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ABSTRACT. The minimal faithful permutation degree u(G) of a finite group G is the least
nonnegative integer n such that G embeds in the symmetric group Sym(n). We make
observations in varying degrees of generality about p(G) when G decomposes as a semidi-
rect product, and provide exact formulae in the case that the base group is an elementary
abelian p-group and the extending group a cyclic group of prime order ¢ not equal to
p. For this class, we also provide a combinatorial characterisation of group isomorphism.
These results contribute to the investigation of groups G with the property that there
exists a nontrivial group H such that u(G x H) = u(G), in particular reproducing the
seminal examples of Wright (1975) and Saunders (2010). Given an arbitrarily large group
H that is a direct product of elementary abelian groups (with mixed primes), we construct
a group G such that (G x H) = u(G), yet G does not decompose nontrivially as a direct
product. In the case that the order of H is a product of distinct primes, the group G is
a semidirect product such that the action of G on each of its Sylow p-subgroups, where
p divides the order of H, is irreducible. This final construction relies on properties of
generalised Mersenne prime numbers.

1. INTRODUCTION

Throughout this paper all groups are assumed to be finite and C),, denotes a cyclic group
of order n. The minimal faithful permutation degree p(G) of a group G is the smallest
nonnegative integer n such that G embeds in the symmetric group Sym(n). Note that
w(G) = 0 if and only if G is trivial. It is well known (and referred to as Karpilovsky’s
theorem, see, for example, [11,12]) that if G is a nontrivial abelian group, then u(G)
is the sum of the prime powers that occur in a direct product decomposition of G into
cyclic factors of prime power order. Johnson proved (see [11, Theorem 1]) that the Cayley
representation of a group G is minimal, that is, u(G) = |G|, if and only if G is cyclic of
prime power order, the Klein four-group or a generalised quaternion 2-group. A number of
other explicit calculations of minimal degrees and a variety of techniques appear in Johnson
[11], Wright [21,22], Neumann [15], Easdown and Praeger [3], Kovacs and Praeger [13],
Easdown [2], Babai, Goodman and Pyber [1], Holt [9], Holt and Walton [10], Lemieux
[14], Elias, Silbermann and Takloo-Bighash [5], Franchi [6], Saunders [17-20] and Easdown
and Saunders [4]. This present article, building on work initiated by the second author
in [8], focuses on minimal degrees of semidirect products of groups, characterises group
isomorphism and provides exact formulae for minimal degrees in the case when the base
group is an elementary abelian p-group and the extending group is cyclic of order ¢ where
p and ¢ are different primes.

AMS subject classification (2010): 20B35, 11A41.
Keywords: permutation groups, semidirect products, Mersenne numbers.
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For any groups G and H and subgroups S of GG, we always have the inequalities

u(S) < pu(G) (1)
and
w(G % H) < u(G) + p(H). 2)
Many sufficient conditions are known for equality to occur in (2), for example, when G and
H have coprime order (Johnson [11, Theorem 1]), when G and H are nilpotent (Wright [22]),
when G and H are direct products of simple groups (Easdown and Praeger [3]), and when
G x H embeds in Sym(9) (Easdown and Saunders [4]). The first published example where
the inequality in (2) is strict appears in Wright [22], where G x H is a subgroup of Sym(15).
Saunders [17,18] describes an infinite class of examples, which includes the example in [22]
as a special case, where strict inequality takes place in (2). The smallest example in his
class occurs when G x H embeds in Sym(10). In all of these examples of strict inequality,
the groups G and H have the properties that H is cyclic of prime order and

w(G x H) = p(G). (3)

As a consequence of our investigations below into semidirect products and our two main
theorems, we are able to provide infinite classes of examples where (3) occurs, where H may
be a product of elementary abelian groups with an arbitrarily large number of factors and
different prime exponents and G does not decompose as a nontrivial direct product.

Recall that the core of a subgroup H of G, denoted by coreg(H), or just core(H), is
the largest normal subgroup of G contained in H, and that H is core-free if core(H) is
trivial. Thus, if G is nontrivial then p(G) is the smallest sum of indices for a collection of
subgroups ¢ = {Hi, ..., Hy} such ﬂi-“:lHi is core-free. In this case we say that € affords
a minimal faithful representation of G. The subgroups Hi,..., Hr become the respective
point-stabilisers for the action of G on its orbits and letters in the ith orbit may be identified
with cosets of H; fori = 1...,k. If K = 1 then the representation afforded by % is transitive
and H; is a core-free subgroup.

Lemma 1.1. If a group G has a unique (necessarily normal) subgroup of prime order p then
any collection of subgroups affording a faithful representation of G must include a subgroup
of order not divisible by p.

Proof. Suppose G has a unique normal subgroup N of order p and {Hj, ..., Hy} affords a
faithful representation. If p divides |H;| for each i then N < core(HiN...NH}), contradicting
faithfulness. Hence |H;| is not divisible by p for some i. O

Corollary 1.2. Let G be a group with unique subgroups of orders p1,...,pr respectively,
where p1,...,pg are distinct primes. Then p(G) > |G|y, + ... + |G|y, where |G|, denotes
the largest power of p dividing |G|.

Proof. By Lemma 1.1, any collection of subgroups of GG affording a minimal faithful represen-
tation must contain subgroups Hi, ..., Hy such that p; does not divide |H;| fori =1,... k.
Note that if H;, = ... = H;, for iy < ... <y then

G Hyy| > |G‘p¢1 e ’G|Pil |G|Pi1 +.o.F |G‘piz :
It follows that u(G) > |G|y, + |Glp, + - - + |Glp,- O
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Ezxample 1.3. Recall the generalised quaternion or dicyclic group of order 4n for n > 2 is
G = Qum = (a,b|a®™=b"=1,a"=b?, a" =a""). (4)

Then (b?) is the unique subgroup of G of order 2. If n is a power of 2 then u(G) > |G|2 = |G|,
by Corollary 1.2, whence u(G) = |G|, the only nonabelian case where this is possible (see
Johnson [11, Theorem 2]). Suppose then that n is not a power of 2 and let py,...,pr be
the odd prime divisors of n. Then (a2”/ Pi} is the unique subgroup of G of order p; for
i=1,...,k. By Corollary 1.2, u(G) > |Gla + |G|p, + ... +|Glp,. Write |G| =2"p{* ... pp*
where m > 2 and ay,...,a, > 1, s0 n.=2m"2pf . p*t. Put

H ="y ad H = (a"b)

for i = 1,...,k Note that if ¥ = 1 and m = 2 then aPi' = a = b2, so that H; = (b).
Clearly HNHyN...NH, = {1}, so {H, Hy,...,Hy} affords a faithful representation of G
of degree

G H|+ |G Hy|+ ...+ |G Hy| = 2"+ p3 + .. +p% = |Gla+ |Glpy + - + |Gy, -

Thus u(G) = |Gl2 + |Glp, + ... + |Glp,. Note that if m = 2 then |a?| = n is odd and
G = (a?,b). The presentation (4) simplifies, replacing a? by a:

G = <x,b|az”:b4:1, xb::n_1>, (5)

so that G becomes a semidirect product (see the next section). If we put n = 3, then
w(G) =3+ 4 =7 and G becomes the smallest group with the property that it does not
have a nilpotent subgroup with the same minimal degree. The class of groups that do
have nilpotent subgroups with the same degree was introduced by Wright [22], and its
pervasiveness within the class of permutation groups of small degree was an important tool
in the work of Easdown and Saunders [4].

