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Abstract

A theorem of Feigin, Frenkel and Reshetikhin provides expressions for the eigen-

values of the higher Gaudin Hamiltonians on the Bethe vectors in terms of elements

of the center of the affine vertex algebra at the critical level. In our recent work,

explicit Harish-Chandra images of generators of the center were calculated in all

classical types. We combine these results to calculate the eigenvalues of the higher

Gaudin Hamiltonians on the Bethe vectors in an explicit form. The Harish-Chandra

images can be interpreted as elements of classical W-algebras. We provide a direct

connection between the rings of q-characters and classical W-algebras by calculating

classical limits of the corresponding screening operators.
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1 Introduction

In their seminal paper [7], Feigin, Frenkel and Reshetikhin established a connection between

the center z(ĝ) of the affine vertex algebra at the critical level and the higher Gaudin

Hamiltonians. They used the Wakimoto modules over the affine Kac–Moody algebra ĝ to

calculate the eigenvalues of the Hamiltonians on the Bethe vectors of the Gaudin model

associated with an arbitrary simple Lie algebra g. The calculation depends on the choice

of an element z of the center and the result is written in terms of the Harish-Chandra

image of z; see also [8], [9] and [24] for a relationship with the opers and generalizations to

non-homogeneous Hamiltonians.

The center z(ĝ) is a commutative associative algebra whose structure was described by

a theorem of Feigin and Frenkel [6], which states that z(ĝ) is an algebra of polynomials in

infinitely many variables; see [10] for a detailed exposition of these results. Simple explicit

formulas for generators of this algebra were found in [5] for type A and in [15] for types

B, C and D; see also [4] and [17] for simpler arguments in type A and extensions to Lie

superalgebras. The calculation of the Harish-Chandra images of the generators in type A

is straightforward, whereas types B, C and D require a rather involved application of the

q-characters; see [16]. Our goal in this paper is to apply these results to get the action of

the higher Gaudin Hamiltonians on tensor products of representations of g in an explicit

form and calculate the corresponding eigenvalues of the Bethe vectors. In type A we thus

reproduce the results of [19] obtained by a different method based on the Bethe ansatz.

We will begin with a brief exposition of some results of [7] and [9]. Our main focus

will be on Theorem 6.7 from [9] expressing eigenvalues of a generalized Gaudin algebra on

Bethe vectors in terms of opers associated with tensor products of Verma modules. Then

we will apply this theorem to the classical Lie algebras to write explicit Gaudin operators

and their eigenvalues on Bethe vectors.

A connection between the Yangian characters (or q-characters) and the Segal–Sugawara

operators played an essential role in the calculation of the Harish-Chandra images in [16].

We will explore this connection further by constructing a map gr taking a character to an

element of the associated classical W-algebra. We will also establish multiplicativity and

surjectivity properties of this map.

2 Feigin–Frenkel center and Bethe vectors

Let g be a simple Lie algebra over C equipped with a standard symmetric invariant bilinear

form ⟨ , ⟩ defined as a normalized Killing form

⟨X, Y ⟩ = 1

2h∨
tr
(
adX adY

)
, (2.1)
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where h∨ is the dual Coxeter number for g. The corresponding affine Kac–Moody algebra

ĝ is defined as the central extension

ĝ = g [t, t−1]⊕ CK, (2.2)

where g[t, t−1] is the Lie algebra of Laurent polynomials in t with coefficients in g; see [14].

For any r ∈ Z and X ∈ g we set X[r] = X tr. The commutation relations of the Lie

algebra ĝ have the form[
X[r], Y [s]

]
= [X, Y ][r + s] + r δr,−s⟨X, Y ⟩K, X, Y ∈ g,

and the element K is central in ĝ.

The universal enveloping algebra at the critical level Ucri(ĝ) is the quotient of U(ĝ) by

the ideal generated by K + h∨. Let I denote the left ideal of Ucri(ĝ) generated by g[t] and

let Norm I be its normalizer,

Norm I = {v ∈ Ucri(ĝ) | Iv ⊆ I}.

The normalizer is a subalgebra of Ucri(ĝ), and I is a two-sided ideal of Norm I. The Feigin–

Frenkel center z(ĝ) is the associative algebra defined as the quotient

z(ĝ) = Norm I/I. (2.3)

Any element of z(ĝ) is called a Segal–Sugawara vector . The quotient

Vcri(g) = Ucri(ĝ)/I (2.4)

is the vacuum module at the critical level over ĝ. It possesses a vertex algebra structure.

As a vector space, Vcri(g) is isomorphic to the universal enveloping algebra U(ĝ−), where

ĝ− = t−1g[t−1]. Hence, we have a vector space embedding

z(ĝ) ↪→ U(ĝ−).

Since U(ĝ−) is a subalgebra of Ucri(ĝ), the embedding is an algebra homomorphism so that

the Feigin–Frenkel center z(ĝ) can be regarded as a subalgebra of U(ĝ−). This subalgebra

is commutative which is seen from its identification with the center of the vertex algebra

Vcri(g) by

z(ĝ) = {v ∈ Vcri(g) | g[t]v = 0}. (2.5)

As a vertex algebra, the vacuum module Vcri(g) is equipped with the translation operator

T : Vcri(g) → Vcri(g), (2.6)
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which is determined by the properties

T : 1 7→ 0 and
[
T,X[r]

]
= −rX[r − 1], X ∈ g.

We also regard T as a derivation of the algebra U(ĝ−). Its subalgebra z(ĝ) is T -invariant.

By the Feigin–Frenkel theorem, there exist elements S1, . . . , Sn ∈ z(ĝ), where n = rank g,

such that all elements T rSl are algebraically independent, and every Segal–Sugawara vector

is a polynomial in these elements:

z(ĝ) = C [T rSl | l = 1, . . . , n, r ⩾ 0]. (2.7)

We call such a family S1, . . . , Sn a complete set of Segal–Sugawara vectors.

Choose a Cartan subalgebra h of g and a triangular decomposition g = n− ⊕ h ⊕ n+.

Consider U(ĝ−) as the adjoint g-module by regarding g as the span of the elements X[0]

with X ∈ g. Denote by U(ĝ−)
h the subalgebra of h-invariants under this action. Consider

the left ideal J of the algebra U(ĝ−) generated by all elements X[r] with X ∈ n− and r < 0.

By the Poincaré–Birkhoff–Witt theorem, the intersection U(ĝ−)
h ∩ J is a two-sided ideal

of U(ĝ−)
h and we have a direct sum decomposition

U(ĝ−)
h =

(
U(ĝ−)

h ∩ J
)
⊕ U(ĥ−),

where ĥ− = t−1h[t−1]. The projection to the second summand is a homomorphism

U(ĝ−)
h → U(ĥ−) (2.8)

which is an affine version of the Harish-Chandra homomorphism. By the Feigin–Frenkel

theorem, the restriction of the homomorphism (2.8) to the subalgebra z(ĝ) yields an iso-

morphism

f : z(ĝ) → W(Lg), (2.9)

where W(Lg) is the classical W-algebra associated with the Langlands dual Lie algebra Lg;

see [10] for a detailed exposition of these results. The W-algebra W(Lg) can be defined as a

subalgebra of U(ĥ−) which consists of the elements annihilated by the screening operators ;

see [10, Sec. 8.1] and also [16] for explicit formulas in the classical types.

