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Abstract. The minimal faithful permutation degree µ(G) of a finite group G is the least

nonnegative integer n such that G embeds in the symmetric group Sym(n). We make

observations in varying degrees of generality about µ(G) when G decomposes as a semidi-

rect product, and provide exact formulae in the case that the base group is an elementary

abelian p-group and the extending group a cyclic group of prime order q not equal to

p. For this class, we also provide a combinatorial characterisation of group isomorphism.

These results contribute to the investigation of groups G with the property that there

exists a nontrivial group H such that µ(G × H) = µ(G), in particular reproducing the

seminal examples of Wright (1975) and Saunders (2010). Given an arbitrarily large group

H that is a direct product of elementary abelian groups (with mixed primes), we construct

a group G such that µ(G×H) = µ(G), yet G does not decompose nontrivially as a direct

product. In the case that the order of H is a product of distinct primes, the group G is

a semidirect product such that the action of G on each of its Sylow p-subgroups, where

p divides the order of H, is irreducible. This final construction relies on properties of

generalised Mersenne prime numbers.

1. Introduction

Throughout this paper all groups are assumed to be finite and Cn denotes a cyclic group

of order n. The minimal faithful permutation degree µ(G) of a group G is the smallest

nonnegative integer n such that G embeds in the symmetric group Sym(n). Note that

µ(G) = 0 if and only if G is trivial. It is well known (and referred to as Karpilovsky’s

theorem, see, for example, [11, 12]) that if G is a nontrivial abelian group, then µ(G)

is the sum of the prime powers that occur in a direct product decomposition of G into

cyclic factors of prime power order. Johnson proved (see [11, Theorem 1]) that the Cayley

representation of a group G is minimal, that is, µ(G) = |G|, if and only if G is cyclic of

prime power order, the Klein four-group or a generalised quaternion 2-group. A number of

other explicit calculations of minimal degrees and a variety of techniques appear in Johnson

[11], Wright [21, 22], Neumann [15], Easdown and Praeger [3], Kovacs and Praeger [13],

Easdown [2], Babai, Goodman and Pyber [1], Holt [9], Holt and Walton [10], Lemieux

[14], Elias, Silbermann and Takloo-Bighash [5], Franchi [6], Saunders [17–20] and Easdown

and Saunders [4]. This present article, building on work initiated by the second author

in [8], focuses on minimal degrees of semidirect products of groups, characterises group

isomorphism and provides exact formulae for minimal degrees in the case when the base

group is an elementary abelian p-group and the extending group is cyclic of order q where

p and q are different primes.
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For any groups G and H and subgroups S of G, we always have the inequalities

µ(S) ≤ µ(G) (1)

and

µ(G×H) ≤ µ(G) + µ(H). (2)

Many sufficient conditions are known for equality to occur in (2), for example, when G and

H have coprime order (Johnson [11, Theorem 1]), when G and H are nilpotent (Wright [22]),

when G and H are direct products of simple groups (Easdown and Praeger [3]), and when

G×H embeds in Sym(9) (Easdown and Saunders [4]). The first published example where

the inequality in (2) is strict appears in Wright [22], where G×H is a subgroup of Sym(15).

Saunders [17,18] describes an infinite class of examples, which includes the example in [22]

as a special case, where strict inequality takes place in (2). The smallest example in his

class occurs when G×H embeds in Sym(10). In all of these examples of strict inequality,

the groups G and H have the properties that H is cyclic of prime order and

µ(G×H) = µ(G). (3)

As a consequence of our investigations below into semidirect products and our two main

theorems, we are able to provide infinite classes of examples where (3) occurs, where H may

be a product of elementary abelian groups with an arbitrarily large number of factors and

different prime exponents and G does not decompose as a nontrivial direct product.

Recall that the core of a subgroup H of G, denoted by coreG(H), or just core(H), is

the largest normal subgroup of G contained in H, and that H is core-free if core(H) is

trivial. Thus, if G is nontrivial then µ(G) is the smallest sum of indices for a collection of

subgroups C = {H1, . . . ,Hk} such ∩ki=1Hi is core-free. In this case we say that C affords

a minimal faithful representation of G. The subgroups H1, . . . ,Hk become the respective

point-stabilisers for the action of G on its orbits and letters in the ith orbit may be identified

with cosets of Hi for i = 1 . . . , k. If k = 1 then the representation afforded by C is transitive

and H1 is a core-free subgroup.

Lemma 1.1. If a group G has a unique (necessarily normal) subgroup of prime order p then

any collection of subgroups affording a faithful representation of G must include a subgroup

of order not divisible by p.

Proof. Suppose G has a unique normal subgroup N of order p and {H1, . . . ,Hk} affords a

faithful representation. If p divides |Hi| for each i thenN ≤ core(H1∩. . .∩Hk), contradicting

faithfulness. Hence |Hi| is not divisible by p for some i. �

Corollary 1.2. Let G be a group with unique subgroups of orders p1, . . . , pk respectively,

where p1, . . . , pk are distinct primes. Then µ(G) ≥ |G|p1 + . . . + |G|pk , where |G|p denotes

the largest power of p dividing |G|.

Proof. By Lemma 1.1, any collection of subgroups ofG affording a minimal faithful represen-

tation must contain subgroups H1, . . . ,Hk such that pi does not divide |Hi| for i = 1, . . . , k.

Note that if Hi1 = . . . = Hi` for i1 < . . . < i` then

|G : Hi1 | ≥ |G|pi1 . . . |G|pi` ≥ |G|pi1 + . . .+ |G|pi` .

It follows that µ(G) ≥ |G|p1 + |G|p2 + . . .+ |G|pk . �
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Example 1.3. Recall the generalised quaternion or dicyclic group of order 4n for n ≥ 2 is

G = Q4n = 〈a, b | a2n = b4 = 1, an = b2, ab = a−1〉 . (4)

Then 〈b2〉 is the unique subgroup of G of order 2. If n is a power of 2 then µ(G) ≥ |G|2 = |G|,
by Corollary 1.2, whence µ(G) = |G|, the only nonabelian case where this is possible (see

Johnson [11, Theorem 2]). Suppose then that n is not a power of 2 and let p1, . . . , pk be

the odd prime divisors of n. Then 〈a2n/pi〉 is the unique subgroup of G of order pi for

i = 1, . . . , k. By Corollary 1.2, µ(G) ≥ |G|2 + |G|p1 + . . .+ |G|pk . Write |G| = 2mpα1
1 . . . pαkk

where m ≥ 2 and α1, . . . , αk ≥ 1, so n = 2m−2pα1
1 . . . pαkk . Put

H = 〈a2m−1〉 and Hi = 〈ap
αi
i , b〉

for i = 1, . . . , k. Note that if k = 1 and m = 2 then ap
α1
1 = an = b2, so that H1 = 〈b〉.

Clearly H ∩H1 ∩ . . . ∩Hk = {1}, so {H,H1, . . . ,Hk} affords a faithful representation of G

of degree

|G : H|+ |G : H1|+ . . .+ |G : Hk| = 2m + pα1
1 + . . .+ pakk = |G|2 + |G|p1 + . . .+ |G|pk .

Thus µ(G) = |G|2 + |G|p1 + . . . + |G|pk . Note that if m = 2 then |a2| = n is odd and

G = 〈a2, b〉. The presentation (4) simplifies, replacing a2 by x:

G = 〈x, b | xn = b4 = 1, xb = x−1〉 , (5)

so that G becomes a semidirect product (see the next section). If we put n = 3, then

µ(G) = 3 + 4 = 7 and G becomes the smallest group with the property that it does not

have a nilpotent subgroup with the same minimal degree. The class of groups that do

have nilpotent subgroups with the same degree was introduced by Wright [22], and its

pervasiveness within the class of permutation groups of small degree was an important tool

in the work of Easdown and Saunders [4].

2. Preliminaries on semidirect products

Recall that a group G is an internal semidirect product of a normal subgroup N by a

subgroup H if G = NH and N ∩H is trivial, in which case the conjugation action of N on

H induces a homomorphism ϕ : N → Aut(H). Conversely, if N and H are any groups and

ϕ : H → Aut(N) any homomorphism then the cartesian product of sets

N oH = N oϕ H = {(n, h) | n ∈ N , h ∈ H}

becomes a group, called the external semidirect product, under the binary operation

(n1, h1)(n2, h2) = (n1(n2(h
−1ϕ)), h1h2) ,

in which case N o H becomes an internal semidirect product of the normal subgroup

N × {1} by the subgroup {1} ×H. By identifying N with N × {1} and H with {1} ×H,

it is common to move back and forth between external and internal semidirect products,

and write N oH = NH without causing confusion. We refer to N as the base group and

H as the extending group. The first two claims of the following proposition are probably

well-known.
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Proposition 2.1. Suppose that GoH = Goϕ H is a semidirect product of groups G and

H, not necessarily finite, via a homomorphism ϕ : H → Aut(G). Then

GoH . Sym(G)×H .

If ϕ is injective then GoH . Sym(G). In particular, if G and H are finite then

µ(GoH) ≤ |G|+ µ(H) .

If G and H are finite and ϕ is injective then µ(GoH) ≤ |G|.

Proof. Define a homomorphism σ : GoH → Sym(G) by the following rule:

(g, h)σ : x 7→ (xg)(hϕ) for x, g ∈ G, h ∈ H.

Now define a homomorphism τ : GoH → Sym(G)×H by the following rule:

τ : (g, h) 7→ ((g, h)σ, h) for g ∈ G, h ∈ H.

If g ∈ G, h ∈ H and (g, h)τ = (id, 1), where id : G→ G denotes the identity mapping, then

(g, h)σ = id and h = 1, so, in particular,

1 = 1((g, h)σ) = 1((g, 1)σ) = g(1ϕ) = g id = g

whence (g, h) = (1, 1), verifying that τ is an embedding. Suppose now that ϕ is injective.

Let (g, h) ∈ kerσ, so (g, h)σ = id. In particular, 1 = 1((g, h)σ) = g(hϕ), so that g = 1,

since hϕ is an automorphism of G. Hence, for all x ∈ G,

x = x((g, h)σ) = (xg)(hϕ) = x(hϕ) ,

so that hϕ = id ∈ Aut(G). Hence h = 1, since ϕ is injective, so (g, h) = (1, 1). This verifies

that σ is injective, and all of the remaining claims follow. �

Example 2.2. The bound |G|+µ(H) in the previous proposition can easily be achieved, for

example, whenever the semidirect product is direct (that is, ϕ is trivial), G any group for

which the Cayley representation is minimal and H any group of order coprime to |G|. For

a class of semidirect products that are not direct, let G = Cnp and H = Cq2 , where p and q

are distinct primes and n a positive integer such that q > pn−1. Put H = 〈c〉 and suppose

we have a homomorphism ϕ : H → Aut(G) such that |cϕ| = q, so ϕ is neither trivial nor

injective, and that the conjugation action induced on G is irreducible. A simple subclass

of examples would be when (p, q, n) = (p, 2, 1) and cϕ the inversion automorphism of G (so

of order 2). (An instance of this, when (p, q, n) = (3, 2, 1), features in Example 2.9 below.)

We claim that

µ(GoH) = |G|+ µ(H) = pn + q2 . (6)

Put S = GoH = GH, regarded as an internal semidirect product. Certainly µ(S) ≤ pn+q2,

either by Proposition 2.1, or directly by noting that {G,H} affords a faithful representation

of S of degree pn + q2. Let C = {K1, . . . ,K`} be a collection of subgroups of S affording a

minimal faithful representation of S. Observe that 〈cq〉 is the unique subgroup of S of order

q. If n = 1 then G is the unique subgroup of S of order p, so µ(S) ≥ p + q2, by Corollary

1.2, establising (6), and we are done. Suppose then that n > 1. By Lemma 1.1, |Ki| is not

divisible by q, for some i, so Ki ≤ G. If Ki 6= G then

|S : Ki| ≥ pq2 = (p− 1)q2 + q2 > (p− 1)p2n−2 + q2 ≥ pn + q2 ,
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so that µ(S) > pn + q2, which is impossible. Hence Ki = G. If some |Kj | is not divisible

by q, then Kj = G, by what we have just shown, so j = i, by minimality of C . Without

loss of generality, K1 = G and q divides |K2|, . . . , |K`|. Suppose that q2 does not divide

|K2|, . . . , |K`|. By faithfulness, {1} = core(∩C ) = G∩core(K2∩. . .∩K`), so that Kj∩G 6= G

for some j ≥ 2, giving

µ(S) ≥ |S : K1|+ |S : Kj | ≥ q2 + pq > q2 + pn ,

which is impossible. Hence, without loss of generality, q2 divides K2, so K2 contains some

conjugate of c, the generator of H. If K2∩G 6= {1} then K2∩G = G, since the conjugation

action of H (and hence also of any conjugate of H) on G is irreducible, so that K2 = S,

contradicting minimality of C . Hence |K2| = q2, so µ(S) ≥ |S : K1| + |S : K2| = q2 + pn,

finally establishing (6). For example, if (p, q, n) = (5, 2, 1) then µ(S) = 5 + 4 = 9 and we

get the intransitive representation

S ∼= C5 o C4
∼= 〈(1 2 3 4 5), (1 5)(2 4)(6 7 8 9)〉 .

