um+1‖

p
p + a ‖um+1 |∂Σ‖

p
p
)
‖um+1‖

p 1−θ0
θ0

m+1
m

≥
[

C
m

]p−1

C̃−1 min{1, a} ‖u‖
mp
θ0

∞

(u, v) ∈ (−∆R
p,1)φ. Thus, the statement of this theorem holds in the case p > d,

completing the proof. �

7. APPLICATION II: MILD SOLUTIONS IN L1 ARE STRONG

Let φ ∈ C(R) ∩ C1(R \ {0}) be a strictly increasing function satisfying (6.63)
and Σ be an open bounded subset of Rd satisfying the same assumption as in the
previous Section 6.3. Then the aim of this section is to show that mild solutions in
L1 of the nonlinear parabolic initial value problem (6.64) equipped with one of
the boundary conditions (6.65), (6.66), (6.67) on a bounded open set Σ of Rd are
weak energy solutions (see Definition 7.2 below) which are globally bounded. This
property implies global Hölder continuity of is mild solutions of the parabolic
problem (6.64) (see [50, 80, 93]). Moreover, if φ is either given by

(7.1) φ(s) = |s|m−1s for every s ∈ R, and some m > 0,

or φ is locally bi-Lipschitz continuous, then every mild solution in L1 of the
nonlinear parabolic initial value problem (6.64) is a strong energy solution (see
Definition 7.2 below).

In this section, we denote by

V either the space Ẇ1
p,2(Σ), W1

p,2,m(Σ) or W1
p,2(Σ)

and L2(Σ, µ) is either the classical L2(Σ) space equipped with the d-dimensional
Lebesgue measure if we consider Dirichlet or Robin boundary conditions or
L2

m(Σ) if we consider Neumann boundary conditions. Note that in each case
the space V is embedded into the Hilbert space L2(Σ, µ) by a continuous injec-
tion with a dense image.

Remark 7.1. Note that our approach given here is quite general and can easily be
adapted to other nonlinear parabolic boundary-value problems. For instance, to
problems involving the fractional p-Laplace operator as

∂tu− (−∆p)
sφ(u) + β(u) + f (x, u) 3 0 on Σ× (0, ∞),

or to problems associated with the p(x)-Laplace operator as

∂tu− div(|∇φ(u)|p(x)−2∇φ(u)) + β(u) + f (x, u) 3 0 on Σ× (0, ∞).

each equipped with some boundary conditions. Concerning the latter problem,
we refer the interested reader to [57].

In order to conclude that the milds solution of problem (6.64) with initial value
u0 ∈ L1(Σ) is, in fact, a weak energy solution, we will take advantage of the
following two properties: the negative p-Laplace operator −∆p equipped with
one of the above given boundary conditions (6.65)-(6.67) can be realised
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(i) as the first derivative Ψ′ : V → V ′ of a continuously differentiable func-
tional Ψ : V → R+ given by

(7.2) Ψ(u) =
1
p

∫
Σ
|∇u|p dx + a

p

∫
∂Σ
|u|pdH

for very u ∈ V, where a = 0 if one considers Dirichlet or Neumann bound-
ary conditions, and a > 0 if one considers purely Robin boundary conditions,

(ii) as an operator A in L2(Σ, µ) by taking the part of Ψ′ in L2(Σ, µ), that is,

A =
{
(u, v) ∈ V × L2(Σ, µ) | 〈Ψ′(u), v〉V′;V = 〈h, v〉 for all v ∈ V

}
.

Note, the part A of Ψ′ in L2(Σ, µ) coincides with the subgradient ∂L2 ΨL2
in

L2(Σ, µ) of the convex, proper, densely defined, and lower semicontinuous func-
tional ΨL2

: L2(Σ, µ)→ R∪ {+∞} given by

ΨL2
(u) =

{
Ψ(u) if u ∈ V,
+∞ if otherwise

for every u ∈ L2(Σ, µ). This is well-known, but if the reader is interested in a
more thorough explanation, then we refer him to [31].

One easily verifies that the functional Ψ defined in (7.2) satisfies the hypothe-
ses (Hi)-(Hv). Moreover, in this framework, the notion of weak energy solutions
given in Definition 5.2 concerning solutions of problem (6.64) equipped with
one of the boundary condition (6.65)-(6.67) makes sense, we also in this section
we use the function

Φ(s) :=
∫ s

0
φ(r)dr for every s ∈ R.

We still need to clarify the notion of strong solutions of such problems.

Definition 7.2. For given u0 ∈ L1(Σ), we a function u ∈ C([0, ∞); L1(Σ)) a
strong energy solution in L1 of problem (6.64) if u is a weak energy solution of
problem (6.64) in the sense of Definition 5.2 and for every T > 0, one has

u ∈W1,1((0, T]; L1(Σ)).

The following theorem is the main result of this section, where we take the
measure dµ = dx the d-dimensional Lebesgue-measure.

Theorem 7.3. Let 1 < p < ∞ with the restriction that

d(1 + 1
m )

dm + 1
< p if 1 < p < d,

and φ ∈ C(R) ∩ C1(R \ {0}) be a strictly increasing function satisfying (6.63) for
some m > 0 and Σ be an open bounded subset of Rd satisfying the same assumption as
in the previous Section 6.3. Further, let {Tt}t≥0 be the semigroup either generated by
−((−∆D

p,1)φ)1 + F on L1(Σ), −((−∆N
p,1)φ)1 + F on L1

m(Σ) or by −((−∆R
p,1)φ)1 + F

on L1(Σ). Then, for every u0 ∈ L1(Σ) (respectively, for every u0 ∈ L1
m(Σ)), the

following statements hold.
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(1) The mild solution u(t) := Ttu0, t ≥ 0 of problem (6.64) equipped with either homo-
geneous Dirichlet boundary conditions (6.65), homogeneous Neumann boundary
conditions (6.66), or homogeneous Robin boundary conditions (6.67) is a weak en-
ergy solution of (6.64) satisfying energy inequality (5.9).

