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Abstract. We use Katsura’s topological graphs to define Toeplitz extensions of Latrémolière
and Packer’s noncommutative-solenoid C∗-algebras. We identify a natural dynamics on each
Toeplitz noncommutative solenoid and study the associated KMS states. Our main result shows
that the space of extreme points of the KMS simplex of the Toeplitz noncommutative torus
at a strictly positive inverse temperature is homeomorphic to a solenoid; indeed, there is an
action of the solenoid group on the Toeplitz noncommutative solenoid that induces a free and
transitive action on the extreme boundary of the KMS simplex. With the exception of the
degenerate case of trivial rotations, at inverse temperature zero there is a unique KMS state,
and only this one factors through Latrémolière and Packer’s noncommutative solenoid.

1. Introduction

In this paper, we describe the KMS states of Toeplitz extensions of the noncommutative
solenoids constructed by Latrémolière and Packer [22]. We prove that the extreme boundary
of the KMS simplex is homeomorphic to a topological solenoid. In recent years, following Bost
and Connes’ work [2] relating KMS theory to the Riemann zeta function, there has been a
great deal of interest in the KMS structure of C∗-algebras associated to algebraic and com-
binatorial objects. In particular Laca and Raeburn’s results [20] about the Toeplitz algebra
of the ax + b-semigroup over N precipitated a surge of activity around computations of KMS
states for Toeplitz-like extensions. Various authors have studied KMS states on Toeplitz alge-
bras associated to algebraic objects [4, 21, 6], directed graphs [14, 12, 5], higher-rank graphs
[28, 13, 9], C∗-correspondences [19, 15], and topological graphs [1]. The results suggest that the
KMS structure of such algebras for their natural gauge actions frequently encodes key features
of the generating object.

The noncommutative solenoids AS
θ are C∗-algebras introduced by Latrémolière and Packer

in [22]. They are among the first examples of twisted C∗-algebras of non-compactly-generated
abelian groups to be studied in detail, and have interesting representation-theoretic properties
[23, 24]. In addition to the definition of noncommutative solenoids as twisted group C∗-algebras,
Latrémolière and Packer provide a number of equivalent descriptions. The one we are interested
in realises them as direct limits of noncommutative tori. Specifically, given a positive integer
N and a sequence θn of real numbers such that N2θn+1 − θn is an integer for every n, there
are homomorphisms Aθn → Aθn+1 that send the canonical unitary generators of Aθn to the
Nth powers of the corresponding generators of Aθn+1 . The noncommutative solenoid for the
sequence θ = (θn) is the direct limit of the Aθn under these homomorphisms. Latrémolière and
Packer’s work focusses on features like simplicity, K-theory and classification of noncommuta-
tive solenoids.

Here we use Katsura’s theory of topological graph C∗-algebras [16] to introduce a class
of Toeplitz extensions T S

θ of noncommutative solenoids, realised as direct limits of Toeplitz
extensions T (Eθn) of noncommutative tori, and then study their KMS states. Our main result
says that at inverse temperatures above zero, the extreme boundary of the KMS simplex of
T S
θ is homeomorphic to the classical solenoid S , and there is an action of S on T S

θ that
induces a free and transitive action on the extreme KMS states. This is further evidence that
KMS structure for Toeplitz-like algebras recovers key features of the underlying generating
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objects. Interestingly, this homeomorphism is subtler than one might expect: though the
results of [1] show that the KMS simplex of each approximating subalgebra T (Eθn) ⊆ T S

θ has
extreme boundary homeomorphic to the circle, these homeomorphisms are not compatible with
the connecting maps in the inductive system. In fact, none of the extreme points in the KMS
simplex of any T (Eθn) extend to KMS states of T S

θ . Identifying the simplex of KMS states of a
given T (Eθn) that do extend to KMS states of T S

θ requires a careful analysis of the interaction
between the subinvariance relation, described in [1], that characterises KMS states on the
T (Eθn) and the compatibility relation imposed by the connecting maps T (Eθn) ↪→ T (Eθn+1).
We think the ideas involved in this analysis may be applicable to other investigations of KMS
states on direct-limit C∗-algebras. Our main result also shows that at inverse temperature
β there is a unique KMS state (unless all the θn are zero, a degenerate case that we discuss
separately), and that there are no KMS states at inverse temperatures below zero. Perhaps
surprisingly, for nonzero θ the structure of the KMS simplex of T S

θ does not depend on whether
the θn are rational.

We proceed as follows. After a brief preliminaries section, we begin in Section 3 by consid-
ering KMS states for actions on direct limits that preserve the approximating subalgebras. We
record a general—and presumably well known—description of the KMS simplex as a projec-
tive limit of the KMS simplices of the approximating subalgebras. The connecting maps in
this projective system need not be surjective, which is the cause of the subtleties that arise in
computing the KMS states of Toeplitz noncommutative solenoids later in the paper. In Sec-
tion 4, we consider the topological graph Eγ that encodes rotation on the circle R/Z by angle
γ ∈ R. We describe the Toeplitz algebra T (Eγ) of this topological graph as universal for an
isometry S and a representation π of C(R/Z), and its topological-graph C∗-algebra O(Eγ) as
the quotient by the ideal generated by 1−SS∗. In particular, O(Eγ) is canonically isomorphic
to the noncommutative torus Aγ. In Section 5 we consider a sequence θ = (θn) in R/Z such
that N2θn+1 = θn for all n. We use our description of T (Eγ) from the preceding section to
describe homomorphisms ψn : T (Eθn)→ T (Eθn+1) that descend through the quotient maps to
the homomorphisms τn : O(Eθn) → O(Eθn+1) for which the noncommutative solenoid AS

θ is
isomorphic to lim−→(O(Eθn), τn).

In Section 6, we define the Toeplitz noncommutative solenoid as T S
θ := lim−→(T (Eθn), ψn),

by analogy with the description of AS
θ outlined in Section 5. We describe a dynamics α on

T S
θ built from the gauge actions on the approximating subalgebras T (Eθn). Though the gauge

actions on the T (Eθn) are all periodic R-actions, the dynamics α is not. We are interested in
the KMS states for this dynamics. The case θ = 0 := (0, 0, 0, . . . ) is a degenerate case, and we
outline in Remark 6.5 how to describe the KMS states in this instance by decomposing both
the algebra T S

0 and the dynamics α as tensor products. Since θn 6= 0 implies θn+1 6= 0, we
can thereafter assume, without loss of generality, that every θn is nonzero. In the remainder of
Section 6, we use our results about direct limits from Section 3 to realise the KMS simplex of
T S
θ for α at an inverse temperature β > 0 as a projective limit of spaces Ωrn

sub of probability
measures on R/Z that satisfy a suitable subinvariance condition. This involves an interesting
interplay between the subinvariance condition for KMS states on the T (Eθn) obtained from [1],
and the compatibility condition coming from the connecting maps ψn. We believe that this
analysis and our analysis of the space Ωrn

sub in Section 7 may be of independent interest from
the point of view of ergodic theory. The theorems in [1] are silent on the case β = 0, so we
must argue this case separately, and our results for this case in Section 6 appear less sharp than
for β > 0: they show only that the KMS0-simplex embeds in the projective limit of the spaces
Ω0

sub. But we shall see later that the subinvariance condition at β = 0 has a unique solution,
so that the projective limit in this case is a one-point set. So our embedding result for β = 0
is sufficient to show that there is a unique KMS0 state.

In Section 7 we analyse the space Ωr
sub for r > 0. We first construct a measure mr satisfying

the desired subinvariance relation, and then show that the measures obtained by composing
this mr with rotations are all of the extreme points of Ωr

sub. This yields an isomorphism of Ωr
sub
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with the space of regular Borel probability measures on R/Z. A key step in our analysis is the
characterisation in [12] of the subinvariant measures on the vertex set of a simple-cycle graph.
We then turn in Section 8 to the proof of our main theorem. The key step is to establish that
the connecting maps ψn : T (Eθn)→ T (Eθn+1) induce surjections Ω

rn+1

sub � Ωrn
sub by showing that

the induced maps carry extreme points to extreme points.

2. Preliminaries

In this section we recall the background that we need on topological graphs and their C∗-
algebras, as introduced by Katsura in [16]. We then recall the notion of a KMS state for a
C∗-algebra A and dynamics α.

Topological graphs and their C∗-algebras. For details of the following, see [16]. A topo-
logical graph E = (E0, E1, r, s) consists of locally compact Hausdorff spaces E0 and E1, a
continuous map r : E1 → E0, and a local homeomorphism s : E1 → E0. In [16] Katsura con-
structs from each topological graph E a Hilbert C0(E0)-bimodule X(E) and two C∗-algebras:
the Toeplitz algebra T (E) and the graph C∗-algebra O(E). In this article we only encounter
topological graphs of the form E = (Z,Z, id, h), where h : Z → Z is a homeomorpism of a
compact Hausdorff space Z, so we only discuss the details of X(E), T (E) and O(E) in this
setting.

When E = (Z,Z, id, h), where Z is compact, the module X(E) is a copy of C(Z) as a Banach
space. The left and right actions are given by

g1 · f · g2(z) = g1(z)f(z)g2(h(z)), for g1, g2 ∈ C(Z), f ∈ X(E),

and the inner product by 〈f1, f2〉(z) = f1(h−1(z))f2(h−1(z)), for f1, f2 ∈ X(E). We denote by
ϕ the homomorphism A→ L(X(E)) implementing the left action. In this case ϕ is injective.

A representation of X(E) in a C∗-algebra B is a pair (ψ, π), consisting of a linear map
ψ : X(E)→ B and a homomorphism π : C(Z)→ B satisfying

ψ(f · h) = ψ(f)π(h), ψ∗(f)ψ(g) = π(〈f, g〉) and ψ(h · f) = π(h)ψ(f)

for all f, g ∈ X(E) and h ∈ C(Z). The Toeplitz algebra T (E) is the Toeplitz algebra of X(E),
in the sense of [10], which is the universal C∗-algebra generated by a representation of X(E).
We denote by (i1X(E), i

0
X(E)) the representation generating T (E).

For f1, f2 ∈ XE there is an adjointable operator Θf1,f2 ∈ L(X(E)) given by Θf1,f2(g) =
f1〈f2, g〉C(Z) = f1f

∗
2 g. The algebra of generalised compact operators on X(E) is

K(X(E)) := span{Θf1,f2 : f1, f2 ∈ X(E)}.

Since Θ1,1 = 1L(X(E)), we have K(X(E)) = L(X(E)). For a representation (ψ, π) of X(E) in

B there is a homomorphism (ψ, π)(1) : K(X(E))→ B satisfying (ψ, π)(1)(Θf1,f2) = ψ(f1)ψ(f2)∗

(see [26, page 202]).
The graph algebra O(E) is the Cuntz–Pimsner algebra of X(E). So O(E) is the quotient of
T (E) by the ideal generated by

{(i1X(E), i
0
X(E))

(1)(ϕ(h))− i0X(E)(h) : h ∈ C(Z)},

and is the universal C∗-algebra generated by a covariant representation of X(E)—that is, a
representation (ψ, π) satisfying

(ψ, π)(1)(ϕ(h)) = π(h) for all h ∈ C(Z).