An alternative way of seeing the final conclusion of Proposition 2.1 is in terms of a

transitive representation with respect to a core-free subgroup:

Lemma 2.3. Let K be an internal semidirect product of G by H. Then core(H) = kerϕ,

where ϕ : H → Aut(G) is the homomorphism induced by conjugation. In particular, if ϕ is

injective then H is core-free and {H} affords a transitive representation of K of degree |G|,
so that µ(K) ≤ |G|.

Proof. Certainly kerϕ is a normal subgroup of K contained in H, so kerϕ ≤ core(H).

Conversely, G and core(H) normalise each other and intersect trivially, so elements of

core(H) commute with elements of G, whence core(H) ≤ kerϕ, and all claims follow. �

It will be useful, for example, below in verifying the first alternative of formula (17), to

note that, under certain conditions, the minimal degree of the semidirect product coincides

with the minimal degree of the base group:

Lemma 2.4. Suppose that G oϕ H is a semidirect product of groups such ϕ is injective.

If G has a minimal faithful representation afforded by a collection of subgroups that are

invariant under the conjugation action of H, then µ(GoH) = µ(G).

Proof. We may regard GoH = GH as an internal semidirect product. Since ϕ is injective,

H is core-free by Lemma 2.3. Suppose that {B1, . . . , Bk} is a collection of subgroups of G

that are invariant under conjugation by H and affords a minimal faithful representation of

G. In particular, coreG(B1 ∩ . . . ∩ Bk) = {1}. For i = 1 to k, put Di = BiH, which is a

subgroup of GH of index |G : Bi|. Then

coreGH(D1 ∩ . . . ∩Dk) = coreGH
(
(B1 ∩ . . . ∩Bk)H

)
= coreGH(H) = {1} ,

so {D1, . . . , Dk} affords a faithful representation of GH of degree

|G : B1|+ . . .+ |G : Bk| = µ(G) .

But µ(GH) ≥ µ(G), so we have equality and the lemma is proved. �
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Example 2.5. Let p, q be primes such that the field Fp = {0, . . . , p− 1} has a primitive qth

root ζ of 1. Let ϕ : Cq → Aut(Cqp) be the homomorphism induced by the map

cϕ : (x1, x2, . . . , xq) 7→ (x1, x
ζ
2, x

ζ2

3 , . . . , x
ζq−1

q ) ,

where c is a generator of Cq and x1, . . . , xq ∈ Cp. Put G = Cqp oϕ Cq. We may write

G = KC as an internal semidirect product of K ∼= Cqp by C ∼= Cq, where K is an internal

direct product H1 . . . Hq, where Hi
∼= Cp for i = 1, . . . , q. Put Ĥi = H1 . . . Hi−1Hi+1 . . . Hq,

which is a subgroup of K of index p, for i = 1, . . . , q. Put C = {Ĥ1, . . . , Ĥq}. Then ∩C is

trivial, so C affords a faithful representation of K of degree pq. But each Ĥi is invariant

under the conjugation action by C, so µ(G) = pq, by Lemma 2.4. We can also find a faithful

transitive representation of G by letting ai be a generator for Hi for each i and putting

H = {ai11 . . . a
iq
q ∈ H1 . . . Hq | i1 + . . .+ iq = 0} .

Then H is a core-free subgroup of G (in fact, a canonical codimension 1 subspace of the

additive vector space corresponding to the base group, in the sense of Lemma 3.11 below)

of index pq. For example, if p = 7 and q = 3 then 4 is a cube root in F7 and G = C3
7 o C3,

with presentation

〈a1, a2, a3, b | a7i = b3 = 1 = [ai, aj ] = [a1, b] for all i 6= j, ab2 = a42, a
b
3 = a23〉 ,

an intransitive minimal representation:

〈 (1 2 3 4 5 6 7), (8 9 10 11 12 13 14), (15 16 17 18 19 20 21),

(9 12 10)(11 13 14)(16 17 19)(18 21 20) 〉 ,

and a contrasting transitive representation of the same degree:

〈 (1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21),

(1 2 3 4 5 6 7)(8 10 12 14 9 11 13)(15 19 16 20 17 21 18),

(1 2 3 4 5 6 7)(8 12 9 13 10 14 11)(15 17 19 21 16 18 20),

(1 8 15)(2 9 16)(3 10 17)(4 11 18)(5 12 19)(6 13 20)(7 14 21) 〉 .

Consider groups H and K of coprime order and C a cyclic group such that |C| and |H||K|
are also coprime. Let ϕ : C → Aut(H ×K) be a homomorphism, so that we may form the

semidirect product

G = (H ×K) o C = (H ×K) oϕ C .

Let ϕH : C → Aut(H) and ϕK : C → Aut(K) where, for all h ∈ H, k ∈ K, c ∈ C,

(h, k)(cϕ) = (h(cϕH), k(cϕK)) , (7)

so that we have the related semidirect products

H o C = H oϕH C and K o C = K oϕK C .

If ϕ is trivial then G ∼= H ×K ×C. If ϕH is trivial then G ∼= H × (K oC). If ϕK is trivial

then G ∼= (H oC)×K. Note that always G embeds in (H oC)× (K oC) under the map

((h, k), c) 7→ ((h, c), (k, c))
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for all h ∈ H, k ∈ K, c ∈ C, so that, by (1) and (2),

µ(G) ≤ µ((H o C)× (K o C)) ≤ µ(H o C) + µ(K o C) . (8)

In Theorem 2.8 below, we show that equality occurs throughout (8) when both ϕH and ϕK
are nontrivial and C ∼= Cq for some prime q. We first establish some useful general facts.

Lemma 2.6. Let G = HC be an internal semidirect product of a normal subgroup H by a

cyclic subgroup C ∼= Cq for some prime q not dividing |H|. Let K be a subgroup of G that

is not a subgroup of H.

(a) There exists g ∈ G such that K = (H ∩K)Cg is an internal semidirect product of

H ∩K by Cg.

(b) If H ∩K is normal in H then H ∩K is normal in G.

(c) If K is normal in G then K = (H ∩K)C.

Proof. By Sylow theory, H = {g ∈ G | q does not divide |g|}, and it follows that H ∩K =

{k ∈ K | q does not divide |k|} is normal in K. But q divides |K|, since K is not a subgroup

of H, so |K| = |H|q and x ∈ K for some x of order q. But C and 〈x〉 are Sylow q-subgroups

of G, so that K = (H ∩K)〈x〉 = (H ∩K)Cg for some g ∈ G, and (a) is proved.

Suppose that H ∩K is normal in H and put C = 〈c〉. To show H ∩K is normal in G it

suffices to check (H ∩K)c = H ∩K. But cg = (g−1cgc−1)c = hc where h = g−1cgc−1 ∈ H,

since the derived subgroup G′ is a subgroup of H as G/H ∼= Cq is abelian. Hence, by (a),

using the facts that H ∩K is normal in H and K,

(H ∩K)c = (H ∩K)hc = (H ∩K)c
g

= H ∩K ,

and (b) is proved.

Suppose finally that K is normal in G. Certainly H ∩ K is normal in H, so that (b)

holds. Hence H ∩K is normal in G and

K = Kg−1
= ((H ∩K)Cg)g

−1
= (H ∩K)g

−1
C = (H ∩K)C ,

proving (c). �

Lemma 2.7. Let G = HC be an internal semidirect product that is not direct of a normal

subgroup H by a cyclic subgroup C ∼= Cq for some prime q not dividing |H|. Then any

collection C affording a minimal faithful representation of G does not contain any normal

subgroup of G that is a subgroup of H.

Proof. Let C = {K1, . . . ,Kk} afford a minimal faithful representation of G. Suppose, by

way of contradiction, that C contains a subgroup of H that is normal in G. Without loss

of generality, K1 ≤ H and K1 is normal in G. If K1 6= H then core(K1C ∩H) = K1 and

|G : K1C|+ |G : H| = |H : K1|+ q < |H : K1|q = |G : K1| ,

so that {K1C,H,K2, . . . ,Kk} affords a faithful representation of degree smaller than that

afforded by C , contradicting minimality. Hence K1 = H. If k = 1, then C = {H} and

{1} = core(H) = H, so that µ(G) = |G| and, by a result of Johnson [11, Theorem 1], G

must be cyclic of prime power order, a Klein four-group or a generalised quaternion 2-group,

which is impossible. Hence k > 1 and C = {H,K2, . . . ,Kk}. Put N = core(K2 ∩ . . .∩Kk),

so H ∩ N = {1}. If q does not divide |N | then N ≤ H, so N = {1} and {K2, . . . ,Kk}
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affords a minimal representation, again contradicting minimality. Hence q divides |N |, so,

by Lemma 2.6(c), N = (H ∩N)C = C, yielding a contradiction, since C is not normal in

G. This completes the proof. �

The following theorem reduces calculations of minimal degrees of semidirect products by

a q-cycle, where q is a prime that does not divide the order of the base group, to those cases

where the base group is a p-group for p 6= q.

Theorem 2.8. Let G = (H ×K) o C be a semidirect product where H and K are groups

of coprime order and C ∼= Cq for some prime q not dividing |H||K|. Then

µ(G) =


µ(H) + µ(K) + q if ϕ is trivial,

µ(H) + µ(K o C) if ϕH is trivial,

µ(H o C) + µ(K) if ϕK is trivial,

µ(H o C) + µ(K o C) if neither ϕH nor ϕK is trivial.

Proof. Note that the first case is a special case of the second and third cases, and the

formulae for the first three cases follow by Johnson’s result [11, Theorem 1] that µ is

additive with respect to taking direct products of groups of coprime order.

Suppose then that neither ϕH not ϕK are trivial. We may regard G = HKC as an

internal semidirect product of HK by C, where HK is an internal direct product of H and

K. By (8), it suffices to prove

µ(G) ≥ µ(HC) + µ(KC) . (9)

Let C be a collection of subgroups of G that affords a minimal faithful permutation rep-

resentation of G. Since |H| and |K| are coprime, subgroups of HK have the form H0K0

for some H0 ≤ H and K0 ≤ K. By Lemma 2.6(a), subgroups of G that are not subgroups

of HK have the form H0K0C
g for some H0 ≤ H, K0 ≤ K and g ∈ G, such that H0K0 is

normal in H0K0C
g. By a result of Johnson [11, Lemma 1], we may assume that all elements

of C are meet irreducible, so therefore have the form

H0K , HK0 , H1KC
x or HK1C

y

for some H0, H1 ≤ H, K0,K1 ≤ K and x, y ∈ G. In these respective cases, note that

coreG(H0K) = coreHC(H0)K , coreG(HK0) = H coreKC(K0) ,

and, by Sylow theory and Lemma 2.6(c),

coreG(H1KC
x) =

{
coreHC(H1)KC if q divides |coreG(H1KC

x)|,
coreHC(H1)K otherwise,

and

coreG(HK1C
y) =

{
H coreKC(K1)C if q divides |coreG(HK1C

y)|,
H coreKC(K1) otherwise.
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Put

DH = {H0 | H0 ≤ H and H0K ∈ C } ,
EH = {H1C | H1 ≤ H and H1KC

x ∈ C for some x ∈ G} ,
DK = {K0 | K0 ≤ K and HK0 ∈ C } ,
EK = {K1C | K1 ≤ K and HK1C

y ∈ C for some y ∈ G} .