(2) If, in addition, φ satisfies one of the following conditions
(i) φ is homogeneous of degree α > 0, α 6= 1, that is, φ(λs) = λαφ(s) for every

s ∈ R and λ > 0,
(ii) φ and φ−1 are locally Lipschitz continuous on R,

then the mild solution u(t) := Ttu0, t ≥ 0, is a strong energy solution.

For the proof of Theorem 7.3, the main ingredients are the L1-L∞-regularisation
estimates established in Section 6.3.

Proof of Theorem 7.3. The first statement of this theorem follows immediately from
Theorem 5.6 due to the global L1-L∞ regularisation estimates holding uniformly
for all t > 0 given by Theorem 6.13 concerning Dirichlet boundary conditions,
Theorem 6.14 concerning Neumann boundary conditions, and Theorem 6.15 re-
garding Robin boundary conditions. Here, we chose in the case p = d, the
parameter θ appearing in Theorem 6.13 such that

max
{

0, 1+m(1−p)
m+1

}
< θ < 1.

The second statement follows from [14, Theorem 7] if φ is homogeneous of
order α > 0, α 6= 1, and from Theorem 5.7 if φ and φ−1 are locally Lipschitz
continuous on R. Here, we note that if one wants to conclude from Lipschitz
continuity of the mild solution u with values in L1(Σ) that the function u ∈
W1,1((0, T]; L1(Σ)), one needs to apply a classical result from measure theory
(cf. [91, Lemma A.1], wherein the continuity assumption of u can be omitted
due to the chain rule given by Ambrosio and Dal Maso [3]). �

APPENDIX A. MORE ON ACCRETIVE OPERATORS IN L1

We begin this section by outlining the proof of Proposition 2.10.

Proof of Proposition 2.10. Let u, v ∈ L1(Σ, µ) and suppose (2.35) holds for all j ∈
J and λ > 0. For every T ∈ P, one has either T < 0 on R or T ∈ P0 or T > 0
on R. If T ∈ P0, then inequality (2.36) follows from Proposition 2.4. If T > 0
on R, then the function j(s) :=

∫ s
0 T(r)dr for every s ∈ R belongs to J . Since

the support of the derivative T′ of T is a compact subset of R, the function T is
bounded on R. Thus, there is a constant M ≥ 0 such that

|j(u + λv)| ≤ |j(0)|+
∫ 1

0
|T((u + λv)s)|ds|u + λv| ≤ |j(0)|+ M |u + λv|

for a.e. x ∈ Σ, showing that j(u + λv) ∈ L1(Σ, µ). By (2.35) and since j(u) ≥ 0,
we have that j(u) ∈ L1(Σ, µ) satisfies

0 ≤
∫

Σ
(j(u + λv)− j(u)) dµ

for all λ > 0. By convexity of j and since j ∈ C1(R), one has that j(u+λv)−j(u)
λ

decreases to T(u) v a.e. on Σ. Thus and since T(u) v ∈ L1(Σ, µ), it follows
that (2.36) holds for T > 0. In the case that T < 0, we first truncate u and v at
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hight n. More precisely, for every n > 1, let un = u if |u| ≤ n and un = 0 if
otherwise and analogously, define vn. Further, define jn ∈ J by

jn(s) =


∫ n
−n T(r)dr− 2 n T(−n) if s ≥ n,∫ s
−n T(r)dr− 2 n T(−n) if |s| ≤ n,
−2 n T(−n) if s ≤ −n

for every s ∈ R. Now, proceeding as above yields∫
Σ

T(un) vn dµ ≥ 0

for every n > 1. By dominated convergence, T(un) vn converges to T(u) v in
L1(Σ, µ) hence we can conclude that (2.36) holds as well for T > 0.

It remains to show that the other inclusion holds as well. To see this, let u,
v ∈ L1(Σ, µ) satisfy (2.36) for every T ∈ P. For given j ∈ J , let jν(s) :=
infr∈R{j(r) + ν|s − r|} for every s ∈ R and ν ≥ 0. Then the sequence (jν)ν≥0
consists of Lipschitz continuous, convex functions jν ∈ J such that for ev-
ery h ∈ L1(Σ, µ), jν(h) converges monotone increasingly to j(h) a.e. on Σ and∫

Σ jν(h)dµ ↑
∫

Σ j(h)dµ as ν→ ∞. Next, for every n ≥ 1, let jν,n ∈ J be given by

jν,n(r) =


j′ν(n)(r− n) + jν(n) if r ≥ n,
jν(r) if |s| ≤ n,
j′ν(−n)(r + n) + jν(−n) if s ≤ −n

for every r ∈ R. By construction, the a.e. derivative j′ν,n is positive and bounded
by the same Lipschitz constant Lν > 0 of jν. Thus, for every h ∈ L1(Σ, µ),

(A.1) |jν,n(h)| ≤ |jν,n(0)|+
∫ 1

0
|j′ν,n(hs)||h|ds ≤ |jν(0)|+ Lν|h|

a.e. on Σ hence jν,n(h) ∈ L1(Σ, µ). Since, the function jν,n is convex,

inf
λ>0

jν,n(u + λv)− jν,n(u)
λ

= j′ν,n(u)v

for a.e. x ∈ Σ and by the Lipschitz continuity of jν,n,∣∣∣∣ jν,n(u + λv)− jν,n(u)
λ

∣∣∣∣ ≤ Lν|v|.

