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Abstract

We give explicit formulas for the elements of the center of the completed quantum
affine algebra in type A at the critical level which are associated with the fundamental
representations. We calculate the images of these elements under a Harish-Chandra-
type homomorphism. These images coincide with those in the free field realization
of the quantum affine algebra and reproduce generators of the g-deformed classical
Wh-algebra of Frenkel and Reshetikhin.
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1 Introduction

Let g be a simple Lie algebra over C and let U,(g) denote the quantum affine algebra
associated with g. Due to the work of Reshetikhin and Semenov-Tian-Shansky [27], to
every finite-dimensional representation V' of U,(g) one can associate a formal Laurent series
v (z) whose coefficients belong to the center Z,(g) of the completion ﬁq (9)eri of the quantum
affine algebra at the critical level. The map V +— /{y(z) was further studied by Ding
and Etingof [9] who showed that if the coefficients of ¢y (z) are regarded as operators on
highest weight modules at the critical level, then it possesses properties of a homomorphism
from the Grothendieck ring Rep U,(g) to formal series in z. Furthermore, the coefficients
of ly(z) were shown to generate all singular vectors in Verma modules [9]. This relied
upon connections of the series ¢y (z) with transfer matrices; see also work of Frenkel and
Reshetikhin [18, Sec. 8] for its relationship with the g-characters of finite-dimensional
representations of U,(g).

By a conjecture of Frenkel and Reshetikhin [17], [18], the center Z,(g) is isomorphic
to the g-deformed classical VW-algebra, as a Poisson algebra. More precisely, Conjecture 1
of [17] applies to the completion of the central subalgebra of Gq(ﬁ)cri generated by the
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coefficients of the series ¢y, (2), ..., ¢y, (2) associated with all fundamental representations
V; of U,(g). Its proof was sketched in [17] for g = sly. The isomorphism is provided by the
free field (or Wakimoto) realization of the quantum affine algebra due to Awata, Odake
and Shiraishi [1] which extended an earlier work [19] on the vertex representations from
level 1 to an arbitrary level.

The results of [17] generalize the Feigin—Frenkel theorem which establishes a Poisson
algebra isomorphism between the center 3(g) of the affine vertex algebra V' (g) at the critical
level and the classical W-algebra associated with the Langlands dual Lie algebra “g; see
[15] for a detailed exposition. The Feigin-Frenkel center 3(g) is an algebra of polynomials
which can be identified with a commutative subalgebra of the universal enveloping algebra
U(t'g[t™']). As discovered by Feigin, Frenkel and Reshetikhin [13], the higher degree
Hamiltonians in the Gaudin model can be obtained from generators of 3(g); see also [14]
and [28]. Explicit constructions of generators of 3(g) were given in [7], [8] and [24] for
types A, B,C and D; see also [25] for their images in the classical W-algebras and [26] for
super-analogues of these constructions with g = gl,,,,.

Our goal in this paper is to give similar explicit formulas for higher degree Sugawara
operators for Uq(gln); i.e., for elements of the center of ﬁq(é\[n)cﬁ (Theorem 3.2). The
formulas express the operators in terms of the RLL-presentation Uq(g [,,); see [20] and [27].
We use a version of the Poincaré-Birkhoff-Witt theorem for this presentation to introduce
an analogue of the Harish-Chandra homomorphism and calculate the images of the central
elements under the homomorphism.

Then we apply the Ding—Frenkel isomorphism [10] between the RLL and Drinfeld pre-
sentations to calculate the images of the Sugawara operators in the ¢-deformed classical
Wh-algebra by using the approach of [17] based on the free field realization [1]. Our gen-
erators correspond to the fundamental representations of Uq(g[n) and essentially coincide
with those of [17] up to an appropriate identification of the parameters. The construction
involves a fusion formula for the g-deformed antisymmetrizer expressing it in terms of the
trigonometric R-matrices.

As an application of Theorem 3.2, we produce explicit invariants of the g-analogue
V,(gl,,) of the vacuum module over the quantum affine algebra. The invariants are obtained
by the action of the higher degree Sugawara operators on the vacuum vector; cf. [18].

2 Quantum affine algebra

We use the RLL presentation of Uq(g/;\[n) introduced in [27]; see also [20]. We regard ¢
as a nonzero complex number which is not a root of unity. Introduce the two-parameter



R-matrix R(u,v) € End C" ® End C" by

R(u,v) = (u—wv Z%@eﬂ u—qv)Zfin’@eii
1#] i
+(g = qu Zeij ®eji+ (¢ = v Z €ij @ €ji, (2.1)
i>j 1<J

where e;; € EndC" are the standard matrix units. We will also need the one-parameter

R-matrices
R(x) = —1x ~ 4 Z €ii ® € + q—laz ; i & €4
+(q—q‘l)arz R bk S ey @es (2.2)
g—qlw LTI Ty LS '
>] 1<J
and
R(z) = f(x) R(z), (2.3)

where

p) =1+ fur®,  fi=filo),
k=1

is a formal power series in x whose coefficients f; are rational functions in ¢ uniquely
determined by the relation

(1 —2¢*) (1 —2¢*"?)

(2.4)

They can be found by the recurrence

k
(1-¢)(1—¢"?) 1—q™
= - E i kE>1,
fk 1 q2n — 1 — q2nk fk

with fo = 1. Equivalently, f(z) can be given by

L S L a o TT— atr
fle) = (6% ¢*")oo (2% 2% 7)o (#:0)e0 = E)(l &,

k

where the coefficients of the powers x" are power series in ¢ converging to f for |¢| < 1.

The quantum affine algebra Uq(g/;\[n) is generated by elements

+ — . . . _
I5[=r], lI[r] with 1<14,j <n, r=0,1,...,
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and the invertible central element ¢¢, subject to the defining relations

15510] = ;0] =0 for 1<i<j<n, (2.5)
1510] 15 [0] = 15 [0] ;£ [0] = 1 for i=1,...,n, (2.6)
and
R(u/v)Li (u) Ly (v) = Ly (v)Li (u) R(u/v), (2.7)
R(ug™*/v)Li (u) Ly (v) = Ly (v) Ly (u)R(ug"/v). (2.8)
In the last two relations we consider the matrices L*(u) = [li(u)], whose entries are

formal power series in u and v ™!,
L (u) = ZZ;E[—T] u', lj;(u) = Z llrlu™. (2.9)
r=0 r=0

Here and below we regard the matrices as elements

L*(u) = z”: eij ® li(u) € EndC" ® Uq(é\[n)[[uilﬂ

3,j=1

and use a subscript to indicate a copy of the matrix in the multiple tensor product algebra

EndC" ®...® EndC" @U,(gl,)[[u™]] (2.10)
¥
so that .
Li(u) =Y 19V @e; @ 1969 @ 1% (u). (2.11)
i,j=1

In particular, we take k = 2 for the defining relations (2.7) and (2.8).
This notation for elements of algebras of the form (2.10) will be extended as follows.
For an element

C = Z Cijrs €ij © €rs € EndC" @ End C",
%,4,r,s=1
and any two indices a,b € {1, ..., k} such that a # b, we denote by C,; the element of the
algebra (End C™)®* with k > 2 given by

n

Car =D Cjrs(Cij)alerads  (ei)a =177V @ e @ 1907, (2.12)

i,7,r,s=1

We regard the matrix transposition as the linear map
t:EndC" — End Cn, €5 F €.
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For any a € {1,...,k} we will denote by ¢, the corresponding partial transposition on the
algebra (2.10) which acts as t on the a-th copy of End C™ and as the identity map on all
the other tensor factors.

The R-matrix (2.3) satisfies the following crossing symmetry relations [20]:

(ng(.x)il)t2D2R12<Z’q2n)t2 = DQ and ng(iﬂan)tl D1 (ng(l’)il)tl = Dl, (213)
where D denotes the diagonal n x n matrix
D = diag [q"_l, g ,q_”“} (2.14)

with the meaning of subscripts as in (2.12).