By inspection, the index sum of elements of C in G is equal to the index sum of elements

of DH ∪ EH in HC added to the index sum of elements of DK ∪ EK in KC. Hence, to

complete the proof of (9), it suffices to show that DH ∪ EH and DK ∪ EK afford faithful

representations of HC and KC respectively. Observe that

coreHC

( ⋂
H0∈DH

H0 ∩
⋂

H1C∈EH

H1

)
K ∩ H coreKC

( ⋂
K0∈DK

K0 ∩
⋂

K1C∈EK

K1

)
⊆ coreG

(⋂
C
)

= {1} .

In particular,

coreHC

( ⋂
H0∈DH

H0 ∩
⋂

H1C∈EH

H1

)
= {1} .

If DH 6= ∅ then immediately we have

coreHC

(⋂
(DH ∪ EH)

)
= {1} .

Suppose that DH = ∅. If EH = ∅ then DK ∪EK 6= ∅ so that H ⊆ coreG
(⋂

C
)

= {1}, which

is impossible. Hence EH 6= ∅ and

coreHC

( ⋂
H1C∈EH

H1

)
= {1} .

If coreHC(H1C) contains an element of order q for all H1C ∈ EH then, in each case,

coreHC(H1C) = coreHC(H1)C, so that

C = coreHC

( ⋂
H1C∈EH

H1

)
C =

⋂
H1C∈EH

coreHC(H1C)

is a normal subgroup of HC, contradicting that ϕH is nontrivial. Hence, for at least one

H1C ∈ EH , we have coreHC(H1C) = coreHC(H1), so that

coreHC
(⋂

EH
)

= coreHC

( ⋂
H1C∈EH

H1C

)
= coreHC

( ⋂
H1C∈EH

H1

)
= {1} .

This proves that DH∪EH affords a faithful representation of HC. Similarly DK∪EK affords

a faithful representation of KC, and this completes the proof of (9). �

Example 2.9. Let G be the holomorph of C3 × C5, that is,

G = (C3 × C5) oid Aut(C3 × C5) ∼= (C3 × C5) o (C2 × C4) .
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We may regard G = HKCD as an internal semidirect product of a direct product HK by

another direct product CD, where H = 〈h〉 ∼= C3, K = 〈k〉 ∼= C5, C = 〈c〉 ∼= C2
∼= Aut(C3)

and D = 〈d〉 ∼= C4
∼= Aut(C5). Then µ(G) ≥ µ(C3 × C5) = 8 and

G ∼= 〈h, k, c, d |h3 = k5 = c2 = d4 = 1 = [h, k] = [c, d] = [h, d] = [k, c], hc = h−1, kd = k2〉
∼= 〈 (1 2 3), (4 5 6 7 8), (1 2), (4 5 7 6) 〉 ,

which verifies that µ(G) = 8. Put C1 = 〈cd2〉, C2 = 〈cd〉, G1 = HKC1 and G2 = HKC2.

Then

G1
∼= (C3 × C5) oϕ C2

∼= 〈 (1 2 3), (4 5 6 7 8), (1 2)(4 7)(5 6) 〉
where ϕ induces conjugation action that is inversion, and both C3 oϕ1 C2 and C5 oϕ2 C2

are dihedral, where ϕ1 = ϕC3
and ϕ2 = ϕC5

are defined by (7), and both nontrivial. As

predicted by Theorem 2.8,

µ(G1) = 8 = 3 + 5 = µ(C3 oϕ1 C2) + µ(C5 oϕ2 C2) .

However

G2
∼= (C3 × C5) oψ C4

∼= 〈 (1 2 3), (4 5 6 7 8), (1 2)(4 5 7 6) 〉 ,

where C3oψ1 C4 is generalised quaternion of degree 7 (see Example 1.3) and C5oψ2 C4 has

degree µ(C5) = 5, by Lemma 2.4, where ψ1 = ψC3
and ψ2 = ψC5

are defined by (7). Here

µ(G2) = 8 < 12 = 7 + 5 = µ(C3 oψ1 C4) + µ(C5 oψ2 C4) .

This is the smallest example where we do not get equality throughout in (8), yet all of the

homomorphisms defining the semidirect products are nontrivial.

3. Preliminaries on group actions on a vector space

The aim in this section is to develop enough machinery to calculate, in the next section,

the minimal degrees of all semidirect products of elementary abelian p-groups by cyclic

groups of order q where p and q are different primes. We exploit the fact that an elementary

abelian p-group is a vector space over the field Fp of p elements, so that group actions may

be analysed using standard methods from linear algebra. The machinery also allows us,

in this section, to characterise group isomorphism for this particular class of semidirect

products.

Let V be an n-dimensional vector space over Fp, written additively, and T : V → V an

invertible linear transformation. Define the semidirect product of V by 〈T 〉 (or more simply

the semidirect product of V by T ) to be

V o T = V o 〈T 〉 = {(v, T i) | v ∈ V, i ∈ Z} , (10)

with binary operation

(v, T i)(w, T j) = (v + T i(w), T i+j) , (11)

for v, w ∈ V and i ∈ Z. Then V o T becomes a group. A subspace of V that is T−invariant

is referred to simply as invariant. Thus invariant subspaces of V become normal subgroups

of V o T . We define the core of any subspace W of V , denoted by core(W ), to be the

largest invariant subspace of V contained in W . Thus core(W ) = coreG(W ), in the sense

defined earlier, as the largest normal subgroup of G contained in W , where G = V o T .
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We suppose throughout, unless stated otherwise, that T 6= id and T q = id, where id is

the identity linear transformation and q is a prime different to p. The characteristic and

minimal polynomials of T are referred to as χT = χT (x) and φT = φT (x) respectively. By

choosing a basis for V we may identify V with the vector space Fnp of column vectors of

length n with entries from Fp and T with the n × n matrix of the linear transformation

with respect to the basis, and so regard T (v) = Tv as a matrix product. Under these

identifications

V o T ∼= Cnp oϕ Cq

under the map 
 λ1

...

λn

 , T i
 7→ ((aλ1 , . . . , aλn), b−i) ,

where we write Cp = 〈a〉, Cq = 〈b〉, and ϕ : Cq → Aut(Cnp ) is the homomorphism induced

by bϕ : (aλ1 , . . . , aλn) 7→ (aλ
′
1 , . . . , aλ

′
n) where T

 λ1
...

λn

 =

 λ′1
...

λ′n

 .
Lemma 3.1. Let T1 and T2 be n × n matrices over Fp of multiplicative order q and put

V = Fnp for some positive integer n. Then V o T1 ∼= V o T2 if and only if T1 and some

power of T2 are conjugate. In particular, if T1 and T2 are conjugate, then V o T1 ∼= V o T2.

Proof. If T1 and T k2 are conjugate, for some k ∈ Z, then k 6= 0 modulo q, T1 = P−1T k2 P for

some invertible matrix P , and the mapping

(v, T i1) 7→ (Pv, T ki2 ) , (12)

for v ∈ V and i ∈ Z, is an isomorphism from V o T1 to V o T2.

Suppose conversely that θ : V o T1 → V o T2 is an isomorphism. Then

(0, T1)θ = (w, T k2 )

for some w ∈ V and integer k. In fact, we will show T1 and T k2 are conjugate. Note that

(v, I)θ ∈ V × {I}

for all v ∈ V , since the order of (v, I) divides p and θ is a homomorphism. For i = 1, . . . , n,

denote by ei the column vector with zero everywhere except for 1 in the i-th place (a

standard basis vector). All vectors in V are linear combinations of e1, . . . , en. For λ ∈ Fp =

{0, . . . , p− 1}, define, for v ∈ V ,

λ(v, I) = (λv, I) = (v, I)λ .

Since θ is a homomorphism, we have, for all v ∈ V ,

(λ(v, I))θ = λ((v, I)θ) .

For each i = 1, . . . , n, we have

(ei, I)θ = (pi, I)

for some pi ∈ V . Put

P = [p1 . . . pn] ,
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the matrix whose columns are just p1, ..., pn. Observe that pi = Pei for i = 1 to n. Let

v ∈ V , so v =
∑n

i=1 λiei for some λi ∈ Fp. Then

(v, I)θ =

(
n∑
i=1

λiei, I

)
θ =

(
n∏
i=1

λi(ei, I)

)
θ =

n∏
i=1

λi ((ei, I)θ) =

n∏
i=1

λi(pi, I)

=

(
n∑
i=1

λipi, I

)
=

(
n∑
i=1

λiPei, I

)
=

(
P

(
n∑
i=1

λiei

)
, I

)
= (Pv, I) .

It is immediate, since θ is an isomorphism, that P is invertible. On the one hand,

(v, T1)θ = ((v, I)(0, T1))θ = ((v, I)θ)((0, T1)θ) = (Pv, I)(w, T k2 ) = (Pv + w, T k2 ) ,

whilst, on the other hand,

(v, T1)θ = ((0, T1)(T
−1
1 v, I))θ = (0, T1)θ(T

−1
1 v, I)θ = (w, T k2 )(PT−11 v, I)

= (w + T k2 PT
−1
1 v, T k2 ) .

Hence, for all v ∈ V , Pv = T k2 PT
−1
1 v, so v = P−1T k2 PT

−1
1 v. Thus P−1T k2 PT

−1
1 = I, so

T1 = P−1T k2 P , that is, T1 and T k2 are conjugate, completing the proof of the lemma. �

Thus, in calculating minimal degrees later, we may assume T is in primary rational

canonical form. By Maschke’s theorem, since p does not divide q = |〈T 〉|, all invariant

subspaces of V have invariant complements, so that the minimal polynomial φT is square-

free with regard to irreducible factors. All blocks in the primary rational canonical form of

T become companion matrices of monic irreducible polynomials, and the restriction of T

to an indecomposable subspace of V will always have an irreducible minimal polynomial.

The canonical form is thus characterised uniquely, up to the order of blocks, by χT . The

number of blocks corresponding to one particular irreducible factor is just the multiplicity

of that factor in χT . An irreducible factor of φT = φT (x) divides xq − 1, so is either x− 1

or a polynomial of the form

πα(x) = (x− α)(x− αp) . . . (x− αps−1
) (13)

where s is the multiplicative order of p modulo q and α is a primitive qth root of 1 in an

extension field F = Fp(α) of Fp (where F = Fp if s = 1).

Fix α and F = Fp(α) from the previous paragraph. Then β ∈ F is a primitive qth root

of 1 if and only if β is a nontrivial power of α. Recall that n = dimV . Let Xn be the set

of nonnegative compositions of n in q parts:

Xn = {(k, k1, . . . , kq−1) | k, k1, . . . , kq−1 ≥ 0 and k + k1 + . . .+ kq−1 = n} .

Consider x = (k, k1, . . . , kq−1) ∈ Xn and define the following polynomial Px(y) ∈ Fp[x, y],

where x and y are indeterminates:

Px(y) = (x− 1)k(x− y)k1(x− y2)k2 . . . (x− yq−1)kq−1 .

Note, when x = (n, 0, . . . , 0), that Px(α) = (x − 1)n, the characteristic polynomial of the

n × n identity matrix. In general, Px(α) ∈ F[x], and Px(α) ∈ Fp[x] if and only if Px(α) is

a product of polynomials of the form x − 1 and πβ(x), defined as in (13), where β ranges

over nontrivial powers of α. Further, if Px(α) ∈ Fp[x], then Px(α) = χT where T is the



MINIMAL REPRESENTATIONS OF SEMIDIRECT PRODUCTS 13

matrix direct sum of companion matrices of irreducible polynomials, and it follows, by a

comparison of multiplicities of eigenvalues, that for i ∈ {1, . . . , q − 1},

Px(αi) = χT i . (14)

Now put

X∗n = {x ∈ Xn | Px(α) ∈ Fp[x] and x 6= (n, 0, . . . , 0) }

and

Πn = {Px(α) | x ∈ X∗n} .

Then Πn is precisely the set of characteristic polynomials of n × n matrices over Fp of

multiplicative order q. Moreover, the map θ : X∗n → Πn, x 7→ Px(α) is a bijection.