We denote the quotient map T (E)→ O(E) by q, and we define (j1
X(E), j

0
X(E)) := (q ◦ i1X(E), q ◦

i0X(E)), the covariant representation generating O(E).
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KMS states. For details of the following, see [3]. Given a C∗-algebra A and an action α :
R → Aut(A), we say that a ∈ A is analytic for α if the function t 7→ αt(a) is the restriction
of an analytic function z 7→ αz(a) from C into A. The set of analytic elements is always norm
dense in A. A state φ of A is a KMS0-state if it is an α-invariant trace on A. For β ∈ R \ {0},
a state φ of A is a KMSβ-state, or a KMS-state at inverse temperature β, for the system (A,α)
if it satisfies the KMS condition

φ(ab) = φ(bαiβ(a)) for all analytic a, b ∈ A.

It suffices to check this condition for all a, b in any α-invariant set of analytic elements that
spans a dense subspace of A. The collection of KMSβ-states for a dynamics α on a unital
C∗-algebra A forms a Choquet simplex, and we will denote it by KMSβ(A,α).

3. KMS structure of direct limit C∗-algebras

The C∗-algebras of interest to us in this paper are examples of direct-limit C∗-algebras. In
this short section we show that the simplex of KMS states of a direct-limit C∗-algebra, for an
action that preserves the approximating subalgebras, is the projective limit of the simplicies of
KMS states of the approximating subalgebras.

Proposition 3.1. Suppose β ∈ [0,∞), and that {(Aj, ϕj, αj) : j ∈ N} is a sequence of unital
C∗-algebras Aj, injective unital homomorphisms ϕj : Aj → Aj+1, and strongly continuous
actions αj : R→ AutAj satisfying αj+1,t ◦ϕj = ϕj ◦αj,t for all j ∈ N and t ∈ R. Denote by A∞
the direct limit lim−→(Aj, ϕj), and by ϕj,∞ the canonical maps Aj → A∞ satisfying ϕj+1,∞ ◦ ϕj =
ϕj,∞ for each j ∈ N. There is a strongly continuous action α : R → AutA∞ satisfying
ϕj,∞ ◦αj,t = αt ◦ϕj,∞ for each j ∈ N and t ∈ R. Moreover, there is an affine isomorphism from
KMSβ(A∞, α) onto lim←−(KMSβ(Aj, αj), φ 7→ φ ◦ ϕj−1) that sends φ to (φ ◦ ϕj,∞)∞j=0.

Proof. For each j ∈ N and t ∈ R we have

(ϕj+1,∞ ◦ αj+1,t) ◦ ϕj = ϕj+1,∞ ◦ ϕj ◦ αj,t = ϕj,∞ ◦ αj,t.
So the universal property of A∞ gives a homomorphism αt : A∞ → A∞ such that αt ◦ ϕj,∞ =
ϕj,∞ ◦ αj,t for all j.

It is straightforward to check that each αt is an automorphism of A∞ with inverse α−t, and
that α : R→ AutA∞ is an action satisfying ϕj,∞ ◦αj,t = αt ◦ϕj,∞. An ε/3-argument using that
each αj is strongly continuous and that

⋃
j ϕj,∞(Aj) is dense in A∞ shows that α is strongly

continuous.
For j ∈ N and φ ∈ KMSβ(A∞, α) define hj(φ) := φ ◦ ϕj,∞. Since KMSβ states restrict to

KMSβ states on invariant unital subalgebras, hj maps KMSβ(A∞, α) to KMSβ(Aj, αj) for each
j. We have

hj+1 ◦ ϕj = (φ ◦ ϕj+1,∞) ◦ ϕj = φ ◦ (ϕj+1,∞ ◦ ϕj) = φ ◦ ϕj,∞ = hj,

and so the universal property of lim←−KMSβ(Aj, αj) gives a map h from KMSβ(A∞, α) into
lim←−KMSβ(Aj, αj) satisfying pj ◦ h = hj, where pj denotes the canonical projection onto
KMSβ(Aj, βj). We claim that h is the desired affine isomorphism.

The map h is obviously affine. To see that h is surjective, fix (φj)
∞
j=0 ∈ lim←−(KMSβ(Aj, αj)),

and take j ≤ k, a ∈ Aj and b ∈ Ak with ϕj,∞(a) = ϕk,∞(b). Then

0 = ϕk,∞(b)− ϕj,∞(a) = ϕk,∞(b)− ϕk,∞(ϕk−1 ◦ · · · ◦ ϕj(a)) = ϕk,∞(b− ϕk−1 ◦ · · · ◦ ϕj(a)).

Since each ϕj is injective, each ϕj,∞ is injective, and so b = ϕk−1 ◦ · · · ◦ ϕj(a). Now

φj(a) = φk(ϕk−1 ◦ · · · ◦ ϕj(a)) = φk(b),

and so there is a well-defined linear map φ∞ :
⋃∞
j=0 ϕj,∞(Aj) → C satisfying φ∞(ϕj,∞(a)) =

φj(a) for all j ∈ N and a ∈ Aj. Since each ϕj,∞ is isometric and each φj is norm-decreasing,
each φ∞ ◦ ϕj,∞ is norm-decreasing, so φ∞ is norm-decreasing. It therefore extends to a norm-
decreasing φ∞ : A∞ → C. Since ‖φ∞‖ ≥ ‖φ∞ ◦ ϕj‖ = ‖φj‖ = 1, we see that ‖φ∞‖ = 1. Since
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j ϕj,∞

(
(Aj)+

)
is dense in (A∞)+ and since each φ∞ ◦ ϕj,∞ = φj is positive, φ∞ is positive,

and therefore a state of A∞.
To see that φ∞ is KMS, observe that if a ∈ Aj is αj-analytic, then ϕj,∞(a) is α-analytic.

Indeed, since z 7→ ϕj,∞(αj,z(a)) is an analytic extension of t 7→ αt(ϕj,∞(a)), the analytic
extension of t 7→ αt(ϕj,∞(a)) is given by

αz(ϕj,∞(a)) = ϕj,∞(αj,z(a)).

So
⋃
j{ϕj,∞(a) : a ∈ Aj is analytic} is an α-invariant dense subspace of analytic elements in A∞.

So it suffices to show that φ∞
(
ϕj,∞(a)ϕk,∞(b)

)
= φ∞

(
ϕk,∞(b)αiβ(ϕj,∞(a))

)
whenever a ∈ Aj

and b ∈ Ak are analytic. For this, let l := max{j, k} and observe that a′ := ϕj,l and b′ := ϕk,l(b)
are αl-analytic, and so

φ∞(ϕj,∞(a)ϕk,∞(b)) = φ∞(ϕl,∞(a′b′) = φl(a
′b′) = φl(b

′αl,iβ(a′))

= φ∞
(
ϕl,∞(b′)αiβ(ϕl,∞(a′))

)
= φ∞

(
ϕj,∞(b)αiβ(ϕj,∞(a))

)
.

Since h(φ∞) = (φ∞ ◦ ϕj,∞)∞j=0 = (φj)
∞
j=0, we see that h is surjective.

Checking that h is injective is straightforward: if h(φ) = h(ψ), then φ ◦ ϕj,∞ = ψ ◦ ϕj,∞ for
all j ∈ N, which implies that φ and ψ agree on the dense subset

⋃∞
j=0 ϕj,∞(Aj), giving φ = ψ.

To see that h is continuous, let (φλ)λ∈Λ be a net in KMSβ(A∞, α) converging weak* to
φ ∈ KMSβ(A∞, α). Then pj(h(φλ)) = φλ ◦ϕj,∞ converges weak* to pj(h(φ)) = φ◦ϕj,∞ for each
j ∈ N. Since the topology on the inverse limit is the initial topology induced by the projections
pj, this says that h(φλ) converges weak* to h(φ). Hence h is continuous. �

4. C∗-algebras from rotations on the circle

We are interested in topological graphs built from rotations on the circle. We write

S := R/Z

for the circle, which we frequently identify with [0, 1) under addition modulo 1.
For γ ∈ R, let Rγ denote clockwise rotation of the circle S by angle γ. So Rγ(t) =

t−γ (mod 1). Each Rγ is a homeomorphism of S, and we denote by Eγ := (S,S, idS, Rγ) the cor-
responding topological graph. We denote the Hilbert bimodule X(Eγ) by C(S)γ, its inner prod-
uct by 〈·, ·〉γ, and the homomorphism implementing the left action by φγ : C(S)→ L(C(R/Z)γ).

We can give alternative characterisations of the C∗-algebras T (Eγ) and O(Eγ). This is
certainly not new: the description of O(Eγ) goes back to Pimsner [26, page 193, Example 3].
But we could not locate the exact formulation that we want for the description of T (Eγ) in the
literature.

Definition 4.1. A Toeplitz pair for Eγ in a C∗-algebra B is a pair (π, S) consisting of a
homomorphism π of C(S) into B, and an isometry S ∈ B satisfying

Sπ(f) = π(f ◦Rγ)S for all f ∈ C(S).

A covariant pair for Eγ is a Toeplitz pair (π,W ) in which W is a unitary.

Proposition 4.2. Let γ ∈ R and Eγ = (S,S, idS, Rγ).

(1) The pair (iγ, sγ) := (i0X(Eγ), i
1
X(Eγ)(1)) is a Toeplitz pair for Eγ that generates T (Eγ).

Moreover, T (Eγ) is the universal C∗-algebra generated by a Toeplitz pair for Eγ: if (π, S)
is a Toeplitz pair in a C∗-algebra B, then there is a homomorphism π×S : T (Eγ)→ B
satisfying (π × S) ◦ iγ = π and (π × S)(sγ) = S.

(2) The pair (jγ, wγ) := (j0
X(Eγ), j

1
X(Eγ)(1)) is a covariant pair for Eγ that generates O(Eγ).

Moreover, O(Eγ) is the universal C∗-algebra generated by a covariant pair for Eγ: if
(π,W ) is a covariant pair in a C∗-algebra B, then there is a homomorphism π ×W :
O(Eγ)→ B satisfying (π ×W ) ◦ jγ = π and (π ×W )(wγ) = W .
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Proof. We have s∗γsγ = i0X(Eγ)(〈1, 1〉γ) = i0X(Eγ)(1) = 1, and so sγ is an isometry. For each

f ∈ C(S) we have

iγ(f ◦Rγ)sγ = i0X(Eγ)(f ◦Rγ)i
1
X(Eγ)(1) = i1X(Eγ)((f ◦Rγ) · 1)

= i1X(Eγ)(1 · f) = i1X(Eγ)(1)i0X(Eγ)(f) = sγiγ(f),

and so (iγ, sγ) is a Toeplitz pair. For f ∈ C(S)γ we have i1X(Eγ)(f) = iγ(f)sγ, so the pair

(iγ, i
1
η(1)) generates the ranges of both i0X(Eγ) and i1X(Eγ), and hence all of T (Eγ).

