REGULARISATION EFFECTS OF NONLINEAR SEMIGROUPS
THIERRY COULHON AND DANIEL HAUER

ABSTRACT. One introduces natural and simple methods to deduce L°-L*-re-
gularisation estimates for 1 < s < oo of nonlinear semigroups holding uni-
formly for all time with sharp exponents from natural Gagliardo-Nirenberg in-
equalities. From L7-L" Gagliardo-Nirenberg inequalities, 1 < g,# < co, one
deduces L7-L" estimates for the semigroup. New nonlinear interpolation tech-
niques of independent interest are introduced in order to extrapolate such esti-
mates to L7-L* estimates for some §, 1 < § < co. Finally one is able to extrapo-
late to L°-L* estimates for 1 < s < g. The theory developed in this monograph
allows to work with minimal regularity assumptions on solutions of nonlin-
ear parabolic boundary value problems as illustrated in a plethora of examples
including nonlocal diffusion processes.
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1. INTRODUCTION

1.1. The story. It begins in the linear semigroup theory: let {T;};>( be a sym-
metric semigroup with infinitesimal generator —A of linear operators acting on
L*(Z,u), where (%, ) is a o-finite measure space. Assume that {T;};> is sub-
markovian, meaning that 0 < u < 1implies 0 < T;u < 1 for all t > 0. If follows
that {T; }>0 actson L1(X, u) forall 1 < g < 0.

In this framework, there has been many works in the last four decades that
connect a variety of LI-L", 1 < q < r < oo, regularisation properties of {T;};>o
to a variety of abstract Sobolev type inequalities involving A. The first regu-
larisation property of {T;};>o that attracted much attention was the so-called
hypercontractivity: for some (all) 1 < g < r < oo, there exists tg = to(q,7) > 0
such that T;, maps L7 to L" and

(1-1) HTtqu—>r <1

where || T ||y := SUP)|, <1 || Tu||; denotes the operator norm of a linear bounded

operator T : L7 — L', 1 < g,r < co. The theory of hypercontractive semi-
groups was introduced by Nelson in [73], who also provided the most basic

example: for the harmonic oscillator A = —%% + %xz — % on L? equipped with
—1/2

the Gaussian measure du = (27) exp(—3x%) dx on R, T; is a linear contrac-
tion from L2 to L* if e™" < 1/+/3 (cf. [73, 74]). One reason for the popularity of
hypercontractivity was its deep connection to constructive quantum field the-
ory. The ideas in [73] were followed up rapidly and further developed. For in-
stance, Simon and Heegh-Krohn [83] combined the property that the considered
semigroup || T;||;—s, is contractive on L7 for all 1 < q < co with Riesz-Thorin’s
and Stein’s interpolation techniques to extrapolate the L9-L"-regularisation esti-
mate (1.1) to an L7-L"-regularisation estimate || T}, ||;—7 < C for some §, 7 such
that 1 < § < gand r < 7 < oo. Hypercontractivity is a natural property of
some infinite-dimensional semigroups such as Ornstein-Uhlenbeck. Note that
Nelson [74] proved that the Ornstein-Uhlenbeck semigroup does not admit an
L9-L*-regularisation effect for 1 < g < oo.

In the mid 70’s, Gross [52] characterised hypercontractivity in terms of a single
logarithmic Sobolev inequality in L?. Then {T,};>¢ is hypercontractive if and only
if there is some C > 0 such that

(12) 1P 1oglul dye < € (Au ) + [u310g]|ull

for every u € D(A). Here, D(A) denotes the domain of A in L2(X, u).
In the 80’s, in the context of heat kernels on Lie groups and manifolds, the
focus shifted towards a stronger property, namely ultracontractivity: forall t > 0,
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T; maps L! to L®. The game is then to estimate ||T;||; .o from above by an
explicit function of t. Of particular interest is the estimate

(1.3) I Tt 1500 < C t=9/2  for every t > 0,

where d > 0 plays the role of a dimension. Davis and Simon [44] (see also [43])
adapted Gross” approach [52] to the ultracontractivity framework and estab-
lished the equivalence of estimates (1.3) with the following one-parameter fam-
ily of logarithmic Sobolev inequalities: for every e > 0,

(14) /EIMI2 loglul dp < e (Au,u) +e*|[ul3 + [[ul31og|u]:2

for every u € D(A). Estimate (1.3) was also characterised in terms of (d-dimen-
sional) Sobolev inequalities: if there exists C > 0 such that

(1.5) HMH?% < C(Au,u) for every u € D(A)

by Varopoulos [89] (see also [35], [36] for simplifications and further develop-
ments) and in terms of (d-dimensional) Nash inequalities by Carlen-Kusuoka-
Stroock [28]). Further, an intermediate property called supercontractivity was
also considered ([82]): forall1l < g < r < ccand all t > 0, T; maps L7 to L"
with the polynomial estimate

1_1

(1.6) 1 TH||g—r < Ct_d<q ?) forall t > 0.

Note that if the semigroup is uniformly bounded on L! and L*, then (1.6) implies
(1.3) (see [35]).

The above outlined development of characterising L7-L"-regularisation esti-
mates of the semigroup {T}}>o with abstract (logarithmic) Sobolev inequalities
is exclusively concerned with linear semigroups. Thus, it is interestingly enough
that prior to Varopoulos” theorem [89], the fact that an abstract Sobolev type in-
equality associated with an operator A implies an L!-L®regularisation effect for
the semigroup {T;}>0 generated by —A had been discovered in the late 70’s
by Bénilan ([11], see also [90, p. 25]) in the context of nonlinear semigroups: let
{T:}+>0 be a semigroup of mappings T; acting on L7 forall 1 < g < oo, of a
o-finite measure space (%, i), with infinitesimal generator —A.

In the paper [11], Bénilan established first L7-L’-regularisation estimates (1 <
g < r < o0) of nonlinear semigroups {T;};>0 generated either by operators of
similar type as the Dirichlet p-Laplace operator Aju = div(|Vu[P=>Vu), (1 <
p < o0), or by operators similar to the Dirichlet porous media operator AP (u™) =
div(Vu™), (m > 0). Here, the name Dirichlet and the superscript D refer to the
fact that the differential operators A% and AP(-™) are equipped with homoge-

neous Dirichlet boundary conditions on a bounded domain ¥ of R?, and u™ is
the shorthand of |u|"~1u. Bénilan’s method employs a truncation technique on
the sublevel sets of the resolvent combined with the regularisation effect of the
resolvent given by the d-dimensional Sobolev inequality.

Only one year later, Véron [92] simplified Bénilan’s method essentially and
adapted it to the general nonlinear semigroup framework acting on L7 for 1 <
g < oo. Véron introduces an abstract Sobolev type inequality (similar to (1.5))
satisfied by the generator A, from which one can conclude an L9-L" regular-
ity estimate (1 < g < r < o0) of the corresponding semigroup {T;}:>o. In
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particular, L7-L* estimates (1 < g < oo) of {T;};>0 are obtained by using a
one-parameter family of Sobolev type inequalities satisfied by A combined with an
iteration method in the time-variable of {T;};>o. To be more precise, one easily
sees that, for instance, for 1 < p < d, the Dirichlet p-Laplace operator A = —A?

on L? satisfies the following one-parameter family (in ¢ > p) of Sobolev type
inequalities
(17) July, < Coter (2) (—APwuy 1)

: dg =~ g—p+1 \p p %rHg—p+2

d—p

for every u € D(A)NL® and q > p. To the best of our knowledge, it goes
back to Véron [92] who established that the semigroup {T;}:>0 generated by Alz
satisfies the L7-L"-regularisation estimate

(1.8) Ty — Tot]|, < C+0 |Ju— al|]

for every t > 0, u, i € L9 with exponents J, v > 0 depending on d, p, r and g
forevery g <r <oo(l <g<o00,2<p < o), and that the semigroup {T};}+>0
generated by AP (-™) satisfies the L-L"-regularisation estimate

(1.9) | Teutl|, < C 0 ||ully

forevery t > 0, u € L7, withq = 1, r = co and exponents §, v > 0 depending
onr,q,m>1andd. Véron’s approach was quickly adapted to many nonlinear
parabolic problems (cf. for instance [1, 71]).

The analogue of estimates (1.3) and (1.6) concerning linear semigroups are in
the nonlinear semigroup theory the estimates (1.8) or (1.9). To emphasise the fact
that these estimates involving nonlinear semigroups appear with an exponent -y
at the initial datum u € L9, which is, in general, different of one, we avoid call-
ing the estimates (1.8) and (1.9) supercontractive or ultracontractive estimates,
but rather speak from an L9-L" reqularisation estimate of the nonlinear semigroup
{Ti}1>0if 1 < g < r < oo (see also Remark 3.4 in Section 3).

In 2001, Cipriani and Grillo [33] adapted the approach by Davis and Simon [44]
to establish L7-L*-regularisation estimates of solutions of parabolic diffusion
equations involving quasilinear operators of p-Laplace type equipped with ho-
mogeneous Dirichlet boundary conditions on bounded domains. The approach
in [33] is essentially based on the following two steps (cf. [33]): firstly, one em-
ploys the classical Sobolev inequality

(1.10) HMH% < C[IVullly

with respect to the Lebesgue measure, in order to derive a one-parameter family
of logarithmic Sobolev inequalities in L? (similar to (1.4) with 2 replaced by p) asso-
ciated with the energy functional of the Dirichlet-p-Laplace operator A? . Then
one uses this family of inequalities to show that for a solution u of the parabolic
equation under consideration the function

y(t) == logllu(t)ll,y fort >0,

satisfies a differential inequality from which one can deduce an L7-L"-regulari-
sation estimate for 1 < g < r < co.

Comparing this method with the one by Véron, the approach in [92] seems to
be more direct in order to achieve L7-L"-regularisation estimates for1 < g <r <
oo with optimal exponents.
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Many authors followed the approach in [33]; they derive from the classical
Sobolev inequality (1.10) new families of energy entropy inequalities (generalising
the logarithmic Sobolev inequality) and then apply these inequalities to nonlin-
ear parabolic problems (see, for instance, [47, 46, 84, 19, 20, 21, 69, 94]).

Another approach worth mentioning in this context is [81] by Porzio. In this
paper, Porzio employs directly the classical Sobolev inequality to establish LA-
L’-regularisation estimates (1 < g < r < oo) for solutions of nonlinear para-
bolic equations involving non-autonomous quasilinear differential operators of
p-Laplace type.

In order to conclude this section, we want to emphasise that L9-L"-regularity
estimates of semigroups {T; }+>o have many applications, such as new existence
results (see, for instance, [81]), global Holder continuity (see, for instance, [49,
80, 93]) (and higher regularity (see [49])) of weak energy solutions of the un-
derlying parabolic boundary value problem (see Section 5 and Section 7 of this
monograph), finite time of extinction results with respect to the initial data (see,
for instance, [8, pp 234] or [91]) or uniqueness of solutions (see [60]), and others.

1.2. Main results. In the present monograph, rather than making a detour via a
family of Log-Sobolev inequalities, we shall use the tools that are more directly
relevant to establish general L7-L’-regularity estimates for 1 < g, r < oo and
Li-L*®-regularisation estimates for 1 < g < oo of nonlinear semigroups {T;}:>o,
namely, Sobolev type inequalities or, more generally, Gagliardo-Nirenberg type
inequalities

In the following, (X, u) will be a o-finite measure space. For 1 < g < oo, we
shall say that A is an operator on L1(%, ) if A is a subset of L1(X, u) x L1(X, u).
Further notions and notation used throughout this monograph can be found in
Section 2.

Definition 1.1. Let 1 < g < ccand 1 < r < co. We say an operator A on
LY satisties an L9-L"- Gagliardo-Nirenberg type inequality for some ¢ > 0, ¢ > 0,
w € Rand (up,0) € A if there is a constant C > 0 such that

1) fu—uolly < C ([n—uo o)y +wlu—uollf) Jlu—wuoll]

for every (u,v) € A. Moreover, we say that an operator A on L7 satisfies an
L9-L"- Gagliardo-Nirenberg type inequality with differences for some ¢ > 0, ¢ > 0
and w € R if there is a constant C > 0 such that

a12)  Ju—all¢ <C ([u—a,o— 0] +wlu—al]) Ju—a|s

for every (u,v), (1,0) € A.

For example, the negative Dirichlet p-Laplace operator —Ar’? satisfies the Ga-
gliardo-Nirenberg inequality (1.11) with ug = 0if 1 < p < 2 and (1.12) if 2 <
p < oo (see Section 6.1) and for m > 0, the negative doubly nonlinear operator
—AE (-™) equipped with Dirichlet boundary conditions satisfies the Gagliardo-
Nirenberg inequality (1.11) for uy = 0 (see Section 6.3). Further examples of
operators and other type of boundary conditions are discussed in Section 6.
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In the paper, we intend to come back to Bénilan’s and Véron’s viewpoint, and
provide a systematic semigroup approach in order to establish L*-L*-regulari-
sation estimates of the form (1.8) and (1.9) for any 1 < s < oo for (nonlin-
ear) semigroups {T; }+>o under the assumption that the corresponding infinites-
imal generator — A satisfies an L9-L"-Gagliardo-Nirenberg type inequality either
without differences (1.11) or with differences (1.12) for some 1 < g, 7 < co.

We simplify Bénilan’s and Véron’s method by avoiding for a large class of op-
erators the construction of a one-parameter family of Sobolev inequalities (such
as the family of inequalities given by (1.7)) to establish L7-L*-regularisation es-
timates of semigroups {T;}:>o. We rather tried to make the extrapolation tech-
niques from the linear semigroup theory by Simon and Heegh-Krohn [83] avail-
able for the nonlinear semigroup theory. To achieve this, we have established a
new nonlinear interpolation theorem (see Theorem 4.6, Theorem 4.7 and The-
orem 4.8 in Section 4.2). Our techniques require the validity of only one L7-L"
Gagliardo-Nirenberg type inequality satisfied by the generator A for some 1 <
g, r < coin order to establish L°-L*-regularisation estimates for 1 < s < co of the
corresponding semigroup {T;};>o. This simplifies essentially the known tech-
niques in the existing literature (cf. [11, 92, 52, 47, 46, 84, 19, 20, 21, 69, 94] and
many more), but also allows us to establish L9-L"-regularity estimates, 1 < g,
r < oo, for solutions of nonlinear parabolic problems involving nonlocal diffu-
sion processes (see Section 6.2 and 6.2.2). Estimates of this type for solutions
of nonlinear nonlocal diffusion problems are know to hold only for the frac-
tional porous media equation on the whole space (cf. [45]). Further, we pro-
vide a nonlinear version of the methods from [35] and [36] to conclude that if
a semigroup {T;};>o satisfies a L7-L"-regularisation estimate of the form (1.8)
or (1.9) for some 1 < g < r < oo then the semigroup admits, in particular,
a L!'-L"-regularisation estimate of the form (1.8) or (1.9) (see Theorem 4.1 and
Theorem 4.3 in Section 4.1).

Similar to [92], we focus our attention on two important classes of operators
generating nonlinear semigroups acting on L9 forall 1 < g < co:

o quasi m-completely accretive operators in L7 for some 1 < go < oo,
e quasi m-T-accretive operators in L' with complete resolvent.

In order to keep this subsection for an overview of the main results of this
monograph, we refer for the definition of these two classes of operators to Sec-
tion 2.2 and Section 2.3 and note briefly that prototypes of the first class of oper-
ators are of the form A + F, where F is a Lipschitz continuous mapping on L%
and A is, for instance, the celebrated negative p-Laplace operator —A, (see Sec-
tion 6.1) but also the negative nonlocal fractional p-Laplace operator —(—A,)°
(see [68] and Section 6.2.2) respectively equipped with some boundary condi-
tions and the Dirichlet-to-Neumann operator associated with the p-Laplace op-
erator (see Section 6.2.1). Examples of the second class of operators are also
of the form A + F, where F is a Lipschitz continuous mapping on L! and A
is, for instance, the negative porous media operator —A(-") and its nonlocal
counterpart ([45]) or, more generally, doubly nonlinear operators A,(-") (see
Section 6.3), where each of them is equipped with some boundary conditions.

Our first main result is concerned with L-L"-regularity estimates of semi-
groups {T;}+>0 generated by —A for an operator A of the first class satisfying
L9-L"-Gagliardo-Nirenberg type inequality (1.12) with differences.
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Theorem 1.2. For some q € [1,+00) and w > 0, let A+ wl be m-completely ac-
cretive in L1(X, u) with dense domain. If A satisfies the Gagliardo-Nirenberg type in-
equality (1.12) with parameters q, 1 < r < oo, 0 > 0and o > 0, then the semigroup
{T;}+>0 generated by — A on L1(%, i) satisfies

1/0
(1.13) | Tw— Tearll, < (S) 7 7Pt u— ]

. ‘ _ 1 5 _ _ q+e
for every t > 0, u, i € LI(X, ) with exponents a = 2, = v+ 1and y = +=.

Moreover, if 1 < r < oo, yr > qand thereis (up,0) € A forsomeug € LY NL®(Z, u),
then

(1.14) | Tou — Tyit||oo S £7% e“Pst ||u — 0|20
foreveryt > 0,u, 0 € L°(E,p), 1 < s < yrq ' mg satisfying v(1 — 7L.) < 1 for
every mo > q -y~ satisfying
(1.15) (L =1)mo+4q(5 —1) >0,
with exponents
* _ L s 7'rg ' « (g =1)my

Y= Tt P T T mr ) Y T T @1
(1.16) * prips o o

s & _ yrmg _ Yyrmg

B 177*(1775310), ﬁS o 177*(17@«5210)’ Vs = 177*(177;710).

The proof of Theorem 1.2 follows by combining Theorem 3.3 (Section 3), The-
orem 4.10 (Section 4.3) and subsequently by applying Theorem 4.1 (Section 4.1).

Remark 1.3. At first glance, the condition ¢ > g and the choice of my > g~ !
satisfying (1.15) in Theorem 1.2 and in the subsequent two theorems seem rather
mysterious. They are sufficient conditions to conclude an L°-L* regularisation
estimate for s = yrg ! mg from an LI-L" regularity estimate for some 1 < g,
r < oo (cf. Remark 4.11 in Chapter 4.3). But on the other hand, the parameters
7, r and q are intimately related with the given operator A. In fact, the condition
yr > qchangesif and only if A changes. This is not the case for the parameter 1
satisfying my > g ~! and (1.15) since for sufficiently large 1y both conditions
always hold. In certain cases, but not all, my = q-y~! satisfies (1.15), in which
case this choice of m is optimal. This is well demonstrated by the example of the
p-Laplace operator A = —A]l;d on R? satisfying vanishing conditions at infinity
(see Theorem 6.1 in Section 6.1.1).

Our second main result is concerned with L7-L"-regularisation estimates of
semigroups {T;}+>0 generated by —A for an operator A of the first class but
satisfying the Gagliardo-Nirenberg type inequality (1.11) without differences.

Theorem 1.4. For some g € [1,+00) and w > 0, let A + w] be m-completely accretive
in L1(X, ) with dense domain. If A satisfies the Gagliardo-Nirenberg type inequal-
ity (1.11) with parameters q, 1 < r < 00, 0 > 0and o > 0 and some (u,0) € A satis-
fying ug € LY N L*(X, i), then the semigroup {T;}s>o generated by —A on L1(Z, u)
satisfies

1/0
(1.17) 1T —woll, < (S) 7 %Pt u — uoly
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; _ 14 _ _ g+
for every t > 0, u € LI(X, u) with exponents « = -, B = v+ 1and v = =

o
Moreover, if 1 <r < coand yr > q, then

(1.18) I Tot — tigleo S £7% €“Pet ||l — ug||2°

forevery t > 0, u € L°(E,p), 1 <'s < yrq~"mg satisfying v(1 — -71-) < 1 for
every mo > q -y~ satisfying (1.15) with exponents (1.16).

The statements of Theorem 1.4 follows from Theorem 3.8 (Section 3) and by
Theorem 4.13 (Section 4.3) combined with Theorem 4.3 (Section 4.1).

The last main result of this monograph focuses on the L-L"-regularisation es-
timates of semigroups {T;};>0 generated by —A for an operator A in L!(Z, )
of the second class satisfying the Gagliardo-Nirenberg type inequality (1.11)
without differences. However, applications show that operators A of the second
class, generally, do not satisfy the Gagliardo-Nirenberg type inequality (1.11) for
u € D(A)NLYE, u) and some g > 1 but for u € D(A) N L®(X, u). Thus, it is
very useful to introduce the trace

Atneo = AN ((L'NL®(Z, 1)) x (L' NL¥(Z, )

of A on L' N L®(%, u). Furthermore, note that the notion of c-complete resolvent
is defined in Section 2.3.

The nonlinear interpolation theorems used in the proofs of Theorems 1.2 and
1.4 (see Theorem 4.6, Theorem 4.7 and Theorem 4.8 in Section 4.2) cannot be
applied to semigroups {T;}+>¢ generated by —A in L! for operators of the sec-
ond class. One essential reason for this is that in the latter case each mapping
T; : L'NL® — L' N L* is, in general, not Lipschitz continuous with respect to
the L*-norm. Another important observation is that operators satisfying an LA-
L" Gagliardo-Nirenberg type inequality (1.12) with differences are necessarily
quasi-accretive in L. But there are operators of the second class, as for instance,
the negative porous media operator —A(-") (cf. [91]) that are not accretive in L1
for g > 1. Hence we have to provide an alternative approach which applies to
the second class of operators.

Theorem 1.5. Let A + wl be an m-T-accretive operator in LY(Z, u) for some w > 0
with complete resolvent (respectively, c-complete resolvent and w = 0). Suppose the
trace A1no of A on L1 N L (X, ) satisfies the range condition

(1.19) L'NL®(Z, 1) € RY(I + (A1 + wl)).

and the Gagliardo-Nirenberg type inequality (1.11) for parameters 1 < g, r < oo,
(g < ), 0 > 0,0 > 0and some (ug,0) € Aine satisfying ug € L' N L2 (Z, u).
Then the semigroup {T; } 1o generated by —A on D(A)" satisfies

1/0
(117) T —uolle < (§) 7 7" flu—wolly

for every t > 0, u € D(A)" NL®(X, ) with exponents & = 1, B = v+ 1 and

Y = @. Moreover, if for parameters x > 1, m > 0and qo > p > 1 satisfying
kmgqo > 1 and

(1.20) (k—1)go+p—1—1>0,
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the trace A1ne satisfies the one-parameter family of Sobolev type inequalities

a2) |l = wollity < SHEL [l — 0,0l p sy + llu = ol

g—p+1)m+1
Kmq — g—p+1

g—p+1)m+1

for every (u,v) € Aine and every q > qo, then there is a p* > 0 such that the
semigroup { T} }1>0 satisfies

(1.18) | T — upl|leo S t7% e“’ﬁstHu—uoHZS

forevery u € D(A)Y NL®(Z, 1), 1 < s < kmqq satisfying v* (1 — Kan()) < 1 with
exponents

DC* = 1 1V\7 ’Y* = (K—l)% 17
m((k=1)go+p—1-7) (k=1)qo+p—1—3
(122) . ot B ‘3*2—14_,)/*5;(71’,”71’761 . 'Y*S
Kg = 1_7*<1_ S >/ ,Bs = . <1_ 5 > ;s Vs = Kmqo(l_,y*(l_msqo)).
Kmqo Kmdqo

Suppose the domain D(A) of the operator A considered in Theorem 1.5 is
dense in L'(Z, ). If the measure space (X, ) is finite then a standard den-
sity result yields the inequalities (1.17) and (1.18) in Theorem 1.5 hold for all
u € L1(%, ), respectively, u € L5(%, u). If ¥ has infinite measure y and if the
inequalities (1.17) and (1.18) hold for 4 = 1 and s = 1 then (1.17) and (1.18) hold
also forall u € L' (%, u).

By comparing Theorem 1.5 with Theorem 1.4, we note that quasi-m-completely
accretive operators A in L7 for some qo > 1 (that is, operators of the first class
considered in Theorem 1.4), it is not difficult to see that the trace Ajne of A
in L' N L* satisfies the range condition (1.19). This is not immediately clear for
quasi-m-accretive operators A in L! with complete resolvent (that is, the second
class of operators considered in Theorem 1.5). Thus, we provide in Proposi-
tion 2.18 sufficient conditions yielding that operators A¢ composed of an oper-
ator A of the first class and a monotone graph ¢ satisfies range condition (1.19).
On the other hand, there are operators of the first class which do not satisfy the
one-parameter family of Sobolev type inequalities 1.21 in Theorem 1.5 but they
do satisfy all assumptions in Theorem 1.4. Examples of such operators are the
nonlinear Dirichlet-to-Neumann operator associated with p-Laplace type oper-
ators (see Section 6.2.1) or the fractional p-Laplace operator equipped with some
boundary conditions (see Section 6.2.2). Here, it is interesting to note that both
operators are of nonlocal character (cf. [55, 68]).

The proof of Theorem 1.5 follows from Corollary 3.12 (respectively, Corol-
lary 3.13) and Theorem 4.15. Comparing Theorem 1.5 with the existing literature
(cf., for instance, [21, 22, 69, 84, 91]), we note that so far, in order to establish an
L!-L*®-regularisation estimate (1.9) for semigroups {T; };>0 generated by doubly
nonlinear operators A, (™) on L!(R?), one had either to assume more regularity
on the solution of the associated parabolic problem (cf., for instance, [21, 69, 84])
or to approximate the semigroup {7} on L'(IRY) by the semigroup {T/'}+>0
generated by the Dirichlet-doubly nonlinear operator A7(-"") on L!(Z,) for a

sequence (X,), of open sets X, C R? with finite measure, smooth boundary,
and satisfying >, C X,41 and U,>1 Xy = RY (cf., for instance, [91]). Our ap-
proach presented in Theorem 1.5 is different to this one and to the one given by
Véron [92]. Thus, the statement of Theorem 1.5 unfolds its complete strength in
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the case (X, u) is an infinite measure space. It is based on the result stated in
Proposition 2.18. We emphasise that we generalise in Proposition 2.18 an idea
by Crandall and Pierre [41] for the composition A¢ of a nonlinear completely
accretive operator A and a non-decreasing function ¢ : R — RR.

As an application of the theory developed in this monograph, we provide in
Section 5 an abstract approach showing that a global L!-L®-regularisation esti-
mate satisfied by a semigroup {T;}>o implies that the trajectories u(t) := Tiug
in L1, t > 0, for initial values ug € L1, are, in fact, weak energy solutions of the cor-
responding abstract initial value problem (see Definition 5.2 in Section 5). Here,
the semigroup {T;};>¢ is generated by a quasi-m-T-accretive operator in L! of
the form Ajn.@ + F, where A is the realisation in L? of the Gateaux-derivative
¥’ : V — V' of a convex real-valued functional ¥ defined on a Banach space
V < L?, and A has the property to be an m-completely accretive operator in
L2. Further, ¢ is assumed to be a continuous, strictly increasing function on RR,
and F a Lipschitz mapping on L!. In the case F = 0 and A¢ is the celebrated
negative porous media operator —A¢, this result is well-known (see [9, 51, 91]).
Our results (Theorem 5.6, Theorem 5.7 and Theorem 5.9) in Section 5 extend
the known literature by providing a uniform approach which can be applied to
general quasi-m-T-accretive operators Aine¢ + F in L! where the operator Ajneo
needs not to be linear, but has the important property to be completely accretive
in L2. Concerning the regularity of trajectories u(t) := Tyup in L! generated by
operators — A¢ with similar characteristics as A, ¢, the notion of entropy solutions
was developed (see [13, 5, 6]). Theorem 5.6 in Section 5 improves the regularity
of these trajectories u(t) := Tyug in L! essentially.

We demonstrate the efficiency of the methods and techniques developed in
the Sections 3, 4.1, 4.3 and 4.4 with a plethora of examples gathered in Section 6.
Section 6.1 is concerned with establishing L7-L"-regularisation estimates of the
semigroup generated by a negative Leray-Lions type operator equipped with ei-
ther homogeneous Dirichlet, Neumann or Robin boundary conditions. Our re-
sults in this section improve some known results in the literature. For instance,
we prove that the exponents in the L7-L"-regularisation estimates remain un-
changed by adding a monotone (multi-valued) or a Lipschitz perturbation. Note
that our methods yield sharp exponents as one can see in Section 6.1. Section 6.2
is dedicated to establishing the L7-L"-regularisation estimates of two nonlocal
parabolic problems where known methods fail. In this section, we establish
the L9-L"-regularisation estimates of the semigroup generated by the negative
Dirichlet-to-Neumann operator associated with a Leray-Lions type operator and
of the semigroup generated by the fractional p-Laplace operator equipped with
either Dirichlet or Neumann boundary conditions. In Section 6.3, we establish
the L7-L"-regularisation estimates of mild solutions of parabolic problems in-
volving the negative doubly nonlinear operator —A,(-"") for m > 0 equipped
with either homogeneous Dirichlet, Neumann or Robin boundary conditions.
In this section, we use the properties of the p-Laplace operator established in
Section 6.1, to construct the operator —A,¢.

In Section 7, we employ the L!-L®-regularisation estimate (1.18) satisfied by
the semigroup {T;}>0 of the doubly nonlinear operator A,(-") equipped with
either Dirichlet, Neumann or Robin boundary conditions to show that for every
given initial value ug € L!, the mild solution u(t) := Tup, t > 0, in L' is a
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strong energy solution (see Theorem 7.3). We give the exact definition of strong
solutions in the next section, where we set the general framework in which we
are working and briefly review some classical definitions and important results
in nonlinear semigroup theory.

1.3. Acknowledgements. Both authors are very grateful to Professor Michel
Pierre (ENS Cachan) for his tireless willingness to discuss important problems
concerning nonlinear semigroups generated by the porous media operator and
for his valuable suggestions.

2. FRAMEWORK

Throughout this monograph, (X, ) denotes a o-finite measure space and
M(Z, 1) the space (of all classes) of measurable real-valued functions on £. We
denote by L1(X, 1), 1 < g < oo, the corresponding standard Lebesgue space with
norm ||-||4. For 1 < g < oo, we identify the dual space (L7(X, u))" with L7 (Z, u)
and use the notation (u/, u) to denote the natural pairing of v € L7 (%, u) and
u € L9(X, u), where g is the conjugate exponent of g given by 1 = % + % More
generally, for every topological vector space X C M(X, u), we denote by (1, u)
the value of p € X’ at u € X. In the case 1 < q < oo, we shall write ug to denote
|u|1-2u for every u € L1(Z, ).

2.1. Nonlinear semigroup theory: old and new. Most of this section can be
skipped by readers familiar with classical nonlinear semigroup theory. Most
of the results of this theory can be found in the books [8] by Barbu, [70] by
Miyadera or in the famous draft [15] of the unpublished book by Bénilan, Cran-
dall and Pazy.

We call a mapping A from M(X, ) into the set of all subsets of M(X, jt), de-
noted by 2M(Z#), an operator on M(Z, it). As usual, we identify an operator A on
M(Z, u) with its graph, that is, with the set

{(u,v) € M(Z,u) x M(E,p) | v e Au},

and thus, we shall say that (1,v) € A if v € Au. The effective domain D(A) of A
denotes the set of all u € M(X, i) satisfying Au # @ and the range Rg(A) of A
the set U, ep(a) At € M(Z, ). The inverse operator A~" of A is given by the set of
all pairs (u,v) € M(Z, u) x M(Z, u) satisfying u € Av, hence D(A™!) = Rg(A)
and Rg(A~1) = D(A). Given two operators A and B on M(Z, 1) and a scalar
a € R, the operator A + aB is given by (A + aB)u = Au + a(Bu) for every
u € D(A) N D(B). Further, the composition AB := A o B of two operators A and
B on M(X, ) is defined by

AB = {(u,v) e M(XZ,pu) x M(%, ) ‘ there is z € Bu such that v € Az}.

Let X € M(X, u) be a Banach space with norm ||.||x. Then, an operator A on
X, meaning that A C X x X, is said to be densely defined or with dense domain if
its effective domain D(A) is dense in X. We denote by A the closure of the graph
of A in X and call A the closure of A in X. We call A closed if A = A. Obviously,

the domain D(A) of the closure A of A in X is closed in X. For any sequence
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(Ay)n>0 of operators A, on X, the limit inferior of (A,) denoted by liminf, . A,
is defined by

{(u,v) € X x X | there are (u,,v,) € Ay s. t. 1i_r>n(un,vn) = (u,v) in X X X}
n o0

Now, an operator A on X is called accretive (in X) if for every (u,v), (1,9) € A
and every A > 0, one has
(2.1) [ =[x < lu—+A(o—0)|x.

In other words, A is accretive in X if and only if for every A > 0, the resolvent
operator [y = (I + AA)~! of A is a single-valued mapping from Rg(I + AA) to
D(A), which is contractive (also called nonexpansive) with respect to the norm of
X. Recall a mapping S : D(S) — X with domain D(S) C X is call contractive
with respect to the norm of X or a contraction in X if

|Su — Sit|[x < flu—dx,

for all u, 1 € D(S). In order to better grasp the definition of accretive operators,
one might first consider accretive operators f on R. If X = R is equipped with
the absolute value |-| then for every (u,v) and (4,9) € B, inequality (2.1) is
equivalent to the inequality

(2.2) (v—9)(u—1)>0.

This shows that a single-valued operator f on IR is accretive if and only if § is
non-increasing. From now on we refer to accretive operators on R as monotone
graphs (cf. [15, Example (2.3)]). For a given monotone graph p on R and for every
1 < g < oo, we denote by B, the associated accretive operator with B in L1(X, dx)
given by

(2.3) By = {(u,v) € LTx LI(E,n)| v(x) € B(u(x)) forae. x € Z}.

There are important characterisations of accretivity, which we use from time
to time throughout this paper. Here is the first one: an operator A is accretive in
X if and only if

(2.4) { for every (u,v), (1,0) € A, there exists ¥ € J(u — 1)

satisfying (y,v — 9) > 0,
where ] : X — 2% denotes the duality mapping of X, which is given by

Jw) = {y € X'| () = [lullx and [[p]lx <1}

for every u € X (cf. [15, Theorem (2.15)] or [8, Proposition 3.1]).
Now, it is not difficult to verify (cf. [15, Example (2.11)]) that for g = 1, the
duality mapping | on L!(Z, i) is given by

J(u) = {1/} € L®(%, ) | p(x) € sign(u(x)) forae. x € & }
for every u € L'(Z, u), where the multi-valued signum function is defined by

1 ifs >0,
sign(s) :== ¢ [-1,1] ifs=0,
-1 ifs <0
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for every s € R, and for 1 < g < oo, the duality mapping J on L1(X, ) is a
well-defined mapping J : L1(%, u) — L7 (%, i) given by

(2.5) J (1) = g [Jully ™

for every u € L1(X,u). In the case ¢ = 1, J(u) is multi-valued exactly when
the set {u = 0} has strictly positive py-measure. However, the multi-valued
signum function sign(-) can be approximated by the sequence (7, )e~0 of piece-
wise smooth functions 7, : R — R defined by

1 ifr >e¢,
(2.6) Ye(r) = L if —e<r<e,
-1 ifr < —e.

For our purposes, it is convenient to introduce the notion of g-brackets. For
1 < q < oo, the g-bracket [-,-]5 : L1(X, u) x L9(XZ, u) — R is defined by

U+ Aofl§ = Hull

[0y = AIH(?JF A

for every u, v € LI(%, ). For given u, v € LI(%, i), the number [u, ], is the
right-hand directional derivative of the function u %Hu |4. Since the function
A %Hu + Avl|] is convex on IR, we can define [, -], equivalently, by

1 q_ 1,19
(2.7) [1,0]q = inf gl +/\Ul‘7 llullg
for every u, v € L1(%, ). The g-bracket [-, -], : L9(X, ) x L1(%, u) — R is upper
semicontinuous (respectively, continuous if 1 < g < o0) and

(2.8) [u,v]; = (uy, ) foreveryu,v € L1(X,u) if 1 < q < oo,
while for g = 1, [, ]; reduces to the classical brackets [-,-] on L}(Z, 1) given by
(2.9) u,v :/ sign,(u)vd —|—/ v|d
o= [ g smolwodut [ o loldu

for every u, v € L1(Z, i), where the restricted signum sign, is defined by

1 ifs>0,

sign,(s) =40 ifs=0,
-1 ifs<0

for every s € R (cf. [15, Section 2.2 & Example (2.8)] or [8, pp 102]). By charac-
terisations (2.4), (2.5) and (2.8) if 1 < q < oo, respectively, by [15, Theorem 2.14]
(or, alternatively, [8, p 103 formula (3.15)]) if g = 1, we see that an operator A on
L9(%, u) is accretive if and only if

u—1a,0-0],>0  forevery (u,v),(4,3) € A.

In Section 3, we shall need the following two properties of g-brackets:
1 1
(2.10) [u,v]; < aﬂu—l—vHZ—aHuHZ for every u, v € L1(%, u),

and

(2.11) [, 00+ wuly = a[u,0]; + w ||ulll
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for every u, v € L1(%, ), w, « € R. Here, note that inequality (2.10) is an im-
mediate consequence of (2.7). Property (2.11) is shown for g = 1 in [15, Proposi-
tion (2.5)] (or, alternatively, [8, Proposition 3.7]) and if 1 < g < oo then (2.11) can
be easily deduced from (2.8).

If X C M(Z, p) is a Banach lattice, then we shall denote the usual lattice
operations u V 1 and u A il to be the almost everywhere pointwise supremum
and infimum of u and # € X. In addition, u™ = u V 0 is the positive part,
u~ = (—u) V0 the negative part, and |u| = u™ + u~ the absolute value of an
element u € X. Forevery u, 1 € X, one denotes by u < 7 the usual order relation
on X. In this framework, a mapping S : D(S) — X with domain D(S) C X is
called order preserving if Su < Sii for every u < 1, positive if Su > 0 for every
u > 0, and a T-contraction if

I[Su — Sa]*|lx < [lfu—a]" |

for every u, 1 € D(S). Note that if S is T-contractive then it is order-preserving
and that the converse holds if S is contractive and satisfies u Vil and u Al €
D(S) for every u, i € D(S) (see [15, Lemma (19.11)]). We shall say that an
operator A on X is T-accretive if for every A > 0, the resolvent [, of A defines a
T-contraction with domain D(],) = Rg(I + AA).

Note, without further assumptions (cf. [15, Proposition (19.13)]), T-contractive
does not imply contractive, nor does T-accretive imply accretive, and vice-versa.
However, if the norm ||-||x on X satisfies the implication

(2.12) lutllx < @ )lx, [lu”llx <27 [lx  implies [lu[x < [l2]|x

for every u, 11, then every T-contraction is also a contraction (cf. [15, p 267]). One
easily verifies that this implication holds, for instance, for the space X = L1(%, )
for every 1 < g < co. Thus, for the rest of this monograph, if we speak about
T-contractive or T-accretive operators on X, then we automatically assume that
the underlying space X is a Banach lattice satisfying (2.12).

In the space X = L(%, u), the property that an operator A in L}(, u) is T-
accretive can be characterised as follows: for every (u,v), (11,0) € A, there is a
w € L*(%, u) satisfying w(x) € sign® (u(x) — (x)) for a.e. x € £ and

/w(v—ﬁ)dyEO,
)

where for every s € R,

1 ifs >0,
sign®(s) := ¢ [0,1] ifs=0,
0 ifs <0,

or equivalently (cf. [10]) for every (u,v), (i,0) € A, one has

[u—ﬁ,v—zﬁ]Jr::/ [v—zﬁ]J’d;H—/ (v—"0)du > 0.
{u=n} {u>n}

In order to conclude that the sum A + B of two operators A and B in X is
accretive, the assumption that A and B are both accretive is not sufficient (cf. [15,
Exercise E2.3]). For this to be true, we need that at least one of the two operators
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A and B admits the following stronger property. We call an operator A s-accretive
in X if for every (u,v), (4,0) € A and for every ¢ € J(u — 1),

(p,v—120) > 0.