The field Fq has a primitive element, so we can choose i ∈ {1, . . . , q − 1} such that the

multiplicative order of i modulo q is q − 1. Observe that, if x ∈ X∗n, then

Px(αi) = Pxν

for some xν ∈ X∗n. Then ν becomes a well-defined permutation of X∗n. This, in turn,

induces a permutation ν̂ of Πn given by the following rule

ν̂ : Px(α) 7→ Px(αi) = Pxν(α) . (15)

Note that ν, ν̂ and θ are intertwined, in the sense that νθ = θν̂.

Lemma 3.2. Let x1,x2 ∈ X∗n. The following are equivalent:

(i) x1 and x2 lie in the same orbit of ν.

(ii) Px1(α) and Px2(α) lie in the same orbit of ν̂.

(iii) There exists a matrix T of multiplicative order q and ` ∈ {1, . . . , q − 1} such that

Px1(α) = χT and Px2(α) = χ
T `

.

Proof. Certainly (i) and (ii) are equivalent since ν, ν̂ and θ are intertwined. Suppose (ii)

holds. Hence there is some j ≥ 0 such that

Px2(α) =
(
Px1(α)

)
ν̂j = Px1νj (α) = Px1(αi

j
) = Px1(α`) ,

where ` = ij . Certainly, ` ∈ {1, . . . , q − 1} and Px1(α) = χT for some matrix T of order q.

Then Px2(α) = χ
T `

, by (14), so (iii) holds.

Suppose (iii) holds, so there exists a matrix T of order q and ` ∈ {1, . . . , q− 1} such that

Px1(α) = χT and Px2(α) = χ
T `

. But, ` = ij for some j ∈ {1, . . . , q − 1}, by primitivity of

i. It follows, again by (14), that

Px2(α) = χT ` = Px1(α`) = Px1(αi
j
) = Px1νj (α) ,

so that x2 = x1ν, and (i) holds, completing the proof. �

Note that everything simplifies if q = 2: α = −1 ∈ F = Fp,

Πn = {(x− 1)k(x+ 1)k1 | k ≥ 0, k1 > 0 and k + k1 = n} (16)

and ν and ν̂ are identity permutations.

We can now characterise group isomorphism for our class of semidirect products:
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Theorem 3.3. For i = 1 and 2, let Vi be an ni-dimensional vector space over Fpi and

Ti : Vi → Vi be a linear transformation of order qi, where pi and qi are distinct primes.

Then V1 o T1 ∼= V2 o T2 if and only if p1 = p2, q1 = q2, n1 = n2 and both χT1 and χT2 lie

in the same orbit of ν̂, defined as above where n = n1, p = p1 and q = q1.

Proof. Suppose that V1oT1 ∼= V2oT2. Since neither semidirect products is direct, the base

groups are isomorphic, and the extending groups are isomorphic. It follows that p1 = p2,

q1 = q2 and n1 = n2. By Lemma 3.1, T2 is conjugate to some power of T1, say T `1 , for some

` ∈ {1, . . . , q1 − 1}. Hence χT1 and χT2 = χ
T1
` lie in the same orbit of ν̂, by Lemma 3.2.

Suppose conversely that p1 = p2 = p, q1 = q2 = q, n1 = n2 = n and χT1 and χT2 lie

in the same orbit of ν̂. Then χT1 = Px1(α) and χT2 = Px2(α) for some x1,x2 ∈ X∗n. By

Lemma 3.2, Px2(α) = χ
T `1

for some `, so that T2 and T `1 are conjugate, since they have the

same characteristic polynomial. Thus V1 o T1 ∼= V2 o T2, by Lemma 3.1. �

Example 3.4. Take n = 3, p > 2 and q = 2. This is an instance of (16), where X∗3 =

{(2, 1), (1, 2), (0, 3)},

Π3 = {(x− 1)2(x+ 1), (x− 1)(x+ 1)2, (x− 1)3} ,

and ν and ν̂ are trivial. For each p, there are three isomorphism classes, represented by the

diagonal matrices

 1 0 0

0 1 0

0 0 −1

,

 1 0 0

0 −1 0

0 0 −1

 and

 −1 0 0

0 −1 0

0 0 −1

 . If T is any of

these matrices and V = F3
p, then µ(V o T ) = 3p, by Lemma 2.4 (or by Lemma 4.2 below).

Example 3.5. Take n = 2, p = 7 and q = 3. Then s = 1 and i = 2. We may take α = 2.

We have X∗2 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)},

Π2 = {(x− 1)(x− 2), (x− 1)(x− 4), (x− 2)(x− 4)} ,

and ν and ν̂ are transpositions that fix (0, 1, 1) and (x− 2)(x− 4) respectively, so each has

two orbits. Thus there are two isomorphism classes, represented by the diagonal matrices[
1 0

0 2

]
and

[
2 0

0 4

]
. If T is either of these matrices and V = F2

7, then µ(V o T ) = 14,

by Lemma 2.4 (or by Lemma 4.2 below), and we get the following minimal permutation

representations, for the group with the first matrix:

〈 (1 2 3 4 5 6 7), (8 9 10 11 12 13 14), (9 10 12)(11 14 13) 〉 ,

and for the second:

〈 (1 2 3 4 5 6 7), (8 9 10 11 12 13 14), (2 3 5)(4 7 6)(9 12 10)(11 13 14) 〉 .

Example 3.6. Take n = 6, p = 13 and q = 7. Then s = 3 and, in generating ν and ν̂,

we may take i = 2. The relevant irreducible polynomials, other than x − 1, have degree

(q − 1)/s = 2, and we may presume α is chosen such that they are

r1 = r1(x) = (x− α)(x− αp) = (x− α)(x− α6) = x2 + 3x+ 1 ,

r2 = r2(x) = (x− α2)(x− α2p) = (x− α2)(x− α5) = x2 + 6x+ 1 ,

r3 = r3(x) = (x− α3)(x− α3p) = (x− α3)(x− α4) = x2 + 5x+ 1 .
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We denote a composition of 6 in 7 parts as a string of digits. Arranged in orbits of ν,

X∗6 = {4100001, 4010010, 4001100} ∪ {2200002, 2020020, 2002200}
∪ {2110011, 2101101, 2011110} ∪ {0300003, 0030030, 0003300}
∪ {0210012, 0021120, 0102201} ∪ {0120021, 0012210, 0201102} ∪ {0111111} ,

and, arranged in orbits of ν̂,

Π6 =
{

(x− 1)4r1, (x− 1)4r2, (x− 1)4r3
}
∪
{

(x− 1)2r21, (x− 1)2r22, (x− 1)2r23
}

∪
{

(x− 1)2r1r2, (x− 1)2r2r3, (x− 1)2r1r3
}
∪ {r31, r32, r33}

∪ {r21r2, r22r3, r1r23} ∪ {r1r22, r2r23, r21r3} ∪ {r1r2r3} .

The intertwining bijection θ maps elements of X∗6 to Π6 exactly in the order listed above.

Thus there are 7 isomorphism classes for V o T , where V = F6
13 and T is a 6 × 6 matrix

of order 7. Note that here q < ps−1 for purposes of reading alternatives in the formulae

of Theorems 4.5 and 4.9 below. If G1, G2, G3 are groups of the form V o T representing

the first 3 isomorphism classes, in the order of orbits given above, then, by formula (24),

µ(G1) = 3p + pq = 130, µ(G2) = 2pq = 182 and µ(G3) = p + pq = 104. If G4, G5, G6, G7

represent the last 4 isomorphism classes, in order, then, by formula (17), µ(G4) = 3pq = 273,

µ(G5) = µ(G6) = 2pq = 182 and µ(G7) = pq = 91.

Our techniques in principle allow us to determine when two groups in our class are

isomorphic, but also to exhibit isomorphisms when they exist.

Example 3.7. Consider the following groups:

H1 = 〈 a1, . . . , a6, b | a13i = b7 = 1 = [ai, aj ] for all i and j 6= i,

ab1 = a2, a
b
2 = a−11 a−32 , ab3 = a4, a

b
4 = a−13 a−54 , ab5 = a6, a

b
6 = a−15 a−66 〉 ,

H2 = 〈 a1, . . . , a6, b | a13i = b7 = 1 = [ai, aj ] for all i and j 6= i, ab1 = a1a2, a
b
2 = a−51 a−42 ,

ab3 = a1a
3
2a
−2
4 , ab4 = a1a2a

−6
3 a−54 , ab5 = a1a

3
2a
−1
3 a−34 a5a6, a

b
6 = a1a2a

−1
3 a−14 a−55 a−46 〉 ,

H3 = 〈 a1, . . . , a6, b | a13i = b7 = 1 = [ai, aj ] for all i and j 6= i, ab1 = a1a2, a
b
2 = a61a

−6
2 ,

ab3 = a31a
5
2a
−2
3 a−44 , ab4 = a−21 a−22 a−53 a−44 , ab5 = a31a

5
2a
−3
3 a−54 a5a6,

ab6 = a−21 a−22 a23a
2
4a

6
5a
−6
6 〉 .

Then Hk
∼= V o Tk, for k = 1, 2, 3, where V = F6

13 and, using r1, r2, r3 from Example 3.6,

T1 =



0 −1 0 0 0 0

1 −3 0 0 0 0

0 0 0 −1 0 0

0 0 1 −3 0 0

0 0 0 0 0 −1

0 0 0 0 1 −6


,
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which is in rational canonical form, and clearly χT1 = r21r2,

T2 =



1 −5 1 1 1 1

1 −4 3 1 3 1

0 0 0 −6 −1 −1

0 0 −2 −5 −3 −1

0 0 0 0 1 −5

0 0 0 0 1 −4


and T3 =



1 6 3 −2 3 −2

1 −6 5 −2 5 −2

0 0 −2 −5 −3 2

0 0 −4 −4 −5 2

0 0 0 0 1 6

0 0 0 0 1 −6


.

It is straightforward to verify that χT2 = r21r3 and χT3 = r2r
2
3. These lie in the same orbit of

ν̂ (see Example 3.6), so H2
∼= H3. However, H2 6∼= H1, since χT1 lies in a different orbit. To

find an explicit isomorphism between H2 and H3, one can check that T2 = P−1T 2
3P where

P =



−2 −3 −2 −1 −2 −1

1 −1 0 4 0 4

0 0 0 −2 2 1

0 0 1 −5 0 −4

0 0 0 0 −2 −3

0 0 0 0 1 −1


.

The mapping (12) translates into an isomorphism from H2 to H3, identifying the generators

a1, . . . , a6 with standard basis vectors and b−1 with a matrix, induced by

a1 7→ a−21 a2 , a2 7→ a−31 a−12 , a3 7→ a−21 a4 , a4 7→ a−11 a42a
−2
3 a−54 ,

a5 7→ a−21 a23a
−2
5 a6 , a6 7→ a−11 a42a3a

−4
4 a−35 a−16 , b 7→ b2 .

The following two lemmas are probably well-known, and the first part of the first lemma

is a variation of the familiar modular law.

Lemma 3.8. Let W be a subspace of a vector space V . Suppose that V = K⊕K ′ for some

subspaces K and K ′ such that K is also a subspace of W . Put L = W ∩K ′. Then

W = K ⊕ L .

The codimension of L in K ′ is the same as the codimension of W in V . If, further,

T : V → V is a linear transformation and K is the core of W with respect to T then L is

core-free.

Proof. All of the claims follow quickly from the definitions. �

Lemma 3.9. Let T : V → V be an invertible linear transformation such that φT has degree

d. Let W be a subspace of V of codimension k. Then core(W ) has codimension at most kd.

In particular, if W has codimension 1 then core(W ) has codimension at most d.

Proof. The claim follows from the fact that core(W ) = W ∩ T (W ) ∩ . . . ∩ T d−1(W ) and

W, T (W ), . . . , T d−1(W ) all have the same codimension in V , since T is invertible. �

Proposition 3.10. Let T : V → V be an invertible linear transformation of a finite di-

mensional vector space V such that φT is a product of distinct irreducible factors. Let W

be a codimension 1 subspace of V . Then any invariant complement of core(W ) in V is a

sum of indecomposable subspaces with distinct minimal polynomials.
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Proof. Let φT (x) = r1(x) . . . rm(x) where r1, . . . , rm are the distinct irreducible factors. Put

Vi = ker(ri(T )) and Wi = core(W ) ∩ Vi for i = 1, . . . ,m. Then core(W ) = W1 ⊕ . . .⊕Wm.