Now suppose B is a unital C∗-algebra and π : C(S) → B and S ∈ B form a Toeplitz pair
(π, S) for Eγ in B. Define ψ : C(S)γ → B by ψ(f) = π(f)S. We claim that (ψ, π) is a
representation of C(S)γ in B. For each f ∈ C(S)γ and g ∈ C(S) we have

π(g)ψ(f) = π(g)π(f)S = π(gf)S = ψ(gf) = ψ(g · f)

and

ψ(f)π(g) = π(f)Sπ(g) = π(f(g ◦Rγ))S = ψ(f(g ◦Rγ)) = ψ(f · g).

To check that the inner product is preserved, we let f, h ∈ C(S)γ and calculate

ψ(f)∗ψ(h) = S∗π(f ∗)π(h)S = S∗π(f ∗ ◦R−1
γ ◦Rγ)π(h ◦R−1

γ ◦Rγ)S

= π(f ∗ ◦R−1
γ )S∗Sπ(h ◦R−1

γ ) = π((f ∗h) ◦R−1
γ ).

We have 〈f, h〉γ(z) = f(R−1
γ (z))g(R−1

γ (z)) = (f ∗g) ◦ R−1
γ (z). So 〈f, h〉γ = (f ∗h) ◦ R−1

γ , and
hence ψ(f)∗ψ(h) = π(〈f, h〉γ). This proves the claim.

The universal property of T (Eγ) yields a homomorphism ψ × π : T (Eγ) → B satisfying
(ψ × π) ◦ i1X(Eγ) = ψ and (ψ × π) ◦ i0X(Eγ) = π. Let π × S := ψ × π. Then

(π × S) ◦ i0X(Eγ) = (ψ × π) ◦ i0X(Eγ) = π,

and

(π × S)(sγ) = (ψ × π)(i1X(Eγ)(1)) = ψ(1) = π(1)S = S.

Hence T (Eγ) is the universal C∗-algebra generated by a Toeplitz pair for Eγ.
To prove (2) it suffices to show that the ideal I generated by

{(i1X(Eγ), i
0
X(Eγ))

(1)(ϕγ(f))− i0X(Eγ)(f) : f ∈ C(S)}

is the ideal generated by the element sγs
∗
γ − 1. We have

sγs
∗
γ − 1 = (i1X(Eγ), i

0
X(Eγ))

(1)(Θ1,1)− i0X(Eγ) = (i1X(Eγ), i
0
X(Eγ))

(1)(φη(1))− i0X(Eγ)(1) ∈ I,

and hence the ideal generated by sγs
∗
γ − 1 is contained in I. For the reverse containment we

first note that ϕγ(f) = Θf,1 for all f ∈ C(S). Then

(i1X(Eγ), i
0
X(Eγ))

(1)(ϕη(f))− i0η(f) = (i1X(Eγ), i
0
X(Eγ))

(1)(Θf,1)− i0η(f)

= i1X(Eγ)(f)i1X(Eγ)(1)∗ − i0η(f)

= i0X(Eγ)(f)i1X(Eγ)(1)i1X(Eγ)(1)∗ − i0X(Eγ)(f)

= i0X(Eγ)(f)
(
sγs
∗
γ − 1

)
,

and the result follows. �

Remarks 4.3. (1) We saw in the proof of Proposition 4.2 that a Toeplitz pair (π, S) for
Eγ gives a representation (ψ, π) of X(Eγ) such that ψ(f) = π(f)S. We denote the
homomorphism (ψ, π)(1) of K(X(Eγ)) by (π, S)(1); so (π, S)(1)(Θf,g) = π(f)SS∗π(g)∗.

(2) In [17, Theorem 6.2] Katsura proved a gauge-invariant uniqueness theorem for the
Toeplitz algebra of a Hilbert bimodule. Suppose A is a C∗-algebra, X is a Hilbert
A-bimodule, and (ψ, π) is a representation of X in a C∗-algebra B. The gauge-invariant
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uniqueness theorem says that ψ×π : T (X)→ B is injective if B carries a gauge action,
ψ × π intertwines the gauge actions on T (X) and B, and the ideal

{a ∈ A : π(a) ∈ (ψ, π)(1)(K(X))}
of A is trivial. If (π, S) is a Toeplitz pair for Eγ, then this ideal is {f ∈ C(S) : π(f) ∈
(π, S)(1)(K(X(Eγ)))}, which we can write as

{f ∈ C(S) : π(f) ∈ span{π(g)SS∗π(h) : g, h ∈ C(S)}}.
We denote this ideal by I(π,S).

(3) Proposition 4.10 of [17] says that I(iγ ,sγ) = 0.

We can give spanning families for T (Eγ) and O(Eγ) using Toeplitz and covariant pairs.

Proposition 4.4. Let γ ∈ R and Eγ = (S,S, idS, Rγ). Then

T (Eγ) = span{smγ iγ(f)s∗γ
n : m,n ∈ N, f ∈ C(S)},

and
O(Eγ) = span{wmγ jγ(f)w∗γ

n : m,n ∈ N, f ∈ C(S)}.

Proof. The set span{smγ iγ(f)s∗γ
n : m,n ∈ N, f ∈ C(S)} contains the generators of T (Eγ), so

it suffices to show that it is a ∗-subalgebra. It is obviously closed under involution; that it is
closed under multiplication follows from the calculation

smγ iγ(f)s∗γ
nspγiγ(g)s∗γ

q =

{
smγ iγ(f)s∗γ

n−piγ(g)s∗γ
q if n ≥ p

smγ iγ(f)sp−nγ iγ(g)s∗γ
q if n < p

=

{
smγ iγ(f(g ◦R−(n−p)

γ ))s∗γ
n−p+q if n ≥ p

sm+p−n
γ iγ((f ◦R−(p−n)

γ )g)s∗γ
q if n < p.

Since each smγ iγ(f)s∗γ
n is mapped to wmγ jγ(f)w∗γ

n under the quotient map T (Eγ)→ O(Eγ), we
have O(Eγ) = span{wmγ jγ(f)w∗γ

n : m,n ∈ N, f ∈ C(S)}. �

5. An alternative description of the noncommutative solenoid

Throughout the rest of this paper we fix a natural number N ≥ 2. In [22], given a sequence
θ = (θn)∞n=1 in S = R/Z such that N2θn+1 = θn for all n, Latrémolière and Packer define
the noncommutative solenoid AS

θ as a twisted group C∗-algebra involving the N -adic ratio-
nals. In [22, Theorem 3.7] they give an equivalent characterisation of AS

θ . We will take this
characterisation as our definition. We recall it now. Let

ΞN := {(θn)∞n=0 : θn ∈ S and N2θn+1 = θn for each n}.
Recall that for γ ∈ S the rotation algebra Aγ is the universal C∗-algebra generated by unitaries
Uγ and Vγ satisfying UγVγ = e2πiγVγUγ.

Definition 5.1. Let θ = (θn)∞n=0 ∈ ΞN , and for each n ∈ N let ϕn : Aθn → Aθn+1 be the
homomorphism satisfying

ϕn(Uθn) = UN
θn+1

and ϕn(Vθn) = V N
θn+1

.

The noncommutative solenoid AS
θ is the direct limit lim−→(Aθn , ϕn).

Remark 5.2. We have taken a slightly different point of view to [22] in describing AS
θ . In [22],

Latrémolière and Packer consider collections of (θn) such that Nθn+1 − θn ∈ Z, and take the
direct limit lim−→Aθ2n , with intertwining maps going from Aθ2n to Aθ2n+2 .

We now give an alternative characterisation of the noncommutative solenoid using topological
graphs built from rotations of the circle as discussed in Section 4.

Notation 5.3. We denote by ι : S→ T the homeomorphism t 7→ e2πit, and by pN : S→ S the
function t 7→ Nt.



8 BROWNLOWE, HAWKINS, AND SIMS

Proposition 5.4. Let N ≥ 2, and θ = (θn)∞n=0 ∈ ΞN . For each n ∈ N there is an injective
homomorphism τn : O(Eθn)→ O(Eθn+1) satisfying

τn(jθn(f)) = jθn+1(f ◦ pN) and τn(wθn) = wNθn+1
,

for all f ∈ C(S). Moreover lim−→(O(Eθn), τn) ∼= AS
θ .

We will prove the existence of the injective homomorphisms τn using the following result.

Lemma 5.5. Let N ∈ N with N ≥ 2, and take γ, η ∈ S with N2η − γ ∈ Z. Then there is an
injective homomorphism ψ : T (Eγ)→ T (Eη) satisfying

ψ(iγ(f)) = iη(f ◦ pN) and ψ(sγ) = sNη ,

for all f ∈ C(S). The map ψ descends to an injective homomorphism τ : O(Eγ) → O(Eη)
satisfying τ(jγ(f)) = jη(f ◦ pN) and τ(wγ) = wNη for all f ∈ C(S).

Proof. Consider π : C(S)→ T (Eη) given by π(f) = iη(f ◦ pN) and let S := sNη . Since

Rγ ◦ pN = RN2η ◦ pN = RN2

η ◦ pN = pN ◦RN
η ,

we have

π(f ◦Rγ)S = iη(f ◦Rγ ◦ pN)sNη = iη(f ◦ pN ◦RN
η )sNη = sNη iη(f ◦ pN) = Sπ(f).

So (π, S) is a Toeplitz pair for Eγ. The universal property of T (Eγ) now gives a homomorphism
ψ : T (Eγ)→ T (Eη) satisfying ψn(iγ(f)) = iη(f ◦ pN) for all f ∈ C(S), and ψ(sγ) = sNη .

To see that ψ is injective, we aim to apply the gauge-invariant uniqueness theorem discussed
in Remarks 4.3. We claim that I(π,S) 6= 0 =⇒ I(iη ,sη) 6= 0. To see this, suppose that
0 6= f ∈ I(π,S). Fix ε > 0, and choose gi, hi ∈ C(S) with∥∥∥π(f)−

k∑
i=1

π(gi)SS
∗π(hi)

∥∥∥ < ε.

So ∥∥∥iη(f ◦ pN)−
k∑
i=1

iη(gi ◦ pN)sNη s
∗
η
N iη(hi ◦ pN)

∥∥∥ < ε.

For every function g ∈ C(S) we have

iη(g ◦RN−1
−η ) = s∗η

N−1sN−1
η iη(g ◦RN−1

−η ) = s∗η
N−1iη(g)sN−1

η .

Hence∥∥∥iη(f ◦ pN ◦RN−1
−η )−

k∑
i=1

iη(gi ◦ pN ◦RN−1
−η )sηs

∗
ηiη(hi ◦ pN ◦RN−1

−η )
∥∥∥

=
∥∥∥s∗ηN−1iη(f ◦ pN)sη

N−1 −
k∑
i=1

s∗η
N−1iη(gi ◦ pN)sNη s

∗
η
N iη(hi ◦ pN)sη

N−1
∥∥∥

≤
∥∥∥iη(f ◦ pN)−

k∑
i=1

iη(gi ◦ pN)sNη s
∗
η
N iη(hi ◦ pN)

∥∥∥ < ε.