Now, if A is an operator on X then the sum A + B is accretive in X for ev-
ery accretive operator B on X if and only if A is s-accretive (cf. [15, Proposi-
tion (2.20)]). Obviously, for 1 < g < oo, every accretive operator A in L1(X, ) is
s-accretive in L9(X, ). Unfortunately, this is not true for accretive operators A
in L'(X, 1). A counter example is, for instance, given by the accretive operator
By in L1((—2,1),dx) for B(s) := sign(s) (cf. [15, Exercise E2.25]). On the other
hand, a prototype of s-accretive operators in L!(%, 1) is provided by the accre-
tive operator B; in L' (%, u) associated with a non-decreasing function p : R — R.
To see that By is s-accretive in L!(Z, 1), we need to check that for every (u,v),
(1,0) € By every p € L®(X, ) satisfying ¢(x) € sign(u(x) — i(x)) for a.e.
x € X, one has

(2.13) /Z ¥ (v—0)du > 0.

Since B is assumed to be real-valued function, we have that v = p(u) and
o = B(i1). Thus, and by the monotonicity of B, for a.e. x € X, the condition
v(x) > 9(x) implies u(x) > i1(x) and so, P(x) = 1 hence P(x) (v(x) —d(x)) > 0.
Analogously, for a.e. x € X, the condition v(x) < 9(x) implies u(x) < 7(x) and
so §(x) = —1 hence ¢(x) (v(x) — 9(x)) > 0. Therefore, (2.13) holds.

Next, an operator A on X is called m-(T)-accretive in X if A is (T)-accretive in
X and satisfies the range condition

(2.14) Rg(I+AA)=X  for some (or equivalently all) A > 0.

Coming back to the example of a monotone graph  in R, we set (r+) =
inf B(]r,00[) and B(r—) = sup B(] — oo, r[) for every r € R, where, as usual,
inf@® := 400 and sup @ := —oo. Then, a monotone graph S in R is m-accretive
if and only if for every r € R, one has

B(r) = [B(r=), pr+)| NR.

Therefore, a monotone graph g in R is m-accretive if and only if the graph of B is
the maximal monotone set in R x R containing g itself. If  is m-accretive in R
and either (0,0) € B or (%, i) is finite, then for every 1 < g < oo, the associated
operator B, on L(X, i) is m-T-accretive (cf. [15, Examples (8.4) & (8.5)] or [8,
Section 3.2]). Moreover, the resolvent operator ], of B, is given by (Jau)(x) =
(14 AB)~'u(x) and the so-called Yosida operator B, () := A~1(I — ],) is given by
Br(u)(x) = A1 (1 — (1 4+ AB) Yu(x) forae. x € T. If 1 < g < oo then for a
given accretive operator A on L7(%, i), the sum A + B, is accretive in LI(X, u).
This is an immediate consequence of the fact that the duality mapping ] of
L1(%, u) is single-valued on L7(%, u). However, in order to conclude that for an
m-accretive operator A in L1(%, i), (1 < g < o0), satisfying D(A) N D(B,) # D,
the sum A + B, is m-accretive in L9(X%, u), one needs an additional condition. A
possible one is the following (cf. [8, Proposition 3.8]):

(2.15) [Br(u),v]; >0  forevery A >0, (u,v) € A.
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Another important example of m-accretive operators in L*(X, 1) is given by
the subgradient

9. = {(u,v) € L2 x [A(Z, 1) ‘ (0,6 —u) <¥(&) - ¥(u)forall ¢ € L2(Z,y)}

in L2(X, 1) of a functional ¥ : L?(Z,u) — R U {+0c0} which is convex, lower
semicontinuous and proper (see [24] and also [31]).

More generally, an operator A on X is called quasi (T)-accretive if there is an
w € R such that A + wl is (T)-accretive in X. Obviously, if A 4 wl is (T)-
accretive for some w € R then A + @I is (T)-accretive for every @ > w. Thus,
there is no loss of generality in assuming that A + w] is (T)-accretive for some
w > 0. Finally, we call A quasi m-(T)-accretive if A + wl is m-(T)-accretive for
some w € RR. It is easy to check that A 4- wl is (T)-accretive for some w € R if
and only if for every A > 0 satisfying Aw < 1, the resolvent |, of A satisfies

ITa = Rattllx < (1= Aw) ™ |Ju -l
for every u, i1 € Rg(I + AA) (respectively, one has

Iam = Jaa]*llx < (1= Aw) ™ || [u—a]"[|x

for every u, i € Rg(I + AA)). It is important to know that if A + wI is m-
accretive for some w € R, then for every A > Osuch thatwA < landu € D(A)",
the closure of D(A) in X, one has Jyu € D(A) and

(2.16) lim Jyu =u in X

A—=0

(cf. [15, Proposition (4.4)] or [8, Proposition 3.2]). Prototype examples of quasi
(T)-accretive operators A on X = L1(X,u), 1 < g < oo, are of the form A =
B + F, where B denotes a (T)-accretive operator on LY(X, i) and F : LI(X%, u) —
L1(%, u) is defined by F(u)(x) := f(x,u(x)) for every u € LI(X, u) of a given
f : £ xR — R with the properties that f(-,u) : ¥ — R is measurable on X for
everyu € R, f (x,0) = 0 for a.e. x € ¥, and there is a constant w > 0 such that

(2.17) |f(x,u) — f(x,0)| < L|u—1i forallu, 7 € Rand a.e. x € L.

A real-valued function f satisfying such properties (or slightly weaker ones)
is also called a Carathéodory function, and the mapping F given by F(u)(x) :=
f(x,u(x)) for every u € L1(X, u) the Nemytski operator on LI(%, u) associated
with f.

If 3 = 1 then an approximation argument with the sequence (y)e~0 given
by (2.6) and if 1 < g < oo, using that the duality map ] on L7(%, i) is single-
valued, one sees that the operator B + F + w! is (T)-accretive in L7(%, ). On
the other hand, for the same w, the operator F + wI on L1(%, u) is accretive
and Lipschitz continuous. Hence a standard fixed point argument shows that
F + wl is m-(T)-accretive in L7(%, ). Therefore, if B is m-(T)-accretive in L7(%, u)
for some 1 < g < oo, then B + F is quasi m-(T)-accretive in L1(X%, u) (cf. [8,
Theorem 3.1]).

For an accretive operator A + wl on X, w € R, one easily verifies that the
following properties hold (cf. [15, Proposition 2.18]):

(2.18) The closure A + wl of A + wl in X coincides with A + w]I and is accretive.
(2.19) If Ais closed, then Rg(I 4+ A(A + wl)) is closed for every A > 0.
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(2.20) Ifthereisa A > 0 such that Rg(I + A(A + wl)) is closed, then A is closed.

IfACB,Rg(I+ (B+wl)) CRg(I+ (A+wl))and B+ wlis

(2.21) accretive, then A = B.

By the celebrated Crandall-Liggett theorem [40, Theorem I], the condition A

is quasi m-accretive in X ensures that for all g € D(A)”, the abstract initial value
problem

(2.22) a4 Aus0, u(0)=u

is well-posed in the sense of mild solutions. In particular, if A is quasi m-T-
accretive in X, then for every ug, iy € (A" satisfying 1y < ilp, the corre-
sponding mild solutions u and 7 of (2.22) satisfy u(t) < #(t) forall t > 0 (cf. [15,
Proposition (19.12)]). To be more precise, we first recall that for given uy € X,
a function u € W!((0,00); X) N C([0, 0); X) satisfying u(0) = uo, u(t) € D(A)
and —%(t) € Au(t) a strong solution of (2.22). Now, a mild solution u of Cauchy
problem (2.22) is a function u € C([0, o0); X) with the following property: for ev-
ery T, e > 0, for every partition 0 = ty < --- < ty = T of the interval [0, T
such that t; —t;_1 < e foreveryi = 1,..., N, there exists a piecewise constant
function u, n : [0, T] — X given by

N
e N (F) = o Doy (8) + Y ttei Lty 1 (F)
i=1

where the values u; on (t;_1, t;] solve recursively the finite difference equation
wi+ (t —ti1)Au; D uj_q foreveryi=1,...,N

and

sup [lu(t) —uen(t)][x <e.
t€[0,T]

If A+ wl is m-accretive in X for some w € R, then for every element u( of

D(A)”, there is a unique mild solution u of (2.22) which can be given by expo-
nential formula

(2.23) u(t) = lim (I+LA) "ug

n—oo
uniformly in t on compact intervals. For every ug € D(A), setting Tyup = u(t),
t > 0, defines a (non-linear) strongly continuous semigroup {T;}¢>o of Lipschitz
continuous mappings T; : D(A)" — D(A)" with constant e“!. More precisely,
there is a family {T;}s>o of mappings T; on D(A)" obeying the following three
properties:
o (semigroup property)
(2.24) Tiis = TioTs forevery t,s > 0,

o (strong continuity)

. . X
tlirg}rHTtu —ullx=0  foreveryu € D(A)",

o (exponential growth property in X)

|Tiu — Tyo||x < e“tllu—o||x  forallu,v € D(A)",t>0.

In addition, if A is quasi m-T-accretive in X, then for every t > 0, T; satisfies
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o (exponential T-growth property in X)
[T — Tro]*||x < e“!||[u—o]F||x  forallu,v e D(A)",t>0,

in particular, the semigroup {T; };> is order-preserving, that is, every T; is order-
preserving.

To express that the semigroup {T:}+>0 has been obtained by the above con-
struction we say that {T; },> has been generated by —A on D(A)" and we denote
{Ti} =0 ~ —A. If A is m-accretive in X, then each mapping T; of the semigroup
{T;}t>0 ~ —A becomes contractive in X.

With these preliminaries in mind, we turn now to one of the main topics of
this article. It is not difficult to see ([8, p. 130]) that every strong solution of
Cauchy problem (2.22) is a mild solution. But, it is still not well understood
under which conditions on the operator A and the Banach space X, for each
ug € D(A)*, the mild solution u(t) = T, t > 0, of (2.22) is a strong one.
Obviously, this problem involves a regularisation effect since the solution u gains
a posteriori in regularity, namely, the property to be differentiable at a.e. £ > 0
with values in X. The current state of knowledge in the literature concerning this
problem is the following one (cf. [8, Theorem 4.6] or [15, Corollary (7.11)]): if A
is quasi-m-accretive in X and if the Banach space X and its dual X’ are uniformly
convex, then for every initial value 1y € D(A) the mild solution u(t) := Tiuo,
t > 0, of (2.22) belongs to the space Wll.f’([O, 00); X), is almost everywhere dif-
ferentiable on (0, c0), differentiable from the right at every t > 0, the right-hand

side derivative 4 . () is right continuous on [0, o) and for every ¢ > 0,

(2.25) u(t) e D(A)  and & u(t)+ A%u(t) = 0.

Here, A° denotes the principal section of A which assigns to every u € D(A) the
element A°u of Au with minimal norm among all elements of Au. Thus, un-
der these assumptions, the mild solution u(t) = Tup, t > 0, of (2.22) for every
ug € D(A) is a strong solution of (2.22). Recall that the space X = LY(Z, ) is
not uniformly convex. Further, it is natural to ask whether this statement holds
true if g € D(A)” for general quasi m-accretive operators A. Thanks to the pio-
neering result [23] by Brezis, the answer of this question is affirmative provided
A is the subgradient ;¥ in L2(X, 1) of a convex, proper, lower semicontinuous
functional ¥ : L2(%, #) — R U {+0c0}. Semigroups {T; }+>o generated by positive
homogeneous operators A of order « > Q0 with w # 1 on L1(X, u) for 1 < q < oo
admit the same regularisation effect (cf. [14]). As a by-product of our other re-
sults (Theorem 1.5) we can show that the semigroup {T;};>o in L'(X, 1) has
also this regularisation effect provided its infinitesimal generator A is the clo-
sure (92Y)1ne0¢ Of (02Y¥)1ne0¢p in LY(Z, 1), where ¥ : L2(Z, 1) — RU {+o0}
is a convex, proper, lower semicontinuous functional and ¢ : R — R a strictly
increasing function such that ¢ and ¢! are locally Lipschitz continuous (see
Theorem 5.7 for the exact statement).

As mentioned in the introduction, throughout this monograph, we deal with
the following two classes of accretive operators A on M(X, i) generating non-
linear semigroups acting on all L7 spaces for 1 < g < co:

e quasi m-completely accretive operators in L1 for some 1 < gp < oo
e quasi m-T-accretive operators in L' with complete resolvent.
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Besides the already mentioned prototypes, typical examples of the first class
of operators are, for instance, quasi-linear operators of second order of p-Laplace
type (so-called Leray-Lions operators [63]), nonlocal diffusion operators of p-La-
place type (see, e.g., [7]), but also the total variational flow operator of local and
nonlocal type (cf., for instance, [6] and [56]). Typical examples of the second class
of operators are easily obtained by considering the composition operator A¢ in L}
of an m-completely accretive operator A in L' and a strictly increasing function
¢ : R — R satisfying ¢(0) = 0. Operators of both classes are equipped with
some boundary conditions when required and may be perturbed by a monotone
(multi-valued) or Lipschitz continuous lower order term.

In the following two subsections, we introduce these two classes of operators
in more details and list some of their properties relevant for this monograph.
We establish L7-L’-regularisation estimates for several examples of both classes
in Section 6.

2.2. Completely accretive operators. The class of completely accretive operators
is the nonlinear analogue of the class of linear operators generating a submarko-
vian semigroup in the sense that the semigroup they generate extrapolates to
LF,1 < p < oo (see Proposition 2.8 below) and is order preserving. This class of
nonlinear operators was introduced by Benilan and Crandall [9].

The notion of complete accretivity we use is the same as in [9] and will be
introduced now. We denote by Jy the set of all convex, lower semicontinuous
functions j : R — [0, o] satisfying j(0) = 0.

Definition 2.1. A mapping S : D(S) — M(X, u) with domain D(S) € M(X, u)
is called a complete contraction if

[itsu—stydu< [ ju—a)dn
> pa
forall j € Jy and every u, i1 € D(S).

Remark 2.2. Choosing j(-) = |[']T]7 € Jpif1 < g <ocandj(-) = [[|]T —k]T € To
for k > 0 large enough if g = oo shows that each complete contraction S is T-
contractive in L7(%, u) for every 1 < q < co.

Now, we can state the definition of completely accretive operators.

Definition 2.3. An operator A on M(X, u) is called completely accretive if for every
A > 0, the resolvent operator |, of A is a complete contraction. If X is a linear
subspace of M(X, u) and A an operator on X, then A is m-completely accretive on
X if Ais completely accretive and satisfies the range condition (2.14). Further, we
call an operator A on M(X, u) quasi completely accretive if there is an w € R such
that A + wl is completely accretive. Finally, an operator A on a linear subspace
X is called quasi m-completely accretive if A + wl is m-completely accretive on X
for some w € R.

As a matter of fact, in most applications the following characterisation is used
to verify whether a given operator A on X = L7(%, u) is completely accretive
(see also [7, Corollary A.43]). Here, we state [9, Proposition 2.2] only in a special
case since it is more convenient for us.

Proposition 2.4 ([9, Proposition 2.2]). Let Py denote the set of all functions T €
C*®(R) satisfying 0 < T" < 1, T is compactly supported, and x = 0 is not contained
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in the support supp(T) of T. Then for u, v € LY(Z, u) + L®(Z, u) with pu({|u| >
k}) < oo forall k > 0, one has

Liwdn < [[jtn+Ao)an
forevery j € Jopand A > 0 if and only if

(2.26) /Z T(u)vdy >0

for every T € Py. As a consequence, an operator A on L1(X, ) for 1 < g < oo is
completely accretive if and only if

(2.27) / T(u — ) (v — 9)dp > 0
2
for every T € Py and every (u,v), (4,0) € A.

For any given monotone graph fonRand 1 < g < oo, the associated accretive
operator 3; on L1(%, u) is, in fact, completely accretive. To see this, note first that
every T € Py is continuous and non-decreasing. Thus for all (u,v), (1,9) € B,
and every T € Py, one has

T(u—10)(v—9) >0  ae. onX.

Integrating this inequality over X yields inequality (2.27) in Proposition 2.4.

Further, the property completely accretive is preserved under perturbation of a
Lipschitz continuous mapping. This result seems to be known, but we could not
find a reference in the literature. It provides an important example of completely
accretive operators (cf. [9, Corollary 2.4]).

Proposition 2.5. Let 1 < q < oo, B be a completely accretive operator on L1(%, u)
and F : L1(X, u) — LI(X, u) the Nemytski operator of a Carathéodory function f :
Y x R — R satisfying (2.17) for some constant w > 0 and F(0) € L1(X, u). Then the
following statements hold:

(1) The operator A := B + F + wl is completely accretive.
(2) Let1 < g < oo and B be an m-accretive graph on R such that either (0,0) € 8
or (X, u) is finite. If B satisfies the range condition (2.14) in L1(X, u) with
D(B) N D(B,) # @ and if the Yosida operator B, (-) of B, satisfies
(2.28) [Ba(u),v]g >0 forall (u,v) € Aand A >0,
then A := B + B, + F is quasi m-completely accretive in L9(XZ, ).
Proof. Let T € Py and (u,v), (1,9) € A. Then, in order to apply Proposition 2.4,
we need to show that inequality (2.27) holds. By assumption, there are w € Bu
and @ € Bl such thatv = w+ f(x,u) + Luand o = @ + f(x,1). Also, T is
non-decreasing and T(0) = 0. Hence T(u — 1) > 0if u > fdland T(u — 1) < 0 if
u < 1. Using this together with inequality (2.17) and since, by assumption, B is
completely accretive, we see that

/ZT(u—ﬁ)(zH—wu— (0 + wi)) dp

:/ET(u—ﬁ) (=) du+ [ T(u—1) (f(x,u) - f(x,) dp
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> Tw—anu—mdy+L/ T(u— ) |u— | du
{u<nn}

{uza}

+LATW—ﬁMu—mdy

:—L/ZT(u—ﬁ)(u—ﬁ)d‘u—i—L/ZT(u—ﬁ)(u—ﬁ)dyzo.

Thus claim (1) holds. For any given monotone graph B on R, one sees by us-
ing (2.2) together with the fact that T € P, is monotonically increasing and by
proceeding as before that A is completely accretive. If B is m-accretive in L1(X, i)
and 1 < g < oo, then we know that B + F + wI is m-accretive in L1(X, it). Now,
under the assumptions of claim (2) and by using the definition of g-brackets
[-, -]4, it follows by [8, Proposition 3.8], B + F 4 wI + B, is m-accretive in LT(%, u).
This completes the proof. g

The last proposition of this subsection states that a semigroup {T};};>0 gen-
erated by a quasi m-completely accretive operator —A on L%(%, i) for some
1 < gp < oo has, in fact, exponential growth in all L7 spaces.

Proposition 2.6. Let 1 < go < ccand w € R such that A+ wl is completely accretive
in L(X, u). Then for every A > 0 satisfying A w < 1, the resolvent operator J) of A
satisfies

(2.29) [Jau = Tatllg < (1= Aw) ™" flu — 2l

for every u, i € Rg(I + AA) and every 1 < § < oo. If A+ wl is m-completely
accretive in L9 (X, u), then for all 1 < § < oo, the semigroup {T;}1>0 ~ —A on
D(A)™™ satisfies the "exponential growth property”

(2.30) | Tou — Tydd||5 < e“*ju — ]|

for every u, i € (A)™ NLI(Z, u) and t > 0. Moreover, if there are ug € L% N
L' (X, ) and t > 0 such that Tyug € LI(X, u) then Ty can be uniquely extended to a

Lipschitz continuous mapping on D(A)"™ N Li(, u)"" with constant e**.

Remark 2.7. Throughout this monograph, we often assume that there is
(2.31) (10,0) € A forsome ug € L N LI(Z, i)

and some 1 < gp, § < oo (see, for instance, Definition 1.1, Theorem 1.4 or Theo-
rem 1.5). Condition (2.31) is equivalent to ug € L% N L1(X, ) is a fixed point for
the resolvent ], of A, that is, Jyup = up for all A > 0. Thus and by using the
exponential formula (2.23), one sees that condition (2.31) is equivalently to the
fact that ug € L% N LI(%, u) is a fixed point for the semigroup {T;} ~ —A, thatis,
Tiug = ug for all t > 0. Moreover, it is worth noting that under condition (2.31),
the exponential growth property (2.30) of the semigroup {T;} reduces to

(2.32) | T — w5 < e“*ju — uo|5
forevery u € D(A)" NLI(Z, ) and t > 0.

Proof of Proposition 2.6. By assumption, the resolvent operator of A 4+ wl is a
complete contraction. Let1 < § < co and A > 0 such that Aw < 1. Then by
Remark 2.2,

lu—atllg < lu —a+Aw(u—a) + (v =19))llz



22 THIERRY COULHON AND DANIEL HAUER

for every (u,v), (1,9) € A. Thus,
lu— i+ A(v—20)[lg = (1 - Aw)|[u — 2+ 25 (w(u —a) + (v—0))]l;
> (1= Aw) |lu —1ll

for every (u,v), (1,0) € A and every A > 0 such that Aw < 1, proving that
the resolvent operator |, of A satisfies (2.29). In order to see that the semigroup

{Ti}t>0 ~ —A on D(A)"" satisfies (2.30), for given t > 0 and n € N large
enough, one takes A = t/n such that Lw < 1. Then, replacing u and 7 by ]f/’nlu

and J; 't in (2.29) yields

1JFy i = Jiattllg < (1 =27 e — 77 bl

tw\— ~
< (1=52) " lu —allg.
By the exponential formula (2.23), one has
lim [ u— Ji), 0 = Tiu — Tyl in LT(%, u).

n—oo

Since the L7 norm on L% (X, ) is lower semicontinuous, sending t — oo in
the previous estimates shows that inequality (2.30) holds. In order to see that
the last statement of this proposition holds, note that the existence of uy €
L% N LI(%, u) and t > 0 such that Tyug € L1(Z, u) together with (2.30) imply that
T; maps D(A)"™ N LI(Z, u) into LY N LI(Z, u). Thus (2.30) and a standard den-
sity argument yield that T; has a unique Lipschitz continuous extension from

D(A)™ NLI(Z,u)" to D(A)™ NLI(Z, u)" with constant e, This completes
the proof. U

The fundamental property of completely accretive operators A is given by the
extrapolation property stated in the next proposition, which is especially meaning-
ful when (%, i) is not a finite measure space. The first main steps towards the
statement of this proposition have been established by Bénilan and Crandall [9].
The main idea of the proof in [9] relies on the following fundamental property
of sequences of functions in L7(%, i) for 1 < g < oo:

for any sequence (u,),>1 € L1(X, ) satisfying
() /|Mn|qd}l < /|u!qdy foralln > 1,
z z

(2.33) §
(ii) lgn uy(x) =u(x) forae x€x,

one has 7}1_r>r010 U, =uin L1(X, u).

Statement (2.33) follows from Fatou’s lemma in combination with either the uni-
form convexity of L7(%, i) if ¢ > 1 or with Young’s theorem (cf., for instance,
[17, Theorem 2.8.8]) if g = 1. Furthermore (2.33) yields the statements of our
next proposition. We leave its easy proof to the interested reader as an exercise.

Proposition 2.8. Let 1 < qg < co and A be a m-completely accretive in L7 (X, u) with
dense domain and satisfying (0,0) € A. Let A1neo be the trace of A on L' N L®(Z, u)
and for 1 < g < 0o, let Ajnoo" be the closure of Aineo in L9(Z, ). Then the following
statements hold true.
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(1) Forevery1 < g < o0, Ajneo’ is m-completely accretive in L1(Z, i) with dense
domain and (0,0) € Ajpeo” -

(2) Forevery1l < q < oo and for all A > 0, the resolvent |, of A admits a unique
extension on L1(X, i) and this extension coincides with the resolvent operator
J3 of Arneo'”.

(3) For every 1 < q < oo and for every t > 0, the mapping T; of the semi-
group {Ti}i>0 ~ —A on L(X, u) admits a unique extension on LI(X, i)
and this extension coincides with the mapping T] on L1(%, u) of the semigroup
{TT}20 ~ —Aine" on LI(Z, ).

IfF : L(%, u) — L%(%, ) is a Lipschitz mapping satisfying F(0) = 0, then the same
statements hold for the quasi m-completely accretive operator A + F on LT (X, ).

2.3. T-accretive operators in L! with complete resolvent. The class of T-ac-
cretive operators in L' with complete resolvent was developed in connection with
the porous media equation by Bénilan [10]. To the best of our knowledge, the
first important result in direction to this class of operators has been the inter-
polation theorem in [26] due to Brezis and Strauss in order to treat semilinear
elliptic equations in L!. This interpolation theorem has been extended by Béni-
lan and Crandall in [9] to introduce the class of completely accretive operators
and further investigated by many others (for instance, see also [10, Partie II],
[42, 41] and [91]).

For the sake of brevity, we merely state the results in this section and refer for
their proofs to Appendix A.

We begin by introducing the notion of complete maps on M (%, i) in accordance
with [9, Definition 1.7] (see also [10, Définition 2.1]).

Definition 2.9. Let D(S) be a subset of M(%, #). Amapping S : D(S) — M(X, )
is called complete if

234 Litswan < [ ju)du

foreveryj € Jopand u € D(S). Further, let J be the set of all convex, lower semi-
continuous functions j : R — [0,00]. We call a mapping S : D(S) — M(XZ, u)
c-complete if S satisfies inequality (2.34) forallu € D(S) andj € J.

Since the set Jj is contained in J, every c-complete mapping is a complete
mapping. In particular, we have the following characterisation.

Proposition 2.10. Let P denote the set of all functions T € C*(R) satisfying 0 <
T' < 1and T is compactly supported. Suppose (¥, ) is a finite measure space. Then
foru, v € LY(Z, u), one has

(2.35) Liwan < [ ju+r0)dp
forevery j € J and A > 0 if and only if
(2.36) / T(u)vdu >0

z

for every T € P. As a consequence, an operator A on L' (X, i) has a c-complete resol-
vent if and only if inequality (2.36) holds for every (u,v) € A.

For a proof of this characterisation we refer to Appendix A.
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Remark 2.11. By taking j(-) = |-|]7 € Jpif1 < g <ocoandj(-) =[|:| —k]" € Jo
for k > 0 large enough if § = oo, we see that every complete mapping S has
non-increasing L9 norm for all 1 < g < co. More precisely,

1Sullq < [Jullg

forall u € D(S) and every 1 < g < oo. More generally, since for every constant
¢ € Rand every 1 < g < oo, the function j(-) := |- —¢|7 € J and since
j(-):==1|- —c¢c| —k]T € J for every k > 0, one has that if S is c-complete, then

[Su—cllqg < [lu—cllg
forallu € D(S),c € Rand 1 < g < co.

Now, we can define the class of accretive operators in L' with (c-)complete
resolvent.

Definition 2.12. An operator A on L!(Z, 1) is called (m-) accretive in L with com-
plete resolvent if A is (m-) accretive in L'(Z, u) and for every A > 0, the resolvent
operator J) : Rg(I+ AA) — D(A) of A is a complete mapping. Further, we call
an operator A on M(X, i) quasi (m-) accretive in L' with complete resolvent if there
exists w € R such that A + wl is (m-) accretive in L!(Z, 1) and for every A > 0,
the resolvent J, of A 4+ wl is a complete mapping. Similarly, we call an operator
Aon LY(Z, u) (m-) accretive in L' with c-complete resolvent if A is (m-) accretive in
LY(%, 1) and for every A > 0, the resolvent [, : Rg(I +AA) — D(A) of Aisa
c-complete mapping.

Remark 2.13. Note that, in contrast to completely accretive operators in L!, an
accretive operator A in L' with (c)-complete resolvent does not admit, in gen-
eral, an order-preserving resolvent J, on L. For this, one needs the additional
assumption A is T-accretive in L!.

Note that it does not make much sense to introduce the notion of quasi (m-)
accretive operators in L' with c-complete resolvent. This becomes more clear by the
following result due to Bénilan [10, Corollaire 2.3]. To be more precise, consider
the following situation. Let B = —AN be the Neumann Laplace operator on
L! on a bounded Lipschitz domain ¥ C R and f a real-valued Carathéodory
function on £ x R satisfying f(x,0) = 0 for a.e. x € X and Lipschitz condi-
tion (2.17) for some w > 0. Then B is accretive in L! has a c-complete resolvent
and satisfies (2.37). Let F denote the Nemytski operator on L! associated with f.
Then for w = L, A + wl is accretive in L! and has a complete resolvent. If one
assumes that the resolvent of A is c-complete, then our next proposition implies
that f = —wlR.

Proposition 2.14 ([10]). Suppose that (X, u) is a finite measure space and A is an
accretive operator in LY (X, u) satisfying L®(X, 1) € Rg(I + A). Then A has a c-
complete resolvent if and only if

(2.37) (c,0) € Aforallc € R.

Due to Proposition 2.14, a typical example of accretive operator in L! with c-
complete resolvent on a finite measure space (%, ) is given by any second order
(nonlinear) diffusion operator equipped with homogeneous Neumann bound-
ary conditions on a bounded Lipschitz domain.
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In the next proposition, we state some important properties of accretive oper-
ators in L! with (c-)complete resolvent for later reference.

Proposition 2.15. If A + wl is accretive in L' with complete resolvent for some w € R,
then the closure A + wl is accretive in L' with complete resolvent. Further, if (X, u)
is a finite measure space and A is accretive in L' with c-complete resolvent, then the
closure A is accretive in L' with c-complete resolvent.

Proof. The operator A + wl is accretive in L' (%, 1) by (2.18) and since A + wl =
A + wl. Now, suppose that the resolvent ], of A + wl is a complete mapping
Jr : Rg(I+A(wl+ A)) — D(A) for every A > 0. Let (1,v) € A. Then there
are sequences (uy) and (vy) such that (u,,v,) € A and u, converges to u and
v, converges to v in L}(Z, ). By assumption, for every A > 0, the resolvent
operator [, of A + wl is a complete mapping, that is, by Proposition 2.4, for
every (u,,v,) € A, one has

(2.38) /ZT(un) (wiy +v,)dp >0

for every T € Py. Since every T € P is Lipschitz continuous and bounded,
T(up) (g + Mwiy +0y)) = T(uy) (uy + Awuy, +vy))
in L}(Z, ) as n — co. Thus, sending n — oo in (2.38) yields

/ZT(u) (wu+v)du >0,

showing that the first statement of this proposition holds. In the case that the
measure space (X, ) is finite and A with c-complete resolvent, the same argu-
ments show that A has a c-complete resolvent. U

A semigroup {T;};>0 ~ —A on D(A)" of a quasi m-accretive operator in L
with complete resolvent has exponential growth in all LY-norms

(2.39) | Teullg < eflull; forallt >0,u € D(A)" NLI(Z, p),

and 1 < § < oco. Similarly, a semigroup {T;};>0 ~ —A on D(A)" of a m-

accretive operator in L! with c-complete resolvent has modulo a constant "c” non-
increasing L9-norm

(2.40) T —cllz < ||u—cll; forallt>0,uc D(A)" NLI(Z,p),

c € Rand 1 < 4§ < oo. We omit the proof of these statements since they are
shown similarly as the ones of Proposition 2.6.

Proposition 2.16. Let A + wl be an (m-) accretive operator in L' with complete resol-
vent for some w € R. Then for every A > 0 such that Aw < 1 and every1 < § < oo,
the resolvent operator |, of A satisfies

(2.41) Taullg < (1= Aw)™ull;

for every u € Rg(I+ AA) NLI(Z, 1) and the semigroup {T;};0 ~ —A on D(A)"
satisfies (2.39). If A is (m-) accretive operator in L' with c-complete resolvent, then for
every A > 0and 1 < § < oo, the resolvent operator ], of A satisfies

(242) au—cllg < llu—cllg
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for every ¢ € R, u € Rg(I + AA) NLI(Z, u) and the semigroup {T;}1>0 ~ —A on
D(A)" satisfies (2.40).

The next proposition outlines the construction of an operator of the second
class by taking the composition A¢ of an operator A of the first class and a
continuous non-decreasing function ¢ on R. In the case ¢ = 0, the statements of
this proposition are well-known (cf. [79, Proposition 11] or [10, Proposition 2.5]).

Proposition 2.17. Let A be an accretive operator in L'(Z, 1) and ¢ : R — R be a
non-decreasing function. Suppose that one of the following hypotheses hold:

(i) A is s-accretive in LY(Z, i) and single-valued.
(ii) ¢ is injective.
Then, the following statements hold.
(1) For every e > 0, the operator ey + A¢ is accretive in L*(Z, p).
(2) If, in addition, A has a complete resolvent and ¢ is continuous satisfying ¢(0) =
0 (respectively, A has a c-complete resolvent and (¥, ) is a finite measure
space), then for every ¢ > 0, e¢y + A¢ is accretive in L' with complete re-
solvent (respectively, with c-complete resolvent).
(3) If, in addition, A is T-accretive in L} (X, u) and ¢ is injective, then for every
e >0, ey + A¢ is T-accretive in L' (Z, u).

Our next result provides sufficient conditions to ensure that the composition
operator A¢ of an operator A of the first class and a non-decreasing function
¢ on R satisfies the range condition (2.14) and so, —A¢ generates a strongly
continuous semigroup on L (X, ). This result generalises [41, Proposition 2] to
operators A¢ for (possibly nonlinear) m-completely accretive operators A in L'. For
the proof of this result, we refer the interested reader to the Appendix A of this
monograph.

Proposition 2.18. Suppose A is an m-completely accretive operator in L1(%Z, u) for
some 1 < q < oo with (0,0) € A and A1neo be the trace of A on LY N L*(Z, u). Let
¢ : R — R be a continuous, non decreasing function and for every A > 0, B, be the
Yosida operator of B = ¢ 1. Suppose that

(243) ¢(0) =0, A and B, satisfy (2.15) in L, Aineo and B satisfy (2.15) in L1,

and that one of the following hypotheses holds:
(i) ¢ is injective.
(ii) A is s-accretive in L} (X, u) and single-valued, and there are ro > 0, K > 0 such
that

|p(s)| < K]s] for every |s| < ro.
(iii) A is s-accretive in LY(Z, u) and single-valued, and the measure space (X, ) is
finite.
Then, the closure Ajneo of A1neod in LY(Z, 1) is m-accretive in L' (X, u) with complete
resolvent. Moreover, under the hypotheses (ii) and (iii), one has
forevery A >0, f € L' L®(Z, u), thereis u € L' N L®(Z, )

(2.44) .
such that ¢(u) € D(Aineo) With u + AAineep(u) > f.
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The class of accretive operators in L! with complete resolvent is invariant un-
der perturbation by a Lipschitz continuous mapping. This is shown similarly as
in the proof of Proposition 2.5. Thus, we omit the proof of the first statement of
the following proposition.

Proposition 2.19. Let A be an accretive operator in L' with complete resolvent and
(0,0) € A. Further, suppose F : L'(Z,u) — LY(Z,u) is the Nemytski operator of
a Carathéodory function f : ¥ x R — R satisfying f(x,0) = 0 for a.e. x € ¥ and
Lipschitz condition (2.17) for some constant w > 0. Then, the following statements
hold:
(1) The operator A + F + wl is accretive in L' with complete resolvent.
(2) Suppose A and ¢ : R — IR satisfy the hypotheses of Proposition 2.18 and
Aineop be the closure of Aineep. Then, Aineo® + F + wl is m-accretive in
LY(X, u) and for every A > 0 satisfying Aw < 1, one has that

(2.45) LYNL®(Z, 1) € RY(I + A(A1nedp + F)).

Proof. By employing the same notation as in Proposition 2.18, A1n¢ is m-accre-
tive in L'(X, 1) with complete resolvent. Since F + wl is accretive and Lipschitz
continuous in L'(X, 1), a standard fixed point argument shows that F + w] is
m-accretive in L'(Z,u). By the continuity of F + wl and since Ajne¢ is m-
accretivein L' (%, ), [8, Theorem 3.1] implies that Ajne¢p + F + wl is m-accretive
in LY(Z, u).

Now, let A > 0 such that Aw < 1. Then, Proposition 2.16 yields that the
resolvent operator ) of Ajnw¢ + F satisfies (2.41) with respect to the L*-norm.
Thus, for every v € L' N L®(%, i), thereisa u € L*(Z, ) N D(Ajne¢) such that

U+ A(A1reop(u) + F(u)) = v and so, if ]fltp denotes the resolvent of Ajne,
]fm""q’[v — AF(u)] = u. On the other hand, since v — AF(u) € L'NL®(Z, u)
and since A1n«¢ satisfies the range condition (2.44), thereisa i € L'nre (X, 1)
such that ¢(i1) € D(Aine) and J'[v — AF(u)] = iI. Since Ajrwd C Arrwd,
the resolvents ]fm‘”q) and ]fm""(p coincide on Rg(I + AAjne¢p) and since ];?14)

is contractive on L!(Z, 1), we obtain that i = u, implying that u satisfies u +
AMAinee¢(u) + F(u)) = v. This shows that also the second statement of this
proposition holds. g

3. GAGLIARDO-NIRENBERG TYPE INEQUALITIES & L9-L"-REGULARITY

This section is concerned with establishing L9-L"-regularisation estimates for
1 < g,r < oo of semigroups {T;};>o provided their infinitesimal generator —A
satisfies a Gagliardo-Nirenberg type inequality of the form (1.11) or (1.12).

Remark 3.1. We note that for w = 0, the Gagliardo-Nirenberg type inequal-
ity (1.11) reduces to

lu — uoll7 < Clu—uo,vlg || — uoll3

for all (u,v) € A, and the Gagliardo-Nirenberg type inequality with differ-
ences (1.12) becomes

G.1) Ju—all¢ < Clu—d,0— 5], u— |

for all (u,v), (41,0) € A, which are similar to the classical one (cf. [75]).
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Further, similar to the classical case, for ¢ = 0, Gagliardo-Nirenberg type in-
equalities (1.11) and (1.12) reduce to the following so-called Sobolev type in-
equalities.

Definition 3.2. We say an operator A on L(%, u) for some 1 < g < oo satisfies a
Sobolev type inequality for some (ug,0) € A (respectively, with differences) if there
exist 1 <r < oo,0 > 0,and C > 0 such that (19,0) € A and

= uoll? < C ([ — wo, 0] + llu — uol})
for every (u,v) € A (respectively,

e —ally < € ([u— 2,0~ 0y +wlu— alf])
for every (u,v), (i1,9) € A).

Our first main theorem of this section applies to the class of operators consid-
ered in Section 2.2.

Theorem 3.3. Let A + wl be an m-accretive operator on LI(X, u) for some 1 < q < o0
and w > 0. Suppose A satisfies the Gagliardo-Nirenberg type inequality (1.12) for some
1<r<oco,0>0andc > 0,and the semigroup {T;}i>0 ~ —A on D(A)"" has
exponential growth (2.30) for § = r. Then {T} }+>o satisfies

1/0
(1.13) T — Tod|), < (g) £ e[y — q|]

for every t > 0and u, i € D(A)"" with exponentsa = 1, p =y +1and v = 12

A

gs}

Remark 3.4. If 1 < q < r < oo and if there is an element uy € (A)Lq such that
Tiug € L' (X, u) for some (all) t > 0, then inequality (1.13) implies that {T; }+>0
enjoys an L9-L"-reqularisation effect in the sense that for some (all) t > 0, T; maps
D(A)" into L"(X, ). Thus we call inequality (1.13) an LI-L’-regularisation esti-
mateifr > q. If g > r then we call (1.13) an L7-L"-regularity estimate. For example,
the semigroup {T;};>0 associated with the total variational flow (see [56]) satis-
fies inequality (1.13) for some r < g and some uy € D(A)" NL®(Z, 1) satisfying
Tiug = ug forall £ > 0.

