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Abstract. The minimal faithful permutation degree µ(G) of a finite group G is the least

nonnegative integer n such that G embeds in the symmetric group Sym(n). We prove

that if H is a group then µ(G) = µ(G × H) for some group G if and only if H embeds

in A×Qk for some abelian group of odd order, some generalised quaternion 2-group and

some nonnegative integer k. As a consequence, µ(Gn+1) = µ(Gn) for some nonnegative

integer n if and only if G is trivial.

1. Introduction

Throughout this paper all groups are assumed to be finite. The minimal faithful permu-

tation degree µ(G) of a group G is the smallest nonnegative integer n such that G embeds

in the symmetric group Sym(n). Note that µ(G) = 0 if and only if G is trivial. For any

groups G and H and subgroups S of G, we always have the inequality

µ(G×H) ≤ µ(G) + µ(H). (1)

Many sufficient conditions are known for equality to occur in (1), for example, when G and

H have coprime order (Johnson [5, Theorem 1]), when G and H are nilpotent (Wright [10]),

when G and H are direct products of simple groups (Easdown and Praeger [2]), and when

G×H embeds in Sym(9) (Easdown and Saunders [3]). The first published example where

the inequality in (1) is strict appears in Wright [10], where G×H is a subgroup of Sym(15).

Saunders [6,7] describes an infinite class of examples, which includes the example in [10] as

a special case, where strict inequality takes place in (1). The smallest example in his class

occurs when G × H embeds in Sym(10). In all of these examples of strict inequality, the

groups G and H have the properties that H is cyclic of prime order and

µ(G×H) = µ(G). (2)

In this article, when (2) occurs, we say that H is absorbed by G. Our main theorem below

(Theorem 4.1) is that a group H is absorbed by some group G if and only if H embeds

in the direct product of an abelian group of odd order with some power of a generalised

quaternion 2-group. A consequence (Corollary 4.2) is that it is never possible for some

power of a nontrivial group to absorb a further copy of itself. The forward direction of the

proof of Theorem 4.1 invokes a number of classical results about group actions, centralisers

of subgroup of symmetric groups and wreath products. The backward direction involves the

delicate construction of appropriate examples, and is motivated by the ideas that appear

in the work of Saunders [6, 7], the seminal example in Wright’s original paper [10] and
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Hendriksen’s thesis [4]. These examples are also closely related to examples in the last

section of [1], where it is shown that is is possible to absorb an arbitrary large finite direct

product H of elementary abelian groups (with possibly mixed primes) using a group G that

does not decompose as a nontrivial direct product.

2. Preliminaries

Recall that if G is nontrivial then µ(G) is the smallest sum of indices for a collection

of subgroups C = {H1, . . . ,Hk} such that ∩ki=1Hi is core-free. In this case we say that

C affords a minimal faithful representation of G. The subgroups H1, . . . ,Hk become the

respective point-stabilisers for the action of G on its orbits and letters in the ith orbit may

be identified with cosets of Hi for i = 1 . . . , k. If k = 1 then the representation afforded by

C is transitive and H1 is a core-free subgroup.

Lemma 2.1. Let C be a collection of subgroups affording a minimal faithful representation

of a group G. Let D be a nonempty subset of C . Then {K/N | K ∈ D} affords a minimal

faithful representation of G/N where

N =
⋂
H∈D

core(H) .

In particular, if H ∈ C then H/ core(H) affords a minimal faithful transitive representation

of G/ core(H).

Proof. Note that ⋂
K∈D

coreG/N (K/N) =
( ⋂
K∈D

coreG(K)
)
/N = N/N ,

so that {K/N | K ∈ D} affords a faithful representation of G/N . If this representation is

not minimal, then we could replace D by E with a smaller index sum and the same core

intersection, and then (C \D) ∪ E would afford a faithful representation of G of smaller

degree than that afforded by C , which is a contradiction. �

Remark 2.2. The previous lemma is a reformulation of part (i) of Lemma 2.7 of [3].

Lemma 2.3. Let G be a transitive subgroup of Sym(X) and H the stabiliser of a point in

X. Then CSym(X)(G) ∼= NG(H)/H. Any subgroup K of CSym(X)(G) acts semiregularly on

X and the orbits of K form a block system for G.