It follows that iη(f ◦pN ◦RN−1
−η ) ∈ (iη, sη)

(1)(K(X(Eη))), and hence that f ◦pN ◦RN−1
−η ∈ I(iη ,sη).

This proves the claim.
By Remarks 4.3(3), I(iη ,sη) = 0, so the claim gives I(π,S) = 0. We have ψ(T (Eγ)) ⊆

span{saNη iη(f)s∗bNη : f ∈ C(S), a, b ∈ N}. Hence the gauge action ρη of T on T (Eγ) satis-
fies ρηz ◦ ψ = ρη

z+e2πi/N
◦ ψ for all z ∈ T. So there is an action ρ̃η of T on ψ(T (Eγ)) such that
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ρ̃η
e2πit
◦ ψ = ρeeπit/N for all t ∈ R. In particular,

ρ̃η
e2πit
◦ ψ(saγiη(f)s∗bγ ) = ρη

e2πit/N
(saNη iη(f)s∗bNη )

= e2πit(a−b)saNη iη(f)s∗bNη = ψ ◦ ργ
e2πit

(saNη iη(f)s∗bNη ).

So continuity and linearity gives ρ̃η
e2πit

= ψ ◦ ργ
e2πit

. Hence the gauge-invariant uniqueness
theorem [17, Theorem 6.2] shows that ψ is injective.

To see that ψ descends to the desired injective homomorphism τ : O(Eγ)→ O(Eη), it suffices
to show that the image under ψ of the kernel of the quotient map T (Eγ)→ O(Eγ) is contained
in the kernel of T (Eη) → O(Eη). For this, it suffices to show that ψ(1 − sγs∗γ) is in the ideal
generated by 1− sηs∗η, which it is becase

ψ(1− sγs∗γ) = 1− sNη s∗η
N =

N∑
i=1

sN−iη (1− sηsη)s∗η
N−i. �

Proof of Proposition 5.4. For each n ∈ N, Lemma 5.5 applied to γ = θn and η = θn+1 gives the
desired injective homomorphism τn.

Proposition 4.2 says that each O(Eη) is the crossed product C(S)oZ for the automorphism
f 7→ f ◦ Rη of C(S), which is the rotation algebra Aη (see [7, Example VIII.1.1] for details).
So for each n ∈ N there is an isomorphism from O(Eθn) to Aθn carrying jθn(ι) to Uθn and wθn
to Vθn . Since each τn satisfies

τn(jθn(ι)) = jθn+1(ι ◦ pN) = jθn+1(ι)
N and τn(wθn) = wNθn+1

,

the diagrams

O(Eθn) O(Eθn+1)

Aθn Aθn+1

τn

∼= ∼=
ϕn

commute. Hence lim−→(O(Eθn), τn) ∼= AS
θ . �

Remark 5.6. In [18, Section 2], Katsura studies factor maps between topological-graph C∗-
algebras, and the C∗-homomorphisms that they induce. He shows that the projective limit of
a sequence (En) of topological graphs under factor maps is itself a topological graph. He then
proves that the C∗-algebra O(lim←−En) of this topological graph is isomorphic to the direct limit
lim−→O(En) of the C∗-algebras of the En under the homomorphisms induced by the factor maps.
So it is natural to ask whether the maps τn : O(Eθn) → O(Eθn+1) correspond to factor maps.
This is not the case: as observed on page 88 of [11], there is no factor map from Eθn+1 → Eθn
that induces the homomorphism of C∗-algebras described in Lemma 5.5.

6. The Toeplitz noncommutative solenoid and its KMS structure

In this section we introduce our Toeplitz noncommutative solenoids T S
θ . We introduce a

natural dynamics on T S
θ and apply Proposition 3.1 to begin to study its KMS structure.

Given θ = (θn)∞n=0 ∈ ΞN , Lemma 5.5 gives a sequence of injective homomorphisms ψn :
T (Eθn)→ T (Eθn+1) satisfying

ψn(iθn(f)) = iθn+1(f ◦ pN) and ψn(sθn) = sNθn+1
,

for all f ∈ C(S).

Definition 6.1. We define T S
θ := lim−→(T (Eθn), ψn) and call it the Toeplitz noncommutative

solenoid. We write ψn,∞ : T (Eθn)→ T S
θ for the canonical inclusions, so that ψn,∞ = ψn+1,∞◦ψn

for all n.

The following lemma indicates why it is sensible to regard T S
θ as a natural Toeplitz extension

of the noncommutative solenoid.
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Lemma 6.2. In the notation established in Proposition 5.4, there is a surjective homomorphism
q : T S

θ → AS
θ such that q(ψn,∞(iθn(f))) = τn,∞(jθn(f)) and q(ψn,∞(sθn)) = τn,∞(wθn) for all

n ∈ N and all f ∈ C(S). Moreover, ker(q) is generated as an ideal by ψ1,∞(iθ1(1)− sθ1s∗θ1).

Proof. For the first statement observe that the canonical homomorphisms qn : T (Eθn) →
O(Eθn) intertwine the ψn with the τn. For the second statement, let I be the ideal of T S

θ

generated by ψ1,∞(iθ1(1) − sθ1s∗θ1). Since ker(q) clearly contains ψ1,∞(iθ1(1) − sθ1s∗θ1), we have
I ⊆ ker(q). For the reverse inclusion, note that for n ≥ 1,

ψ1,n(iθ1(1)− sθ1s∗θ1) = iθn(1 ◦ ιNn)− snNθn s
∗nN
θn

= iθn(1)− sθn(snN−1
θn

s
∗(nN−1)
θn

)s∗θn ≥ iθn(1)− sθns∗θn ,

so each ψn,∞(iθn(1) − sθns∗θn) ≤ ψn,∞(ψ1,n(iθ1(1) − sθ1s∗θ1)) = ψ1,∞(iθ1(1) − sθ1s∗θ1), which be-

longs to I. Thus ψn,∞(iθn(1) − sθns
∗
θn

) ∈ I. Since ker(q) =
⋃
n ker(q) ∩ ψn,∞(T (Eθn)) =⋃

n ψn,∞(ker(qn)), it therefore suffices to show that each ker(qn) is generated by iθn(1)− sθns∗θn ,
which follows from Proposition 4.2. �

Proposition 6.3. There is a strongly continuous action α : R→ Aut T S
θ satisfying

αt(ψj,∞(smθj iθj(f)s∗nθj )) = eit(m−n)/Nj

ψj,∞(smθj iθj(f)s∗nθj ), (6.1)

for each j,m, n ∈ N and f ∈ C(S). This α descends to a strongly continuous action, also
written α, on the noncommutative solenoid AS

θ .

Proof. For each j ∈ N we denote by ρ the gauge action on T (Eθj), and by ρj the strongly

continuous action t 7→ ρ
eit/N

j of R on T (Eθj); so ρj,t ◦ iθj = iθj and ρj,t(sθj) = eit/N
j
sθj for each

t ∈ R. For each j ∈ N and t ∈ R we have

ρj+1,t ◦ ψj(smθj iθj(f)s∗nθj ) = eit(Nm−Nn)/Nj+1

sNmθj+1
iθj+1

(f)s∗Nnθj+1

= eit(m−n)/Nj

sNmθj+1
iθj+1

(f)s∗Nnθj+1
= ψj ◦ ρj,t(smθj iθj(f)s∗nθj ).

Hence ρj+1,t ◦ ψj = ψj ◦ ρj,t, and Proposition 3.1 applied to each (Aj, αj) = (T (Eθj), ρj) gives

the desired action α : R→ Aut T S
θ .

For the final statement, observe that the αt all fix ψ1,∞(iθ1(1)−sθ1s∗θ1), and so leave the ideal

that it generates invariant; so they descend to AS
θ by Lemma 6.2. �

Remark 6.4. The actions on graph C∗-algebras and their analogues studied in, for example,
[5, 8, 1, 12] are lifts of circle actions, and so are periodic in the sense that αt = αt+2π for all t.
By contrast, while the action α of the preceding proposition restricts to a periodic action on
each approximating subalgebra ψj,∞(T (Eθj)), it is itself not periodic: αt = αs =⇒ t = s.

We now wish to study the KMS structure of the Toeplitz noncommutative solenoid T S
θ under

the dynamics α of Proposition 6.3.

Remark 6.5. The case θ = 0 = (0, 0, . . . ) is relatively easy to analyse. Let S = lim←−(S, pN)
denote the classical solenoid, and T the Toeplitz algebra. Write s for the isometry generating
T , and κ : T → T for the homomorphism given by κ(s) = sN . Then T S

0
∼= C(S )⊗ lim−→(T , κ).

This isomorphism intertwines the quotient map q : T S
0 → AS

0 with the canonical quotient
map id⊗q̃ : C(S ) ⊗ lim−→(T , κ) → C(S ) ⊗ C(S ). It also intertwines α with 1 ⊗ α̃ where

α̃t(κj,∞(s)) = eit/N
j
κj,∞(s). That is, α̃ is equivariant over κj,∞ with an action α̃j on T that

is a rescaling of the gauge dynamics studied in [12]. Theorems 3.1 and 4.3 of [12] imply that
(T , α̃j) has a unique KMSβ state for every β ≥ 0 and has no KMSβ states for β < 0, and
that the KMS0 state is the only one that factors through C(S). So Proposition 3.1 implies
that (lim−→(T , κ), α̃) has a unique KMSβ state φβ for each β ≥ 0 and has no KMSβ states for
β < 0, and that the KMS0 state is the only one that factors through C(S ). Hence the map
ψ 7→ ψ ⊗ φβ determines an affine isomorphism of the state space of C(S ) onto KMSβ(T S

0 , α)



THE TOEPLITZ NONCOMMUTATIVE SOLENOID AND ITS KMS STATES 11

for each β ≥ 0, there are no KMSβ states for β < 0, and the KMS0 states are the only ones
that factor through AS

0 .

In light of Remark 6.5, we will from now on consider only those θ ∈ ΞN such that θj 6= 0 for
some j. Since θj 6= 0 implies θj+1 6= 0, and since lim−→((Aθn , ϕn)∞n=1) = lim−→((Aθn , ϕn)∞n=j) for any
j, we may therefore assume henceforth that θj 6= 0 for all j.

Our main result is the following.

Theorem 6.6. Take N ∈ {2, 3, . . . }, take θ = (θj)
∞
j=0 ∈ ΞN , and take β ∈ (0,∞). Suppose

that θj 6= 0 for all j. Then KMSβ(T S
θ , α) is isomorphic to the Choquet simplex of regular Borel

probability measures on the solenoid S := lim←−(S, pN), and there is an action λ of S on T S
θ

that induces a free and transitive action of S on the extreme boundary of KMSβ(T S
θ , α). There

is a unique KMS0-state on T S
θ for α, and this is the only KMS state for α that factors through

AS
θ . There are no KMSβ states for β < 0.