Let i ∈ {1, . . . ,m}. Let ki be the number of indecomposable components of V having

minimal polynomial ri, which is just the number of indecomposable components of Vi. To

complete the proof, therefore, by the Krull-Schmidt theorem, it suffices to show that the

number of indecomposable components of Wi is ki or ki − 1. Let di be the degree of ri.

Observe that Wi = coreVi(W∩Vi). But W∩Vi has codimension at most 1 in Vi. Thus Wi has

codimension at most di in Vi, by Lemma 3.9. But di is the dimension of any indecomposable

component of Vi, so Wi contains at least ki − 1 indecomposable components, completing

the proof. �

Lemma 3.11. Let T : V → V be a linear transformation such that φT = r1 . . . rm for

distinct irreducible polynomials r1, . . . , rm. Suppose that V = V1 ⊕ . . . ⊕ Vm where Vi =

ker(ri(T )) is indecomposable for i = 1, . . . ,m. Let Bi be a basis for Vi for i = 1, . . . ,m and

put B = B1 ∪ . . . ∪Bm, which is a basis for V . Put

V =
{ ∑
b∈B

λbb ∈ V
∣∣∣ ∑
b∈B

λb = 0
}
.

Then V is a core-free subspace of codimension 1. Conversely, if W is a core-free subspace

of codimension 1 then we can choose a basis Bi for Vi for i = 1, . . . ,m such that W = V .

Proof. Put n = dim(V ). If n = 1 then all of the claims hold trivially, so we may suppose

throughout that n ≥ 2.

If B = {v1, . . . , vn} then {v1 − v2, . . . , v1 − vn} is a basis for V , so dim(V ) = n − 1.

Because r1 . . . , rm are distinct, V1, . . . , Vm are the unique indecomposable subspaces, and

none of these is contained in V , so core(V ) = {0}.
Conversely, let W be a codimension 1 subspace of V such that core(W ) = {0}. Choose

any basis B′1 for W ∩ V1. Certainly, W ∩ V1 has codimension 1 in V1, since core(W ) = {0}.
Hence B′1 ∪ {v1} is a basis for V1 for some v1 ∈ V1. Put

B1 = {b+ v1 | b ∈ B′1} ∪ {v1} .

Then B1 is also a basis for V1. Ifm = 1 then V = V1 and it follows quickly from the definition

that V = W . This starts an induction. Suppose m > 1 and put V̂ = V2 ⊕ . . .⊕ Vm, so that

V = V1 ⊕ V̂ . Certainly, W ∩ V̂ has codimension 1 in V̂ , since core(W ) = {0}. Suppose,

as an inductive hypothesis, that we have bases B2, . . . , Bm for V2, . . . , Vm respectively, such

that

W ∩ V̂ =
{ ∑
c∈C

λcc ∈ V̂
∣∣∣ ∑
c∈C

λc = 0
}
,

where C = B2 ∪ . . . ∪ Bm. Observe that (W ∩ V1) ⊕ (W ∩ V̂ ) has codimension 1 in W , so

we may choose some

w ∈ W\
(
(W ∩ V1)⊕ (W ∩ V̂ )

)
.

But w = v + v̂ for some unique w ∈ V1 and v̂ ∈ V̂ . If one of v or v̂ is in W then both are,

contradicting the choice of w. Hence v, v̂ 6∈W . But v̂ =
∑

c∈C λcc for some scalars λc. Put

λ =
∑
c∈C

λc .



18 DAVID EASDOWN AND MICHAEL HENDRIKSEN

By the inductive hypothesis, λ 6= 0. Now put

B1 =
{
b− 1

λ
v
∣∣∣ b ∈ B′1} ∪ {− 1

λ
v
}
,

so that B1 is a basis for V1. Finally, put B = B1 ∪ . . .∪Bm and form V̂ with respect to B.

But,

w = v + v̂ = −λ
(
− 1

λ
v
)

+
∑
c∈C

λcc

and −λ+
∑

c∈C λc = −λ+ λ = 0, so that w ∈ V̂ , by definition. Noting that

W = 〈w〉 ⊕ (W ∩ V1)⊕ (W ∩ V̂ ) ,

it is straightforward, using the inductive hypothesis, to verify that W ⊆ V . Because

dim(W ) = n−1 = dim(V ), we have W = V̂ , establishing the inductive step, and completing

the proof of the lemma. �

We call the subspace V defined in the statement of the previous lemma, the canonical

core-free subspace associated with V (depending of course on the choice of basis).

Proposition 3.12. Let W be a subspace of a finite dimenional vector space V over Fp
acted on by an invertible linear transformation T : V → V of order q, where p and q are

distinct primes. Then W has codimension 1 if and only if some (and hence every) invariant

complement core(W )′ of core(W ) in V is a sum of indecomposable components with distinct

minimal polynomials and

W = core(W )⊕ core(W )′

for some canonical core-free subspace core(W )′ of core(W )′.

Proof. Note first that the hypotheses guarantee that T is invertible and φT is a product

of distinct irreducible polynomials. The “if” direction is immediate by the construction

of Lemma 3.11. Suppose then that W has codimension 1, and, by Maschke’s theorem,

choose some invariant complement core(W )′ of core(W ) in V . By Proposition 3.10, the

indecomposable components of core(W )′ have distinct minimal polynomials. By Lemma

3.8,

W = core(W )⊕ (W ∩ core(W )′) ,

and W ∩ core(W )′ is core-free of codimension 1 in core(W )′. By Lemma 3.11, there is a

choice of basis for core(W )′ such that W ∩ core(W )′ = core(W )′, and the proposition is

proved. �

4. Minimal degrees when the base group is elementary abelian

Throughout this section p and q are distinct primes. Let

V = Fnp ∼= Cnp

be an n-dimensional vector space over the field Fp of p elements, for some fixed positive

integer n, and T an n × n matrix with entries from Fp of multiplicative order q. Recall

that, if W is a subspace of V that is invariant under this action, then W has an invariant

complement W ′ in V . The minimal polynomial φT is a product of distinct irreducible

polynomials, all of degree s where s is the multiplicative order of p modulo q, with the
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possible exception (when s ≥ 2) of a factor x − 1. Note that s = 1 if and only if Fp has a

primitive qth root of unity, in which case all the irreducible factors of φT are linear.

Proposition 4.1. Let G = V o T . There exist nonnegative integers ` and t and a collection

C = D ∪ E affording a minimal faithful representation of G such that

D = {D1, . . . , D`} and E = {E1〈T 〉 , . . . , Et〈T 〉}

for some codimension 1 subspaces D1, ..., D` of V , and invariant subspaces E1, ..., Et of V ,

each of which complements an indecomposable subspace (where we interpret ` = 0 and t = 0

to mean D = ∅ and E = ∅ respectively).

Note that it is possible to have t = 1 and E1 = {0}, the complement of V in the case that

V is indecomposable.

Proof. There is no confusion in regarding G = V C as an internal semidirect product of V

by C ∼= 〈T 〉 ∼= Cq, but still retaining vector space terminology and additive notation for

the group operation restricted to V . By [11, Lemma 1] there exists a collection C of meet-

irreducible subgroups affording a minimal faithful representation of G. Then C = D ∪ E

where D , possibly empty, comprises all subgroups in C of index divisible by q, and E ,

possibly empty, consists of all subgroups in C of order divisible by q.

In particular, elements of D are subgroups of V . By Lemma 2.7, these must all be proper

subgroups of V , since V is normal in G, so, being meet-irreducible, must have codimension

1 as subspaces of V .

Let K ∈ E , so q divides |K|. Put W = K ∩ V . Note that V is elementary abelian,

so all of its subgroups are normal in V . By (a) and (b) of Lemma 2.6, K = W 〈T 〉g for

some g ∈ G and W is an invariant subspace of V (being normal in G). Certainly W 6= V

(for otherwise G = K ∈ C , contradicting minimality), so V = W ⊕W ′ for some nontrivial

invariant subspace W ′ of V . If W ′ is not indecomposable then W ′ = W ′1 ⊕W ′2 for some

nontrivial invariant subspaces W ′1 and W ′2 of V , so

W = (W ⊕W ′1) ∩ (W ⊕W ′2)

and K = K1 ∩K2 where K is a proper subgroup of Ki = (W ⊕W ′i )〈T g〉 for i = 1 and 2,

contradicting that K is meet-irreducible. Hence W ′ is indecomposable, and the proposition

is proved. �

In what follows we develop a complete catalogue, namely, (17) and (24) below, of formulae

for µ(V o T ). Note, throughout, that T 6= I, so φT (x) 6= x − 1. The next two theorems

cover all possibilities, where s is the order of p modulo q. In the first case (Theorem 4.5), we

investigate what happens when all of the factors of the minimal polynomial have the same

degree s ≥ 1. In the second case (Theorem 4.9), we investigate the remaining possibilities,

namely, when x− 1 is a factor and all other factors have the same degree s ≥ 2.

Lemma 4.2. If G = V o T , where all irreducible factors of φT are linear, then µ(G) = np.

Proof. Suppose that all irreducible factors of φT are linear. Without loss of generality, we

may suppose T is diagonal and V = 〈v1, . . . , vn〉 where v1, . . . , vn are eigenvectors for T .

For i = 1, . . . , n, put

Hi = 〈v1, . . . , vi−1, vi+1, . . . , vn〉 .
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Then {H1, . . . ,Hn} affords a minimal faithful representation of V by T -invariant subspaces

of degree np. By Lemma 2.4, µ(G) = µ(V ) = np. �

Illustrations of the phenomenon of Lemma 4.2 appear above in Examples 2.5 and 3.5.

Lemma 4.3. Let p and q be distinct primes and s the multiplicative order of p modulo q.

Suppose that s ≥ 2. Let a be the smallest integer such that q < aps−1. Then a = 1, or a = 2

and q = 1 + p+ . . .+ ps−1. If s = a = 2 then p = 2 and q = 3.

Proof. Suppose that a > 1, so ps−1 < q. Note that q divides ps−1 = (p−1)(1+p+. . .+ps−1).

If q divides p−1 then q < p ≤ ps−1, a contradiction.. Hence q divides 1 +p+ . . .+ps−1 and

ps−1 < q < 1 + p+ . . .+ ps−1. It follows that q = 1 + p+ . . .+ ps−1 < 2ps−1 and a = 2. �

Remark 4.4. A generalised Mersenne prime q has the form q = 1 + p+ . . .+ pk−1 for some

prime p and integer k (which includes the usual Mersenne primes of the form 2k − 1). The

previous lemma asserts that, in our context, if a = 2 and s ≥ 2 then q must be a generalised

Mersenne prime. It is not known if there are infinitely many such primes.

Theorem 4.5. Suppose that r1, . . . , rm are distinct irreducible polynomials over Fp of degree

s, where s is the order of p modulo q, such that

φT = r1 . . . rm and χT = rk11 . . . rkmm .

We may suppose k1 ≥ k2 ≥ . . . ≥ km. Then

µ(V o T ) =


np if s = 1 ,

k1pq if s > 1 and q < ps−1 ,

k1p
s if s > 1, m = 1 and q > ps−1 ,

k2pq + (k1 − k2)ps if s > 1, m > 1 and q > ps−1 .