Therefore, by the dominated convergence theorem and since L−1
ν j′ν,n ∈ P, it fol-

lows by (2.36) that∫
Σ

L−1
ν jν,n(u + λv)− L−1

ν jν,n(u)
λ

dµ ≥
∫

Σ
inf
λ>0

L−1
ν jν,n(u + λv)− L−1

ν jν,n(u)
λ

dµ

=
∫

Σ
L−1

ν j′ν,n(u)v dµ ≥ 0,

from where one can conclude that (2.35) holds for jν,n. Since for every h ∈
L1(Σ, µ), jν,n(h) converges to jν(h) a.e. on Σ and since the right hand side in (A.1)
does not depend on n, it follows that (2.35) holds for jν. By the properties of the
sequence (jν)ν≥0, one easily concludes that inequality (2.35) holds for j. This
completes the proof of this proposition. �

Next, we outline the proof of Proposition 2.17.
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Proof of Proposition 2.17. We begin by showing that Aφ is accretive in L1(Σ, µ).
To do so, let (u, v), (û, v̂) ∈ Aφ and (u, w), (û, ŵ) ∈ φ. First, we assume that
hypothesis (i) holds. Then,

(A.2)
∫

Σ
ψ (v− v̂)dµ ≥ 0

for every ψ ∈ L∞(Σ, µ) satisfying ψ(x) ∈ sign(w(x)− ŵ(x)) for a.e. x ∈ Σ and
since by assumption, A is single-valued, the situation w = ŵ implies that (A.2)
holds only for ψ ≡ 0. Consider, the function ψ ∈ L∞(Σ, µ) defined by

ψ(x) :=


1 if u(x) > û(x),
sign0(w(x)− ŵ(x)) if u(x) = û(x),
−1 if u(x) < û(x),

for a.e. x ∈ Σ. Then by construction,

ψ ∈ sign(w(x)− ŵ(x)) ∩ sign(u(x)− û(x)).

In particular, ψ satisfies (A.2) hence Aφ is accretive in L1(Σ, µ). If we assume
that hypothesis (ii) holds, then by definition of Aφ and since φ is a function, one
has that v ∈ Aφ(u) and v̂ ∈ Aφ(û). Thus and since A is accretive in L1(Σ, µ),

[φ(u)− φ(û), v− v̂]1

=
∫
{φ(u) 6=φ(û)}

sign0(φ(u)− φ(û)) (v− v̂)dµ +
∫
{φ(u)=φ(û)}

|v− v̂|dµ ≥ 0.

Since φ is injective, one has that {φ(u) = φ(û)} = {u = û}. Therefore,∫
{u 6=û}

sign0(u− û) (v− v̂)dµ +
∫
{u=û}

|v− v̂|dµ

=
∫
{φ(u) 6=φ(û)}

sign0(φ(u)− φ(û)) (v− v̂)dµ +
∫
{φ(u)=φ(û)}

|v− v̂|dµ ≥ 0,

showing that Aφ is accretive in L1(Σ, µ).
Moreover, for every ε > 0, the sum εφ1 + Aφ is accretive in L1(Σ, µ) under the

assumption that either (i) or (ii) holds. This follows easily from the fact that the
operator φ1 in L1(Σ, µ) of the monotone function φ on R is s-accretive in L1(Σ, µ)
(cf. [15]).

Similarly, one shows under the assumptions φ is injective and A is T-accretive
in L1(Σ, µ) that for every ε ≥ 0, one has εφ1 + Aφ is T-accretive in L1(Σ, µ)
(cf. [10, Proposition 2.5]).

Next, suppose that A has a complete resolvent and φ is continuous satisfying
φ(0) = 0. Then, for every T ∈ P0, T ◦ φ−1 is continuous on Rg(φ) =]a, b[ for
some a, b ∈ R, bounded and T ◦ φ−1(0) = 0. If (ρn) is a standard positive
mollifier sequence on R, then Tn := (T ◦ φ−1) ∗ ρn ∈ P0 and Tn → T ◦ φ−1

uniformly on compact subsets of R as n → ∞. Thus, for every u, v ∈ L1(Σ, µ),
Tn(φ(u))v → T(u)v a.e. on Σ as n → ∞ and since (Tn(φ(u))) is uniformly
bounded in L∞(Σ, µ), it follows that limn→∞ Tn(φ(u))v = T(u)v in L1(Σ, µ). For
every (u, v) ∈ Aφ, one has (φ(u), v) ∈ A hence by Proposition 2.4,∫

Σ
T(φ(u))v dµ ≥ 0
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for every T ∈ P0. Hence, for every T ∈ P0, replacing T by Tn in the latter
inequality and sending n→ ∞ yields

(A.3)
∫

Σ
T(u)v dµ ≥ 0,

showing that Aφ has a complete resolvent. If (Σ, µ) is finite and A has a c-
complete resolvent, then similar arguments and replacing Proposition 2.4 by
Proposition 2.14 yields that Aφ has a c-complete resolvent. Now, for every ε > 0,
recall that εφ1 is completely accretive in L1(Σ, µ). Thus, if φ(0) = 0, then φ1 has
a complete resolvent and so ∫

Σ
T(u)εφ(u)dµ ≥ 0

for every T ∈ P0. For any T ∈ P0, adding this inequality to (A.3) for u ∈
D(φ1) ∩ D(Aφ) and v ∈ Aφ(u) shows that for every ε > 0, εφ1 + Aφ has a
complete resolvent by Proposition 2.4. Again, the same arguments and using
Proposition 2.14 yields that for every ε > 0, εφ1 + Aφ has a c-complete resol-
vent. �

The statements of Proposition 2.17 are used in following proof.