2. PRELIMINARIES ON SEMIDIRECT PRODUCTS

Recall that a group G is an internal semidirect product of a normal subgroup N by a
subgroup H if G = NH and N N H is trivial, in which case the conjugation action of N on
H induces a homomorphism ¢ : N — Aut(H). Conversely, if N and H are any groups and
¢ : H — Aut(N) any homomorphism then the cartesian product of sets

NxH = Nx,H = {(n,h)|[neN, he H}
becomes a group, called the external semidirect product, under the binary operation
(n1,h1)(na, ha) = (ni(na(h™'p)), hiha)

in which case N x H becomes an internal semidirect product of the normal subgroup
N x {1} by the subgroup {1} x H. By identifying N with N x {1} and H with {1} x H,
it is common to move back and forth between external and internal semidirect products,
and write N x H = NH without causing confusion. We refer to N as the base group and
H as the extending group. The first two claims of the following proposition are probably
well-known.
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Proposition 2.1. Suppose that G x H = G x, H is a semidirect product of groups G and
H, not necessarily finite, via a homomorphism ¢ : H — Aut(G). Then

GxH < Sym(G) x H .
If ¢ is injective then G x H < Sym(G). In particular, if G and H are finite then
WG H) < |G+ pu(H) .
If G and H are finite and ¢ is injective then (G x H) < |G|.
Proof. Define a homomorphism o : G x H — Sym(G) by the following rule:
(g,h)o : x+— (zg)(hy) forz,g€ G, h € H.
Now define a homomorphism 7 : G x H — Sym(G) x H by the following rule:
7:(g,h) = ((9,h)o,h) forge G, h € H.

If g€ G, h € Hand (g,h)T = (id, 1), where id : G — G denotes the identity mapping, then
(g,h)o =id and h = 1, so, in particular,

1 = 1((g,h)o) = 1((g;1)o) = g(lp) = gid = ¢
whence (g, h) = (1, 1), verifying that 7 is an embedding. Suppose now that ¢ is injective.
Let (g,h) € kero, so (g,h)o = id. In particular, 1 = 1((g,h)o) = g(hyp), so that g = 1,
since hip is an automorphism of GG. Hence, for all z € G,

v = z((g,h)o) = (zg)(he) = z(hy),

so that hyp =id € Aut(G). Hence h = 1, since ¢ is injective, so (g, h) = (1,1). This verifies
that o is injective, and all of the remaining claims follow. O

Ezample 2.2. The bound |G|+ u(H) in the previous proposition can easily be achieved, for
example, whenever the semidirect product is direct (that is, ¢ is trivial), G any group for
which the Cayley representation is minimal and H any group of order coprime to |G|. For
a class of semidirect products that are not direct, let G = C}) and H = Cg2, where p and ¢
are distinct primes and n a positive integer such that ¢ > p"~!. Put H = {(c) and suppose
we have a homomorphism ¢ : H — Aut(G) such that |cp| = ¢, so ¢ is neither trivial nor
injective, and that the conjugation action induced on G is irreducible. A simple subclass
of examples would be when (p,q,n) = (p,2,1) and ¢y the inversion automorphism of G (so
of order 2). (An instance of this, when (p,q,n) = (3,2, 1), features in Example 2.9 below.)
We claim that

WG H) = |Gl +p(H) = p"+¢*. (6)
Put S = GxH = GH, regarded as an internal semidirect product. Certainly u(S) < p"+¢?,
either by Proposition 2.1, or directly by noting that {G, H} affords a faithful representation
of S of degree p" + ¢*. Let € = {Ki,..., K;} be a collection of subgroups of S affording a
minimal faithful representation of S. Observe that (¢?) is the unique subgroup of S of order
q. If n =1 then G is the unique subgroup of S of order p, so u(S) > p + ¢?, by Corollary
1.2, establising (6), and we are done. Suppose then that n > 1. By Lemma 1.1, |K;| is not
divisible by ¢, for some i, so K; < G. If K; # G then

IS:Ki| > pi® = (p—1)+¢ > (p—1)p*" > +¢* > p"+¢*,
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so that u(S) > p" + ¢?, which is impossible. Hence K; = G. If some |Kj| is not divisible
by ¢, then K; = G, by what we have just shown, so j = 4, by minimality of ¢". Without
loss of generality, K1 = G and ¢ divides |K3|,...,|K,|. Suppose that ¢®> does not divide
|Ks,...,|K|. By faithfulness, {1} = core(N%) = GNcore(K2N...NKy), so that K;NG # G
for some j > 2, giving

w(S) > |S: K|+ |S:K;| > ¢*+pg > ¢*+p",

which is impossible. Hence, without loss of generality, ¢> divides K5, so Ky contains some
conjugate of ¢, the generator of H. If KoNG # {1} then K, NG = G, since the conjugation
action of H (and hence also of any conjugate of H) on G is irreducible, so that Ko = S,
contradicting minimality of . Hence |Ka| = ¢%, so u(S) > |S : Ki1| +|S : K| = ¢® + p™,
finally establishing (6). For example, if (p,q,n) = (5,2,1) then pu(S) =5+4 =9 and we
get the intransitive representation

S CyxCy = ((12345),(15)(24)(6789)).

An alternative way of seeing the final conclusion of Proposition 2.1 is in terms of a
transitive representation with respect to a core-free subgroup:

Lemma 2.3. Let K be an internal semidirect product of G by H. Then core(H) = ker ¢,
where ¢ : H — Aut(G) is the homomorphism induced by conjugation. In particular, if ¢ is
injective then H is core-free and {H} affords a transitive representation of K of degree |G|,
so that u(K) < |G].

Proof. Certainly ker ¢ is a normal subgroup of K contained in H, so ker¢ < core(H).
Conversely, G and core(H) normalise each other and intersect trivially, so elements of
core(H) commute with elements of G, whence core(H) < ker ¢, and all claims follow. [J

It will be useful, for example, below in verifying the first alternative of formula (17), to
note that, under certain conditions, the minimal degree of the semidirect product coincides
with the minimal degree of the base group:

Lemma 2.4. Suppose that G X, H is a semidirect product of groups such ¢ is injective.
If G has a minimal faithful representation afforded by a collection of subgroups that are
invariant under the conjugation action of H, then u(G x H) = u(G).

Proof. We may regard G x H = GH as an internal semidirect product. Since ¢ is injective,
H is core-free by Lemma 2.3. Suppose that {Bj,..., By} is a collection of subgroups of G
that are invariant under conjugation by H and affords a minimal faithful representation of
G. In particular, coreq(B1 N...N By) = {1}. For i =1 to k, put D; = B;H, which is a
subgroup of GH of index |G : B;|. Then

coreq(D1N...NDy) = coregy ((BiN...NBy)H) = coregu(H) = {1},
so {D1,..., Dy} affords a faithful representation of GH of degree
|G :Bi|+...+|G:Bg| = p(G).

But u(GH) > p(G), so we have equality and the lemma is proved. O
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Example 2.5. Let p,q be primes such that the field F, = {0,...,p — 1} has a primitive gth
root ¢ of 1. Let ¢ : Cy — Aut(Cy) be the homomorphism induced by the map

2 1
cp:(x1,22,...,2q) — (xl,xg,xg ,...,xgq ),

where ¢ is a generator of C, and z1,...,z4 € Cp. Put G = Cf x, C;. We may write
G = KC as an internal semidirect product of K = Cf by C = C,, where K is an internal
direct product Hj ... H,, where H; = C, fori=1,...,q. Put H; = Hy ... H;_Hyy, ... H,,
which is a subgroup of K of index p, fori =1,...,q. Put € = {E, . ,I:T;}. Then N% is
trivial, so € affords a faithful representation of K of degree pq. But each I/—E is invariant
under the conjugation action by C, so u(G) = pq, by Lemma 2.4. We can also find a faithful
transitive representation of G by letting a; be a generator for H; for each i and putting
H = {d'. . .af eH . Hy|ii+...+i;=0}.