3 Main theorem

Denote by U (g[ )eri the quantum affine algebra at the critical level ¢ = —n, which is the
quotient of U (g[ ) by the relation ¢ = ¢~". Its completion U (g[ )eri 18 defined as the
inverse limit

6(1(5[“)@1 = hin Uq(gA[n>cri/Jpv p >0, (3.1)

where J, denotes the left ideal of Uq(gA[n)cri generated by all elements [;;[r] with r > p.
Elements of the center Zq(g[n) of Gq(gln)m are known as Sugawara operators.

Consider the g-permutation operator P? € End (C"® C") = End C" ® End C™ defined
by

Pq—Ze”Q@e“—l—quU@eﬂ—irq 1Zew®eﬂ (3.2)
>7 1<j

The symmetric group &y, acts on the space (C™)®* by s; — PJ:= Pf  fori=1,... k-1,
where s; denotes the transposition (i,i+1). If 0 = s;, - - - 55, is a reduced decomposition of
an element o € &, we set P! = Ps‘fl e Ps‘fl. We denote by A*) the image of the normalized
antisymmetrizer associated with the ¢-permutations:

1
(k) — — .
AW = > sgno- P! (3.3)
ceBy
so that (A(’“))2 = A
For each k = 1,...,n introduce the Laurent series ¢;(2) in z by

l(2) =tr,  ABLT(R) L (27 ) L (27 ) LT (2¢7) T Dy . Dy, (3.4)

.....

where D is the diagonal matrix (2.14) and the trace is taken over all k copies of End C" in
(2.10). All coefficients of the series ¢;(z) are elements of the algebra ﬁq(a [,,)eri- We will also
need an equivalent formula for ¢;(z) which is obtained by using the following well-known
particular case of the fusion procedure for the R-matrix (2.1); see [5].
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Lemma 3.1. Set v, = z¢ 22 fora=1,..., k. We have

H Rab(Umvb) — k! Zk(kfl)/2 H <q72a _ qub) A(k),

1<a<b<k 0<a<b<k—1
where the product is taken in the lexicographical order on the pairs (a,b). ]
Applying (2.7) and Lemma 3.1 we obtain the relations
AP L) L (vk) = L (o) - .. L (v) AW, (3.5)
AL (g™ L (0ig™™) 7 = Ly (vig™™) 7 Ly (o) TE AW, (3.6)

We also have
R(U, ’U)DlDQ = DngR(u, ’U)

and D1 Dy = Dy D1 so that

A®D, .. .Dy=D;... DAY, (3.7)
Thus, ¢x(z) defined in (3.4) can also be given by the formula
,,,,, WL (up) . L (o) Ly (vig™) 7 L (opg™™) MDD AW, (3.8)

The following is our main result which provides explicit formulas for higher Sugawara
operators.

Theorem 3.2. The coefficients of Ek( ) belong to the center of the completed quantum
affine algebra at the critical level U (g[ Jeri for all k =1,.

Proof. Introduce an extra copy of the endomorphism algebra End C™ in (2.10) and label
it by 0 to work with the algebra

EndC" @ (EndC")** @ U, (gL, )exi- (3.9)

It will be sufficient to verify what ¢ (z) commutes with LT (u). By using (2.7) we get

Jv1) " Roi(u/vy) . .. Rog(u/vg) Lg (w) L (vg) . .. L (1)
U Roy(u/v) T L (vg) - L (01) L (W) Roy (w/v1) - . . Rog(u/vy).

Relation (2.8) implies

L (W) Roa(u/va) L, (vaq™™) ™t = L, (vag™™) ' Roa(uq® Jv,) L (), a=1,...k,



and so

L (u)Roy(u/vy) . .. Ror(w/vp) Ly (vig™™) 1. .. L;(vkq*”)*l
=Li(vig ™) Ly (veg ™) Rot (wg® Jor) .- Rog(ug® Jor) L (u).

Thus, to conclude that Ld (u)fy(2) = €x(2) Ld (u) we need to show that the trace

.....

x LT (v1g7™) 7 Ly (kg ™™) P Ror(ug®™ /vy) - .. Ror(ug®™ Jup) Dy ... Dy AW (3.10)

equals fx(z). The R-matrix R(u,v) satisfies the Yang—Baxter equation
Ris(u,v)Ri3(u, w) Rog(v, w) = Rag(v, w)Ri3(u, w)Ris(u, v)
which implies
Rio(u,v) Riz(u/w) Roz(v/w) = Rog(v/w) Riz(u/w) Ryz(u,v).
Therefore, Lemma 3.1 gives
Roy (ug™ /vy) . .. ROk(UQ2n/Uk)A(k) = A(k)ROk(UQQn/Uk) . Ror(ug®" Jy), (3.11)
Ror(u/vi) ™. Ro(u/v) TPA® = AR Roy (u/v) ™ ... Rog(u/ve) ™t (3.12)

Applying (3.5), (3.6), (3.7) and (3.11) to the expression under the trace in (3.10), we will
bring it to the form

.....

x Li (vgg™™) "o Ly (v1¢7 ™) Rog(ug® /vg) - . . Ro1(ug® /v1)Dy ... Dy, (3.13)

Now write A®) = (A®)2 and move one copy of A® to the left by using (3.12), and move
the other copy back to its right-most position. We get

-----

x L7 (v1g7™) ™ o Ly (kg™ T Ror(wg®™ Jvr) - - Ror(ug® Jvp) Dy ... Dy AW, (3.14)

Use the cyclic property of trace to move the left copy of A®) to the right-most position
and replace (A®))? with A®). As a result of these transformations, the order of the first
k factors in (3.10) will be reversed, while the rest of the expression remains unchanged.
Therefore, we can also write it in the form (3.13) with the order of the first k& factors

reversed; that is, of the form tr, , XY with

.....

X = Rm(u/vl)*l . Rok(u/vk)*lA(k)Lf(vl) o L,j(vk)L,;(vkq*”)*l . Lf(vlq*”)*l
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and

Y = Rop(ug® /vi) ... Roy(ug® Jv1)Dy ... Dy.
Now use the property
kth...tkytL..tk.

----------

We have
Xt = L0t (R (u/o) ™)™ (Row(u/ve) ™)™,

where we have set
L=AWL () ... L (o) Ly (g™ .. Ly (0ig™™) 7L

Furthermore,
Ytl...tk — D1 o DkROk(qun/Uk)tk . ROl (qun/vl)ﬂ_

Hence, the first crossing symmetry relation in (2.13) gives

,,,,,,,,,,
-----

which coincides with ¢4(2) as defined in (3.4) thus completing the proof for L (u).
The argument showing that Ly (u) lx(2) = lx(2) Ly (u) is quite similar, so we only briefly
outline it. Using (2.8) we get

La(u)L,j(vk) . L]L(Ul) = Rio(vrq"/u) ... Rio(v1q" /u)
X L;(vk) . Lf(vl)La(u)Rlo(vlq_”/u)_l . Rko(vkq_"/u)_l.
Next, due to (2.7), we have
LO_(u)Rm(vlq_”/u)_1 o Rko(vkq_”/u)_lL; (vlq_")_l Ly (vkq_”)_l
= Lf(vlq_”)_l . L,;(vkq_")_lRlo(vlq_”/u)_l . Rko(vkq_”/u)_lL[}(u).

The argument is completed by verifying that the trace

.....

X Rig(vig " /u)™ ... Reo(vpg ™™ /u) " Dy ... Dy AW

coincides with ¢(z). This is done in the same way as for the expression (3.10) with the
use of Lemma 3.1 and the second crossing symmetry relation in (2.13). O



As a corollary of Theorem 3.2, we obtain an explicit description of invariants of the
vacuum module over the quantum affine algebra; cf. [7], [8]. By definition, the vacuum
module at the critical level V,(gl,,) is the quotient of Uq(gA[n)cri by the left ideal generated
by all elements [;;[r] with r > 0 and by the elements [;;[0] — d;; with 7 > j. The module

V,(gl,) is generated by the vector 1 (the image of 1 € Uq(aln)cri in the quotient) such that
L™ (u)1 =11,

where I denotes the identity matrix. As a vector space, V,(gl,) can be identified with the
subalgebra Y,(gl,,) of Ugy(gl,)ai generated by the coefficients of all series I(u) subject to
the additional relations [;f[0] = 1. This relies on the Poincaré-Birkhoff-Witt theorem for
the quantum affine algebra; see, e.g., Sec. 5 below. The subspace of invariants of V,(gl,)
is defined by

3a(0L) = {v € Vilal,) | L™ (wyv =Tv};
cf. [15, Sec. 3.3] and [18, Sec. 8]. One can regard 3,1(5/;\[”) as a subspace of Y,(gl,,). Moreover,
this subspace is closed under the multiplication in the quantum affine algebra. Therefore,
34(gl,) can be identified with a subalgebra of Y,(gl,,). For k = 1,...,n introduce the series
01(2) with coefficients in Y,(gl,,) by
WAWLER) L (2¢7) D,y ... Dy (3.15)

.....