Remark 3.5. We want to emphasise that Theorem 3.3 implies that the parameters
1 <r<o0,1<gq < coandexponentsc > 0and ¢ > 0in LI-L"-regularisation es-
timate (1.13) are stable under a monotone or Lipschitz continuous perturbation.
To be more specific, suppose B is an accretive operator on L7(%, ) satisfying
the Gagliardo-Nirenberg type inequality (3.1), F be the Nemytski operator on
L7(%, ) of a Carathéodory function f : ¥ x R — R satisfying f(x,0) = 0 for
a.e. x € X and Lipschitz condition (2.17) for some constant w > 0 and f, the ac-
cretive operator on L7(X, ) associated with a monotone graph fon R (if 4 = 1
suppose, in addition, that B + 1 is accretive). We set A := B + B, + F. Then,
by property (2.11) of the g-bracket [-, -]; and since B, and F 4 wI are accretive in
L9(%, u), we see that

[ — i, (01 402+ F(u)) — (61 + 02 + F(2))]q + wllu — 2|
= [u — 1,01 —131],1 + [M — 1,07 —?32],7
+ [u— 1, (F(u) + wu) — (F(i1) + wit)|,
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> [u— 1,01 — 014
for every u, . € D(A)ND(B,), vi € Bu, 91 € Bil, vo € By(u), 02 € By(1).

Thus, the L9-L"-regularisation effect (1.13) for 1 < g < r < co of a semigroup
{T;}+>0 ~ —A for A = B+ F is only determined by B.

Remark 3.6. The statement of Theorem 3.3 remains unchanged if one replaces
the constant e in condition (2.30) for § = s by M %! for some constant M > 0.
Then the constant C in (1.13) has to be changed accordingly.

A common situation in applications is the one where A is quasi m-completely
accretive on L2 (X, ). Also, we shall see in Section 6.1 how to derive a Gagliardo-
Nirenberg type inequality (1.12) for 4 = 2. Therefore in practice we shall often
use the following special case of Theorem 3.3.

Corollary 3.7. Let A + wl be an m-completely accretive operator on L*(Z, ) for some
w > 0. Suppose there are 1 <r < co, 0 > 0,0 > 0and C > 0 such that

(32) Ju—ally <C[fu—a,0—0h+w|u—al3] u-al
for every (u,v), (2,9) € A. Then the semigroup {T;}1>0 ~ —A on D(A)" satisfies

I Teu — Tty < (S)V7 £ <Pt |ju — |2

for every t > 0and u, i € D(A)" witha:%,[&:'y—i—land'y:zi@.

g

Now, we turn to the proof of Theorem 3.3. For this, we first consider the
case 4 > 1. Then by (2.8), the g-brackets [u —i,v — ?], can be replaced by
((u —11)4,v—0) in inequality (1.12). Moreover, the Lebesgue space L1(X, i) and
its dual space are uniformly convex Banach spaces and so for every u € D(A),
the mild solution ¢t — T;u is almost everywhere differentiable, everywhere dif-
ferentiable from the right on [0, o0) with values in L(%, i), and satisfies (2.25).
Using this leads to the following short proof of Theorem 3.3 in this situation (cf.
[36] in the case of linear semigroups for w = 0 and ¢ = 1).

First proof of Theorem 3.3 for ¢ > 1. First, letu, I € D(A). By hypothesis, one has
(3.3) | Tou — Tytt||g < 9| Tou — Tett| 5

for every t > s > 0 and for every § € {g,r}. Combining this with inequal-
ity (1.12) and the fact that %Jthu = — A Tyu for every t > 0 (cf. (2.25)), we see
that

119+
e — ][5

Y]

[l —allg — 9 Ty — Tyal)3] flu — 4§

r t
= [= [ # T — T ds] u -

-
— q/ 915 (((Tot — Tull)y, A°Tott — A°Tol)
" Jo
+ @ | Ton = Tt s | —
t
> q/ e (T — Tit)g, A°Tout — A°Ts)
0

+@ | T — Tl |1 Teu — Toa|3 ds
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1 [ pwra)s — Tsil||¢
> e HTsu Tsu”r ds
CJo
t
> 1 (/ e~ @ (@a+e)s p—w(t— S"ds) | Tru — Tii];.
C \o
9 ([ gwlaro)s g-wto — Tu||7
> e e ds HTtu Tt””r'
C \Jo
> Ll | T - Ty,

showing that inequality (1.13) holds for u, 1 € D(A).

Now, letu, i € D(A)". Then, there are sequences (u,) and (1,,) in D(A) such
that u, converges to u and 17, converges to i in L(X, it). Since the semigroup
{T;}+>0 has exponential growth (2.30) for § = g, for every t > 0, the sequence
Su(t) := Ty, — Ty, converges to S(t) := Ty — Ty in L7(X, u). Moreover, by
the first step of this proof, inequality (1.13) implies that

1/0 _ q+g+ . qt+e
ISu(®)ll < (§) 7 7 = ally”

for every n. Since the L"-norm is lower semicontinuous on L7(%, i), sending
n — oo in the previous inequality yields S(t) € L"(%, u) and

/e g+oto A 'HTQ
ISl < (§) 7 £ e E u—all,

Therefore inequality (1.13) holds for every u, i € D(A)", completing the proof
of Theorem 3.3 for g > 1. O

Our second proof of Theorem 3.3 is rather technical and uses the definition of
mild solutions (cf. [92] in the case w = ¢ = 1).

Second proof of Theorem 3.3. Let u, i € D(A)". For given t > 0, we choose N > 1
large enough such that W’t <3 Land sett, =n % foreveryn =0,...,N,up =u
and iy = 0. By hypothe81s, Rg(I+ ;A-A) = LI(Z, ) forevery 0 < A < L.
Thus, there are uj, il € D(A) solving u; + %Am S up and 47 + ﬁAm > 1.
Iteratively, for every n = 1,..., N, there are solutions u, and i1, € D(A) of

(3.4) Up + AUy S up_q and Ay + G AN, D 0y,

respectively. We set

Un(s) = uol -0y (s +Z”n (ta 1] (
and

N
Un(s) = ol 1,0y (s Z b1t (

for every s € [0, ]. Further, for v, = (u,_1 — uy) ¥ and 6, = (1,1 — 1,) Y, both
inclusions in (3.4) can be rewritten as v,, € Auy, and 0, € Ail,, or as ]t/Nun 1=
uy and Jy/nf,—1 = 1, for every n = 1,..., N. Hence by Gagliardo-Nirenberg
type inequalities (1.12), (2.11) and (2.10), we see that

[ tn — a7
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< C ([t = 00 = Bulg + llatn = all7) [t — 213

N

= C N (([ttn = i, (o = ) = (a1 = )]+ Gt = all7) [t — 21

. t . .
< C%(%H“rzfl - “nleZ - (1- %)%”“n - ”an) [[ttn — 1|

forevery n = 1,...,N. By assumption, J;,y satisfies inequality (2.29) for § = g.
Hence

lun —Anllg = 1 Te/NUn—1 — Jt/NTn-1llg

< (=5 w1 — g

< (1= 5) " lluo — 1ol
< (1= 5) "o — ol

Using this in order to estimate the term ||u, — il,||3 in the previous inequality
and multiplying the resulting inequality by 4 (1 — qut)*l yields

ty— .
& (1= 45F) 7l — a7
<C (A=) Mgy =y 1] = Hlun — )
x (1= 4)7%]luo — ol
Rearranging the last inequality gives
Yoty — ] < (1= 909 Ly = [+ by
foreveryn =1,..., N, where we set
(35)  by= = (1= ) un = a7 €T (1= 5N flug — o]l .
It is easy to see that

for sequences (A,) C [0,00) and (a,), (b,) C R satisfying
anp < Apa,_1+b,foralln =1,...,N, one has that

e ([ e £10)

=1 k=n+1

(3.6)

(cf. [15, Exercise E3.8]). Applying this to A, = (1 — qut)*l, Ay = |luy — 0y |1
and b, given by (3.5), we obtain

N
U = a1 < (1= <) N Hluo — o[ + Y (1 = )~ N0+ g,
n=1

Using that (1 — “]th)” <(1- qut)N and rearranging this inequality yields

t A
(1= SNy —
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N
_ A — t A
+CTH = 5N o — dolly * (1= 5N Y flluw — Y
n=1

so that
(1 - SENL Uy () - T ()]
t
+CTH =N Ju = (1= 5N /0 [Un(s) = Un(s)]ly ds
1 L
< Hu—a]
By the Crandall-Liggett theorem,
lim Uy =T inL7(Z,u) and lim Uy =Tt inL1(Z, u)
N—o0 N—ro00

respectively uniformly on [0, {]. Thus, sending N — oo in the previous estimate
and using the lower semicontinuity of the L"-norm on L7(%, i) yields

t
et | Ty — Tyl + C e Ju =l e 1t [T — Ty s
0

< gllu—al

1
q
and so

t
C*le*thHu—ﬁH;Qe*wqt/oHTSu—TSftH;’dSS%Hu—ﬁHZ

By assumption, {T;};>¢ satisfies (3.3) for § = r from where we can deduce that
(1.13) holds. O

Even for the class of quasi-m-accretive operators A on L9, there are situations
in which the operator A merely satisfies the Gagliardo-Nirenberg type inequal-
ity (1.11) for some (up,0) € A. In this situation, we can state the following result.

Theorem 3.8. Let A + wl be an m-accretive operator on L9(X, ) for some1 < g < o0
and w > 0. Suppose A satisfies the Gagliardo-Nirenberg type inequality (1.11) for
parameters 1 < r < oo, ¢ > 0, ¢ > 0 and some (up,0) € A satisfying ug € L1 N
L'(Z, 1), and the semigroup {T;}r>o ~ —A on D(A)" has exponential growth (2.30)
for § = r. Then the semigroup {T}}¢>o satisfies

1/c0
(1.17) 1Tl < (§) £ e flu— wolly

; _14_ _ g+
forevery t > 0, u € LY(X, u) with exponents x = 1, p =y +1and y = T2,

We omit the proof of Theorem 3.8 since it proceeds along the lines of the sec-
ond proof of Theorem 3.3.

Analogously, as above, the important case 4 = 2 and A is quasi m-completely
accretive operator on L?(%, i) follows immediately from Theorem (3.8).

Corollary 3.9. Let A + wl be m-completely accretive operator on L*(Z, u) for some
w > 0. Suppose there are (ug,0) € A,2 <r <o0,0>0,0 > 0and C > 0 such that

(3.7) = uoll¢ < € [[n— uo, o)z + wll — woll3] llu — uoll$
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for every (u,v) € A. Then the semigroup {T; }y>o ~ —A on D(A)" satisfies

1T —uolly < (§)"7 £ &P Ju — uo)]

POAVE i 1 2+
for every t > 0and u € D(A)" with exponents« = 1, =y +Land y = =2

=
Our third main theorem of this section considers the second class of operators
introduced in Section 2.3. As a matter of fact, many examples show that the
Gagliardo-Nirenberg type inequality (1.11) is not satisfied by a quasi m-accretive
operator A in L!(Z, u) with (c-)complete resolvent. But in order to obtain L7-L'-
regularisation estimates with 1 < g, r < co for the semigroup {T;};>0 ~ —A on
D(A)L1 , it turns out that it is sufficient that for some 1 < g < gg < oo, the trace

Arnge = AN (L' NLP(Z, p)) x (L' NLP(Z, )

of A on L' N L%(X, u) satisfies (1.11). Note that, for 1 < g < go < oo, L' N
L% (X, u) injects continuously into L7(X, u). Hence, then trace Ajny, is contained
in the part Ay := AN (L1 x L1(X, u)) of Ain L1(X, ).

Theorem 3.10. Let A + wl be m-accretive in L' (X, i) for some w > 0. Suppose, there
arel < q < qo < 00, (g < c0), such that the trace Aing, of A on L'N L (Z, )
satisfies the range condition

(3.8) L' LY (E, ) € Rg(I + (Arrgy + 1)),

and the Gagliardo-Nirenberg type inequality (1.11) for some1 <r < 00,0 > 0,0 > 0
and (uo,0) € Aing,, and for every A > 0 satisfying Aw < 1, the resolvent J) of A
satisfies

(3.9) 1Tau = uollg < (1= Aw) ™ [u = uo

for § = r, every u € Rg(I+ AAiny,), and for § = q provided ¢ > 0. Then the
semigroup {T;}>0 ~ —A on D(A) satisfies inequality (1.17) for every t > 0 and
u € D(A)Y N LI(Z, i) with exponents & = LBp=v+1landy= ‘7%@.

Remark 3.11. One easily verifies that a similar statement as given in Remark 3.5
holds for accretive operators in L!(X, 1). More precisely, for an m-accretive op-
erator A on L1(X, 1) satisfying the hypotheses of Theorem 3.10 with w = 0 and
a Lipschitz continuous mapping F : L'(%, u) — L'(Z, ) with F(0) = 0 and Lip-
schitz constant L > 0, if the trace Ay, of A on L' N L% (%, u) satisfies (3.8) for
w = 0 and satisfies the Gagliardo-Nirenberg type inequality (1.11) for (1,0) and
w = 0, then Ajn,, + F satisfies the Gagliardo-Nirenberg type inequality (1.11)
for (up,0) and w = L.

From Theorem 3.10, we can immediately conclude the following result con-
cerning quasi m-accretive operators in L! with complete resolvent.

Corollary 3.12. Let A + wl be m-accretive operator in L' (%, i) with complete resol-
vent for some w > 0. Suppose, thereare 1 < q < gy < oo, (g < 00), such that the trace
A1, of A in LY N L(S, i) satisfies range condition (3.8) and Gagliardo-Nirenberg
type inequality (1.11) for some 1 <r < 00,0 > 0,0 > 0and (0,0) € Ainy,. Then the
semigroup {T; }10 ~ —A on D(A)" satisfies

1/0
(3.10) ITeull, < (S) 7 O e Jufy
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for every t > 0and u € D(A)" NLY(Z, u) with exponents « = L, B = v+ 1 and
’7+Q
")/ =

Furthermore, by Theorem 3.10, we can deduce the following result concern-
ing m-accretive operators in L! with c-complete resolvent.

Corollary 3.13. Let A be an m-accretive operator in L'(X, u) with c-complete resol-
vent. Suppose, there are 1 < q < qo < oo, (g < c0), such that the trace Ay, of A

on LY N L% (%, u) satisfies the range condition (3.8) and the Gagliardo-Nirenberg type
inequality (1.11) for some 1 < r < o0, 0 > 0,0 > 0and c € R with (c,0) € Aing,.

Then the semigroup {T; };>0 ~ —A on D(A)" satisfies

1/
(T el < ()" #2llu—elly

forevery t > 0and u € D(A)* N LI(Z, u) with exponents & = Land vy = ite,

g

Proof of Theorem 3.10. Let u € D(A)* NL%(Z, u) and for given t > 0,let N > 1

be large enough such that twq < 3. Then, wesett, = n £ foreveryn =0,...,N
and iy = u. By range condltlon (3.8), foreveryn = 1,..., N, there is iteratively
afl, € D(Aqny,) satisfying

(3.11) Dy + & Airgoiln > 1.
We set
R N
Un(s) = fiol 1,0y (s Z L, yn(

for every s € [0,] and 9, = (i,_1 — ,) . Then, inclusions (3.11) can be rewrit-
ten as 9,, € Amqoﬁn or as J;/Nlly—1 = 1, for every n = 1,...,N. Hence, since
A1ny, satisfies Gagliardo-Nirenberg type inequalities (1.11) with (u9,0) € A1ng,,
we see that by using (2.11) and (2.10) that

= uoll?
< C ([ — 10, 0l + | — 17 1t — wol}
00— w0, 81 — g + S 00— woll]) 1t — ol

(it — o, (fn—y — o) — (dtn — uo)]q + K l|n — uoIIZ) 20 — o3

A t N
< CH (a1 = woll] = (1 = ) Ml — uoll?) I1tn — uoll

foreveryn =1,...,N. By assumption, the resolvent operator J;,y of A satisfies
inequality (3.9) for § = g provided ¢ > 0. Then,

|40 — MOHq = ||Ji/Ntlp—1 — UOHq

<(1- %)71 [dn—1 — “0”q

< (1—=15%) "l — uoll

< (1= 5) "N — uolly-
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Applying this to the previous inequality, in order to estimate |4, — 10§ and
multiplying the resulting inequality by £ (1 — <)~ yields
tN—1(1
(1= 5 "l — ol
FN—1 15 .
<C (1= i1 —uoll) — Hltn — uoll])
x (1= 5) 7Nl — uoll5.
Rearranging this inequality yields
A Fy—1 115
Yl — gl < (1= 4357 i — woll] + by
with
EN—1 || 5 _ . _
by 1= =% (1= ) 7 it — uoll7 €71 (1 = 5)™¢ |20 — uoll4 .
forevery n =1, ..., N. By auxiliary inequality (3.6),

N
%Hﬁn —uplld < (1- qut)fN %Hﬁo —ulld + Y_(1- “’Tﬂlt)f(Nf(nH))bn_
n=1

Rearranging this inequality and using that (1 — “25)" < (1 — 42N gives

t A
(1— IV, — u

N
_ A — t ~
+CH (1= )Nl — wolly® (1= 5N Y {illn — ol

n=1
< gl — uol[
and so,
(1= )N Un (1) - uoll]
(3.12) +CH(1 = fyNe |y — |0 (1 — GINN /OtHHN(S) — up||; ds
< gllu = uoll§.

Recall that Ajng, C A and, by assumption, A + wl is m-accretive in LYZ, ).
Thus, the Crandall-Liggett theorem yields

lim Uy = Tu in L'(Z, ) uniformly on [0, t].

N—oco

Since the L'- and L7-norm on L!(X, 1) are lower semicontinuous in L!(%, i),
sending N — oo in (3.12) and applying Fatou’s Lemma yields

t
e L Tow = ol + € e = ol e [ o = ol s

and so

t
@13) e fu—uoly et [T~ uollf ds < §ju— o]
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Now, fix ii € D(A)" NL'(X, ). Then, applying (3.9) iteratively for § = r, we
see that

17 it = wollr = 177, Jeynit) — woll

< (=) A = uolls

(3.14)

< (1=52)7"M1E — uolly

— n

for every t > 0 and integer n > 1 such that Lw < 1. By Euler’s formula (2.23)
and since 7 € D(A)",

lim J) 0 = Ty in LY(Z, 1)
for every t > 0. Since the L"-norm is lower semicontinuous on L! (X, 1), sending
n — oo in (3.14) yields
1Tyt — uoll, < e[| — uols

for every t > 0 hence, by using the semigroup property of {T;}:>, it follows
that

ITeit — uoll» < U9 Toit — uo|,

forevery t > s > 0and i € D(A)" NL'(Z, ). Applying this inequality to the
integrand in (3.13), we see that (1.17) holds. 0

4. NONLINEAR EXTRAPOLATION

The aim of this section is to provide simple and sufficient conditions such
that an L7-L"-regularisation estimate of the type (1.13) or (1.17) for some 1 < g <
r < oo satisfied by a nonlinear semigroup {T;};>¢ can be extrapolated to an L°-
L’-regularisation estimate for every 1 < s < g (this we call below extrapolation
towards L') and such that an L7-L"-regularity estimate of the type (1.13) or (1.17)
for some 1 < g,7 < oo can be extrapolated to an L7-L®-regularisation estimate
for some 1 < § < oo (extrapolation towards L*). We note that in order to extrapo-
late towards L, the relation r > g is not important, but one rather needs that the
relation yr > g holds for the exponent v > 0 in the estimates (1.13) and (1.17)
(cf. Theorems 1.2 and 1.4 or Theorems 4.10 and 4.13). Further, the iteration
method (Lemma 4.12 and Lemma 4.14) used to establish L7-L®-regularisation
works if 1 < § < oo is chosen sufficiently large. Thus, if one starts from an L7-L’-
regularity estimate for some 1 < g,r < oo then, first, one extrapolates towards
L*, and then one extrapolates towards L

The extrapolation towards L* being more involved, we shall begin in Section
4.1 by extrapolating towards L!, or, more precisely, towards L forany 1 < s < g.
Section 4.2 is concerned with a new nonlinear interpolation result which pro-
vides the fundamental auxiliary tool to establish our extrapolation result towards
L* presented in Section 4.3.
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4.1. Extrapolation towards L!. This subsection is dedicated to giving a nonlin-
ear version of [35, Lemme 1] (see also [36, Section I]). The first extrapolation
result of this subsection is adapted to semigroups generated by completely ac-
cretive operators (see Section 2.2) satisfying the L7-L"-regularising effect (1.13)
for differencesand 1 < q < r < oo.

Theorem 4.1. Let 1 < s < g < r < oo and {Ti}i>0 be a semigroup acting on
some subset D of L1(X, u) with exponential growth (2.30) for § = s and some w > 0.
Suppose there exist &« > 0, B, v > 0 and C > 0 such that

(1.13) | Tou — Tyt < C 7% &Pt |lu— ||

for every t > O and u, i € D. For 6, = 195

4 (—s) > 0ifr < coand 6; = ;ifr:oo,

assume that

(4.1) y(1-8) < 1.

Then one has

(4.2) | Tt — T, < (C2tm ) im0 oBel |y — ||
for every t > 0and u, i € D N L°(X, u) with exponents

_ o B, = (B/2) + 765 o=y 6
T—q(1—-6)" ™ 1—901-06)" " 1—9(1—6;)
Remark 4.2. The statement of Theorem 4.1 remains unchanged if one replaces

the constant e in condition (2.30) for § = s by M %! for some constant M > 0.
Then the constant C in (4.2) has to be changed accordingly.

(4.3) X

Proof of Theorem 4.1. We outline the proof only for r < co since the case r = oo
is treated similarly. Then, set 6; = ;r(;qgi and assume that (4.1) holds. For 0 :=
1—9(1—6;),u,tt € L°(X,u)NDsatisfying u # fland T > 0, set
Cuar = sup £ Towe — ]}ﬁHT.
v o] et lu—alld

By (1.13) and since 0; satisfies % = @ + 95—5, Holder’s inequality imply

| Tiu — Ted||, < Ce®Pz (&)™ | Tyjqu — Ty ||
L - ~ 1065 ~ s
< CePs (§) 7 | Tyou — Tyt |7 (| Ty jot — Ty 0|8
Since {T;}+> satisfies (2.30) for § = s and some w > 0,
| Ty — el < Ce“BH1)5 ()™ | Ty qu — Ty [0 [l — ) 2%

and so by definition of C,, 5 1,

v y(1=0s) - o
| Tyu — Tyat||, < C e (B0 +7s7(1-65)) 5 (%) a—a g CZ,(ﬁl,TGS) lu — ﬁ||'57(65+'}’0(1 6s))

for every t € [0,2T]. Since y0s + ¥sy(1 —6;) = s and 1+ w = %, the
previous estimate becomes

t

T — Tydi||, < C e B3 28 =5 Y00 13y — )| 2

u,i, T

and so

| Tou — Tyt]|, < CePz 25 CYUZ0) g0t =5 ||y — g

M,
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for every t € [0, T]. Dividing this inequality by e“7f+~4 ||u — 1||* and taking
the supremum over [0, T| on the left hand-side of the resulting inequality yields

Cuar < Ce“P% 2% Cz(l;os),

A,
Since (1 — 6;) < 1, this implies that C, 57 is uniformly bounded in u, i by
constant (C2)# €8t > Owithf =1— 7(1 — 65). In other words,

Ty — Ty, < (C28)8 ewhE et 4= ||y — ||

forevery t € [0,T| and u, 1 € DN L%(X, u), where T > 0 was arbitrary. Taking
t = T in this inequality, we can conclude that inequality (4.2) holds for every
t>0and u, 1 € DNL(E, p). O

Our second extrapolation result of this subsection is adapted to semigroups
enjoying the L7-L’-regularising effect (1.17) for 1 < g < r < co and some
up € L"NL(X, u) generated by either quasi m-completely accretive operators
on L7(X, i) (Section 2.2) or quasi m-accretive operators in L! with (c-)complete
resolvent (Section 2.3).

Theorem 4.3. Let 1 <s < q <r < ooand {T; }>0 be a semigroup acting on a subset
D of L1(%, u) and satisfies the exponential growth property (2.32) for § = s, some
w > 0and ug € L°NL" (X, u), {Ti}e>0. Suppose there exist C > 0 and exponents
a >0, B, v > 0such that

(1.17) I Tou — ugly < C % P! || — ugl|7

for every t > 0and u € D. For 65 = [Sr(;_'ﬂ; > 0ifr < coand 0s = % if r = oo, assume
that (1 — 605) < 1. Then one has

113 1 _ .
. th — r > 1=7(1=65) ) 1=7(1=5s — HUo|ls
4.4) | T — uo||, < (C21=901=8) ) T=9(1=0) % eWhst | — u H%
orevery t > 0and u € D N L1 (X, u) with exponents (4.3).
Y I3 p

Proof of Theorem 4.3. By using the same arguments as outlined in the proof of
Theorem 4.1, where one replaces # and T;7 by 1y and condition (2.30) by (2.32),
one sees that the statement of Theorem 4.3 holds. O

We continue this section by establishing a new nonlinear interpolation theo-
rem of independent interest.

4.2. A nonlinear interpolation theorem. In this subsection, we state our non-
linear interpolation theorem, which generalises both Peetre’s ([77, Theorem 3.1])
and Tartar’s (cf. [85, Théoréme 4]) nonlinear interpolation results. Our non-
linear interpolation theorem complements the existing literature in three ways,
namely, by introducing additional parameters py, ro, 1, by treating the border-
line cases pp = o0, p1 < c0 and py < o0, p; = o0, and by giving exact constants.

We begin by recalling some basic definitions, notations and results from the
classical interpolation theory (cf., for instance, [78] or [27, Chapter 3]). Let Xy
and X; be two real or complex Banach spaces such that both are continuously
embedded into a Hausdorff topological vector space X'. A pair { Xy, X1} of Ba-
nach spaces Xy and X; satisfying these conditions is called an interpolation couple.
We equip the intersection space Xo N Xy and the sum space

Xo+ X7 := {x‘ there are xg € Xy, x1 € Xy s.t. x = x0+x1}
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respectively with the norm ||x||x,nx, := max{||x| x,, || *||x, } and
I/l = inf { [xollx, + 31|, | x = %0 +x1, %0 € Xo, 31 € X |-
Then Xy N X; and Xy + X; are Banach spaces and
(4.5) XoN Xy = Z < Xo+ X,

for Z = Xy and Z = X; each with linear continuous embeddings (cf. [27, Propo-
sition 3.2.1]). A Banach space Z satisfying (4.5) is called an intermediate space (of
X() and Xl).

For any Banach space X equipped with norm ||-||x and for every 1 < g < oo,
we denote by L (X) the Banach space of all (classes of) strongly dt/t-measurable
functions f : (0,00) — X having finite norm

(o) 1/q
{/0 ||f(t)|?<df} if1<q<e

ess sup||f(#)]|x if g = oo.
t€(0,00)

£l x) =

We shall make use of the so-called mean-method, which was introduced by J.-L.
Lions and Peetre ([65, 66]) and further elaborated, for instance, in [76, 61].

We begin by introducing the mean spaces (espaces de moyennes). Let (Xo, X;) be
an interpolation couple. Then for every 0 < 6 < 1and 1 < pg, p1 < oo, the mean
space (Xo, X1)6,p,,p, is defined by the space of all elements u € Xy + X; with the

property

fori = 0, 1, there is a measurable function v; : (0,00) — X;
(4.6) satisfying u = vg(t) + v1(t) in Xo + X; for a.e. t € (0, 00),
t=990 € LI (Xo) and t'7%; € L' (Xy).

We equip the mean space (Xo, X1)g,p,,p, With the norm

lllopup = it max {1000l o 0 18 01l ) |

a=vy(t)+01(t)
where the infimum is taken of all representation pairs (vo,v;) satisfying (4.6).
Then, it is not difficult to see that each mean space (Xj, Xl)g,pw1 is an inter-
mediate space (cf. [65, p. 9]). Moreover, the spaces (Xo, X1)9/p0/p1 admits the
so-called interpolation property (cf. [88, p. 63]), that is, for every linear mapping
T : Xo+ X1 — Xo + Xj such that its restriction to X; yields a linear and bounded
operator from X; into itself, where i = 0,1, one has that the restriction of T to
(X0, X1)6,py,p, Xi yields a linear and bounded operator from (Xo, X1)g,p,,p, into
itself ([65, Théoreme (3.1)]). In particular, one has

_ : -0, (1-6 1-6.. (16
(4'7) ||u||9,f70,}71 - u:vo(ltr)lJfrvl(t)Ht UO| LEO(XO) ||t UlHLfl(Xl)’
for every u € (Xo, Xl)e,po,plf where the infimum is taken of all representation
pairs (vg, v1) satisfying (4.6) (cf. [65, Lemme (3.1)]). In addition, the following
continuous embedding is valid.
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Lemma 4.4 ([65, Théoreme (5.3)]). Let0 < 6 < 1and1 < po, p1, S0, 51 < 0. Then
for sy < poand sy < py, one has

||u||9,p0,p1 < CG,ro,r1 HuHG,so,sl
for all u € (Xo, X1)e,s,,5,, Where the constant

1 if so = poand s; = py,
inf ||t %ol/*? ifs) =
C9 . GOIEHD+H . Z)‘ Lgo(]R) lJISl b1
ror =4 _ v
(4.8) o (ngJ“ QDHLZJ (R) if so = po
. -6 11— 1-0 116 . .
nf 70l 170l - Fotheraise

s Po st p1
and D denotes the set of all test functions ¢ € C*((0,00)) satisfying ¢ > 0 and
o o) =1.
Due to the result [76, Théoreme 3.1] by Peetre, for every 0 < 6§ < 1and 1 <
po, p1,p < co satisfying % = 117;09 + %, the mean space (Xo, X1)g,p,,p, coincides

w1th%:1—|:l—ii| and %:1_[1 1]/

with the (classical) real interpolation space (Xo, X1)s,, with equivalent norms. For
the definition of the interpolation space (Xp, X1 )94, we refer, for instance, to [27,
Definition 3.2.4]. Combining this together with the density result [87, Theo-
rem 1.6.2], we can state the following extended version of the density result [65,
Théoreme 2.1].

Lemma 4.5. Let (X, X1) be an interpolation couple and suppose that one of the follow-
ing cases holds:
(i) 1< po,p1 < o0
(ZZ) 1 S Po <ooandp1 = 0
(iii) 1 < p1 < coand py = 0.
Then, for every 0 < 6 < 1, the intersection space X1 N X is dense in (Xo, X1)g,py,p,-

Now, we are in a position to state our first nonlinear interpolation theorem.

Theorem 4.6. Let (Xo, X1) and (Yo, Y1) be two interpolation couples and T be a map-
ping from Xo + Xi into Yo + Yi with domain containing Xo N Xy. Suppose there are
exponents 0 < g, a1 < oo and constants My, M; > 0 such that

(4.9) ITu = Ti|ly, < Mo [Ju—a|¥)
forallu, i € Xo N Xq and
(4.10) | Tu — Ty, < My [Ju—al|y,

forall u, i € XoN Xy. Forevery0 < 6 < land 1 < qo, g1 < oo (excluding
qo = q1 = o) satisfying qo > ;—Oand q1 > alT let 1 < q,po,p1 <o0,0< <1,
0 < & < oo be given by
=181 8 py=aoqo, p1=mqs,
(4.11) b,
1= Tneron %= (1—0)ap+ Oy

andlet1 < sy < poand 1 < sy < py. Then the following statements hold.
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(1) One has

170,11

@12)  [[Tu— T, < (’7"‘0) My M CL =2l v

11:50-51

for every u, i € Xo N Xy, where the constant Cy ;, », is given by (4.8).

(2) Ifthereisaug € Xo N Xy such that Tug € (Yo, Y1)6,4,q,, then T can be uniquely
extended to a mapping T : (Xo, X1)ys0s1 — (Y0, Y1)6,90,q: Satisfying inequal-
ity (4.12) for all u, 1 € (Xo, X1)y,s0,51-

By using the preliminaries of this subsection, we can now outline the proof of
this nonlinear interpolation theorem.

Proof of Theorem 4.6. First, we fix i1 € Xo N X; and show that

@413)  ||T(u+a) —Taly, < (’7) M0 MY lullty, )

Xq) 1:P0-P1

forall u € XoN Xj;. To do so, let u € XpN X;. Since Xp N X; is continuously
injected into (Xo, X1)y,py,p,, there is a pair (vg, v1) of measurable functions satis-
fying (4.6). Since u € Xp N X; and u = vy + vy, it follows that v;(t) € Xy N X for
a.e. t € (0,00) and every i =0, 1. For A := > 0, we set

0
174
wo(t) = T(vo(t*) + ) =Tt and  wy(t) = T(u+ ) — Tl — wo(t)

for a.e. + € (0,00). Then, T(u+ 1) — T = wo(t) + wy(t) for a.e. t € (0,00),
and by using (4.9) and (4.10), one sees that the functions w; : (0,c0) — Y; are
measurable and satisfy

(4.14) i (8)lly, < M o ()11,

for a.e. t € (0,00) and each i = 0,1. Since we have chosen A = 177 and py =

qoxo, we obtain by applying inequality (4.14) and substituting s = +* that

1
[ woll 0y < Mo (WO)% I~ o0llZ0 (x,)

On the other hand, 7 = (1_96;06%
ﬁ, Using this together with inequality (4.14), the fact that p; = 141, and

. . 1-y _ (1-0)ag _
is equivalent to == = == hence A =
applying the substitution s = t*, we see that

X1)’

Thus T(u + @) — Tt € (Y1,Y2)g,40,4,- Combining the last two estimates together
with (4.7) yields

IT(u+2) = Ta|(x,,

[|£1~ w1||m1 vy <M (WO)M Is' '701||Lp1

1
_ q (1-0) 6
< MO MY (250" s Tooll s s o5

JET

1-0 As0 (1% -7 1y ®
< M, M (T> maX{HS 0ol[Lro(xy)/ I leU’l(Xl)}-
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Taking the infimum over all representation pairs (vo, v1) satisfying (4.6) shows
that inequality (4.13) holds. Now, for every u, 1 € Xy N Xy, replacing u by u —
i1 € XoN Xjin (4.13) gives

1
= (”T?‘O) q Mé*f’ M§ o — ﬁH?Xofxl)

6.49001 —

(4.15) | Tu — Tl (v, v,

.Po-P1

forall u, 1 € XpN X;. Applying Lemma 4.4 yields inequality (4.12) for every u,
i1 € Xo N Xy, proving that the first statement of this theorem holds.

Under the assumption, there is a ug € Xo N X such that Tug € (Yo, Y1)6,90,4:/
inequality (4.12) implies that the mapping T maps Xy N X; equipped with the
(X0, X1)1,po,p;-norm into (Yo, Y1)g,g,,q,- Thus by Lemma (4.5) and since the spaces
(X0, X1)y,po,pr and (Yo, Y1)g,q0,4, are complete, we can conclude that T admits a
unique Holder-continuous extension from (Xo, X1)y,po,p1 to (Yo, Y1)6,90,q, Satisfy-
ing (4.15) for all u, @ € (Xo, X1)y,pyp,- This completes the proof of this theo-
rem. U

In our second nonlinear interpolation theorem, we consider the situation when
the mapping T admits an element 1y € X N Xj such that Tug € Yo N Y;.

Theorem 4.7. Let (Xo, X1) and (Yo, Y1) be two interpolation couples and T a mapping
from Xo + Xy into Yo + Y1 with domain containing Xo N Xi. Suppose T is continuous
from Xo N X; equipped with the Xo-norm to Yy and there are uy € Xo N Xy satisfying
Tug € Yo N Y3, exponents 0 < wg, o < 0o, and constants My, My > 0 such that

(4.16) I Tu — Tuollv, < Mo [|lu — uo|l¥, forallu € XoNX;
and
(4.17) | Tu—Tally, < My |lu—ally,  forallu, 4 € XoN Xi.

Forevery0 < 0 < land1 < qo, q1 < oo (excluding qo = g1 = o) satisfying qo > aio
and q; > zx%’ let1 <g,po,p1 <00,0<1n<10<a < oo given by (4.11), and let
1 <so<poand1 < sy < py. Then one has

1
(18) [T — Tuollvy vy < (%°)" MY0 MY Ch Nl = o, )

,Y0,11 15051

for every u € Xo N Xy, where the constant Cy , r, is given by (4.8).

Proof of Theorem 4.7. Let u € Xp N Xj. Since Xp N Xj is continuously injected
into (Xo, X1)y,po,p1, there are measurable functions v; : (0,00) — X; fori = 0,1
satisfying u — ug = vo(t) + v1(t) in Xo + X; fora.e. t € (0, 0),

(4.19) t7%v9 € LI°(Xy) and  t'17%y € LI(Xy).
0
For A := e > 0, we set

wo(t) = T(vg(t*) + ug) — Tug and  wy(t) = Tu — Tug — wy(t)

for a.e. t € (0,00). By construction, Tu — Tug = wy(t) + w1 () for a.e. t € (0,00).
Since by assumption, T is continuous from Xy N X; equipped with the Xy-norm
to Yy, the function wy : (0,00) — Y is strongly measurable. By (4.10), T is
Holder-continuous from Xp N X; equipped with the X;-norm to Y;. Thus, the
function wy : (0,00) — Y7 is strongly measurable. Moreover, by (4.16) and (4.17),
we have that the inequalities (4.14) hold for i = 0,1. Now, we can proceed
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as in the proof of Theorem 4.6 to conclude that inequality (4.18) holds for all
u e XoNXj. O

In some applications, the assumption that the mapping T is continuous from
Xo N Xy equipped with the Xo-norm topology to Yy in Theorem 4.7 is too strong.
This can be circumvented, for instance, by the following result.

Theorem 4.8. Let (Xo, X1) and (Yo, Y1) be two interpolation couples, Yy being a sep-
arable Banach space. Let T be a mapping from Xo + Xj into Yo + Y1 with domain
containing Xo N Xi. Suppose there is some uy € Xo N Xy such that Tug € Yo N Y7 and
T satisfies the following three conditions.
o T is continuous from Xo N Xy equipped with the Xo-norm to Yy equipped with
the weak topology,
e there are exponents 0 < wp, &y < oo and constants My, My > 0 such that T
satisfies (4.16) and (4.17).
For every 0 < 0 < land 1 < qo, g1 < oo (excluding qo = q1 = o0) satisfying
g0 > landql > o let1 <g,po,p1 <00,0<n<1,0<a < oogiven by (4.11),
and let 1 <59 < po and 1 < s; < py1. Then T satisfies inequality (4.18) for every
u € Xo N Xy, where the constant Cy, ,, ;, is given by (4.8).

Remark 4.9. Consider the following situation: For 1 < g, r < oo, let Xp =
L1(Z,u), X3 = L®(X, 1), Yo = L' (X, 1) and Y7 = L®(%, u), where one assumes
that (X, u) is a separable measure space (cf, [25, Definition on p.98]). Suppose T
satisfy the assumptions of Theorem 4.8 and we choose

go=r, g1 = o, po=PBgo=pr>qg2=>1,
p1=¢g1 =0, sog=4g<pPr=py, S = 0.

Then, by Corollary B.2,

(X0, X)gsos = LTV () and (%0, ¥)ygoq = LU ()
with equal norms for every 0 < 6,17 < 1 and so Theorem 4.8 yields

ITu — uol| =,
(4.20) =8 126 1 40 ~(1-0)B+0 (1-0)B+0
= {%} My " My Cypi e = w0 I =0
forevery u € L1(X, u) N L®(X, u) and every 0 < 6 < 1, where ryp = m. In

addition, to the above assumptions, we suppose
T is continuous from L1-71® G (Z ) to L1-1@ 0 1 (Z, ).

Since L1(X, u) N L®(X, u) is dense in L1-7® g (X, ), for every u € LT1® o (X, u),
there is a sequence (uy) in LI(X, u) N L®(%, ) such that u, converges to u in
L@ (1) and so Tu, converges to Tu in L1-10) i (X, ). By (4.20), (Tuy) is
bounded in LT (Z, 1) and hence, after eventually passing to a subsequence of
(uy), we may assume that Tu, converges weakly to v in LT (%, ) for some

v € LT3 (Z, u). Since LT1@ i 1(Z, 1) and LT7(Z, u) are both contmuously embed-

ded into L}" (X, u), with m := mm{lfﬂ( 7 -5}, we obtain v = Tu a.e. on X

and so, sending n — oo in (4. 20) for u = u, and using Fatou’s lemma shows
that (4.20) holds for all u € LT-1® I (X, ).