Then H is a core-free subgroup of G (in fact, a canonical codimension 1 subspace of the
additive vector space corresponding to the base group, in the sense of Lemma 3.11 below)
of index pq. For example, if p =7 and ¢ = 3 then 4 is a cube root in F7 and G = C3 x Cs,
with presentation

(a1,a2,a3,b| al =b* =1 = [a;,a;] = [a1,b] for all i # j, a = a3, af = a3)

an intransitive minimal representation:

((1234567), (8910111213 14), (15 16 17 18 19 20 21),
(912 10)(11 13 14)(16 17 19)(18 21 20) ) ,

and a contrasting transitive representation of the same degree:
((1234567)(891011121314)(1516 1718 19 20 21),
(1234567)(8101214911 13)(1519 16 20 17 21 18),

(1234567)(81291310 14 11)(15 17 19 21 16 18 20),
(1815)(2916)(3 10 17)(4 11 18)(5 12 19)(6 13 20)(7 14 21) ) .

Consider groups H and K of coprime order and C' a cyclic group such that |C| and |H|| K|
are also coprime. Let ¢ : C' — Aut(H x K) be a homomorphism, so that we may form the
semidirect product

G=HxK)xC = (HxK)x,C.
Let o : C — Aut(H) and ¢k : C — Aut(K) where, forall he H, k€ K, ce C,
(h, k)(cp) = (h(con), k(cok)) (7)
so that we have the related semidirect products

HxC = Hx,, C and KxC = Kxg C.

If p is trivial then G =2 H x K x C. If ¢y is trivial then G =2 H x (K x C). If ¢ is trivial
then G = (H x C) x K. Note that always G embeds in (H x C) x (K x C) under the map

((h,k),c) = ((h,c), (k)
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forallhe€ H, k€ K, c € C, so that, by (1) and (2),
W(G) < ((H % C) x (K% C) < p(H % C)+u(K = C) ®)

In Theorem 2.8 below, we show that equality occurs throughout (8) when both ¢g and pg
are nontrivial and C' = (|, for some prime q. We first establish some useful general facts.

Lemma 2.6. Let G = HC be an internal semidirect product of a normal subgroup H by a
cyclic subgroup C = Cy for some prime q not dividing |H|. Let K be a subgroup of G that
is not a subgroup of H.
(a) There exists g € G such that K = (H N K)CY is an internal semidirect product of
HNK by C9.
(b) If HN K is normal in H then H N K is normal in G.
(¢) If K is normal in G then K = (H N K)C.

Proof. By Sylow theory, H = {g € G | ¢ does not divide |g|}, and it follows that H N K =
{k € K | q does not divide |k|} is normal in K. But ¢ divides | K|, since K is not a subgroup
of H,so |[K| = |H|q and x € K for some x of order ¢q. But C' and (x) are Sylow g-subgroups
of G, so that K = (H N K)(x) = (H N K)CY for some g € G, and (a) is proved.

Suppose that H N K is normal in H and put C' = (¢). To show H N K is normal in G it
suffices to check (H N K)¢= HNK. But ¢/ = (g~ tcgc™!)e = hc where h = g~ lcge™! € H,
since the derived subgroup G’ is a subgroup of H as G/H = Cy is abelian. Hence, by (a),
using the facts that H N K is normal in H and K,

(HNK)* = (HNK)" = (HNK)” = HNK ,
and (b) is proved.
Suppose finally that K is normal in G. Certainly H N K is normal in H, so that (b)
holds. Hence H N K is normal in G and
K =K' = (HNK)) = (HNK)Y C = (HNK)C,

1

proving (c). O

Lemma 2.7. Let G = HC be an internal semidirect product that is not direct of a normal
subgroup H by a cyclic subgroup C = Cy for some prime q not dividing |[H|. Then any
collection € affording a minimal faithful representation of G does not contain any normal
subgroup of G that is a subgroup of H.

Proof. Let € = {K1,..., K} afford a minimal faithful representation of G. Suppose, by
way of contradiction, that & contains a subgroup of H that is normal in G. Without loss
of generality, K1 < H and K; is normal in G. If K1 # H then core(K;C N H) = K; and

|G: KiC|+|G:H| = |H:Ki|+q < |H:Kilg = |G: Ky|,

so that {K1C, H, Ks, ..., K}} affords a faithful representation of degree smaller than that
afforded by ¥, contradicting minimality. Hence K; = H. If k = 1, then C = {H} and
{1} = core(H) = H, so that u(G) = |G| and, by a result of Johnson [11, Theorem 1|, G
must be cyclic of prime power order, a Klein four-group or a generalised quaternion 2-group,
which is impossible. Hence k > 1 and ¢ = {H, Ks,...,K;}. Put N = core(KynN...N Ky),
so HN N = {1}. If g does not divide |[N| then N < H, so N = {1} and {K>,..., Ky}
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affords a minimal representation, again contradicting minimality. Hence ¢ divides |N]|, so,
by Lemma 2.6(c), N = (HN N)C = C, yielding a contradiction, since C' is not normal in
G. This completes the proof. O

The following theorem reduces calculations of minimal degrees of semidirect products by
a g-cycle, where ¢ is a prime that does not divide the order of the base group, to those cases
where the base group is a p-group for p # q.

Theorem 2.8. Let G = (H x K) x C be a semidirect product where H and K are groups
of coprime order and C = Cy; for some prime q not diwiding |H||K|. Then

w(H) + pu(K) +q if @ is trivial,
@) p(H) 4+ p(K % C) if pu is trivial,
M =
w(H x C) + pu(K) if pi 1s trivial,
(

w(H > C)+ u(K x C) if neither o nor g 1is trivial.

Proof. Note that the first case is a special case of the second and third cases, and the
formulae for the first three cases follow by Johnson’s result [11, Theorem 1] that u is
additive with respect to taking direct products of groups of coprime order.

Suppose then that neither ¢y not @i are trivial. We may regard G = HKC as an
internal semidirect product of HK by C, where HK is an internal direct product of H and
K. By (8), it suffices to prove

wG) = p(HC) + u(KC) . (9)

Let % be a collection of subgroups of G that affords a minimal faithful permutation rep-
resentation of G. Since |H| and |K| are coprime, subgroups of HK have the form HyK)
for some Hy < H and Ky < K. By Lemma 2.6(a), subgroups of G that are not subgroups
of HK have the form HoKyCY9 for some Hy < H, Ky < K and g € G, such that HyKj is
normal in HyKpCY. By a result of Johnson [11, Lemma 1], we may assume that all elements
of € are meet irreducible, so therefore have the form

HoK, HKy, HIKC® or HK,CY
for some Hy, H1 < H, Ko, K1 < K and z,y € G. In these respective cases, note that
coreq(HoK) = coreyo(Ho) K, coreq(HKy) = H coreyq(Kop) ,
and, by Sylow theory and Lemma 2.6(c),

core-(H1)KC if ¢ divides |core,(H1KC")|,

coreq(H1 KC*) = .
corey(Hy) K otherwise,

and
H corep(K1)C  if ¢ divides |core,(HK1CY)|,

core(HK1CY) =
g H corep (K1)  otherwise.
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Put

P9y = {Ho| Hy < H and H)K € ¢} ,

&g = {H1C | Hy < H and HiKC® € € for some z € G} ,

Ik = {Ko| Ko< Kand HKy € ¢},

éx = {KiC| Ky < K and HK,CY € € for some y € G} .
By inspection, the index sum of elements of % in G is equal to the index sum of elements
of Py U &y in HC added to the index sum of elements of Zx U &k in KC. Hence, to

complete the proof of (9), it suffices to show that Py U &y and Pk U &k afford faithful
representations of HC' and K C respectively. Observe that

coreHC< ﬂ Hy N ﬂ H1>K N HcoreKc( ﬂ Ko N ﬂ K1>

HoE.@H chEéaH KoE.@K chegK
- coreG(ﬂ%) = {1}.