(17)

Proof. The first alternative in (17) is given by Lemma 4.2, so we may suppose s > 1. Let a

denote the smallest integer such that q < aps−1. By Lemma 4.3, a = 1 or 2. It is convenient,

throughout, to put km+1 = 0. In particular, if m = 1 and a = 2 then ka = k2 = 0. Put

G = V o T = V 〈T 〉 (regarded as an internal semidirect product, mixing addition and

multiplication, without ever causing confusion). We have a direct sum decomposition

V =

m⊕
i=1

ki⊕
i=1

Vij =
⊕

(i,j)∈I

Vij ,

where Vij is an indecomposable subspace of V such that T |Vij has minimal polynomial ri
for each (i, j) ∈ I, where I = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ ki}. For J ⊆ I, put

VJ =
⊕

(i,j)∈J

Vij ,

so that V = VI = VJ ⊕ VI\J . If W = VJ for some J ⊆ I then put W ′ = VI\J , so that

V = W ⊕W ′.
Note that if ka = 0 then m = 1 and a = 2. Suppose for the time being that ka ≥ 1, so

either a = 1, or a = 2 and m ≥ 2. Because ka ≥ ka+1 ≥ . . . ≥ km > km+1 = 0, we have

that, for each j = 1 to ka, there exists some largest `j ∈ {a, . . . ,m} such that

k`j ≥ j ≥ k`j+1 ,
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and we put

Wj =

`j⊕
i=1

Vij ,

so that T |Wj has minimal polynomial r1 . . . r`j . In particular, `1 = m, since km ≥ 1 > 0 =

km+1, and T |W1 has minimal polynomial r1 . . . rm. Thus

V = VX ⊕
ka⊕
j=1

Wj (18)

where X = {(1, j) | k2 < j ≤ k1} if a = 2 and k1 > k2, and X = ∅ otherwise, in which case

we interpret VX = {0}. For j = 1 to ka, put

Hj = Wj ⊕W ′j ,

where Wj is a canonical codimension 1 subspace of Wj as described in Lemma 3.11, so that

core(Wj) = {0}, core(Hj) = W ′j and |G : Hj | = pq. For (1, j) ∈ X, put

Kj = V ′1j〈T 〉 ,

so that core(Kj) = V ′1j and |G : Kj | = ps. Now put

C = {H1, . . . ,Hka } ∪ {Kj | (1, j) ∈ X } . (19)

Then

core
(⋂

C
)

=

ka⋂
j=1

W ′j ∩
⋂

(1,j)∈X

V ′1j = VX ∩ V ′X = {0} ,

so that C affords a faithful representation of G of degree

ka∑
j=1

|G : Hj | +
∑

(1,j)∈X

|G : Kj | = kapq + (k1 − ka)ps .

Note that if ka = 0, so that m = 1 and a = 2, then (18) may be interpreted as V = VI (since

X = I) and (19) may be interpreted as C = {Kj | (1, j) ∈ I }, and the conclusion about

the faithfulness and degree of the representation afforded by C still holds. This proves that,

in all cases,

µ(G) ≤ kapq + (k1 − ka)ps .
We now prove that this formula is also a lower bound for µ(G). By Proposition 4.1, there

exists a collection C = D ∪ E affording a minimal faithful representation of G such that

D = {D1, . . . , D` } and E = {E1〈T 〉 , . . . , Et〈T 〉 }

for some codimension 1 subspaces D1, . . . , D` of V , and invariant subspaces E1, . . . , Et of

V , each of which complements an indecomposable subspace. We interpret ` = 0 and t = 0

to mean D = ∅ and E = ∅ respectively. By Proposition 3.12, for i = 1, . . . , `, we may write

Di = core(Di) ⊕ core(Di)′ = Si ⊕ S′i ,

where we put Si = core(Di)
′. The degree of the representation afforded by C is `pq + tps,

so to complete the proof of the theorem it suffices to show

`pq + tps ≥ kapq + (k1 − ka)ps . (20)



22 DAVID EASDOWN AND MICHAEL HENDRIKSEN

As a stepping stone towards doing this, we will first prove ` ≥ ka. We use the following

claim, which we will prove later:

Claim: We have a decomposition

V = S1 ⊕ . . .⊕ S` ⊕ T1 ⊕ . . .⊕ Tt

for some invariant subspaces S1, . . . , S`, T1, . . . , Tt of V such that, after pos-

sible rewriting of D ,

Di = Si ⊕ S′i and Ej = T ′j ,

where Si is a sum of indecomposable subspaces with distinct minimal poly-

nomials for i = 1, . . . , `, and Tj is indecomposable for j = 1, . . . , t.

Suppose by way of contradiction that ` < ka. Certainly, then, either a = 1 and ` < k1, or

m > 1, a = 2 and ` < k2 ≤ k1. Hence, using the decomposition of V in the Claim, at most

k1 − 1 indecomposables with minimal polynomial r1 appear in S1 ⊕ . . . ⊕ S`, and, when

a = 2, at most k2−1 indecomposables with minimal polynomial r2 also appear. But k1 and

k2 copies of indecomposables with minimal polynomial r1 and r2, respectively, appear in

the decomposition of V . Hence t ≥ a and, without loss of generality, T1 is indecomposable

with minimal polynomial r1, and, in the case a = 2, we may suppose T2 is indecomposable

with minimal polynomial r2. Put

S =

{
T1 ⊕ T ′1 if a = 1 ,

T1 ⊕ T2 ⊕ (T1 ⊕ T2)′ if a = 2 ,

where, in the second case, (T1⊕T2)′ = T ′1∩T ′2 = E1∩E2, which is indeed a complement for

T1 ⊕ T2. But core(S) = E1, if a = 1, and core(S) = E1 ∩E2, if a = 2, so that the collection

C ′ =

{
D ∪ {S} ∪ E \{E1〈T 〉} if a = 1 ,

D ∪ {S} ∪ E \{E1〈T 〉, E2〈T 〉} if a = 2 ,

affords a faithful representation of G, but with degree less than the degree of the represen-

tation afforded by C , since

|G : S| = pq < aps =

{
|G : E1〈T 〉| if a = 1 ,

|G : E1〈T 〉|+ |G : E2〈T 〉| if a = 2 .

This contradicts that C is minimal. Hence ` ≥ ka.
There are at most ` occurrences of indecomposables with minimal polynomial r1 appear-

ing in S1⊕ . . .⊕S`, so at least k1− ` such indecomposables must occur amongst T1, . . . , Tt,

so that t ≥ k1 − `. Thus

`pq + tps = kapq + (`− ka)pq + tps

≥ kapq + (`− ka)(a− 1)ps + ps

{
0 if a = 1 ,

k1 − ` if a = 2 ,

= kapq + (k1 − ka)ps
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and (20) is proven. The statement of the theorem for s > 1 is therefore captured succinctly

by the formula

µ(G) = kapq + (k1 − ka)ps . (21)

To complete the proof of the theorem, it therefore remains to verify the Claim. As a first

step we prove

V = T1 ⊕ . . .⊕ Tt ⊕ (E1 ∩ . . . ∩ Et) (22)

for some indecomposables Ti such that Ei = T ′i for i = 1, . . . , t. Note that V = E1 ⊕ T1
for some indecomposable T1, so E1 = T ′1, which starts an induction. Suppose, as inductive

hypothesis, that for k ≤ t,

V = T1 ⊕ . . .⊕ Tk−1 ⊕ (E1 ∩ . . . ∩ Ek−1) ,

for some indecomposables T1, . . . , Tk−1 such that Ei = T ′i for i = 1, . . . , k−1. By minimality

of C , E1 ∩ . . . ∩ Ek is a proper subspace of E1 ∩ . . . ∩ Ek−1. Further,

E1 ∩ . . . ∩ Ek−1
E1 ∩ . . . ∩ Ek

∼=
(E1 ∩ . . . ∩ Ek−1) + Ek

Ek
=

V

Ek
,

which is indecomposable, so we may choose an indecomposable Tk such that

E1 ∩ . . . ∩ Ek−1 = (E1 ∩ . . . ∩ Ek)⊕ Tk .

Certainly Tk is not a subspace of Ek (for otherwise E1 ∩ . . . ∩ Ek ∩ Tk 6= {0}), so it follows

that V = Ek ⊕ Tk, so we may write Ek = T ′k. Then

V = (T1 ⊕ . . .⊕ Tk−1)⊕ (E1 ∩ . . . ∩ Ek−1) = T1 ⊕ . . .⊕ Tk ⊕ (E1 ∩ . . . ∩ Ek) ,

which completes the inductive step and the proof of (22). Note that if ` = 0 (so that

D = ∅) then (22) proves the Claim (for then C = E and E1 ∩ . . . ∩ Et = {0} so that

V = T1 ⊕ . . .⊕ Tt).
We may suppose in what follows that ` > 0. Put E = E1 ∩ . . . ∩ Et. We next prove, by

induction, that we can rewrite D (if necessary) so that the following holds for k = 0, . . . , ` :

V = S1 ⊕ . . .⊕ Sk ⊕ T1 ⊕ . . .⊕ Tt ⊕ (S′1 ∩ . . . ∩ S′k ∩ E) (23)

where Di = Si⊕S′i and Si is a sum of indecomposables with distinct minimal polynomials,

for i = 1, . . . k. This suffices to prove the Claim, because when k = ` we have

S′1 ∩ . . . ∩ S′k ∩ E = S′1 ∩ . . . ∩ S′` ∩ E =
⋂

C = {0} .

Note that (22) now becomes the initial case k = 0 in a proof by induction of (23). Suppose,

as inductive hypothesis, that 0 < k ≤ ` and we can rewrite D (if necessary) so that

V = S1 ⊕ . . .⊕ Sk−1 ⊕ T1 ⊕ . . .⊕ Tt ⊕ (S′1 ∩ . . . ∩ S′k−1 ∩ E)

where Di = Si ⊕ S′i and Si is a sum of indecomposables with distinct minimal polynomials

for i = 1 . . . , k − 1. By minimality of C ,

core(D1 ∩ . . . ∩Dk−1 ∩ E) 6= core(D1 ∩ . . . ∩Dk ∩ E) ,

that is,

S′1 ∩ . . . ∩ S′k−1 ∩ E 6= S′1 ∩ . . . ∩ S′k−1 ∩ E ∩ core(Dk) .
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But

S′1 ∩ . . . ∩ S′k−1 ∩ E
S′1 ∩ . . . ∩ S′k−1 ∩ E ∩ core(Dk)

∼=
(S′1 ∩ . . . ∩ S′k−1 ∩ E) + core(Dk)

core(Dk)

≤ V

coreDk

∼= core(Dk)
′ ,

which is a sum of indecomposables with distinct minimal polynomials. Hence(
S′1 ∩ . . . ∩ S′k−1 ∩ E ∩ core(Dk)

)
⊕ Sk = S′1 ∩ . . . ∩ S′k−1 ∩ E

for some invariant subspace Sk contained in E, which is a sum of indecomposables with

distinct minimal polynomials. Choose any complement (S′1 ∩ . . . ∩ S′k−1 ∩ E)′ and put

S′k =
(
S′1 ∩ . . . ∩ S′k−1 ∩ E ∩ core(Dk)

)
⊕ (S′1 ∩ . . . ∩ S′k−1 ∩ E)′ ,

which is indeed a complement of Sk. Put

D̃k = Sk ⊕ S′k .

Observe that core(D̃k) = S′k and

S′1 ∩ . . . ∩ S′k−1 ∩ E ∩ core(D̃k) = S′1 ∩ . . . ∩ S′k−1 ∩ E ∩ S′k

= (S′1 ∩ . . . ∩ S′k−1 ∩ E) ∩
[(
S′1 ∩ . . . ∩ S′k−1 ∩ E ∩ core(Dk)

)
⊕ (S′1 ∩ . . . ∩ S′k−1 ∩ E)′

]
= S′1 ∩ . . . ∩ S′k−1 ∩ E ∩ core(Dk) ,

so we may replace Dk by D̃k in D without disturbing faithfulness or the degree of the

representation afforded by C . Renaming D̃k by Dk, we get

V = S1 ⊕ . . .⊕ Sk−1 ⊕ T1 ⊕ . . .⊕ Tt ⊕ (S′1 ∩ . . . ∩ S′k−1 ∩ E)

= S1 ⊕ . . .⊕ Sk−1 ⊕ T1 ⊕ . . .⊕ Tt ⊕
((
S′1 ∩ . . . ∩ S′k−1 ∩ E ∩ core(Dk)

)
⊕ Sk

)
= S1 ⊕ . . .⊕ Sk−1 ⊕ T1 ⊕ . . .⊕ Tt ⊕

(
Sk ⊕ (S′1 ∩ . . . ∩ S′k−1 ∩ E ∩ S′k)

)
= S1 ⊕ . . .⊕ Sk ⊕ T1 ⊕ . . .⊕ Tt ⊕ (S′1 ∩ . . . ∩ S′k ∩ E) ,

completing the inductive step, and (23) is proved. This completes the proof of the Claim

and therefore also the proof of the theorem. �

Formula (21) captures the three alternatives in the previous theorem when s > 1. How-

ever, by Remark 4.4 and Theorem 4.5, we have the following further simplification (even-

tually) if there turn out to be only finitely many generalised Mersenne primes:

Corollary 4.6. With the hypotheses of Theorem 4.5, if s > 1 and there are only finitely

many generalised Mersenne primes, then there is an integer N such that for all q ≥ N ,

µ(V o T ) = k1pq.