The first step in proving Theorem 6.6 is to combine the results of [1] on KMS states of local
homeomorphism C∗-algebras with Proposition 3.1 to characterise the KMS states of T S

θ in
terms of subinvariant probability measures on the circle. We start with some notation.

It is helpful to recall what the results of [1] say in the context of the topological graphs
Eγ. Recall that ρ denotes tha gauge action on T (Eγ); we also use ρ for the lift of the gauge
action to an action of R on T (Eγ). Combining Proposition 4.2 and Theorem 5.1 of [1], we
see that for each regular Borel probability measure µ on S that is subinvariant in the sense
that µ(Rγ(U)) ≤ eβµ(U) for every Borel U ⊆ S, there is a KMSβ-state φµ ∈ KMSβ(T (Eγ), ρ)
satisfying

φµ(saγiγ(f)s∗bγ ) = δa,be
−aβ
∫
S
f dµ; (6.2)

and moreover, the map µ 7→ φµ is an affine isomorphism of the simplex of subinvariant regular
Borel probability measures on S to KMSβ(T (Eγ), ρ).

Definition 6.7. Fix r, s ∈ [0,∞), and γ ∈ S. Let M(S) denote the set of regular Borel
probability measures on S. We define

Msub(s, γ) := {m ∈M(S) : m(Rγ(U)) ≤ esm(U) for all Borel U ⊆ S}
and

Ωr
sub := {m ∈M(S) : m(Rt(U)) ≤ ertm(U) for all t ∈ [0,∞) and Borel U ⊆ S}. (6.3)

Notation 6.8. For the rest of the section we fix θ = (θj)
∞
j=0 ∈ ΞN such that θj 6= 0 for all j,

and β ∈ [0,∞). We define
rj := β/N jθj for all j ∈ N.

Theorem 6.9. Take N ∈ N with N ≥ 2, θ = (θj)
∞
j=0 ∈ ΞN , and β ∈ [0,∞). Suppose that

θj 6= 0 for all j. Then there is an affine injection

ω : KMSβ(T S
θ , α)→ lim←−(Ω

rj
sub,m 7→ m ◦ p−1

N )

such that

φ ◦ ψj,∞(saθj iθj(f)s∗bθj) = δa,be
−aβ/Nj

∫
S
f dω(φ)j (6.4)

for each φ ∈ KMSβ(T S
θ , α) and j ∈ N. If β > 0, then ω is an isomorphism.

Write ρ for the gauge action on T (Eθj), and ρj for the action t 7→ ρ
eit/N

j of R on T (Eθj).

Since the dynamics α on T S
θ is induced by the ρj, Proposition 3.1 yields an affine isomorphism

KMSβ(T S
θ , α) ∼= lim←−(KMSβ(T (Eθj), ρj), φ 7→ φ ◦ ψj−1).

For each j ∈ N and t ∈ R we have ρj,t = ρt/Nj , so KMSβ(T (Eθj), ρj) = KMSβ/Nj(T (Eθj), ρ).
For β > 0, the KMSβ simplex of each (T (Eθj), ρ) is well understood by the results of [1] (see
the discussion preceding (6.2)), and we use these results to prove the following.
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Proposition 6.10. With the hypotheses of Theorem 6.9, there is an affine injection

τ : lim←−(KMSβ/Nj(T (Eθj), ρ), φ 7→ φ ◦ ψj−1)→ lim←−(Msub(β/N j, θj),m 7→ m ◦ p−1
N )

such that φj = φτ((φk)∞k=0)j , as defined at (6.2), for all (φk)
∞
k=0 and j ∈ N. If β > 0 then τ is an

isomorphism.

Throughout the rest of this section we suppress intertwining maps in projective limits.

Proof of Proposition 6.10. We first claim that for each j ∈ N there is an affine injection τj of
KMSβ/Nj(T (Eθj), ρ) onto Msub(β/N j, θj) satisfying

φ(iθj(f)) =

∫
S
f d(τj(φ)) for all φ ∈ KMSβ/Nj(T (Eθj), ρ) and f ∈ C(S),

and that for β > 0, this τj is an isomorphism. The statement for β > 0 follows directly from
[1, Theorem 5.1] (see (6.2).

To prove the claim for β = 0, recall that the KMS0 states on T (Eθj) for ρ are the ρ-invariant
traces. Let (iθj , sθj) be the universal Toeplitz pair for Eθj . If φ is a KMS0-state, then (with the

convention that sn := s∗|n| for n < 0),

φ(snθj iθj(f)s∗mθj ) = φ(iθj(f)s∗mθj s
n
θj

) = φ(iθj(f)sn−mθj
)

=

∫
S
φ(ρt(iθj(f)sn−mθj

)) dµ(t) = δm,nφ(iθj(f)). (6.5)

So the Riesz–Markov–Kakutani representation theorem gives a regular Borel probability mea-
sure mφ on S such that φ(snθj iθj(f)s∗mθj ) =

∫
S f(t) dmφ(t). For f ∈ C(S)+, we have

φ(iθj(f)) ≥ φ
(
iθj
(√

f
)
sθjs

∗
θj
iθj
(√

f
))

= φ
(
s∗θj iθj

(√
f
)
iθj
(√

f
)
sθj
)

= φ(s∗θj iθj(f)sθj) = φ(iθj(f ◦R−θj).

Hence mφ(Rθj(U)) ≤ mφ(U) for all Borel U . So φ 7→ mφ is an affine map from KMS0(T (Eθj), ρ)
and (6.5) shows that it is injective. This completes the proof of the claim.

For each j ∈ N let pj be the projection from lim←−KMSβ/Nj(T (Eθj), ρ) to KMSβ/Nj(T (Eθj), ρ),

and πj the projection from lim←−Msub(β/N j, θj) to Msub(β/N j, θj). Fix an element (φj)
∞
j=0 of

lim←−KMSβ/Nj(T (Eθj), ρ). For each k ≥ 1 and f ∈ C(S) we have∫
S
f d(τk−1(φk−1)) = φk−1(iθk−1

(f)) = φk(ψk−1(iθk−1
(f)))

= φk(iθk(f ◦ pN)) =

∫
S
(f ◦ pN) d(τk(φk)) =

∫
S
f d(τk(φk) ◦ p−1

N ),

and hence τk−1(φk−1) = τk(φk) ◦ p−1
N . It follows that

τk−1 ◦ pk−1((φj)
∞
j=0) = τ(φk−1) = τk(φk) ◦ p−1

N = τk ◦ pk((φj)∞j=0) ◦ p−1
N ,

for each k ≥ 1. The universal property of lim←−Msub(β/N j, θj) yields a map

τ : lim←−KMSβ/Nj(T (Eθj), ρ)→ lim←−Msub(β/N j, θj),

whose image is lim←− range(τk), satisfying πk ◦ τ = τk ◦ pk for each k ∈ N. For β > 0, we

have lim←− range(τk) = lim←−Msub(β/N j, θj), and otherwise it is a compact affine subset, so it now
suffices to prove that τ is an affine isomorphism onto its range. Since τ is an injective map
from a compact space to a Hausdorff space, it therefore suffices to show that it is affine and
continuous.
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Suppose
∑q

i=1 λi(φ
i
j)
∞
j=0 is a convex combination in lim←−KMSβ/Nj(T (Eθj), ρ). For each k ∈ N

and f ∈ C(S) we have∫
S
f d
(
τk

( q∑
i=1

λiφ
i
k

))
=
( q∑
i=1

λiφ
i
k

)
(iθk(f)) =

q∑
i=1

λiφ
i
k(iθk(f))

=
k∑
i=1

λi

∫
S
f d(τk(φ

i
k)) =

∫
S
f d
( q∑
i=1

λiτk(φ
i
k)
)
.

So the Riesz–Markov–Kakutani representation theorem gives τk

(∑q
i=1 λiφ

i
k

)
=
∑q

i=1 λiτk(φ
i
k),

and it follows that τ is affine.
Straightforward arguments using that πk ◦ τ = τk ◦ pk for each k ∈ N, and that each

τk is injective, show that τ is injective. We just need to show that τ is continuous. Let
((φλj )

∞
j=0)λ∈Λ be a net in lim←−KMSβ/Nj(T (Eθj), ρ) converging in the initial topology to (φj)

∞
j=0.

Then pk(((φ
λ
j )
∞
j=0)λ∈Λ) = (φλk)λ∈Λ converges weak* to pk((φj)

∞
j=0) = φk for each k ∈ N. Since τk

is continuous and πk◦τ = τk◦pk for each k ∈ N, we have that πk(τ(((φλj )
∞
j=0)λ∈Λ)) = τk((φ

λ
k)λ∈Λ)

converges weak* to τk(φk) = πk(τ((φj)
∞
j=0)). Hence τ(((φλj )

∞
j=0)λ∈Λ) converges in the initial

topology to τ((φj)
∞
j=0). So τ is continuous. �

Remark 6.11. Fix β > 0. Let h be the affine isomorphism of Proposition 3.1 and let τ be the
affine isomorphism of Proposition 6.10. Setting ω := τ ◦ h gives an affine isomorphism

ω : KMSβ(T S
θ , α)→ lim←−Msub(β/N j, θj)

satisfying φ ◦ ψj,∞ = φω(φ)j for each φ ∈ KMSβ(T S
θ , α) and j ∈ N. So to prove Theorem 6.9 it

now suffices to show that lim←−Msub(β/N j, θj) ∼= lim←−Ω
rj
sub.

Fix (mj)
∞
j=0 ∈ lim←−Ω

rj
sub. Taking t = θj in the definition of Ω

rj
sub (see Definition 6.7) shows

that Ω
rj
sub ⊆Msub(β/N j, θj). Hence lim←−Ω

rj
sub is contained in lim←−Msub(β/N j, θj). So we need the

reverse containment. We start with a lemma.

Lemma 6.12. Let m be a regular Borel probability measure on S, and fix γ ∈ (0, 1), s ∈ [0,∞)

and N ∈ N with N ≥ 2. Suppose that m(Rγ/Nk(U)) ≤ es/N
k
m(U) for every k ∈ N and every

Borel set U ⊆ S. Then m ∈ Ω
s/γ
sub.