44 THIERRY COULHON AND DANIEL HAUER

Proof of Theorem 4.8. Let u € XoN X; and fori = 0, 1, let v; : (0,00) — X;
be measurable such that u — 1y = vy(t) + v1(t) in Xo + X for a.e. t € (0,00)
and (4.19) holds. For A := % > 0, we set

wo(t) = T(vo(t*) + ug) — Tug and  wy(t) = Tu — Tug — wy(t)

fora.e. t € (0,00). By construction, Tu — Tug = wo(t) + w1 (t) for a.e. t € (0,00).
By assumption, T is continuous from Xy N X; equipped with the Xy-norm topol-
ogy to Yy equipped with the weak-topology. Hence wy is weakly measurable.
But since by assumption, Y| is separable, the function wy : (0,00) — Y is
strongly measurable due to Pettis’s theorem ([58, Theorem 3.5.3]). By (4.10), T
is Holder-continuous from Xy N X; equipped with the X;-norm to Y;. Thus, the
function wy : (0,00) — Y7 is strongly measurable. Moreover, by (4.16) and (4.17),
we have that the inequalities (4.14) hold for i = 0,1. Now, we can proceed as in
the proof of Theorem 4.6 and see that the statement of this theorem holds. [

4.3. Extrapolation towards L®. To the best of our knowledge, first extrapola-
tion results towards L* in the context of linear semigroups and employing Riesz-
Thorin’s or Stein’s linear interpolation theorems go back to the pioneering work
[83] by Simon and Heegh-Krohn (see also [44, Theorem 3.3]). An alternative
approach using a duality argument has been given in [35, Lemme 1]. However,
in this article, we are confronted with a much more difficult situation, since the
family of operators {T};};>¢ are (in general) nonlinear. Hence neither a duality
argument or a linear Riesz-Thorin interpolation theorem can be used.

Our extrapolation result towards L* is a nonlinear generalisation of the tech-
niques developed in [83, 44, 35]. Our proof relies essentially on the nonlinear
interpolation results Theorem 4.6 and Theorem 4.8, as well as the fact that the
mean spaces involving LP0(X, i) and LP1 (X, u) spaces are isometrically isomor-
phic to an appropriate LP (X, j1) space (cf. Corollary B.2).

Here, we shall use the notation u < v to say that there exists a constant C
(independent of the important parameters) such that u < Co.

Our first extrapolation result towards L® is adapted to semigroups gener-
ated by completely accretive operators (Section 2.2) satisfying the L7-L"-regulari-
sation effect (1.13) for differences and 1 < g, r < oo.

Theorem 4.10. Let 1 < g, < oo and {T; } >0 be a semigroup acting on L1 N L (X, ).
Suppose {T; }+>o satisfies exponential growth (2.30) for § = oo and some w > 0, and
there exist C > 0 and exponents «, B, v > 0 such that the estimate

1/0
(1.13) | T —Toall, < (S) 7 47 P u—al]

holds for every t > 0 and u, 1 € LI(X, u) N L®(X, p). If

(4.21) yr>q
then
(4.22) | Tit — Titt]|oo S £ 9Pt |Ju— a7

yrq-tmg
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for every t > 0and u, &t € L9 ™0 (X, i), with exponents

ot = gy oy = (%—1)7’10
(4.23) W‘”’““M-?' T w1
5*:(5— )Y q Sl Y

(Z—1ymy+9(2 - 1)

and mg > q ! such that
(4.24) (L =1)mo+q(5 —1) > 0.

Remark 4.11. The two conditions (4.21) and (4.24) are heavily involved in the
recursive construction

(4.25) Myy1 = myk —rk " (y—1), (n>1),

of a strictly increasing sequence (m,),>0 C (1,+00) satisfying lim,_, e m, =
~+o0. If one chooses « by

4.26 k=1

(4.26) p

then condition (4.21) yields « > 1. If, in addition, m satisfies (4.24) then (1, ),>0
is strictly increasing and lim,_, yo m, = +o0. Inserting the sequence (11,),>0
into inequality (4.28) and using the semigroup property of {T;};>0, one obtains
an LI1-L* regularisation effect of the {T;};>o for some § = yrq 1 mg € [1,0).

Proof of Theorem 4.10. We intend to apply Theorem 4.6 to the following situation:
let Xo = L1(E,pn), X1 = L®(Z,u), Yo = L"(E, 1), Y1 = L®(X, ), and for any
fixedt > 0, let T = T;. By assumption, T; satisfies (1.13) and has exponen-
tial growth (2.30) for § = oo and some w > 0. Hence the mapping T satisfies
inequality (4.9) with ag = ¢ > 0, My = Ce“P'+~% and inequality (4.10) with
ap =1, M; = e“!. Further, we choose

qo=r, q1 = 0o, p():’)/QQ:’)/T’>£]21,
P1 =41 =0, S0=4g <7yr=pgy 8 = X.
Then, by Corollary B.2,

a4 r
(Xo, X1)ys05 = LU (X, 1) and (Yo, Y1)o,40,00 = LTI (2, 1)
with equal norms for every 0 < 6,1 < 1. Thus, Theorem 4.6 yields

1-0

~ T —x11-0
||Ttu — Ttuuﬁ S [OTM} [Cewﬁtt ‘X:| ewetx

. -0 _j1-6 7(1-0)7+0 ~11(1=0)y+6
x [ inf 159l =],

u—1
1-1(0)
foreveryt > 0,u, i € L1(X, u) N L® (X, u) and every 0 < 6 < 1, where
qyr
yr(g—1r+q
Next, we choose a test function p € C*((0,00)) with p > 0 and support
supp(¢) in the closed interval [1, 3] satisfying

e 3 logg < /0 p(%) % <et log 3.

ro =
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Then ¢* (fo (1) %) p € D4 and there are Cy+ 1, Cyp2 > 0 such that

Cpi1 < Hf_eq’*HL’o < Cy

hence
1-6

} . [C ewﬁt t*lk] 1-60 ew()tx

s~ 0 o

4 v
I Tou — Tya]| =, < [m

H (1-60)y+06

17'7(9)

[ —

foreveryt > 0,u, i € L1(X, u) NL®(X, u) and every 0 < 6 < 1.
Next, we choose x by (4.26) and set

1
O —1-— = foreverym > rx ' = 1,
m K

Then by hypothesis (4.21), « > 1 and for all m > rx !, one has

rx Ly v ym
1—-7n(8,) =
1(0n) mArc (Y —1) (1—0m)y+6n mtrci(y—1)
1

Further, we set forall m > rx™*,

> 0.

1r
Cq)*,m = ”SE¥_1(P* HLZO(IR)
With this setting in mind, the previous inequality reduces to inequality (4.28)
below for every t > 0, u, i € L1(X, 4) N L*(Z, 1) and for all m > rx~1.

Finally, we choose my > rx~! such that (4.24) holds (where one notes that
with the setting of this proof, condition (4.24) coincides with (4.27) below) and
let m > mg. The condition on my is sufficient to run an iteration in the time-
variable. This is the contents of the next iteration lemma and from there we can

conclude that the statement of this theorem holds. O
Lemma 4.12. Suppose there arex > 1, B, v > 0,1 < r < oo and my > r K= such
that

(4.27) (k —1)mo+rx (1 —7) > 0.

Let {T;}+>0 be a semigroup acting on L™ (X, ) N L (X, u) such that

1 . ,
| Tru — Tyt ||y < [L} " [C ewht t—t’é] i pw(1= 5 E)t 5

(4.28) m+rk—1(y—1)
cxGk(r=D+1) Bl e (=)
X Q*,m Hu o Hm-i—r;c*(’y—l)
for every u, it € L0 (X, u) N L® (X, u), t > 0 and m > mo, where Cy+ , satisfies
(4.29) C(p*,l S C(p*,m S Cq)*/z

for some constants Cy+ 1, Cyp+» > 0 independent of m > mq . Then

(B=Dx+r—p _ arx”t

I Tou — Tyl o < ew((K—1)mO+m71(1—~,) H) F e Dmotre T(1-7)

(4.30) —
K— mo

> HM M||K1;101 my+rKk= T(1—y)

for every u, i € L™ (%, u) and every t > 0.
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For the proof of this lemma, we simplify some techniques from [92] and ex-
tend them to semigroups satisfying exponential growth condition (2.30) (see
also [38] in the linear case).

Proof. For my > r«x~! such that (4.27) holds, we construct a sequence (11,),>0
recursively by (4.25). Then

(4.31) Mypq =Ky, +rx H(1—7)

for every integer n > 0 and so, an induction over n € INg yields

n

(4.32) my = «"[mo+rx " (y—=1)]+rx 1 (1—7) ¥ «,
v=0
that is
-1 11— 11—
(433) my, :Kn (K )m0+rK ( r)/) . rK ( r)/)
xk—1 x—1
Using (4.32), we see that

Myy1 — My = K" {(K —1)mo + 7’7(1(1 - ')’)}

hence the sequence (1m,),>¢ is strictly increasing if and only if m satisfies con-
dition (4.27). Moreover, by (4.33), since x > 1, and by (4.27), we see that

(4.34) lim m, = oo
n—oo
and
_ =11 _
(4.35) fim M = e Dmotri (1=7)
n—oo K" x—1
Since
1 1 KMy_q Y my Y My
— —1)+1= d = )
man (r=1+ My an my +rx~Hy—=1)  my_qx

inserting the sequence (m,),>¢ into (4.28) yields

(436) | Tott = Tollm, < CIv* e (B! oot CHE i ||y _ g,
: tu tuHKmn — My nke n e @* My ||u uHmnflK

forevery t >0, u, 1 € L (X, u) NL®(X, u), and n > 1, where

L ymn r
Co, 1= 2L T,

Now, let (t,)y>0 be a sequence in [0, 1] such that ;2 ;t, = 1 which we will
specify below. By assumption, {T; } ;>0 is a semigroup and Tyu, Tyt € L*™0(%, u) N
L*®(%, u) for every t > 0. Thus, we can iterate (4.36) and obtain

| T Yi ot ¥ T Y, t, 0 | KMy g1

Vv 1%

n+1 KM=V n oy kY

<l P ¥ o,
> my v
(4-37) v=1 v=0

n+l—v n+1

1 n n—v n+1 o K My ar n v mo £

W Z _otvK my 1t m m — oK 0m
m v=0"v v+l v n+1 Km v=0 N0 n+1

X e Ml [] Cor m, t |t — ||y

v=1
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Since by assumption, x > 1, by (4.33), and by (4.27), we see that

1 & 1
4.38 lim xV =
Thus
_ar 1 ymn n—v _er 1
(4.39) lim £ % "t 220" — ¢ ¥ Dm0 for every t > 0.

n—oo

If we choose, for instance, t, = 27V~1, then

_ar KV

n _
| | t L N Di(: mZJrl Z;:5:(](1/4"1)7( v

Using
[ KZ
(v+1)
L G
and (4.35), one obtains
Ki’l n K 1
4.40 li Nx~V = ,
(4.40) PR My i1 UZO(V+ ) k—1 (xk—1)mo+re=1(1—7)
therefore
_ar K17V ar K 1
S R K K1 (x—D)mg+re—1(1—7)
(4.41) nlgrolo Ht 2 0 7,

Using again that t, = 27"~! together with (4.33) and (4.35), gives
! Kk (x—1)2k—1)71

llm t KVl—V =
=00 KMy 11 Vga ! (k —1)mo+re=1(1 — )
and so
n n—v %
(442) llm eLU(ﬁ 1) xm n+1 217 b t (’B 1) (k=1)mg+rx— 1(1 y)t‘
n—oo

Similarly, we obtain that

1— r(1—y)x 12k —1)71

lim tk" m =
=0 My iy A Z Y vl (k — Dymo +re—1(1 — 1)
and so
=kt
(4.43) lim ¢“ Ty Dm0 ok vt ¢’ (1 (K-l)rnow*](l—v))t.
n—oo
Next, by (4.29), one has
i+l ZVH—% my—1 ntl o K Vmy g n+l  mttl Zn+11 my
myq ~v=1 Vmy m, +] m +] v KVmL
(4.44) Coli < H Colp ™ < H Cy
Since by (4.33), one has that av = Z” L satisfies hmlHooluv+ L = the ratio test

implies that the series Y5> ;

e converges. Furthermore, (4.35) ylelds

n+1 _
(4.45) lim ~— — (x 1)71 .
n—eo My (K —1)mp+rx=1(1— 1)
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Thus
im rKn+1 n+1 My_1 _ r(K o 1)1 i My_1
n—eo My =xvmy (k= 1)mo +rx1(1—7) = «'m,

so that sending n — oo in (4.44) yields

htl-v
C(K )m;(j:rxl)l( -7) Lt KV’;‘} < hmmfﬁ Cmv T
¢*1 n—voo
n+l1 _r wiHl— Vm,_q
(4-46) my m +1
< n
timsup [ [ Gt
r(k— 1)1 20071 "’111//71
< C(K*l)mOJrVK* (1—y) =v=1 «Ymy
= S 2
Using again (4.45), we see that
" 1+l (k—1) mg
. TRLU™ Dmg+rx=1(1—7)
(1.47) Tim [l — g™ = [l = 1] Gy
It remains to control the product
n+l "7V n+1 8 K"V r)::}l%x"fv
e - Mu_ | Mnt1 T
(448) T =TT [i] ™ < e
v=1
asn — oo. Since k > 1 and by (4.35),
1 n+1 K*l
(4.49) lim K"V =
n—e0 My 41 V; (k —D)ymo+rx=1(1—7)
and so
Zn+1 n—v i1
(450) lim C T C(K—l)mOJrr;c*l(l—y) .
n—oo
i Y Y
For every n > 1, the quotient ;-= = —- 17Ty Can be controlled by

v my Y
Y < My_1K 1 + mLOKfl(,), _ 1)

ifo<y<1

and by
Y

1+ mioK*1 (y—1)
Thus for general ¢ > 0, there are constants C;, C; > 0 such that

< g <y ify>1

)11/

n+1 Zn+1 " ax YMu | Matl mn+1
(4.51) C <JI <G,
. 1 2

Zn+1 n—v

my_1K

for every n > 0 and so by (4.49), sending n — oo in (4.51) yields

-1 n+1 K=V n+1 K=V -1
CfK 1)m0+r1< (1—-7) < ]_Im]_an |: ¥ my :| my 1 q < hmsup HCanA < C K— lmo+r;c 11— 7)'

n—oo
n—oo  y—1

Thus sending n — coin mequahty (4.37) and using (4.39), (4.41), (4.42), (4.43),
(4.47), (4.50), (4.46) together with the fact that m, " co as n — oo yields

L]l w (B—D)x+7—p +1)t — arx”l
||Ttu _ TtﬁHOO < |:C2 Ci‘i| (k=1)mg+rx=1(1-7) e (K—l)rn0+rx_1(1—7) t (K*l)mOJrrK*l(l—'y) %
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)y My _ (e=Umg
(Kfl)mOJrrK_l(l—'y) v=1 xVmy K—l)m0+r;<_1(1—'y)
X Cyn I

u-— ﬁmmo
showing that inequality (4.30) holds for u, # € L*"0 N L®(%, u). By hypothe-
sis, the semigroup {T;} acts on L0 N L®(X, i), that is, every T; maps L™ N
L®(%, u) to L0 N L®(%, u). Since L0 N L (X, i) is dense in L (%, u), a stan-
dard approximation argument shows that the first claim of this iteration lemma
holds. This completes the proof. 0

Our second extrapolation result towards L is adapted to semigroups enjoy-
ing the L9-L"-regularising effect (1.17) for 1 < g, r < oo and some ug € L' N
L% (%, u) generated by quasi m-completely accretive operators A on L7(%, u)
(Section 2.2).

Theorem 4.13. Let (X, ) be a separable measure space, 1 < g, v < oo, and {T; }+>0 be
a semigroup acting on L1 N L® (X, u) with exponential growth (2.30) for some w > 0
and every q < § < oo. Further, suppose there exists g € L1 N L® (X, u) satisfying
Tiug = ug for all t > 0, and there exist C > 0 and exponents a, B, v > 0 such that

1/0
(1.17) 1Tt — ol < () #7% P [lu—wo |

holds for every t > 0 and u € LU, u) N L®(X, u). If the parameter vy, r, q sat-
isfy (4.21), then

T ol S 0040 — w7,
for every t > 0 and u € L9 ™0(, 1), where 5,  and B* are given by (4.23) and
mo > q -y~ such that (4.24) holds.

The proof of this theorem proceeds analogously as the one for Theorem 4.10,
where one replaces the application of interpolation Theorem 4.6 by Theorem 4.7
or Theorem 4.8. Furthermore, one applies the extrapolation argument from Re-
mark 4.9 and replaces Lemma 4.12 by the following one. We leave the details of
the proof to the interested reader.

Lemma 4.14. Suppose there exist xk > 1, B, v > 0,1 < r < oo and my > r K1
such that (4.27) holds. Let {T;}>o be a semigroup acting on L0 (X, u) N L®(%, u)
satisfying

1

nx it _1r
1 Tott = wollonr < [ty | ™ [CeP 7o) e =5t

Lr(lr(y-1)+1)

1, .—1
4 Ly (y—1)+1
>< ( nl* m
o*,m

Hu - uOHm-ﬁ-rK*(’y—l)
foreveryu € L™ (X, u) NL®(X, u), t > 0, m > myand some uy € L™ N LP(L, u),
where Cyps i satisfies (4.29) for some constants Cy« 1, Cyprp > 0 independent of m. Then
(( (B—Dx+y—B +1)t _ arx—L

HTtu _ uOHoo SJ e(,(} k—1)mo+rx—1(1—7) t (k=1)mg+rx—1(1—7) X

(K7]>’101
= ol ™
for every u € L™ (X, u) and every t > 0.
The proof of Lemma 4.14 proceeds as the one of Lemma 4.12. We omit the
details.
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4.4. An alternative approach to arrive at L®. Itis a fundamental fact that semi-
groups {T;}+>0 generated by operators —A in L! with a (c-)complete resolvent (
Section 2.3) are not, in general, contractive with respect to the L*-norm (cf. [91,
Section A.11]). Thus, if one wants to extend the L-L"-regularisation effect of
{Ti}+>0 to an L7-L®-regularisation effect, one needs to proceed by an alterna-
tive approach. One possible way is the following one: firstly, show that A sat-
isfies a one-parameter family of Gagliardo-Nirenberg type inequalities, and then by
employing Theorem 3.10, deduce that the semigroup {T;} satisfies a sequence of
Ln-Lin+1-reqularisation effects for some sequence (§,)n>1 C (1,00) with g, * 0.
This method has been employed in the past by many authors. But to the best of
our knowledge, Véron has been the first to use this method in [92] in the context
of nonlinear semigroups of contractive mappings on L' (X, i) (see also [38] for an-
other use of this type of argument in linear semigroup theory). Here, we extend
and simplify this method to nonlinear semigroups {T;}:>o of Lipschitz continu-
ous mappings T; on L}(Z, ) with constant ¢, in other words, of exponential
growth (2.30) for g = 1.

Theorem 4.15. Let A + wl be m-accretive in LY(Z, u) for some w > 0 with trace
Alneo of A on LY N L®(X, i) satisfying range condition (1.19). Suppose there exist
k>1,m>0,and qo > p > 1 such that kmqgo > 1 and

(1.20) (k—1)go+p—1—21>0,

and there exist C > 0 and (19,0) € A1ne Such that for every q > qo, the trace A1neo
satisfies Sobolev type inequality

/ —p+1)m+1
(1.21)  |Ju — uolmg < q(qu;:)l [[u — 1o, V] (g—pt1ym1 T w|lu — MOHEZPZH;ZH}

for every (u,v) € Aineo, and for every A > 0 satisfying Aw < 1, the resolvent ]
of A satisfies (3.9) for § = xmq. Then, there is a B* > 0 such that the semigroup

{Ti}s0 ~ —Aon D(A)" satisfies

1 (k=1)qg .
(452) [Tt —uplleo S e“Ft D0t 10 |1t — gl gy "

Tl’lqo
forevery t > 0and u € D(A)" NL®(Z, p).

Proof. From Theorem 3.10, we can conclude that the semigroup { T} }>¢ satisfies
inequality (4.53) below for every t > 0, u € D(A)" NL®(Z, ) and g > qo.
Thus, we can deduce the claim of this theorem from the subsequent iteration
Lemma 4.16. 0

Lemma 4.16. Suppose there exist k > 1, m > 0, gqo > p > 1 such that kmgy > 1
and (1.20) hold. Furthermore, suppose, there exists C > 0 such that the semigroup

{Ti Y50 on D(A)" satisfies

- C(q/p)? qm (M+l)t
||Ttu uOHqu S |:(q_p+1)((q_p+l)m+l) e qm %
(4.53)
(9= P+1)m+1
Xt qm Hu — uOH (4— P+1)m+1

for every u € D(A)Y NL®(Z, 1) and q > qo. Then there is a B* > 0 such that
the semigroup {T;};>0 ~ —A on D(A)" satisfies inequality (4.52) for every u €
D(A)" NL®(Z, 1) and every t > 0.
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Proof. We fix some qp > p and set
1
n+1 =Kqn+p—1—— for every n € INo.
m

Then one can show by induction over n € INj that

n

gn=x"(q0— ((p—1) —5)) +((p—1) — 3) L_«",

v=0
that is
K" p—1-1
(4.54) Qn:K_l[(K—l)qo—i—p—l—%]—Tlm
Using (4.54), we see that

oot~ = (6= D+ p -1 4]

hence the sequence (Gn)n>0 is strictly increasing if and only if g satisfies condi-
tion (4.27). Moreover, by (4.54), since x > 1, and by (4.27), we see that g, — oo
as n — oo and

-1 —1-1
(4.55) fim & = (F= Dot p m

n—oo KM x—1

Now, let u € D(A)L1 N L*0™ (%, u). Then, by construction of g1, we find that
u € Lin—p+m+1(x, 1) and so by (4.53), Tyu € D(A)" N L™ (X, 1) for all t > 0.
By construction of (g,),>1 and since {T; };>¢ is a semigroup satisfying (4.53), we
see that Tyu € D(A)Y N L (%, u) for all n > 1and t > 0. Thus, inserting the
sequence (g )n>0 into (4.53) yields

Kmgn
(4.56) [ Ttt — 110l xmgysy < Copay t /™05 e G T 1y u0||£z:,,{ﬂ"“

for every t > 0 with

C

1
1 Tnt1yp

_ i (fa1) i1

In+1 KMy )

(qnt1—p+1)(

for every n € INy. Let (t,),>0 be any sequence in [0, 1] such that Y ;- t, = 1,
which will be specified below. Then by (4.56), we obtain that

n+1 ghtl-v _v n _ v 1 n
_ Tn+1 Min+1 47 mg v=0
Tz, = tollguin < TTCq | R X
(4.57) ] 6
wZ,,iO tv(m+1)xn—l/ﬂy+lt Kn+1q0/q 1
N V= Jv+1 In+1 ”u _ MOHKqu n+ .

Since ¥ > 1, by (4.55), g, — o0 as n — oo and since (k —1)go +p —2 > 0 by
assumption (4.27), we see that

1 & 1

(4.58) lim K’ = .
’H""%H];] (K—l)qo—i—p—l—%
Thus
_ 1 n v -
(4.59) lim ¢ et 20" = ¢ (Do 1 ) for every t > 0.

n—oo
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If we choose, for instance, t, = 27V~1, then

n _ x"Y KT v+ DxY
H t, " =2 M
v=0
Using
) K2
(4.60) v+ "' =—x
V;‘) (k—1)2
and (4.55), one obtains
(4.61) lim C =0V DK & 1
n—00 Mqu+1 m(k—1) (k—1)go+p—1—1
and so
n _ anr/ x
i Ml — 9 m(x=1)[(x-1)g0+p—1- 7]
(4.62) nlggog)tv 2 0+ .
Next, by (4.55), we see that
lim x" 1 qo _ (K - 1)‘70
noe gy (k—=1)go+p—1-4
thus
. a0 /dn —1)g0/((x—1 -1-4i
(4.63) nh_r){}oH” _ uOHquoqo/q +1 ||Ll o u0||1(<11<11q0)q0 ((k=1)q0+p )

Further, since for a, := 2_1’(% +1)x7qy41 for every v > 0, (4.54) yields

1

2/

Ay+1
ay

lim
vV—00

the ratio test implies that the series

1& ., [ % ) _
=y 27V ——+1)x"
2 1;) (ql/+1 o1

converges; we denote the sum of the series by S > 0. Thus, by (4.55),

1 1 Sy [ K _ k—1 1
m & +1 b v ( v + 1) KV _ 1
n—soo In+1 D o Ju+1 Tv+1 (K _ 1)‘]0 +p— 1— % 2K
and so
(4.64) lim ¢ =0 s ) qnzllurlt — ewB't,

n—o00

It remains to show that we can control the product

+1-
n+1  &tlovgy n+1l n+1-v n+1l (L”*] ) K’Z”lﬂ-%—lv
4. i1 = Mint1 X £
(4.65) [1¢. IIc I1 Gni1—p+1)(kmq,)
v=1 v=1 v=1
as n — oo. First, note that
n+1 Mtl—v log C Zn+1 Kn+1—v logC n v
H C Mip+1 — e™In+1 v=1 = ¢"n+1 V=0

v=1

: B

53
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Thus by (4.58),
n+1 h+l-v
ma,. 1 n — m((k—1) 1—7)
(4.66) lim H C "1 = Cml o= :
By (4.54), we have that
g = [(k=Dgo+p-1-3]-((p-1) — ;)

v x—1
for every v € INg. From this, we conclude that
(4.67) gy < M«"

for every v € INo, where

M_:{[(Kl)qiw if(p—1)— 0, and

=
<0.

q0 if (p—1) —

Applying (4.67) and using that g, > g0 > p > 1 and xm > 1, one sees that on
the one hand

1
m
1
m

n+1 SV ] SRR RS
[ = < T ()™ Ffese,
v=1 v=1
and by (4.58), (4.60), and (4.55), one has
n+1 pri Y p

m ((e—Damtp—1— L1y
lim ( ) T+l _ (M) m((k—=1)qg+p—1—77)
n—eo H p

and
n+l n+l-v
lim K M1 = g e=Dm((e— 1)40+P 1- 1)

n—oo
v=1

On the other hand, by using thatg, — p+1 < g,, g, > p and (4.67), one finds

n+1 ) 1=v n+1 e nal iy
H [%} mgy, 1 > H M3 M1 HK M1
v v
v=1 =1
with
n+1 gty I S
lim H M3K T — (M?’K) m((x—1)qg+p—1-15)
n—oo
and
n+1 1 2K
lim HK M1 = g (- Um((-Dggtp—1-7) |
n—oo
Thus, by taking
_____r
M; = (%) m((k=1)qp+p—1—717) 1¢ (e=D)m((x— )q0+p -1
and

_ 1 _ 2K
M2 — (M3K) m((x—1)gg+p— 1—7) K (K—l)m((x—l)q0+p—1—%)’
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we have that

n-+1 ( y )P ch+l-v
< . . qv/p ] m, 4 q
0< M < higr_lg’tgfg [7(qv_p+l)mqv
n+1 ( / )p htl-v
: a/p M1
< lim sup H [(qwﬁl)m%] < Mp < o0
n—oo =1

hence by (4.65) and (4.66),

n+1 Kn+171/qv

1
0 < Cmle=Dag+p-1-71) My < liminfn Cy, Ini1
n—yeo - %

ntl g 1
< lim sup H qu In+1 < Cm((xfl)lmﬂﬂflf%) My < oo.
n—oo  1—1
Thus sending n — oo in inequality (4.57) and using the limits (4.59), (4.62), (4.63)
and (4.64) together with the fact that g, o0 as n — oo yields the desired
inequality (4.52). This completes the proof of the lemma. U

5. APPLICATION I: MILD SOLUTIONS IN L! ARE WEAK ENERGY SOLUTIONS

This section is concerned with illustrating a first application of the L!-L* reg-
ularisation estimate

(5.1) || Tl < Ct %P |u||?, holding for all t > 0, u € D(Ajnetp)”

for some exponents «, B, v > 0, and a constant C > 0, satisfied by the semigroup
{Ti} ~ —(Aineop + F) on D(A1nep)”.

Let A be an m-completely accretive operator on L?(X, 1) and which is the
realisation in L?(Z, ) of a monotone operator ¥’ : V — V' of a convex, Gateaux-
differentiable real-valued functional ¥ defined on a reflexive Banach space V
(see the precise hypotheses on A and V below). Further,

(Ha) let ¢ be a strictly increasing continuous functions on IR with Yosida oper-
ator B, of B = ¢! satisfying condition (2.43), (A > 0),

(Hb) let F be the Nemytski operator in L7(%, 1), (1 < g < o), of a Carathéodory
function f : £ x R — R satisfying Lipschitz condition (2.17) for some
w >0and f(x,0) =0forae. x € X.

Then, the aim of this section is to show that for every initial value 1y &
D(Aine¢)", the mild solution u of Cauchy problem

(5.2) {if + Arneop + F(u) =0 in L}(Z, ) on (0, +0),
' 1(0) = ug

is, in fact, a weak energy solution of problem

53) {”5?+W'<¢<u>>+P<u> —0 inVon(0)
’ u(0) = ug

in the sense of Definition 5.2 below.

In this section, we work in the following framework. We assume that the
classical Lebesgue space L1(X, 1), 1 < q < oo, is defined on a finite measure
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space (X, ), and V be a reflexive Banach space such that there are # > 0 and a
semi-norm |-|y on V such that

v +all-]l2

defines an equivalent norm on V. Further, suppose the continuous embedding
i:V — L%(%,u) has a dense image. Then, the adjoint operator i* of i from the
dual space (L?(%, 1)) of L2(%, 1) to the dual space V' of V is also an injective
linear bounded operator. After identifying L2(%, u) with (L?(%, u))’, we see that

Vs L2, u) — V,

where each inclusion ”—" denotes a continuous embedding with a dense im-
age. Moreover, the duality brackets (-,-)yy of V x V' and the inner product
(-,-) on L?(%, u) coincide whenever both make sense (cf. [25, Remark 3, Chap-
ter 5.2]), that is

(5.4) (w,v)yry = (u,v) forallu € L?(X,u) and v € V.

Thus, in order to keep our notation simple, we only employ the brackets (-, -).

Further, we assume that ¥ : V — R is a convex, lower semicontinuous, and
Gateaux differentiable functional satisfying

(Hi): therearel < p < oo, ;1 >0, C > 0 such that
(5.5) (¥'(v),0) > yloly,  and
(5.6) ¥ ()| < Clo|l" foreveryv eV,

(Hii): ¥': V — V' is hemicontinuous, that is, for every u, v, w € V, the function
A= (Y'(v+ Au), w) is continuous on R,

(Hiii): thereisae > 0 such that Y + ¢||-||3 is weakly coercive in V, that is, for every
¢ € R, the sub-level set E. := {v € V|¥(v) +e¢|[v|3 < c} is relatively
compact with respect to the weak topology on V.

(Miv): the subgradient A := 3,2 ¥ in L2(E, i) of the extended functional ¥1* of ¥
on L%(Z, u) is an m-completely accretive operator in L*(Z, ).

(Hv): the functional Y is related to a ”Poincaré type inequality”

(5.7) ull, < CY¥(u) forallu e V,
where the constant C > 0 is independent of u € V.

Remark 5.1. We note that hypothesis (#iii) is needed only to ensure that that the

extended functional ¥1* of ¥ on L2(Z, ) is lower semicontinuous on L2(X, ).
For a more detailed discussion on this, we refer the interested reader to [31].

Definition 5.2. Let 1 < p < oo with conjugate exponent p’ = %, T >0,
the operator ¥/ : V. — V' satisfy the hypotheses (Hi) and (#ii), and ¢ be a
continuous function on R. Then for given 1y € D(Ajne¢)” N LY(Z, 1), we call
a function u € C([0, T]; LY(%, 1)) a weak energy solution of (5.3) if u(0) = ug in
LY(Z, ), and for every 0 < 6 < T,

du

SEVQTV),  ¢w) €LV, TV),
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and

/T {<”L“,v> + (¥'p(u(t)),0) + (F(u(t)),0) } dt =0

5 at” /vy

forallv € LP(6,T; V).

Remark 5.3. To the best of our knowledge, the notion of weak energy solution was
introduced in [91, Section 5.3.2] in connection with the porous media operator

A¢ = A¢. The word energy in this notion indicates that the solution u of (5.3)
has the property

t
/ Y(p(u(t)))duds  isfinite forevery 0 < d < t.
s

Remark 5.4. We note that under the additional assumptions that ¢ is non-decreas-
ing on R and the weak energy solution u of problem (5.3) isin L (0, T; L*(%, u)),
Lemma 5.11 below yields for the primitive

(5.8) D(s) = / o(r)dr, (s €R),
0
of ¢ that
/ ®(u)du € WH(0,1)
z
and integration by parts rule (5.43) from Section 5.2 holds.

Definition 5.5. For a given continuous function ¢ on R satisfying ¢(0) = 0 and
every ¢ > 0, we call the function

Pe(s) = %/]qu(r)p(%)drntss + ¢, for every s € R,

the reqularisation of ¢. Here, the constant ¢, is chosen such that ¢.(0) = 0 and
peC®R),p>0, [gpdr=1,p=00onR\ [-1,1].

The following theorem is the main result of this section, which provides suf-
ficient conditions that mild solutions are weak energy solutions.

Theorem 5.6. Let ¥ : V — R be a convex, lower semicontinuous, and Giteaux dif-
ferentiable functional satisfying the hypotheses (Hi)-(Hv), ¢ be a strictly increasing
continuous function on R satisfying (Ha) and F be an operator on LI(X, i) satisfy-
ing (Hb). Further, suppose that there are exponents a, B, v > 0 and a constant C > 0
such that the semigroup {T;} ~ —(A1re® + F) 01 D(A1ne)" satisfies L1-L> reg-
ularisation estimate (5.7). Then, the following statements hold:

(1) For every initial value uy € D(Aineo)”, the mild solution u(t) = Tiuo,
(t > 0), of Cauchy problem (5.2) in L'(Z, ) is a weak energy solution of
Cauchy problem (5.3) satisfying

[ (g ds + 0 [ au() ap

/- -1 t /_ ’_
(5.9) g%/{)ewwp D+1)8 g || 7 ¢~ D
+W/tseww(p'—lm)sdsHuo”;r(pf—my

for every t > 0.
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(2) If, in addition, ¢' € L*(R), ¢~ is locally bounded and 0 < a < 1 in esti-
mate (5.7), then for every initial value uy € D(Amoocp)Ll, the mild solution
u(t) = Teup, (t > 0), of Cauchy problem (5.2) in L' (X, u) is a strong solution
of (5.2) in L}(Z, u) with the following properties:

(a) One has
1 € Wi ((0,00); L*(Z, 1))

loc

(b) the function ¢p(u) € W2((0, T]; LA(Z, i) with weak derivative

loc

(5.10) %4;(14@)) — o (u(t )) N L2 (S0) forae t >0,
(c) fora.e. t > 0, one has qb( ( )) € D(A) and
(5.11) )+ Ap(u(t)) + F(u(t)) 20  inL*(%,p),

(d) the real-valued function t — ¥ (¢p(u(t))) is locally absolutely continuous
on (0,00) satisfyingfor ae. t >0,

(5.12) ¥ (P(u(t)) = = %(t)\/¢'(u(t)]3 - £), S () ¢ (u(t))),

(e) for everyt >0,
1 ! a(p'—1)+2 / dj
L[ [gfues)) |5 6s)

< @pr=1)+2)2 [(kH)PC’” /teww(rﬂ1>+1>sdsHuoHY(’j/1)H

2
dpds + P =DH29 (p(u(t)))

=T @t
t / —
(5.13) +%/@Sew(ﬁ(p'—l)ﬂ)sdsHuom(p 1)+1
t
/—1)+1)P CP r— r—1)+1
+%/{)ewﬁ(p 1)stHu0H¥(’j )

1
+w C”¢ Hoo/ 1—« w(/%—i—l SdSH” H’Y+

The proof of Theorem 5.9 is divided into three steps. The first step is to con-
sider the smooth case, that is, under the assumption that ¢ and its inverse ¢!
are locally Lipschitz continuous (see Theorem 5.7). Then, in the second step, we
consider a general continuous strictly increasing function ¢ but we take initial val-
ues 1y € D(Aineo)” NL®(Z, 1) (see Theorem 5.9). In the last and third step,
one uses the estimates established in step two to conclude by using the continu-
ous dependence of the semigroup {T;};>0 and the its L!-L* regularisation effect
to conclude the statement of the main theorem (Theorem 5.6).

5.1. The smooth case. We begin by considering the smooth case. Here, the
statement of our following theorem confirms positively a conjecture stated in
[10, Remarque 2.13] and generalises the results in [10, Proposition 2.18] and par-
tially some results in [51, Section 3] to the general subgradient setting. Our next
theorem is the main results in this subsection.

Theorem 5.7. Let ¥ : V — R be a convex, lower semicontinuous, and Gateaux dif-
ferentiable functional satisfying (Hiii) and (Hiv). Further, let ¢ be a strictly increasing
function on R such that ¢ and ¢~ are locally Lipschitz continuous, and the Yosida
operator By of B = ¢! satisfies condition (2.43), (A > 0), and F be an operator on
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L1(%, p) satisfying (Hb). We set ®(r) = [ ¢(s)ds for every r € R. Then, for
every g € D(A1ne®)" NLO(Z, 1), the mild solutzon u(t) = T, (t > 0), of
problem (5.2) in L'(Z, u) is a strong solution of

(5.14) 4 Ap(u)+F(u) >0 inL*(Z,pu)on (0,T),  u(0)=up
with the regularity
(5.15)  u e C([0, T]; L1(Z, ) N W2 ((0, TJ; LA(Z, ) N L=([0, T); L™ (Z, 1))

loc

forevery 1 < g < oo and satisfying
(1) the function ¢(u) € W-2((0, T); L2(Z, u)) with weak derivative (5.10),

loc
(2) fora.e. t > 0, one has ¢p(u(t)) € D(A) and (5.11) holds,
(3) the real-valued function t — ¥ (¢p(u(t))) is locally absolutely continuous on
(0, 00) satisfying (5.12) for a.e. t > 0,

(4) for every k > 0and t > 0, one has

/t sk+1‘1f(¢(u(s)))ds+tk+1/q> u(t)) dp
0

(5.16) (k+1) / / e £) dpds
/ k+1/ )d]ldS
and
. 2
! / 2 [t (s)) B dps + 2w (o)
(k+2)(k+1) t)dud
(5.17) / / Pl ree

k+2/ k“/ (s))duds
+1 [ [9/ws)) IFus) P dpas,

Before outlining the proof of Theorem 5.7, we recall the following convergence
result (cf. [8, Proposition 4.4 & Theorem 4.14]), which we state in a version suit-
able for the framework of this paper.

Theorem 5.8. For w € Rand 1 < q < oo, let (Ay)n>1 be a sequence of operators A,
on LI(Z, i) such that A, + wl is accretive in L1(X, ). For given ug, € D(A,)", let
uy be the unique mild solution of initial value problem

d”” + A, 50 on(0,T)and  u,(0) = ugy.

Further, let A be an operator on L1(X, u) such that A + wl is accretive in L1(X, u) and
for given u € D(A)", let u be the unique mild solution of

@1 Aus0 on(0,T)and u(0) = u.

Suppose that limn_>c>o ug,, = ug in L9(X, u) and for every A > 0 satisfying Aw < 1,
the resolvent J{ of A and the resolvent | f" of Ay satisfy

(5.18) lim T — Jix  in LY(Z, u) for every x € L1(Z, ),
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then u, — win C([0, T); L1(%, u)).

Our proof of Theorem 5.7 improves an idea from [10].