Proof. Put C = CSym(X)(G). The isomorphism and semiregular action of C are well-known

(see [11, Theorem 5]). Let K be a subgroup of C, so K inherits the semiregular action of

C. Let x, y ∈ X lie in the same orbit of K and g ∈ G. Then y = xk for some k ∈ K, so

that yg = (xk)g = (xg)k, whence xg and yg lie in the same orbit of K. Thus the orbits of

K form a block system for G. �

Let G be a group and H a subgroup of Sym(n), where n is a positive integer. Recall that

the wreath product of G by H is the group

G oH = {(x1, . . . , xn, h) | x1, . . . , xn ∈ G, h ∈ H}
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with multiplication

(x1, . . . , xn, h1)(y1, . . . , yn, h2) = (x1y1h1 , . . . , xnynh1 , h1h2) .

Then

G oH ∼= Gn oφ H

with respect to the homomorphism φ : H → Aut(Gn) defined by, for h ∈ H,

hφ : (x1, . . . , xn) 7→ (x1h, . . . , xnh) .

Consider the case where G is a subgroup of Sym(m), where m is a positive integer. Then

G oH may be regarded as a subgroup of Sym(X) ∼= Sym(mn) where X = {(i, j) | 1 ≤ i ≤
m, 1 ≤ j ≤ n} with permutation action

(x1, . . . , xn, h) : (i, j) 7→ (ixj , jh) .

Then G and H may be identified with the subgroups

{(g, 1G . . . , 1G, 1H) | g ∈ G} and {(1G, . . . , 1G, h) | h ∈ H}

respectively. Each permutation g ∈ G (on m letters) may then be identified with the

permutation (on mn letters) that maps (i, 1) to (ig, 1) for 1 ≤ i ≤ m, and fixes (i, j) if j > 1,

so that we may also identify G in a natural way with a subgroup of Sym({(1, 1), . . . , (m, 1)}).
Each permutation h ∈ H (on n letters) then becomes identified with the permutation (on

mn letters) that maps each (i, j) to (i, jh). If, further, G and H are transitive and m ≥ 2,

then this action is also transitive with blocks of imprimitivity Xj = {(i, j) | 1 ≤ i ≤ m} for

1 ≤ j ≤ n, and H may also be identified with a subgroup of Sym({X1, . . . , Xn}).

Lemma 2.4. Let G be a transitive subgroup of Sym(X) such that X = X1t . . .tXn, where

X1, . . . , Xn are blocks of imprimitivity. Put G̃ = {g|X1
| g ∈ G and X1g = X1}, a subgroup

of Sym(X1), and let G be the subgroup of Sym{X1, . . . , Xn} induced by G, regarding blocks

as points. Then G embeds in the wreath product G̃ o G . If µ(G) = |X| then µ(G̃) = |X1|.

Proof. If n = 1 then G = G̃ and X = X1, and the statements are trivially true. We may

therefore suppose throughout that n > 1.

Put W = G̃ o G , which may be regarded as a subgroup of Sym(X). There is a natural

mapping − : g 7→ g from G onto G with kernel

K = {g ∈ G | Xig = Xi for 1 ≤ i ≤ n} .

Put S = {g ∈ G | X1g = X1}. Then K ≤ S, |G : S| = |G : S| = n and

coreG(S) = K = {1} .

For each i ∈ {1, . . . , n}, there exists xi ∈ Xi and hi ∈ G such that hi : x1 7→ xi (and we

may take h1 = 1, the identity permutation). For each i, put

Gi = {g|Xi
| g ∈ G and Xig = Xi} ∼= G̃ ,

and, for g ∈ G, put

gi = (high
−1
ig )|X1 ∈ Sym(X1) .

Note that G1 = G̃. It is well-known that the mapping

g 7→
(
(g1, . . . , gn), g) ,
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for g ∈ G, is an embedding from G into W . We may regard

W = G1G2 . . . GnH

as an internal semidirect product of an internal direct product G1G2 . . . Gn of n copies of G̃

by a group H, where H ∼= G is the copy of G regarded as a group of permutations of X, in

the manner described in the preamble to the lemma when introducing the wreath product.

If h ∈ H corresponds to g ∈ G, for g ∈ G, then, under these identifications, Ghi = Gig, for

each i. Let T be the subgroup of H corresponding to S, so |H : T | = n and T is core-free

in W . Put

B = G2 . . . GnT,

which is a subgroup of W , since S fixes X1. By transitivity, it follows that B is also core-free

in W .