Proof. We need to show that m(Rt(U)) ≤ e(s/γ)tm(U) for all t ≥ 0 and Borel U ⊆ S; or
equivalently, that m(Rtγ(U)) ≤ estm(U) for all t ≥ 0 and Borel U ⊆ S. By the Riesz–Markov–
Kakutani representation theorem, it suffices to show that∫

S
f ◦R−tγ dm ≤ est

∫
S
f dm (6.6)

for every t ≥ 0 and every f ∈ C(S)+. Furthermore, if (6.6) holds whenever 0 ≤ t ≤ 1, then
for arbitrary T ∈ [0,∞), we can iterate (6.6) dT e times for t = T

dT e to obtain (6.6) for T ; so it

suffices to establish (6.6) for t ∈ [0, 1].
Fix t ∈ [0, 1] and f ∈ C(S). Write

t =
∞∑
i=1

ai
N i

where each ai ∈ {0, . . . , N − 1}. For each n ∈ N, let tn :=
∑n

i=1
ai
N i . So tn is a monotone

increasing sequence in [0, 1] converging to t. Since the action s 7→ Rs of R on S by rotations
is uniformly continuous, we have f ◦ R−tnγ → f ◦ R−tγ in

(
C(S), ‖ · ‖∞

)
. Since m is a Borel

probability measure, the functional f 7→
∫
S f dm is a state, and so∫

S
f ◦R−tnγ dm→

∫
S
f ◦R−tγ dm.



14 BROWNLOWE, HAWKINS, AND SIMS

So it suffices to show that each
∫
S f ◦R−tnγ ≤ est

∫
T f dm. So fix n ∈ N. Let K :=

∑n
i=1 aiN

n−i,

so that t > tn = K
Nn . By hypothesis, for every Borel U , we have

m(RKγ
Nn

(U)) ≤ e
s
Nnm(R (K−1)γ

Nn
(U)) ≤ · · · ≤ e

sK
Nnm(U) ≤ estm(U),

and it follows that
∫
S f ◦R−tnγ ≤ est

∫
S f dm as required. �

Proof of Theorem 6.9. As described in Remark 6.11, it suffices to show that lim←−Msub(β/N j, θj)

is contained in lim←−Ω
rj
sub. For each γ ∈ S we have pN ◦ Rγ = RNγ ◦ pN , which implies that

p−1
N (RNγ(U)) = Rγ(p

−1
N (U)) for all Borel U ⊆ S. An iterative argument shows that

p−kN (RNkγ(U)) = Rγ(p
−k
N (U)) for all Borel U ⊆ S and k ∈ N. (6.7)

Fix (mj)
∞
j=0 ∈ lim←−Msub(β/N j, θj). Since the connecting maps in lim←−Msub(β/N j, θj) and

lim←−Ω
rj
sub are the same, it suffices to show that mj ∈ Ω

rj
sub for each j ∈ N. Fix j ∈ N. For each

k ∈ N we have N2kθj+k = θk and mj+k ◦ p−kN = mj. These identities and (6.7) give

mj(Rθj/Nk(U)) = mj(RNkθj+k(U)) = mj+k(p
−k
N (RNkθj+k(U)))

= mj+k(Rθj+k(p
−k
N (U))) ≤ eβ/N

j+k

mj+k(p
−k
N (U)) = eβ/N

j+k

mj(U),

for every Borel U ⊆ S. So Lemma 6.12 with γ = θj and s = β/N j gives mj ∈ Ω
rj
sub. �

7. Subinvariant measures on S

Throughout the section we fix r ∈ [0,∞) and denote Lebesgue measure on S by µ. The
main result of this section gives a concrete description of the simplex Ωr

sub of (6.3). Define
Wr : S→ [0,∞) by

Wr(t) =
( r

1− e−r
)
e−rt.

For each Borel U ⊆ S, define

mr(U) :=

∫
U

Wr(t) dt. (7.1)

This defines a regular Borel probability measure mr on S.

Theorem 7.1. The simplex Ωr
sub is the weak∗-closed convex hull conv{mr ◦Rs : 0 ≤ s < 1}. If

r = 0, then mr = µ and Ωr
sub = {µ}.

We need a number of results to prove this theorem.

Lemma 7.2. Let m ∈ Ωr
sub and n ∈ N. For 0 ≤ j < 2n, let Un

j = [j/2n, (j + 1)/2n) ⊆ S, and
let vnj be the vector

vnj :=
1− e−r/2n

1− e−r
(
e−(2n−j)r/2n , . . . , e−(2n−1)r/2n , 1, e−r/2

n

, e−2r/2n , . . . , e−(2n−(j+1))r/2n
)
∈ R2n .

(7.2)
Then

(
m(Un

0 ),m(Un
1 ), . . . ,m(Un

2n−1)
)
∈ conv{vnj : 0 ≤ j < 2n}.

Proof. Let x = (x0, x1, . . . , x2n−1) be the vector
(
m(Un

0 ),m(Un
1 ), . . . ,m(Un

2n−1)
)
. For each 0 ≤

j < 2n we have

xj = m(Un
j ) = m(R2−n(Un

j+1)) ≤ er/2
n

m(Un
j+1) = er/2

n

xj+1,

where addition in indices is modulo 2n. Let C2n denote the graph with vertices Z/2nZ and
edges {ej : j ∈ Z/2nZ} with s(ej) = j and r(ej) = j + 1 (mod 2n), and let AC2n denote the
adjacency matrix of C2n . Then x satisfies AC2nx ≤ er/2

n
x. So x is subinvariant for AC2n in the
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sense of [12, Theorem 3.1], and is a probability measure because m is. By [12, Theorem 3.1(a)],
there is a vector y ∈ [1,∞)Z/2

nZ such that

yj =
∑

µ∈(C2n )∗,s(µ)=j

e−r/2
n|µ| =

∞∑
k=0

e−kr/2
n

=
(
1− e−r/2n

)−1
for j ∈ Z/2nZ.

For 0 ≤ j < 2n, define εj ∈ [0,∞)Z/2
nZ by

εj(k) =

{
1− e−r/2n if k = j

0 otherwise.

We have

(I − e−r/2nAC2n )vnj

=
1− e−r/2n

1− e−r
(I − e−r/2nAC2n )

(
e−(2n−j)r/2n , . . . , e−(2n−1)r/2n , 1, e−r/2

n

, . . . , e−(2n−(j+1))r/2n
)

=
1− e−r/2n

1− e−r
((
e−(2n−j)r/2n , . . . , e−(2n−1)r/2n , 1, e−r/2

n

, . . . , e−(2n−(j+1))r/2n
)

− e−r/2n
(
e−(2n−(j+1))r/2n , . . . , e−(2n−1)r/2n , 1, e−r/2

n

, . . . , e−(2n−(j+2))r/2n
))

=
1− e−r/2n

1− e−r
(
0, . . . , 0, 1− e−r, 0, . . . , 0

)
= (1− e−r/2n)

(
0, . . . , 0, 1, 0, . . . , 0

)
= εj.

So vnj = (I − e−r/2nAC2n )−1εj. Since the εj are the extreme points of the simplex {ε : ε · y = 1},
it follows from [12, Theorem 3.1(c)] that the vnj are the extreme points of the simplex of
subinvariant probability measures on Z/2nZ. Since x is a subinvariant probability measure, it
follows that it is a convex combination of the vnj . �

We now approximate mr by convex combinations of restrictions of Lebesgue measure.

Lemma 7.3. For n ∈ N and j ∈ Z/2nZ, let Un
j = [j/2n, (j + 1)/2n) ⊆ S, and let Wn,r be the

simple function

Wn,r =
2n−1∑
j=0

2n(vn0 )j1Unj .

Let mn,r be the measure mn,r(U) =
∫
U
Wn,r(t) dµ(t) for Borel U ⊆ S. Then limn→∞

∥∥mr −
mn,r

∥∥
1

= 0.

Proof. Fix n ∈ N and 0 ≤ j < 2−n. Then the average value of Wr over the interval Un
j is

2n
∫
Unj

Wr(t) dµ(t) = 2n
∫ (j+1)/2n

j/2n

( r

1− e−r
)
e−rt dµ(t) = 2n

[( −1

1− e−r
)
e−rt

](j+1)/2n

j/2n

=
( −2n

1− e−r
)(
e−(j+1)r/2n − e−jr/2n

)
= 2n

(1− e−r/2n

1− e−r
)
e−jr/2

n

= 2n(vn0 )j,

the constant value of Wn,r on Un
j . The Mean Value Theorem—applied to

∫
Wr(t) dµ(t)—implies

that there exists cnj ∈ (j/2n, (j + 1)/2n) such that Wr(c
n
j ) = Wn,r(c

n
j ).

Fix ε > 0. The function Wr is uniformly continuous on [0, 1), and so there exists N ∈ N such
that |Wr(s) −Wr(t)| < ε whenever s, t ∈ [0, 1) satisfy |s − t| < 2−N . In particular, for n ≥ N
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and 0 ≤ j < 2n, the point cnj of the preceding paragraph satisfies

sup{Wr(t)−Wn,r(t) : j/2n ≤ t < (j + 1)/2n}
= sup{Wr(t)−Wn,r(c

n
j ) : j/2n ≤ t < (j + 1)/2n}

= sup{Wr(t)−Wr(c
n
j ) : j/2n ≤ t < (j + 1)/2n} ≤ ε.

So for n ≥ N ,∥∥mr −mn,r

∥∥
1

=

∫ 1

0

|Wr(t)−Wn,r(t)| dµ(t)

=
2n−1∑
j=0

∫ (j+1)/2n

j/2n
|Wr(t)−Wn,r(t)| dµ(t) ≤

2n−1∑
j=0

∫ (j+1)/2n

j/2n
ε dµ(t) = ε,

and hence limn→∞
∥∥mr −mn,r

∥∥
1

= 0. �

Corollary 7.4. Given a sequence (λn)∞n=1 of vectors λn ∈ [0, 1]2
n

satisfying
∑2n−1

j=0 λnj = 1 for
all n, we have

lim
n→∞

∥∥∥ 2n−1∑
j=0

λnj (mr ◦Rj/2n)−
2n−1∑
j=0

λnj (mn,r ◦Rj/2n)
∥∥∥

1
= 0.

Proof. The triangle inequality gives∥∥∥ 2n−1∑
j=0

λnj (mr ◦Rj/2n)−
2n−1∑
j=0

λnj (mn,r ◦Rj/2n)
∥∥∥

1
≤

2n−1∑
j=0

λnj
∥∥mr ◦Rj/2n −mn,r ◦Rj/2n

∥∥∥
1

=
∥∥mr −mn,r

∥∥
1
,

and so the result follows from Lemma 7.3. �

Proof of Theorem 7.1. We first have to show that each mr ◦Rs ∈ Ωr
sub. To see that mr ∈ Ωr

sub,
it suffices to prove that Wr(Rt(t0)) ≤ ertWr(t0) for all t0 ∈ S and t ∈ [0,∞). Fix such a t0 and
t, and write t0 − t = t1 + k for t1 ∈ [0, 1) and 0 ≥ k ∈ Z. Then

Wr(Rt(t0)) = Wr(t1) =
( r

1− e−r
)
e−rt1 =

( r

1− e−r
)
erke−r(t1+k)

=
( r

1− e−r
)
erke−r(t0−t) = erkertWr(t0) ≤ ertWr(t0),

where the inequality follows because rk ≤ 0. So mr ∈ Ωr
sub. For 0 ≤ s < 1 and Borel U ⊆ S,

we have mr ◦Rs(Rt(U)) = mr(Rt(Rs(U))) ≤ ertmr ◦Rs(U) for all t ∈ [0,∞) and Borel U ⊆ S,
and hence mr ◦Rs ∈ Ωr

sub.
Since Ωr

sub is convex and weak∗ closed, we have conv{mr ◦ Rs : 0 ≤ s < 1} ⊆ Ωr
sub. For

the reverse containment, fix m ∈ Ωr
sub. For each n ∈ N and 0 ≤ j < 2n we let Un

j :=
[j/2n, (j + 1)/2n), and

xn :=
(
m(Un

j )
)2n−1

j=0
∈ [0, 1]2

n

.