In particular,

coreHC< N H n () H1> = {1}.

Hoey H1Ceéy

If 2y # () then immediately we have

coreHC(ﬂ(@HugH)> = {1}.

Suppose that Py = 0. If & = ) then P U &K # 0 so that H C core, (((€) = {1}, which
is impossible. Hence &y # () and

coreHC( ﬂ H1> = {1}.
H1Ceéy

If corey(H1C) contains an element of order ¢ for all H{C' € &y then, in each case,
corey(H C) = corey(Hp)C, so that

C = coreHC< ﬂ H1>C = ﬂ coreg(H1C)
HiCe&y HiCeéy

is a normal subgroup of HC', contradicting that ¢z is nontrivial. Hence, for at least one
H,C € &g, we have corey(HC) = corey~(Hi), so that

corego(()€u) = coreHc< N H10> = coreHo< N H1> = {1}.

H1Ceéy HCeéy

This proves that P U&7 affords a faithful representation of HC'. Similarly Pk U&k affords
a faithful representation of K'C, and this completes the proof of (9). O

Example 2.9. Let G be the holomorph of C3 x C5, that is,

G = (Cg X C5) Xid Aut(c;g X 05) = (Cg X 05) X (02 X 04) .
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We may regard G = HKCD as an internal semidirect product of a direct product HK by
another direct product CD, where H = (h) = C3, K = (k) = C5, C = (¢) = Cy = Aut(Cs)
and D = (d) = Cy = Aut(C5). Then u(G) > u(Cs x C5) = 8 and

G = (hkedhP=k=c=d"=1=hk =[cd=][hd=[kc,h"=h"1 k! =k?
((123), (45678), (12), (4576)),

which verifies that u(G) = 8. Put Cy = (cd?), Oy = {cd), G1 = HKC; and Gy = HKCs.
Then

1%

G122 (O3 xCs) %, Cy = ((123), (45678), (12)(47)(56))

where ¢ induces conjugation action that is inversion, and both C3 x,, C2 and C5 X, Co
are dihedral, where o1 = ¢, and 2 = ¢ are defined by (7), and both nontrivial. As
predicted by Theorem 2.8,

w(Gr) = 8 = 345 = pu(Cs Xy, Co) + 1u(Cs Xy, Cs) .
However
Gy = (O3 xC5) xyp Oy = ((123), (45678), (12)(4576)),

where C3 X, Cy is generalised quaternion of degree 7 (see Example 1.3) and Cs x4, C4 has
degree (1(C5) = 5, by Lemma 2.4, where 91 = ¢, and g = 9 are defined by (7). Here

u(G2) = 8 < 12 = 745 = pu(Cz %y, C4) + p(Cs Xy, Cy) .

This is the smallest example where we do not get equality throughout in (8), yet all of the
homomorphisms defining the semidirect products are nontrivial.

3. PRELIMINARIES ON GROUP ACTIONS ON A VECTOR SPACE

The aim in this section is to develop enough machinery to calculate, in the next section,
the minimal degrees of all semidirect products of elementary abelian p-groups by cyclic
groups of order ¢ where p and ¢ are different primes. We exploit the fact that an elementary
abelian p-group is a vector space over the field F,, of p elements, so that group actions may
be analysed using standard methods from linear algebra. The machinery also allows us,
in this section, to characterise group isomorphism for this particular class of semidirect
products.

Let V' be an n-dimensional vector space over [, written additively, and 7" : V' — V an
invertible linear transformation. Define the semidirect product of V' by (T") (or more simply
the semidirect product of V by T') to be

VxT =Vx(T) = {vT)|veV,icl}, (10)

with binary operation
(0, T (w,T7) = (v+T"(w),T"), (11)
for v,w € V and i € Z. Then V x T becomes a group. A subspace of V' that is T'—invariant
is referred to simply as ¢nvariant. Thus invariant subspaces of V' become normal subgroups
of V.x T. We define the core of any subspace W of V', denoted by core(W), to be the

largest invariant subspace of V' contained in W. Thus core(W) = coreg(W), in the sense
defined earlier, as the largest normal subgroup of G contained in W, where G =V x T.
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We suppose throughout, unless stated otherwise, that T' # id and T? = id, where id is
the identity linear transformation and ¢ is a prime different to p. The characteristic and
minimal polynomials of T are referred to as xp = x7r(z) and ¢ = ¢ () respectively. By
choosing a basis for V' we may identify V' with the vector space )} of column vectors of
length n with entries from I, and 17" with the n x n matrix of the linear transformation
with respect to the basis, and so regard T(v) = Tv as a matrix product. Under these
identifications

VT = Cpx,Cy

under the map

A
A A B (G R
An
where we write C), = (a), C; = (b), and ¢ : C; — Aut(C}') is the homomorphism induced
Al N
by bo : (aM,...,a*) — (a™,... a™) where T | : _ :
A N

Lemma 3.1. Let Ty and T> be n x n matrices over I, of multiplicative order q and put
V =T} for some positive integer n. Then V x Ty =V x Ty if and only if Ty and some
power of Ty are conjugate. In particular, if T1 and T are conjugate, then Vx Ty 2V x Ts.

Proof. If Ty and T¥ are conjugate, for some k € Z, then k # 0 modulo ¢, T} = P~'T§ P for
some invertible matrix P, and the mapping

(v, T) — (Pv, T, (12)

for v € V and ¢ € Z, is an isomorphism from V x T7 to V x T5.
Suppose conversely that 8 : V x T3 — V x T3 is an isomorphism. Then

(07T1)0 - (waTQk)
for some w € V' and integer k. In fact, we will show 7T} and T: 2’“ are conjugate. Note that

(v,1)0 € V x{I}
for all v € V|, since the order of (v, I) divides p and 6 is a homomorphism. For i =1,...,n,
denote by e; the column vector with zero everywhere except for 1 in the i-th place (a
standard basis vector). All vectors in V' are linear combinations of e1, ..., e,. For A € F,, =
{0,...,p— 1}, define, for v € V,

Av,I) = Ow,I) = (v, ).
Since 6 is a homomorphism, we have, for all v € V,
(A(w, 1))0 = A((v, 1)0) .

For each i =1,...,n, we have

(61', I)Q = (pia I)
for some p; € V. Put

P = [pl .. -pn] y
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the matrix whose columns are just pi,...,p,. Observe that p; = Pe; for i = 1 to n. Let
veV,sov=> 1, \e; for some \; € F,. Then
n

(v,1f = <Z)\¢ei,1) = (Hxi(ei,1)> 0 =[] (e, DO) = [ i 1)
=1 =1 i=1

1=1

= (zn:)\ipi,f> = (zn:/\ipei,f> = (P <zn:/\iei>,f) = (PU,I).
i=1 =1 =1

It is immediate, since # is an isomorphism, that P is invertible. On the one hand,
(0,710 = ((v,1)(0,T1))8 = ((v,NO)((0,T1)8) = (Pv,I)(w,T3) = (Pv+w,T}),
whilst, on the other hand,
(0, 11)0 = ((0,T)(Ty o, 1)0 = (0,T1)0(T} "o, 18 = (w,T3)(PTy 'v, 1)
= (w+ Ty PT Mo, TY) .