Proof of Proposition 2.18. Here, we have been inspired by the proof of [41, Propo-
sition 2]. Let Aφ denote the operator on L1(Σ, µ) given by

Aφ =

{
(u, f ) ∈ L1× L1(Σ, µ)

∣∣∣∣∣ there are λ > 0, g ∈ L1 ∩ L∞(Σ, µ) such that

lim
ε→0+

Jεφ+A1∩∞φ
λ g = u in L1(Σ, µ) and f =

g− u
λ

}
,

where for every λ > 0 and every ε > 0, the operator Jεφ+A1∩∞φ
λ denotes the

resolvent of εφ + A1∩∞φ.
We begin by showing that under the hypotheses (i)-(iii), for every ε > 0 suf-

ficiently small, λ > 0 and every g ∈ L1 ∩ L∞(Σ, µ), there is a unique uε ∈
D(A1∩∞φ) satisfying

(A.4) uε + λ(εφ(uε) + A1∩∞φ(uε)) 3 g

or equivalently, uε = Jεφ+A1∩∞φ
λ g, and there is an u ∈ L1 ∩ L∞(Σ, µ) such that

(A.5) lim
ε→0+

uε = u in L1(Σ, µ)

and

(A.6) lim
ε→0+

ε ϕ(uε) = 0 in Lq̃(Σ, µ), for every 1 ≤ q̃ ≤ ∞.

By Proposition 2.5, the operator φ−1
q + λA is m-completely accretive in Lq(Σ, µ).

Thus, and since (0, 0) ∈ φ−1
q +λA, for every ε > 0, there are vε ∈ L1 ∩ L∞(Σ, µ)∩

D(φ−1
q ) ∩ D(A) and wε ∈ Avε satisfying

(A.7) vε +
1

ελ (φ
−1(vε) + λwε) =

1
ελ g.

In fact (cf. the proof of [8, Proposition 3.8]), the solution vε of (A.7) is the limit

lim
ν→0+

vε,ν = vε in Lq(Σ, µ)
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of the sequence (vε,ν)ν>0 of solutions vε,ν ∈ L1 ∩ L∞(Σ, µ) ∩ D(A) of

(A.8) vε,ν +
1

ελ (βν(vε,ν) + λwε,ν = 1
ελ g

with wε,ν ∈ Avε,ν. Moreover, one has

(A.9) lim
ν→0+

βν(vε,ν) = β(vε) weakly in Lq(Σ, µ),

where βν denotes the Yosida operator of β := φ−1. We note that for every ν > 0,
vε,ν ∈ D(A1∩∞) owing to the Lipschitz continuity of βν and since βν(0) = 0.
First, multiplying equation (A.8) with βν(vε,ν) with respect to the 1-bracket [·, ·]1,
then using that βν is accretive in L1(Σ, µ) and that βν satisfies (2.15) for q = 1,
we see that

‖βν(vε,ν)‖1 ≤ [βν(vε,ν), vε,ν]1 + [βν(vε,ν), βν(vε,ν)]1 + [βν(vε,ν), wε,ν]1

= 1
ελ [βν(vε,ν), g]1

≤ 1
ελ ‖g‖1

for all ν > 0. By this estimate together with (A.9) and Hölder’s inequality yields
that there is a constant C > 0 such that

‖βν(vε,ν)‖p ≤ C for all ν > 0 and 1 < p < q

hence, the weak limit β(vε) satisfies

‖β(vε)‖p ≤ C for all 1 < p < q.

Sending p→ 1+ in the latter inequality and using Fatou’s lemma, we obtain that
β(vε) = φ−1(vε) ∈ L1(Σ, µ) and so by continuity of φ−1 on R, φ−1(vε) ∈ L1 ∩
L∞(Σ, µ). Thus, equation (A.7) yields vε ∈ D(A1∩∞) with wε ∈ L1 ∩ L∞(Σ, µ),
hence, for every ε > 0, there is vε ∈ L1 ∩ L∞(Σ, µ) ∩ D(φ−1

q ) ∩ D(A1∩∞) such
that φ−1(vε) ∈ L1 ∩ L∞(Σ, µ) and

vε +
1

ελ (φ
−1(vε) + λA1∩∞vε) 3 1

ελ g.

Taking uε = φ−1(vε), one has φ(uε) = vε. Thus and by the last inclusion, we have
shown that for every ε > 0, there is an uε ∈ L1 ∩ L∞(Σ, µ) such that φ(uε) ∈
D(A1∩∞) and (A.4) holds, or, equivalently, uε = Jεφ+A1∩∞φ

λ g. We still need to
show that the (A.5) and (A.6) hold.