Suppose that µ(G) = |X| and let C = {C1, . . . , Ck} be a collection of subgroups of G̃

that affords a minimal faithful representation of G̃. Then C may be regarded as a collection

of subgroups of G1 in the identification of W with G1G2 . . . GnH. Note that all elements

of G1 commute with all elements of G2 . . . GnT . Hence C1B, . . . , CkB are all subgroups of

W . Put

D = {C1B, . . . , CkB} ,
and observe that, since the representation afforded by C is faithful,

k⋂
j=1

coreW (CjB) = coreW

( k⋂
j=1

coreW (CjB)

)
= coreW

( k⋂
j=1

⋂
w∈W

(CjB)w
)

⊆ coreW

( k⋂
j=1

⋂
g∈G1

(CjB)g
)

= coreW

( k⋂
j=1

⋂
g∈G1

CgjB

)

= coreW

(( k⋂
j=1

coreG1
(Ci)

)
B

)
= coreW (B) = {1} .

Hence the representation of W afforded by D is faithful. Further its degree is

k∑
i=1

|W : CiB| =
k∑
i=1

|W : G1B||G1B : CiB| = |H : T |
k∑
i=1

|G1 : Ci| = nµ(G̃) .

But G embeds in W so that µ(G) ≤ µ(W ) ≤ nµ(G̃), whence

µ(G̃) ≥ µ(G)

n
=
|X|
n

= |X1| .

But G̃ is a subgroup of Sym(X1), so µ(G̃) ≤ |X1|, and the lemma follows immediately. �

Lemma 2.5. Let K and q be integers such that either K ≥ 2 and q ≥ 5, or K ≥ 5 and

q ≥ 3. Then q < Kq−2.

Proof. This follows by a simple induction on q. �

Lemma 2.6. Let p and q be distinct primes and n any positive integer. Let s be the

multiplicative order of p modulo q and suppose that s ≥ 2. Then pnq < 2pns.

Proof. By [1, Lemma 4.3], pq < 2ps. The result follows by a simple induction on n. �
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3. Examples

The examples in this section are used to prove the backward direction of Theorem 4.1

below. Example 3.1 describes absorption of the smallest possible nonabelian group, namely

Q8. This is a special case of absorption of arbitrary powers of generalised quaternion 2-

groups, described in Example 3.3. However, Example 3.1 is included, not just because it is

interesting in its own right, but also to ease the transition for the reader in negotiating the

delicate detail required to verify the claims made for the general class. If we take p = 2,

q = 5 and m = n = 1 in Example 3.2 then we recover the smallest example of absorption

described in [6], and it occurs within Sym(10). That no example of absorption can occur

within Sym(9) follows by results in [8] and the main theorem of [3]. If we take p = 5, q = 3

and m = n = 1 in Example 3.2 then we recover the seminal example that appears in [10],

the first published example demonstrating that equality can fail in (1).

Example 3.1. Put X = {xi,j | 1 ≤ i ≤ 3 , 1 ≤ j ≤ 8}, regarded as a set of 24 distinct letters.

Consider the following permutations of X, for 1 ≤ i ≤ 3, which together generate a copy of

Q8, the group of quaternions:

αi = (xi,1 xi,2 xi,3 xi,4)(xi,5 xi,6 xi,7 xi,8) , βi = (xi,1 xi,5 xi,3 xi,7)(xi,2 xi,8 xi,4 xi,6) .

Now put

ai = αiα
−1
i+1 , bi = βiβ

−1
i+1 ,

for 1 ≤ i ≤ 2, which together again generate a copy of Q8. For 1 ≤ j ≤ 8, consider the

following 3-cycle:

γj = (x1,j x2,j x3,j) ,

and put c = γ1γ2 . . . γ8. Put

A = 〈a1 , b1 , a2 , b2〉 ∼= Q2
8 and C = 〈c〉 ∼= C3 .

Consider the following subgroup G of Sym(X):

G = AC ∼= Q2
8 o C3 ,

which may be regarded as an internal semidirect product of A by C, where the conjugation

action of c is completely determined by

a1 7→ a2 7→ a−1
1 a−1

2 7→ a1 , b1 7→ b2 7→ b−1
1 b−1

2 7→ b1 .