Given any element χ ∈ g∗ and a nonzero z ∈ C , the mapping

U(ĝ−) → U(g), X[r] 7→ Xzr + δr,−1 χ(X), X ∈ g, (2.10)

defines an algebra homomorphism. Using the coassociativity of the standard coproduct on

U(ĝ−) defined by

∆ : Y 7→ Y ⊗ 1 + 1⊗ Y, Y ∈ ĝ−,

for any ℓ ⩾ 1 we get the homomorphism

U(ĝ−) → U(ĝ−)
⊗ℓ (2.11)
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as an iterated coproduct map. Now fix distinct complex numbers z1, . . . , zℓ and let u be a

complex parameter. Applying homomorphisms of the form (2.10) to the tensor factors in

(2.11), we get another homomorphism

Ψ : U(ĝ−) → U(g)⊗ℓ, (2.12)

given by

Ψ : X[r] 7→
ℓ∑

a=1

Xa(za − u)r + δr,−1 χ(X) ∈ U(g)⊗ℓ,

where Xa = 1⊗(a−1) ⊗ X ⊗ 1⊗(ℓ−a); see [24]. We will twist this homomorphism by the

involutive anti-automorphism

ς : U(ĝ−) → U(ĝ−), X[r] 7→ −X[r], X ∈ g, (2.13)

to get the anti-homomorphism

Φ : U(ĝ−) → U(g)⊗ℓ, (2.14)

defined as the composition Φ = Ψ ◦ ς. Since z(ĝ) is a commutative subalgebra of U(ĝ−),

the image of z(ĝ) under Φ is a commutative subalgebra A(g)χ of U(g)⊗ℓ, depending on the

chosen parameters z1, . . . , zℓ, but it does not depend on u [24]; see also [9, Sec. 2].

Introduce the standard Chevalley generators ei, hi, fi with i = 1, . . . , n of the simple

Lie algebra g of rank n. The generators hi form a basis of the Cartan subalgebra h of g,

while the ei and fi generate the respective nilpotent subalgebras n+ and n−. Let A = [aij]

be the Cartan matrix of g so that the defining relations of g take the form

[ei, fj] = δijhi, [hi, hj] = 0,

[hi, ej] = aij ej, [hi, fj] = −aij fj,

together with the Serre relations; see e.g. [14]. Given λ ∈ h∗, the Verma module Mλ is

the quotient of U(g) by the left ideal generated by n+ and the elements hi − λ(hi) with

i = 1, . . . , n. We denote the image of 1 in Mλ by 1λ.

For any weights λ1, . . . , λℓ ∈ h∗ consider the tensor product of the Verma modules

Mλ1⊗. . .⊗Mλℓ
. We will now describe common eigenvectors for the commutative subalgebra

A(g)χ in this tensor product. For a set of distinct complex numbers w1, . . . , wm with wi ̸= zj
and a collection (multiset) of labels i1, . . . , im ∈ {1, . . . , n} introduce the Bethe vector

ϕ(wi1
1 , . . . , w

im
m ) ∈Mλ1 ⊗ . . .⊗Mλℓ

by the following formula which originates in [25]; see [2] and also [7], [21] and references

therein:

ϕ(wi1
1 , . . . , w

im
m ) =

∑
(I1,...,Iℓ)

ℓ⊗
k=1

ak∏
s=1

1

wjks
− wjks+1

∏
r∈Ik

fir 1λk
, (2.15)
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summed over all ordered partitions I1 ∪ I2 ∪ · · · ∪ Iℓ of the set {1, . . . ,m} into ordered

subsets Ik = {jk1 , jk2 , . . . , jkak} with the products taken from left to right, where wjks+1
:= zk

for s = ak.

Now suppose that χ ∈ h∗. We regard χ as a functional on g which vanishes on n+ and

n−. The system of the Bethe ansatz equations takes the form

ℓ∑
i=1

⟨α̌ij , λi⟩
wj − zi

−
∑
s̸=j

⟨α̌ij , αis⟩
wj − ws

= ⟨α̌ij , χ⟩, j = 1, . . . ,m, (2.16)

where the αl and α̌l denote the simple roots and coroots, respectively; see [14].

We are now in a position to describe the eigenvalues of the Gaudin Hamiltonians on

the Bethe vectors. Given the above parameters, introduce the homomorphism from U(ĥ−)

to rational functions in u by the rule:

ϱ : H[−r − 1] 7→ ∂ r
u

r!
H(u), H ∈ h, r ⩾ 0, (2.17)

where

H(u) =
ℓ∑

a=1

λa(H)

u− za
−

m∑
j=1

αij(H)

u− wj

− χ(H).

Let S ∈ z(ĝ) be a Segal–Sugawara vector. The composition ϱ◦f of this homomorphism with

the isomorphism (2.9) takes S to a rational function ϱ
(
f(S)

)
in u. Furthermore, we regard

the image Φ(S) of S under the anti-homomorphism (2.14) as an operator in the tensor

product of Verma modules Mλ1 ⊗ . . . ⊗Mλℓ
. The following is essentially a reformulation

of Theorems 6.5 and 6.7 from [9]; in the case χ = 0 the result goes back to [7, Theorem 3].

Theorem 2.1. Suppose that the Bethe ansatz equations (2.16) are satisfied. If the Bethe

vector ϕ(wi1
1 , . . . , w

im
m ) is nonzero, then it is an eigenvector for the operator Φ(S) with the

eigenvalue ϱ
(
f(S)

)
.

In what follows we will rely on the results of [4], [15] and [16] to give explicit formulas

for the operators Φ(Si) and their eigenvalues ϱ
(
f(Si)

)
on the Bethe vectors for complete

sets of Segal–Sugawara vectors S1, . . . , Sn in all classical types.

3 Gaudin Hamiltonians and eigenvalues

We will use the extended Lie algebra ĝ⊕Cτ where the element τ satisfies the commutation

relations [
τ,X[r]

]
= −r X[r − 1],

[
τ,K

]
= 0. (3.1)

Consider the extension of (2.9) to the isomorphism

f : z(ĝ)⊗ C [τ ] → W(Lg)⊗ C [τ ], (3.2)
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which is identical on C [τ ].

For an arbitrary N × N matrix A = [Aij] with entries in a ring we define its column-

determinant cdetA and row-determinant rdetA by the respective formulas

cdetA =
∑
σ∈SN

sgn σ · Aσ(1)1 . . . Aσ(N)N (3.3)

and

rdetA =
∑
σ∈SN

sgnσ · A1σ(1) . . . ANσ(N), (3.4)

where SN denotes the symmetric group.

3.1 Type A

We will work with the reductive Lie algebra glN rather than the simple Lie algebra slN of

type A. We let Eij with i, j = 1, . . . , N be the standard basis of glN . Denote by h, n+ and

n− the subalgebras of glN spanned by the diagonal, upper-triangular and lower-triangular

matrices, respectively, so that E11, . . . , ENN is a basis of h.

We start by recalling the constructions of some complete sets of Segal–Sugawara vectors

for glN . For each a ∈ {1, . . . ,m} introduce the element E[r]a of the algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ U (3.5)

by

E[r]a =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ Eij[r], (3.6)

where the eij are the standard matrix units and U stands for the universal enveloping

algebra of ĝlN ⊕ Cτ . Let H(m) and A(m) denote the respective images of the normalized

symmetrizer and anti-symmetrizer in the group algebra for the symmetric group Sm under

its natural action on (CN)⊗m. In particular, H(m) and A(m) are idempotents and we identify

them with the respective elements H(m) ⊗ 1 and A(m) ⊗ 1 of the algebra (3.5). Define the

elements φma, ψma, θma ∈ U
(
t−1glN [t

−1]
)
by the expansions

trA(m)
(
τ + E[−1]1

)
. . .
(
τ + E[−1]m

)
= φm0 τ

m + φm1 τ
m−1 + · · ·+ φmm, (3.7)

trH(m)
(
τ + E[−1]1

)
. . .
(
τ + E[−1]m

)
= ψm0 τ

m + ψm1 τ
m−1 + · · ·+ ψmm, (3.8)

where the traces are taken with respect to all m copies of EndCN in (3.5), and

tr
(
τ + E[−1]

)m
= θm0 τ

m + θm1 τ
m−1 + · · ·+ θmm. (3.9)
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Expressions like τ + E[−1] are understood as matrices, where τ is regarded as the scalar

matrix τ I. Furthermore, expand the column-determinant of this matrix as a polynomial

in τ ,

cdet
(
τ + E[−1]

)
= τN + φ1 τ

N−1 + · · ·+ φN , φm ∈ U
(
t−1glN [t

−1]
)
. (3.10)

We have φmm = φm for m = 1, . . . , N .