Proof of Theorem 5.7. By Proposition 2.19, Ajne¢p + F is m-accretive in L! with
complete resolvent and for every A > 0 such that wA < 1, Ajne¢p + F satisfies
range condition (2.45). In particular, — (A¢ + F) generates a strongly continuous
semigroup {T;}s>0 on D(A1ne@)" . Therefore, for ug € D(A1ne®)" NL®(Z, ),
the function u(t) := Tyug for every t > 0 is the unique mild solution of prob-
lem (5.2) in L1(%, ) and by Proposition 2.16, one has

(5.19) u(t)|lq < e*|luoll;  foreveryt>0and1 <g < oo,

where w > 0 is the Lipschitz constant of F. Fix T > 0 and set M := e‘*’THuoHoo.
Then, the values of ¢(s) € R for |s| > M do not intervene if one considers the
solutions merely on the time interval [0, T]. Thus, there is no loss of generality if
we assume, ¢ and ¢! are globally Lipschitz continuous on R.

Now, for every A > 0, let ¥, : L2(%, u) — R denote the Moreau regularisation
of ¥ on L%(Z, u) (cf. [24, Proposition 2.11]). Then, ¥, is continuously Fréchet-
differentiable on L(X, u) and the Fréchet-derivative ¥ of ¥ coincides with the
Yosida operator A, := 1 (I —J,) of Ain L?>(Z, ). Since the resolvent operator ],
of A is contractive on L?(X, #) and since ¢ is globally Lipschitz continuous, the
composition operator J,¢ is globally Lipschitz continuous on L?(Z, 1). Hence
by [24, Corollaire 1.1], for every A > 0, there is a unique strong solution

uy € CH([0, T); L*(Z, )
of the Cauchy problem

5.20) G+ An(u) + F(up) =0 in L*(Z,p) on (0, T),
’ uA(O) = Up.

Since A is accretive in L'(X, i), one easily verifies that for every A > 0, the

Yosida operator A} is also accretive in L!(X, ). Moreover, for every p € Py,
thereis a 6(x) € (0,1) such that

Lpeavedn = [ panAwudu+2 [ p'(6u+ (1= 60) )l Aruf du

> /2 p(Jau)Arudpy.

Since A u € A(Jyu) and since A has a complete resolvent,

AP(]AM)AAM du>0

yielding the Yosida operator A, has a complete resolvent. Thus by Proposi-
tion 2.19, the operator A ¢ + F is quasi accretive in L!(%, ) with complete re-
solvent. Thus,

(5.21) Jua(B) g < e Jluollq foreveryt € [0,T],A > 0,1 < g < o0.

and in particular, |[u) (t)]|e < M.
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Next, let p > 0 such that pw < 1and x € L' N L®(Z, ). Then, by range con-
dition (2.45), there is 1, € D(A1n¢) such that u, = ];,4 1neofF or, equivalently,

(5.22) up = x — p(Ap(up) + F(up)).

Since A ¢ + F + wl is Lipschitz continuous and accretive in L}(Z, 1), Ay¢ + F +
wl is m-accretive in L' (X, ). Thus for every A > 0, there is u,, € D(Ax¢) such

that u,\ = ]A“P+ x or, equivalently,

(5.23) upr = x — p(Ard(upn) + F(up)),
and
(5.24) lupally < (1—pw)™H|xllg

for every 1 < g < co. Now, by the two equations (5.22) and (5.23), since
Ax(P(upr)) € AUJrp(upnr)),

since the operators A and F + wI are accretive in L2(Z, 1), ¢ is non-decreasing,
and F Lipschitz continuous with constant w > 0, we see

(1=pew) [ (tp2 = 1) (@(150) = p(a))

= —p [ [(Ar9up0) + Flutp2) + witp2) = (A@(11p) + E(up) + i) x
X (Plitp0) — @lup)) dp
=—p [ [A9(1) = a9y x
X (p(itp) = I8P (pr) + ILP(p0) — Pluu,0)) dpe
—p [ [(Flupn) + @itp2) = (Flutp) + )] (@(01p,0) = p(1)) dp

<pA / Ap(up) —AAcp(up,A)) A/\(P(up,)\)d.u

~pA /Z (Flutp) = Flitp0)) Ar(1tp) dp

<A1+ pw) /Iup —tp | [Arp(upr)| dp

1+
gA;( P‘;ﬁ) Il [t = %+ p Flitg0)
1+
ALELD2 (L [sldusoe [ e )
and so by (5.24),
[0 = 10) (9 (12) = 9(11,))
(5.25) (1+pw)2 1 pw
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From this we can conclude that lim, o #,\ = 1, a.e. on X since ¢ is continuous,
strictly increasing and ¢(s) = 0 if and only if s = 0. Since (%, #) is finite and
by (5.24), Lebesgue’s dominated convergence theorem yields

A1m¢¢+F

li = i = u, = in L'(Z,
1m+]p x = lm upp =y = Jo inL' (%, n)

for every x € L' N L®(Z, 1) and p > 0. Since L' N L*(Z, 1) is dense in L!(Z, u)

and J, At F gnd ];1 M are Lipschitz continuous, a standard density argument
shows that the hypothesis (5.18) in Theorem 5.8 for g = 1 holds. Therefore,

lim uy =u  in C([0, T|; LY(Z, n)).

A—0+

and by (5.19) and (5.21), for the strong solution u, of (5.20) and the mild solution
u of (2.22), one has

(5.26) Iim uy, =u inC([0, T|;LY(X, u)) foralll < g < oo.
A—0+

Next, we show that

(5.27) u € WH((0,T); L2(Z, u))

loc

By the Lipschitz continuity of the Nemytski operator F on L?(%, #) and since u,
belongs to C([0, T]; L2(%, 1)), we have that F(u,) € C([0, T]; L*(Z, u)). Further,
since ¢ is Lipschitz continuous, ¢(0) = 0, and u, € C'([0, T}; L*(Z, 1)), we can
conclude that the function ¢(u,) € W'2(0, T; L?(%, )) with weak derivative

(5.28) jt¢( A(5) :¢'<m(t>)%(t> forae. t € (0,T).

By equation (5.20) and by Ay = ¥/, [24, Lemme 3.3] implies that the function
¥r(¢(up)) : [0, T] — R is absolutely continuous and

Z‘FA((I)( A(D) = (Axgp(un(t)), ;tqj(uA(t))) = (Axp(ux(t)), ¢ (u/\(t))ddt (1)

fora.e. t € (0,T). Letk > 0 and multiply equation (5.20) by s**2 £ d $(up(s)) with

respect to the L2-inner product and integrating over (0, t), for some 0<t<T.
Then

[ [g ) |52
=(k+2)/ 1, (9 (u / 2 [ F(un(s ())d;SA(s)dyds.

Since ¢’ (1)) > 0, Young's inequality gives

¢ 2
[ ot | S
(5.29) < (k+2) / 1 (p(ua(s))) ds
41 / k+2/|1: )¢’ (ua(s)) duds.

" dds + 52, ((un (1)

dpds + 52, (¢(ua(t)))
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for every 0 < t < T. On the other hand, the Yosida operator A, is the subgradi-
ent 92, of ¥, and A, (0) = 0and ¥,(0) = 0. Thus

(Arg(ua(t)),0 = p(ur(t))) < ¥a(0) = Falp(ua(t)))

for every 0 < t < T. Multiplying this inequality by (—1) and taking advantage
of equation (5.20) yields

(5.30) Fa(@(ua(t)) < = (G (1), p(un(t))) — (F(ur(t)), p(ur (1))

for every 0 < t < T. Since ¢ is non-decreasing on R and ®(0) = 0, one has
d(r) < ¢(r)r for every r € R. Thus, by integrating inequality (5.30) over (0, )
for some t € (0, T|, we obtain

/Ot‘I’A( P(up(s)) )ds+/<b uy(t))du

/CIDM;L )du — // (up(s A(s))dpds.

Similarly, multiplying inequality (5.30) by s**! and subsequently integrating
over (0, ) for some t € (0, T] gives

s gt ds+ 71 [ @ (1) an
< (k+1)/0 sk/ZCD(uA(t))dyds
(5.31) —/Otsk”/ZF(uA(s))qb(uA(s))dyds
< (k1) [ [ plun(t) un(r)dpds

/ k“/ (uy (s A(s))duds

for every 0 < t < T. Since ¢(0) = 0 and ¢ is non-decreasing on R, one has that
the function ®(r) > 0 for every r € R and so,

/ @ (1 () dyu > 0.
z
Thus, applying estimate (5.31) to the right hand-side of (5.29) yields

: /Otsk“ L9/ ns)) ]”ZZ(s) 2
< (k+2)(k+1)/tsk/4>(MA(t))uA(f)dﬂdS
k+2/ k“/ (11 (5)) (1 (5)) dpe ds
#1 [ [0/ [P dpds,

By assumption, there are constants a, ap > 0 such that a7 < ¢/(s) < ay for
all s € [—M, M|, by the boundedness of ¢ on [—M, M|, by the continuity of
F: L*Z,u) — L*>(%,u), and by (5.19) and (5.21), we can conclude from esti-
mate (5.32) that the sequence (1))~ is bounded in W.%((0, T]; L*(Z, u)). Thus,

loc

dpds + 72 ¥, (@(u(t)))

(5.32)
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for every sequence (A,) € (0,1) such that A, — 0 asn — oo, thereis w €
leo (0, T]; L%(%,u)) and after eventually passing to a subsequence, du d?” — w

weakly in L2([8, T]; L(%, u) for every 6 € (0, T). Hence, sending n — oo in

tdu
() =, () = [ SRR () ar
and using (5.26) yields w(t) = %(t) in L?>(%, u) for ae. t € (0,T). Therefore,
(5.27) holds and
duy du . 10 2
. L= — ; Lo (X .
(5.33) Al_)r&_ n T weakly in Lj. .((0, T]; L*(%, u))
Next, by (5.26) and since ¢ is Lipschitz continuous,

Tim plun) = p)  in C(0, THLA(E, ).

In particular, ¢(u(t)) € L*(Z, u) for every t € [0, T|. By assumption, ¥ is densely
defined on L?(X, 1) and so by [24, Proposition 2.11 & Théoréme 2.2], the resol-
vent operator |, of A satisfies

lim ]Aqb(u(t)) = ¢(u(t)) in L2(X, ) for every t € [0, T].

Thus and since for every t € [0, T],

[Tap(ua(t)) — @(u(t))ll2
< [ITag(un(t)) = In@(u(t))ll2 + [[Jap(u(t)) — ¢(u(t))ll2
< [lp(un(t)) = p(u(t)) 2+ [ap(u(t)) — p(ult))ll2,

we can conclude that
(5.34) lim Jap(up(t)) = ¢(u(t)) in L*(%, u) for every t € [0, T].

Now, let (@,9) € Aand t € (0, T) such that ‘f;t’( ) exists in L2(Z, u). Since
An(p(ua(t))) € A(ag(ur))

and since A is accretive in L?(Z, 1), one has

du;\

10 (6) — 2, (Rl )~ k) ) o] >0
2
Sending A — 0+ in this inequality and using (5.33) and (5.34) yields

[¢(m(t)) — W, <—F(u(t)) — i;:(t)) — z?L > 0.

Since (@,9) € A was arbitrary, A is m-accretive in L2(Z, ) and 9% (t) exists
in L2(X,u) for a.e. t € (0,T), we can conclude that for a.e. t € (0,T), one
has ¢(u(t)) € D(A) satisfying inclusion (5.14), showing that u is a strong so-
lution of (5.14) in L?(X, u). Now, proceeding as in the previous steps of this
proof, one sees that chain rule (5.28) and estimates (5.29) and (5.31) satisfied by
u) hold, in particular, for u, proving that ¢(u) € Wllocz((O T]; L?(Z, 1)), chain
rule (5.10) and the estimates (5.16) and (5.17) hold. Moreover, by (5.21), (5.26),
and (5.27), we see that u has the regularity as stated in (5.15). Next, recall that
A is the subgradient 9,2¥ in L?(Z, u) of a convex, propet, lower semicontin-
uous functional ¥ on LZ(Z, ). Further, for every 0 < 6 < T, the function
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v = ¢(u) € WY2([5, T]; L*(Z, 1)) and inclusion (5.14) yields g := —F(u) — 4 €
L%([6, T); L*(%, 1)) and satisfies g(t) € Av(t) for a.e. t € (6, T). Thus for every
< T, by [24, Lemme 3.3], the function t — ¥(v(t)) is absolutely continu-

¥ (0(1) = (g(t), F (1))
Combining this together with chain rule (5.10), we see that equation (5.12) holds.
O

5.2. Weak solutions for general ¢ and initial values in L®. This subsection is
concerned with the second major step toward the proof of Theorem 5.6. Our
next results shows that mild solutions are, in fact, weak energy solutions for
initial values 1y € D(Ainw®)" NLP°(X, u). This is known to be true for the
homogeneous porous media equation (cf. [10, 91]), and generalises this result to
general quasi-m-accretive operators in L! with complete resolvent of the form

Alﬁoo(P-

Theorem 5.9. Let ¥ : V — R be a convex, lower semicontinuous, and Giteaux dif-
ferentiable functional satisfying the hypotheses (Hi)-(Hiv), ¢ be a strictly increasing
continuous function on R satisfying (Ha) and F be an operator on LI(X, i) satisfy-
ing (Hb). Then, for every uy € D(A1ne®)” NL®(Z, u) and T > 0, the mild solution
u(t) = Tyug, (t > 0), of Cauchy problem (5.2) in L' (%, i) is a weak energy solution of
Cauchy problem (5.3) satisfying

(5.35) u € C([0, T LI(E, 1)) N L®(0, T; L¥(E, ),
forevery1 < g < oo,

(5.36) e [F(0,T;V),  ¢(u) € LF(0,T;V)
and identity

(5.37) /OT {<%,v>w (P (u(t)),v) + <F<u(t>),v>} dt =0

holds for every v € LF(0,T; V). In particular, for the function ® given by (5.8), one
has that

(5.38) o) e ([0, T|; LN(S, 1)) with /Z @(u)du € WH(0,T),

“integration by parts rule” (5.43) holds, and for every k > 0and t > 0, inequality (5.16)
and energy estimate

- [ ¥t ds+ [ @u(n) dn

holds.
For the proof of this result, we need the following approximation result.

Lemma 5.10. Let A be an m-completely accretive operator in L?(%, u) of a finite mea-
sure space (X, 1), F be the Nemytski operator of a Carathéodory function f : ¥ x R —
R satisfying (2.17), and ¢ be a strictly increasing continuous function on R such that
for every A > 0, the Yosida operator By of B = ¢~ and of B = ¢, * the regularisation
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(¢¢) of ¢ satisfy condition (2.43). Further, for every A > 0, let J§ denote the resolvent
operator of Aineope + F and ] the resolvent operator of A1nep + F. Then, for every
A > 0such that wA < landu € L' N L*®(%, u), one has

(5.40) liII(l) Jiu = Ju in L1(%, u) for every 1 < g < oo,
&—

Proof of Lemma 5.10. By Proposition 2.19, Ajn.¢ + F is m-accretive in L! with
complete resolvent and for every A > 0 such that wA < 1, Ajne¢p + F satisfies
the range condition (2.45). Moreover, since one has that

Alneo®e C AlneoPe  and  Arne C Ainco®,
the range condition (2.45) yields that the resolvent [§ coincides with the resol-
vent of Ajnee on L' N L*(E, 1) and the resolvent J, of Ajne¢ coincides with
the resolvent of Ajne¢ on L' N L¥(Z, u). Thus, for every A > 0 such that
wA < 1and every u € L' NL®(Z,u), e > 0, there are (ug,v;) € Ajne@e and
(10, v0) € A1neo satisfying

(5.41) e+ AMve+F(u)) =u  and  ug+ A(vg+ F(ug)) = u,

or equivalently, u, = J5u for every ¢ > 0 and 1y = J,u. Now, by using (5.41) and
since A and F + wl are accretive operators in Lz(Z, 1), we see that

(1= wA) [ (e = o) (1) — p(u0)) dlp
= (1=wA) [ (e = 10) (gu(100) = 9(0)) dp
— [ (e = 100) (@) = )
- —A/Z[vE+F(u£)+wu£—(v0+P(u0)+wuo)}><
< (¢e(ue) = p(uo)
— [ (e = 0) (@) = ()
=~ [9eue) = p(m0), 0e — o
= A |9e(e) = @lu0), (F(ue) + wie) — (F(uo) + cono) |
— [ (e = 10) (91e) = )

< — [ (e = o) (1) — (1)) .
By Proposition 2.16,
542) elly < (1= Aco)ully = M
foralle > 0and 1 < g < oo and so,

0 (e = 0) () = o)) e < 215 g = gl

Since ¢ — ¢ uniformly on compact subsets of R, since ¢ is strictly increasing
on R and ¢(s) = 0if and only if s = 0, it follows that lim, u, = ug a.e. on X.
Using again (5.42) and that the measure space (X, jt) is finite, we can conclude
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that (5.40) holds for u € L' N L®(Z, u). A standard density argument yields the
statement of this lemma. O

The following integration by parts rule is an important tool in the proof of Theo-
rem 5.9. It also appears in different versions in the literature (cf., for instance, [2,
p- 366]).

Lemma 5.11. Let ¢ : R — R be a non-decreasing continuous function and u €
L*(0,T;L®(Z, 1)) m c(Jo, T] Ll(z u)) such that % € LV (0,T; V') and ¢p(u) €
LP(0,T; V). Set @(r) = [, ¢(s) ds for every r € R. Then,

b, d
(5.43) /tl <£"P<“>>V,Vdf= Lot)dn = [ o(u(t)du
forevery0 <t; <ty <T.

Proof. By assumption, there is a constant M = |[u|| (o, 1,1(z,)) = O such that ¢
is bounded on [—M, M] with constant Ly > 0. From this, we easily obtain that

(5.44) [D(u(t)) — P(u(s))ll1 < Ly M [Ju(t) —u(s)llx

for every t, s € [0,T] and so ®(u) € C([0,T];L}(Z)). Furthermore, Holder’s
inequality yields (%%, ¢(u))y,y € LY(0,T). Thus, both sides of equation (5.43)
are finite. Now, let 0 < t; < t, < T. Forevery h > 0 and for t; < t < t; such
that i < t_y, the Steklov average [44];, of % is given by

t+h
h / du in V',

dt
Since % € LP'(0,T; V'), one easily checks that
du du
li — == in LY v
il [dt } V)
and so,
b rdu b/du
A4 li — dt = — dt.
(5.45) B0 h < [dt}h'¢(u>>v' 14 h < dt '¢<u)>v,v
Furthermore, for every t € (0, T — h), [44],(£) = h="(u(t +h) — u(t)). Using this

together with the convexity of ® and (5.4), we see that

/t:2<[%h"f’(”)>v/,vdfﬁ /t / u(t+h)) —(u(t))) dpdt

/ (1)) dudt

By (5.44), we can apply Fubini’s Theorem, to conclude that

t
/2/ dtq)h d‘u dt = / th tz d]l / th tz)) d]l
51
for every h > 0. Since ®(u) € C([0,T]; L}(Z)), one has that

hl_i)r(r)1+ @h(u(tz)) in C([tl,tz];Ll(Z))

(5.46)



68 THIERRY COULHON AND DANIEL HAUER

(cf. [54, Lemma 3.3.4] for V = R and note that the general Banach space-valued
case V is shown analogously). Thus, sending i — 0+ in (5.46) and using (5.45)

yields
/tltz<£j;,¢(u)>v,,vdt§ /ECD(u(tl))dy—/Z@(u(tz))dV‘

In order to see that the reverse inequality holds as well, we take i < 0 such that
0 < —h < t1. Then by the Convexity of ® and since i1 < 0, we obtain that

/t1t2<[ljlbtl}h’¢(u)>v/ at= [ Yu(t+h) —u(t), p(u(t))) dt
/t / u(t+h)) — @(u(t))) dudt

/ 2 (u(t)) dpe .

Now, proceeding as in the first part of this proof, we see that (5.43) holds. g
With the above preliminaries, we can now outline the proof of Theorem 5.9.

Proof of Theorem 5.9. Let ¢ : R — IR be strictly increasing continuous and for
every ¢ > 0 and ¢, be the regularisation of ¢ satisfying the assumptions of this
theorem. Since Ajne¢ + F and Ajne@e + F are quasi m-accretive in Ll(Z, i,
the Crandall-Liggett theorem yields the existence of strongly continuous semi-
groups {Ti}1>0 ~ —(Aineod + F) on D(Aineop) and {T }1>0 ~ —(Aineode + F)
on D(A1neo@e). Since Ajneo¢ + F and A1neo¢e + F have each a complete resol-
vent, Proposition 2.16 yields

(5.47) lue(t)llg < elluolly and  [u(t)lly < e fluoll

foreveryt > 0,e > 0and 1 < g < co. Moreover, by Lemma 5.10 and Theo-
rem 5.8, one has for every T > 0 that

(5.48) limu, =u  in C([0, T]; LY (X, p)).

e—0

Combining this with (5.47) and Holder’s inequality, we find
(5.49) lirr(} Ue = U inC([0,T|;L9(%,u)), forevery1 < g < coand T > 0.
e—

Now, we fix T > 0 and set
M= e“’T||u0Hoo.

By (5.47), the values of u, and u do not exceed the interval [—M, M|. Since the
measure space (X, y) is finite, we see that

e (e () = p(u(t))llg < [Ipe(ue(t)) — p(ue(t))llg + [P (ue () = P(ue(£)) g
< (2 Ige = @ll i pamy + 19 ue(t)) — P(u()) g

and so, the uniform convergence of ¢ — ¢ on [—M, M] as ¢ — 0+, the conti-
nuity of ¢ combined with (5.47), (5.49), and Lebesgue’s dominated convergence
theorem imply

(5.50) li_r)régbg(ug) = ¢(u) inC([0, T|;LY(%,u)) forevery 1 < g < oo.
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Since F is Lipschitz continuous in all L7-spaces, (5.49) and (5.50) imply

(5.51) lim k“/ (te) e (ue) dpds = / k+1/ u)duds

e—0

for every t € (0, T] and k > —1. We set
S
s) = / ¢e(r)dr  foreverys € R.
0

Since ¢, — ¢ uniformly on [-2M,2M] as ¢ — 0+, there is some gy > 0 such that
the sequence (¢;)e>¢, is bounded L*(—2M,2M). Thus and by the mean-value
theorem, we obtain that

[P (ue(t)) — (u(t)) |2
< |[Pe(ue(t)) — Pe(u(t)) 1 + [[Pe(u(t)) — P(u(t))]l

< Supllgeipmn [ue(t) = ()1 + llge = Plloamm e“T|uoll1.
£~€0

Applying to this limit (5.49) and the uniform convergence of ¢ — ¢ on [—M, M]
as ¢ — 0+, we obtain that

(5.52) lim @ (ue) = ®(u)  in C([0, T); L' (Z, p))-

By Theorem 5.7, every u; is a strong solution of Cauchy problem (5.10) for ¢
replaced by ¢. and has the same regularity as stated in (5.15). Moreover, every
u, satisfies inequality (5.39), that is,

/0 T(‘PE(”S(S)))d5+/2<1>s(us(t))du

< [@ctmydn— [ [ Fuls))gelu(s) duds

and inequality (5.16), that is,
t
/ SN (e (1e(5))) ds + £ / @, (ue(t)) dp
0 p)

(5.54) < (k+1)/0tsk/ Pe(ue(t)) ue(t) duds
- [ [P guluds)) duds

for every t € (0,T] and ¢ > 0, where k > 0 is fixed. Since . > 0, inequal-
ity (5.53) together with (5.47) and the two limits (5.50) and (5.51) imply that the
sequence (¢ (ue))e>0 is bounded in L7 (0, T; V) and so by (5.6), (/¢ (ue))eso is
bounded in L”' (0, T; V’). In particular, by equation (5.11) we have that (%)

is bounded in L?'(0,T;V’). By the continuous embedding of V into L?(Z, )
and by (5.50), for any sequence (&,),>1 of the open interval (0,1) satisfying
lim,, 0 €, = 0, there are vand x € L¥' (0, T; V') and a subsequence of (ue,),>1,
which we denote again by (u, ),>1 such that

(5.53)

(5.55) nlgn Pe, (Ue,) = ¢(u)  weaklyin LP(0,T; V),
(5.56) lim % = v weakly in LV (0, T; V'),

n—oo
(5.57) lim ¥'¢e, (ue,) = x  weaklyin L7 (0, T; V').

n—oo
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By (5.49) and (5.56) combined with standard techniques employed for vector-
valued distributions (see, for instance, [53, pp 36]), one sees that

V= il;tl in L7 (0, T; V).

By (5.4) and Lipschitz continuity of F on L¥' (0, T; L?(%, 1)), we may multiply
equation (5.11) by v € C}(0, T; V) and subsequently integrate over (0, T). Then,

T /du, ,
/ L, dt+/ (¥ e, (1te, ), )V/th—i—/ (te,),v)dt =0
0 dt vV

for every n > 1. Sending n — oo in the latter equation and employing (5.49),
(5.56), (5.57) and the Lipschitz continuity of F on LP' (0, T; L*(Z, 1)) yields

(5.58) dt+x+P() 0 inL”(0,T;V').

d

It remains to show that x = ¥/(u). To see this, let 0 < #; < t, < T and take
w € LP(0,T; V). By convexity of ¥, we have that

[ O e ) = ¥ @)y ) — )t > 0

Now, using that u,, is a solution of equation (5.11), the latter inequality can be
rewritten as

/:/ (tte, ) (Pe, (ue,,) —w)dde—/ZqD(ue”)dy
< [0 @) () — ) .

£

12

<d§;n ,w) dt

tl tl

Sending n — oo in this inequality and using (5.49), (5.51) for k = —1, (5.55),
(5.56), and (5.52), we obtain

/t / )dydt-l—/CD wdy|

<- / (¥ (@), p(u) — w) d.

f

)
+ <%, w) dt

51 t

On the other hand, if we first multiply equation (5.58) with ¢ (1), and then in-
tegrate over (t1,t) for 0 < t1 < to < T and apply integration by parts formula
(Lemma 5.11) yields

/<I> dy

Using this, we can rewrite the latter 1nequahty as

[ =¥, g —w)ar > 0

f

t
+ ZX, )) dt + / (1)) dpdt = 0.

Since w € LP(0, T; V') was arbitrary, taking w = ¢(u) — A for any A > 0 and for
some general § € LP(t1,t; V) in this inequality and applying the hemicontinuity
of ¥’ (hypothesis (Hii)) yields

[T wunad=o

t
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for all { € LP(ty,tp; V). Therefore and since 0 < t; < tp < T were arbitrary,
x =¥ (¢(u))in V' for a.e. t € (0, T), showing that u is a weak energy solution
of Cauchy problem (5.3).

It remains to show that u satisfies the energy inequalities (5.39) and (5.16).
To see this, we send ¢ — 0 in the two inequalities (5.53) and (5.54) and apply
limit (5.55) together with Fatou’s lemma (note ¥ > 0 by assumption) and the
lower semicontinuity of ¢, limit (5.49), (5.50), (5.51) and (5.52). This completes
the proof of this theorem. 0

5.3. Proof of Theorem 5.6. This subsection is dedicated to outlining the proof
of Theorem 5.6.

Proof of Theorem 5.6. Let ty € D(A1ne@)" and {T;};>0 be the semigroup gener-
ated by —(Ajne¢ + F) on D(Aine) . By assumption, the semigroup {T;} >0
satisfies the L!-L*-regularisation estimate (1.18) (for ug = 0 and s = 1). Thus
Tty € D(Ained)” N L®(Z, ) for every t > 0 and the strong continuity of
{Ti}1>0 in L}(Z, u) yields the existence of a sequence (uo,),>1 with elements
Uy, € D(Amooq))” N L*(%, u) such that ug, = Ty, up for some sequence (t,),>1
satisfying 0 < t,.1 < tu, limy—eo ty = 0, and limy_c0 g = tp in LY(Z, u). We
set u(t) = Tup, (t > 0), to be the unique mild solution of problem (5.2) in L!
with initial value ug and u,(t) = Tupy,, (f > 0), the unique mild solution of
problem (5.2) in L! with initial value ug,,. By Theorem 5.9, the mild solution u,
of (5.2) is a weak energy solution of problem (5.3) with regularity (5.35)—(5.36),
satisfying (5.37) and (5.38). Now, the semigroup property (2.24) and the expo-
nential growth property in L' (thatis, § = 1 in (2.30)) yield that

(5.59) u(t+ty) = uy(t) forallt > 0andn > 1.

Thus, if one replaces the interval [0, T) by [t,, T) for every n > 1, the mild so-
lution u is a weak energy solution of problem (5.3) with regularity (5.35)—(5.36),
satisfying (5.37) and (5.38).

It remains to show that energy estimates (5.9) holds. For this, recall that by
Theorem 5.9, u,, satisfies (5.16) for every k > 0, that is,

[ @ un(s)) ds + 71 [ @(un(6)
(5.60) < (k+1)/0tsk/2cp(un(t))un(t) dpds
=[5 PG dp .

By using that F is Lipschitz continuous, Holder’s and Young’s inequality, and
then Poincaré type inequality (5.7), we see that

j:/otskH/ZF(un(s))(p(un(s))dyds
5:61) < [ a9 o ua(s)) s

t _ t ’
< /0 ST (¢ (5))) ds + LLC L /0 S [un () 5 ds
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for every £ > 0. Similarly,
(k+1) / /(,bun s)dpds
(5.62) < (k+1) /0 s 1n () 1 1 (2n(5)) ] ds

t t
k+1 [USD DLy R P
< 8/0 ST (P(un(s))) ds + e /o s ||un(s) |l ds

Choosing e = 1 in these two estimates and apply them to the right hand-side of
inequality (5.60), we obtain

t
8 [ @) ds + 41 [ @y (1)) dp
(k+1)P cr1 b P! p o1 t E+1 "
S W /0 S ||1/ln(S)||p/ dS+ W /0 S ||un( )H ds
By assumption, there are exponents &, B, v > 0 and a constant C > 0 such that

the semigroup {T;}>0 satisfies L!-L* regularisation estimate (5.7). Now, we
choose k = a(p’ — 1) > 0. Then, by Holder’s inequality, by using that

(5.63)

un ()11 < " |l uonlla for every t > 0,

and by L!-L* regularisation estimate (5.7), we see that
t / t f /-
Jy s @) as < [ ()Y )1 s
0 0
t / r—1)
< [ 0 D)1 e ds o
0
t -
< /0 e B (7 =1+1)s g |1y, [|7 D
and
/t s P =DH1 1y (s) HP: ds < /t se@ (B —1)+1)s g ||u0,n|q(p/_1)+1
0 0

Applying these to estimate (5.63), we obtain

[ SO (plun() ds + 0D [ (g (1)) dp

0
’_ -1 t ,_ r—1)+1
< <"‘(’;/(Aj)l+;))p”§” /Oewus(p ”“)Sdslluo,nl!l”(” )+
t
p cp—1 r—1)+1 (p—1)+1
i [ e U ds g, 7

Inserting relation (5.59) into this inequality yields

t
3 S (s + 1)) ds+ £ 0 [ @(u(t+t,)) dp

a(p—D+1rcrt 1 o —1)41)s y (p—1)41
SW/OE (B(p )+1) dSHu(tH)Hl

-1 t /_ (pr—1)+1
s [ s Bl ds fu(ey) 70
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for every t > 0 and n > 1. By the continuity of ¢, since u € C([0,00); L'(Z, 1)),
the lower semicontinuity of ¥, and since

lim dD( (t+ta) d;u—>/<l> ))du

n—oo

for every t > 0, sending n — oo in the last inequality yields inequality (5.9).

Next, suppose that ¢’ € L*(R), (¢ 1)’ is locally bounded, and exponent 0 <
« < 1inestimate (5.1). By Theorem 5.7, the function u, given by (5.59) is a strong
solution of Cauchy problem (5.14) with initial value u,(0) = ug, = T;,uo for
some sequence (f,),>1 C (0, ) satisfying t, | 0+ as n — co. By Theorem 5.7,
the function u, has regularity (5.15) satisfying the properties (1)-(4) of in this
theorem. Thus, by (5.59), the mild solution u is also a strong solution of Cauchy
problem (5.14) on the interval [t,, T) admitting regularity (5.15) on [t,, T) for
every n > 1 large enough.

It remains to show that u satisfies energy inequality (5.13). To see this, we use
that by Theorem 5.7, u,, satisfies inequality (5.17) for every k > 0 and ¢t > 0, that

is,
t U, 2
LI ) |G
< (k+2)(k+1)/Otsk/ch(un(t))un(t)dyds
—(e2) [ [ Flun(s))plunts) cp s

+5 / /cp un(s)) |F(un(s ))]2 dp ds.

Applying the two estimates (5.61) and (5.62) to the right hand side of inequal-
ity (5.64) yields

/ k+2/¢ (S)

< (k+2)2 [s/ sk+lv<¢<un<s>>>d5+% [ o)1 o

0
41 / /4)un 1) [F(itn(s))? dpe ds.

for every ¢ > 0and k > 0. Now, taking k = a(p’ — 1) and ¢ = J, then by inequal-
ity (5.9), the Lipschitz continuity of F, Holder’s inequality, since by assumption
¢’ € L®(R), by the L!-L® regularisation estimate (5.1), and by the exponential
growth property

dpds + £ (g (un(1)))

(5.64)

i dpds + P2 (p(u, (1))

dun

lu(t)|ls < e“luglly  forallt >0,
we see that

L[ s [ ) |5

/, r— pcr-1 f w r_ s '—1)+1
S (a(p p1/)+2)2 |:(0¢(p(411):)1p)1c /e (B(p'—1)+1) dSHuO’nH’l}’(p )+

2

o (5)] s + 402 (g (1)

t
- ’_ ’—1)+1
+ (Z{”l%pil /0 ge@ (B(p'—1)+1)s 4o ||u0,n||’1Y(P )+
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/_ pcr-1 t alp! — r—1
A e [y ()18 () 1 s
t
w2
£ 519/l [ 5 100(6) o 100(5) 1 .

- o1 [t ,_ —1)+1
< Ly p1/)+2)2 |:(](<I—11);)Cpl:1 /ew(ﬁ(p 1)H)stHM0,nH¥(p )+

o1 f ,_ 1—1)41
St [ e BT as fug, 77

t
/—1)4+1)? CP ;_ ( /F—1)4+1
(a;r:(z_l)p)p)il /0 e Bl =1)s dSHuO,nH’{ p'—1)

~ t
+ w;C H(P/HOO/O Slfuc ew(ﬁJrl)s dSHuO,nH,lHl-

From this estimate, the assumptions on ¢ and by inequality (5.1), it is not difficult
to deduce that inequality (5.13) holds and u admits the stated properties. This
concludes the proof of this theorem. O

6. EXAMPLES

This section is devoted to illustrating the power of the theory developed in the
preceding sections. By using the abstract theory of nonlinear semigroups, we
show in this section that mild solutions of nonlinear parabolic initial boundary-
value problems satisfy an L!-L®-regularisation effect provided the involved dif-
fusion operator satisfies a Gagliardo-Nirenberg type inequality. Comparing our
tirst examples with the results from the known literature, one sees that the meth-
ods developed in Section 3 and Section 4 yield sharp exponents and extend these
results for solutions with exponential growth.

Note that in principle our theory could work for non-linear operators on
non-compact manifolds, such as the porous media operators associated with
the Laplace-Beltrami operator or the p-Laplace operator (for the latter see [34]).
Here the Sobolev inequalities for the gradient depend on the geometry of the
manifold (see [39]), the main task is to deduce Gagliardo-Nirenberg inequalities
for the operator under consideration by adapting the methods of the present
section, then one applies the above machinery. We leave this for future work.

In order to keep our examples simple and to focus on the essential, namely,
the regularisation effect of solutions of parabolic boundary-value problems, we
shall assume that ¥ is an open subset of the d-dimensional Euclidean space R“
for d > 2. We shall specify at the beginning of each example which further
assumptions we impose on the boundary 0% of . We choose u to be the d-

dimensional Lebesgue measure on X and denote by H = ’H‘dale the (d — 1)-

dimensional Hausdorff measure H?~! restricted to the boundary 9X.

Under this assumptions, we simplify our notation and write L7(X) to denote
the Lebesgue space L1(X, ), L7(dX) to denote the Lebesgue space L7(dX, H),
and L}(Z,u) the closed linear subspace u € LI(X, ) with mean value u :=
|%‘fzudx:Oforl < g < oo,

Here, we employ the following notation: for 1 < p,q < oo, let W, ,(X) be
the linear subspace of all functions u € L7(X) having weak partial derivatives
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ou
axl’

. ,ax € LP(X) equipped with the norm
el == Nullg + TVl

Moreover, for 1 < p,q < oo, we denote by W;/Q(Z) the closure of the set of
test functions C*(X) in W, ,(X), W, . ,,(E) the space L{(Z) N W} (%), and for
) d

p.4q,m
0<s <1, W, (X)denotes the setofallu € Lq(Z) with finite semi-norm

ully o= [ [ MO dxay.

We equip W, . (X) with the norm [|u|ls,p,q = [[ulg + [u]s. Further, we denote by
W;‘,’q(Z) the closure of C°(X) in W, . (X). For subsets 0% in R?"1, we denote by

W1-1/PP(9%) the Sobolev-Slobodeckij space given by the set of all u € LF(9%)
having finite semi-norm

ulpi= [ ] WO an(x)an(y)

In the following, F : L1(X,u) — L9(X,u) be the Nemytski operator of a
Carathéodory function f : ¥ x R — R satisfying (2.17) for some constant L > 0
and f(-,0) = 0 and B be an m-accretive graph in R with domain D(B) = R and

(0,0) € B.
We begin to illustrate our theory on the following classical example.

6.1. Parabolic problems involving p-Laplace type operators. The L7-L"-regu-
larisation effect for 1 < g < r < oo of solutions of parabolic equations associated
with the celebrated p-Laplace operators equipped with homogeneous Dirichlet
boundary conditions has been first established by Véron [92]. The ideas in [92]
were followed up and extended rapidly by Alikakos and Rostamian [1] and
more recently in [30, 71]. By using the logarithmic Sobolev approach, Cipriani
and Grillo [33] revisited the L7-L"-regularisation effect for solutions of parabolic
equations involving p-Laplace operators equipped with homogeneous bound-
ary conditions. Then many papers followed on this topic by using the same
method (see, for instance, [84, 69, 47, 81], and more recently, [94] for homoge-
neous Robin boundary conditions with a nonlocal term).

To the best of our knowledge, our results stated in this section complement the
existing literature in several ways: namely, by adding (possibly multi-valued)
monotone and Lipschitz continuous perturbations and by providing a simpli-
tied approach to a L7-L’-regularisation effect of solutions of parabolic boundary-
value problems associated with p-Laplace type operators.

Further, the examples in this subsection show that the parameter my appear-
ing in the two main theorems Theorem 1.2 and Theorem 1.4 is optimal if my =
g ! (cf. Remark 1.3). To be more precise, consider the case 1 < p < d and let

{T¢}+>0 be the semigroup generated by the negative p-Laplace operator —AH;d
on L2(IR%). Then, we show in the proof of Theorem 6.1 below that {T;};> satis-
ties L-L" regularity estimate (1.18) for uyp = 0 with parameters r = %, qg=2

and exponent ¢y = %. One easily sees that v+ > g and so one can deduce an
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L*-L* regularisation estimate for s = yrq 'my = g_ﬁop and sufficiently large

mo > qy~! = p. By Theorem 6.1, if 24 < p < d then my = p satisfies (1.15),

and if 24 < p < d then for mg = p, the semigroup {T;}1>0 ~ —A]I;d for satisfies

L!-L®-regularisation estimate (1.18) with exponent a; = und uy = 0.

4
d(p=2)+p
The exponent a; coincides with exponent % in the Barenblatt solution
p-1
=

2

[\ 7
1+C | , fort>0,

T,(x,t) =t 4
A
+

(6.1)

1
P

mﬂhA:d@—2y+nCp:<i>_l2;ﬁ

to the prototype parabolic p-Laplace equation
ol — A]I;du =0 onRY x (0,00).