We claim that µ(G) = 24. Certainly, since |X| = 24, we have µ(G) ≤ 24. Observe first

that

M = 〈a2
1 , a

2
2〉 ∼= C2

2

is the unique minimal normal subgroup of G, on which c acts irreducibly by conjugation,

and that a2
i = b2i is contained in any nontrivial subgroup of 〈ai, bi〉 ∼= Q8, for 1 ≤ i ≤ 2. Any

collection of subgroups of G affording a minimal faithful representation of G must contain

a subgroup S that does not contain M . If S has order divisible by 3 then the order of S

must be 3, for otherwise, by the irreducible conjugation action of c on M , S would contain

M . But in this case, the index of S in G would be 64 > 24, contradicting that µ(G) ≤ 24.
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Hence S is a subgroup of A that intersects 〈ai, bi〉 trivially for some i. But then |A : S| ≥ 8,

so |G : S| ≥ 24, which completes the proof that µ(G) = 24. Put

δi = (xi,1 xi,2 xi,3 xi,4)(xi,5 xi,6 xi,7 xi,8)−1 , εi = (xi,1 xi,5 xi,3 xi,7)(xi,2 xi,8 xi,4 xi,6)−1 .

for 1 ≤ i ≤ 3, which generate another copy of Q8 and also commute with αi and βi. Finally,

put

h1 = δ1δ2δ3 and h2 = ε1ε2ε3 ,

and

H = 〈h1, h2〉 ∼= Q8 .

Then elements of H commute with elements of G and, by a parity argument applied to

elements of order 2 (since elements of M are even whilst the unique element of H of order

two is an odd permutation), we have H ∩G = {1}. Thus GH ∼= G×H ∼= (Q2
8 o C3)×Q8

is a subgroup of Sym(X) that is an internal direct product of G and H. Hence µ(GH) ≤
|X| = 24 = µ(G) ≤ µ(GH), whence

µ(G×H) = 24 = µ(G) ,

exhibiting the property of absorption of H, a copy of Q8. This, we believe, is the first

published example of absorption of a nonabelian group. By Theorem 4.1 below, Q8 is the

smallest nonabelian group, up to isomorphism, that can be absorbed by another group. By

Remark 4.3 below, this example is minimal also in the sense that it is impossible to find a

subgroup of Sym(23) that absorbs a nonabelian group.

Example 3.2. Let p and q be distinct primes such that q ≥ 5, or q ≥ 3 and p ≥ 5. Suppose

that q does not divide p− 1. Let m and n be positive integers. Put

X = {xi,j,k | 1 ≤ i ≤ q , 1 ≤ j ≤ pn , 1 ≤ k ≤ m} ,

which we may regard as a set of mpnq distinct letters. For i = 1 to q and k = 1 to m,

consider the pn-cycle

σi,k = (xi,1,k xi,2,k . . . xi,pn,k) .

For j = 1 to pn and k = 1 to m, consider the q-cycle

τj,k = (x1,j,k x2,j,k . . . xq,j,k) .

For k = 1 to m, put

a1,k = σ1,kσ
−1
2,k , a2,k = σ2,kσ

−1
3k , . . . , aq−1,k = σq−1,kσ

−1
q,k ,

and

b = τ1,1 . . . τpn,1 τ1,2 . . . τpn,2 . . . τ1,m . . . τpn,m .

Now put

G = 〈ai,k, b | 1 ≤ i ≤ q − 1 , 1 ≤ k ≤ m〉 ,
which is a subgroup of Sym(X). Here all of the ai,k have order pn and pairwise commute,

for 1 ≤ i ≤ q and 1 ≤ k ≤ m. Further, b is an element of order q, acting by conjugation on

the abelian subgroup

A = 〈ai,k | 1 ≤ i ≤ q − 1 , 1 ≤ k ≤ m〉 ∼= C
(q−1)m
pn
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in a manner completely determined by

a1,k 7→ a2,k 7→ . . . 7→ aq−1,k 7→ a−1
1,ka

−1
2,k . . . a

−1
q−1,k 7→ a1,k ,

for 1 ≤ k ≤ m. Put B = 〈b〉 ∼= Cq. Thus G = AB is a subgroup of Sym(X) that is

an internal semidirect product of A by B, and G is isomorphic to a semidirect product

C
(q−1)m
pn o Cq. We claim that

µ(G) = mpnq .

By construction, µ(G) ≤ mpnq, so, to verify the claim, it suffices to show µ(G) ≥ mpnq.

Suppose that C is a collection of subgroups of G affording a minimal faithful representation.