Hence, for all v € V, Pv = T¥PT v, so v = P~'TFPT 'v. Thus P'TFPT ! = I, so
T = P*1T2]“P, that is, T and T2k are conjugate, completing the proof of the lemma. ]

Thus, in calculating minimal degrees later, we may assume 7' is in primary rational
canonical form. By Maschke’s theorem, since p does not divide ¢ = [(T')|, all invariant
subspaces of V' have invariant complements, so that the minimal polynomial ¢7 is square-
free with regard to irreducible factors. All blocks in the primary rational canonical form of
T become companion matrices of monic irreducible polynomials, and the restriction of T’
to an indecomposable subspace of V' will always have an irreducible minimal polynomial.
The canonical form is thus characterised uniquely, up to the order of blocks, by x7. The
number of blocks corresponding to one particular irreducible factor is just the multiplicity
of that factor in x7. An irreducible factor of ¢pp = ¢ (x) divides x? — 1, so is either x — 1
or a polynomial of the form
) (13)
where s is the multiplicative order of p modulo ¢ and « is a primitive gth root of 1 in an
extension field F = F,(«) of F), (where F =T, if s = 1).

Fix a and F = Fp,(«) from the previous paragraph. Then § € F is a primitive gth root

To(z) = (x—a)(x—af)...(x — P

of 1 if and only if § is a nontrivial power of a. Recall that n = dim V. Let X, be the set
of nonnegative compositions of n in g parts:

X, = {(k‘,k‘l,...,k‘qfl)|k‘,k‘1,...,k‘q7120 and k‘—l—k‘l—l-...—l—k‘qfl :n}.

Consider x = (k,k1,...,kq—1) € X,, and define the following polynomial Px(y) € F,[z,y],
where = and y are indeterminates:

Puly) = (2= DM =) (e a2 o=yt
Note, when x = (n,0,...,0), that Px(a) = (x — 1)", the characteristic polynomial of the
n x n identity matrix. In general, Px(a) € F[z], and Px(«) € Fp[z] if and only if Px(c) is

a product of polynomials of the form # — 1 and 7mg(x), defined as in (13), where  ranges
over nontrivial powers of o. Further, if Px(a) € Fy[z], then Px(a) = x, where T is the
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matrix direct sum of companion matrices of irreducible polynomials, and it follows, by a
comparison of multiplicities of eigenvalues, that for i € {1,...,q — 1},
Pe(al) = Xri - (14)
Now put
X, = {xeX, | P(a)eFyz] and x # (n,0,...,0)}
and
IM, = {P(a)|xe X},

Then II,, is precisely the set of characteristic polynomials of n x n matrices over I, of
multiplicative order q. Moreover, the map 0 : X' — II,,, x — Px(«) is a bijection.

The field F, has a primitive element, so we can choose ¢ € {1,...,¢ — 1} such that the
multiplicative order of ¢ modulo ¢ is ¢ — 1. Observe that, if x € X, then

Py(al) = Py,

for some zv € X;. Then v becomes a well-defined permutation of X}. This, in turn,
induces a permutation 7 of II,, given by the following rule

U: Px(a) — Px(a') = Py (a). (15)
Note that v, 7 and 6 are intertwined, in the sense that v0 = 0v.

Lemma 3.2. Let x1,x2 € X};. The following are equivalent:

(i) x1 and x2 lie in the same orbit of v.
(ii) Px, (@) and Px,(a) lie in the same orbit of V.
(iii) There exists a matrix T of multiplicative order q and ¢ € {1,...,q — 1} such that
Py, (@) = xp and Py, (@) = X

Proof. Certainly (i) and (ii) are equivalent since v, U and 6 are intertwined. Suppose (ii)
holds. Hence there is some j > 0 such that

Pey(a) = (Px ()77 = Py i(a) = Py () = Py (af),

where ¢ = i/. Certainly, £ € {1,...,q — 1} and Px,(a) = x4 for some matrix T of order q.
Then Py, () = X, by (14), so (iii) holds.

Suppose (iii) holds, so there exists a matrix T" of order ¢ and ¢ € {1,...,q— 1} such that
Py, (a) = xp and Py, (a) = xp- But, £ =1/ for some j € {1,...,q — 1}, by primitivity of
i. It follows, again by (14), that

Pxy(0) = xpe = Pla’) = Pala”) = Pyila),
so that x2 = x3v, and (i) holds, completing the proof. O
Note that everything simplifies if ¢ = 2: o« = =1 € F =),
M, ={(z—Daz+1D" | k>0, ks >0 and k+k; =n} (16)

and v and 7 are identity permutations.

We can now characterise group isomorphism for our class of semidirect products:
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Theorem 3.3. For i = 1 and 2, let V; be an n;-dimensional vector space over F,, and
T, : V; = V; be a linear transformation of order q;, where p; and q; are distinct primes.
Then Vi xT1 = Vo x T if and only if p1 = p2, q1 = g2, n1 = no and both X1, and X7, lie
in the same orbit of U, defined as above where n =mn1, p = p1 and ¢ = q.

Proof. Suppose that V; xT1 =2 V5 x Ts. Since neither semidirect products is direct, the base
groups are isomorphic, and the extending groups are isomorphic. It follows that p; = po,
q1 = g2 and n; = no. By Lemma 3.1, T5 is conjugate to some power of 17, say Tf, for some
te{l,...,q1 — 1}. Hence xp, and xp, = Xo,e lie in the same orbit of 7, by Lemma 3.2.
Suppose conversely that p1 = p2 = p, ¢1 = g2 = ¢, m1 = n2 = n and xp, and xp, lie
in the same orbit of . Then x,, = Px,(a) and x5, = Px,(a) for some x1,x2 € X;;. By
Lemma 3.2, Py, (a) = X for some ¢, so that T and Tf are conjugate, since they have the
same characteristic polynomial. Thus V4 x T} £ V5 x T3, by Lemma 3.1. ]

Example 3.4. Take n = 3, p > 2 and ¢ = 2. This is an instance of (16), where X3 =
{(27 1)7(1’ 2)7(073)}7
H3 = {(1‘ - 1)2(IE + 1)7 (.’L’ - 1)($ + 1)27 ('I - 1)3}7

and v and v are trivial. For each p, there are three isomorphism classes, represented by the

10 0 1 0 0 -1 0 0
diagonal matrices | 0 1 0|, | 0 =1 0 | and 0 -1 0 |.IfTisanyof
0 0 -1 0 0 -1 0 0 -1

these matrices and V = F3, then u(V x T') = 3p, by Lemma 2.4 (or by Lemma 4.2 below).

Example 3.5. Take n = 2, p =7 and ¢ = 3. Then s =1 and ¢ = 2. We may take o = 2.
We have X3 = {(1,1,0),(1,0,1),(0,1,1)},

Iy = {(z-1(x=2), (z-1)(x—4), (z=2)(z—-4)},

and v and v are transpositions that fix (0,1,1) and (x — 2)(z — 4) respectively, so each has

two orbits. Thus there are two isomorphism classes, represented by the diagonal matrices
10 2 0

[ 0 2 and 0 o4l If T is either of these matrices and V = F2, then pu(V x T) = 14,

by Lemma 2.4 (or by Lemma 4.2 below), and we get the following minimal permutation

representations, for the group with the first matrix:

((1234567), (8910111213 14), (910 12)(11 14 13)) ,
and for the second:

((1234567), (8910111213 14), (235)(476)(9 12 10)(11 13 14) ) .