Corollary 3.3. All coefficients of the series ()1 with k = 1,...,n belong to the algebra
of invariants 3,(gl,). Moreover, the coefficients of all series {}(z) pairwise commute.

Proof. By Theorem 3.2, we have L~ (u)li(z) = ¢x(z) L~ (u). Apply both sides to the vector
1 € V,(gl,) and observe that ;(z)1 = £4(z)1. This proves the first part of the corollary.
The second part follows by the application of both sides of the identity f(z)l,,(w) =
C (W)L (2) to the vector 1. For the left hand side we get

()l (W) 1 = £ (2) (W) 1 = Ly (W) €y (2) 1 = £y (w) L1 (2) 1.
The same calculation for the right hand side gives £4(2)y,(w) = £ (W)l (2). O

The second part of the corollary is well known; the series () (z) essentially coincides
with the transfer matriz associated with the k-th fundamental representation of Uq(g/;\ln);
see e.g. [18]. The Harish-Chandra image of £4(2) coincides with the g-character of this
representation; see also Theorem 6.2 below which recovers the calculation of the image in
a more general context.

Remark 3.4. The form of the series £ (z) and £, (z) indicates a possible interpretation of
their properties from the viewpoint of the quantum vertex algebra theory of [12]. ]



4 Quantum minor formulas for /;(z) and /;(z)

By calculating the trace in (3.4), we can get two quantum minor-type expressions for x(z)
in terms of the entries of the matrices L*(z) = [I}}(z)] and L(z):= L (2)"'D = [Ej(z)}
We will denote by [(o) the length of a reduced decomposition of a permutation o € &.
The length {(o) coincides with the number of inversions in the sequence (o(1),...,0(k)).

Proposition 4.1. For k=1,...,n we have

Z Z Z o(1)J1 (Z) o lit(k)jk <Zq72k+2)

J1seensdke 11<-<ilp, 0€ES
T Ll (2q7) (40)

X ljkik (Zq

and

Z Z Z Z(U k)]k (Z) T lltu)h (Zq_2k+2)

Ik 11<<ip, 0€EGY
—n—2k+2) e l]klk (Zq_n) (42)

X ’lvjlld (Z(]
Proof. Using (3.4) we interpret

AW LE () L (o) Li(og™) - .. Ly (01g™™)

~2a+2 a5 an operator in the vector space (C™)®*. Since it is divisible on the

with v, = z¢q
right by A®) | the trace of the operator can be found as k! times the sum of the diagonal
matrix elements corresponding to basis vectors of the form e;, ®...®e;, with i, < --- <.
Now (4.1) follows with the use of (3.3) and the action of the g-permutations on the basis

vectors of this form: for any o € G,
Pie, ®...Q¢€;,) = ¢ Cip 1y @ OCi i,
and hence
P (eio(l) ®...0 eio(k,)) = e, ®...®e.

The proof of (4.2) is quite similar; use the basis vectors e;, ® ... ® e; with the same
condition i1 < --- < 4, on the indices. O

Remark 4.2. Two more formulas for ¢, (z) analogous to (4.1) and (4.2) can be obtained by
using (3.8) instead of (3.4). O

The series ¢,(z) can be factorized into a product of two quantum determinants. To
derive the factorization formula, recall a construction of the quantum minors of the matrices
L*(2). Lemma 3.1 implies the relations

AWLER) L LE(H ) = i) . LE(2) AW, (4.3)
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The quantum minors Li(z) by by A€ the coefficients in the expansion of the either side of

(4.3) along the basis of matrix units:

a;,b;

The following formulas are immediate from the definition. If a1 < --- < a; then

L) = S () O () ()

ceSy,

and for any 7 € &} we have
LH(2) 0 = (=)' DL (2) 5 )
If by < --- < by (and the a; are arbitrary) then

Li(z)ballg: - Z (_Q)l(o) l‘:ltkba(k) <q72k+22> T lcﬂ;ba(n (2),

geSy
and for any 7 € & we have
+ at...a —UT) 7+ at...a
L (Z>bi(1)..l.€b7(k) = (-7 (2)5, by

Moreover, the quantum minor is zero if two top or two bottom indices are equal.

The following lemma is well-known. We give a proof for completeness.?

Lemma 4.3. The coefficients of the quantum determinants

qdet L*(2) = L*(2), "

L
belong to the center of the quantum affine algebra Uq(é\[n)m at the critical level.

Proof. Introduce the product

R(vg,v1,...,0,) = H Rap(va/vp),

0<a<b<n

(4.4)

(4.5)

(4.8)

(4.9)

where the v, are variables and the product is taken in the lexicographical order on the

pairs (a,b). The defining relations (2.7) and (2.8) imply

R(uq™, vy, ..., v,)Ld (w)Ly (vy) ... L (vy) = L, (vy,) ... Ly (vi) L (u)R(ug™™, vy, . ..

, Un).

IThe critical level assumption & = —2 is omitted in the corresponding statement in [17, Lemma 2] in

the case n = 2. It was only used there under this assumption.
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Use (2.1)-(2.3) to write this relation in terms of the R-matrix R(u,v). By cancelling
common factors we get

R(uq™, v, ..., v)Lg (w) Ly (v1) ... L (vy) = L, (v,) . .. Ll_(vl)Lar(u)}N%(uq_”, Uiy eeyUp),

where

54 fvo/v
R(vo,v1, ..., Un H ] /) H Rap(vas vp)-
Vo — qUq 0<
a<b<n
Now specialize the variables by setting v, = z¢ 22 for a = 1,...,n and replace the
product of R-matrices Rq,(v,,vp) over the set of pairs 1 < a < b < n using Lemma 3.1.
Since

AW LE(w) . L (v,) = LE(v,) ... LE(v) A™ = AW qdet LE(2), (4.10)

n—1 __
a=1 uq qVa a=1,...n
T f(ug"/va) + (n) T
= qdet L™ (z) Lg (u) A" Roq(ug™, v,
H s - (2) L (w) H 0a )
Observe that
— — n
H ROa(U()ava)A(n) =A™ H ROa(UO7Ua) =AM (q 1Uo - qu) H(Uo - ’Ua)
a=1,....,n a=1,...,n a=2

Indeed, by the first equality, it suffices to verify the second equality on the basis vectors of
the forme; ®e; ®e1®...Qe_1 X6, 1®...Qe, fort=1,...,n which is straightforward.
Thus, we can conclude that L (u) commutes with qdet L=(2) due to the identity
ﬁ uqn/va o ﬁ (uqn_l B qva)(uq_n - Ua)
S fugva) S (wg T = qua) (ugt — v
which follows from (2.4). The relation L, (u) qdet LT (z) = qdet LT (2) L, (u) is verified by
a similar argument with the use of the unitarity property of the R-matrix (2.2):

E(x_l) = Egl(l’)_l

The proof of the remaining two relations L (u) qdet L*(z) = qdet L*(2) L (u) is simpler
as it relies only on the defining relations (2.7). O

Remark 4.4. Both quantum determinants (4.9) are also known to be central in the quantum
affine algebra U,(gl,) at the zero level ¢ = 0; the algebra is defined as in Sec. 2 with the
factor f(x) in (2.2) omitted. O
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Corollary 4.5. We have
l,(2) = qdet L*(z) (qdet L™ (2¢™")) -
Proof. Relation (4.10) implies
AL (0,)7 Ly ()7t = (qdet L (2)) T A™.
Replacing here z by z¢~™ and using qdet D = 1 we get the desired formula from (3.4). O

We will now give a formulation of Corollary 3.3 by combining the series /j(z) defined
in (3.15) into a single determinant by some analogy with [7] and [8]. Introduce the exten-
sion Y¢*(gl,,) of the algebra Y,(gl,,) by adjoining pairwise commuting elements 7y, ..., 7,
subject to the additional relations

bt () = { om0 (4.11)
Al (u) it i>k.
Combine the elements 7; into the diagonal matrix II = diag[m, ..., m,]. We have a vector

space isomorphism Y (gl,,)/J = Y,(gl,), where .J is the left ideal of Y*'(gl,,) generated
by the elements m; — 1 with ¢ = 1,...,n. We will identify Y,(gl,) with the quotient via
this isomorphism.