We begin, by assuming that hypothesis (i) holds. Then, by Proposition 2.18,
for every ε > 0, εφ + A1∩∞φ is T-accretive in L1(Σ, µ). Thus, for every g̃ ∈
L1 ∩ L∞(Σ, µ) satisfying g̃ ≥ 0 and ε > 0, one has that ũε := Jεφ+A1∩∞φ

λ g̃ satisfies
ũε ≥ 0, ‖ũε‖q̃ ≤ ‖g̃‖q̃ for 1 ≤ q̃ ≤ ∞ hence, by the assumptions on Aφ and φ,

‖ũε + λεφ(ũε)‖1 = ‖ũε‖1 + λε‖φ(ũε)‖1

≤ ‖g̃− λεφ(ũε)‖1 + λε‖φ(ũε)‖1 = ‖g̃‖1
(A.10)

for every sufficiently small ε > 0. Moreover, if w̃ε ∈ A1∩∞φ(ũε) satisfies ũε +
λ(ηφ(ũε) + w̃ε)) = g̃, then for every ε > η > 0,

ũε + λ(ηφ(ũε) + w̃ε)) = g̃− λ(ε− η)g̃ ≤ g̃ = ũη + λ(ηφ(ũη) + w̃η))

and so, since the resolvent Jεφ+A1∩∞φ
λ of εφ + A1∩∞φ is order-preserving, one has

that ũε ≤ ũη for every ε > η > 0. Since ũε ≥ 0 and supε>0‖ũε‖1 ≤ ‖g̃‖1, Beppo-
Levi’s monotone convergence theorem implies that there is u+ ∈ L1 ∩ L∞(Σ, µ)
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such that ũε ↑ u+ in L1(Σ, µ) as ε ↓ 0+. Similarly, one shows that for every
g̃ ∈ L1 ∩ L∞(Σ, µ) satisfying g̃ ≤ 0, one has ũε ≤ 0, ũε ≥ ũη for every ε > η > 0
and there is u− ∈ L1 ∩ L∞(Σ, µ) such that ũε ↓ u− in L1(Σ, µ) as ε ↓ 0+. Now, we
apply this to a general function g ∈ L1 ∩ L∞(Σ, µ). Let g+ = g∨ 0 be the positive
part of g and g− = (−g) ∨ 0 be the negative part of g. Since by assumption,
JA1∩∞φ
λ is order-preserving, uε, uε+ := Jεφ+A1∩∞φ

λ (g+) and uε− := Jεφ+A1∩∞φ
λ (−g−)

satisfy

(A.11) uε− ≤ uε ≤ uε+ for every ε > 0,

and there are u+, u− ∈ L1 ∩ L∞(Σ, µ) satisfying u+ ≥ 0, u− ≤ 0, uε ↑ u+ in
L1(Σ, µ) as ε ↓ 0 and uε ↓ u− in L1(Σ, µ) as ε ↑ 0+. In particular,

u− ≤ uε ≤ u+ for every ε > 0.

Thus, to see that (A.5) holds for some function u ∈ L1 ∩ L∞(Σ, µ), it is enough to
show that for every sequence (εn)n≥1 ⊆ (0, 1) with εn > εn+1 and every δ > 0,
one has

(A.12) lim
n,m→∞

µ ({|uεn − uεm | > δ}) = 0,

that is, (uε)ε>0 is a Cauchy sequence µ-measure. First, we note that by the
boundedness of (uεn)n≥1 and by the continuity and infectivity of φ, for every
given δ > 0, there is an N > 0 such that

{|uεn − uεm | > δ} ⊆ {|φ(uεn)− φ(uεm)| > N} for every n, m ≥ 1.

By (A.10) and (A.11), every φ(uεn) ∈ L1(Σ, µ). Furthermore, by the continu-
ity of φ and since ‖uεn‖∞ ≤ ‖g‖∞, we obtain that every φ(uεn) ∈ L∞(Σ, µ).
Thus, φ(uεn) − φ(uεm) ∈ L1 ∩ L∞(Σ, µ) and so, ψ(φ(uεn) − φ(uεm)) ∈ Lq(Σ, µ)
for ψ(r) := 1 if r > N, ψ(r) = 0 if |r| ≤ N and ψ(r) = −1 if r < −N. Thus,
multiplying inclusion

(uεn − uεm) + λ(A1∩∞φ(uεn)− A1∩∞φ(uεm)) 3 εmφ(uεm)− εnφ(uεn),

by (ψ(φ(uεn)− φ(uεm)))q, and using that A1∩∞ is accretive in Lq(Σ, µ) together
with Hölder’s inequality yields∫

{|φ(uεn )−φ(uεm )|>N}
|uεn − uεm |dµ

≤ λ
∫
{|φ(uεn )−φ(uεm )|>N}

|εmφ(uεm)− εnφ(uεn)|dµ

≤ λ ‖εmφ(uεm)− εnφ(uεn)‖2 µ ({|φ(uεn)− φ(uεm)| > N})1/2 .

(A.13)

By continuity of φ and boundedness of (uεn)n≥1, there is an M > 0 such that

{|φ(uεn)− φ(uεm)| > N} ⊆ {|uεn − uεm | > M}
and so, (A.13) gives

(A.14) M µ ({|φ(uεn)− φ(uεm)| > N})1/2 ≤ λ ‖εmφ(uεm)− εnφ(uεn)‖2

for every n, m ≥ 1. By (A.10) and (A.11), one has (εφ(uε))ε>0 is bounded in
L1(Σ, µ). By continuity of φ and since ‖uε‖∞ ≤ ‖g‖∞, one has limε→0+ εφ(uε) =
0 in L∞(Σ, µ). Thus, under the hypothesis (i), for every g ∈ L1 ∩ L∞(Σ, µ),
(A.6) holds. In particular, the right hand side in (A.14) tends to zero as n,
m → ∞ showing that (A.12) holds and hence (A.5) holds for some function
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u ∈ L1 ∩ L∞(Σ, µ) provided hypothesis (i) holds. Next, suppose that hypothe-
ses (ii) and (iii) hold. Since uε = Jεφ+A1∩∞φ

λ g can be rewritten as uε = JA1∩∞φ
λ [g−

λεφ(uε)], the accretivity of A1∩∞φ in L1(Σ, µ) yields

(A.15) ‖uε − uη‖1 ≤ λ ‖εφ(uε)− ηφ(uη)‖1

for every ε, η > 0. If hypothesis (ii) holds, then for every g ∈ L1 ∩ L∞(Σ, µ),
there is another K1 > 0 such that

(A.16) |φ(r)| ≤ K1 |r| for every |r| ≤ ‖g‖∞.