Note, the Barenblatt solution (6.1) also holds for the singular range 1 < p < 2
provided the parameter A > 0. Moreover, A > 0 if and only if % <p<2
(see [50, Chapter 7.4] ). It is worth noting that for singular 1 < p < 2, the
existence of a Barenblatt solution coincides with the fact that semigroup {T;}+>0

generated by the negative p-Laplace operator —AH;d on L?(IR%) satisfies L!-L*-

regularisation estimate (1.18) for 1y = 0 with exponent a4 b but also

:ﬂ?3+
that for the same range % < p < 2, every positive weak energy solutions of
problem (6.2) (below) satisty a Harnack inequality (cf. [50, Chapter 7.4]). In the
degenerated range 2 < p < oo, the comparison of the optimal exponents «; has
been considered, for instance, in [21].

Throughout this section, let 1 < p < oco. Then for given initial value 1y €
L1(%X), we intend to establish the regularisation effect of solutions u(t) = u(x, t)
for t > 0 of the parabolic initial value problem

62) o —div(a(x, Vu)) + B(u) + f(x,u) 30 on % x (0,00),

' u(-,0) = u onx,
respectively equipped with one of the following types of boundary conditions:
(6.3) u=0 ondX x (0,00),if = C RY,
(6.4) a(x,Vu)-v=0 onodX x (0,00), if (%) < oo,

(6.5) a(x,Vu) v+b(x)|[ulf'u+d6,(u) =0 ondX x (0,00),if u(X) < co.

Here, we suppose that a : £ x R? — R is a Carathéodory function satisfying
the following p-coercivity, growth and monotonicity conditions

(6.6) a(x,&)¢ = n|g|”
(6.7) la(x,&)| < alg]P~ + h(x)
(6.8) (a(x,&1) —a(x,82)) (61— G2) > 0
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fora.e. x € Zandall §, &, & € RY with & # &, whereh € LP' (£) and ¢1, 77 > 0
are constants independent of x € ¥ and ¢ € R?. Under these assumptions, the
second order quasi linear operator

(6.9) Bu := —div(a(x,Vu))  inD'(X)

foru € Wll.jf(ﬂ) belongs to the class of Leray-Lions operators (cf. [63]), of which
the p-Laplace operator Ayu = div(|Vu|P~2Vu) is a classical prototype.
In some situations, one can replace (6.8) by

(6.10) (a(x,¢1) —a(x,82))(81 — G2) > 7|¢1 — Ca2fF

fora.e. x € Xand all §y, & € RY. In fact, it is well-known ([49]) that for p>2
the p-Laplace operator satisfies inequality (6.10) with constant 7j = 2277,

Regarding homogeneous Dirichlet boundary conditions (6.3), we assume that X is
an open subset of R? and impose no further assumptions on the boundary 0%
of ¥. In the case & = R?, the homogeneous Dirichlet boundary conditions (6.3)
become the following vanishing at infinity condition
(6.11) |l‘un u(x,t) =0 foreveryt>0, ifZ=R"

X|—00

Concerning homogeneous Neumann boundary conditions (6.4), we assume that X
is an open bounded domain with a Lipschitz boundary 0% (in the sense of [72,
Sect. 1.3]). We denote by v the (weak) outward pointing unit normal vector
on 0X. Under this assumption, it is not clear whether the co-normal derivative
a(x, Vu) - v on 0% exists. Thus, the Neumann boundary condition (6.4) needs to
be understood in a weak sense and so, we denote by a(x, Vu) - v the generalised
co-normal derivative of u at X associated with the operator B (as, for instance,
described in [32]).

Considering homogeneous Robin boundary conditions (6.5), we assume that X
is a open bounded domain with a Lipschitz boundary 0%, d > 0 is a constant,
b € L®(9%) such that b(x) > by > 0 for H-a.e. x € 9X. The operator 6, describes
the nonlocal term on 0X and is given by

612 (8,(u),0) = [ [ MOS0 (o) — o(y)) dH(x)dH()

for every u, v € Wi-1/PP(9%).

6.1.1. Homogeneous Dirichlet boundary conditions. Let ¥. be an open subset of R".
It is well-known (cf. [12]), at least in the case when X is bounded that the Leray-
Lions operator B given by (6.9) equipped with homogeneous Dirichlet bound-
ary conditions can be realised as follows:

BP = {(M,U) € L*(Z) x LA(%) ‘ ue W;,Z(Z) such that

/Z a(x, Vi) VEdx = /Z vgdy forall &€ W)y(%)}.

We call BP the Dirichlet-Leray-Lions operator in L?(%). Note that, since the set of
test functions C°(X) is contained in W;/Z(Z) and dense in L?(X), BP defines a
single-valued operator on L?(X) and by using (6.6), one obtains that the domain
D(BP) is dense in L?(X). Furthermore, condition (6.6) yields a(x,0) = 0 a.e. on
Y hence, (0,0) € BP.

(6.13)
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In the case & = RRY, the space W;Q(Z) = W;/Z(]Rd ). Hence the operator BP

becomes a realisation in L2(X) of the Leray-Lions operator B equipped with
vanishing conditions (6.11).

To see that BP is completely accretive in L?(Z), let T € C*(R) be such that
the derivative 0 < T” < 1 with compact support supp(T’) and T(0) = 0. Since
for every u, il € W;/Z(Z), T(u—11) € W;,Z(Z) with

VT(u—10)=T(u—10)V(u—n)
and by monotonicity condition (6.8), one sees that
/ T(u — ) (BPu — BP0)dx
)
- / (a(x, Vit) — a(x, Vi)V (u — 2)T' (u — ) dx > 0.
b

Thus, by Proposition 2.4, the operator BP is completely accretive.

Under the assumptions (6.6)-(6.8), the restriction of the operator I + BP on the
reflexive Banach space V' = ng;,z (X) satisfies the hypotheses of [63, Théoreme 1].
Recall that an operator I + B on some Banach space V is coercive in V' if

(6.14) lim (EBIWw vy
Jufly—o0 [ullv

4

where we denote by (v/,v)y y the value of v/ € V' at v € V. In practice, it
is often easier to verify that the following statement holds, which is equivalent
to (6.14): for every « € R, the set of all u € V satisfying

((I+B)u,u)yy
[[ullv
is bounded in V. For the operator B = BP, the latter statement holds since for
every a € Ry := [0,00), the set {(a,b) € R3 [4?> + bP < a(a+b) } isbounded in
R?. Thus and since W;,Z(Z) is continuously and densely embedded into L?(X),
it follows that B satisfies the range condition (2.14) for X = L?(%).

By hypothesis on the m-accretive graph B on IR, one has that the domain
D(B2) of the associated accretive operator B, in L?(X) contains the set of test
functions C°(X). Recall, for every A > 0, the Yosida operator ;1 of B, is given
by (Baau)(x) = Ba(u(x)) for a.e. x € X, where §, denotes the Yosida operator
of B on R. Since the Yosida operator B, : R — R of B is monotone, Lips-
chitz continuous and satisfies f,(0) = 0, one has that for every u € W;/Z(Z),
Boa(u) € W;,Z(Z) with VB (1) = B (1) Vu a.e. on X for all A > 0. Thus, by
definition of BP and by (6.6),

[0, B2n(W]a = [ o, Vi) VBaa(u) dr >y [ |Vul’B) () dx > 0
for every (u,v) € BP. Therefore, by Proposition 2.5, the operator

(6.15) AP :=BP 4+ B, +F

is quasi m-completely accretive in L?(X) with dense domain.
By the Crandall-Liggett theorem [40], — AP generates a strongly continuous
semigroup {T;};>0 on L2(X) of Lipschitz continuous mappings T; : L*(Z) —

<ua
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L%(X). Since —AP is completely accretive, each mapping T; has a unique Lip-
schitz continuous extension on LI(Z) for all 1 < g < oo and on L2NL*(Z)" if
q = oo, respectively with constant e

The complete description of the L7-L*-regularisation effect of the semigroup
{Ti}1>0 ~ —AP is as follows.

Theorem 6.1. Suppose the Carathéodory function a : ¥ x RY — RY satisfies the
conditions (6.7), (6.10) and a(x,0) = 0 for a.e. x € X. Then the semigroup {T;}i>0 ~
— AP for the operator AP given by (6.15) satisfies the following Li-L" reqularisation
estimates.

(1) If1 < p < d, then (1.14) holds for

B s(d—p)

* +7* dm, *S(d p)
Ke = & (= , ‘B _= —2 0 , ’)/ = i
G T o BT T )
for every my > p satisfying (— —1D)mo+p—2>0,andeveryl <s < %
satisfying s > ( P) where
* d—p (2 —1)d+p pig

= ra e P = it T LY = i

Moreover, zfd+2 < p < d then one can take my = p and zde <p<d,
then (1.14) holds for every 1 < s < i—pp.
(2) If p = d > 2, then for every 0 < 0 < 1, inequality (1.14) holds with exponents
5(1-6) 5(1-0)

« B«

o + 'y
e — 0 _ Yo —_ 0~ 2
s 1773(175059))/ Bs = (- 5(129)) Ys = 1=y (1= 5(129>)

forevery1 <s < 1—39, where

20+ 1 9 [26+p(1-6)1>—(1-6 % 2
;= 2 !, = p2ﬂ29 4, = WP
(3) If d < p < oo, then inequality (1.14) holds with exponents

B S
vy T a0 T aea )

forevery 1 < s < 2, where

* _ _ 26p+p(1—6p) _ pd
& pd+2p )’ Br=7"+1L7y" === p O’GO_pd+2(pfd)'

Under the assumptions that a satisfies (6.6)-(6.8), the statements (1)-(3) remain true
with (1.14) replaced by (1.18) and for ug = 0.

For the proof of this theorem, we employ the classical Gagliardo-Nirenberg
inequalities ([75], see also [37]). The Gagliardo-Nirenberg inequalities are valid
for functions u € er,,q(le) and so, in particular, for test functions u € CZ(X).
Thus we can use of the following version of Gagliardo-Nirenberg inequalities.

Lemma 6.2 ([75]). For1 < g,p < oo, letu € er,,q(Z). Then there is a constant C > 0
depending only on d, q, p, 8 such that

(6.16) loellpe < CNIVulllf full ™,
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where
(6.17) ;:9(1_%)”1_9)%,

forall 6 € [0,1] with the following exceptional cases:

(1) If p < dand q = oo, then we make the additional assumption that either u
tends to zero at infinity or u € L1(R?) for some finite § > 0.
(2) If1 < p < ocand1—d/p is a non negative integer, then (6.16) holds only for

6€[0,1).
(3) If X is a bounded domain with a Lipschitz boundary, then inequality (6.16) is
replaced by
(6.18) lullye < € (NSl 32 + 1l

for every u € Wy, .(2) N LI(X) and any § > 0, where p* is given by (6.17) for
every 0 € [0, 1] with the exceptional cases (1) and (2), and the constant C > 0
also depends on the domain.

Proof of Theorem 6.1. We begin to consider thecase1 < p < d. Thenby Lemma 6.2,
there is a constant C > 0 such that

(6.19) Il o < CllIVullly

for every u € er,,z (X). Thus, by definition of the operator BP and by (6.10),

[l — ﬁH’;ﬂ < IV (u—a)llly
-P

<cj! / (a(x, Vu) —a(x, V1))V (u — 1) dx
by
= Cqi Yu—u,BPu — BPn)

for every u, i € D(BP). Now, Remark 3.5 yields the operator AP given by (6.15)
satisfies the Gagliardo-Nirenberg inequality (3.2) with parameters

d
(6.20) r:L, c=p, 0=0, and w= L.
d—p
For v = %, one has yr > 2 and my = 2y~! = p satisfies (1.15) if and only if
p > 2d/(d 4+ 2). Thus, Theorem 1.2 yields the first statement of this theorem.
Next, consider the case p = d > 2. By Lemma 6.2,
lull 2. < CIIVulllp llull;™

for every u € W;,Z(Z), 0 <0 < 1and some constant C > 0. Let 0 < 8 < 1. Then
by definition of the operator BP and by (6.10),

a)? g Mk o T
lu =2’ < ColIV (=)l u—al,
P ~—1 A n N P(lge)
<Cif /Z(Q(X,Vu)—a(x,Vu))V(u—u)dxHu—uHZ
p(1-6)
= Co 7~ (u— 0, BPu — BPa) [lu — a|, °
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for every u, i € D(BP). Thus, by Remark 3.5, the operator AP given by (6.15)
satisfies the Gagliardo-Nirenberg inequality (3.2) with parameters

_ 2 _p _pd-06
(6.21) rg—l_e,(fg—e,@e— 0 ,w=L forevery(0 <0 <1.
For0 < 6 <1, y9 := 29-‘,-;77]51—9) satisfies ygrg > 2 and by taking my = 279_1 =
2p
o p(i=e)’ One has

Y7o 1 20
1078 2(——-1) ="
( 2 >m0+ (’)/9 > 1—9>0

hence, condition (1.15) holds. Moreover, since 0 < 5 < 1, one easily sees that
ro(1 — %) < 1forevery 1 <s < 27 lyyrgmo = rg. Therefore by Theorem 1.2, the
second statement of this theorem holds.

Finally, let d < p < co. Then thereis an 0 < 6y < 1 such that 90(% -+

(1—6p)% = 0 or equivalently, 6y = WJrfi(a;_d). We apply Lemma 6.2 for this 6y,

to conclude that there is a constant C > 0 such that
1-6
l[ttlloo < CII[Vul 15 el

for every u € W;IZ(Z). Proceeding as in the previous step, we see that by (6.10)

and by Remark 3.5, the operator AP satisfies the Gagliardo-Nirenberg inequal-
ity (3.2) with parameters
1-6
(6.22) r = 00, azﬁ, Q:u, and w = L.
0o 0o
20p+p(1—6p)
P

B* = v* + 1. Moreover, since % < 7t < % < 1,one has forall 1 < s < 2 that
(1 —35) < 1. Thus, Theorem 4.1 implies that the third statement of this theorem
holds. U

Then, by the first statement of Theorem 1.2, v* = ZfTQ = , 0t = %0 and

6.1.2. Homogeneous Neumann boundary conditions. In this subsection, we assume
that X is a bounded domain with a Lipschitz boundary.
Further, we assume that the monotone graph p on IR either satisfies

(6.23) (v—"0)(u—i) > nolu—aff
or
(6.24) ou = 1olul”

for every (u,v), (4,0) € B.
We define the realisation BN in L?(Z) of the Leray-Lions operator B equipped
with homogeneous Neumann boundary conditions (6.4) by

BN = {(u,v) € [2(Z) x [A(Z) ] 1 € W), (Z) such that
/Za(x,wwgdx - /Zvédx forall ¢ € Wh,(%)}.

Under the assumption that u, ¢ and a(-, Vu) are smooth functions up to the
boundary dX and v denotes the outward pointing unit normal vector on d%, the

(6.25)
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application of Green’s first identity yields
/ a(x, Vu)Vgdx = —/ div (a(x, Vu)) ¢dx —|—/ a(x, Vu) -v ¢dH.
z z oz

Thus, if u € D(BY), one has that v = —div (a(x, Vu)) and a(x, Vu) - v = 0 for
Hi 1l ae. x € 0%, showing that our definition of the operator BN is consistent
with the smooth situation. We call BN the Neumann Leray-Lions operator in L?(%).

In order to see that BY is m-completely accretive in L?>(X) and that the mono-
tone graph B, in L*(X) satisfies the hypothesis (2.28) in Proposition 2.5 with
respect to the operator BY, one proceeds as in the previous example (for ho-
mogeneous Dirichlet boundary conditions), but here one needs to replace the
space ng;,z (X) by W;,z (X). In addition, it is not difficult to check that the domain

D(BV) is dense in L?(X). Therefore, the operator
(6.26) AN :=BN 4 B+ F

is quasi m-completely accretive in L?(X) with dense domain. By the Cran-
dall-Liggett theorem, — AN generates a strongly continuous semigroup {T;}>0
on L?(XZ) of Lipschitz continuous mappings T; on L?(X). The space L®(X)
is continuously embedded into L?(X) since ¥ is bounded. Thus, and since
T; : LN L*(Z) — L1NL%*(X) is Lipschitz continuous with respect to the L7-
norm with constant e%! for 1 < g < oo, T} admits a unique Lipschitz continuous
extension on L1(X) with the same Lipschitz constant e*! for every 1 < g < co.

Now, we state the complete description of the L7-L*-regularisation effect of
the semigroup {T;}1>0 ~ —AN.

Theorem 6.3. Suppose the Carathéodory function a : & x RY — R¥ satisfies growth
condition (6.7), Ag is the operator given by (6.15), and u := ﬁ Js udx for any
u € LY(X). Then the following statements hold:

(1) If a satisfies the strong monotonicity condition (6.10), a(x,0) = 0 for a.e. x €

Y., and the monotone graph B satisfies (6.23), then the semigroup {T;}i>0 ~
—A(I;] on L%(X) satisfies the reqularisation estimates (1.13) and (1.14) with the

same exponents as the semigroup generated by —AP.

(2) If a satisfies (6.6)-(6.8), and the monotone graph B satisfies (6.24), then the semi-
group {T;}i>0 ~ —Ag’ on L2(X) satisfies the reqularisation estimates (1.17)
and (1.18) with the same exponents as the semigroup generated by — AP. More-
over, the semigroup {T; }>0 ~ —BN on L?(Z) satisfies

(6.27) | Tt — oo S 7% e“Psl |lu —u||2

~

foreveryt > 0, u € L°(X) for 1 < s < oo and exponents s, Bs and <y as
given in Theorem 6.1 for the semigroup generated by — AP.

For the proof of this theorem, Lemma 6.2 provides the crucial estimates.

Proof of Theorem 6.3. First, let1 < p < d. Then by Lemma 6.2, there is a constant
C > 0 such that

(6.28) el o < C (v ulllp + [lull,p)
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for every u € W;,p(Z). Taking pth power on both sides of this inequality, using
that forg > 1,

(6.29) (a+b)7 <277 (a4 %) for everya, b > 0,
by definition of the operator BN and by (6.10) and (6.23), we see that
Hu—ﬂ@iSC(MVW—ﬁWW+HM—M$
-r

<C ~_1/ x,Vu) —a(x, Vit))V(u — 1) dx

+Cnyt /Z(v—ﬁ)(u—ﬁ)dx
=Cmax{7j 4,y '} (u—1a,BNu+0v— (BN +9))

for every u, i € D(BN), v € Ba(u), © € B2(#1). Now, Remark 3.5 yields that the
operator AN given by (6.26) satisfies the Gagliardo-Nirenberg inequality (3.2)
with parameters (6.20). Thus, Theorem 1.2 yields the first statement of this the-
orem for1 < p < d.

Next, let p = d > 2. Then by Lemma 6.2, there is a constant C > 0 such that

luell 2, < € (IIVullg Neellz™ + Nl
0

for every u € W;,Z(Z) NLI(Z),0 <6 <1,and g > 0. Thus,if p =d = 2,
we choose § = 2 and use that ||ul|y = [lu]§ ||ul|}~® for every 0 < 6 < 1, and if
p = d > 2 then we choose gy by q%, = % + 158 for any given 0 < 6 < 1 and apply
Holder’s inequality. Then, in both cases, we obtain

(6:30) lull 2, < € (ISl + full) foal3~*

for every u € W;Q(Z). Thus, by definition of the operator BN, (6.10) and (6.23),

1-60

p(
2671 (IV (= D)|[[|p + [lu = allp) [lu—al,

251 (,7_1 /Z(a(x,Vu) —a(x, V)V (u — i) dx

1-0

p(-6)
5t (o= a0 dr) fu— ;"

p(1-6)
< C28 T max {7 L, g M — 2, BNu+ 0 — (BNa+0)) |u— 1|, *

By Remark 3.5, AN satisfies the Gagliardo-Nirenberg inequality (3.2) with pa-
rameters (6.21) hence, Theorem 1.2 yields the first statement of this theorem for
p=d.

Now, let d < p < oo. Then, there isan 0 < fp < 1 such that 90(7 -H+@a-

60)3 = 0 or equivalently, 8y = i We apply Lemma 6.2 for 6, § given by

pd+2(p d
% = 9—; + % and apply Holder’s inequality. Then,

0
(631) lulleo < € (NIl + 1) flull3*
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foreveryu € W;,Z(Z) and some constant C > 0. Proceeding as in the first step of

this proof, we see that by (6.10), (6.23) and Remark 3.5, the operator AN satisfies
the Gagliardo-Nirenberg inequality (3.2) with parameters (6.22). Therefore, by
Theorem 4.1, the first statement of this theorem holds for p > d.

Under the assumption that merely the hypotheses (6.6)-(6.8) are satisfied, one
proceeds as in the previous three steps of this proof and applies Theorem 1.4
with 1y = 0. Thus, the second statement of this theorem holds.

To see that also the last claim of this theorem holds, one combines the Gagliardo-
Nirenberg inequality (6.18) with the Poincaré inequality

(6.32) [l =l < Cn ([ Vulllp,

which holds for all u € W;,p(Z) and some constant Cy > 0 independent of u.
Then, for 1 < p < d, inequality (6.28) reduces to

(6.33) ||u—ﬁ|!dpfdp < CllIVulll,

for every u € W;,p(Z), if p = d > 2 then inequality (6.30) reduces to
(6.34) =l 2 < Co |l Vullly llu — ]|,

for every u € Wj,(X) and 0 < § < 1,and if d < p < oo then inequality (6.31)
reduces to
_ — 1116
[ = lloo < CINulll flu—all, ™

for every u € W;lz(Z), where 6y = and the constant C can differ from

d
R
line to line. Now, proceeding as in the first three steps of this proof and using
the inequalities (6.32)-(6.34) instead of (6.28), (6.30) and (6.31), and noting that
for every u € L2(X), the element (%,0) € BY, then one obtains that for all 1 <
p < oo, the operator BN satisfies the Gagliardo-Nirenberg inequality (3.7) for the
same exponents as found in the first three steps of this proof. Thus Theorem 1.4
yields the third statement of this theorem. i

6.1.3. Homogeneous Robin boundary conditions. In this subsection, we assume that
% is a bounded domain with a Lipschitz boundary. Then the mapping u — u5

from C%1(Z) to CO(9Q2) has a unique continuous and surjective extension
Tr: W, ,(2) — W' /PP(95)

called trace operator (cf. [72, Théoreme 4.2, 4.6, and Section 3.8]). For convenience,
we write U3 1= Tr(u) foru € W;,p () even if u does not belong to C(X) and call
u|yq the trace of u. Thus, if 6 denotes the boundary operator given by (6.12) then
(6(u),u) is finite for every u € W;,p(Z) hence, under the assumptions of this

section, we can define the realisation BR in L2(Z) of the Leray-Lions operator B
equipped with homogeneous Robin boundary conditions (6.5) by

BR = {(u,v) € L2 x [A(%) ‘ ue Wl () st forall € Wi, NIX(E)
/Za(x,Vu)V(fdx+/azb|u]”_2u§d7-[+d<9(u),§> = /Zv(jdx}.

We call BR the Robin Leray-Lions operator in L2(X).

(6.35)
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Since C*(X) is contained in W;,p N L%(X) and dense in L2(X), BR defines a
single-valued and densely defined operator on L?(X). To see that BR is com-
pletely accretive, let T € Py. Then by definition of BR, by (6.8) and since T is
monotonically increasing and Lipschitz continuous on R, and since s — |s|F~2s
is monotonically increasing, we have that

/ZT(u—ﬁ)(BRu—BR 2)dx
_/ (x, Vi) — a(x, Vi) V(i — )T (u — )dx
+/ (\uyﬂu— 2|P20)T(u — 0)dH

Pz xX)—u —|a(x)—1 P=2(g(x)—1
d/aZ /aZ y)IF2 (u(x) |§Cy2)y|d|+p€2) W= (a(x) —aly)) |,
x T((u(x) —u(y)) — (A(x) —4(y))) dH(x)dH (y)

>0

for every u, i € D(BR). Thus, BR is completely accretive. Since for every A > 0,
the Yosida operator 8, : R — R of 8 is monotonically increasing and Lipschitz
continuous and since ¥ is bounded, we may replace T by 8, in the previous
calculation, showing that the m-accretive graph  on R satisfies condition (2.28)
in Proposition 2.5.

In order to see that BR satisfies the range condition (2.14) for X = L?(X), we
employ the following p-variant of Maz’ya’s inequality

(6.36) lutll e < C (Y ulllp + [[upasllp)

holding for all u € W, ,(X) provided 1 < p < co. Here the constant C > 0
depends on p, the volume |X|, and the isoperimetric constant C(d) (cf. [67, Cor.
3.6.3] and see also [55, Section 2.1]). Now, let V = W, ,,(£) N L*(X) be equipped

with the sum norm. Then by (6.6), since for every u € V, (6(u),u) > 0, since
b(x) > by > 0 a.e. on 0¥ and by (6.36), we obtain that

((1+B%)u,u) > |[ull3 + 31 Vull[p + Callullp
> Co (llull3 + 1157l + llullp)

for every u € V. Thus, the restriction of the operator I + BR on V satisfies condi-
tion (6.14) and so, the operator I + BR:V =5 V'is surjective by [63, Théoreme 1],
proving that BR satisfies the range condition (2.14) in L2(%).

Therefore, by Proposition 2.5, the operator

(6.37) AR :=BR 1B+ F

is quasi m-completely accretive in L?(X) with dense domain and so by the Cran-
dall-Liggett theorem, —AR generates a strongly continuous semigroup {T;}+>0
on L2(X) of Lipschitz continuous mappings T; on L?(X), and each mapping T;
admits a unique Lipschitz continuous extension on L7(X) with constant ¢! for
every 1 < g < oo.

Here, we state the complete description of the L7-L"-regularisation effect of
the semigroup {T;};>0 ~ —AR.
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Theorem 6.4. Suppose the Carathéodory function a : £ x R? — RY satisfies growth
conditions (6.7). Further, suppose b € L®(dX) such that b(x) > by > 0 a.e. on 0%,
d > 0, and AR is the operator given by (6.37). Then the following statements hold:
(1) If a satisfies the strong monotonicity condition (6.10) and a(x,0) = 0 for a.e.
x € X, then the semigroup {T;}i>0 ~ —AR on L?(X) satisfies the reqular-
isation estimates (1.13) and (1.14) with the same exponents as the semigroup
generated by — AP.
(2) If a satisfies (6.6)-(6.8), then the semigroup {T;}1>0 ~ — AR on L2(X) satisfies
the reqularisation estimates (1.17) and (1.18) with the same exponents as the
semigroup generated by —AP.

Proof of Theorem 6.4. Note that, for every q > 1, there is a constant C; > 0 such
that
(6.38) (Is|77%s — [¢]772t)(s — £) = Cyls — |1

foralls, t € R (cf. [29, Appendix]). Due to inequality (6.38), we can show that the
semigroup {T;} >0 ~ — AR satisfies inequality (1.14) provided the Carathéodory
function a satisfies (6.10).

First, let 1 < p < d. By Lemma 6.2, we have that inequality (6.28) holds.
Applying Maz’ya’s inequality (6.36) to estimate the term ||u||, in (6.28) gives

(6.39) HMH% < C(IIvullly + lupslip)

for every u € W;,p(Z), where the constant C can be different from the one
in (6.28). Taking pth power on both sides of the last inequality, applying (6.29)
and using the definition of the operator BR combined with (6.10) and (6.38)
shows that

=l < C (119 = DI+l ~ )
-P

<ci! /Z(a(x,Vu) —a(x, V)V (u — i) dx

+ O [ b (ful 2~ )7 ~2a) (u — 1) dH
)
< C max{7j L, (boCp) '} (u — 02, BRu — BRa)

for every u, i € D(BR). Thus, Remark 3.5 yields the operator AR given by (6.37)
satisfies the Gagliardo-Nirenberg inequality (3.2) with parameters (6.20). By
Theorem 1.2, the first statement of this theorem holds for 1 < p < co.

If p =d > 2, then applying Maz’ya’s inequality (6.36) to (6.30) yields

lull 2, < € (NSl + lelly) Tl

for every u € Wzl,p(Z) and 0 < 0 < 1. Thus by (6.29), the definition of B, (6.10)
and by inequality (6.38) for 4 = p shows that

[ —afl?,
1-0
Enb—1 AN [1P H1P o1
< Co 207 ([[[V (=)l + llu—allp) [lu—all
<Ch2i! <171 /(a(x,Vu) —a(x, V1))V (u — 1) dx
T
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p(1-9)

Hao €)™ [ ol a2 @) i)l

p(1-9)
< Cr21 " max {77, (a0 C,) "} (u — 0, BRu — BRa)||lu —af, *

By Remark 3.5, the operator AR satisfies the Gagliardo-Nirenberg inequality (3.2)
with

2 _r _p(1-0) _
=15 =g Q= ——f w=1L for every 0 < 6 < 1.

Therefore, by Theorem 1.2, the first statement of this theorem holds for p = d.

Next, letd < p < 0. Applying Maz’ya’s inequality (6.36) to (6.31) with 6y =
ﬁé_ﬂl) and subsequently taking pth power and employing inequality (6.29)
gives

1-6,
lulles < C (IIVull + e ) a3~

for every u € W;,Z(Z). Proceeding as above, we see that by (6.10), (6.38) and by

Remark 3.5, the operator AR satisfies the Gagliardo-Nirenberg inequality (3.2)
with parameters 7, , ¢ and w as given in (6.22). By Theorem 4.1, the first state-
ment of this theorem holds for p > 4.

Under the assumption that merely the hypotheses (6.6)-(6.8) are satisfied, one
proceeds as in the previous threes steps of this proof and applies Theorem 1.4
with ug = 0. Thus, the second statement of this theorem holds as well, complet-
ing the proof. O

6.2. Parabolic problems involving nonlocal operators. In the following two
subsections, we outline two examples currently attracting much interest. We
begin in Subsection 6.2.1 by establishing the L7-L"-regularisation estimates for
the semigroup generated by the Dirichlet-to-Neumann operator associated with a Leray-
Lions operator (cf, for instance, [55] and the references therein). Subsection 6.2.2
is dedicated to the L9-L"-regularisation estimates for the semigroup generated by
the fractional p-Laplace operator equipped with either homogeneous Dirichlet or
Neumann boundary conditions (cf, for instance, [16, 68]). One can easily see in
both examples that the standard construction of a one-parameter family of Sobolev
type inequalities fails. Recall, this is an important intermediate step in the known
literature to achieve an L7-L*-regularisation estimates for 1 < g < oo of the
semigroup (cf Section 1.1).

For instance, consider the example of the semigroup generated by the Dirichlet-
to-Neumann operator associated with a Leray-Lions operator (6.9) satisfying the
hypotheses (6.6)- (6.8). The construction of this Dirichlet-to-Neumann operator
proceeds in two steps. First, one needs to know the solvability of Dirichlet prob-
lem
(6.40) {—div(a(x,Vu)) =0 inZL,

u=¢ onodx
for every boundary function ¢ € W!~1/PP(9%). For given boundary-value ¢,
let P := u be the unique weak energy solution u of (6.40). Then, in order to
construct a one-parameter family of Sobolev type inequalities, one needs that

P(lg|TF¢p) = |Pep|TFPp  foreveryqg>p > 1.
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However, this does not hold in general. Thus, our next example demonstrates
the strength of Theorem 1.2 and Theorem 1.4.

6.2.1. The Dirichlet-to-Neumann operators associated with Leray-Lions operators. In
this subsection, we suppose that X is either the half space R% := R~ x (0, c0)
or a bounded domain with a Lipschitz boundary.

We begin by outlining the construction of the Dirichlet-to-Neumann operator
in the case X is a bounded domain with a Lipschitz continuous boundary. The
construction of the operator on the half space & = R%. proceeds similarly (see
also Remark 6.5 below). Under this assumption on %, the trace operator Tr :
W, ,(Z) — W1=1/PP(9%) has a linear bounded right inverse

Z : WIVPP(98) — WP (T)

(cf. [72, Théoreme 5.7]) and the kernel of Tr coincides with W;,p(Z). If the
Carathéodory function a : X x R? — R satisfies (6.6)-(6.8), then by the clas-
sical theory of monotone operators ( [63, Théoreme 1]), we have that for every
given boundary value ¢ € W1~1/P#(9Q)), the Dirichlet problem (6.40) admits
a unique weak solution u € W;,p(Z) in the following sense: for given bound-
ary value ¢ € W=1/PP(3%), a function u € W;,p(Z) is a weak energy solution of
Dirichlet problem (6.40) on X if u — Z¢ € W;,p(Z) and

/Za(x, Vu)VEdy =0

forall & € W, ,(Z). Let P : WI=1/PP(9%) — W, ,(X) be the mapping which
assigns to each boundary value ¢ € W1~1/P?(3%) the unique weak energy solu-
tionu € W;/p(Z) of (6.40). Then P is injective and continuous. Furthermore, for
every 9 € W'"/PP(9L) and @ € W, (%) satisfying gz, = ¢, there is a unique
Ugp € er,,p(Z) such that

(6.41) Pp=uep+o

(cf. [55, Lemma 2.5]).

The Dirichlet-to-Neumann operator associated with the operator B defined
in (6.9) assigns to each Dirichlet boundary data ¢ the corresponding co-normal
derivative a(x, VP¢) - v =: Ag on oX.

If P and a(-, VP¢) are smooth enough up to the boundary 0%, Green’s for-
mula yields

/azAgoCd’H:/Za(x,VP(p)thdx

for every ¢ € C®(X) and if Agp € LV'(9%), then an approximation argument
shows that

/aZAcpéd%:/za(x,VPq))VZ(jdx

for every ¢ € W!=1/P#(9%). Even if ¢ and ¢ merely belong to W!~1/P7(9%),
the integral on the right-hand side of this equation exists. Thus, we can use
this integral to define the operator A for the more general class of functions
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W1-1/Pr(9%). By linearity of Z and by using Holder’s inequality together with
growth condition (6.7), one easily sees that the functional

gbn—)/ga(x,VPq))Vthdx

belongs to the dual space W~(1=1/P)#/(9()). This justifies to define the Dirichlet-
to-Neumann operator associated with the quasi-linear operator BB as the operator A :
W-1/pr(9%) — W-1-1/P)2(9%) defined by

(Ao, &) = /Za(x,VP(p)VZ§dx

for every ¢, & € W'=1/P#(3%). The Dirichlet-to-Neumann operator A realised as
an operator on L?(9X) is given by the restriction A := AN (L2(9X)) x L2(9%)).
In fact, one can show (cf. [55, Proposition 3.9]) that

Ao ={(@y) € 12(05) x 12(3%) | 9 € WI1/P7(3) such that
/)2 a(x, VP@)VZZdx = /}2 P &dx forall & € W1/PP(9x) OLZ(E)Z)}.

It is well-known (cf. [55, Proposition 3.9] or [4]), that A, is completely accre-
tive. To see that A, satisfies the range condition (2.14) for X = L?(9X), we take
V = WI=V/PP(9x) N L2(9X) equipped with the sum norm. Then, by (6.41),

<¢r§0>V’,V:/Zﬂ(X, VP@)VPpdx

for every (¢,¢) € Ay. By using Maz'ya’s inequality (6.36) and Poincaré’s in-
equality on W;’p (X), one can deduce the following useful inequality

(6.42) lully < €Nl + sl 2ax )

holding for all u € er,,p(Z) with trace u,q € L?(9Q)) (cf. [55, Section 2]). Now,
leta € Rand ¢ € V. Then, by using (6.6), the boundedness of the trace operator
Tr and inequality (6.42), we see that

sl + 711V P[5 < (I+ A2)g, @)yry
<aC([lgpzll + [1Poll, + IIVPelll,)
<aC(lleazll + [[[VPelll)

Thus, the restriction of the operator I + A, on V satisfies condition (6.14) hence
I+ Ay : V — V' is surjective by [63, Théoreme 1], proving that A, satisfies the
range condition (2.14) in X = L2(9%).

By hypothesis on the m-accretive graph  on R, the domain D(;) of the asso-
ciated accretive operator B in L*(9%) contains the set {v5z |v € C*(X)}. Thus,
the domain D(B;) is dense in L?(9X) (cf. [55, Lemma 2.1 2]). For every A > 0, the
Yosida operator 8, of p is Lipschitz continuous, $,(0) = 0, and the Yosida op-
erator B, of the operator B, is given by (B2 ¢)(x) = Ba(¢(x)) for a.e. x € 0¥
and every ¢ € L%(d%). Therefore, B, ) (@) € WI=V/PP(9L) N L2(dL) for every
@ € WI=1/PP(9%) N L2(9X). Moreover, by (6.41), there is a unique g € er,,p(Z)
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such that P(Br(¢)) = ue + Br(Pe) for @ = B, (Pg). Combining this with the
definition of A, (6.6), and the fact that g/, > 0, we see that

9.87(9)2 = [ a(x, TPg)VBA(Pe)dx = 5 [ IVPoI"B(Pg)dx > 0
for every (¢, ¢) € Az. Therefore, by Proposition 2.5, the operator
(6.43) AN = Ay 4+ Bo +F

is quasi m-completely accretive in L2(9X) with dense domain.

By the Crandall-Liggett theorem [40], —A” generates a strongly continuous
semigroup {T;}+>0 on L2(9X) of Lipschitz continuous mappings T;, which ad-
mits a unique Lipschitz continuous extension on L7(9X) with constant e* for all
1< g <o

Remark 6.5. In the case X is the half space ]R’i, the construction is of A is exactly
the same. But one needs to replace the space W, ,(X) by the space D'*(R%)

which is the completion of the space of all u € C®°(R%) with respect to ||| Vul||,
and the space W'~1/P7(R?~1) needs to be replaced by the completion of the
space of all ¢ € C®(R?"!) with respect to |¢[,. We leave the details to the
interested reader.

Here is the complete description of the L7-L*-regularisation effect of the semi-
group {T;}>0 ~ —AN

Theorem 6.6. Suppose the Carathéodory function a : & x RY — R¥ satisfies growth
conditions (6.7) and A™ be the operator given by (6.43). Then the following statements
are true.

(1) Suppose % is a bounded domain with a Lipschitz boundary, a satisfies (6.10)
with a(x,0) = 0 for a.e. x € X, and the monotone graph B satisfies (6.23).

Then
(i) for 1 < p < d, the semigroup {Ti}i>0 ~ —A™ on L*(9%) satisfies

estimate (1.14) with exponents
B e Slip) o sld=p)

o {@-T)ymg o T @-Tymg
&s = oy Bs = Sd-p) N Vs T T s\
1= (1 ;) (1‘<d1>mo>( y h (- )
d—p p—Ddtp—3
ot = , = 1,
T2 P = o Dmr@ i T
,}, — p—1)mg

p—1)mo+(d—p)(p=2)

—1)mg+p—2>0, andforeveryl <s <
satisfying s > w Moreover, if -2 11 < p < d then one
can take mo = p and if == 211 < p < d, then estimate (1.14) holds with the
same exponents for every 1 <s < %.

(ii) for p = d > 2, the semigroup {Ti};>0 ~ —A™ on L?(0X) satisfies
estimate (1.14) with exponents

T
for mg > p satisfying ( -1
(d 1)"10

‘3

'89 * *

_ _ Hris-0) _ ms(-9)
%= mremay b= mapsaay S e
=51
1—-

“;:L,Z':BZ: - +1, 7 = jfz’

N‘N ‘




REGULARISATION EFFECTS OF NONLINEAR SEMIGROUPS 91

foreveryl—% <f<landl<s< i,
(iii) for d < p < oo, the semigroup {T;}i>0 ~ —A™ on L*>(9%) satisfies
estimate (1.14) with exponents
=Py
e ﬁ, Bs = 2 15 — _ s
forevery1 <s < 2.
(2) Suppose ¥ is a bounded domain with a Lipschitz boundary, a satisfies (6.6)-(6.8)
and B satisfies (6.24). Then the following holds:
(i) The semigroup {T;};>0 ~ —A™ satisfies estimate (1.18) with ug = 0 for
the same exponents as given in the statements (1i)-(1iii).
(ii) The semigroup {T;}1>0 ~ — /Ay satisfies

ITipaz = Pazlleo S e 7% [l pjax — Fazly”
for every t > 0and ¢ € L1(9X), where ¢)p5, = ﬁ [o @ dH and the
exponents as, Bs and <ys are the same as given in the statements (1i)-(1iii).
(3) Suppose % is the half space R.