Theorem 3.1. All elements φma, ψma and θma belong to the Feigin–Frenkel center z(ĝlN).

Moreover, each of the families

φ1, . . . , φN , ψ11, . . . , ψNN and θ11, . . . , θNN

is a complete set of Segal–Sugawara vectors for glN .

This theorem goes back to [5], where the elements φm were first discovered (in a slightly

different form). A direct proof of the theorem for the coefficients of the polynomial (3.10)

was given in [4]. The elements ψma are related to φma through the quantum MacMahon

Master Theorem of [13], while a relationship between the φma and θma is provided by a

Newton-type identity given in [3, Theorem 15]. Note that super-versions of these relations

between the families of Segal–Sugawara vectors for the Lie superalgebra glm|n were given

in the paper [17], which also provides simpler arguments in the purely even case.

We will calculate the images of the Segal–Sugawara vectors under the involution (2.13).

We extend it to the algebra U
(
t−1glN [t

−1]
)
⊗C [τ ] with the action on C [τ ] as the identity

map.

Lemma 3.2. For the images with respect to the involution ς we have

trA(m)
(
τ + E[−1]1

)
. . .
(
τ + E[−1]m

)
7→ trA(m)

(
τ − E[−1]1

)
. . .
(
τ − E[−1]m

)
, (3.11)

trH(m)
(
τ + E[−1]1

)
. . .
(
τ + E[−1]m

)
7→ trH(m)

(
τ − E[−1]1

)
. . .
(
τ − E[−1]m

)
, (3.12)

tr
(
τ + E[−1]

)m 7→ tr
(
τ − E t[−1]

)m
, (3.13)

and

cdet
(
τ + E[−1]

)
7→ cdet

(
τ − E t[−1]

)
, (3.14)

where t denotes the standard matrix transposition.

Proof. The left hand side of (3.11) equals a linear combination of expressions of the form

trA(m)E[r1]a1 . . . E[rp]ap τ
k (3.15)
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with 1 ⩽ a1 < · · · < ap ⩽ m. However, such an expression remains unchanged under any

permutation of the factors E[ri]ai . This follows from the commutation relations

E[r]aE[s]b − E[s]bE[r]a = PabE[r + s]b − E[r + s]bPab

for a < b, where

Pab =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ej i ⊗ 1⊗(m−b) (3.16)

is the permutation operator. We only need to observe that A(m)Pab = PabA
(m) = −A(m)

and use the cyclic property of trace. Hence the image of (3.15) under ς equals

(−1)p trA(m)E[r1]a1 . . . E[rp]ap τ
k

which verifies (3.11). The same argument proves (3.12). Now (3.14) follows from the

relation

cdet
(
τ + E[−1]

)
= trA(N)

(
τ + E[−1]1

)
. . .
(
τ + E[−1]N

)
(3.17)

which is implied by the fact that τ + E[−1] is a Manin matrix; see [3] for an extensive

review on Manin matrices. Indeed, by (3.11) for the image of (3.17) under ς we get

trA(N)
(
τ − E[−1]1

)
. . .
(
τ − E[−1]N

)
= trA(N)

(
τ − E t[−1]1

)
. . .
(
τ − E t[−1]N

)
,

where we have applied the transposition t1 . . . tN with respect to all copies of EndCN and

used the invariance of A(N) under this transposition. Since τ − E t[−1] is also a Manin

matrix, the resulting expression coincides with cdet
(
τ − E t[−1]

)
. Finally, (3.13) follows

from the Newton-type formula connecting the coefficients of the polynomial in (3.9) with

those of (3.10); see [4, (3.5)].

With the parameters chosen as in Sec. 2, suppose that χ vanishes on the subspace

n− ⊕ n+ of glN so that we can regard χ as an element of h∗. Set

Eij(u) =
ℓ∑

a=1

(Eij)a
u− za

− χ(Eij) ∈ U(glN)
⊗ℓ.

Consider the row-determinant rdet
(
∂u +E(u)

)
of the matrix ∂u +E(u) =

[
δij ∂u +Eij(u)

]
as a differential operator in ∂u with coefficients in U(glN)

⊗ℓ. Furthermore, in accordance

with (2.17), set

Eii(u) =
ℓ∑

a=1

λa(Eii)

u− za
−

m∑
j=1

αij(Eii)

u− wj

− χ(Eii).

In all the following eigenvalue formulas for the Gaudin Hamiltonians we will assume

that the Bethe ansatz equations (2.16) hold.
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Theorem 3.3. The eigenvalue of the operator rdet
(
∂u+E(u)

)
on the Bethe vector (2.15)

is found by

rdet
(
∂u + E(u)

)
ϕ(wi1

1 , . . . , w
im
m ) =

(
∂u + ENN(u)

)
. . .
(
∂u + E11(u)

)
ϕ(wi1

1 , . . . , w
im
m ).

Proof. To apply Theorem 2.1, we will find the image of the polynomial cdet
(
τ + E[−1]

)
under the anti-homomorphism Φ. We regard Φ as the map

Φ : U
(
t−1glN [t

−1]
)
⊗ C [τ ] → U(glN)

⊗ℓ ⊗ C [∂u]

such that τ 7→ ∂u. Note that by definition of the homomorphism (2.12) we have

Ψ : E[−1] 7→ −E(u)

and so, by (3.14),

Φ : cdet
(
τ + E[−1]

)
7→ cdet

(
∂u + Et(u)

)
= rdet

(
∂u + E(u)

)
. (3.18)

The images of the elements φi under the isomorphism (2.9) for g = glN are easy to

obtain from (3.10), they are found by

f : cdet
(
τ + E[−1]

)
7→
(
τ + ENN [−1]

)
. . .
(
τ + E11[−1]

)
. (3.19)

Therefore,

ϱ ◦ f : cdet
(
τ + E[−1]

)
7→
(
∂u + ENN(u)

)
. . .
(
∂u + E11(u)

)
completing the proof.

Formula (3.19) can be generalized to get the Harish-Chandra images of the polynomials

(3.7) and (3.8). We get

f : trA(m)
(
τ + E[−1]1

)
. . .
(
τ + E[−1]m

)
7→ em

(
τ + E11[−1], . . . , τ + ENN [−1]

)
,

f : trH(m)
(
τ + E[−1]1

)
. . .
(
τ + E[−1]m

)
7→ hm

(
τ + E11[−1], . . . , τ + ENN [−1]

)
,

where we use standard noncommutative versions of the complete and elementary symmetric

functions in the ordered variables x1, . . . , xp defined by the respective formulas

hm(x1, . . . , xp) =
∑

i1⩽···⩽im

xi1 . . . xim , (3.20)

em(x1, . . . , xp) =
∑

i1>···>im

xi1 . . . xim . (3.21)

The following corollaries can be derived from Theorem 3.3 or proved in a similar way with

the use of Lemma 3.2.
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Corollary 3.4. The eigenvalues of the operators

trA(m)
(
∂u + E(u)1

)
. . .
(
∂u + E(u)m

)
and trH(m)

(
∂u + E(u)1

)
. . .
(
∂u + E(u)m

)
on the Bethe vector (2.15) are found by respective formulas

em
(
∂u + E11(u), . . . , ∂u + ENN(u)

)
and hm

(
∂u + E11(u), . . . , ∂u + ENN(u)

)
.