We will point out a connection with g-analogues of Manin matrices (also known as right
quantum matrices); see, e.g., [6] for a detailed account of their properties. An n x n matrix
M with entries in an associative algebra A is called ¢-Manin if it satisfies the relation

A(2)M1M2 - A(2)M1M2A(2)

in the algebra End C" ® End C" ® A with the meaning of the subscripts as in (2.11).
Introduce the operator § which interacts with power series in z by the rule dg(z) =

g(zq~%)0. Adjoining this element to the algebra Y,(gl,) we find that both L*(z)d and

L*(2) Do are g-Manin matrices. Define the ¢-determinant of a square matrix M by

deth = Z (—q)_l(a) Ma(l)l cee Mg(n)n.

0'6671

In the following proposition we regard the g-determinant of the matrix IT+ L*(2) D4 as a
polynomial in § with coefficients in Y*(gl,,).

Proposition 4.6. We have the relation modulo the left ideal J:

dety (I + L*(2) D) = 1+ > l(2) 6",
k=1
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Proof. Calculating the ¢-determinant we will write it as the sum of monomials of the form

(_Q)_Z(U)Ma(l)l s Moy —1yi 1 iy Mo (i 1) i1
Xoee Ma(iz—l)iz—l 7Ti2Mcr(i2+1)i2+1 T Win,kMo(in,kH)z‘n,kH to Ma(n)na

where M = Lt (z)D¢ and o(i,) = i, for a = 1,...,n—k. Now use relations (4.11) to move
all the elements 7;, so they will appear to the right from all factors My, in the monomial.
As a result, by moving each element 7;, we get the factor ¢*"«, where r, is the number of
elements of the set {o(i,+1),...,0(n)} which are less than i,. That is, r, is the number of
inversions formed by the index i, with the indices of the set {o(i,+1),...,0(n)}. Therefore,
after moving all the elements 7;_ , the monomial will get the factor (—q)~!(9), where 7 is
the sequence of elements obtained from (o(1),...,0(n)) by removing iy, ..., i, , and [(7)
is the number of inversions in that sequence. This demonstrates that the coefficient of
the product m;, ... m; _, coincides with the g-determinant of the principal submatrix of M
obtained by deleting rows and columns enumerated by 41, ...,%, . This ¢g-determinant
equals [L*(z)D}ZiZi 5k where {ay,...,ax} ={1,...,n}\ {i1,...,in_x}. Since

= ai-a
li(z) = Z [LJr(Z)D]al.._ai’
I<a1 < <ap<n
the required relation follows by taking the quotient over the left ideal J. O]

The next lemma will be used in Sec. 6 below.

Lemma 4.7. The entries of the inverse matriz L™ (2)™1 are found by the formula

[L7(2)7Y],, = (=) (adet L™ (2¢™)) L~ (s ) 3"

1l...i..n”?

where the hats indicate indices to be skipped.
Proof. By (4.10) we have
AL (v)) .. Ly (vp1) = A™qdet L™(2)L;, (v,) 7,

—2a+2

where v, = zq , as before. The desired formula follows by the application of both sides

to the basis vector 1 ® ... ® & ® ... ® €, ® e; and the replacement z — z¢*" 2. O

5 Poincaré—Birkhoff-Witt theorem

To define analogues of the Harish-Chandra homomorphism, we will need a version of the
Poincaré-Birkhoff-Witt theorem for the quantum affine algebra U,(gl,,). Introduce a total
ordering < on the set of generators as follows. First, each generator l; [r] precedes each

14



generator [, [s]. Furthermore, I[r] < I [s] if and only if the triple (j — ¢,,7) precedes
(m — k, k, s) in the lexicographical order. Finally, we set [;;[r] < I, [s] if and only if the
triple (i — j,4,7) precedes (k — m,k,s) in the lexicographical order. Note that by the
defining relations (2.7),

[150r), 51s)] = 0 (5.1)

for all » and s. Hence, the ordering < induces a well-defined total ordering on the series
(2.9) such that I} (u) < I, (u) and

Lr(w) <5y (u) < Gry(u) <o <0 (u) <o <0 (u) < Ify(u) < - <1, (u),
L (u) <,y (u) <y, (u) < < (u) <o <L (u) <y (w) < < (u).

Consider the ordered monomials in the generators liij [r] multiplied by integer powers of the
central element v = ¢° (the zero elements [;;[0] for ¢ > j and I;;[0] for i < j are excluded).
Relations (2.7) and (2.8) imply that

0], (w) = ¢~ 0 Bl () 0] and 15 [0]15, () = ¢* 70 U, (w) 15[0]. (5.2)

i
Hence, using (2.6) we may suppose that for each ¢ = 1,...,n each monomial only contains

either a nonnegative power of [;}[0] or a positive power of [;;[0]. Under these assumptions
we have the following version of the Poincaré-Birkhoff-Witt theorem.

Proposition 5.1. The ordered monomials in the generators form a basis of the quantum

affine algebra Uq(é\[n).

Proof. First, we prove the claim for the quantum affine algebra Uq(g[n) which is defined
in the same way as U,(gl,,); the only difference is the use of the R-matrix (2.2) instead of
(2.3). Thus, we only replace (2.8) with the relation

R(uwy™ /o)Ly (u)L, (v) = L, (0) Ly (u)R(uy/v) (5.3)
and leave all other defining relations unchanged. Here we use the bar symbol over the
respective objects associated with the algebra ﬁq(gA[n). We begin by showing that the
ordered monomials in the generators of Uq(gA[n) span the algebra. Given a monomial in
the generators we will use the induction on its length to show that it equals a linear
combination of ordered monomials. Writing (5.3) in terms of the entries of the matrices
fi(u) we get

T @) (U O 0 Omey) L (0) 1 ()

(yq % u — ¢ mo) b, (v) i (u) + (g
= | (v a7 u — @) I (u) [, (v)

-2
_ _ = - Yq u—v
(47" = 0) (@ Bk 0 bic) [ () 1, (0)] s R
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where 9, or d;~; equals 1 if the subscript inequality is satisfied and 0 otherwise. If m = j
then the relation allows us to write l_,;j [s] I5[r] as a linear combination of ordered products
of generators. If m # j then we swap m and j in the relation to get a system of two
equations for I, (v) l?;(u) and [,;j (v) I} (u). By solving the system we will be able to write
Lem[8] 15[7] as a linear combination of ordered products of generators.

Similarly, (2.7) gives the relation

(g% u — g™ 0) 5 (u) 15, (0) + (71 = @) (s + v dici) Iy (u) L (0)

= (a7 — ") L, (V) 15 () + (07 = @) (W + v 0ney) U5 (0) I, (w) (5.5)
which implies that l_j [r]15 [s] is a linear combination of ordered products of generators;
see [21, Corollary 2.13] for a detailed argument.?

As a next step, we will show that the ordered monomials are linearly independent
in U,(gl,). Consider the quantum affine algebra U,(gl,)o at the level zero which is the

quotient of U, (gl,,) by the relation v = 1. We have the natural epimorphism

— ~ —+
w : UQ(g[n> — UCI(g[n)07 L (u> = Li(u)v Y = 1.

Suppose that a Laurent polynomial in v, whose coefficients are nontrivial linear combina-

tions of ordered monomials in the generators [;;[r], is zero in Uy(gl,). Multiplying by a

power of 7 if necessary, we get a polynomial in v equal to zero. Choose such a polynomial

P = z;,v* + - - - + x¢ of the minimal possible degree k > 0. Since P = 0 in U,(gl,,) we have

0=9(P)=v(xg) + -+ (xg) = (xp + - + 20).