By Lemma 7.2 we can express xn as a convex combination xn =
∑2n−1

j=1 λnj v
n
j of the vectors

{vn0 , . . . , vn2n−1} described at (7.2). We claim that the measures

Mn :=
2n−1∑
j=0

λnj (mr ◦Rj/2n)

converge weak∗ to m. To see this, fix f ∈ C(S)+. It suffices to prove that
∫
f dMn →

∫
f dm.

For each n, let

M ′
n :=

2n−1∑
j=0

λnj (mn,r ◦Rj/2n).
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Corollary 7.4 shows that ‖Mn −M ′
n‖1 → 0 and in particular,

∫
f dMn −

∫
f dM ′

n → 0. So it
suffices to prove that ∫

f dM ′
n →

∫
f dm.

For each n, define fn : S→ R by

fn =
2n−1∑
j=0

f(j/2n)1Unj .

Since f is uniformly continuous on S we have fn → f pointwise on S. Since |f | and each |fn| are
bounded above by ‖f‖∞, the Dominated Convergence Theorem implies that

∫
fn dm→

∫
f dm.

So it now suffices to prove that ∣∣∣ ∫ fn dm− ∫ f dM ′
n

∣∣∣→ 0.

Fix j, k ∈ Z/2Z. Then (vn0 )j−k = (vnj )k, and hence∫
Unk

f d
(
mn,r ◦Rj/2n

)
= 2n(vn0 )j−k

∫
Unk

f dµ = 2n(vnj )k

∫
Unk

f dµ.

Hence∣∣∣ ∫ fn dm−
∫
f dM ′

n

∣∣∣ =
∣∣∣ 2n−1∑
i=0

f(i/2n)m(Un
i )−

2n−1∑
j=0

λnj

( 2n−1∑
k=0

∫
Unk

f d
(
mn,r ◦Rj/2n

))∣∣∣
=
∣∣∣ 2n−1∑
i=0

f(i/2n)
( 2n−1∑

l=0

λnl v
n
l

)
i
−

2n−1∑
j=0

λnj

2n−1∑
k=0

(
2n(vnj )k

∫
Unk

f dµ
)∣∣∣

=
∣∣∣ 2n−1∑
l=0

λnl

2n−1∑
i=0

(
f(i/2n)(vnl )i

)
−

2n−1∑
j=0

λnj

2n−1∑
k=0

(
2n(vnj )k

∫
Unk

f dµ
)∣∣∣

=
∣∣∣ 2n−1∑
j=0

λnj

( 2n−1∑
i=0

(
f(i/2n)(vnj )i

)
−

2n−1∑
k=0

(
2n(vnj )k

∫
Unk

f dµ
))∣∣∣

=
∣∣∣ 2n−1∑
j=0

λnj

( 2n−1∑
i=0

(
f(i/2n)(vnj )i − 2n(vnj )k

∫
Unk

f dµ
))∣∣∣.

Since each ‖vnj ‖1 = 1 and each
∑

j λ
n
j = 1, the triangle inequality gives∣∣∣ ∫ fn dm−

∫
f dM ′

n

∣∣∣ ≤ 2n−1∑
j=0

λnj

∣∣∣ 2n−1∑
i=0

(
f(i/2n)− 2n

∫
Uni

f dµ
)

(vnj )i

)∣∣∣
≤ max

0≤j<2n

2n−1∑
i=0

(vnj )i

∣∣∣f(i/2n)− 2n
∫
Uni

f dµ
∣∣∣

≤ max
0≤j<2n

(
max

0≤i<2n

∣∣∣f(i/2n)− 2n
∫
Uni

f dµ
∣∣∣)

= max
0≤i<2n

∣∣∣f(i/2n)− 2n
∫
Uni

f dµ
∣∣∣.

Fix 0 ≤ i ≤ 2n. The quantity 2n
∫
Uni
f dµ is the average value of f over Un

i . Since f is continuous,

the Mean Value Theorem implies that there exists c ∈ Un
i such that f(c) = 2n

∫
Uni
f dµ. Hence∣∣∣ ∫ fn dm−

∫
f dM ′

n

∣∣∣ ≤ max
0≤i<2n

sup
c∈Uni
|f(i/2n)− f(c)|.
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Fix ε > 0. By uniform continuity of f there exists N such that |x − y| < 2−N =⇒ |f(x) −
f(y)| < ε. For n ≥ N we have supc∈Uni |f(i/2n) − f(c)| ≤ ε for all i, giving

∣∣∣ ∫ fn dm −∫
f dM ′

n

∣∣∣ ≤ ε. Hence
∣∣∣ ∫ fn dm − ∫ f dρn∣∣∣ → 0. So m ∈ conv{mr ◦ Rs : 0 ≤ s < 1}, giving

Ωr
sub ⊆ conv{mr ◦Rs : 0 ≤ s < 1} as required.
For the final statement, observe that

Ω0
sub = {m ∈M(S) : m(Rt(U)) ≤ m(U) for all t ∈ [0,∞) and Borel U ⊆ S}.

So if m ∈ Ω0
sub, then m(U) = m(R1−t(Rt(U))) ≤ m(Rt(U)) ≤ m(U) for all U, t, forcing

m(U) = m(Rt(U)) for all U, t. Uniqueness of the Haar measure µ on the compact group S
therefore gives m = µ. So Ω0

sub ⊆ {µ}. The reverse containment is trivial. �

We can use Theorem 7.1 to describe the extreme points of Ωr
sub.

Proposition 7.5. The set {mr ◦Rs : 0 ≤ s < 1} is the set of extreme points of Ωr
sub.

The first step in proving Proposition 7.5 will be to show that mr itself is an extreme point
of Ωr

sub. The following lemma will help.

Lemma 7.6. Let m ∈ Ωr
sub and n ∈ N with n ≥ 1. If m([n−1

n
, 1)) ≤ mr([

n−1
n
, 1)), then

m([ i
n
, i+1
n

)) = mr([
i
n
, i+1
n

)) for all 0 ≤ i < n.

Proof. First observe that by definition of mr, we have mr(Rt(U)) = ertmr(U) whenever U ∪
U − t ⊆ [0, 1). Using this at the fourth equality, we note that if m([n−1

n
, 1)) ≤ mr([

n−1
n
, 1)),

then subinvariance forces

1 = m(S) =
n−1∑
i=0

m
([ i
n
,
i+ 1

n

))
=

n−1∑
i=0

m
(
R(n−1−j)/n

([n− 1

n
, 1
)))

≤
n−1∑
i=0

e(n−1−j)r/nm
([n− 1

n
, 1
))

≤
n−1∑
i=0

e(n−1−j)r/nmr

([n− 1

n
, 1
))

=
n−1∑
i=0

mr

([ i
n
,
i+ 1

n

))
= 1.

So we have equality throughout. From this we deduce first that

n−1∑
i=0

m
([ i
n
,
i+ 1

n

))
=

n−1∑
i=0

e(n−1−j)r/nm
([n− 1

n
, 1
))
.

Since the subinvariance relation forces m
([

i
n
, i+1
n

))
≤ e(n−1−j)r/nm

([
n−1
n
, 1
))

for each i, we

deduce that m
([

i
n
, i+1
n

))
= e(n−1−j)r/nm

([
n−1
n
, 1
))

for each i. Since

n−1∑
i=0

e(n−1−j)r/nm
([n− 1

n
, 1
))

=
n−1∑
i=0

e(n−1−j)r/nmr

([n− 1

n
, 1
))
,

we also have m
([

n−1
n
, 1
))

= mr

([
n−1
n
, 1
))

. Hence for each i we have

m
([

i
n
, i+1
n

))
= e(n−1−j)r/nm

([
n−1
n
, 1
))

= e(n−1−j)r/nmr

([
n−1
n
, 1
))

= m
([

i
n
, i+1
n

))
. �
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Proof of Proposition 7.5. We first show that mr is an extreme point of Ωr
sub. First suppose

m ∈ Ωr
sub satisfies m([n−1

n
, 1)) ≤ mr([

n−1
n
, 1)) for all n. We claim that m = mr. Fix f ∈ C(S)+.

For each n define fn : S→ R by

fn =
n−1∑
i=0

f(i/n)1[ i
n
, i+1
n

).

The Dominated Convergence Theorem gives
∫
fn dm→

∫
f dm. By Lemma 7.6, m([ i

n
, i+1
n

)) =

mr([
i
n
, i+1
n

)) for all n ≥ 1 and 0 ≤ i < n. Hence the Dominated Convergence Theorem gives∫
fn dm =

∫
fn dmr →

∫
f dmr. It follows that m = mr.

Now suppose that m1,m2 ∈ Ωr
sub, t ∈ (0, 1) and that one of m1 and m2 is not equal to mr;

say m1 6= mr. The above claim yields n such that m1([n−1
n
, 1)) > mr([

n−1
n
, 1)). So

(tm1 + (1− t)m2)
([n− 1

n
, 1
))

> (tmr + (1− t)m2)
([n− 1

n
, 1
))
≥ mr

([n− 1

n
, 1
))
,

and hence tm1 +(1−t)m2 6= mr. So mr cannot be expressed as a nontrivial convex combination
of subinvariant probability measures, and hence is an extreme point of Ωr

sub.
For s ∈ S, the map m 7→ m ◦ Rs is an affine homeomorphism of Ωr

sub, so each m ◦ Rs is an
extreme point of Ωr

sub. This gives {mr ◦Rs : s ∈ S} ⊆ ∂Ωr
sub.

For the reverse containment, observe that the space Ωr
sub of all subinvariant probability

measures on S is a compact convex subset of the Banach space of all signed Borel measures
on S. The map s 7→ mr ◦ Rs is a homeomorphism of S onto Z := {mr ◦ Rs : s ∈ S}. So Z
is compact and in particular closed. Since Ωr

sub is the closed convex hull of Z it follows from
[25, Proposition 1.5] that the set of extreme points of Ωr

sub is contained in the closure of Z and
therefore in Z itself. �

8. Proof of the main theorem

We are now almost ready to prove Theorem 6.6. We saw in Theorem 6.9 that the KMSβ
simplex of T S

θ is affine isomorphic to the projective limit of the Ω
rj
sub under the maps induced

by the covering maps pN : S → S. So we now show that these induced maps carry extreme
points to extreme points.