Moreover, since εφ + A1∩∞φ has a complete resolvent, uε = Jεφ+A1φ
λ g satisfies

(A.17) ‖uε‖∞ ≤ ‖g‖∞

for every ε > 0 and so, (A.16) yields

(A.18) |φ(uε)| ≤ K1 |uε| for a.e. x ∈ Σ and all ε > 0.

Thus and since ‖uε‖q̃ ≤ ‖g‖q̃ for every 1 ≤ q ≤ ∞, it follows that

‖εφ(uε)‖q̃ ≤ K1 ε ‖uε‖q̃ ≤ K1 ε ‖g‖q̃,

for every for every 1 ≤ q ≤ ∞, from where we can conclude that the sequence
(uε)ε>0 has limit (A.6) under hypothesis (ii). In particular, by (A.15), (uε)ε>0 is
a Cauchy sequence in L1(Σ, µ). Therefore and by (A.17), (A.5) holds for some
function u ∈ L1 ∩ L∞(Σ, µ) also under hypothesis (ii). Moreover, if we as-
sume that hypothesis (iii) holds, then the continuous embedding of L∞(Σ, µ)
into L1(Σ, µ) and the boundedness of φ on [−‖g‖∞, ‖g‖∞] imply that (A.6)
holds. Thus and by (A.17), (A.5) holds for some function u ∈ L1 ∩ L∞(Σ, µ)
also under hypothesis (iii).

With these preliminaries, we can begin proving the statements of this propo-
sition. First, we show that Aφ is an extension of A1∩∞φ in L1(Σ, µ). To do so,
let (û, v̂) ∈ A1∩∞φ and for λ > 0, set g = û + λv̂. Then, f := g−û

λ = v̂ and for
every ε > 0 sufficiently small, there is a unique uε = Jεφ+A1∩∞φ

λ g ∈ D(A1∩∞φ)

and there is a function u ∈ L1 ∩ L∞(Σ, µ) satisfying (A.5). Since û = JA1∩∞φ
λ g can

be rewritten as û = Jεφ+A1∩∞φ
λ [g + λεφ(û)] and since the operator εφ + A1∩∞φ is

accretive in L1(Σ, µ),

‖uε − û‖1 = ‖Jεφ+A1∩∞φ
λ g− Jεφ+A1∩∞φ

λ [g + λεφ(û)]‖1 ≤ λ ε ‖φ(û)‖1.

Since by assumption, û ∈ D(A1∩∞φ), one has φ(u) ∈ L1(Σ, µ). Thus, sending
n→ ∞ in the last inequality yields u = û and so, u ∈ D(Aφ) with f = v ∈ Aφu.

Next, we show that Aφ is contained in the closure A1∩∞φ of A1∩∞φ in L1(Σ, µ).
Let (u, f ) ∈ Aφ. Then, by definition of Aφ, there are λ > 0 and g ∈ L1 ∩
L∞(Σ, µ) such that f = g−u

λ and for every ε > 0 sufficiently small, there is uε =

Jεφ+A1∩∞φ
λ g ∈ L1 ∩ L∞(Σ, µ) and u ∈ L1 ∩ L∞(Σ, µ) satisfying (A.5). By definition

of the resolvent Jεφ+A1∩∞φ
λ of εφ + A1∩∞φ, one has

(uε,
g− uε

λ
− εφ(uε)) ∈ A1∩∞φ

and so, by (A.6) for q̃ = 1, we can conclude that (u, g−u
λ ) = (u, f ) ∈ A1∩∞φ.
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The operator Aφ is accretive in L1(Σ, µ) since by construction of Aφ, the oper-
ator Aφ is contained in the limit inferior lim infε→0+(εφ + A1φ) (see, for instance,
[15, Definition (2.17) and Proposition (2.18)] or [8, Proposition 4.4]) of the fam-
ily (εφ + A1∩∞φ)ε>0 of accretive operators εφ + A1∩∞φ in L1(Σ, µ) (see Proposi-
tion 2.17). Moreover, Aφ is m-accretive in L1(Σ, µ). To see that Aφ satisfies the
range condition (2.14) for X = L1(Σ, µ), note that under the hypotheses (i)-(iii),
Aφ is closed in L1(Σ, µ). Hence, it is sufficient to show that the set

(A.19) L1 ∩ L∞(Σ, µ) ⊆ Rg(I + λAφ).

To this end, let g ∈ L1 ∩ L∞(Σ, µ) and λ > 0. Then, by following the ar-
guments in the first part of this proof, we see that for every ε > 0, there is
uε = Jεφ+A1∩∞φ

λ g ∈ D(A1∩∞φ). Since uε = Jεφ+A1∩∞φ
λ g is equivalent to uε =

JA1∩∞φ
λ [g− λεφ(uε)], we have that

‖uε − uη‖1 ≤ λ‖εφ(uε)− ηφ(uη)‖1

for every ε, η > 0. Thus and since under the hypotheses (i)-(iii), (A.6) holds for
q̃ = 1, we can conclude from the previous inequality that (uε)ε>0 is a Cauchy se-
quence in L1(Σ, µ) as ε→ 0+. Therefore, there is an u ∈ L1(Σ, µ) such that (A.5)
holds and so, by definition of Aφ, (u, f ) ∈ Aφ with f := g−u

λ ∈ L1(Σ, µ) and
g = u + λ f ∈ (I + λAφ)u. Thus, the range condition (A.19) holds.