The sum = = xp + - - - + x9 is a linear combination of ordered monomials in the generators
l_zjj[ [r]. By the definition of 1, the image (x) is the corresponding linear combination
of ordered monomials in the generators li]i- [r] of Uq(é\[n)o. On the other hand, by the
arguments of [21, Sec. 2.3] applied to this particular ordering, the corresponding version of
the Poincaré-Birkhoff-Witt theorem holds for Uq(g[n)o, so that the ordered monomials are
linearly independent. Hence, ¢(x) = 0 implies # = 0. If £ = 0 then this is a contradiction.

If £ > 1 we can write
P=xy*+-4ao=(y =D+ +w0),

where the y; are again linear combinations of ordered monomials in the generators l;f [7].
By the results of [10], the algebra Uq(a [,,) can be defined by the Drinfeld generators. Due
to the well-known relationship between the quantum affine algebras associated with sl,
and gl, (see, e.g., [16, Sec. 2.6]), the Poincaré-Birkhoff-Witt theorem for the algebra

2The generator matrices T'(u) and T'(u) of [21] correspond to L (u) and f+(u), respectively.
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U, (f/l\[n) in its Drinfeld presentation [2, 3] implies that the relation P = 0 is possible only if
Y171 4 -+ +yo = 0. This contradicts the minimality of the degree k& thus completing
the proof for Uq(é\[n).

Finally, we extend the argument to the quantum affine algebra Uq(g [,,) defined with the
R-matrix (2.3) so that (2.8) with v = ¢ should be used instead of (5.3). This affects only
relation (5.4) (for the generators lfj[ [r] instead of l_i [r]) which will now get an extra factor
fuy=t/v)/ f(uy/v) on the right hand side. However, this does not bring any change into
the first part of the argument showing that the ordered monomials in the generators span
the algebra Uq(é\[n).

To prove the linear independence of the ordered monomials, we follow [10, Sec. V] and
introduce a homomorphism

¢ : Ug(al,) — Hq(n) @cpyy1) Ug(al,,), (5.6)

where H,(n) is the Heisenberg algebra with generators v and h[r], r € Z, r # 0. The
defining relations of #H,(n) have the form

[h[r], hls]] = 6,,—s alr], r>1,

and 7 is central and invertible; all other pairs of the generators commute. The elements
afr] are defined by the expansion

VSRS (Co)
exp ;a[r]x = )

So we have the identity

Fluy/v) exp (i hr] uT) exp <§: h|—s] U_s>
= f(uy/v) exp (ih[—s] y—5> exp (ih[r] u’”).

Clearly, the monomials of the form h[ry]... h[ry] with & > 0and ry > -+ > ry (with r; # 0)
form a basis of the C[y,y7']-module H,(n). The homomorphism (5.6) is now defined by
¢ v +— v and

¢ LT (u) — exp (i h(r] ur> Z+(u), L™ (u) — exp (i h|—7] u_r> L (u). (5.7

Suppose there is a linear combination of the ordered monomials in the generators of
Uq(g[n) equal to zero. Consider its image under the homomorphism ¢. Using the ba-
sis {h[r1] ... h[rg]} of H,(n) and the Poincaré-Birkhoft-Witt basis for the algebra Uq(gln),
we conclude that all coefficients of the linear combination must be zero. O
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We will also need a version of the Poincaré-Birkhoff-Witt theorem for a different or-
dering of the generators. As we pointed out above, a total ordering can be defined on the
generating series (2.9) due to (5.1). We set [j;(u) < I, (u) as before, but the remaining
conditions are swapped between [} (u) and I} (u):

Waw) <1 (u) =1, (w) < <0 () < < (w) < 03 (w) < < T (),
Lia(u) <Ly (w) < Lo(u) <o < () <0 =L (u) < lp(u) <o <, (u),

Under the same assumptions on the monomials as for Proposition 5.1, the following holds.

Proposition 5.2. The ordered monomials in the generators form a basis of the quantum
affine algebra U,(gl,,).

Proof. The argument is the same as for Proposition 5.1 with some obvious minor changes
taking into the account the ordering conditions. O

6 Harish-Chandra homomorphisms

Consider the quantum affine algebra Uq(gln)cri at the critical level, v = ¢~". By Propo-
sition 5.1, any element x € Uq(ﬁln)cri can be written as a unique linear combination of
ordered monomials in the generators lf; [r]. Denote by U° the subspace of the algebra
spanned by those monomials which do not contain any generators lij; [r] with i # j. Let zq
denote the component of the linear combination representing the element x, which belongs
to UY. The mapping 6 : x — z, defines the projection 6 : U (g[ Jeri — UY. Extending it by
continuity we get the projection 6 : U (g[ Veri — U° to the corresponding completed vector
space U°.

Introduce the algebra II,(n) as the quotient of the algebra of polynomials in independent
[7[r] withi=1,...,nand r =0,1,... by the relations ;7 [0]/; [0] = 1 for

P )

variables [} [—7]
all i. The mapping 7 : U° — II,(n ) Which takes each ordered monomial in the generators
I [F7] to the corresponding monomial in the variables [:[r] by the rule I [Fr] — [F[Fr]
extends to an isomorphism of vector spaces. Define the completion II .(n) of the algebra
II,(n) as the inverse limit

Iy (n) = ljglﬂq<n)/]p7 p>0,
where I, denotes the ideal of II,(n) generated by all elements I; [r] with r > p; cf. (3.1).

The isomorphism 7 extends to an isomorphism of the respective completed vector spaces
n: U% = II,(n). Thus we get a linear map

X Ug(gl)er = Ty (n) (6.1)

defined as the composition x = n o #. The next proposition provides an analogue of the
Harish-Chandra homomorphism for the quantum affine algebra.
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Proposition 6.1. The restriction of the map (6.1) to the center Zq(g[n) of the algebra
Uq(g[n)cri 15 a homomorphism of commutative algebras

X : Zg(gl,) — I, (n). (6.2)

Proof. For x,y € Zq(g/g\[n) set k9 = x(z) and yo = x(y). Write y as a (possibly infinite)
linear combination of ordered monomials in the generators l?;- [r]. Suppose that

m =[]0 Iral T] %]
a b
is an ordered monomial which occurs in the linear combination. Note its property
> (o = ja) + (i — Gs) = 0 (6.3)
a b
implied by (5.2). Suppose that m € ker x. Since x is in the center, we have

rm = Hlea[Ta] x Hl;jb[rb].
a b

To write xm as a linear combination of ordered monomials we will only need to use the
defining relations (2.7) which are also given in (5.5) where the series l;f(u) should be
replaced with ll-jj[(u), respectively. Since the relations (5.5) are homogeneous with respect
to the weight parameter ¢ — 7 + kK — m, we derive that xm € kery. Hence a nonzero
contribution to the image x(xy) can only come from x(zy), that is, from expressions of

[T e = [T 1, Il
a b

If p is an ordered monomial which occurs in the linear combination representing = and

the form

X(p) = 0, then applying property (6.3) to the monomial p we conclude that
X : Hl;;ia[ra]p Hli_bib[rb] — 0.
a b

Finally, observe that by the defining relations (5.5), any two generators [;[r] and [ ;[s]

(resp., I5;[r] and I};[s]) can be permuted modulo ker x within any monomial of the form

H lz‘tz‘a [74] H li_bib [7s].

This proves that x(xy) = zoyo. [
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Now we are in a position to calculate the Harish-Chandra images of the higher Sugawara
operators provided by Theorem 3.2. Combine the generators of the algebra II,(n) into the
series

)= 1= () =) L=
r=0 r=0
and for i =1,...,n set

A(z) = g ()17 (2g72) ... l;_l(zq'—n+27j—2>
Iy (zq™) ... 17 (z2q"F272)

This is a Laurent series in z whose coefficients are elements of the completed algebra ﬁq(n).