(vi) If a satisfies (6.10) with a(x,0) = 0 for a.e. x € X and without any
further assumptions on P, then for 1 < p < d, the semigroup {T;}i>0 ~
— AN satisfies estimate (1.14) with the same exponents as given in the
statements (1i)-(1iii).

(vii) If a satisfies (6.6)-(6.8) and without any further assumptions on B, then
for 1 < p < d the semigroup {T;}1>0 ~ —A® satisfies estimate (1.18)
with ug = 0 for the same exponents as given in (2ii).

Since we are not aware about the existence of Gagliardo-Nirenberg inequali-

ties involving the trace operator, we need to construct in each case 1 < p < d,

p = d and p > d the sufficient inequality from the known Sobolev-trace inequal-

ity ([72, Chapter 2, Sect. 4]).

Proof of Theorem 6.6. First, let 1 < p < d. Then, by the Sobolev-trace inequal-
ity [72, Théoréme 4.2] and by Maz’ya’s inequality (6.36),

(6.44) Izl < C Vel + llupzllp)

for every u € W, ,(X) and some constant C > 0 independent of u. Taking pth

power on both sides of this inequality, applying (6.29) and using the definition
of the operator A, combined with (6.10) and (6.23) gives

s — ¢|az||;;;d4> < C (IIV(Pe —PR)Ily + llgpas — ¢pazlly)

-P

™

<Ci! /)2 (a(x, VP) — a(x, VP$))V(Pg — P$)dx

+Cnt [ (0—0)(p—¢)dH
X

< Cmax{7 1y '} o = ¢, (Aap +0 = (A9 +9))
for every ¢, ¢ € D(Ay) and v € Ba(¢), O € B2(P). Thus, by Remark 3.5, the
operator AR satisfies the Gagliardo-Nirenberg inequality (3.2) with

_pd-1)

_761_;9 , 0=p, 0=0, and w=1L
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hence the first statement of this theorem holds by Theorem 1.2.

If p = d > 2, then by the Sobolev inequality for trace operators [72, Théoréme 4.6]
and by Maz’ya’s inequality (6.36), for every 0 < 6 < 1, there is a constant C > 0
such that

(6.45) lupzll oy < C (UIVullly + lupsllp)

-0
for every u € W;,p (X). Proceeding as in the first step of this proof yields that the
operator A satisfies the Gagliardo-Nirenberg inequality (3.2) with
b
1—-6’
Therefore by Theorem 1.2, the second statement of this theorem holds.

Next, let d < p < co. Then, by the classical Sobolev-Morrey inequality [72,
Théoreme 3.8] and by Maz’ya’s inequality (6.36), there is a constant such that

(6.46) lupzllee < C (1Vullly + luazlp)

r= c=p, 0=0, and w=1L forevery0 <6 <1

for every u € W;,p(Z). By proceeding as in the first step of this proof, we see
that the operator A satisfies the Gagliardo-Nirenberg inequality (3.2) with

r=o0, oc=p, 0=0, and w=L.

Therefore, by Theorem 1.2, the third statement of this theorem holds.

Under the assumption that the Carathéodory function a satisfies (6.6)-(6.8)
and the accretive graph f satisfies (6.24), one proceeds as in the first three steps
and applies Theorem 1.4 with uy = 0. Thus, statement (2i) of this theorem holds.

To see that the last statement holds, one applies Poincaré’s inequality

s = Hjaxllp < ClIIVullly

holding for all u € Wll,,p():) with mean value u)py, := ﬁ J5z udH, for some

constant C > 0 (cf. [55, Lemma 2.5]) to the Sobolev-trace inequalities (6.44),
(6.45) and (6.46). Then for 1 < p < d, inequality (6.44) reduces to

ljas, = ozl e < ClI[Vullp

for every u € W, ,(2), if p = d > 2 then inequality (6.45) reduces to
lwjas, — ol 1, < Co [[[Vulll

forevery u € W;,p(Z) and0 <60 < 1,andifd < p < oo, inequality (6.46) reduces
to

s — Hjaxlleo < CI[Vulll,

for every u € W;,p(Z), where the constant C can differ from line to line. Now,
by proceeding as in the first three steps of this proof, where one employs these
three new Sobolev-trace inequalities involving the average value i35 and by
noting that for every ¢ € L?(9X), the element (¢35, 0) € A, one sees that for all
1 < p < oo, the operator A, satisfies the Gagliardo-Nirenberg inequality (1.11)
with the same exponents as in the statements (1i)-(1iii). This proves that state-
ment (2ii) of this theorem holds.
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If ¥ is the half space IR%, then one replaces the above used Sobolev-trace in-
equalities with the ones given in [62, Theorem 15.17 & Exercise 15.19] and pro-
ceeds as the first two steps of this proof. This completes the proof of this theo-
rem. U

6.2.2. Parabolic problems involving the fractional p-Laplace operator. Let X be an
open subset of RY, 1 < p < o0 and 0 < s < 1. Then, for given initial value
u(0) € L1(X), we intend to establish the L7-L"-regularisation estimates of solu-
tions u(t) = u(x, t) for t > 0 of the nonlocal diffusion equation

(6.47) ot — (=Ap)*u+B(u) + f(x,u) 50  onX x (0,0),
equipped with either homogeneous Dirichlet boundary conditions
(6.48) u=0 onR¥\Z x (0,c0),

or with homogeneous Neumann boundary conditions, that is, equation (6.47) with-
out any further conditions. We refer the interested reader to [5] for a thorough
discussion on Neumann boundary conditions in nonlocal diffusion problems.

Concerning homogeneous Dirichlet boundary conditions (6.48), we impose
no further regularity conditions on the boundary 0% of ¥. Note that, if & = R¢,
then the homogeneous Dirichlet boundary conditions become vanishing condi-
tions near infinity (6.11). In the case of homogeneous Neumann boundary condi-
tions, we assume that X is a bounded domain with a Lipschitz boundary.

The operator (—A,)° in equation (6.47) denotes the fractional p-Laplace operator
defined by

u(y) —u(x)|P2(u(y) — u(x
(6.49) (—Ap)su(x):P.V./Z' (v) (|y)ﬂ”x|§+s(;/) ( ))dy

for a.e. x € ¥ and any sufficiently regular function u : ¥ — R. The notation P.V.
in (6.49) indicates that the integral at the right hand side is to be understood in
the Cauchy principal value sense, that is, for given x € X, the value (—A,)*u(x)
denotes the limit

_ p—2 _
. [1y) — w2 uly) —u()) 4
=0+ J2\B.(x) |y — x|+

provided the limit exists. For every u € W; .(X), (7 > 1), such that

— p—1
(6.50) (x,y) \u(’y) u‘gli)slg belongsto L'(Z x X),
y—x

Fubini’s theorem yields that (—A,)*u € L'(Z) and

u(y) —u(x) P2 (u(y) — u(x
agyte) = [ MO0 w0

for a.e. x € X. In other words, the integral on the right hand side of (6.49) holds
without the P.V.-symbol. Employing Fubini’s theorem again, subsequently in-
terchanging x and y, and using the symmetry of the kernel |y — x|~ (#*5P), one
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sees that
[ —(=spruax
_ -2 _
=3 [ [ = e Z80) ey - ) ay

‘y _ x|d+sp

(6.51)

for every ¢ € C°(X). Since the double integral in the right hand side of (6.51)
exists merely for u, & € W; .(2), it makes sense to employ this double integral in
order to define the fractional p-Laplace operator (—A,)® in a weak sense. In par-
ticular, the previous calculation shows that our next definition of the fractional
p-Laplace operator is consistent with the smooth case, that is, when u € W, ,
satisfies (6.50).

For any open subset * of R?, we define the realisation of the Dirichlet-fractional
p-Laplace operator (—A))* in L*(Z) by

(—AD) = {(u,v) cL2xI*Z)|uc W;,z(z) s.t. forall ¢ € W;,Z(Z)

/ |1/l —1/[ |P 2( (y)—u(x)) (g(y)_g(x))dydx:/zvng}

|]/_ x|d+sp

If ¥ is a bounded Lipschitz domain, then we define the realisation of the
Neumann-fractional p-Laplace operator (—A})* in L*() by

(—AN) = {(u,v) € L>x L*(X) ‘ u€Wy,(Z)st forall§ € W, (%)

uy) —u(x)|P~? —u(x
/ = |y| x|§+s($/) ) (C(y)_‘:(x))d]/de/ngdx}‘

Both operators —(—A? )? and —( —Ay )* are completely accretive in L%(X)
(cf. [68]). We show this only at the operator —(—AE )° since the proof for the
operator —(—A})® proceeds similarly. Let (#,v), (4,0) € (=A}])*and T € PB.
By the Lipschitz property of T and since T(0) = 0, one has that Tou € W;/Z(Z).
Furthermore, since T and s + |s|P 25 are monotonically increasing on R,

/T(u—u)(( 0) - (~0)) dx

//I DI (u(x)—u(y) () —a@y) "2 ([@(x) =) o
=5 _

|x—y|+ep
x T((u(x) —u(y)) — (@(x) — 2(y))) dxdy >0,

proving that —(—A}\)® is completely accretive by Proposition 2.4.

Further, for any given m-accretive graph  on R satisfying 0 € B(0), one has
for every A > 0 that the Yosida operator ) : R — IR of 8 is monotonically in-
creasing, Lipschitz continuous and satisfies $,(0) = 0. Therefore, taking T = B,
in the previous calculation shows that the monotone graph B, in L?(X) satisfies
condition (2.28) in Proposition 2.5.
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To see that —(—A?)s satisfies the range condition (2.14) for X = L*(X), we
take V = W;,Z(Z). If for every « € R, E, denotes the set of all u € V satisfying

(1= (=A7) )u,u)yry
[[uellv

then by
(= (=8 )u,u)yy = lullz + [ulf,,
one has
luall3 + lulp < allluellz+ [uls,p)

for every u € E,, implying that E, is bounded in V. Thus, the operator (I —
(—A? )?) : V. — V' is surjective by [63, Théoréme 1], proving that —(—AFI,J )°
satisfies the range condition (2.14) in X = L?*(X). Analogously, one shows that
- (—AII;I )$ is m-completely accretive in L2(X). Moreover, both operators have a

dense domain in L?(X) as proven in [68].
Therefore, by Proposition 2.5, the operators

(6.52) APS = —(=A)) +Ba+F
and
(6.53) ANS = — (=AY + B2+ F

are quasi m-completely accretive in L?(X) with dense domain in L?(Z). By the
Crandall-Liggett theorem, —AP* and —AN# generate respectively a strongly
continuous semigroup {T;}+>o on L?(X) of Lipschitz continuous mappings T;,
which admits a unique Lipschitz continuous extension on L7(X) forall 1 < g <
o and on L2 N L* ()" if § = oo, respectively with constant et

We begin by giving the complete description of the L7-L"-regularisation esti-
mates of the semigroup {T;};>0 ~ —AP”* on L2(Z).

Theorem 6.7. Let 1 < p < 00,0 < s < 1, ¥ be an open subset of RY and AP* given
by (6.52). Then the following statements are true.

(1) For1 < sp < d, the semigroup {T;}s>0 ~ —AP* on L*(X) satisfies (1.14) for

«q(d—s xq(d—s
v v B, — ﬁ + q(dmop) - y q(dm;w
= d - d - d—s
q 1—y*(1— q(dm;p)) q Ty (12 m;p)) q 1—y*(1— q(dmom)

dmo

for every my > p satisfying spmo + (p—2)(d—sp) >0and1 < q < 74

satisfying q > & + (p —2) — s P where

p’
ot = — ! ’ B = idds”il +1,
(dfsp_l)m(l"‘p_Z (72 bp—l)mg-l-p 2
x (= spfl)mo
= (7% —Dmo+p—2"

Moreover, ided < p < d then one can take mo = p and zfdJrs <p<d,

P
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(2) For sp = d, suppose that either X is unbounded and B satisfies (6.23) or ¥
is bounded and no further assumptions on B. Then the semigroup {T;}i>0 ~
— AP satisfies (1.14) with exponents
o _ ﬁe 7 '7(1 0) i '1(1;9)
1 (1— 10 9>) Ba= - - i TN (AT =y

forevery 1 < g < 55 and max{l —5,2—p,0} <6 <1, where

* g1
vi = (3 ; )P'

&g =

1 *
af = =
0 -2 Po 9~

(3) Ford < sp < oo, suppose that either ¥. is unbounded and B satisfies (6.23) or
Y. is bounded and no further assumptions on p. Then the semigroup {T;}i>0 ~
— AP satisfies (1.14) with exponents

1 B, = 1+5+q o= —1
p—21-9)7 P47 p-201-7)” T p-2(1-])

forevery1 < g <2

qu:

Since we could not find an appropriate reference to Gagliardo-Nirenberg in-
equalities available for Sobolev or Besov spaces of fractional order in the spirit
of the classical ones (cf. Lemma 6.2), we construct in each case 1 < sp < d,
sp = d and sp > d our sufficient inequalities from the known Sobolev inequality
for fractional Sobolev spaces partially combined with Poincaré inequalities.

Proof of Theorem 6.7. First, let 1 < sp < d. Then, by [62, Theorem 14.29], there is
a constant C > 0 such that

[ll s < Clulsp
d—sp

for every u € W; () and g > 1. Taking pth power on both sides of this in-
equality and applying (6.38) toa = u(x) — u(y) and b = i1(x) — ii(y) yields

lu—all”,
d—sp
<C// |(u(x |x y|d+sp) ay)lP dx dy
() —u(y) [P~ (u(x) —u(y))—|a(x) —a(y) [P~ (a(x) —a(y))
<C3 2 / / |x—yl|**sr

x ((u(x) —u(y)) — (@(x) —a(y))) dxdy
= Clu—n,(=(=8))u) = (=(=4))a))
for every u, i € D((—A}))*). Thus, by Remark 3.5, the operator AP* given
by (6.52) satisfies the Gagliardo-Nirenberg inequality (3.2) with parameters

(6.54) r = dﬁdsp’ c=p, and o0=0,

hence the first statement of this theorem holds by Theorem 1.2.
Next, let sp = d > 2. By [48, Theorem 6.9], there is a constant C = C(d, p,s) >
0 such that

(6.55) ull 2, < C (uls,p+ [[ullp)
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for every u € C®(X) and by a standard approximation argument we see that
this inequality holds for all u € W;,p (X) and every 0 < 6 < 1. If ¥ is unbounded
and p satisfies (6.23), then taking pth power on both sides of inequality (6.55)
and applying (6.38) to a = u(x) — u(y) and b = i1(x) — i(y) together with (6.23)
yields

=P,
|(w(x)—i(x)) = (u(y) —A(y)[" _a|p
<cC (/z . ey dxdy+/z|u | dx)
1 | () —u(y) [P~ (u(x) —u(y)) —|a(x) —a(y) [P~ (@(x) —a(y))
S C (22 /Z/Z ‘xfy‘dJrsp

x ((u(x) —u(y)) — (#(x) —a(y))) dx dy
1 (0= 9)(u—1) dx)
< C max{2, 55"} u — i, (—(—ADVu +0) — (—(=A)%i +9))
for every u, 1 € D((—A?)S), v € Ba(u), o € Ba(i1) and some constant C > 0
which might be different from line to line. Therefore, by Remark 3.5, the oper-

ator AP# given by (6.52) satisfies the Gagliardo-Nirenberg inequality (3.2) with
parameters

(6.56) r= % c=p, and 0=0, forevery 0 < 6 < 1.

If ¥ is bounded, then by [64, Theorem 5], the first eigenvalue of —(—A? )° is
positive hence the following Poincaré inequality

(6.57) ||“||p <C |”|s,p

holds for every u € W;/F(Z), 1< p<ooand0 < s < 1. Using (6.57) to estimate
the term ||u||, in (6.55) yields

lull 2, < Cluls,

for every u € W;,2<Z)' Now, proceeding as previously, we see that the opera-

tor AP satisfies the Gagliardo-Nirenberg inequality (3.2) with exponents (6.56).
Therefore by Theorem 1.2, the second statement of this theorem holds.

Next, letd < sp. Then, by [48, Theorem 8.2], thereisa constantC = C(d, p,s) >
0 such that

1/
(6.58) ulloo < C (JulZp + [lul5)*

for every u € W;,p(Z). If ¥ is unbounded but B satisfies (6.23), then proceeding
as in the case sp = d, we obtain that

Ju — 2%
< Cmax{2,15 "} (u— 1, (=(=A))u+0) — (—(=A}))*1 +9))
for every u, i € D((—A?)S) and v € Bo(u), o € Pa(i1). Thus, Remark 3.5
implies that the operator AP satisfies the Gagliardo-Nirenberg inequality (3.2)
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with exponents
(6.59) r=oc, oc=p, and =0

If 2 is bounded, then we apply Poincaré inequality (6.57) to estimate the term
|ul|p in (6.58) and obtain

[ttlleo < Cluls,p

for every u € W;,Z(Z). Proceeding as above, we see that the operator AP sat-
isfies the Gagliardo-Nirenberg inequality (3.2) with exponents (6.59). Therefore
by Theorem 1.2, the third statement of this theorem holds. This completes the
proof. 0

Next, we state the LI-L"-regularisation estimates of the semigroup {T; };>0 ~
—ANS on L2(Z).

Theorem 6.8. Let ¥ be a bounded domain of R? with a Lipschitz continuous boundary.
Then the following statements are true.

(1) Suppose the monotone graph B satisfies (6.23) and AN* is given by (6.53). Then,
forevery1 < p < o and 0 < s < 1, the semigroup {T;}i>o ~ —AN®
satisfies (1.14) with the same exponents as satisfied by the semigroup {T}}1>0 ~
— AP in the statements (1)-(3) of Theorem 6.7.

(2) Suppose the monotone graph B satisfies (6.24) and AN* is given by (6.53). Then,
forevery1l < p < coand 0 < s < 1, the semigroup {T; }1>0 ~ —AN* satisfies
estimate (1.18) for ug = 0 with the same exponents as satisfied by the semigroup
{Ti}is0 ~ — AP in the statements (1)-(3) of Theorem 6.7.

(3) Forevery1 < p < coand 0 < s < 1, the semigroup {T;}>0 ~ (—A))°
satisfies (6.27) with the same exponents as given in the statements (1)-(3) of
Theorem 6.7.

In particular, concerning Neumann boundary condition, we need to construct
for each case 1 < sp < d,sp = d and sp > d our sufficient inequalities from
the known Sobolev inequalities for fractional Sobolev spaces partially combined
with a Poincaré inequalities.

Proof of Theorem 6.8. We only derive the Sobolev inequalities in each case 1 <
sp < d,sp =dand sp > d needed to deduce the L7-L"- regularity estimates for
the semigroups, since then one proceeds as in the proof of Theorem 6.7.

First, let 1 < sp < d. Then, by [48, Theorem 6.9], there is a constant C > 0
such that

(6.60) Jul g < Cllulsy + 1l

forevery u € W; ,(X). Now, one takes pth power on both sides of this inequality
and applies assumption (6.23) and inequality (6.38) for s = u(x) — u(y) and
t = i(x) — ii(y). This, together with Remark 3.5 yields the operator AN satisfies
Gagliardo-Nirenberg inequality (3.2) with exponents (6.54). If B satisfies (6.24),
then one does not need inequality (6.38) to show that AN satisfies Gagliardo-
Nirenberg inequality (1.11) with exponents (6.54).
In the case sp = d > 2, one uses the Sobolev inequality [48, Theorem 6.10]

(6.61) [l 2, < C(lulsp + [[ullp),

P
-0
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which holds for all u € W, ,(X) and any 6 € [0,1), where the constant C is
independent of 8 and u. In the case and d < sp, one employs the Sobolev in-
equality [48, Theorem 8.2])

(6.62) ttlloo < C(Julfy + [Jull5)!/?

holding for all u € W} ,(X). In both cases, one proceeds analogously as in the

proof of Theorem 6.7. If B satisfies (6.23), then one sees that operator AN satis-
ties the Gagliardo-Nirenberg inequality (3.2) with exponents (6.56) and (6.59),
respectively. If B satisfies (6.24), then by proceeding as in the previous case
but without using inequality (6.38) one sees that AN* satisfies the Gagliardo-
Nirenberg inequality (1.11) with exponents (6.56) and (6.59), respectively. This
shows that the first and the second statement of this theorem holds.
In order to see that the last statement holds, one employs the following Poincaré

inequality (see, for instance, [59])

| u _HHP <C |”|s,p

holding for all u € W;,p (X) and some constant C > 0, to estimate the term ||u||,
in (6.60), (6.61) and (6.62). Then, one proceeds as in the previous steps of this
proof and obtains that the operator (—Aﬁ’ )° satisfies the Gagliardo-Nirenberg
inequality (3.2) with exponents (6.54) if 1 < sp < d, (6.56) if ps = d > 2 and
(6.59) if sp > d. Therefore by Theorem 1.2, the third statement of this theorem
holds. O

6.3. Nonlinear diffusion equations in L!. This subsection is concerned with
the application of our theory developed in Section 3 and Section 4 to semi-
groups generated by quasi accretive operator in L!. The here established L!-
L*-regularisation estimates are used in the subsequent Section 7 to show that
mild solutions are strong.

For the sake of readability, we outline the example here only on the p-Laplace
operator but we emphasise that it is clear that this example and the correspond-
ing results hold very well for the general Leray-Lions operator considered in
Section 6.1.

Let1l < p < co,m > 0,and ¢ € C(R)NC(R\ {0}) be a non-decreasing
function satisfying

(6.63) $(0)=0 and  ¢'(s) > Cls|™! foreverys #0,
for some C > 0 independent of s € R.

Remark 6.9. Typical examples of non-decreasing functions ¢ € C(R) N C!(R \
{0}) satisfying the two conditions in (6.63) are ¢;(s) = |s|""!s, (s € R), for any
m > 0orform =1, ¢p(s) := ast —bs™, (s € R), fora, b > 0. Note that for
the function ¢, the operator Ap¢1 coincides with the celebrated doubly nonlinear
operator Ap(-") (cf. [21]).

Then, for given initial value 1y € L!(Z), we investigate in this subsection the
regularisation effect of mild solutions u(t) = u(x,t) for t > 0 of the parabolic
initial value problem

(6.64) o — div(|Ve(u)|P2Ve(u)) + f(x,u) 20 on X x (0,00),
: u(-,0) = up onx,
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respectively equipped with one of the following types of boundary conditions:
(6.65) u=0 ondZ x (0,00),if = CRY,
(6.66) Vo (u)|P2Vp(u) -v=0 onaX x (0,00),if u(X) < oo,
6.67) |Vo(u)|P2Vp(u)-v+alp(u)]P1 =0 onodZ x (0,00), if u(X) < co.

Concerning homogeneous Dirichlet boundary condition (6.65), we make no
further assumptions on the boundary of . However, regarding homogeneous
Neumann or Robin boundary conditions (6.66) and (6.67), respectively, we need
to ensure the validity of the Gagliardo-Nirenberg inequalities (6.16) hence, we
assume that 2 is a bounded domain with a Lipschitz boundary. In addition,
concerning homogeneous Neumann boundary conditions (6.66), we state the
L9-L" regularisation effect merely for initial values 1y € L}(Z) for 1 < g < co.

Remark 6.10. If ¥ is unbounded, then the Dirichlet boundary conditions (6.65)
become vanishing conditions at infinity (6.11). It is well-known (cf. [91, Theo-
rem 9.12] for the case p = 2 and the references therein) that the L7-L"-regularisa-
tion effect of mild (respectively, strong) solutions of problem (6.64) for & = RR¥
has been deduced from the uniform estimates obtained in the case ¥, = B(0,n)
the open ball centred at x = 0 and radius ¥ = n > 1, or for p # 2 under the
assumption that the solutions have enough regularity (cf., for instance, [21, 18]).
In this monograph, we show that we do not need to proceed in this way. We
treat the case of Dirichlet boundary condition (6.65) for general open subsets ©
of R? at once. This simplifies essentially the known approaches in the literature
and has the great advantage that we know the infinitesimal generator of the
nonlinear semigroup.

Now, let A denote either the negative Dirichlet p-Laplace operator —AE on
L*(X), the negative Neumann p-Laplace operator —Aﬁ’ on L?(X) or on L2,(X%),
or the negative Robin p-Laplace operator —Allﬁ realised on L?(Z). Then, A is
a single-valued, m-completely accretive operators in L?(X) satisfying A0 = 0
(cf. Section 6.1.1 and 6.1.3). Furthermore, let Ajo be the trace of A on L' N
L®(%, u). Then, by Proposition 2.8, the closure A in L1(Z) of the trace Ajne
is m-completely accretive in L!(X) with dense domain. In the specific case A =
—Ay on L2,(X), Proposition 2.14 yields that A is m-completely accretive in

Ll (Z) with dense domain and with c-complete resolvent.

Next, we first consider the case when ¢ : R — R is a general continuous,
non-decreasing function satisfying ¢(0) = 0. For every A > 0, let B (s) =
(1+ AB)~1(s), (s € R), denote the Yosida operator of B := ¢~ 1. Then, by the
Lipschitz continuity of , : R — R, since B, (0) = 0 and since 8, monotonically
increasing,

[ﬁA(u),A(u)]z:/Z\VMIP*ZVuVﬁA(u)dx—l—a/az\u\p’zuﬁA(u)dH
:/Z|Vu]p/3’A(u)dx+a/azlu|p_2uﬁA(u) dH

>0,

for every u € D(A) and A > 0 provided A is one of the three operators —Arl,) ,
—Ay or —Aﬁ, where ¢ = 0 if A is not —AII;. Thus, condition (2.28) holds for



REGULARISATION EFFECTS OF NONLINEAR SEMIGROUPS 101

g = 2. To see that the trace Ajno of A in L' N L*(X, i) satisfies (2.28) for g = 1,
let (7e)e>0 be the sequence given by (2.6), then by the Lipschitz continuity of .
and B, on R, since 9,(0) = 0 and B,(0) = 0, and by the monotonicity of v, and
;B A On R,

JL (B (1)) Arrs ()
= [ Va2 VuTye(Ba(w) dx | [ulPuye(By(u) dH

= [IVul 2 (Ba)By () dx+a [ [l Pure(a(u)) dH
>0,
for every u € D(A1ne), A > 0and € > 0. Since

Elﬁir& Ye(Ba(u(x))) = signy(Ba(u(x))) forae. x € %,

and |7e(Ba (1)) A1 (1)] < |A1neo(#)| € LY(Z), Lebesgue’s dominated conver-
gence theorem yields

tim [ (B2 () Avves () dp = [ signy(Ba(u(x))) Ao () .

e—0+

Thus,
[Br(1), Alneo(u)]1 >0 forallu € D(Ajne) and A > 0.

Therefore, if A is one of the three operators —A? , —Ag or —AE then for ev-
ery continuous non-decreasing function ¢ on R satisfying ¢(0) = 0, one has
that condition (2.43) of Proposition 2.18 holds and so, under either hypothe-
sis (i), hypothesis (ii) or hypothesis (iii) of Proposition 2.18, we can conclude
that the closure A1 of Ao in L1(Z, 1) is an m-accretive operator in L}(X)
with complete resolvent. In particular, for A = —APN , the operator Ajne¢p is

m-accretive in L} (X) with c-complete resolvent. If ¢ satisfies either hypothe-
sis (ii) or hypothesis (iii) holds, then Ai~¢ satisfies the range condition (2.44),
which is important in order to apply Theorem 1.5. Therefore, if either ¢(s) is
locally Lipschitz continuous or A is defined on L?(X) with ¥ an open subset of
R? of finite Lebesgue measure, then A;n¢ satisfies the range condition (2.44).
Moreover, we can state the following result.

Lemma 6.11. Lef ¢ be a continuous non-decreasing function satisfying ¢(0) = 0and X
an open subset of R?. Let A be the negative Dirichlet-p-Laplace operator —Arl? on L2(%)

and Aineo the trace of A on LY M L®(X). Then, A1 satisfies range condition (2.44).

By using that Ajn.¢ satisfies the range condition (2.44) and under the as-
sumption that ¢ is a continuous strictly increasing function satisfying ¢(0) = 0
and X be either an open bounded subset of R? or IR?, it is not difficult to see that
the domain D(A1n«¢) is dense in L}(Z).

We briefly outline the proof of Lemma (6.11).

Proof of Lemma 6.11. Let (£,),>1 be a sequence of subsets X, C X satisfying
Yy € Zyyp and Uys1 Zy = . Let A? " be the Dirichlet-p-Laplace operator on
L*(Z,) and A, the trace of AE " on L' N L®(Z,). Since ¥, has finite Lebesgue
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measure, Proposition 2.18 implies that the operator A,¢ satisfies range condi-
tion (2.44). For every A > 0, let |} be the resolvent operator of Ajneo.

Now, let f € L' NL®(X), A > 0 and for every n > 1, set f, = fly, , uy =
Ji [f| En] and i, the extension of u, on R? by zero. Then, our first aim is to show
that there is u € D(A1n«¢) satisfying u + AAjnp(11) > f and after eventually
passing to a subsequence,

. - . 1
(6.68) nlgr.}o iiy=u inL'(X).

Since f € L' N L®(X) and A1 has a complete resolvent, it follows that
(6.69) linllg < |Ifllq for every n > 1

and all 1 < g < oco. By reflexivity of L7(X) for g > 1, there is u € L(X) such that
after eventually passing to a subsequence i, converges to u weakly in L7(X) and
|ulls < || fllg- Moreover, since for every ¢ > 0 and for every A C ¥ satisfying
|Al < 6(e) := ||flls'e, one sees that [,|id,|dx < e forall n > 1. Thus the
Dunford-Pettis theorem implies u € L1(Z), ||u||; < ||f|1 and i, converges to u
weakly in L!(Z) after passing eventually to a subsequence of (ii,),>1. If f > 0,
then by the T-accretivity of A,, we have that 0 < i, < il,;1 a.e. on X for every
n > 1. Moreover, by (6.69) for g4 = 1, Beppo-Levi’s monotone convergence
theorem yields (6.68) for some u € L'(X) satisfying u > 0 provided f > 0.
Similar arguments show that i, 11 < 7, < 0and (6.68) holds for some u € LY(%)
satisfying u < 0 provided f < 0. Since —f~ < f < f*, the T-accretivity of A,
yields Ji[— f‘gn] <u, <J¥[ f‘;”] a.e. on X. Let ii_ , denote the extension on X of
Jil= f|£n] by zero and ii, , denote the extension on X of J!| f&n] by zero. Then,

there are u_ and u € L(Z) such that lim, e 71, = u_ and limy,_ye0 i1, = Uy
in L!(Z). By the monotonicity of (i ,),>1 and (i ,),>1, we obtain u_ < i, <
uy a.e.onX foralln > 1. Thus, by Lebesgue’s dominated convergence theorem,
(6.68) holds provided i, converges to u a.e. on X.

We multiply equation u, + AAy¢ = fu by ¢(u,) with respect to the L2-inner
product. Then coercivity condition (6.6) yields (¢(if, ) ),>1 is bounded in Wé P(2).
Hence and by using Rellich-Kondrachov’s compactness result combined with a
diagonal-sequence argument yields the existence of a subsequence of (ii,),>1,
which we denote again by (ii,),>1 and some v € W;’p (X) such that ¢(ii,) con-
verges weakly to v in Wé’p(Z) and strongly in L} (). By the continuity of ¢!
on R, it follows that i1, = ¢~ (¢(il,)) converges to ¢~ '(v) in L] (X) and a.e. on
X after passing again to a subsequence. Comparing this with the weak limit u of
(i1,) in L1(X), it follows that ¢~ (v) = u and that limit (6.68) holds. Now, by us-
ing classical monotonicity arguments due to Leray-Lions [63] (as employed, for
instance, in [55, Lemma 2.5]) yields u € D(A1neo¢p) withu +AAjneep(u) > f. O

Remark 6.12. Note that, for A = —Arl,) , the operator Ajne¢p coincides with the

associated entropy solution operator of the composition —A? ¢. This has been
investigate in the celebrated paper [13].

Let F denote the Nemytski operator on L!(Z) associated with a Carathéodory
function f : ¥ x R — R satisfying (2.17) for some Lipschitz constant L > 0. If

A?l, Agl and Aﬁl are respectively the traces on L' N L®(Z, u) of the operators
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A, A or Af, and if ¢ € C(RR) is a non-decreasing function satisfying ¢(0) = 0
then, by Proposition 2.19 and Lemma 6.11, the operators

AJ = (=AD)¢+FonLY(Z), A :=(-Al)¢+Fon L (%),
A(I; = (—Aﬁl)q) + Fon LY(Z),

are quasi-m-accretive in L! with complete resolvent. By the Crandall-Liggett
theorem, the operators —Ag , —Ag] and —Ag generate a strongly continuous
semigroup {T}};>0 on D(A1ne)" of Lipschitz continuous mappings T; on the
set D(Ajnw¢)t with constant e“! and satisfying exponential growth (2.39) with
respect to the L7-norm forall 1 < § < co.

Here, we state the complete description of the L9-L"-regularisation effect of
the Dirichlet-semigroup {Ti};>0 ~ —Ag on D(A} )" for a non-decreasing func-
tion ¢ € C(R) N C!(R\ {0}) satisfying (6.63) for some m > 0 and C > 0.

Theorem 6.13. Let ¢ € C(R) N CY(R \ {0}) be non-decreasing function satisfy-
ing (6.63) for some m > 0 and C > 0, and let ¥. be an arbitrary open set of R%. Then,

the semigroup {T;}1>0 ~ —Ag on D(Ag )" satisfies the following reqularisation esti-
mates.
(1) If 1 < p < d, then there is B* > 0 such that the semigroup {T;}1>0 satisfies
estimate (1.18) with uy = 0 for every u € D(Aq’?)L1 N L*®(X) with exponents

B s(d=p)

. 7+ 'S
“Ti R Py <1735>> " D)
for every qo > p satisfying 1 pqo +p—1-1>0and1<s< ‘Z"iqp“ satisfying
7 (11— ‘%qi)) < 1, where
w = W and " = Mo+(dj;b)7?p*1*%)'
Moreover, for 1(1,;1 1) < p < d, one can take go = p and for = mH) <p<d,

the semigroup {Tt}tzo satisfies (1.18) for every u € D(Ag) N L®(X) and
1<s<

(2) If p = d > 2 and X has finite Lebesgue measure, then for every 6 € (0,1),
thereis a B > 0 such that the semigroup {T;}s> satisfies estimate (1.18) with
up = 0 for every u € D(Ag)L1 N L*®(X) with exponents

, B | o s(1-6)
P o ﬁs _ 2 79 mqq ’)’s ’)/6
- B s(1— / 0-1 — m 1-6
=7 (l_ ("1"709)) 1= (1= S(mﬂo)) a qo)( “r(1- S(mqo)))
for every qo > p satzsfymg e 4+p—1—1>0and1<s <%, where

* 1
O (1) and 75 = g +p-1-1
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If one takes max {O, %j;p)} < 0 < 1, then one can take qo = p and the
semigroup { Ty } >0 satisfies estimate (1.18) with s = 1 for every u € D(Ag)“.
(3) If p > d, then the semigroup {T;}>o satisfies estimate (1.18) for every u €
D(Aq’?)L1 N L®(X) with exponents

* * _ S

Bs = 2‘” TEs] e = L mi
S _ ( m)’ S 1_,)/*(1_#)/

o
forevery 1 <s < m+ 1, where

g =

We outline the proof of Theorem 6.13.

Proof of Theorem 6.13. By Lemma 6.11, the operator (_A;laj, 1)@ satisfies range con-
dition (2.44) in Proposition 2.18. Hence, we intend to apply Theorem 1.5.

We begin by considering the case 1 < p < d. Then by Lemma 6.2, there
is a constant C > 0 such that inequality (6.19) holds for every u € W’}/Z(Z).
For every (u,v) € (_A;Iq),l)‘l’/ one has ¢(u) € W;,OO(Z). By classical interior
regularity results (see [86]) and since ¢’(r) > 0 forall ¥ # 0, onehasu € C(X) N
C({u # 0}) and Vu = 0 on the level set {u = 0}. Combining this with
coercivity condition (6.63) and Gagliardo-Nirenberg inequality (6.16) for 1 <
p < d, we see that

1,00 prames = LIV 2T9() (u] (47740741 20)
=
= (q —p+ 1) m /{ 7& }’u‘(Q*rﬂrl)m*l’vuVJ [(P/]Pfl(u) dx
u#0

ZCpl(q—p—i—l)m/{ || 7P |V )P dx
u#0}

_ [l wwv‘ ,ﬂ— ||
L7 ] qv
- ~p—1
> (ST P EIP ey 52y,
~ Lm] q” 5
— -E- ! (q_p+1)p C- pH H
m | qr 5

for every g > p. Here, the constant C > 0 is the one given by Gagliardo-
Nirenberg inequality (6.16) and is independent of ¥. Remark 3.5 yields that
the operator Ag satisfies the one-parameter family of Gagliardo-Nirenberg type

inequalities (1.21) with up = 0 and ¥ = ﬁ > 1 and so Theorem 1.5 yields the
first statement of this theorem.

Next, we consider the case p = d and suppose that X is a general open subset
of R? with finite Lebesgue measure. By Lemma 6.2, for every 1 < g < oo and
every 0 € [0,1), there is a constant C = C(q,d,0) > 0 such that

5 = d e
lull®y < CUIVulllg 1l
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for every u € W},/q(Z). For functions u € C®(X), Maz'ya’s inequality (6.36)

. L . . . dlye
reduces to a Poincaré inequality, which we apply to estimate [[u||; * for g = d

in the last inequality. Then for every 6 € [0,1), there is a constant C > 0, which
might be different to the one given in the previous inequality, such that

(6.71) IIuIId S S ClIvulll

for every u € CP(Z). Since for 1 < g < oo, Wy .(X) is the closure of CX(X) in
W) ,(2), an approximation argument shows that (6.71) holds also for functions
u € W, ,(2). Now, proceeding as in the case 1 < p < d and using (6.71), yields

C1P !t (g—d+1)a gkl _y
i olesemns = || T 2,
C1' ! (g—d+1)d’
S = e M
1-0)

for every (u,v) € ((—Agl)gb)l and g > p = d, where for every 6 € [0,1), the
constant C > 0 depends on the measure of X, § and p = d. Remark 3.5 yields
that the operator Ag satisfies the one-parameter family of Gagliardo-Nirenberg

type inequalities (1.21) with ug = 0 and x = 11—9 > 1 and so Theorem 1.5 yields
the third statement of this theorem.
Now, let p > d. Then by Lemma 6.2 there is a 6y € (0, 1) satisfying

90(7—*)+(1—90)m+1 0
and a constant C > 0 such that
(6.72) ifleo < C |Vl % [Jue] 0

for every u € W;’ w1 (X). By applying (6.72) and the coercivity condition (6.63)
of ¢, we see that
mp* g - _ Pt
[, 01 ([l ysr® = m / [Vl Pl (u)]P~ [ul" ([ [T
{u£0} G
1-6,

> mCr! /{ o P P

()

1
(5] [ivmaracmaly

cl1P~ o, P
[m] C % Hum+1|\§2

v

m
= C7% Jul
for every (u,v) € ((—Agl)qb)l. Since 6y = (1 — m“ + 21y =1 and by Re-
mark 3.5, Ag satisfies Gagliardo-Nirenberg type inequahty (1.11) with

1—6

r = oo, a:pm(l—m“—f—m“) g=m+1, Q=mp—g
0
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and so by Theorem 1.5 and Theorem 4.3, the semigroup {T; }+>0 ~ —Ag satisfies
inequality (1.18) with ug = 0,7 = c0,q = m+1and a*, B* and y* given by (6.70).
Since for m > 1, v*(1 — mil) < 1, Theorem 4.3 completes the proof of the last
claim of this theorem. U

Next, we state the complete description of the L7-L"-regularisation estimates
of the semigroup {T;}i>0 ~ —Ag on Ll (X). Here, we denote by L} (X) the

space of all functions u € L!(X) with mean value # := ﬁ Jsudx =0.