By [4, Corollary 6.4] we have

f :
∞∑
k=0

zk tr
(
τ + E[−1]

)k 7→ N∑
i=1

(
1− z

(
τ + E11[−1]

))−1
· · ·
(
1− z

(
τ + Ei i[−1]

))−1
×
(
1− z

(
τ + Ei−1 i−1[−1]

))
· · ·
(
1− z

(
τ + E11[−1]

))
,

where z is an independent variable. So we get the following.

Corollary 3.5. The eigenvalue of the series

∞∑
k=0

zk tr
(
∂u + Et(u)

)k
on the Bethe vector (2.15) is found by the formula

N∑
i=1

(
1− z

(
∂u + E11(u)

))−1
· · ·
(
1− z

(
∂u + Ei i(u)

))−1
×
(
1− z

(
∂u + Ei−1 i−1(u)

))
· · ·
(
1− z

(
∂u + E11(u)

))
.

3.2 Types B and D

Now turn to the orthogonal Lie algebras and let g = oN with N = 2n or N = 2n+1. These

are simple Lie algebras of types Dn and Bn, respectively. We use the involution on the set

{1, . . . , N} defined by i′ = N − i+ 1. The Lie subalgebra of glN spanned by the elements

Fij = Eij − Ej′i′ with i, j ∈ {1, . . . , N} is isomorphic to the orthogonal Lie algebra oN .

Denote by h the Cartan subalgebra of oN spanned by the basis elements F11, . . . , Fnn.

We have the triangular decomposition oN = n− ⊕ h ⊕ n+, where n− and n+ denote the

subalgebras of oN spanned by the elements Fij with i > j and by the elements Fij with

i < j, respectively.

We will use the elements Fij[r] = Fij t
r of the loop algebra oN [t, t

−1]. Introduce the

elements F [r]a of the algebra (3.5) by

F [r]a =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ Fij[r], (3.22)
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where U in (3.5) now stands for the universal enveloping algebra of ôN ⊕ Cτ .
For 1 ⩽ a < b ⩽ m consider the operators Pab defined by (3.16) and introduce the

operators

Qab =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ei′j′ ⊗ 1⊗(m−b).

Set

S(m) =
1

m!

∏
1⩽a<b⩽m

(
1 +

Pab

b− a
− Qab

N/2 + b− a− 1

)
, (3.23)

where the product is taken in the lexicographic order on the pairs (a, b). The element

(3.23) is the image of the symmetrizer in the Brauer algebra Bm(N) under its action on

the vector space (CN)⊗m. In particular, for any 1 ⩽ a < b ⩽ m for the operator S(m) we

have

S(m)Qab = Qab S
(m) = 0 and S(m) Pab = Pab S

(m) = S(m). (3.24)

The symmetrizer admits a few other equivalent expressions which are reproduced in [15].

We will use the notation

γm(ω) =
ω +m− 2

ω + 2m− 2
(3.25)

and define the elements φma ∈ U
(
t−1oN [t

−1]
)
by the expansion

γm(N) trS(m)
(
τ + F [−1]1

)
. . .
(
τ + F [−1]m

)
= φm0 τ

m + φm1 τ
m−1 + · · ·+ φmm, (3.26)

where the trace is taken over all m copies of EndCN . By the main result of [15], all coeffi-

cients φma belong to the Feigin–Frenkel center z(ôN). In the even orthogonal case g = o2n
there is an additional element φ ′n = Pf F̃ [−1] of the center defined as the (noncommutative)

Pfaffian of the skew-symmetric matrix F̃ [−1] =
[
F̃ij[−1]

]
,

Pf F̃ [−1] =
1

2nn!

∑
σ∈S2n

sgn σ · F̃σ(1)σ(2)[−1] . . . F̃σ(2n−1)σ(2n)[−1], (3.27)

where F̃ij[−1] = Fij′ [−1]. The family φ22, φ44, . . . , φ2n 2n is a complete set of Segal–

Sugawara vectors for o2n+1, whereas φ22, φ44, . . . , φ2n−2 2n−2, φ
′
n is a complete set of Segal–

Sugawara vectors for o2n.

We extend the involution (2.13) to the algebra U
(
t−1oN [t

−1]
)
⊗ C [τ ] with the action

on C [τ ] as the identity map.

Lemma 3.6. The element (3.26) is stable under ς. Moreover, in type Dn we have

ς : Pf F̃ [−1] 7→ (−1)n Pf F̃ [−1]. (3.28)

12



Proof. The same argument as in the proof of Lemma 3.2 shows that the image of (3.26)

under the involution ς equals

γm(N) trS(m)
(
τ − F [−1]1

)
. . .
(
τ − F [−1]m

)
. (3.29)

Indeed, this is implied by (3.24) and the commutation relations

F [r]a F [s]b − F [s]b F [r]a = (Pab −Qab)F [r + s]b − F [r + s]b (Pab −Qab)

for a < b. By applying the simultaneous transpositions eij 7→ ej′i′ to allm copies of EndCN

we conclude that (3.29) coincides with (3.26) because this transformation takes each factor

τ − F [−1]a to τ + F [−1]a whereas the operator S(m) stays invariant. Relation (3.28) is

immediate from (3.27).

By the main results of [16], the image of the polynomial (3.26) under the isomorphism

(3.2) is given by the formula:

hm
(
τ + F11[−1], . . . , τ + Fnn[−1], τ − Fnn[−1], . . . τ − F11[−1]

)
,

for type Bn and by

1
2
hm
(
τ + F11[−1], . . . , τ + Fn−1n−1[−1], τ − Fnn[−1], . . . τ − F11[−1]

)
+ 1

2
hm
(
τ+F11[−1], . . . , τ+Fnn[−1], τ−Fn−1n−1[−1], . . . τ−F11[−1]

)
,

for type Dn. The latter sum can also be written in the form

hm
(
τ + F11[−1], . . . , τ + Fnn[−1], τ − Fnn[−1], . . . τ − F11[−1]

)
−

∑
k+l=m−1

hk
(
τ + F11[−1], . . . , τ + Fnn[−1]

)
τ h l

(
τ − Fnn[−1], . . . , τ − F11[−1]

)
.

Furthermore, the image of the element φ ′n in type Dn is given by(
F11[−1]− τ

)
. . .
(
Fnn[−1]− τ

)
1, (3.30)

where τ is understood as the differentiation operator so that τ 1 = 0; see also [23] for a

direct calculation of the Harish-Chandra image of φ ′n.

Choose parameters as in Sec. 2 and suppose that χ vanishes on the subspace n− ⊕ n+
of oN so that we can regard χ as an element of h∗. Set

Fij(u) =
ℓ∑

a=1

(Fij)a
u− za

− χ(Fij) ∈ U(oN)
⊗ℓ.
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In accordance with (2.17) set

Fii(u) =
ℓ∑

a=1

λa(Fii)

u− za
−

m∑
j=1

αij(Fii)

u− wj

− χ(Fii).

In the case g = o2n define the operator

Pf F̃ (u) =
1

2nn!

∑
σ∈S2n

sgn σ · F̃σ(1)σ(2)(u) . . . F̃σ(2n−1)σ(2n)(u), (3.31)

where F̃ij(u) = Fij′(u). As before, we will assume that the Bethe ansatz equations (2.16)

hold.