In particular, C has a trivial core intersection. By [5, Lemma 11], we may suppose all

elements of C are meet irreducible. Note that, if S is a subgroup of G with order divisible

by q, then S = TBg is an internal semidirect product of a subgroup T , which is normal in

G, by Bg for some g ∈ G, in which case TB is also a subgroup of G such that core(S) =

core(TB) = T and |G : S| = |G : TB|. Thus, without loss of generality, we may assume

C = {H1, . . . ,H`, T1B, . . . , TtB}

for some ` ≥ 0 and t ≥ 0, where H1, . . . ,H` are subgroups of A, and T1, . . . , Tt are subgroups

of A that are normal in G. (In fact, we will show ` = m and t = 0, so that C only involves

subgroups of A.) If E is a subgroup of A, put

E = {e ∈ E | the order of e is p or 1} ,

which is an elementary abelian subgroup of E. Now put

G = AB ∼= C(q−1)m
p o Cq and C = {H1, . . . ,H`, T1B, . . . , TtB} .

Then C also has trivial core intersection, so affords a faithful permutation representation

of G. It follows that subgroups in C are also meet irreducible. We may identify G with the

vector space semidirect product

V oM

in the sense of [1, Section 3], where V = A ∼= C
(q−1)m
p is regarded as a vector space of

dimension (q − 1)m over the field with p elements, and M is the matrix of multiplicative

order q formed by taking a direct sum of m companion matrices of the polynomial π(x) =

1 + x + . . . + xq−1. Then π(x) is the minimal polynomial of M and a product of distinct

irreducible polynomials of degree s where s is the multiplicative order of p modulo q. Note

that s ≥ 2, since q does not divide p− 1. Hence, by meet irreducibility, H1, . . . ,H` may be

identified with codimension 1 subspaces of V , and T1, . . . , Tt with subspaces of V invariant

under the action of M and of codimension s. By a dimension argument, when we make

these identifications, core(Hi) is a subspace of V of codimension at most q − 1, the degree

of π(x), for i = 1 to `. Put

W =
⋂̀
i=1

core(Hi) and Z =

t⋂
j=1

core(TjB) =

t⋂
j=1

Tj .

Then the codimensions of W and Z in V are at most (q−1)` and st ≤ (q−1)t respectively.

But W ∩ Z is trivial and the dimension of V is (q − 1)m. Thus (q − 1)`+ st ≥ (q − 1)m ,
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and so

t ≥
(q − 1

s

)
(m− `) . (3)

Since Hi has codimension 1 in A, it follows that |G : Hi| ≥ pnq for i = 1 to `. Since Tj has

codimension s in A, it follows that |G : TjB| ≥ pns for j = 1 to t. Thus we have

mpnq ≥ µ(G) =
∑
S∈C

|G : S| =
∑̀
i=1

|G : Hi|+
t∑

j=1

|G : TjB| ≥ `pnq + tpns ,

and so

tpns ≤ (m− `)pnq . (4)

Suppose ` < m. From (3) and (4), we get(q − 1

s

)
pns ≤ pnq . (5)

If s = q − 1 then (5) gives

pn(q−1) ≤ pnq ,

which contradicts Lemma 2.5. If s 6= q − 1, then s is a proper divisor of q − 1, so that (5)

now gives

2pns ≤ pnq ,

which contradicts Lemma 2.6. Hence ` ≥ m. If ` > m then the right-hand side of (4)

is negative, which is impossible. Hence ` = m, so that the right-hand side of (4) is zero,

whence t = 0. Thus C = {H1, . . . ,H`} and

µ(G) =
∑̀
i=1

|G : Hi| ≥ `pnq = mpnq ,

whence µ(G) = mpnq, as claimed. Now, for each k = 1 to m, consider the permutation

hk = σ1,kσ2,k . . . σq,k ,

which has order pn, shifts letters only within the orbit

Xk = {xi,j,k | 1 ≤ i ≤ q , 1 ≤ j ≤ pn}

of G, and commutes with all elements of G. Put

H = 〈h1, . . . , hm〉 ∼= Cmpn .