The first alternative in formula (17) is illustrated in Examples 3.4 and 3.5 and the intran-

sitive case of Example 2.5. The second alternative is illustrated in Example 3.6 (and also

occurs in Example 2.5 as an exceptional transitive case when s = 1 and np = pq = k1pq).

In the next two examples, we illustrate the third and fourth alternatives of (17).
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Example 4.7. The smallest instance when q > ps−1, so that the third alternative of (17) is

able to kick in, occurs when p = 2 and q = 3, so that s = 2. Let T =

[
0 1

1 1

]
, so that

φT = x2 + x + 1, and put G = F2
2 o T ∼= C2

2 o C3
∼= Alt(4). As expected, (17) predicts

correctly that µ(G) = ps = 4.

Example 4.8. Let p = 2 and q = 7. Then s = 3 and the monic irreducible polynomials over

F2 with primitive 7th roots in an extension of F2 are π1 = x3 + x+ 1 and π2 = x3 + x2 + 1.

Let T1 and T2 be the respective companion matrices, that is,

T1 =

 0 0 1

1 0 1

0 1 0

 and T2 =

 0 0 1

1 0 0

0 1 1

 .

Now put T3 = T1 ⊕ T2, T4 = T1 ⊕ T1, T5 = T1 ⊕ T1 ⊕ T2, T6 = T1 ⊕ T1 ⊕ T2 ⊕ T2 and

Gi = Vio Ti, where Vi is of the appropriate dimension, for each i. Then G1
∼= G2, by Lemma

3.1, and, by the third and fourth alternatives of (17), µ(G1) = ps = 8, µ(G3) = pq = 14,

µ(G4) = 2ps = 16, µ(G5) = pq + ps = 22 and µ(G6) = 2pq = 28. The underlying methods

yield, for example, the following contrasting transitive minimal faithful representations:

G1
∼= 〈 (1 2)(3 4)(5 6)(7 8), (1 3)(2 4)(5 7)(6 8), (1 5)(2 6)(3 7)(4 8), (2 3 5 4 7 8 6) 〉 ,

G3
∼= 〈 (1 2)(5 6)(11 12)(13 14), (1 2)(3 4)(7 8)(13 14), (1 2)(3 4)(5 6)(9 10),

(1 2)(7 8)(11 12)(13 14), (1 2)(3 4)(9 10)(13 14), (1 2)(3 4)(5 6)(11 12),

(1 3 5 7 9 11 13)(2 4 6 8 10 12 14) 〉 .

Theorem 4.9. Suppose that r1, . . . , rm are distinct irreducible polynomials over Fp of degree

s ≥ 2, where s is the order of p modulo q, such that

φT = (x− 1)r1 . . . rm and χT = (x− 1)krk11 . . . rkmm .

We may suppose k1 ≥ k2 ≥ . . . ≥ km. Then

µ(V o T ) =



k1pq if k ≤ k1 and q < ps−1 ,

k1pq + (k − k1)p if k > k1 and q < ps−1 ,

k1p
s if k ≤ k1, m = 1 and q > ps−1 ,

k1p
s + kp if k > k1, m = 1 and q > ps−1 ,

k2pq + (k1 − k2)ps if k ≤ k2, m > 1 and q > ps−1 ,

k2pq + (k1 − k2)ps + (k − k2)p if k > k2, m > 1 and q > ps−1 .

(24)

Proof. As before, let a be the smallest integer such that q < aps−1. By Lemma 4.3, a = 1

or 2. We again put ka = 0 when m = 1 and a = 2. Put G = V o T = V 〈T 〉. We have a

decomposition V = Ṽ ⊕ Z, where

Ṽ =
⊕

(i,j)∈I

Vij and Z =

k⊕
α=1

Zα ,

where the Vij are indecomposable subspaces of V with minimal polynomials from amongst

r1, . . . , rm, adopting the notation of the proof of the previous theorem, and the Zα are
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one-dimensional indecomposable subspaces of V on which the action of T is trivial (so

Zα〈T 〉 ∼= Cp × Cq). By Theorem 4.5 and (21),

µ(Ṽ 〈T 〉) = kapq + ps(k1 − ka) . (25)

Certainly, by (1), we have µ(G) ≥ µ(Ṽ 〈T 〉). There are two cases, according to whether

ka ≥ k or ka < k.

Case 1: Suppose that ka ≥ k .

Let C be the collection of subgroups described in the first part of the proof of Theorem

4.5 that affords a faithful representation of Ṽ 〈T 〉 of degree µ(Ṽ 〈T 〉), replacing V by Ṽ

throughout. For α = 1, . . . , k, put

Uα = Wα ⊕ Zα and Ĥα = Uα ⊕W ′α ⊕
⊕
β 6=α

Zβ ,

where Uα is a canonical codimension 1 subspace of Uα with trivial core (see Lemma 3.11),

and here W ′α denotes a complement of Wα in Ṽ , so that

core(Ĥα) = W ′α ⊕
⊕
β 6=α

Zβ .

Now put

Ĉ =
{
Ĥ1, . . . , Ĥk, Hk+1 ⊕ Z, . . . ,Hka ⊕ Z

}
∪
{
Kj ⊕ Z | (1, j) ∈ X

}
,

where the notation Kj⊕Z represents the internal semidirect product resulting from joining

Kj with Z (since the action of T on Z is trivial). Then

core
(⋂

Ĉ
)

= core
(⋂

C
)
⊕

k⋂
α=1

⊕
β 6=α

Zβ = {0} ,

so Ĉ affords a faithful representation of G. Its degree is the same as the degree of the

representation of Ṽ 〈T 〉 afforded by C , which is µ(Ṽ 〈T 〉), so

µ(G) ≤ µ(Ṽ 〈T 〉) ≤ µ(G) ,

whence we have equality. The formula (25) captures the first, third and fifth alternatives

in the statement of the theorem.

Case 2: Suppose that k > ka .

We make the same definitions as in the previous case, except that we put

Ĉ =
{
Ĥ1, . . . , Ĥka

}
∪
{
Kj ⊕ Z | (1, j) ∈ X

}
∪
{(
Ṽ ⊕

⊕
β 6=α

Zβ
)
〈T 〉 | α = ka + 1, . . . , k

}
.

Again the representation of G afforded by Ĉ is faithful. Its degree is

kapq + (k − ka)p+ ps(k1 − ka) ,

which therefore serves as a lower bound for µ(G).

By Proposition 4.1, there exists a collection C = D ∪E of subgroups affording a minimal

representation of G, such that D = {D1, . . . , D`} and E = {E1〈T 〉, . . . , Et〈T 〉}, where

D1, . . . , Dk are codimension 1 subspaces of V and, after reordering (if necessary), E1, . . . , Et0
are complements of indecomposables with minimal polynomials from amongst r1, . . . , rm
and Et0+1, . . . , Et are complements of one-dimensional indecomposables. As before, ` ≥ ka



MINIMAL REPRESENTATIONS OF SEMIDIRECT PRODUCTS 27

and, by the same reasoning as before, t0 ≥ k1− ` and t− t0 ≥ k− `. By definition of a, and

since p 6= q, we have (a− 1)ps−1 < q, so

pq ≥ (a− 1)ps + p .

Hence

µ(G) = `pq + (t− t0)p+ t0p
s

= kapq + (`− ka)pq + (t− t0)p+ t0p
s

≥ kapq + (`− ka)
(
(a− 1)ps + p

)
+ (k − `)p+ ps

{
0 if a = 1 ,

k1 − ` if a = 2 ,

= kapq + (k − ka)p+ ps(k1 − ka) ,

whence we have

µ(G) = kapq + (k − ka)p+ ps(k1 − ka) . (26)

Formula (26) captures the second, fourth and sixth alternatives in the statement of theorem,

and the proof is complete. �

Illustrations of formula (24) are implicit in applications in the next section.

5. Adding direct factors without increasing the degree

Results of the preceding section are applied now to investigate possible ways in which

µ may fail to be additive with respect to taking direct products. The question of when

additivity occurs is an important theme in the work of Johnson [11] and Wright [22]. The

failure of additivity in general was demonstrated by a seminal example in [22] and explored

further by Saunders [17–19]. In all their cases, nontrivial groups G and H are exhibited in

which G does not decompose nontrivially as a direct product, H is a cyclic group of prime

order and

µ(G×H) = µ(G) . (27)

We reproduce these examples below as special cases of applications of the formulae in

Theorems 4.5 and 4.9. We finish by exhibiting examples of groups G that do not decompose

nontrivially as direct products, but such that (27) holds for arbitrarily large direct products

H of elementary abelian groups (with mixed primes).

Example 5.1. Consider the groups G1 = F2
5 o T1, G2 = F3

5 o T2, G3 = F4
5 o T3, where

T1 =

[
0 4

1 4

]
, T2 =

 0 4 0

1 4 0

0 0 1

 , T3 =


0 4 0 0

1 4 0 0

0 0 1 0

0 0 0 1

 .

Then |T1| = |T2| = |T3| = 3, φT1 = χT1 = x2 +x+1 , φT2 = χT2 = φT3 = (x−1)(x2 +x+1)

and χT3 = (x − 1)2(x2 + x + 1). Then G1
∼= C2

5 o C3 and µ(G1) = 15, by the second

alternative of (17). A minimal faithful representation is afforded by a canonical core-free

subspace of F2
5 (see Lemma 3.11), yielding

G1
∼= 〈a1, a2, b | a51 = a52 = b3 = 1 = [a1, a2], a

b
1 = a2, a

b
2 = a−11 a−12 〉 ∼= 〈α1, α2, β〉,
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where

α1 = (1 2 3 4 5)(6 7 8 9 10)(11 14 12 15 13) ,

α2 = (1 2 3 4 5)(6 9 7 10 8)(11 12 13 14 15) ,

β = (1 11 6)(2 12 7)(3 13 8)(4 14 9)(5 15 10) .

By the first alternative of (24), we have µ(G2) = 15. A minimal faithful representation is

afforded by a canonical core-free subspace of F3
5, yielding

G2
∼= G1 × C5

∼= 〈α1, α2, α3, β〉 ,

where α1, α2 and β are as above, and

α3 = (1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15) .

In fact, G1 and G2 are isomorphic to subgroups of the transitive permutation group intro-

duced at the end of Wright’s paper [22], which was the first published counterexample to

additivity of µ with respect to direct product. By contrast, now using the second alterna-

tive of (24), µ(G3) = 15 + 5 = 20. A faithful intransitive representation of G3 is given by

the previous canonical core-free subspace of F3
5, augmented in an obvious way in F4

5, and a

subgroup of index 3, yielding

G3
∼= G2 × C5

∼= G1 × C2
5
∼= 〈α1, α2, α3, α4, β〉 ,

where α1, α2, α3 and β are as above, but fixing five new letters, and α4 = (16 17 18 19 20).

Observe that µ(C5)
2 = 10, so that

max{µ(G1), µ(C2
5 )} = 15 < µ(G1 × C2

5 ) = 20 < 25 = µ(G1) + µ(C2
5 ) . (28)

This answers affirmatively a question of Saunders [17], whether there exist groups K and

L such that

max{µ(K), µ(L)} < µ(K × L) < µ(K) + µ(L) . (29)

Note that if G and H are groups such that µ(H) < µ(G) and µ(G × H) = µ(G) <

µ(G) + µ(H) (such as the example in [22]), then (29) holds easily by taking any group M

of order coprime to |G × H|, putting K = G and L = M × H, and invoking Johnson’s

result that µ is additive with respect to taking direct products of groups of coprime order.

However, the solution (28) given here appears to be novel in that only two primes, namely

3 and 5, divide |K × L|, taking K = G1 and L = C2
5 . This example clearly generalises, by

(24), to an infinite class of examples, where (29) holds and only two distinct primes p and

q divide |K×L|. Note that (29) fails, if K×L is a p-group, since µ is additive with respect

to taking direct products of nilpotent groups by a theorem of Wright [22].