Theorem 6.14. Let X be a bounded domain with Lipschitz boundary and ¢ € C(R) N
CY(R\ {0}) be a non-decreasing function satisfying (6.63) for some m > 0 and C > 0.
Then, for 1 < p < oo, the semigroup {T;}>0 ~ —Ag] on L., () satisfies the LI-L'-
reqularisation estimate (1.18) with ug = 0 for every u € L1 (X) N L*(X) with the same
exponents and conclusions as for the semigroup generated by —A(I; on D(Afpj )Ll stated
in Theorem 6.13.

For the proof, we proceed similarly as in the proof of Theorem 6.13.

Proof of Theorem 6.14. If 1 < p < d, then inequality (6.33) reduces to Sobolev
inequality (6.19) by using functions u € er,,p,m(Z). If p > d, then applying
Poincaré inequality (6.32) for functions u € W;,p,m(Z) to Gagliardo-Nirenberg
inequality (6.18) yields inequality (6.71) and (6.72). Thus, proceeding as in the

proof of Theorem 6.13, we see that the statement of this theorem holds. O

To complete this subsection, we state the complete description of the L7-L’-
regularisation effect of the semigroup {T;};>0 ~ —Af; on L}(X) and ¢(s) =

|s|™~1s for m > 0.

Theorem 6.15. Let X be a bounded domain with Lipschitz boundary and ¢ € C(R) N
CY(R\ {0}) be a non-decreasing function satisfying (6.63) for some m > 0 and C > 0.
Then, for 1 < p < oo, the semigroup {T;}1>0 ~ —A(I; on LY(X) satisfies the L1-L'-
reqularisation estimate (1.18) with ug = 0 for every u € L} () N L®(X) with the same
exponents and conclusions and as for the semigroup generated by —Ag on D(Ag )L1
stated in Theorem 6.13.

We proceed as in the proof of Theorem 6.13.

Proof of Theorem 6.15. We begin by considering the case 1 < p < d. Note that by
coercivity condition (6.63) of ¢, one has

(6.73) ¢(s) > E|s|" s forall s € R.
Combining this with (6.63) and Sobolev inequality (6.39), we see that

C1P ' (g=p+1)pP gty
] =P E P 1 (52

[“/ U](q—p—i—l)m—l—l > |:m q°

c1r! B
e {m} /az U(g—pr1)ymr1|Umi|[P " umr dH

1" (g-p+1)p’ gy
o e Tl
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c1r ! qmtp
X

m
cyrt o
> [m] mm{i(”7 pqﬂ) }C PIlul 7 G Hp
c1r (g=p+1)p?
= |= in d @—ptL)p? p
[m] mm{ 7 }C Hu]zmz

for every g > p and (u,v) € (—A?l)(p. Remark 3.5 yields that the operator
Ag satisfies the one-parameter family of Gagliardo-Nirenberg type inequali-
ties (1.21) with ug = 0 and x = ﬁ > 1 and so by Theorem 1.5, the statement of

this theorem holds for 1 < p < d.
Next, for p = d, then by Lemma 6.2, for every 1 < g < oo and every 0 € [0,1),
there is a constant C = C(d,0) > 0 such that

lull o, < (IIVull§ ey + llulla)

for every u € W;,d(z)' Applying Maz’ya’s inequality (6.36) and Young's in-
equality to the latter inequality and subsequently raising to the dth power yields

d
iy < € (Il + oz o)
1-6

for every u € Wb},d(Z), where the constant C > 0 can differ from the previous
one. By this Sobolev type inequality, we can proceed as above and see that also
for p = d, the statement of this theorem holds.

Now, let p > d. Then by Lemma 6.2 there is a 6y € (0, 1) satisfying

Bo(5—3)+ (1 —60)327 =0
and for every § > 0, there is a constant C := C(6y, p,d, §) > 0 such that
lulles < € (MWl Nl + l1ully)

for every u € W:,,m (X) N L1(X). Taking 4 such that % = %0 + 1,,,+91° yields

1-6
fullo < € (Wl + ) il

and so by Maz'ya’s inequality (6.36), and subsequently raising to the %th power,

we obtain that
1-6,

P P
& < C (HVulllh+ lpely) ulo

for every u ¢ W; ui1 (), where the constant can differ from the previous one.

By using this Gagli,zlrdo—Nirenberg type inequality together with (6.73), we see
that

1-6y
mP=g -1 (m—1)
, u m CP / Vul? |ul? dx
ol [l > (et [ vul

C
+ |:m:| / ’u|pm dH) Hum+1Hm+1

)



108 THIERRY COULHON AND DANIEL HAUER

1-6
C P,

p—1
o R R e e
m

c1rt . mp
> {} C™' min{1,a} [Jule
m

(u,v) € (—A§,1)¢. Thus, the statement of this theorem holds in the case p > d,
completing the proof. O

7. APPLICATION II: MILD SOLUTIONS IN L! ARE STRONG

Let ¢ € C(R)NCY(R\ {0}) be a strictly increasing function satisfying (6.63)
and X be an open bounded subset of R? satisfying the same assumption as in the
previous Section 6.3. Then the aim of this section is to show that mild solutions in
L! of the nonlinear parabolic initial value problem (6.64) equipped with one of
the boundary conditions (6.65), (6.66), (6.67) on a bounded open set ¥ of R? are
weak energy solutions (see Definition 7.2 below) which are globally bounded. This
property implies global Holder continuity of is mild solutions of the parabolic
problem (6.64) (see [50, 80, 93]). Moreover, if ¢ is either given by

(7.1) ¢(s) = |s|"1s  foreverys € R,and some m > 0,

or ¢ is locally bi-Lipschitz continuous, then every mild solution in L! of the
nonlinear parabolic initial value problem (6.64) is a strong energy solution (see
Definition 7.2 below).

In this section, we denote by

V either the space W, (), Wy, () or W 5(%)

and L2(X%, i) is either the classical L?(Z) space equipped with the d-dimensional
Lebesgue measure if we consider Dirichlet or Robin boundary conditions or
L%,(%) if we consider Neumann boundary conditions. Note that in each case
the space V is embedded into the Hilbert space L?(X, ) by a continuous injec-
tion with a dense image.

Remark 7.1. Note that our approach given here is quite general and can easily be
adapted to other nonlinear parabolic boundary-value problems. For instance, to
problems involving the fractional p-Laplace operator as

oru — (—=Ap)°p(u) + B(u) + f(x,u) 20  onX x (0,00),
or to problems associated with the p(x)-Laplace operator as
Ot — div(|Vo(u) P2V ¢(u)) + B(u) + f(x,u) 20  on X x (0,00).

each equipped with some boundary conditions. Concerning the latter problem,
we refer the interested reader to [57].

In order to conclude that the milds solution of problem (6.64) with initial value
uy € L1 (X) is, in fact, a weak energy solution, we will take advantage of the
following two properties: the negative p-Laplace operator —A, equipped with
one of the above given boundary conditions (6.65)-(6.67) can be realised
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(i) as the first derivative ¥’ : V. — V' of a continuously differentiable func-
tional ¥ : V — Ry given by

(7.2) ¥ () = 1/|Vu\”dx+“/ u|PdH
pJs P Jox

for very u € V, where a = 0 if one considers Dirichlet or Neumann bound-
ary conditions, and a > 0 if one considers purely Robin boundary conditions,
(ii) as an operator A in L?(Z, i) by taking the part of ¥’ in L?(%, u), that is,

A= {(u,v) eV x LA, u)| (¥'(u),0)y,y = (h,0) forallv € V}.

Note, the part A of ¥ in L2(%, 1) coincides with the subgradient 92" in
L%(%, 1) of the convex, proper, densely defined, and lower semicontinuous func-

tional ¥-* : L2(X, ) — R U {+c0} given by

‘I’Lz(u) _ Y(u) ifueV,
+oo  if otherwise

for every u € L2(%, ). This is well-known, but if the reader is interested in a
more thorough explanation, then we refer him to [31].

One easily verifies that the functional ¥ defined in (7.2) satisfies the hypothe-
ses (Hi)-(Hv). Moreover, in this framework, the notion of weak energy solutions
given in Definition 5.2 concerning solutions of problem (6.64) equipped with
one of the boundary condition (6.65)-(6.67) makes sense, we also in this section
we use the function

S
P(s) := / $(r)dr  foreverys € R.
0
We still need to clarify the notion of strong solutions of such problems.

Definition 7.2. For given 1y € L'(X), we a function u € C([0,);L}(Z)) a
strong energy solution in L' of problem (6.64) if u is a weak energy solution of
problem (6.64) in the sense of Definition 5.2 and for every T > 0, one has

u e WY ((0,T]; LY (Z)).

The following theorem is the main result of this section, where we take the
measure dy = dx the d-dimensional Lebesgue-measure.

Theorem 7.3. Let 1 < p < oo with the restriction that

d(1+ ;)
dm+1
and ¢ € C(R) NCH(R \ {0}) be a strictly increasing function satisfying (6.63) for

some m > 0 and L. be an open bounded subset of R? satisfying the same assumption as
in the previous Section 6.3. Further, let {T;};>0 be the semigroup either generated by

—((=AD)g)1 + Fon LI(E), —((—AN,)g)1 + F on LL(E) or by —((—AK )g); + F

on LY(X). Then, for every ug € LY(Z) (respectively, for every ug € L1, (X)), the
following statements hold.

<p ifl<p<d,
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(1) The mild solution u(t) := Tug, t > 0 of problem (6.64) equipped with either homo-
geneous Dirichlet boundary conditions (6.65), homogeneous Neumann boundary
conditions (6.66), or homogeneous Robin boundary conditions (6.67) is a weak en-
ergy solution of (6.64) satisfying energy inequality (5.9).

(2) I, in addition, ¢ satisfies one of the following conditions

(i) ¢ is homogeneous of degree « > 0, & # 1, that is, p(As) = A*P(s) for every
s € Rand A >0,
(ii) ¢ and ¢~ are locally Lipschitz continuous on R,
then the mild solution u(t) := Tyuo, t > 0, is a strong energy solution.

For the proof of Theorem 7.3, the main ingredients are the L!-L*-regularisation
estimates established in Section 6.3.

Proof of Theorem 7.3. The first statement of this theorem follows immediately from
Theorem 5.6 due to the global L!-L*® regularisation estimates holding uniformly
for all t > 0 given by Theorem 6.13 concerning Dirichlet boundary conditions,
Theorem 6.14 concerning Neumann boundary conditions, and Theorem 6.15 re-
garding Robin boundary conditions. Here, we chose in the case p = d, the
parameter  appearing in Theorem 6.13 such that

max {0, H':ﬁ;’”} <6 <1

The second statement follows from [14, Theorem 7] if ¢ is homogeneous of
order &« > 0, a # 1, and from Theorem 5.7 if ¢ and ¢! are locally Lipschitz
continuous on R. Here, we note that if one wants to conclude from Lipschitz
continuity of the mild solution u with values in L!(Z) that the function u €
WLL((0,T]; L1(Z)), one needs to apply a classical result from measure theory
(cf. [91, Lemma A.1], wherein the continuity assumption of u can be omitted
due to the chain rule given by Ambrosio and Dal Maso [3]). U

APPENDIX A. MORE ON ACCRETIVE OPERATORS IN L'
We begin this section by outlining the proof of Proposition 2.10.

Proof of Proposition 2.10. Let u, v € L}(Z, u) and suppose (2.35) holds for all j €
J and A > 0. For every T € P, one has either T < OonRorT € Pyor T > 0
on R. If T € Py, then inequality (2.36) follows from Proposition 2.4. If T > 0
on R, then the function j(s) := [; T(r) dr for every s € R belongs to 7. Since
the support of the derivative T’ of T is a compact subset of R, the function T is
bounded on R. Thus, there is a constant M > 0 such that

|j(u+ Av)| < 1j(0)] +/01|T((u+/\0)5)|d5|u+/\vl < [j(0)[ + M [u + Av|

for a.e. x € &, showing that j(u + Av) € L'(Z, u). By (2.35) and since j(u) > 0,
we have that j(u) € L'(Z, u) satisfies

0< [ Gi(u+ o) = j(w))

. . . . i(u+Av)—7i
for all A > 0. By convexity of j and since j € C}(IR), one has that w

decreases to T(u)v a.e. on . Thus and since T(u)v € L'(Z,u), it follows
that (2.36) holds for T > 0. In the case that T < 0, we first truncate u and v at
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hight n. More precisely, for every n > 1, let u, = u if |u| < n and u, = 0 if
otherwise and analogously, define v,,. Further, define j, € J by
n .
5, T(r)dr—2nT(—n) ifs>n,
ju(s) =< [°, T(r)dr—2nT(—n) if|s| <n,
—2nT(—n) ifs <-n

for every s € R. Now, proceeding as above yields

/ T(up)v,dp >0
by

for every n > 1. By dominated convergence, T (u,) v, converges to T(u) v in
L'(Z, 1) hence we can conclude that (2.36) holds as well for T > 0.

It remains to show that the other inclusion holds as well. To see this, let u,
v € LY(Z,p) satisfy (2.36) for every T € P. For given j € 7, let j,(s) :=
inf,er{j(r) + v|s — r|} for every s € R and v > 0. Then the sequence (j,)v>0
consists of Lipschitz continuous, convex functions j, € J such that for ev-
ery h € LY(%, 1), ju(h) converges monotone increasingly to j(k) a.e. on ¥ and
Jsju(h)dpu 1 [5 j(h)dp as v — oo. Next, for every n > 1,let j, , € J be given by

ju(n)(r—=n)+ju(n)  ifr>mn,
Jun(r) = o ju(r) if [s] <mn,
j(=n)(r+n)+j,(—n) ifs<-—n
for every r € R. By construction, the a.e. derivative j, , is positive and bounded
by the same Lipschitz constant L, > 0 of j,. Thus, for every h € L}(Z, ),

1
(A1) v ()] < 1jvn(0)] +/0 [jt,n(hs)|[1] ds < 1, (0)] + L]
a.e. on X hence j, ,(h) € LY(Z, u). Since, the function jy,, is convex,

o Jun (A AO) = o)
inf 7 = Jun()o

for a.e. x € ¥ and by the Lipschitz continuity of j, ,

jv,n(” + Av) — jv,n(“)
A

Therefore, by the dominated convergence theorem and since L, ! Jjun € P, it fol-
lows by (2.36) that

/ L, Yo (4 Av) — Ly Yy (1) dp > / inf L, Yo (u 4 Av) — Ly Yy u (1) du
) A ¥ A>0 A

< Ly|v|.

_/LV ]UTZ 'Ud]/l>0

from where one can conclude that (2.35) holds for j,,. Since for every h <
LY(Z, ), jun(h) converges to j, (h) a.e. on X and since the right hand side in (A.1)
does not depend on 7, it follows that (2.35) holds for j,. By the properties of the
sequence (jy)y>0, one easily concludes that inequality (2.35) holds for j. This
completes the proof of this proposition. g

Next, we outline the proof of Proposition 2.17.
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Proof of Proposition 2.17. We begin by showing that A¢ is accretive in L'(X, u).
To do so, let (u,v), (1,9) € A¢p and (u,w), (4, @) € ¢. First, we assume that
hypothesis (i) holds. Then,

(A2) L@-0di=0

for every ¢ € L®(X, u) satisfying ¢(x) € sign(w(x) — @(x)) for a.e. x € X and
since by assumption, A is single-valued, the situation w = @ implies that (A.2)
holds only for ¢ = 0. Consider, the function i € L*(%, ) defined by

1 if u(x) > i(x),
P(x) == { signy(w(x) —d(x)) ifu(x)=di(x),
-1 ifu(x) <(x),

for a.e. x € X. Then by construction,

P € sign(w(x) —d(x)) Nsign(u(x) —a(x)).

In particular, ¢ satisfies (A.2) hence A¢ is accretive in L1(Z, u). If we assume
that hypothesis (ii) holds, then by definition of A¢ and since ¢ is a function, one
has that v € A¢(u) and & € A¢(1). Thus and since A is accretive in L'(Z, u),

[p(u) — (), 0 — 3]y

= siegn u) — (1 U—@d—F/ v—"0|du > 0.
(ppatayy B IR @ DD f oo

Since ¢ is injective, one has that {¢(u) = ¢(1)} = {u = 1}. Therefore,
sign,(u —1) (v—10)d —I—/ v—19|d
Au#ﬁ} gny(u — i) (v—0)dp {u:ﬁ}l | du

= sign, (¢(u) — ¢(i1)) (v—10)d / v—90|du >0,
gty SERPW) ZPEN @O RE g l7 =2l
showing that A¢ is accretive in L' (%, u).

Moreover, for every &€ > 0, the sum ¢y + A¢ is accretive in L! (%, u) under the
assumption that either (i) or (ii) holds. This follows easily from the fact that the
operator ¢; in L!(Z, u) of the monotone function ¢ on R is s-accretive in L!(Z, u)
(cf. [15]).

Similarly, one shows under the assumptions ¢ is injective and A is T-accretive
in L1(X, u) that for every e > 0, one has ep; + A¢ is T-accretive in L'(Z, u)
(cf. [10, Proposition 2.5]).

Next, suppose that A has a complete resolvent and ¢ is continuous satisfying
#(0) = 0. Then, for every T € Py, T o ¢! is continuous on Rg(¢) =]a, b] for
some a4, b € R, bounded and T o ¢~1(0) = 0. If (p,) is a standard positive
mollifier sequence on R, then T,, := (T o 47*1) xp, € Phand T, — To 4)*1
uniformly on compact subsets of R as n — oco. Thus, for every u, v € L! (%, u),
Tu(¢(u))v — T(u)v a.e. on X as n — oo and since (T, (¢(u))) is uniformly
bounded in L® (X, u), it follows that lim,—,c T, (¢(1))v = T(u)v in LY(Z, u). For
every (u,v) € A¢p, one has (¢(u),v) € A hence by Proposition 2.4,

L T(@w)odn >0
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for every T € Py. Hence, for every T € Py, replacing T by T, in the latter
inequality and sending n — oo yields

(A.3) /ZT(u)v du >0,

showing that A¢ has a complete resolvent. If (X, ) is finite and A has a c-
complete resolvent, then similar arguments and replacing Proposition 2.4 by
Proposition 2.14 yields that A¢ has a c-complete resolvent. Now, for every ¢ > 0,
recall that ¢y is completely accretive in L}(X, ). Thus, if ¢(0) = 0, then ¢; has
a complete resolvent and so

L Twep(n) d =0

for every T € Py. For any T € P, adding this inequality to (A.3) for u <
D(¢1) N D(A¢) and v € A¢(u) shows that for every ¢ > 0, ep1 + A¢ has a
complete resolvent by Proposition 2.4. Again, the same arguments and using
Proposition 2.14 yields that for every ¢ > 0, e¢y + A¢ has a c-complete resol-
vent. H

The statements of Proposition 2.17 are used in following proof.

Proof of Proposition 2.18. Here, we have been inspired by the proof of [41, Propo-
sition 2]. Let Ay denote the operator on LY(Z, u) given by

N thereare A > 0, ¢ € L' N L®(%, u) such that
A(P: (u,f) €L xL (Z,‘H) 81_i>%’}~_]f\¢+Almm¢g:uinLl(Z,H) andf:g;u ’

where for every A > 0 and every ¢ > 0, the operator ]i¢+Am°°‘P denotes the
resolvent of ep + A1neo.

We begin by showing that under the hypotheses (i)-(iii), for every ¢ > 0 suf-
ficiently small, A > 0 and every ¢ € L' N L®(Z,u), there is a unique u, €
D(Ainw¢) satisfying

(A4) ue + Alep(ue) + Arnoop(1e)) 2 8

or equivalently, 1, = i‘PJrAm‘”(P ¢, and thereis an u € L' N L* (X, u) such that
(A.5) Jim we=u in LY(Z, u)

and

(A.6) eliror:Ls ¢(ue) =0 in L1(Z, i), for every 1 < § < co.

By Proposition 2.5, the operator ¢, 14+ A A is m-completely accretive in L1(X, ).
Thus, and since (0,0) € 47(;1 + AA, forevery e > 0, thereare v, € L' N L*(Z, u) N
D(¢,') N D(A) and w; € Av, satisfying

(A7) O + L (7 (ve) + Awe) = Lg.

In fact (cf. the proof of [8, Proposition 3.8]), the solution v, of (A.7) is the limit

. _ g
Vli)l(l)l_‘r Vey = Ve in L1(%, u)
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of the sequence (v, ),~¢ of solutions v, € L' N L®(Z, u) N D(A) of

(A.8) Ve + ﬁ(ﬁv(ve,v) + /\ws,v = ﬁg

with w,, € Avg,. Moreover, one has

(A9) lim By (vey) = B(ve)  weakly in LY(%, p),
v—0+

where B, denotes the Yosida operator of B := ¢ 1. We note that for every v > 0,
Vey € D(Aine) owing to the Lipschitz continuity of 8, and since B,(0) = 0.
First, multiplying equation (A.8) with B, (v, ) with respect to the 1-bracket [-, -]1,
then using that B, is accretive in L'(X, u) and that B, satisfies (2.15) for g = 1,
we see that

1Bv(vew)ll1 < [Bu(Vew), Vewl1 + [Bu(ven), Bu(Vew) 1 + [Bu(Vew), Wev1
= %[,BV(U&V)IX]I

% [F4[F

for all v > 0. By this estimate together with (A.9) and Holder’s inequality yields
that there is a constant C > 0 such that

IN

1Bv(ver)]lp < C  forallv >0and1 < p <gq
hence, the weak limit B(v,) satisfies
1B(ve)||l, <C  foralll <p<gq.

Sending p — 1+ in the latter inequality and using Fatou’s lemma, we obtain that
B(ve) = ¢ 1(ve) € LY(Z, 1) and so by continuity of ' on R, ¢~ 1(v:) € L' N
L®(%,u). Thus, equation (A.7) yields v, € D(Ajne) with we € L1 N LY(Z, ),
hence, for every ¢ > 0, there is v, € L' N L®(Z, 1) N D(cp,;l) N D(A1ne) such
that ¢~1(v.) € L' N L®(Z, ) and

Ve + 2 (¢ (ve) + AM1reo0e) D L.

Taking ue = ¢~ '(ve), one has ¢(u;) = v,. Thus and by the last inclusion, we have
shown that for every ¢ > 0, there is an u, € L' N L®(Z, u) such that ¢(u.) €
D(A1nw) and (A.4) holds, or, equivalently, u, = ]ﬁfPJrAm“(p
show that the (A.5) and (A.6) hold.

We begin, by assuming that hypothesis (i) holds. Then, by Proposition 2.18,
for every ¢ > 0, ep + Ainw¢ is T-accretive in L(X, u). Thus, for every § €
L' N L®(%, u) satisfying § > 0 and ¢ > 0, one has that i, := ];¢+Am°°¢ g satisfies
iie > 0, ||7g|; < [|§]l5 for 1 < § < oo hence, by the assumptions on A¢ and ¢,
I+ (@) 1 = ]+ el

< |I§ — Aeg(ie) |l + Aellp(de) [l = 11811
for every sufficiently small ¢ > 0. Moreover, if @, € Ajn¢(il,) satisfies i, +
Ane(i,:) + @e)) = §, then for every e > > 0,
e + A(n¢p(ite) + @) = & = Me = 1) < & = iy + An¢(dy) +@y))
and so, since the resolvent ];¢+A1“w¢ of e + Aineo¢p is order-preserving, one has
that 77, < ii,, for every ¢ > 5 > 0. Since 7, > 0 and sup,_ |7 |1 < ||g]|1, Beppo-
Levi’s monotone convergence theorem implies that there is uy € L' N L®(Z, u)

g. We still need to

(A.10)
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such that @, 1 u in L(X,u) as e | 0+. Similarly, one shows that for every
§ € L'NL™®(%, u) satisfying § < 0, one has #, < 0, i, > ii, for every e > 1 >0
and thereis u_ € L' NL*(%, u) such that il | u_ in L' (X, 1) ase | 0+. Now, we
apply this to a general function g € L' N L*(X, u). Let g™ = gV 0 be the positive
part of ¢ and g~ = (—g) V 0 be the negative part of . Since by assumption,

]/1\‘11moo47 is order-preserving, e, U+ = ]ﬁ\4’+Amoo¢(g+) and 1, = ]i¢+Amoo4’(_g—)
satisfy
(A.11) U < Ue < Ugt for every e > 0,

and there are uy, u— € L' NL*(%, u) satisfying uy > 0, u_ < 0, ue T uy in
LY(Z,u)ase ) 0and u, | u_ in LY(Z, u) as € T 0+. In particular,

u_ <u. <uy for every e > 0.

Thus, to see that (A.5) holds for some function u € L' N L® (X, ), itis enough to
show that for every sequence (¢,,),>1 C (0,1) with e, > €,41 and every § > 0,
one has

(A.12) Uim  p ({|ue, — ue,| > 0}) =0,

n,m—y00

that is, (u¢)e>0 is a Cauchy sequence p-measure. First, we note that by the
boundedness of (i, ),>1 and by the continuity and infectivity of ¢, for every
given > 0, there is an N > 0 such that

{lue, = ue,[ > 6} € {Ig(ue,) — ¢(ue, )| > N} forevery n,m > 1.

By (A.10) and (A.11), every ¢(ue,) € L'(X, ). Furthermore, by the continu-
ity of ¢ and since ||u;, || < ||g]l, We obtain that every ¢(u,,) € LO(X, u).

Thus’ (Ib(usn) - (P(usm) € Ll N LOO(Z’ ‘M) and S0, 4](4)(1/[5”) - (P(usm)) € Lq(z" ‘M)
for y(r) := 1ifr > N, p(r) = 0if |[r] < Nand ¢(r) = —1if r < —N. Thus,
multiplying inclusion

(e, — e, ) + A A1nep(tte,) — Arncop(te,, ) S emp(te,) — endp(ute, ),

by (p(¢p(ue,) — ¢(ue,,)))q, and using that Ajne is accretive in L(Z, i) together
with Holder’s inequality yields

Us: — U d
/{|47(ufn)_¢(usm)>N} ’ En Em ’ ,u

(A.13) <A e o) — erd(u ) d
B {‘(P(usn)*(p(ugm)|>N}| (P( m) 4)( n)’ u

<A llemp(ue,) = endlue,) 1o # ({9 (ue,) = P, )| > N2
By continuity of ¢ and boundedness of (i, ),>1, there is an M > 0 such that

{lp(ue,) — ¢(ue,)| > N} C {[ue, —ue,| > M}
and so, (A.13) gives

(A1) Mp({[p(ue,) = plue,)| > N2 <Allend(ue,) — enp(ue, )2

for every n, m > 1. By (A.10) and (A.11), one has (e¢(u¢))e>0 is bounded in
LY(Z, u). By continuity of ¢ and since ||u¢||e < ||g[|co, One has lim, o e (1) =
0 in L®(Z, ). Thus, under the hypothesis (i), for every ¢ € L' N L*(%,u),
(A.6) holds. In particular, the right hand side in (A.14) tends to zero as n,
m — oo showing that (A.12) holds and hence (A.5) holds for some function
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u € L' N L*(L, u) provided hypothesis (i) holds. Next, suppose that hypothe-
ses (ii) and (iii) hold. Since u, = ]§¢+Am°°¢g can be rewritten as u, = ]fm‘”(l’[g —
Aeg(u;)], the accretivity of Ajneo¢p in LY(Z, ) yields

(A.15) e = uylly < A [lep(ue) —np(uy)

for every ¢, 7 > 0. If hypothesis (ii) holds, then for every ¢ € L' N L®(%, u),
there is another K; > 0 such that
(A.16) [p(r)| < Kifr|  forevery [r| < |8l

€¢+A1
A

Moreover, since e + Ain¢ has a complete resolvent, u, = ¢ g satisfies

(A17) [tell oo < [I€ oo

for every € > 0 and so, (A.16) yields

(A.18) |p(ue)| < Ky |ue fora.e. x € Zandalle > 0.
Thus and since ||u¢||; < ||g||5 for every 1 < q < oo, it follows that

lep(ue)llg < Kielluclly < Kre|lgllg,

for every for every 1 < g < oo, from where we can conclude that the sequence
(u¢)e>0 has limit (A.6) under hypothesis (ii). In particular, by (A.15), (ue)e>0 is
a Cauchy sequence in L'(Z, u). Therefore and by (A.17), (A.5) holds for some
function u € L' N L®(Z,u) also under hypothesis (ii). Moreover, if we as-
sume that hypothesis (iii) holds, then the continuous embedding of L®(X, )
into L!(Z, %) and the boundedness of ¢ on [—||g]lc, [|¢]lec] imply that (A.6)
holds. Thus and by (A.17), (A.5) holds for some function u € L' N L®(Z, )
also under hypothesis (iii).

With these preliminaries, we can begin proving the statements of this propo-
sition. First, we show that Ay is an extension of Ajne¢ in L'(, ). To do so,
let (2,0) € Aineo¢p and for A > 0, set ¢ = 1 + A9. Then, f := &= = 0 and for
every ¢ > 0 sufficiently small, there is a unique u, = i¢+Am°"(pg € D(Ains®)
and there is a function u € L' N L® (X, u) satisfying (A.5). Since il = ]fm""q) g can
be rewritten as i1 = ]i¢+Amw$ (g + Aep(i1)] and since the operator e + A1 is
accretive in L' (X, i),

e =il = 1370 = 10 g + Aeg (@)1 < Ae[lg(8)

Since by assumption, i € D(A1nw¢), one has ¢(u) € LY(Z, u). Thus, sending

n — oo in the last inequality yields u = i and so, u € D(Ay) with f = v € Agu.

Next, we show that Ay is contained in the closure Ajneo of Ajneo in LT (Z, ).

Let (u,f) € Ay. Then, by definition of Ay, there are A > 0 and g € L'n

L* (X%, i) such that f = $5* and for every ¢ > 0 sufficiently small, there is 1, =

i‘PJrAm“(Pg € L'NL™(L, u) and u € L' N L®(Z, u) satisfying (A.5). By definition
of the resolvent ]§¢+Am°°¢ of e¢ + Aineop, one has

8 Ue
A

and so, by (A.6) for § = 1, we can conclude that (u, %) = (u, f) € Aine?.

(ue, —ep(ute)) € Arnoo®
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The operator Ay is accretive in L' (X, 1) since by construction of Ay, the oper-
ator Ay is contained in the limit inferior liminfe o (e¢ + A1) (see, for instance,
[15, Definition (2.17) and Proposition (2.18)] or [8, Proposition 4.4]) of the fam-
ily (e¢p + A1rco)e=0 Of accretive operators e + A1neo@ in L1 (Z, 1) (see Proposi-
tion 2.17). Moreover, Ay is m-accretive in L' (X, ). To see that Ay satisfies the
range condition (2.14) for X = L!(Z, u), note that under the hypotheses (i)-(iii),
Ay is closed in L' (X, ut). Hence, it is sufficient to show that the set

(A.19) L'NL®(Z,u) C Rg(I+AAp).

To this end, let ¢ € L' NL®(Z,u) and A > 0. Then, by following the ar-
guments in the first part of this proof, we see that for every ¢ > 0, there is
Uy = ]§L¢+Am°"¢g € D(Ainw¢). Since u, = ]§¢+A1“°°¢g is equivalent to u, =
]fm""(l)[g — Aeg(u.)], we have that

e =yl < Mled (ue) = np(uy) 1

for every ¢, 7 > 0. Thus and since under the hypotheses (i)-(iii), (A.6) holds for
4 = 1, we can conclude from the previous inequality that (1. ).~ is a Cauchy se-
quence in L' (X, i) as ¢ — 0+. Therefore, there is an u € L!(%, u) such that (A.5)
holds and so, by definition of Ay, (1, f) € Ay with f := &% € LY(Z,4) and
g =u+Af € (I+ AAp)u. Thus, the range condition (A.19) holds.

Summarising, we have shown that Ay in contained in the closure Ajne¢p of
Atneo® in LY(Z, ) and Ay is m-accretive in L'(Z, ). Thus and since Ajne is
accretive in L' (X, jt), statement (2.21) implies that Ajne¢p = Ag.

Next, we show that the range condition (2.44) holds under the hypotheses (ii)
and (iii). For this, let g € L'n L*®(%, u). Then, for every € > 0 sufficiently small,

Up = ]§L¢+Am°°¢g eLln L®(%,u) and (¢(ue), 8 ;us —ep(ue)) € A.

Thus, if we can show that

(A.20) lim ¢(ue) = p(u)  inLI(Z, p)
and
(A.21) lim % —e(ug) = % in L7(%, 1)

then by the assumption, A is m-accretive in the uniformly convex Banach space
L9(%, u) (cf. [8, Proposition 3.4]), we have that

—u
(¢(u), gT) € A
To see that (A.20) holds, recall that by (A.17) and (A.5), one has

(A.22) lim u, = u in L1(%, ).
e—0+

If hypothesis (ii) holds, then combining (A.22) with the continuity of ¢ and by
(A.18), it follows that (A.20) holds and
leg(ue) g < e Ka [uellg < eKillgllg,

from where we can conclude that (A.21) holds. If hypothesis (iii) holds, then
by (A.22), the continuity of ¢, and by eventually passing to a subsequence, we
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see that lim._,o1 ¢(ue(x)) = ¢(u(x)) a.e. on X. Thus, by (A.17) and the embed-
ding of L®(X%, u) into L7(X, u), we see that (A.20) and (A.21) hold. Moreover,
using that ||uel[, < ||g||, foralle > 0and 1 < p < co, we can conclude that
u € LY N L®(Z, u) and by the hypotheses (ii) and (iii), that ¢(u) € L' N L®(Z, u).

Thus,
u

(¢, 57) € At
proving the range condition (2.44). This completes the proof of this proposition.
O

APPENDIX B. THE LINK BETWEEN MEAN SPACES AND L?

The first part of the following theorem has been proved in [65, Théoréme 1.1 of
Chapter IV] by using so-called discrete mean spaces (cf. [65, Chapter II]). Here, we
improve this result by showing that both spaces are isometrically isomorphic.
This result serves us in the proof of Theorem 4.10 and Theorem 4.13 to determine
the convergence of the constants in inequality (4.28) as m — oo.

Theorem B.1. Let (X, u) be a o-finite measure space, (Xo, X1) be an interpolation
couple, 1 < pg, p1 < o0and 0 < 0 < 1. Then for 1 < p < oo given by

1 1-6 06
p Po P

one has that

(B2)  (LP(Z, Xo; ), LM (2 X5 1) )o,p0,p0 = L7 (Z, (X0, X1)6,po 1 1)
with equal norms.

Proof of Theorem B.1. We only outline the proof for 1 < pp < ccand 1 < p; < o0
since the other cases are shown similarly.

First, let u be an element of (LP°(Z, Xo; i), LP' (X, X1; ) )6,po,p,- By definition,
there are measurable functions v; : (0,00) — LPi(X,u) for i = 0,1 such that
t=%v9 € LI (LPo(Z, Xo; 1)), =001 € LP1(Z, Xy; 1) and

u(x) =vo(t,x) +v1(t, x)

for a.e. (t,x) € (0,00) x X. Since (X, #) and (R4, 4) are both o-finite measure
spaces, Fubini’s theorem implies that

t7 % (-, x) € LP(Xo) and t'%(,x) € LPI(Z, )
for a.e. x € X. Thus by definition of the mean space and by (4.7), one has
a(x) € (Xo, X1)6,py,p, fora.e. x € X and

1ty < 1000 101 ()
Integrating the latter inequality over X, taking pth root, applying Holder’s in-

equality (where one uses (B.1)) and Fubini’s theorem, we see that

0,p0,P1

] LP (Z,(X0,X1)0,pg,py 1)

1-6 6
-0, (. Po Po 1-6., (. i n
< | 2o ol ] ™| 18P

— ||t_900| 1-0 ) Htl—e

6
0 .
L0 (L0 (2, Xoip ten e
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Taking in this inequality the infimum over all representation pairs (vg, v1) of u
and applying (4.7) yields

[l r (, (x0,%:) ) < ull wro =, xoi00),L71 (5, %00))

0,p.p1 0,p0.p1°

Now, let u € LP (X, (Xo, X1),p,,p,; 1) be a step function given by

m
= Z ay 1p,(x)
v=1

for finitely many different values a, € (Xo, X1)g,p,p, attained on pairwise dis-
joint measurable subsets B, of . Let ¢ > 0. By the definition of (Xo, X1)g,p,»,
and the infimum, for every v = 1,...,m, there are measurable functions v;, :
(0,00) — X; for i = 0, 1 satisfying

(B.3) ay = voy(t) + 014 (t)

fora.e. t € (0,00) and

(B-4) max { ”tiGUOVHLfO(XO)’ Htligvh/HLi’l(Xl)} < HaVH(XO,Xl)g,po,pl (1 + 8)'
Set A = (po—p)/0poand foreveryv =1,...,mand i = 0,1 define

t).

Then applying the substitution s = ||a, H (XoX1)o, , | together with (B.4) yields
0-P1

wiv(t) = UiV(HaVHAXo X1)6,pg.1

100001750 ) = llavll ot °°r|s 00y (s)]| 50 &
Ov LP() 1/ X[] Xl 8,901 0 01/ XO s
po—A0p
(B.5) < (1+€)P||ay| ;’(o 1) ﬂopom

= (1+&)" [lavlly,

X1)o P0-P1

for every v = 1,...,m. By the relation (B.1), one sees that the same A satisfies
p1 +A(1 —0)p1 = p. Thus the same arguments gives

(B.6) 1w I, o < A+ flaullfy,

Lpl X1) — Xq) ooy

Fori=0,1and every t € (0, ), we define the step functions

Z w;y (t) 1, (x
for a.e. x € X. Then by (B.5) and (B.6) as well as by Fubini’s theorem,
1t & = / -0 () |3,
(B2) (1 Ll 1B

p
(1 + S) 0 HHH %,(Xo, X1)9p0,l’1;y)

and similarly,

TR dt
(B.8) /0 |t 1(t, )HUH (= Xp) t < (1+en HMH Z,(X0,X1) o,y )"
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Therefore, for i = 0, 1, the functions w; : (0,00) — LFi(%, X;; u) are well defined
step functions and so strongly measurable. In addition, by (B.3),

m

wo(t,x) +wi(t,x) = Y (vou(llavl{x, x,) t)) 1p,(x)

£+ o (llav iy, x,)

0.p0,P1 6,p0/P1

Il
N
<
=
s~}
<
—~
=
~—

= u(x)

forae. x € X. Thus u € (LP(Z, Xo; ), LP'(Z, X1; 1) )o,p,p, and by (4.7), (B.7),
(B.8), and (B.1),

0

8
< [t wo| LI (LPL(Z, Xqm))

1-60 1-0
0.p0.P1 — ) Ht w1 H

LI (LPo (2, Xo;n
A=0)p _, op

< (L) 1l o0 11040

] (LPo (%, Xo;u),LP1(Z, X1;1))

= (L) [[ull Lo (s, (%0, %))y py0)-

Sending ¢ — 0+ shows that inequality

2]l o (2, 050,201 (2 X0 )y, < N2 (5,0, %0 )0 1)

0.po.P1
holds for step functions. Since the set of step functions is dense in the space
LP (%, (Xo, X1)g,po,p1; #) the claim of this theorem holds. O

As an immediate consequence of Theorem B.1, we obtain the following corol-
lary improving the statement in [65, Corollaire 1.1 of Chapter IV].

Corollary B.2. Let (X, i) be a o-finite measure space, 1 < pg, p1 < c0and 0 < 6 < 1.
Then for 1 < p < oo satisfying the relation (B.1), one has that

(L7 (Z, 1), L7V (Z, 1)) o,po.pn = L (2, 1)
with equal norms.
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