Theorem 3.7. The eigenvalue of the operator

γm(N) trS(m)
(
∂u + F (u)1

)
. . .
(
∂u + F (u)m

)
(3.32)

on the Bethe vector (2.15) is found by

hm
(
∂u + F11(u), . . . , ∂u + Fnn(u), ∂u −Fnn(u), . . . ∂u −F11(u)

)
for type Bn, and by

1
2
hm
(
∂u + F11(u), . . . , ∂u + Fn−1n−1(u), ∂u −Fnn(u), . . . ∂u −F11(u)

)
+ 1

2
hm
(
∂u +F11(u), . . . , ∂u +Fnn(u), ∂u −Fn−1n−1(u), . . . ∂u −F11(u)

)
for type Dn. Moreover, the eigenvalue of the operator Pf F̃ (u) in type Dn is given by(

F11(u)− ∂u
)
. . .
(
Fnn(u)− ∂u

)
1. (3.33)

Proof. We apply Theorem 2.1 again and regard Φ as the map

Φ : U
(
t−1oN [t

−1]
)
⊗ C [τ ] → U(oN)

⊗ℓ ⊗ C [∂u]

such that τ 7→ ∂u. By the definition of the homomorphism (2.12) we have

Ψ : F [−1] 7→ −F (u).

Hence, using the equivalent formula (3.29) for the polynomial (3.26) we find that its image

under Φ coincides with the operator (3.32). The proof of the first part of the theorem is

completed by using the formulas for the images of (3.26) under the respective isomorphisms

(3.2) recalled above. Finally, by Lemma 3.6, in type Dn,

Φ : Pf F̃ [−1] 7→ Pf F̃ (u)

so that the last claim follows by using formula (3.30) for the image of Pf F̃ [−1] under the

isomorphism (2.9).
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Corollary 3.8. The eigenvalue of the generating function(
∞∑

m=0

(−z)m γm(N) trS(m)
(
∂u + F (u)1

)
. . .
(
∂u + F (u)m

))−1
(3.34)

on the Bethe vector (2.15) is found by(
1+
(
∂u−F11(u)

)
z
)
. . .
(
1+
(
∂u−Fnn(u)

)
z
)(

1+
(
∂u+Fnn(u)

)
z
)
. . .
(
1+
(
∂u+F11(u)

)
z
)

for type Bn and by(
1 +

(
∂u −F11(u)

)
z
)
. . .
(
1 +

(
∂u −Fnn(u)

)
z
)(

1 + ∂uz
)−1

×
(
1 +

(
∂u + Fnn(u)

)
z
)
. . .
(
1 +

(
∂u + F11(u)

)
z
)

for type Dn.

3.3 Type C

We identify the symplectic Lie algebra g = sp2n with the Lie subalgebra of gl2n spanned

by the elements Fij = Eij − εiεjEj′i′ with i, j ∈ {1, . . . , 2n}, where i′ = 2n − i + 1 and

εi = 1 for i = 1, . . . , n and εi = −1 for i = n+ 1, . . . , 2n.

Denote by h the Cartan subalgebra of sp2n spanned by the basis elements F11, . . . , Fnn.

We have the triangular decomposition sp2n = n− ⊕ h ⊕ n+, where n− and n+ denote the

subalgebras of sp2n spanned by the elements Fij with i > j and by the elements Fij with

i < j, respectively.

We will use the elements Fij[r] = Fij t
r of the loop algebra sp2n[t, t

−1]. Introduce the

elements F [r]a of the algebra (3.5) by

F [r]a =
2n∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ Fij[r], (3.35)

where U in (3.5) now stands for the universal enveloping algebra of ŝp2n ⊕ Cτ .
For 1 ⩽ a < b ⩽ m consider the operators Pab defined by (3.16) and introduce the

operators

Qab =
2n∑

i,j=1

εiεj 1
⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ei′j′ ⊗ 1⊗(m−b).

For 1 ⩽ m ⩽ n set

S(m) =
1

m!

∏
1⩽a<b⩽m

(
1− Pab

b− a
− Qab

n− b+ a+ 1

)
, (3.36)
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where the product is taken in the lexicographic order on the pairs (a, b). The element

(3.36) is the image of the symmetrizer in the Brauer algebra Bm(−2n) under its action on

the vector space (C2n)⊗m. Use the notation (3.25) to introduce the polynomial in τ by

γm(−2n) trS(m)
(
τ +F [−1]1

)
. . .
(
τ +F [−1]m

)
= φm0 τ

m +φm1 τ
m−1 + · · ·+φmm, (3.37)

where the trace is taken over all m copies of EndC2n. By the results of [15], the values of

m in (3.37) can be extended to the range 1 ⩽ m ⩽ 2n (and, in fact, for m = 2n + 1 as

well) to get a well-defined polynomial in τ . Moreover, the family φ22, φ44, . . . , φ2n 2n is a

complete set of Segal–Sugawara vectors for sp2n.

Extend the involution (2.13) to the algebra U
(
t−1sp2n[t

−1]
)
⊗ C [τ ] with the action on

C [τ ] as the identity map.

Lemma 3.9. The element (3.37) is stable under ς.

Proof. The proof is the same as for Lemma 3.6, which also provides an equivalent formula

γm(−2n) trS(m)
(
τ − F [−1]1

)
. . .
(
τ − F [−1]m

)
(3.38)

for the polynomial (3.37).

By the main result of [16], the image of the polynomial (3.37) with 1 ⩽ m ⩽ 2n + 1

under the isomorphism (3.2) is given by the formula:

em
(
τ + F11[−1], . . . , τ + Fnn[−1], τ, τ − Fnn[−1], . . . τ − F11[−1]

)
,

where we use notation (3.21).

With parameters chosen as in Sec. 2, suppose that χ vanishes on the subspace n−⊕ n+
of sp2n so that we can regard χ as an element of h∗. Set

Fij(u) =
ℓ∑

a=1

(Fij)a
u− za

− χ(Fij) ∈ U(sp2n)
⊗ℓ.

In accordance with (2.17) set

Fii(u) =
ℓ∑

a=1

λa(Fii)

u− za
−

m∑
j=1

αij(Fii)

u− wj

− χ(Fii).

As before, we will assume that the Bethe ansatz equations (2.16) hold.

Theorem 3.10. For any 1 ⩽ m ⩽ 2n+ 1 the eigenvalue of the operator

γm(−2n) trS(m)
(
∂u + F (u)1

)
. . .
(
∂u + F (u)m

)
(3.39)

on the Bethe vector (2.15) is found by

em
(
∂u + F11(u), . . . , ∂u + Fnn(u), ∂u, ∂u −Fnn(u), . . . ∂u −F11(u)

)
.

Proof. This is derived from Theorem 2.1 and Lemma 3.9 as in the proof of Theorem 3.7.