Ezample 3.6. Take n = 6, p = 13 and ¢ = 7. Then s = 3 and, in generating v and v,
we may take ¢ = 2. The relevant irreducible polynomials, other than = — 1, have degree
(g —1)/s =2, and we may presume « is chosen such that they are

rn=r = (@x—a)(z—a) = (z—a)z—ab) = 22 +3z+1,

r = @) = (0-a?)(w-a¥) = (-a¥)(w-a’) = 2®+6x+1,

)
3 =r3(z) = (z—a)(z—aF) = (z—a)(z—at) = 22 +5x+1.
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We denote a composition of 6 in 7 parts as a string of digits. Arranged in orbits of v,

X = {4100001, 4010010, 4001100} U {2200002, 2020020, 2002200}
U {2110011,2101101,2011110} U {0300003, 0030030, 0003300}
U {0210012,0021120, 0102201} U {0120021,0012210,0201102} U {0111111} ,

and, arranged in orbits of 7,

Iy = {(:r — 1)47“1, (x — 1)4r2, (x — 1)47“3} U {(:L’ — 1)27‘%, (x — 1)21"%, (x — 1)27“%
U {(a: — 1)2r1r2, (x — 1)2r2r3, (x — 1)2r1r3} U {r:f, r%’, rg}

U {7”%7“2, ’I“%T‘:g, 7“17“%} U {7“17“%, 7"27"%, 7“%7"3} U {rirars} .

The intertwining bijection § maps elements of X§ to Ilg exactly in the order listed above.
Thus there are 7 isomorphism classes for V' x T, where V = IE‘(f3 and T is a 6 x 6 matrix
of order 7. Note that here ¢ < p*~! for purposes of reading alternatives in the formulae
of Theorems 4.5 and 4.9 below. If G1, G2, G5 are groups of the form V x T representing
the first 3 isomorphism classes, in the order of orbits given above, then, by formula (24),
w(G1) = 3p + pg = 130, u(G2) = 2pq = 182 and u(G3) = p+ pg = 104. If G4, G5, Gg, G
represent the last 4 isomorphism classes, in order, then, by formula (17), u(G4) = 3pg = 273,
1(G5) = u(Ge) = 2pg = 182 and u(G7) = pg = 91.

Our techniques in principle allow us to determine when two groups in our class are
isomorphic, but also to exhibit isomorphisms when they exist.

Example 3.7. Consider the following groups:

Hy = (a1,...,a6,b|a® =b" =1=[a;,a;] for all i and j # i,
b b_ -1 -3 b b_ —1 -5 b b_ —1_—6
aj = ay, a3 =ay ay°, a3 =Gy, Gy = a3 Ay, a5 = dg, a5 = a5 Ag )
Hy = (a1,...,a6,b| al® =b"=1=[a;,a;] forall i and j # i, a} = aya,, ab = a7"ay*,

b_ . 3 .-2 b _ 6. -5 b _ 3 -1 -3 b _ -1 -1 -5 —4
a3 = aa3a; ", ] = G10903 0y, a5 = (10503 Gy 0506, A5 = Q10x03 Gy a5 GG )

Hy = (ai,...,a6,b|al® =b" =1=[a;,a;] for alli and j # i, a} = aya,, a} = ala;®,

b_ 35 -2 4 b_ -2 -2 -5 -4 b_ 35 -3 -5

a3 = ajagaz Ay -, Gy = Ay Ay Az Ay -, A5 = (10303 Gy G506,
b_ -2 -22 26 —6
ag = ay “a, “azajasag ) .

Then Hp, 2V x Ty, for k=1,2,3, where V = IF(IS3 and, using 71, 79, r3 from Example 3.6,

0 -10 00 0
1 =30 00 0
o]0 0010 0
0 01 -3 0 0
0O 00 00 —1
0 00 01 —6
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which is in rational canonical form, and clearly xp, = 721,

-5 1 1 1 1]
-4 3 1 3 1

1
1
-6 -1 -1
TQZ 0 0 0 0 and T3:
0
0

0 -2 -5 -3 -1
0o 0 0 1 -5
o o0 o0 0 1 -4

O O O O = =
(an}
|
W
|
W
|
ot
[}

It is straightforward to verify that x,, = r2ry and X1, = ror3. These lie in the same orbit of
v (see Example 3.6), so Hy = H3. However, Hy % Hy, since X, lies in a different orbit. To
find an explicit isomorphism between Hs and Hs, one can check that T = P_1T32P where

-2 -3 -2 -1 -2 -1]7

1 -1 0 4 0 4
p_| 0 0 0 -2 2 1
0 0 1 -5 0 —4
0O 0 0 0 -2 -3

. 0 0 0 0 1 -1 ]

The mapping (12) translates into an isomorphism from Hs to Hs, identifying the generators
ai,...,ag with standard basis vectors and b~! with a matrix, induced by

ay — af2a2, ag afgagl , Qg af2a4, ay — af1a§a§2a25,

-2 2 -2 ~1 4 -4 -3 —1 2
as +r ay “azag “ag, Qg aj apasay as“ag , brrb”.

The following two lemmas are probably well-known, and the first part of the first lemma
is a variation of the familiar modular law.

Lemma 3.8. Let W be a subspace of a vector space V. Suppose that V = K ® K’ for some
subspaces K and K' such that K is also a subspace of W. Put L =W N K'. Then

W =KaolL.

The codimension of L in K' is the same as the codimension of W in V. If, further,
T:V — V is a linear transformation and K is the core of W with respect to T then L s
core-free.

Proof. All of the claims follow quickly from the definitions. O

Lemma 3.9. Let T : V — V be an invertible linear transformation such that ¢ has degree
d. Let W be a subspace of V' of codimension k. Then core(W) has codimension at most kd.
In particular, if W has codimension 1 then core(W) has codimension at most d.

Proof. The claim follows from the fact that core(W) = W N T(W)N...N T (W) and
W, T(W), ..., T% (W) all have the same codimension in V, since T is invertible. O

Proposition 3.10. Let T : V. — V be an invertible linear transformation of a finite di-
mensional vector space V such that ¢ is a product of distinct irreducible factors. Let W
be a codimension 1 subspace of V. Then any invariant complement of core(W) in V is a
sum of indecomposable subspaces with distinct minimal polynomials.
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Proof. Let ¢p(x) = ri(x)...rm(x) where rq, ..., ry, are the distinct irreducible factors. Put
Vi = ker(r;(T')) and W; = core(W)NV; fori =1,...,m. Then core(W) =W @ ... D W,,.
Let i € {1,...,m}. Let k; be the number of indecomposable components of V having

minimal polynomial r;, which is just the number of indecomposable components of V;. To
complete the proof, therefore, by the Krull-Schmidt theorem, it suffices to show that the
number of indecomposable components of W; is k; or k; — 1. Let d; be the degree of r;.
Observe that W; = corey, (WNV;). But WNV; has codimension at most 1 in V;. Thus W; has
codimension at most d; in V;, by Lemma 3.9. But d; is the dimension of any indecomposable
component of V;, so W; contains at least k; — 1 indecomposable components, completing
the proof. O

Lemma 3.11. Let T : V — V be a linear transformation such that ¢ = r1...71.m for
distinct irreducible polynomials r1,...,7m. Suppose that V. = Vi & ... B V,, where V; =
ker(r;(T")) is indecomposable fori=1,...,m. Let B; be a basis for V; fori=1,...,m and
put B = By U...U B,,, which is a basis for V. Put

V={>nev|>Sn=0}.
beB beB

Then V is a core-free subspace of codimension 1. Conversely, if W is a core-free subspace
of codimension 1 then we can choose a basis B; for V; fori=1,...,m such that W = V.

Proof. Put n = dim(V'). If n = 1 then all of the claims hold trivially, so we may suppose
throughout that n > 2.

If B = {vy,...,v,} then {v; —vg,...,v1 —v,} is a basis for V, so dim(V) = n — 1.
Because rq...,r, are distinct, V,...,V,, are the unique indecomposable subspaces, and
none of these is contained in V, so core(V) = {0}.