Note that all elements of A are products of elements of the form σ
ε1,k
1,k . . . σ

εq,k
q,k , which are

permutations that shift only letters in Xk, where ε1,k + . . .+ εq,k = 0 mod pn, for k = 1 to

m. Because X = X1 ∪ . . . ∪Xm is a disjoint union of orbits, it follows that H ∩ G = {1}.
Thus

GH ∼= (C
(q−1)m
pn o Cq)× Cmpn

is a subgroup of Sym(X) that is an internal direct product of G and H. By construction

µ(GH) ≤ mpnq = µ(G) ≤ µ(GH), whence

µ(G×H) = mpnq = µ(G) ,

exhibiting the property of absorption of H, a copy of Cmpn .
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Example 3.3. Let q ≥ 5 be a prime. Let m and n be positive integers, and put M = 2n and

N = 2M . Put

X = {xi,j,k | 1 ≤ i ≤ q , 1 ≤ j ≤ N , 1 ≤ k ≤ m}
and

Y = {yi,j,k | 1 ≤ i ≤ q , 1 ≤ j ≤ N , 1 ≤ k ≤ m} ,
which we may regard as disjoint sets, each containing mqN distinct letters. For i = 1 to q

and k = 1 to m, consider the following product of two disjoint N -cycles:

αi,k = (xi,1,k xi,2,k . . . xi,N,k)(yi,1,k yi,2,k . . . yi,N,k) ,

and the following product of M disjoint 4-cycles:

βi,k = (xi,1,k yi,1,k xi,M+1,k yi,M+1,k)(xi,2,k yi,N,k xi,M+2,k yi,M,k)

. . . (xi,M−1,k yi,M+3,k xi,N−1,k yi,3,k)(xi,M,k yi,M+2,k xi,N,k yi,2,k) ,

which together generate a copy of the generalised quaternion 2-group Q4M (which is easily

checked, since αMi,k = β2
i,k and α

βi,k
i,k = α−1

i,k ). Now put

ai,k = αi,kα
−1
i+1,k , bi,k = βi,kβ

−1
i+1,k ,

for 1 ≤ i ≤ q − 1 and 1 ≤ k ≤ m, which together again generate a copy of Q4M . For

1 ≤ j ≤ N and 1 ≤ k ≤ m, consider the following product of two disjoint q-cycles:

γj,k = (x1,j,k x2,j,k . . . xq,j,k)(y1,j,k y2,j,k . . . yq,j,k) .

Now put

c = γ1,1 . . . γ1,k γ2,1 . . . γ2,k . . . γN,1 . . . γN,k .

Put

A = 〈ai,k , bi,k | 1 ≤ i ≤ q − 1 , 1 ≤ k ≤ m〉 ∼= Qq−1
4M and C = 〈c〉 ∼= Cq .

Consider the following subgroup G of Sym(X ∪ Y ):

G = AC ∼= Qq−1
4M o Cq ,

which may be regarded as an internal semidirect product of A by C, where the conjugation

action of c is completely determined by, for 1 ≤ k ≤ m,

a1,k 7→ a2,k 7→ . . . 7→ aq−1,k 7→ a−1
1,ka

−1
2,k . . . a

−1
q−1,k 7→ a1,k ,

b1,k 7→ b2,k 7→ . . . 7→ bq−1,k 7→ b−1
1,kb
−1
2,k . . . b

−1
q−1,k 7→ b1,k .

We claim that

µ(G) = |X ∪ Y | = 2mqN .

By construction, µ(G) ≤ 2mqN , so, to verify the claim, it suffices to show µ(G) ≥ 2mqN .

This follows, however, by exactly the same technique used in Example 3.2, by assuming the

inequality is false, and then relying on dimension arguments involving action of Cq on an

elementary abelian subgroup regarded as a vector space, this time over the field with two

elements (relying on the fact that a generalised quaternion 2-group has a unique element of

order two), and finally reaching contradictions by Lemmas 2.5 and 2.6. For i = 1 to q and

k = 1 to m, consider the following product of two disjoint N -cycles:

δi,k = (xi,1,k xi,2,k . . . xi,N,k)(yi,1,k yi,2,k . . . yi,N,k)
−1 ,
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and the following product of M disjoint 4-cycles:

εi,k = (xi,1,k yi,M+2,k xi,M+1,k yi,2,k)(xi,2,k yi,M+3,k xi,M+2,k yi,3,k)

. . . (xi,M−1,k yi,N,k xi,N−1,k yi,M,k)(xi,M,k yi,1,k xi,N,k yi,M+1,k) ,

which together generate a copy of the generalised quaternion 2-group Q4M (which is easily

checked, since δMi,k = ε2
i,k and δ

εi,k
i,k = δ−1

i,k ), and commute with αi,k and βi,k. Finally, put

h1,k = δ1,k . . . δq,k , h2,k = ε1,k . . . εq,k ,

which also together generate a copy of Q4M , for 1 ≤ k ≤ m, and

H = 〈h1,1, h2,1, . . . , h1,m, h2,m〉 ∼= Qm4M .