16



3.4 Connection with the results of [19] and [20]

Theorem 3.3 was previously proved in [19] is a slightly different form; see Theorem 9.2

there. We will make a connection between these results by showing that one is obtained

from the other by using an automorphism of the current algebra. The notation of [19]

corresponds to ours (we used the settings of [7] and [9]) as follows. The highest weights

Λk = (Λ1
k, . . . ,Λ

N
k ) correspond to our λk so that Λi

k = λk(Eii); the evaluation parameters zi
are the same. The diagonal matrix K = diag [K1, . . . , KN ] corresponds to our element −χ
so that Ki = −χ(Eii). Finally, the collection of nonnegative integers ξ = (ξ1, . . . , ξN−1)

gives rise to our multiset of simple roots αij where αl = εl − εl+1 occurs ξl times for

each l = 1, . . . , N − 1. The corresponding variables t11, . . . , t
1
ξ1 , . . . , t

N−1
1 , . . . , tN−1

ξN−1 are then

respectively identified with our parameters w1, . . . , wm with m = |ξ|. The coroots α̌l

coincide with the elements El l − El+1 l+1 so that the Bethe ansatz equations (9.3) in [19]

turn into (2.16). Using this correspondence between the settings, we can now state [19,

Theorem 9.2] in our notation as the relation

cdet
(
∂u − E(u)

)
ϕ(wi1

1 , . . . , w
im
m ) =

(
∂u − E11(u)

)
. . .
(
∂u − ENN(u)

)
ϕ(wi1

1 , . . . , w
im
m )

for the eigenvalue of the operator cdet
(
∂u−E(u)

)
on the Bethe vector (2.15). This relation

is implied by Theorem 3.3 by twisting the action of U(glN) on each Verma module Mλk

by the automorphism Eij 7→ −Ej′i′ , where i′ = N − i + 1. The automorphism takes

rdet
(
∂u + E(u)

)
to cdet

(
∂u − E(u)

)
and Ei i(u) to −Ei′i′(u).

We also make a connection of Theorems 3.3, 3.7 and 3.10 with formulas for universal

differential operators corresponding to populations of critical points of the master functions

associated with flag varieties; see [20]. With the recalled above notation of [19], we follow

[20] to introduce polynomials in type A,

Ta(u) =
ℓ∏

k=1

(u− zk)
Λa
k , a = 1, . . . , N,

and

ya(u) =

ξa∏
p=1

(u− tap), a = 1, . . . , N − 1.

Then the eigenvalue of the Bethe vector in Theorem 3.3 with χ = 0 coincides with the

differential operator
←−∏

a=1,...,N

(
∂u + ln′

Ta(u) ya−1(u)

ya(u)

)
(3.40)

rewritten in our notation, where we set y0(u) = yN(u) = 1; see [20, Sec. 5.2].
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Using a similar notation, in type Bn set

TB
a (u) =

ℓ∏
k=1

(u− zk)
Λa
k and yBa (u) =

ξa∏
p=1

(u− tap), a = 1, . . . , n. (3.41)

Then the coefficient of z2n in the eigenvalue in type Bn (see Corollary 3.8) coincides with

(3.40), if we take N = 2n and set

ya(u) = y2n−a(u) = yBa (u) for a = 1, . . . , n

and

Ta(u) = T2n−a+1(u)
−1 = TB

a (u) for a = 1, . . . , n;

cf. [20, Sec. 7.1]. In type Cn, introducing T
C
a (u) and yCa (u) for a = 1, . . . , n as in (3.41),

we find that the eigenvalue of the operator with m = 2n + 1 in Theorem 3.10 is given by

(3.40) with N = 2n+ 1, where we set

ya(u) = y2n−a+1(u) =

{
yCa (u) for a = 1, . . . , n− 1

yCa (u)
2 for a = n

and

Ta(u) = T2n−a+2(u)
−1 =

{
TC
a (u) for a = 1, . . . , n

1 for a = n+ 1;

cf. [20, Sec. 7.2].

4 From q-characters to classical W-algebras

The Harish-Chandra images of the Segal–Sugawara elements (3.26) and (3.37) in types B,

C and D were calculated in [16] by taking a classical limit of certain Yangian characters

(or q-characters). Our goal in this section is to prove general results providing a connection

between the rings of q-characters and the corresponding classical W-algebras. We will rely

on the original work [12] for the basic definitions and properties of the q-characters; see

also [11]. However, we will use an equivalent additive version of the character ring as in [22]

and indicate the connection between the notation in Remarks 4.1 and 4.3 below. Although

this version can be introduced independently via the Yangian representation theory, we

will not make a direct use of the Yangians which will only appear in the notation RepY(g)

for the ring of characters; cf. [16].

The screening operators for classical W-algebras are constructed as limits of certain

intertwiners between ĝκ-modules at a level κ, as κ → −h∨; see [10, Ch. 7]. They can

also be obtained by applying a Chevalley-type theorem to the W-algebras defined in the
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context of classical Hamiltonian reduction; see, e.g., [18]. It was conjectured in [12] and

proved in [11], that the ring of characters can be defined as the intersection of the kernels

of the screening operators. We will apply a classical limit procedure to derive the screening

operators characterizing elements of the W-algebra; cf. [12, Sec. 8]. The main result of

[16] will play an important role in the proof of the surjectivity of the procedure.

4.1 Type A

Introduce the algebra of polynomials

L = C [λi(a) | i = 1, . . . , N, a ∈ C ]

in the variables λi(a). For every i ∈ {1, . . . , N − 1} consider the free left L-module L̃i with

the generators σi(a), where a runs over C and denote by Li its quotient by the relations

λi(a) σi(a) = λi+1(a)σi(a+ 1), a ∈ C . (4.1)

Define the linear operator S̃i : L → L̃i by the formula

S̃i : λj(a) 7→


λi(a)σi(a) for j = i

−λi+1(a)σi(a+ 1) for j = i+ 1

0 for j ̸= i, i+ 1

(4.2)

and the Leibniz rule

S̃i(AB) = BS̃i(A) + AS̃i(B). (4.3)

Now the i-th screening operator

Si : L → Li

is defined as the composition of S̃i and the projection L̃i → Li.

In accordance with [11, Theorem 5.1], we can define the subalgebra RepY(glN) of

Yangian characters in L as the intersection of kernels of the screening operators:

RepY(glN) =
N−1∩
i=1

kerSi.

Remark 4.1. Our variables λi(a) and σi(a) correspond to Λi,q2a and Si,q2a+i−1 from [12],

respectively; cf. [22].

Now we recall the definition of the classical W-algebra W(glN) via screening operators

as in [10, Sec. 8.1]; see also [16] and [18]. With the notation as in Sec. 3.1, we will regard

U(ĥ−) as the algebra of polynomials in the variables Eii[r] with i = 1, . . . , N and r < 0.

The screening operators

Vi : U(ĥ−) → U(ĥ−), i = 1, . . . , N − 1
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are defined by

Vi =
∞∑
r=0

Vi [r]

(
∂

∂Eii[−r − 1]
− ∂

∂Ei+1 i+1[−r − 1]

)
,

where the coefficients Vi [r] are found from the expansion of a formal generating function in

a variable z,
∞∑
r=0

Vi [r] z
r = exp

∞∑
m=1

Eii[−m]− Ei+1 i+1[−m]

m
zm.

The classical W-algebra W(glN) is a subalgebra of U(ĥ−) defined as the intersection of

kernels of the screening operators:

W(glN) =
N−1∩
i=1

kerVi.

We will now construct a map gr : RepY(glN) → W(glN) and describe its properties.

First, embed L into the algebra of formal power series C [[λ
(r)
i ]] in variables λ

(r)
i with

i = 1, . . . , N and r = 0, 1, . . . by setting

λi(a) 7→
∞∑
r=0

λ
(r)
i

r!
ar. (4.4)

Identify the formal power series in the λ
(r)
i with those in new variables µ

(r)
i defined by

λ
(0)
i = 1 + µ

(0)
i and λ

(r)
i = µ

(r)
i for r ⩾ 1. (4.5)

Define the degrees of the new variables by deg µ
(r)
i = −r − 1. Given A ∈ L, consider the

corresponding element C [[µ
(r)
i ]] and take its homogeneous component A of the maximum

degree. This component is a polynomial in the variables µ
(r)
i and so we have a map

gr : L → C [µ
(r)
i ], A 7→ A. (4.6)

Note its property which is immediate from the definition:

gr(AB) = gr(A)gr(B). (4.7)

In the following proposition we identify U(ĥ−) with the algebra of polynomials C [µ
(r)
i ]

via the isomorphism Eii[−r − 1] 7→ µ
(r)
i /r!.