Theorem 6.2. For each k = 1,...,n the image of the series {x(z) under the Harish-
Chandra homomorphism (6.2) is found by
X le(2) = Z i (2) Ny (2¢72) o N (27202,

1< < <ip<n
Proof. We will use formula (4.1) for ¢;(z). Apply Lemma 4.7 to express the series Z;z(z) =
gl [L‘(z)_l]ji in terms of quantum minors. By (4.8) we have

L (2) 1.7..n _ (—q)l(w) L (2) 1.%..n

1/]\71 n/]\17

where w € &,,_1 reverses the order of the lower indices. Expanding this quantum minor by
(4.5) we find that a nonzero contribution to the image y(¢x(z)) can only come from the
summands in (4.1) with 4,1y < ji < 4;. These conditions imply that o(1) =1 and j; = ;.
By the defining relations in Uq(gA[n), the same observation gives 0(2) = 2 and j, = s, etc.,
so that a nonzero contribution comes only from the terms with ¢ = 1 and j, = i, for all
a=1,...,k. Applying Lemma 4.7 and formulas (4.5) and (4.8) again we find that the
contributions of the quantum minors are found by

qdet L™ (2) v I (2 2"2) .. 1 (2)

and
L(2)y e I (g ) (g ) 1 (g2 22) L (=),
This completes the calculation of the Harish-Chandra image of ¢4 (z2). O

Consider the restriction of the map (6.1) to the subalgebra Y,(gl,,) of ﬁq(gﬁn)m. As in
Sec. 3, we impose the conditions [;:[0] = 1 for all i so that

v Yy(at,) - I (n), (6.4)

where II} (n) is the subalgebra of II,(n) generated by the variables ["[—r] withi =1,...,n
and r = 0,1,... subject to the relations [;[0] = 1 for all i. Recall the g-determinant
calculated in Proposition 4.6. The following corollary essentially reproduces the ¢-deformed
Miura transformation of [17].
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Corollary 6.3. We have

x :dety(IT+ LT (2) D) = (14 Mi(2)8) ... (1+ A(2)9),
where \i(z) = ¢" 2L IF(2).
Proof. This is immediate from Proposition 4.6 and Theorem 6.2. O

In the remainder of this section we outline an alternative construction of the Harish-
Chandra homomorphism for the quantum affine algebra Uq(g [,,)eri- The starting point is the
version of the Poincaré-Birkhoff-Witt theorem for a different ordering on the generators
as provided by Proposition 5.2. The arguments are essentially the same, with only minor
changes in notation. As above, we define the projection 6’ : Uq(é\[n)cri — U% in the
same way. Proposition 6.1 holds in the same form but for the different Harish-Chandra

homomorphism
Vs Zy(al,) = Ti,(n) (6.5)

defined as the restriction of the composition x' =nof’. Fori=1,...,n set

7n+2)

N(z) = 2+ I (2) i (2¢" ) 1 (2q
Z L (2qn2) . L (2q7™)

This is a Laurent series in z whose coefficients are elements of the completed algebra ﬁq(n).

Theorem 6.4. For each k = 1,...,n the image of the series {(z) under the Harish-
Chandra homomorphism (6.5) is found by

X2 = Y XA () N (2.

nzi > >ip 21

Proof. The starting point is formula (4.2) and the argument is quite similar to the proof
of Theorem 6.2. O

7 Eigenvalues in Wakimoto modules

Our goal in this section is to relate the image of the series ¢;(2) under the Harish-Chandra
homomorphism provided by Theorem 6.2 with their eigenvalues in the ¢-deformed Waki-
moto modules constructed by Awata, Odake and Shiraishi [1]. Equivalently, due to the
work of Frenkel and Reshetikhin [17], these eigenvalues can be interpreted as elements
of the g-deformed classical W-algebra W,(gl,). They were associated in [17] to the se-
ries ka(z) corresponding to fundamental representations Vj, of the quantum affine algebra
U,y (sly).
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To establish the relationship, we consider the Wakimoto modules at the critical level
over Uq(g[n). The coefficients of the series ¢;(z) act as multiplications by scalars in the
irreducible modules. We will show that these scalars can be found from Theorem 6.2 by
an appropriate identification of the parameters of the Wakimoto modules with elements of
II,(n).

The free field realization of [1] is given in terms of Drinfeld’s “new realization” [11] of
the quantum affine algebra. Following [17], we will use the Ding—Frenkel isomorphism [10]
to get the formulas for the action of the generators of Uq(é\[n) in the Wakimoto modules
in terms of the RLL presentation. Introduce the series ej-; (u), £ (u) and kF(u) which are

ij
uniquely determined by the Gauss decompositions of the respective matrices L*(u):

L*(u) =

1 0 O (kf(w) 0O ... 0 1 ofSw) ... fi(w
ot (u) - : : 0 .. : 0 - : :

: . . : .0 P S ()
ef(u) ... e (w1 0 ... 0 kf(w| |0 ... 0 1

We will need the following quantum minor expressions for these series. Their Yangian
counterparts go back to [11] and detailed arguments were given in [4]; see also [23, Sec. 1.11].
The quantum affine algebra case is quite similar so we only sketch the main steps of the
proof.

Lemma 7.1. We have
k() = L5(¢¥ %), [Li(gzmu)i::zi:ﬂ - (7.1)
fori=1,....,n and
) = L5(q* ), 1 |15 ) ]
— g7t [ (q*u), ] CLE@)TY (12)

i—g 1i] 7L i—2 \1-i : i1t
S = (L5201 T = a Ly [
for1<i<j<n.

Proof. The arguments for the matrices L™ (u) and L™ (u) are the same so we will work
with L*(u) and use the notation Y,(gl,) for the subalgebra of the quantum affine algebra
generated by the coefficients of all series I}(u). We will also use the algebra Y,-1(gl,) and

denote its generator matrix by L*(u) = [Zj(u)] Due to the property

Ro1(v,u) = —R(u,v)|

qgrqt
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of the R-matrix (2.1), the mapping
wy : LY (u) = L (u)™!

defines a homomorphism w, : Y,(gl,) — Y,:(gl,). For any m > 0 consider another
homomorphism

JIm qu*1 (g[n) — qu*1 (g[m-l-n) (73)

which takes the coefficients of the series Z}“(u) to the respective coefficients of the series
lnt—&-zm—i-j
phism

(u). Consider the composition ¢,,, = w;,}.,, © ;s © w, Which is an algebra homomor-

qu : Yq(g[n) — Yq(g[m—i-n)
By [22, Lemma 3.7]3

m o\ 1lem -1 m_ A\ L-mm+i
¢m : lz—;(u) = |:L+(q2 u) 1m] L+(q2 U’) 1---mm+4j° (74)

Now apply [23, Lemmas 1.11.2 and 1.11.5] to the algebra Y, (gl,,) to get

U = Gi- 1(l 11 )
() = ¢ a (11 (W) Iy (w) ™),
U = Pi— 1(l 1( 1lfj z+1( ))
Together with (7.4) this proves the formula for k" (u) and the first expressions for ef(u)
and f;7(u). To prove the second expressions, use the relations
l;r 2+11< )lﬁ(u)_l =q! I (q u)” 1ljtz‘+11(qzu)
and
l1+1( ) 1lirj z+1( ) - qllj z—l—l(q u)l+ (q U) !
in Y,(gl,) implied by (2.7) (or (5.5)) and apply (7.4) again. O
Corollary 7.2. We have the expansions for the quantum determinants
qdet LF(2) = ki (2) ki (2q72) .. kF(2q72" ).
Proof. This is immediate from Lemma 7.1. O]

We adopt the notation ¥ (z) and E%%(z) of [1] for the series of Drinfeld generators of
U, (sl,,) and identify them with the respective elements of U,(gl,,) by using the isomorphism
of [10] in the normalization of [16]. The formulas are given in [16] only for the zero level

3The generator matrices T'(u) and T'(u) of [22] correspond to L~ (u) and L+ (u), respectively.
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case, but they can be easily modified to include the central element ¢¢ as in [10]. For

i1=1,...,n—1 we have
$i(2) = ki (za7") K (2477, (7.5)
. e&’.(zqg_g —-ef'.(zq_g_w
l;+ﬂ 2) = i+11 414 : 7.6
=) (q—q1)z (7.6)
Ei(z) = fijﬂ(Zq_%_i) — fi;+1<2q§_i)
(¢—q)2

In fact, these relations were established in [10] for the respective elements of the algebra
Uq(a[n) which we defined in Sec. 5. However, the map (5.7) connecting the two algebras
only results in the multiplication of the series k;"(2) by a scalar series with coefficients in
the Heisenberg algebra #,(n) and in the multiplication of the series k; (2) by a different
scalar series. The series egg (u) and f;(u) are not affected and hence the above relations
apply to the algebra Uq(gln) in the same form.