Summarising, we have shown that Aφ in contained in the closure A1∩∞φ of
A1∩∞φ in L1(Σ, µ) and Aφ is m-accretive in L1(Σ, µ). Thus and since A1∩∞φ is
accretive in L1(Σ, µ), statement (2.21) implies that A1∩∞φ = Aφ.

Next, we show that the range condition (2.44) holds under the hypotheses (ii)
and (iii). For this, let g ∈ L1 ∩ L∞(Σ, µ). Then, for every ε > 0 sufficiently small,

uε = Jεφ+A1∩∞φ
λ g ∈ L1 ∩ L∞(Σ, µ) and (φ(uε),

g− uε

λ
− εφ(uε)) ∈ A.

Thus, if we can show that

(A.20) lim
ε→0+

φ(uε) = φ(u) in Lq(Σ, µ)

and

(A.21) lim
ε→0+

g− uε

λ
− εφ(uε) =

g− u
λ

in Lq(Σ, µ)

then by the assumption, A is m-accretive in the uniformly convex Banach space
Lq(Σ, µ) (cf. [8, Proposition 3.4]), we have that(

φ(u),
g− u

λ

)
∈ A.

To see that (A.20) holds, recall that by (A.17) and (A.5), one has

(A.22) lim
ε→0+

uε = u in Lq(Σ, µ).

If hypothesis (ii) holds, then combining (A.22) with the continuity of ϕ and by
(A.18), it follows that (A.20) holds and

‖εφ(uε)‖q ≤ ε K1 ‖uε‖q ≤ ε K1‖g‖q,

from where we can conclude that (A.21) holds. If hypothesis (iii) holds, then
by (A.22), the continuity of φ, and by eventually passing to a subsequence, we
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see that limε→0+ φ(uε(x)) = φ(u(x)) a.e. on Σ. Thus, by (A.17) and the embed-
ding of L∞(Σ, µ) into Lq(Σ, µ), we see that (A.20) and (A.21) hold. Moreover,
using that ‖uε‖p ≤ ‖g‖p for all ε > 0 and 1 ≤ p ≤ ∞, we can conclude that
u ∈ L1 ∩ L∞(Σ, µ) and by the hypotheses (ii) and (iii), that φ(u) ∈ L1 ∩ L∞(Σ, µ).
Thus, (

φ(u),
g− u

λ

)
∈ A1∩∞,

proving the range condition (2.44). This completes the proof of this proposition.
�

APPENDIX B. THE LINK BETWEEN MEAN SPACES AND Lp

The first part of the following theorem has been proved in [65, Théorème 1.1 of
Chapter IV] by using so-called discrete mean spaces (cf. [65, Chapter II]). Here, we
improve this result by showing that both spaces are isometrically isomorphic.
This result serves us in the proof of Theorem 4.10 and Theorem 4.13 to determine
the convergence of the constants in inequality (4.28) as m→ ∞.

Theorem B.1. Let (Σ, µ) be a σ-finite measure space, (X0, X1) be an interpolation
couple, 1 ≤ p0, p1 ≤ ∞ and 0 < θ < 1. Then for 1 ≤ p ≤ ∞ given by

(B.1)
1
p
=

1− θ

p0
+

θ

p1
,

one has that

(B.2) (Lp0(Σ, X0; µ), Lp1(Σ, X1; µ))θ,p0,p1 = Lp(Σ, (X0, X1)θ,p0,p1 ; µ)

with equal norms.

Proof of Theorem B.1. We only outline the proof for 1 ≤ p0 < ∞ and 1 ≤ p1 < ∞
since the other cases are shown similarly.

First, let u be an element of (Lp0(Σ, X0; µ), Lp1(Σ, X1; µ))θ,p0,p1 . By definition,
there are measurable functions vi : (0, ∞) → Lpi(Σ, µ) for i = 0, 1 such that
t−θv0 ∈ Lp0

∗ (Lp0(Σ, X0; µ)), t1−θv1 ∈ Lp1(Σ, X1; µ) and

u(x) = v0(t, x) + v1(t, x)

for a.e. (t, x) ∈ (0, ∞)× Σ. Since (Σ, µ) and (R+, dt
t ) are both σ-finite measure

spaces, Fubini’s theorem implies that

t−θv0(·, x) ∈ Lp0
∗ (X0) and t1−θv1(·, x) ∈ Lp1(Σ, µ)

for a.e. x ∈ Σ. Thus by definition of the mean space and by (4.7), one has
a(x) ∈ (X0, X1)θ,p0,p1 for a.e. x ∈ Σ and

‖u(x)‖(X0,X1)θ,p0,p1
≤ ‖t−θv0(·, x)‖1−θ

Lp0
∗ (X0)

‖t1−θv1(·, x)‖θ
Lp1∗ (X1)

.

Integrating the latter inequality over Σ, taking pth root, applying Hölder’s in-
equality (where one uses (B.1)) and Fubini’s theorem, we see that

‖u‖Lp(Σ,(X0,X1)θ,p0,p1 ;µ)

≤
[∫

Σ
‖t−θv0(·, x)‖p0

Lp0
∗ (X0)

dµ

] 1−θ
p0
[∫

Σ
‖t1−θv1(·, x)‖p1

Lp1∗ (X1)
dµ

] θ
p1

= ‖t−θv0‖1−θ

Lp0
∗ (Lp0 (Σ,X0;µ))

‖t1−θv1‖θ
Lp1∗ (Lp1 (Σ,X1;µ))

.
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Taking in this inequality the infimum over all representation pairs (v0, v1) of u
and applying (4.7) yields

‖u‖Lp(Σ,(X0,X1)θ,p0,p1 ;µ) ≤ ‖u‖(Lp0 (Σ,X0;µ),Lp1 (Σ,X1;µ))θ,p0,p1
.