Then elements of H commute with elements of G and, by a parity argument applied to

the subgroup of A generated by the central elements of order 2, and considering separate

orbits, we have H ∩G = {1}. Thus

GH ∼= G×H ∼= (Q
(q−1)m
4M o Cq)×Qm4M

is a subgroup of Sym(X∪Y ) that is an internal direct product of G and H. By construction

µ(GH) ≤ 2mqN = µ(G) ≤ µ(GH), whence

µ(G×H) = 2mqN = µ(G) ,

exhibiting the property of absorption of H, a copy of Qm4M .

4. Main Theorem

Theorem 4.1. If H is a group then µ(G×H) = µ(G) for some group G if and only if H is

a subgroup of A×Qk for some abelian group A of odd order, some generalised quaternion

2-group Q and some nonnegative integer k.

Proof. Suppose that G and H are groups such that µ(G × H) = µ(G). We may suppose

throughout that H is nontrivial (and of course this entails that G is nontrivial). Let C =

{S1, . . . , S`} be a collection of subgroups of G × H = GH that affords a minimal faithful

representation Ψ of GH of degree n, where GH is regarded as a subgroup of Sym(n) that

is an internal direct product of G and H. For each i, denote by Ψi the ith transitive

component of Ψ corresponding to Si, so that the kernel of Ψi is the core of Si. Put

CG = {G ∩ S1, . . . , G ∩ S`} .

Observe first that, for each i, any normal subgroup of G contained in G∩ Si is also normal

in GH, since elements of G commute with elements of H, so that

G ∩ coreGH(Si) = coreG(G ∩ Si) .
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By faithfulness,
⋂̀
i=1

coreGH(Si) = {1}, and it follows that
⋂̀
i=1

coreG(G ∩ Si) = {1}. Hence

CG affords a faithful representation of G. Observe also that, for each i,

|H||G : G ∩ Si| = |GH : G||G : G ∩ Si| = |GH : G ∩ Si|
= |GH : Si||Si : G ∩ Si| = |GH : Si||GSi : G|
≤ |GH : Si||GH : G| = |H||GH : Si| ,

so that |G : G ∩ Si| ≤ |GH : Si|. If |G : G ∩ Si| < |GH : Si| for any i then the degree of

the representation of G afforded by CG will be less than the degree of the representation of

GH afforded by C , which contradicts that µ(G) = µ(G×H). Hence, for each i,

|G : G ∩ Si| = |GH : Si| ,

so CG affords a minimal faithful representation Φ of G, and we have a bijection

θ : G/G ∩ Si → GH/Si , (G ∩ Si)g 7→ Sig for g ∈ G ,

with respect to which Ψi|G and Φi become equivalent, where Φi is the transitive component

of Φ corresponding to G ∩ Si, whose kernel is coreG(G ∩ Si).
Fix i ∈ {1, . . . , `}. Then Ψi|H is equivalent to a representation Ξi of H by Sym(G/G∩Si)

and HΞi centralises GΦi. Note that µ(GΦi) = |G : G∩Si|, by Lemma 2.1. By Lemma 2.3,

HΞi has a regular action and its orbits form a block system for GΦi. Let B be one of the

orbits of HΞi and put

GB = {g ∈ G | B(gΦi) ⊆ B}Φi .

By Lemma 2.4, GΦi embeds in the wreath product GB oG, where G denotes the permutation

group induced by GΦi acting on the blocks regarded as points, and µ(GB) = |B|. Further,

GB centralises HΞi. But the action of HΞi on B is regular, so the stabiliser K of a point in

B is trivial, so that NHΞi(K)/K ∼= HΞi. By Lemma 2.3, GB is isomorphic to a subgroup

of HΞi. In particular, µ(GB) ≤ µ(HΞi). Moreover |HΞi| = |B| = µ(GB). It follows that

µ(HΞi) = |HΞi|. By Johnson’s Theorem [5], HΞi is a cyclic group of prime power order, a

Klein four-group or a generalised quaternion 2-group.

But HΨ is a subdirect product of HΞ1, . . . ,HΞ`. Thus H ∼= HΨ is a subdirect product

of a finite number of cyclic groups of prime-power order, Klein four-groups and generalised

quaternion 2-groups. Let A be the direct product of all of the cyclic groups of odd order

that arise and Q a sufficiently large generalised quaternion 2-group that contains the largest

cycle of order a power of 2 that arises (in any of the cyclic 2-groups, Klein four-groups or

generalised quaternion 2-groups that arise). Then H embeds in A × Qk for some k. This

completes the proof of the forward direction of the theorem.