Conversely, let W be a codimension 1 subspace of V' such that core(W) = {0}. Choose
any basis Bf for W N V;. Certainly, W NV} has codimension 1 in Vj, since core(W) = {0}.
Hence B U {v1} is a basis for V; for some v; € V5. Put

By = {b+uv|be By U{u}.

Then Bj is also a basis for V4. If m = 1 then V' = V; and it follows quickly from the definition
that V' = W. This starts an induction. Suppose m > 1 and put V =V @ ... P V,,, so that
V =V; @ V. Certainly, W NV has codimension 1 in V, since core(W) = {0}. Suppose,

as an inductive hypothesis, that we have bases Bs, ..., B, for Vs, ..., V,, respectively, such
that
wWnv = {ZAccef/ ( Zxczo},
ceC ceC

where C' = By U. ..U By,. Observe that (W NV;1) & (W N V) has codimension 1 in W, so
we may choose some

we W\(Wnw)eWnv)).

But w = v 4+ v for some unique w € V4 and v € V. If one of v or ¥ is in W then both are,
contradicting the choice of w. Hence v,v € W. But v = )~ Acc for some scalars A.. Put

/\:ZAC.

ceC
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By the inductive hypothesis, A # 0. Now put

B = {b—%v’beB{}U{—%v},

so that By is a basis for V4. Finally, put B = B1 U...U B,, and form V with respect to B.

But,
- 1
w=v+0 = —)\(—XU> +Z)\cc
ceC
and —A+ > oA =—-A+ A =0, so that w € ‘7, by definition. Noting that

W= (weWnW)eWnV),

it is straightforward, using the inductive hypothesis, to verify that W C V. Because
dim(W) = n—1 = dim(V), we have W = V| establishing the inductive step, and completing
the proof of the lemma. O

We call the subspace V defined in the statement of the previous lemma, the canonical
core-free subspace associated with V' (depending of course on the choice of basis).

Proposition 3.12. Let W be a subspace of a finite dimenional vector space V' over F,
acted on by an invertible linear transformation T : V. — V of order q, where p and q are
distinct primes. Then W has codimension 1 if and only if some (and hence every) invariant
complement core(W)' of core(W) in'V is a sum of indecomposable components with distinct
minimal polynomials and

W = core(W) @ core(W)’

or some canonical core-free subspace core of core .
l b wy wy

Proof. Note first that the hypotheses guarantee that T is invertible and ¢p is a product
of distinct irreducible polynomials. The “if” direction is immediate by the construction
of Lemma 3.11. Suppose then that W has codimension 1, and, by Maschke’s theorem,
choose some invariant complement core(W)" of core(W) in V. By Proposition 3.10, the
indecomposable components of core(WW)" have distinct minimal polynomials. By Lemma
3.8,
W = core(W) @ (W N core(W)),

and W N core(W)' is core-free of codimension 1 in core(W). By Lemma 3.11, there is a
choice of basis for core(W)’ such that W N core(W)" = core(W)’, and the proposition is
proved. O

4. MINIMAL DEGREES WHEN THE BASE GROUP IS ELEMENTARY ABELIAN

Throughout this section p and ¢ are distinct primes. Let
_ n ~v n
vV =F = (

be an n-dimensional vector space over the field I, of p elements, for some fixed positive
integer n, and T" an n x n matrix with entries from [, of multiplicative order ¢q. Recall
that, if W is a subspace of V' that is invariant under this action, then W has an invariant
complement W’ in V. The minimal polynomial ¢7 is a product of distinct irreducible
polynomials, all of degree s where s is the multiplicative order of p modulo ¢, with the
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possible exception (when s > 2) of a factor « — 1. Note that s = 1 if and only if F,, has a
primitive gth root of unity, in which case all the irreducible factors of ¢r are linear.

Proposition 4.1. Let G =V x T. There exist nonnegative integers £ and t and a collection
C =2 U&E affording a minimal faithful representation of G such that

2 =Dy, ..., D} and & = {E\(T), ..., E(T)}

for some codimension 1 subspaces D1, ..., Dy of V', and invariant subspaces E1, ..., By of V,
each of which complements an indecomposable subspace (where we interpret £ =0 andt =0
to mean D = @ and £ = @ respectively).

Note that it is possible to have t = 1 and E; = {0}, the complement of V in the case that
V is indecomposable.

Proof. There is no confusion in regarding G = VC as an internal semidirect product of V'
by C = (T') = C,, but still retaining vector space terminology and additive notation for
the group operation restricted to V. By [11, Lemma 1] there exists a collection & of meet-
irreducible subgroups affording a minimal faithful representation of G. Then ¢ = 2 U &
where &, possibly empty, comprises all subgroups in ¢ of index divisible by ¢, and &,
possibly empty, consists of all subgroups in ¢ of order divisible by g¢.

In particular, elements of & are subgroups of V. By Lemma 2.7, these must all be proper
subgroups of V, since V' is normal in G, so, being meet-irreducible, must have codimension
1 as subspaces of V.

Let K € &, so q divides |K|. Put W = K NV. Note that V is elementary abelian,
so all of its subgroups are normal in V. By (a) and (b) of Lemma 2.6, K = W(T)9 for
some g € G and W is an invariant subspace of V' (being normal in G). Certainly W # V
(for otherwise G = K € €, contradicting minimality), so V =W @& W' for some nontrivial
invariant subspace W' of V. If W' is not indecomposable then W/ = W{ & W3 for some
nontrivial invariant subspaces W7 and W of V, so

W = (WaeW)n (W o W)

and K = K; N Ky where K is a proper subgroup of K; = (W & W/)(TY) for i = 1 and 2,
contradicting that K is meet-irreducible. Hence W' is indecomposable, and the proposition
is proved. O

In what follows we develop a complete catalogue, namely, (17) and (24) below, of formulae
for (V' x T). Note, throughout, that T" # I, so ¢r(x) # x — 1. The next two theorems
cover all possibilities, where s is the order of p modulo ¢. In the first case (Theorem 4.5), we
investigate what happens when all of the factors of the minimal polynomial have the same
degree s > 1. In the second case (Theorem 4.9), we investigate the remaining possibilities,
namely, when x — 1 is a factor and all other factors have the same degree s > 2.

Lemma 4.2. If G =V x T, where all irreducible factors of ¢ are linear, then u(G) = np.

Proof. Suppose that all irreducible factors of ¢ are linear. Without loss of generality, we
may suppose T is diagonal and V = (vq,...,v,) where vy,...,v, are eigenvectors for T
Fori=1,...,n, put

Hi = <’01,... ,vi,l,vi+1,...,vn> .
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Then {Hy,..., H,} affords a minimal faithful representation of V' by T-invariant subspaces
of degree np. By Lemma 2.4, u(G) = (V) = np. O

Illustrations of the phenomenon of Lemma 4.2 appear above in Examples 2.5 and 3.5.

Lemma 4.3. Let p and q be distinct primes and s the multiplicative order of p modulo q.

s—1

Suppose that s > 2. Let a be the smallest integer such that ¢ < ap®~". Thena =1, ora =2

and q=1+p+...+p* 1. Ifs=a=2 thenp=2 and ¢ = 3.

Proof. Suppose that a > 1, s0o p*~! < ¢. Note that ¢ divides p*—1 = (p—1)(1+p+...+p*1).
If ¢ divides p — 1 then ¢ < p < p*~1, a contradiction.. Hence g divides 1+p+...+p*"! and
pPl<g<l4+p+...+p L Itfollowsthat q=1+p+...+p* L <2 lTanda=2. O

Remark 4.4. A generalised Mersenne prime ¢ has the form ¢ =1+ p+ ...+ p*~! for some
prime p and integer & (which includes the usual Mersenne primes of the form 2¥ —1). The
previous lemma asserts that, in our context, if a = 2 and s > 2 then ¢ must be a generalised
Mersenne prime. It is not known if there are infinitely many such primes.