The g-deformed Wakimoto modules over Uq(;[n) are realized in the boson Fock space
by an explicit action of the series 1% (2) and E*%(z) described in [1]. We recall this
construction assuming that the level is critical. That is, we take £ = —n in the notation
of [1] and for all 1 < ¢ < j < n consider free boson fields

. bid gl )
b (z) = —Z—’"z_’“—k &bg log z + QY

o 7] 2logq
i(z) = —Z i'jz_r +1- q_lcij log 2 + Q%
5 ] 2logq ° ¢
and g
ij 1y (b ij —r
bi(2) = +(¢—q 1)(% + Y bz )
+r>0
ij -1 Cf)j ij —r
@) =ta—a)( T+ Y ),
+r>0
where i .,
[T]—— q _-q_l
qa—dq
and the coefficients satisfy the relations
. 2 g 21
(b3, b¥) = I, 55160 s, b Q) = -84 5,55, (7.7)
r q—dq
g 2 g 21
r q—4q
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all other pairs of coefficients commute. The quantum Heisenberg algebra A,(n) is generated
by the elements e | Q< eEla=a7D06'/2 oEa=a"1)ed'/2 and pid | ¢id with r # 0. The defining
relations are those implied by the above commutations relations for the coefficients of the
free boson fields. The Fock representation F,(n) of A,(n) is generated by the vacuum
vector |0) such that

b7)0) =90y =0  foralli<jandr >0
so that, in particular,

ei(q—q’l)bf)j/2|()> — ei(q—q’l)CSj/2|0> = |0).

The generators a’. with i = 1,...,n — 1 and r € Z used in the free field realization of
[1] pairwise commute at the critical level. Therefore, they may be regarded as numerical
parameters of the g-deformed Wakimoto modules and we must have a’. = 0 for r > 0. For
the use in the formulas below we set

d(z) =+ (Gab+ Y ai=),

+7r>0

as in [1], and we have a, (z) = 0 for all i. The (¢-deformed) Wakimoto module over U, (sl,)
at the critical level is defined by the action of the Drinfeld generators in the space F,(n).
For the action of the coefficients of the series 14 (z) we have

%

wi(2q¥n/2) = eXp( Z (bi:l+1 (Zqi(jfnfl)) o bztz(zqi(Jin)))

j=1
Fal(s) 4+ Y (B (gt 0) — b (g ), (7.9)
j=i+1
where b (z) = ¢’(z) = 0. The coefficients of E**(z) act by

%

Z : exp ((b - c)ji(ij_l))

j=1

X (eXP(b““( @) = (b+ ey zg?)) —exp (W (¢’ — (b+ C)”“(qu)))

X exp <§ b (2 — b (2’ ))) (7.10)

1

B = (¢—q")z

where we have used the notation (b+c)¥(z) = b"(z)+c"(z) and set b (z) = ¢"(z) = 0. The
colons indicate normal ordering so that the coefficients b with 7 < 0 or exp @;” should be
placed to the left of the coefficients b% with r > 0. The same rule applies to the coefficients
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of ¢(z). We will not reproduce the formulas for the action of E~(z) as they are given by
longer expressions and will not be used; see [1, (3.7)]. Our notation is the same as in [1]
for b and ¢, whereas sz = dgj and QY = ¢¥.

By Lemma 4.3, the coefficients of the quantum determinants are central in the algebra
U, (g[n) at the critical level. Therefore, the irreducible Wakimoto modules can be extended
to Uq(ﬁln)m by specifying the eigenvalues K*(z) of qdet L*(z). By Corollary 7.2, this
gives the conditions

REGRE(q™2) . k(272 2) o K2 (2),

where K (z) and K~ (z) are power series in z and 27!, respectively. Hence, relations (7.5)
and (7.9) allow us to define the action of the coefficients of all series k:(z) on the Fock
space.

For any X € Uq(aln)cri we will write (0]X]0) to denote the coefficient of |0) in the
expansion of X|0) along the basis of the Fock space.? More generally, a relation of the form
(0|X = d (0] for a constant d will be understood in the sense that (0|XY|0) = d(0|Y|0)
for any element Y < Uq(a [,,)eri- Using this notation we can parameterize the corresponding

modules over U,(gl, )i by the power series s () and s (2) in z and 27!, respectively,
such that
ki (2)]0) =37 (2)|0)  and  (0[k(2) = (0[5 (2) (7.11)
for all = 1,...,n satisfying the relations
si(2)5 () =exp (al(2¢77))  and s (2)%7(2) 7 = exp (al(zq 2 1))
fori=1,...,n—1. Since @, (z) = 0, the series »; (z) is the same for each ¢ and we denote
it by s (z).

The following theorem is essentially due to [17] subject to the identification of ;(z) with
the series {y, (z) corresponding to the fundamental representation Vj, of Uq(;[n), although
the arguments were only outlined there. The eigenvalues of ¢y, (z) were interpreted in [17]
as generators of the g-deformed classical W-algebras and the Poisson brackets between the
generators were explicitly calculated.

Theorem 7.3. Given an irreducible Wakimoto module over Uq(g?[n)cri with the parameters
s (2) and 3 (z), the eigenvalues of the coefficients of the series (x(2) in the module are

found by
l(2) — Z A, (2) iy (2g72) . Ay, (27202, k=1,...,n,
1<iy < <ip<n
where

ANi(2) = "2 st (2) 5 (7)) 7, i=1,...,n.

4An equivalent interpretation would involve an inner product on the Fock space which we will not
introduce.
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Proof. Any irreducible Wakimoto module coincides with the cyclic span over Uq@n)m of
the vacuum vector |0). Hence, the eigenvalues of the coefficients of the series ¢x(z) can be
found by calculating the series (0|¢x(2)|0).

We find from (7.10) that E*%(z)|0) is a power series in z for all i. Therefore, (7.6)
implies e, 1,(2)|0) = 0 for i = 1,...,n — 1. Note the following relations for the action of
the generators /;;[0] on the vacuum vector:

Lip1:[0]]0) =0 and  [5[0]]0) = 5 [0]]0), (7.12)

where 57 [0] denotes the constant term of the series 7 (2). Indeed, using (7.1) and (7.11),

1

we find that L~ ()1 ’|0) is a scalar power series in z~'. Expanding the quantum minor

by (4.5) and taking the constant term we find that

S (=) 1, [0] -+ 1,101/ 0) (7.13)

ge6;

is a scalar multiple of the vacuum vector [0). However, [;;[0] = 0 for j < i by (2.5) so

that the only nonzero term in (7.13) corresponds to the identity permutation o. Therefore,

taking the constant terms in (7.1) and (7.11) we derive the second relation in (7.12). Now

use the relation L™ (2)1""*'|0) = 0 implied by (7.2). Exactly as above, we get

lfl[o]"'l;—li—l[o] z+1z[ ]|O> =0 (7-14)
which gives the first relation in (7.12) by (5.2). As a next step, we will derive the relations

e;:(2)[0) =0  forall j>i. (7.15)
It follows from (2.7) that

15000, 5 (2)] = (@ — g () 1500]  for i>j>m (7.16)

»Vim

and
115101, ()] =0 for i,7 > k,m.

Hence, (7.2) gives
[l;+1][0]7 ej:j(z)] = (q - qil)e]z,-li(z) l;j [O]
and (7.15) follows by induction from (7.12).
Thus, we may conclude that

L~ (2)"7Y0)=0  forall j>i.
Expanding the quantum minor with the use of (4.5) and (4.8) we get

Z(_Q)l(a) l;(j)i(z) l;(i71)¢71<q_2z) e lg_(l)l(q_2i+2z)’0> = Oa (7'17)
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where the sum is taken over permutations o of the set {1,...,7—1,j}. Together with the
property that

L7(2)10110) = > (=) 11 (2) -+ Ly 1 (g7 22)]0) (7.18)

dSGH

is a scalar power series in 27!, these relations imply that
15:(2)[0) =0 forall j > (7.19)

and [;;(2)|0) is a scalar power series in z~! by an obvious induction. Moreover, it follows

from (7.1) and (7.11) that
1;:(2)|0) = 37 (2)]0) fori=1,...,n. (7.20)
Now we will apply similar arguments to derive that
(01Iji(z) =0 forall j>4i and  (0]Ifi(2) = (05 (2) for i=1,...,n. (7.21)

The first step is to observe that (0|z E™(2) is a power series in z~!. Indeed, this follows
from (7.10) with the use of the relations

(0|b7 = (0]c¥ =0 for all r > 0.