Suppose, conversely, thatH is a subgroup of A×Qk for some abelian group A of odd order,

generalised quaternion 2-group Q and positive integer k. We may assume A is nontrivial.

Then there exist distinct odd primes p1, . . . , p` and positive integers k1, . . . , k` such that H

is a subgroup of

K = Ck1p1 × . . .× C
k`
p`
×Qk .
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Choose a prime q larger than p1, . . . , p`. By Example 3.2, there exist a pi-group Ai and

semidirect product of Ai by Cq, with nontrivial action, such that

µ(Ai o Cq)× Ckipi = µ(Ai o Cq) , (6)

for 1 ≤ i ≤ `. By Example 3.3, there exist a 2-group B and semidirect product of B by Cq,

with nontrivial action, such that

µ(B o Cq)×Qk = µ(B o Cq) . (7)

Put

G = (A1 × . . .×A` ×B) o Cq

where the semidirect product action of Cq on the base group is induced from the actions

on the base groups of A1 oCq, . . . , A` oCq, B oCq, in the sense described in the preamble

to [1, Theorem 2.7]. Observe also that, for 1 ≤ i ≤ `,

(Ai o Cq)× Ckipi ∼= (Ai × Ckipi ) o Cq , (8)

and

(B o Cq)×Qk ∼= (B ×Qk) o Cq , (9)

where, in each case, on the right-hand side, the action of Cq on the base group is nontrivial.

By iterating the last case of the formula in [1, Theorem 2.7], and by (6),(7), (8) and (9), we

have

µ(G×K) = µ
(

(A1 × . . .×A` ×B) o Cq)× (Ck1p1 × . . .× C
k`
p`
×Qk

)
= µ

((
(A1 × Ck1p1 )× . . .× (A` × Ck`p` )× (B ×Qk)

)
o Cq

)
= µ

(
(A1 × Ck1p1 ) o Cq

)
+ . . .+ µ

(
(A` × Ck`p` ) o Cq

)
+ µ

(
(B ×Qk) o Cq

)
= µ

(
(A1 o Cq)× Ck1p1

)
+ . . .+ µ

(
(A` o Cq)× Ck`p`

)
+ µ

(
(B o Cq)×Qk

)
= µ(A1 o Cq) + . . .+ µ(A` o Cq) + µ(B o Cq)

= µ
(

(A1 × . . .×A` ×B) o Cq

)
= µ(G) .

But then

µ(G) ≤ µ(G×H) ≤ µ(G×K) = µ(G) ,

whence µ(G×H) = µ(G), and absorption of H has been achieved, completing the proof of

the backward direction of the theorem. �

The following consequence appears to be nontrivial and tells us that no direct power of

any nontrivial group G can absorb another copy of G.

Corollary 4.2. If G is a group and n a nonnegative integer then µ(Gn+1) = µ(Gn) if and

only if G is trivial.

Proof. Suppose G is a group and n an integer such that µ(Gn+1) = µ(Gn). By Theorem

4.1, G is a subgroup of A×Qk for some abelian group A, generalised quaternion 2-group Q

and integer k. In particular, G is nilpotent, so nµ(G) = µ(Gn) = µ(Gn+1) = (n + 1)µ(G)

by the main result of [10], which is impossible unless µ(G) = 0, that is, G is trivial. The

reverse direction is obvious. �
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Remark 4.3. In Example 3.1, we exhibited a subgroup G of Sym(24) such that µ(G×Q8) =

µ(G). In fact, 24 is minimal in the following sense: suppose that G is a subgroup of Sym(n)

such that µ(G × H) = µ(G) for some nonabelian group H. We prove that n ≥ 24. By

Theorem 4.1, H must have a subgroup isomorphic to Q8, so there is no loss in generality in

assuming H ∼= Q8. Because Q8 is subdirectly irreducible, we may suppose G is transitive

(by Lemma 2.1). From the forward direction of the proof of Theorem 4.1, G embeds in a

wreath product of Q8 by some permutation group K acting on k letters, such that n = 8k. If

k = 1 or 2 then G embeds in a 2-group, so that µ(G) = µ(G×H) = µ(G)+µ(H) = µ(G)+8,

by Wright’s theorem [10], since both G and H are nilpotent, which is impossible. Hence

k ≥ 3, so n ≥ 24, and the proof is complete.
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