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Abstract. An integer m ≥ 3 is said to be Mersenne with respect to n, where n ≥ 2, if

m = 1 + n + . . . + nk for some k ≥ 1. This generalises the notion of a Mersenne prime

number, since if m is a prime number Mersenne with respect to 2, then m is a usual

Mersenne prime. For example, 31 is a usual Mersenne prime, but also Mersenne with

respect to 5. By contrast, 13 is Mersenne with respect to 3 but not 2, and 5 and 11

are not Mersenne with respect to any prime. In this short note, we prove that there are

infinitely many prime numbers that are not Mersenne with respect to any prime number.

The first, more elementary, proof relies on a lower bound for π(x) − π(x/2), established

by Ramanujan (1919), where π(x) is the number of primes not exceeding a given integer

x. The second proof uses the full force of the Prime Number Theorem to deduce that

µ(x) = O(
√
x) and π(x)−µ(x) is asympotically equivalent to x/ log x, where µ(x) denotes

the number of primes not exceeding x that are Mersenne with respect to some prime.

1. Introduction

Recall that a Mersenne prime has the form 2k−1 for some integer k ≥ 2. It is apparently

an open problem whether infinitely many Mersenne primes exist. At the time of writing

the largest known prime number is Mersenne. An integer m ≥ 3 is said to be Mersenne

with respect to n if n ≥ 2 is an integer and m = 1 + n + . . . + nk for some k ≥ 1. Thus

usual Mersenne primes are Mersenne with respect to 2. However a prime number may be

Mersenne with respect to different primes. For example, 31 is Mersenne with respect to

both 2 and 5. By contrast, 13 is Mersenne with respect to 3 but not 2, and 5 and 11 are

not Mersenne with respect to any prime.

The motivation for this work comes from an example in a paper by Easdown and Hendrik-

sen [1, Example 5.9], where they are given a list of primes p1, . . . , pk and, for the purpose of a

particular group-theoretic construction, need the existence of a prime q such that q < psi−1i

where si is the multiplicative order of pi modulo q for each i. If q > psi−1 for some i then q

is Mersenne with respect to pi [1, Lemma 4.3]. Their task then is to locate a prime q that

is not Mersenne with respect to each of p1, . . . , pk. The existence of such q is guaranteed

by [1, Theorem 5.8]. Their argument however does not guarantee that q is not Mersenne

with respect to some other prime not on the original list.

The purpose of this note is to prove that there are infinitely many primes that are not

Mersenne with respect to any prime, and moreover to show that such primes are asymp-

totically as plentiful as all primes. Ramanujan [2] established the following lower bound,
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where π(x) denotes the number of prime numbers not exceeding an integer x:

π(x)− π(x/2) >
1

log x

(
x

6
− 3
√
x

)
for x > 300 . (1)

Certainly then

lim
x→∞

π(x)− π(x/2)√
x

= ∞ . (2)

Note that (2) follows also from the Prime Number Theorem, but we retain the dependency

on (1) to keep the proof of Theorem 2.3 below as elementary as possible.

2. Main result

Lemma 2.1. If m 6= 3 is a prime number such that m is Mersenne with respect to a prime

number n then n <
√
m.

Proof. Suppose that m is prime, m 6= 3 and m = 1 + n + . . . + nk for some prime n and

integer k. Certainly, m ≥ 7. If n = 2 then n <
√

7 ≤
√
m, and we are done. Otherwise, m

and n are both odd, so k ≥ 2 and n2 < m, and again we are done. �

The following lemma is a sharpening of Lemma 5.5 of [1]:

Lemma 2.2. If m is Mersenne with respect to n then k is not Mersenne with respect to n

for m < k ≤ mn.

Proof. If m and k are Mersenne with respect to n and m < k ≤ mn then there exist

positive integers α and β such that m = 1 + n + . . . + nα and k = 1 + n + . . . + nα+β =

m+ nα+1 + . . .+ nα+β, whence

nα+1 ≤ nα+1 + . . .+ nα+β = k −m ≤ (n− 1)m ≤ nα+1 − 1 ,

which is impossible. �

Theorem 2.3. There exist infinitely many primes that are not Mersenne with respect to

any prime.

Proof. Suppose to the contrary that there are only finitely many prime numbers that are

not Mersenne with respect to any prime. Hence there is an integer N0 such that whenever

p ≥ N0 is a prime then there exists a prime M(p) such that p is Mersenne with respect to

M(p). Clearly N0 > 3 and so, by Lemma 2.1, M(p) <
√
p. By (2), there exists an integer

N ≥ N0 such that π(2N)− π(N) >
√

2N . Put

P = {p | p is prime and N < p ≤ 2N} and Q = {q | q is prime and q ≤
√

2N} .

From the above, M yields a mapping from P to Q, and, by Lemma 2.2, M is injective. This

gives a contradiction, since the size of P exceeds that of Q, and the theorem is proved. �

We can extract the main idea of the previous proof and combine it with the Prime

Number Theorem to give the following result:

Theorem 2.4. Let µ(x) denote the number of primes not exceeding x that are not Mersenne

with respect to any prime. Then µ(x) = O(
√
x).
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Proof. By (2) there exists N1 such that for all integers N ≥ N1, π(2N) − π(N) >
√

2N .

For each such N , put

P (N) = {p | p is prime, N < p ≤ 2N, and p is Mersenne with respect to some prime}

and Q(N) = {q | q is prime and q ≤
√

2N}. As in the proof of Theorem 2.3, there exists

an injective mapping from P (N) to Q(N). By the Prime Number Theorem,

|P (N)| ≤ |Q(N)| ∼
√

2N/ log(
√

2N) = O(
√
N/ logN) .

Thus µ(2x)− µ(x) = O(
√
x/ log x). It follows that µ(x) = O(

√
x). �

There is no suggestion that the big-oh upper bound in the previous theorem is close to

being sharp. It is not even known if there are infinitely many primes that are Mersenne

with respect to some prime. By the Prime Number Theorem, we immediately have the

following:

Corollary 2.5. Primes that are not Mersenne with respect to any prime are as plentiful as

arbitrary primes in the sense that π(x)− µ(x) ∼ x/ log x.

Of course, Theorem 2.3 is a corollary of Corollary 2.5.
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