One additional step is to use the commutation relations (7.7) and (7.8) which imply

a1 o1
exp Q .z % logq béj = 72 lggq bgj - exp QZJ
and o o
exp Q¥ - 2 Tiogg 0 = »FTord 0 . exp Qi .zt

Although extra powers of z occur as a result of swapping the coefficients, these powers
arising from the coefficients of the series 0¥/ (z) and ¢”(z) cancel each other. Thus, us-
ing (7.6) and noting that the constant term of ef, ,(z) is zero, we come to the relation
(Olef1;(z) =0fori =1,...,n—1. The rest of the arguments is essentially the same with
some obvious adjustments. In particular, to evaluate the constant term of the power series
(0|L*(2) }:::; we use the expansion

0‘ Z U)lcj(z )i ] o l;r(l)l[o]

ceS;

instead of (7.13) and note that [J;[0] = 0 for j > i. Together with the corresponding
counterpart of (7.14) this implies

(Ol 00 =0 and  (0[L5[0] = (0[5 [0],
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where 3 [0] denotes the constant term of the series »; (z). In the final part we use the
relations
(0] Z<_Q)_l(a) l:(l)l(z) e l:(i_l)i_l(q_QZHz) l:(j)i(q_%HZ) =0
with the sum over permutations o of the set {1,...,7—1,;}, and
Loi o Y
<O’L+<Z) i = (0] Z(_Q) ! )l:(1)1(2) "'l:(i)i<q ? +2Z)
geS;

instead of (7.17) and (7.18).

Relations (7.19), (7.20) and (7.21) allow us to conclude that the eigenvalue (0|¢x(z)]0)
coincides with the image of the series f;(z) under the Harish-Chandra homomorphism
calculated in Theorem 6.2 for the specialization

IF(2) =3 (2) and I (2) = (2)

for i = 1,...,n. Clearly, then \;(z) specializes to A;(z) and the proof is complete. O

Remark 7.4. The fact that the eigenvalues of the coefficients of ¢;(z) in the Wakimoto
modules are consistent with the Harish-Chandra images provided by Theorem 6.2 relies
on the properties (7.19), (7.20) and (7.21). It was essential for their derivation that the
“zero mode matrices” LT[0] and L~[0] are upper and lower triangular, respectively. These
properties do not hold for the presentation of the quantum affine algebra used in [17],
where the triangularity of the zero mode matrices is opposite. O]

References

[1] H. Awata, S. Odake and J. Shiraishi, Free boson realization of Uq(;[N), Comm. Math.
Phys. 162 (1994), 61-83.

[2] J. Beck, Convex bases of PBW type for quantum affine algebras, Comm. Math. Phys.
165 (1994), 193-199.

[3] J. Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165
(1994), 555-568.

[4] J. Brundan and A. Kleshchev, Parabolic presentations of the Yangian Y(gl,,), Commun.
Math. Phys. 254 (2005), 191-220.

[5] I. V. Cherednik, A new interpretation of Gelfand—Tzetlin bases, Duke Math. J. 54
(1987), 563-577.

29



[6] A. Chervov, G. Falqui, V. Rubtsov and A. Silantyev, Algebraic properties of Manin
matrices II: q-analogues and integrable systems, Adv. in Appl. Math. 60 (2014), 25-89.

[7] A. V. Chervov and A. 1. Molev, On higher order Sugawara operators, Int. Math. Res.
Not. (2009), no. 9, 1612-1635.

[8] A. Chervov and D. Talalaev, Quantum spectral curves, quantum integrable systems and
the geometric Langlands correspondence, arXiv:hep-th/0604128.

9] J. Ding and P. Etingof, The center of a quantum affine algebra at the critical level,
Math. Res. Lett. 1 (1994), 469-480.

[10] J. Ding and I. B. Frenkel, Isomorphism of two realizations of quantum affine algebra
U,(gl(n)), Comm. Math. Phys. 156 (1993), 277-300.

[11] V. G. Drinfeld, A new realization of Yangians and quantized affine algebras, Soviet
Math. Dokl. 36 (1988), 212-216.

[12] P. Etingof and D. Kazhdan, Quantization of Lie bialgebras. V. Quantum vertex oper-
ator algebras, Selecta Math. (N.S.) 6 (2000), 105-130.

[13] B. Feigin, E. Frenkel and N. Reshetikhin, Gaudin model, Bethe ansatz and critical
level, Comm. Math. Phys. 166 (1994), 27-62.

[14] B. Feigin, E. Frenkel and V. Toledano Laredo, Gaudin models with irreqular singular-
ities, Adv. Math. 223 (2010), 873-948.

[15] E. Frenkel, Langlands correspondence for loop groups, Cambridge Studies in Advanced
Mathematics, 103. Cambridge University Press, Cambridge, 2007.

[16] E. Frenkel and E. Mukhin, The Hopf algebra Rep Uqé\loo, Selecta Math. 8 (2002),
537-635.

[17] E. Frenkel and N. Reshetikhin, Quantum affine algebras and deformations of Virasoro
and W-algebras, Comm. Math. Phys. 178 (1996), 237-264.

[18] E. Frenkel and N. Reshetikhin, The g-characters of representations of quantum affine
algebras and deformations of WW-algebras, Contemp. Math. 248 (1999), 163—205.

[19] 1. B. Frenkel and N. Jing, Vertex representations of quantum affine algebras, Proc.
Nat. Acad. Sci. U.S.A. 85 (1988), 9373-9377.

[20] I. B. Frenkel and N. Yu. Reshetikhin, Quantum affine algebras and holonomic differ-
ence equations, Comm. Math. Phys. 146 (1992), 1-60.

30



[21] L. Gow and A. Molev, Representations of twisted q-Yangians, Selecta Math., New
Series 16 (2010), 439-499.

[22] M. J. Hopkins and A. I. Molev, A g-analogue of the centralizer construction and skew
representations of the quantum affine algebra, Symmetry, Integrability and Geometry:
Methods and Applications 2 (2006), paper 092, 29 pp.

(23] A. Molev, Yangians and classical Lie algebras, Mathematical Surveys and Mono-
graphs, 143. American Mathematical Society, Providence, RI, 2007.

[24] A. L. Molev, Feigin—Frenkel center in types B, C' and D, Invent. Math. 191 (2013),
1-34.

[25] A. I Molev and E. E. Mukhin, Yangian characters and classical W-algebras, in “Con-
formal field theory, automorphic forms and related topics” (W. Kohnen, R. Weissauer,
Eds), Springer, 2014, pp. 287-334.

[26] A. I. Molev and E. Ragoucy, The MacMahon Master Theorem for right quantum
superalgebras and higher Sugawara operators for gl Moscow Math. J. 14 (2014),
83-119.

m|n>

[27] N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky, Central extensions of quantum
current groups, Lett. Math. Phys. 19 (1990), 133-142.

(28] L. G. Rybnikov, The shift of invariants method and the Gaudin model, Funct. Anal.
Appl. 40 (2006), 188-199.

31



LF. & E.R.:

Laboratoire de Physique Théorique LAPTh, CNRS and Université de Savoie
BP 110, 74941 Annecy-le-Vieux Cedex, France

luc.frappat@lapth.cnrs.fr

eric.ragoucy@lapth.cnrs.fr

N.J.:

School of Mathematical Sciences

South China University of Technology

Guangzhou, Guangdong 510640, China

and

Department of Mathematics

North Carolina State University, Raleigh, NC 27695, USA
jing@math.ncsu.edu

AM.:

School of Mathematics and Statistics
University of Sydney, NSW 2006, Australia
alexander.molev@sydney.edu.au

32