Lemma 8.1. Let N ∈ N with N ≥ 2, θ = (θj)
∞
j=0 ∈ ΞN , and β ∈ (0,∞). Suppose that θj 6= 0

for all j. For each j ∈ N, let rj := β
Njθj

, and let mrj be the subinvariant measure on S defined

by (7.1). For each s ∈ [0, 1), we have mrj+1
◦Rs ◦ p−1

N = mrj ◦RNs.

Proof. We first establish the result with s = 0. Fix 0 ≤ a < b ≤ 1. It suffices to prove that
mrj+1

◦ ι−1
N

(
(a, b)

)
= mrj

(
(a, b)

)
. We have

mrj

(
(a, b)

)
=

∫ b

a

Wrj(t) dt =
rj

1− e−rj

∫ b

a

e−rjt dt =
−1

1− e−rj
(
e−rjb − e−rja

)
. (8.1)

We also have

mrj+1
◦ p−1

N

(
(a, b)

)
=

N∑
i=0

mrj+1

((a+ i

N
,
b+ i

N

))
=

N∑
i=0

∫ b+i
N

a+i
N

Wrj+1
(t) dt. (8.2)

Since ∫
Wrj+1

(t) dt =

∫ ( rj+1

1− e−rj+1

)
e−rj+1t dt =

−1

1− e−rj+1
e−rj+1t,
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Equation (8.2) gives

mrj

(
(a, b)

)
=

−1

1− e−rj+1

N∑
i=0

[
e−rj+1t

] b+i
N

a+i
N

=
−1

1− e−rj+1

N∑
i=0

e−
i
N
rj+1
(
e−

b
N
rj+1 − e−

a
N
rj+1
)

=
−1

1− e−rj+1

1− e−rj+1

1− e−
rj+1
N

(
e−

b
N
rj+1 − e−

a
N
rj+1
)

=
−1

1− e−
rj+1
N

(
e−

b
N
rj+1 − e−

a
N
rj+1
)
. (8.3)

Since N2θj+1 = θj, we have

rj+1

N
=
β/(N j+1θj+1)

N
= β/(N j ·N2θj+1) = β/N jθj = rj,

and so (8.3) is precisely (8.1).
Now for s 6= 0, observe that pN ◦ Rs = RNs ◦ pN so that Rs(p

−1
N (U)) = p−1

N (RNs(U)) for all
U ⊆ S. Hence

mrj+1
◦Rs ◦ p−1

N = mrj+1
◦ p−1

N ◦RNs = mrj ◦RNs. �

We now describe the extreme points of the space lim←−(Ω
rj
sub,m 7→ m◦p−1

N ). Given a Borel map

ψ : X → Y , we write ψ∗ : M1(X)→M1(Y ) for the induced map ψ∗(m)(U) = m(ψ−1(U)).

Lemma 8.2. Take N ∈ {2, 3, . . . }, fix θ = (θj)
∞
j=0 ∈ ΞN , and fix β ∈ (0,∞). Suppose that

θj 6= 0 for all j. For each j ∈ N, let rj := β
Njθj

, and let mrj be the subinvariant measure on S
defined by (7.1). The map π : (sj)

∞
j=1 7→ (mrj ◦Rsj)

∞
j=1 is a homeomorphism of lim←−(S, pN) onto

the set of extreme points of lim←−(Ω
rj
sub, (pN)∗).

Proof. Since the Ω
rj
sub are compact convex sets and (pN)∗ is affine and continuous, the projective

limit lim←−Ω
rj
sub is a compact convex set. The map π is continuous, so its range is compact and

hence closed. So to see that the image of π contains all of the extreme points of lim←−Ω
rj
sub, it

suffices by [25, Proposition 1.5] to show that lim←−Ω
rj
sub is contained in the closed convex hull of

the π
(
(sj)

∞
j=1

)
.

For this, fix a point (mj)
∞
j=1 ∈ lim←−Ω

rj
sub. Take an open neighbourhood U of (mj). By definition

of the projective-limit topology, there exist k ∈ N and Uk ⊆ Ωrk
sub open such that the cylinder

set Z(Uk) satisfies (mj)
∞
j=1 ∈ Z(Uk) ⊆ U . By Theorem 7.1, there exist t1, . . . , tL ∈ [0, 1] with∑

tl = 1 such that ∑L
l=1 tl(mrk ◦Rsl) ∈ Uk.

Now for each j ∈ N, define m′j :=
∑L

l=1 tl(mrl ◦RNj−lsl). Lemma 8.1 shows that for j ≤ j′ ∈ N
we have m′j = (pN)j

′−j
∗ (m′j′), and so (m′j)

∞
j=1 ∈ lim←−Ω

rj
sub. For l ≤ L, we have (mrl ◦RNj−lsl)

∞
j=1 =

π
(
(N j−lsl)

∞
j=1

)
, and so

(m′j)
∞
j=1 ∈ conv π

(
lim←−(S, pN)

)
∩ U.

That is, lim←−Ω
rj
sub ⊆ conv

(
π
(

lim←− S
))

. So the range of π contains all the extreme points of

lim←−(Ω
rj
sub, (pN)∗).

For the reverse containment, it suffices to show that each π
(
(sj)

∞
j=1

)
is an extreme point of

lim←−Ω
rj
sub. For this, suppose that t ∈ (0, 1) and m′,m′′ ∈ lim←−Ω

rj
sub satisfy

π
(
(sj)

∞
j=1

)
= tm′ + (1− t)m′′.

For each j,

mrj ◦Rsj = π
(
(sj)

∞
j=1

)
j

= (tm′ + (1− t)m′′)j = tm′j + (1− t)m′′j .
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Proposition 7.5 shows that each mrj ◦ Rsj is an extreme point of Ω
rj
sub, forcing m′j = m′′j =

mrj ◦Rsj . So m′ = m′′ = π
(
(sj)

∞
j=1

)
.

Finally, π is a homeomorphism onto its range because it is a continuous injection from a
compact space to a Hausdorff space. �

The final ingredient needed for the proof of Theorem 6.6 is a suitable action λ of S on T S
θ .

Lemma 8.3. There is an action λ of S = lim←−(S, pN) on T S
θ such that

λ(sj)∞j=1

(
ψj,∞(saθj iθj(f)s∗bθj)

)
= saθj iθj(f ◦Rsj)s

∗b
θj

for all j, a, b ≥ 0 and f ∈ C(S).

Proof. For each j ∈ N, and each t ∈ S, there is an automorphism of the topological graph Eθj
given by s 7→ s+ t for s ∈ E0

θj
= S, and s 7→ s+ t for s ∈ E1

θj
= S. This automorphism induces

an automorphism λj,t of T (Eθj) such that λj,t(s
a
θj
iθj(f)s∗bθj) = saθj iθj(f ◦Rt)s

∗b
θj

for all j, a, b ≥ 0

and f ∈ C(S).
Since λj,t(sθj) = sθj and λj,t(iθj(f)) = iθj(f ◦Rt) for all f ∈ C(S), a routine calculation shows

that for (sj)
∞
j=1 ∈ S , we have ψj ◦ λj,sj = λj+1,sj+1

◦ ψj, and so the universal property of the

direct limit yields the desired action λ of S on lim−→(T (Eθj), ψj) = T S
θ . �

Proof of Theorem 6.6. Theorem 6.9 yields an affine isomorphism

ω : KMSβ(T S
θ , α)→ lim←−(Ω

rj
sub, (pN)∗).

Lemma 8.2 shows that the space of extreme points of lim←−Ω
rj
sub is homeomorphic to the solenoid

lim←− S, so the extreme boundary of KMSβ(T S
θ , α) is homeomorphic to lim←− S. As discussed on

pages 141 and 138 of [27], the set of KMS states for a given dynamics on a unital C∗-algebra at
given inverse temperature β is a Choquet simplex. So KMSβ(T S

θ , α) is a Choquet simplex, and
therefore affine isomorphic to the simplex of regular Borel probability measures on its extreme
boundary.

We claim that the action λ of Lemma 8.3 induces a free and transitive action of S on the
extreme boundary of the KMSβ-simplex. The formula (6.4) shows that for l ∈ N, we have

ω(φ ◦ λ(sj)∞j=1
)l = ω(φ)l ◦Rsl .

That is, for (mj)
∞
j=1 ∈ lim←−(Ω

rj
sub), we have ω−1((mj)

∞
j=1) ◦ λ(sj)∞j=1

= ω−1((mj ◦ Rsj)
∞
j=1). In

particular, if π : lim←− S→ lim←−Ω
rj
sub is the map of Lemma 8.2, then

ω−1(π((tj)
∞
j=1)) ◦ λ(sj)∞j=1

= ω−1(π((tj − sj)∞j=1)).

That is, the homeomorphism ω−1 ◦ π of S onto the extreme boundary of KMSβ(T S
θ , α) inter-

twines λ with the action of S on itself by translation, which is free and transitive.
Now suppose that β = 0. Then each Ω

rj
sub = Ω0

sub = {µ}, and so Theorem 6.9 gives an affine
injection of KMS0(T S

θ , α) into the 1-point space lim←−({µ}, id). So there is at most one KMS0-
state. That there is one follows from a standard argument: Choose βn ∈ (0,∞) converging to
0. For each n, fix φn ∈ KMSβn(T S

θ , α). Weak∗-compactness of the state space ensures that the
φn have a convergent subsequence. Its limit is a KMS0-state by [3, Proposition 5.3.23].

It remains to show that the KMS0 state is the only one that factors through AS
θ , and that

there are no KMSβ states for β < 0. For any β, if φ is a KMSβ state of T S
θ , then in particular,

φ(ψ1,∞(sθ1s
∗
θ1

)) = φ(ψ1,∞(s∗θ1)αiβ(ψ1,∞(sθ1))) = e−βφ(ψ1,∞(s∗θ1sθ1)) = e−βφ(1T S
θ

), (8.4)

and since φ is a state, we deduce that φ(1T S
θ
−ψ1,∞(sθ1s

∗
θ1

)) = 1−e−β. Since sθ1 is an isometry,

we have 1T S
θ
− ψ1,∞(sθ1s

∗
θ1

) ≥ 0 forcing 1 − e−β ≥ 0 and hence β ≥ 0. So there are no KMSβ
states for β < 0.

If β > 0, then (8.4) shows that φ(1T S
θ
− ψ1,∞(sθ1s

∗
θ1

)) > 0, whereas the image of 1T S
θ
−

ψ1,∞(sθ1s
∗
θ1

) in AS
θ is equal to zero. Hence φ does not factor through AS

θ .
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It remains to prove that if φ is a KMS0 state, then φ factors through AS
θ . Equation 8.4

implies that φ(1T S
θ
− ψ1,∞(sθ1s

∗
θ1

)) = 0. The projection 1T S
θ
− ψ1,∞(sθ1s

∗
θ1

) is fixed by α, and

Lemma 6.2 implies that it generates the kernel of the quotient map q : T S
θ → AS

θ . So [12,
Lemma 2.2] implies that φ factors through AS

θ . �
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