Example 5.2. Let p and q be primes such that p has order s = q − 1 modulo q, so that

π = 1 + x + . . . + xq−1 is irreducible over Fp. Suppose also that (p, q) 6= (2, 3), as this

guarantees that q < pq−2 = ps−1, so that the second alternative of (17) will apply. (The

case (p, q) = (2, 3) is explored above in Example 4.7 when illustrating the third alternative

of (17).) The smallest case satisfying our conditions is (p, q) = (2, 5). Consider the groups

H1 = Fq−1p o T1 ∼= Cq−1p o Cq and H2 = Fqp o T2 ∼= Cqp o Cq ∼= H1 × Cp ,
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where T1 and T2 are matrices over Fp in rational canonical form having characteristic poly-

nomials π and (1 + x)π respectively. Then

µ(H1) = pq = µ(H2) = µ(H1 × Cp) ,

by the second alternative of (17) and the first alternative of (24). Observe that H1 is

a subgroup of the complex reflection group C(p, p, q), a member of the infinite class of

counterexamples studied by Saunders in [18]. In the smallest case, when p = 2 and q = 5,

the groups become H1
∼= C4

2 sd C5 and H2
∼= C5

2 sd C5
∼= H1 × C2, where

T1 =


0 0 0 1

1 0 0 1

0 1 0 1

0 0 1 1

 , T2 =


0 0 0 1 0

1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

0 0 0 0 1


and

µ(H1) = µ(H1 × C2) = 10 < 12 = µ(H1) + µ(C2) .

The group H1 and these properties appear for the first time in [17]. It is gratifying that

the smallest example that comes from Saunders’ investigations, where he was motivated by

questions about complex reflection groups, also coincides with the smallest example that

arises as an application of Theorems 4.5 and 4.9. By results in [4], it is impossible to create

a smaller example by any method, in the sense that G ×H cannot embed in Sym(9) and

have H nontrivial and µ(G) = µ(G×H).

In the final examples below, given an arbitrarily large direct product H of elementary

abelian groups built from any collection of primes and positive integer exponents, we can

find a group G that does not decompose nontrivially as a direct product, yet µ(G×H) =

H. Example 5.10 below is a substantial simplification of Example 5.3, but relies on some

number-theoretic preliminaries.

Example 5.3. Let P = {p1, . . . , pk} be a finite collection of distinct primes and N =

{n1, . . . , nk} a collection of positive integers. Choose a prime q ≥ 5 and larger than all

of the primes in P . Consider i ∈ {1, . . . , k}. Let si be the multiplicative order of pi modulo

q and put mi = sini. Then si > 1 and we can find a monic irreducible polynomial πi ∈ Fpi
of degree si such that its roots in an extension of Fpi are primitive qth roots of 1. Let ai
be the smallest integer such that q < aip

si−1, so ai = 1 or ai = 2, by Lemma 4.3. Observe

that if ai = 2 then si < q − 1 (for otherwise ai = 1, since 5 ≤ q < pq−2i ), so πi and πiν̂i are

distinct, where ν̂i is the permutation defined by (15). Denote the companion matrix over

a field F of a monic polynomial π ∈ F[x] by Mπ. If ai = 1, define Ti to be the mi × mi

matrix over Fp that is the matrix direct sum of ni copies of Mπi . If ai = 2, define Ti to be

the (2mi)× (2mi) matrix over Fp that is the matrix direct sum of ni copies of Mπi ⊕Mπiν̂ .

Now put

T̂i = Ti ⊕ Ini ,
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where Ini is an identity matrix (over Fpi). Then |Ti| = |T̂i| = q,

φTi =

{
πi if ai = 1,

πi(πiν̂i) if ai = 2,
χTi =

{
πnii if ai = 1,

πnii (πiν̂i)
ni if ai = 2,

φ
T̂i

=

{
(x− 1)πi if ai = 1,

(x− 1)πi(πiν̂i) if ai = 2,
and χ

T̂i
=

{
(x− 1)niπnii if ai = 1,

(x− 1)niπnii (πiν̂i)
ni if ai = 2.

Now let Gi = Vi o Ti and Ĝi = V̂i o T̂i , where

Vi =

{
Fmipi if ai = 1,

F2mi
pi if ai = 2,

and V̂i =

{
Fmi+nipi if ai = 1,

F2mi+ni
pi if ai = 2 .

Then

µ(Gi) = µ(Ĝi) = nipiqi , (30)

by Theorems 4.5 and 4.9. Observe that, because Ini acts trivially on Fnipi ,

Ĝi ∼= Gi × Cnipi . (31)

Now put

T = ⊕ki=1Ti , T̂ = ⊕ki=1T̂i , V = ⊕ki=1Vi , V̂ = ⊕ki=1V̂i ,

where the zeros outside the matrix blocks down the diagonals act as formal zeros (not in

any particular field) for the purpose of matrix multiplication, and the elements of V and

V̂ may be regarded as column vectors over Fp1 ∪ . . . ∪ Fpk . Thus, because the construction

respects direct sum decompositions, T and T̂ may be regarded as acting on V and V̂ (on

the left) by usual matrix multiplication. Hence, as in (10) and (11), we may define

G = V o T and Ĝ = V̂ o T̂ .

The actions of T and T̂ on the respective ith direct summands is nontrivial, for each i,

and the orders of these direct summands are pairwise coprime and also coprime to q, so,

by repeated application of the last alternative in the formula given in Theorem 2.8 and by

(30), we have

µ(G) =

k∑
i=1

µ(Gi) =

k∑
i=1

nipiqi =

k∑
i=1

µ(Ĝi) = µ(Ĝ) .

Also, by (31),

Ĝ ∼= G× Cn1
p1 × . . .× C

nk
pk
.

Finally, put H = Cn1
p1 × . . .×C

nk
pk

, which is our arbitrarily large direct product of elementary

abelian groups, using all of the primes p1, . . . , pk. Then µ(G×H) = µ(G). By construction,

the irreducible action on each direct summand guarantees that G does not decompose

nontrivially as a direct product.

Remark 5.4. If there are only finitely many generalised Mersenne primes, then the con-

struction in Example 5.3 would simplify by choosing q to be larger also than the largest

Mersenne prime, for that would guarantee ai = 1 for each i, by Remark 4.4.
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To guarantee simplification in the construction of Example 5.3 (regardless of whether

or not there are infinitely many generalised Mersenne primes), we invoke the following

lemmas. We say that an integer m ≥ 3 is Mersenne with respect to an integer n ≥ 2 if

m = 1 + n+ . . .+ nα for some integer α. Note that this implies m = nα+1−1
n−1 < nα+1.

Lemma 5.5. If m is Mersenne with respect to n then k is not Mersenne with respect to n

for m < k ≤ 2m.

Proof. If m and k are Mersenne with respect to n and m < k ≤ 2m then there exist

positive integers α and β such that m = 1 + n + . . . + nα and k = 1 + n + . . . + nα+β =

m+ nα+1 + . . .+ nα+β, whence

nα+1 ≤ nα+1 + . . .+ nα+β = k −m ≤ m < nα+1 ,

which is impossible. �

The following corollary is of independent interest and probably well-known.

Corollary 5.6. Given a positive integer n, there exists infinitely many primes that are not

Mersenne with respect to n.

Proof. Let N be any positive integer, and choose any prime p1 ≥ N . By Bertrand’s postu-

late, there exists a prime p2 such that p1 < p2 ≤ 2p1. If p1 is not Mersenne with respect

to n, then we are done. If p1 is Mersenne with respect to n then p2 is not Mersenne with

respect to n, by Lemma 5.5, and again we are done. �

Lemma 5.7. Let n ≥ 2, k ≥ 3 and N any positive integer. Then any strictly increasing

sequence of k integers between N and 2N contains a consecutive subsequence of bk/2c
elements, none of which are Mersenne with respect to n.

Proof. Let t1, . . . , tk be a strictly increasing sequence of integers between N and 2N . If

ti is not Mersenne with respect to n for all i, then we are done using the entire sequence.

Suppose then that some element in the sequence is Mersenne with respect to n, and let tj be

the least such element. Then, for all ` such that j < ` ≤ k, we have N < tj < t` < 2N < 2tj ,

so that t` is not Mersenne with respect to n, by Lemma 5.5. If j > bk/2c then t1, . . . , tbk/2c
is a consecutive subsequence of bk/2c elements, none of which are Mersenne with respect

to n, and we are done. Otherwise j ≤ bk/2c and tj+1, . . . , tk is a consecutive subsequence

with k − j ≥ k − bk/2c ≥ bk/2c elements, none of which are Mersenne with respect to n,

and again we are done. �

Theorem 5.8. If p1, . . . , pk are prime numbers then there exist infinitely many primes that

are not Mersenne with respect to pi for each i.

Proof. Let p1, . . . , pk be primes and N any positive integer. By the Green-Tao theorem [7]

there exists an arithmetic progression of primes

q−M , q−M+1 , . . . , q0 = q , q1 , . . . , qM

for some M ≥ max{N, 2k}. We may suppose the common difference is s so that q =

q−M +Ms ≥ 2ks and qi = q + is for each i = 1, . . . ,M . In particular,

q < q1 < . . . < qM < 2q . (32)
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By Lemma 5.7, there exists a consecutive subsequence of q1, . . . , qM , starting at qi1 for

some i1 ≥ 1, of length M1 = bM/2c ≥ 2k−1 consisting of elements none of which are

Mersenne with respect to p1, which starts an induction. Suppose j ≤ k and, as inductive

hypothesis, that we have a consecutive subsequence starting at qij−1 of length Mj−1 ≥
2k−j+1 consisting of elements none of which are Mersenne with respect to p1, . . . , pj−1. By

Lemma 5.7, this contains a consecutive subsequence starting at qij for some ij ≥ ij−1 of

length Mj ≥ bMj−1/2c ≥ 2k−j consisting of elements none of which are Mersenne with

respect to p1, . . . , pj , establishing the inductive step. The lemma now follows by induction

by observing that Mk ≥ 2k−k = 1, so that we have found at least one prime qik ≥ N that

is not Mersenne with respect to p1, . . . , pk. �

Remark 5.9. Ramanujan [16] showed that π(n)− π(n/2) tends to infinity as n does, where

π(n) denotes the number of primes less than or equal to n, generalising Bertrand’s postulate.

This also guarantees the existence of an integer q and primes q1, . . . , qM such that (32) holds,

and the proof of Theorem 5.8 proceeds as above, but avoiding use of the Green-Tao theorem.

Example 5.10. Again let P = {p1, . . . , pk} be a finite collection of distinct primes and

N = {n1, . . . , nk} a collection of positive integers. This time, we choose a prime q that is

not Mersenne with respect to all of the primes in P , and larger than all of the primes in P ,

the existence of which is guaranteed by Theorem 5.8. For each i, define Ti, T̂i = Ti ⊕ Ini ,
Vi, V̂i, Gi = Vi o Ti and Ĝi o T̂i, as in Example 5.3, but noting that ai = 1, since q is

not Mersenne with respect to pi, by Lemma 5.5. Again, |Ti| = |T̂i| = q, but now Vi = Fmipi ,

V̂i = Fmi+nipi , and we have the following simplifications:

φTi = πi , χTi = πnii , φ
T̂i

= (x− 1)πi , χ
T̂i

= (x− 1)niπnii .

Both (30) and (31) hold as before:

µ(Gi) = µ(Ĝi) = nipiqi and Ĝi ∼= Gi × Cnipi .

As before, putting T = ⊕ki=1Ti, T̂ = ⊕ki=1T̂i, V = ⊕ki=1Vi, V̂ = ⊕ki=1V̂i, G = V o T and

Ĝ = V̂ o T̂ ∼= G× Cn1
p1 × . . .× C

nk
pk

, we have

µ(G) =
k∑
i=1

µ(Gi) =
k∑
i=1

nipiqi =
k∑
i=1

µ(Ĝi) = µ(Ĝ) .

Finally, as before, put H = Cn1
p1 × . . .× C

nk
pk

. Then µ(G×H) = µ(G), so (27) holds, yet G

does not decompose nontrivially as a direct product. Note that when H = Cp1 × . . .×Cpk ,

the action of G on each Sylow pi-subgroup is irreducible. The authors are not aware of any

simpler method for achieving this last property, which appears to be inextricably linked to

number-theoretic properties of the particular primes involved.
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