Proposition 4.2. The image of the restriction of the map (4.6) to the subalgebra of char-

acters RepY(glN) is contained in W(glN) and so it defines a map

gr : RepY(glN) → W(glN).

Moreover, any homogeneous element of W(glN) is contained in the image of gr.
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Proof. Similar to (4.4), introduce variables σ
(r)
i by the expansion

σi(a) 7→
∞∑
r=0

σ
(r)
i

r!
ar (4.8)

and set deg σ
(r)
i = −r − 1. Regarding a as a formal variable in (4.1) and (4.2), write the

screening operators in terms of the variables µ
(r)
i . Explicitly, for i = 1, . . . , N − 1 define

operators

S ◦i : C [[µ
(r)
j ]] → C [[µ

(r)
j , σ

(r)
i ]]/∼, (4.9)

where the target space is the quotient of C [[µ
(r)
j , σ

(r)
i ]] by the relations (4.1) written in

terms of the µ
(r)
i with a understood as a variable. Set

S ◦i : µ
(0)
j 7→



(
1 + µ

(0)
i

)
σ
(0)
i for j = i

−
(
1 + µ

(0)
i+1

)∑
k⩾0

σ
(k)
i

k!
for j = i+ 1

0 for j ̸= i, i+ 1

and

S ◦i : µ
(r)
j 7→ ∂ r

(
S ◦i
(
µ
(0)
j

))
, r ⩾ 1,

where the derivation ∂ acts on the variables by the rule

∂ : µ
(r)
j 7→ µ

(r+1)
j , σ

(r)
j 7→ σ

(r+1)
j , r ⩾ 0.

The action of S ◦i then extends to the entire algebra C [[µ
(r)
j ]] via the Leibniz rule as in (4.3).

Now suppose that A ∈ RepY(glN) so that SiA = 0 for all i = 1, . . . , N − 1. Denote

by A◦ the corresponding element of C [[µ
(r)
j ]]. By the definition of the operators S ◦i , their

restriction to the subalgebra L coincides with the action of the respective operators Si.

Therefore, S ◦i A
◦ = 0. Taking the top degree component A of A◦ we can write

S ◦i A
◦ = SiA+ lower degree terms,

where the operator Si is given by

Si : µ
(r)
j 7→


σ
(r)
i for j = i

−σ(r)
i for j = i+ 1

0 for j ̸= i, i+ 1.

(4.10)

On the other hand, relations (4.1) give

µi(a)σi(a) =
(
1 + µi+1(a)

) ∞∑
k=0

σ
(k)
i (a)

k!
− σi(a), (4.11)
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where σ
(k)
i (a) is defined as the k-th derivative over a from (4.8) and

µj(a) =
∞∑
r=0

µ
(r)
j

r!
ar.

Regarding a as a variable, we get from (4.11) a sequence of relations by comparing the

coefficients of the same powers of a. The top degree components in these relations are

homogeneous relations which can be written in terms of generating functions in the form

σ′i(z) =
(
µi(z)− µi+1(z)

)
σi(z)

so that for the images under Si we have

Si : µi(z) 7→ exp

∫ (
µi(z)− µi+1(z)

)
dz, µi+1(z) 7→ − exp

∫ (
µi(z)− µi+1(z)

)
dz,

and Si : µj(z) 7→ 0 for j ̸= i, i+ 1. However, this coincides with the action of the operator

Vi on the series

µk(z) =
∞∑
r=0

Ekk[−r − 1] zr, k = 1, . . . , N.

Thus, we may conclude that if an element A ∈ L is annihilated by all operators Si, then

its image A under the map (4.6) is annihilated by all operators Vi completing the proof of

the first part of the proposition.

The second part follows from [16], where generators of the algebraW(glN) were obtained

as images of certain elements of L under the map gr.

4.2 Types B, C and D

We let g denote the orthogonal Lie algebra oN (with N = 2n or N = 2n + 1) or the

symplectic Lie algebra spN (with N = 2n). Introduce a parameter κ by κ = N/2−1 in the

orthogonal case and κ = N/2 + 1 in the symplectic case. As before, we set i′ = N − i+ 1.

Consider the algebra of polynomials in variables λi(a) with i = 1, . . . , N and a ∈ C
and denote by L = L(g) its quotient by the relations

λi(a+ κ− i)λi′(a) = λi+1(a+ κ− i)λ(i+1)′(a), a ∈ C , (4.12)

for i = 0, 1, . . . , n − 1 if g = o2n or sp2n, and for i = 0, 1, . . . , n if g = o2n+1, where

λ0(a) = λ0′(a) = 1.

For i = 1, . . . , n consider the free left L-module L̃i with the generators σi(a), where a

runs over C and denote by Li its quotient by the relations

λi(a)σi(a) = λi+1(a)σi(a+ 1), i = 1, . . . , n− 1, a ∈ C , (4.13)
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together with

λn(a)σn(a) = λn+1(a)σn(a+ 1/2), for g = o2n+1

λn(a)σn(a) = λn+1(a)σn(a+ 2), for g = sp2n

λn−1(a)σn(a) = λn+1(a)σn(a+ 1), for g = o2n.

(4.14)

For every i ∈ {1, . . . , n} define a linear operator S̃i : L → L̃i satisfying the Leibniz rule

(4.3). For i = 1, . . . , n− 1 set

S̃i : λj(a) 7→



λi(a) σi(a) for j = i

−λi+1(a) σi(a+ 1) for j = i+ 1

−λi′(a)σi(a+ κ− i+ 1) for j = i′

λ(i+1)′(a) σi(a+ κ− i) for j = (i+ 1)′

0 for j ̸= i, i′, i+ 1, (i+ 1)′.

(4.15)

The action of S̃n depends on the type and is given as follows.

Case g = o2n+1: S̃n : λj(a) 7→ 0 if j < n or j > n′ and

λn(a) 7→ λn(a)
(
σn(a) + σn(a− 1/2)

)
λn+1(a) 7→ λn+1(a)

(
σn(a− 1/2)− σn(a+ 1/2)

)
λn′(a) 7→ −λn′(a)

(
σn(a) + σn(a+ 1/2)

)
.

Case g = sp2n: S̃n : λj(a) 7→ 0 if j < n or j > n′ and

λn(a) 7→ λn(a) σn(a)

λn′(a) 7→ −λn′(a) σn(a+ 2).

Case g = o2n: S̃n : λj(a) 7→ 0 if j < n− 1 or j > (n− 1)′ and

λn−1(a) 7→ λn−1(a) σn(a)

λn(a) 7→ λn(a) σn(a)

λn′(a) 7→ −λn′(a) σn(a+ 1)

λ(n−1)′(a) 7→ −λ(n−1)′(a) σn(a+ 1).

The relations (4.12) are easily seen to be preserved by the action of the S̃i so that the

operators on L are well-defined. The i-th screening operator

Si : L → Li
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is now defined as the composition of S̃i and the projection L̃i → Li.

Due to [11, Theorem 5.1], we can define the subalgebra RepY(g) of Yangian characters

in L as the intersection of kernels of the screening operators:

RepY(g) =
n∩

i=1

kerSi.

Remark 4.3. The variables λi(a) and σi(a) are related to the corresponding elements used

in [12] as follows: λi(a) = Λi,q4a for g = o2n+1 and λi(a) = Λi,q2a for g = sp2n and g = o2n.