Now, let u ∈ Lp(Σ, (X0, X1)θ,p0,p1 ; µ) be a step function given by

u(x) =
m

∑
ν=1

aν 1Bν(x)

for finitely many different values aν ∈ (X0, X1)θ,p0,p1 attained on pairwise dis-
joint measurable subsets Bν of Σ. Let ε > 0. By the definition of (X0, X1)θ,p0,p1

and the infimum, for every ν = 1, . . . , m, there are measurable functions viν :
(0, ∞)→ Xi for i = 0, 1 satisfying

(B.3) aν = v0ν(t) + v1ν(t)

for a.e. t ∈ (0, ∞) and

(B.4) max
{
‖t−θv0ν‖Lp0

∗ (X0)
, ‖t1−θv1ν‖Lp1∗ (X1)

}
≤ ‖aν‖(X0,X1)θ,p0,p1

(1 + ε).

Set λ = (p0 − p)/θ p0 and for every ν = 1, . . . , m and i = 0, 1 define

wiν(t) = viν(‖aν‖λ
(X0,X1)θ,p0,p1

t).

Then applying the substitution s = ‖aν‖λ
(X0,X1)θ,p0,p1

t together with (B.4) yields

‖t−θw0ν‖p0

Lp0
∗ (X0)

= ‖aν‖−λ θ p0
(X0,X1)θ,p0,p1

∫ ∞

0
‖s−θv0ν(s)‖p0

X0
ds
s

≤ (1 + ε)p0‖aν‖p0−λ θ p0
(X0,X1)θ,p0,p1

= (1 + ε)p0 ‖aν‖p
(X0,X1)θ,p0,p1

(B.5)

for every ν = 1, . . . , m. By the relation (B.1), one sees that the same λ satisfies
p1 + λ(1− θ)p1 = p. Thus the same arguments gives

(B.6) ‖t1−θw1ν‖
p1

Lp1∗ (X1)
≤ (1 + ε)p1 ‖aν‖p

(X0,X1)θ,p0,p1
.

For i = 0, 1 and every t ∈ (0, ∞), we define the step functions

wi(t, x) =
m

∑
ν=1

wiν(t)1Bν(x)

for a.e. x ∈ Σ. Then by (B.5) and (B.6) as well as by Fubini’s theorem,∫ ∞

0
‖t−θw0(t, ·)‖p0

Lp0 (Σ,X0;µ)
dt
t =

∫
Σ
‖t−θw0(·, x)‖p0

Lp0
∗ (X0)

dµ

≤ (1 + ε)p0
m

∑
i=1
‖aν‖p

(X0,X1)θ,p0,p1
µ(Bν)

= (1 + ε)p0 ‖u‖p
Lp(Σ,(X0,X1)θ,p0,p1 ;µ)

(B.7)

and similarly,

(B.8)
∫ ∞

0
‖t1−θw1(t, ·)‖

p1
Lp1 (Σ,X1;µ)

dt
t ≤ (1 + ε)p1 ‖u‖p

Lp(Σ,(X0,X1)θ,p0,p1 ;µ).
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Therefore, for i = 0, 1, the functions wi : (0, ∞) → Lpi(Σ, Xi; µ) are well defined
step functions and so strongly measurable. In addition, by (B.3),

w0(t, x) + w1(t, x) =
m

∑
ν=1

(v0ν(‖aν‖λ
(X0,X1)θ,p0,p1

t) + v1ν(‖aν‖λ
(X0,X1)θ,p0,p1

t))1Bν(x)

=
m

∑
ν=1

aν 1Bν(x)

= u(x)

for a.e. x ∈ Σ. Thus u ∈ (Lp0(Σ, X0; µ), Lp1(Σ, X1; µ))θ,p0,p1 and by (4.7), (B.7),
(B.8), and (B.1),

‖u‖(Lp0 (Σ,X0;µ),Lp1 (Σ,X1;µ))θ,p0,p1
≤ ‖t−θw0‖1−θ

Lp0
∗ (Lp0 (Σ,X0;µ))

‖t1−θw1‖θ
Lp1∗ (Lp1 (Σ,X1;µ))

≤ (1 + ε) ‖u‖
(1−θ)p

p0
+ θp

p1
Lp(Σ,(X0,X1)θ,p0,p1 ;µ)

= (1 + ε) ‖u‖Lp(Σ,(X0,X1)θ,p0,p1 ;µ).

Sending ε→ 0+ shows that inequality

‖u‖(Lp0 (Σ,X0;µ),Lp1 (Σ,X1;µ))θ,p0,p1
≤ ‖u‖Lp(Σ,(X0,X1)θ,p0,p1 ;µ).

holds for step functions. Since the set of step functions is dense in the space
Lp(Σ, (X0, X1)θ,p0,p1 ; µ) the claim of this theorem holds. �

As an immediate consequence of Theorem B.1, we obtain the following corol-
lary improving the statement in [65, Corollaire 1.1 of Chapter IV].

Corollary B.2. Let (Σ, µ) be a σ-finite measure space, 1 ≤ p0, p1 ≤ ∞ and 0 < θ < 1.
Then for 1 ≤ p ≤ ∞ satisfying the relation (B.1), one has that

(Lp0(Σ, µ), Lp1(Σ, µ))θ,p0,p1 = Lp(Σ, µ)

with equal norms.
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