Moreover, for g = o2n+1

σi(a) = Si,q4a+2i−2 for i = 1, . . . , n− 1; σn(a) = Sn,q4a+2n−1 ,

while for g = sp2n we have

σi(a) = Si,q2a+i−1 for i = 1, . . . , n;

the latter relations with i = 1, . . . , n − 1 hold for g = o2n as well, but σn(a) = Sn,q2a+n−2 ;

cf. [22]. Note also that relations (4.12) were obtained in [1, Prop. 5.2 and 5.14] as the

conditions for the highest weight representations of the Yangian Y(g) to be nontrivial,

whereas (4.13) and (4.14) are consistent with the conditions on the representation to be

finite-dimensional; cf. [1, Theorem 5.16].

We follow [10, Sec. 8.1] again to define the classical W-algebra W(g); see also [16]

and [18]. We will regard U(ĥ−) as the algebra of polynomials in the variables Fii[r] with

i = 1, . . . , n and r < 0. The screening operators

Vi : U(ĥ−) → U(ĥ−), i = 1, . . . , n

are defined as follows. For i = 1, . . . , n− 1 set

Vi =
∞∑
r=0

Vi [r]

(
∂

∂Fii[−r − 1]
− ∂

∂Fi+1 i+1[−r − 1]

)
,

where the coefficients Vi [r] are found from the expansion of a formal generating function in

a variable z,
∞∑
r=0

Vi [r] z
r = exp

∞∑
m=1

Fii[−m]− Fi+1 i+1[−m]

m
zm.

For the action of Vn we have the following formulas.

Case g = o2n+1:

Vn =
∞∑
r=0

Vn [r]
∂

∂Fn[−r − 1]
,

where
∞∑
r=0

Vn [r] z
r = exp

∞∑
m=1

Fn[−m]

m
zm.
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Case g = sp2n:

Vn =
∞∑
r=0

Vn [r]
∂

∂Fn[−r − 1]
,

where
∞∑
r=0

Vn [r] z
r = exp

∞∑
m=1

2Fn[−m]

m
zm.

Case g = o2n:

Vn =
∞∑
r=0

Vn [r]

(
∂

∂Fn−1[−r − 1]
+

∂

∂Fn[−r − 1]

)
where

∞∑
r=0

Vn [r] z
r = exp

∞∑
m=1

Fn−1[−m] + Fn[−m]

m
zm.

The classical W-algebra W(g) is a subalgebra of U(ĥ−) defined as the intersection of

kernels of the screening operators:

W(g) =
n∩

i=1

kerVi.

Now construct a map gr : RepY(g) → W(Lg) and describe its properties. First,

embed L into the algebra of formal power series C [[λ
(r)
i ]] in variables λ

(r)
i with i = 1, . . . , N

and r = 0, 1, . . . by using (4.4) and taking the quotient by the corresponding relations

(4.12). Introduce new variables µ
(r)
i by (4.5) for i = 1, . . . , n and define their degrees by

deg µ
(r)
i = −r − 1. Given A ∈ L, consider the corresponding element C [[µ

(r)
i ]] and take its

homogeneous component A of the maximum degree. This component is a polynomial in

the variables µ
(r)
i and so we have a map

gr : L → C [µ
(r)
i ], A 7→ A. (4.16)

Note its property (4.7). We will identify U(ĥ−) with the algebra of polynomials C [µ
(r)
i ] via

the isomorphism Fii[−r − 1] 7→ µ
(r)
i /r!.

Proposition 4.4. The image of the restriction of the map (4.16) to the subalgebra of

characters RepY(g) is contained in W(Lg) and so it defines a map

gr : RepY(g) → W(Lg).

Moreover, any homogeneous element of W(Lg) is contained in the image of gr.
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Proof. The proof is quite similar to that of Proposition 4.2 so we only point out the changes

to be made. Introduce variables σ
(r)
i by (4.8) and set deg σ

(r)
i = −r − 1. Define operators

S ◦i for i = 1, . . . , n as in (4.9), where the quotient is now taken by the respective relations

(4.13) and (4.14) written in terms of the µ
(r)
i with a understood as a variable. Since relations

(4.13) are identical to (4.1), the argument for the operators S ◦i with i = 1, . . . , n−1 follows

the same steps as for type A. To complete the proof for the operator S ◦n , consider the three

cases separately.

Case g = o2n+1. As with (4.10), the corresponding operator Sn is now given by

Sn : µ
(r)
j 7→

{
2σ

(r)
n for j = n

0 for j ̸= n.
(4.17)

Note that

λn+1(a) =
λ1(a+ n− 1)λ2(a+ n− 2) . . . λn(a)

λ1(a+ n− 1/2)λ2(a+ n− 3/2) . . . λn(a+ 1/2)

which is easy to derive from (4.12). Now use (4.14) and write λi(a) = 1 + µi(a) for

i = 1, . . . , n to get the corresponding analogue of (4.11). As a result, we get the equation

σ′n(z) = 2µn(z)σn(z)

so that for the images under Sn we have

Sn : µn(z) 7→ 2 exp 2

∫
µn(z) dz,

and Sn : µj(z) 7→ 0 for j ̸= n. This coincides with the action of the operator 2Vn associated

with sp2n on the series

µn(z) =
∞∑
r=0

Fnn[−r − 1] zr.

Hence, if an element A ∈ L is annihilated by all operators Si, then its image A under the

map (4.6) is annihilated by all operators Vi associated with sp2n which is Langlands dual

to o2n+1.

Case g = sp2n. Similar to (4.17), we have

Sn : µ
(r)
j 7→

{
σ
(r)
n for j = n

0 for j ̸= n.
(4.18)

Relations (4.12) now imply

λn+1(a) =
λ1(a+ n)λ2(a+ n− 1) . . . λn−1(a+ 2)

λ1(a+ n+ 1)λ2(a+ n) . . . λn(a+ 2)
.
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Write λi(a) = 1 + µi(a) for i = 1, . . . , n and use (4.14) to get the equation

σ′n(z) = µn(z)σn(z).

Hence, for the images under Sn we have

Sn : µn(z) 7→ exp

∫
µn(z) dz,

and Sn : µj(z) 7→ 0 for j ̸= n. This coincides with the action of the operator Vn associated

with o2n+1 on the series

µn(z) =
∞∑
r=0

Fnn[−r − 1] zr.

Therefore, if an element A ∈ L is annihilated by all operators Si, then its image A under

the map (4.6) is annihilated by all operators Vi associated with o2n+1 which is Langlands

dual to sp2n.

Case g = o2n. Similar to (4.10), we have

Sn : µ
(r)
j 7→

{
σ
(r)
n for j = n− 1, n

0 for j ̸= n− 1, n.
(4.19)

We derive from (4.12) that

λn+1(a) =
λ1(a+ n− 2)λ2(a+ n− 3) . . . λn−1(a)

λ1(a+ n− 1)λ2(a+ n− 2) . . . λn(a)
.

Write λi(a) = 1 + µi(a) for i = 1, . . . , n and use (4.14) to get the equation

σ′n(z) =
(
µn−1(z) + µn(z)

)
σn(z).

Hence, for the images under Sn we have

Sn : µn−1(z) 7→ exp

∫ (
µn−1(z) + µn(z)

)
dz, µn(z) 7→ exp

∫ (
µn−1(z) + µn(z)

)
dz,

and Sn : µj(z) 7→ 0 for j ̸= n − 1, n. This coincides with the action of the operator Vn
associated with o2n on the series

µi(z) =
∞∑
r=0

Fii[−r − 1] zr, i = n− 1, n.

Thus, if an element A ∈ L is annihilated by all operators Si, then its image A under

the map (4.6) is annihilated by all operators Vi associated with o2n which is Langlands

self-dual.

The last part of the proposition follows from [16], where generators of the classical

W-algebra were obtained as images of the Yangian characters under the map gr.
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