Theorem 4.5. Suppose thatri, ...,y are distinct irreducible polynomials over I, of degree

s, where s is the order of p modulo q, such that

¢r = T1...Tm and XT:Tlfl...T’;lm.
We may suppose k1 > ko > ... > k. Then
np ifs=1,
k ifs>1and g < p*~',
WV % T) = 1Pq f q<p (17)
k1p® ifs>1, m=1andq>p° ',

kopq + (k1 — ko)p® ifs>1, m>1and qg>p*'.

Proof. The first alternative in (17) is given by Lemma 4.2, so we may suppose s > 1. Let a
denote the smallest integer such that ¢ < ap®~!'. By Lemma 4.3, a = 1 or 2. It is convenient,
throughout, to put k11 = 0. In particular, if m = 1 and a = 2 then k, = ko = 0. Put
G =V x T = V(T) (regarded as an internal semidirect product, mixing addition and
multiplication, without ever causing confusion). We have a direct sum decomposition

m  k;
V:@@sz: @Vij,

i=1 i=1 (ij)el

where Vj; is an indecomposable subspace of V' such that T'|y;, has minimal polynomial ;
for each (i,7) € I, where I = {(i,5) |1 <i<m,1<j <k} For JCI, put
v, = P vy,
(3,5)ed

so that V.=V =V; & Vp ;. If W =V, for some J C I then put W' = Vg, so that
V=WaeW.

Note that if k, = 0 then m = 1 and a = 2. Suppose for the time being that k, > 1, so
either a = 1, or a = 2 and m > 2. Because k; > ko1 > ... 2> kpy > kg1 = 0, we have
that, for each j =1 to kg, there exists some largest ¢; € {a,...,m} such that

ke, > J = ke,
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and we put

£
W; = @V%ja
i=1

so that T'|y, has minimal polynomial rq ... r¢;. In particular, 1 = m, since ky, > 1 >0 =
Em+1, and T'|y, has minimal polynomial 71 ...7y,. Thus

kq
= Vxo Pw; (18)
where X = {(1,7) | ka < j < k1} if a =2 and k1 > ko, and X = () otherwise, in which case
we interpret Vx = {0}. For j =1 to k4, put
Hj = WyeW;,

where W is a canonical codimension 1 subspace of W; as described in Lemma 3.11, so that
core(W;) = {0}, core(H;) = W; and ]G Hj| = pq. For (1,j) € X, put

= V1]< >7
so that core(K;) = V1] and |G : K|—p Now put
= {Hla""Hka}U{Kj|(17j)6X}' (19)

Then

core(ﬂ%) ﬂW’ N ﬂ Vi, = VxnVy = {0},
(1,5)ex
so that € affords a faithful representatlon of G of degree

ka

N IG:Hy| + Y |G K| = kapg + (k1 — ka)p®

J=1 (1.4)ex
Note that if k, = 0, so that m = 1 and a = 2, then (18) may be interpreted as V' = V7 (since
X = 1) and (19) may be interpreted as ¢ = { K; | (1,j) € I}, and the conclusion about
the faithfulness and degree of the representation afforded by € still holds. This proves that,

in all cases,
(G) < kapq+ (k1 — ka)p® .
We now prove that this formula is also a lower bound for x(G). By Proposition 4.1, there
exists a collection ¥ = ¥ U & affording a minimal faithful representation of G such that

={Dy,..., D/} and & = {E(T), ..., E(T)}

for some codimension 1 subspaces D1,..., D, of V, and invariant subspaces F1,..., F; of
V', each of which complements an indecomposable subspace. We interpret £ =0 and ¢ = 0
to mean D = @ and £ = & respectively. By Proposition 3.12, for : = 1, ..., ¢, we may write

D; = core(D;) @ core(D;) = S;®S!,

where we put S; = core(D;)’. The degree of the representation afforded by ¢ is ¢pq + tp®,
so to complete the proof of the theorem it suffices to show

lpg +tp® > kapq + (k1 — ka)p® . (20)
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As a stepping stone towards doing this, we will first prove £ > k,. We use the following
claim, which we will prove later:

Claim: We have a decomposition
V=5&..5eT1®...dT;

for some invariant subspaces S1,...,Sp,T1,..., Ty of V such that, after pos-
sible rewriting of 2,

D; = Si®S; and  E;=T;,
where S; is a sum of indecomposable subspaces with distinct minimal poly-
nomials for i =1,...,4, and T} is indecomposable for j =1,...,t.

Suppose by way of contradiction that ¢ < k,. Certainly, then, either a = 1 and ¢ < k1, or
m>1,a=2and £ < ky < kj. Hence, using the decomposition of V' in the Claim, at most
k1 — 1 indecomposables with minimal polynomial r; appear in S1 & ... & Sy, and, when
a = 2, at most k2 — 1 indecomposables with minimal polynomial 75 also appear. But k; and
ko copies of indecomposables with minimal polynomial ;1 and ro, respectively, appear in
the decomposition of V. Hence t > a and, without loss of generality, T3 is indecomposable
with minimal polynomial r;, and, in the case a = 2, we may suppose T3 is indecomposable
with minimal polynomial ro. Put

g TioT, ifa=1,
Tl@TQ@(Tl@TQ)/ ifa:2,

where, in the second case, (11 @ T>) = T{ N1y = Ey N Ey, which is indeed a complement for
T1 @ Tr. But core(S) = Ey, if a =1, and core(S) = E1 N Ey, if a = 2, so that the collection

o [7 0{SYU S\BUT)) ifa=1,
|2 U {S} U E\{EUT), Bx(T)} ifa=2,

affords a faithful representation of GG, but with degree less than the degree of the represen-
tation afforded by %, since

|G : Ei(T)| ifa=1,

|G S| = pg < ap® =
G2 BT +|G: BT ifa=2.

This contradicts that % is minimal. Hence £ > k,.

There are at most £ occurrences of indecomposables with minimal polynomial r; appear-
ingin S16...8 .5, so at least k1 — ¢ such indecomposables must occur amongst 11, ..., T;,
so that ¢ > ki — £. Thus

lpq +tp® = kapq + (£ — ka)pq + tp°

0 ifa=1,
ki —0 ifa=2,

v

kapq + (£ — ko) (a — 1)p° + p° {

= kapq + (k1 — ka)p®
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and (20) is proven. The statement of the theorem for s > 1 is therefore captured succinctly
by the formula

N(G) = kapq + (kl - ka)ps . (21)
To complete the proof of the theorem, it therefore remains to verify the Claim. As a first
step we prove

V=T1®..0T:®(E1N...NE) (22)

for some indecomposables T; such that E; = T} for i = 1,...,t. Note that V = E; & T}
for some indecomposable T, so Ey = T7, which starts an induction. Suppose, as inductive
hypothesis, that for k& < ¢,

V=T1o.. Ty 10 (E1N...0Ex_4),
for some indecomposables T1, ..., Tj—1 such that E; = T} for i = 1,...,k—1. By minimality
of €, E1N...N Ey is a proper subspace of E1N...N E,_;. Further,
EiNn...NEx_4 ~ (Elm...ﬂEk,1)+Ek o %4

Ein...NE; - E; Fk’

which is indecomposable, so we may choose an indecomposable T}, such that

ExNn...NEx1 = (E41N...NEy) Ty .

Certainly T} is not a subspace of Fj, (for otherwise E1 N...N E NTy # {0}), so it follows
that V = Ej, & Tj, so we may write Ej = T}. Then
V = (Tl@...@Tk_l)@(Elﬂ...ﬂEk_l) = Tl@...@Tk@(Elﬂ...ﬁEk),

which completes the inductive step and the proof of (22). Note that if £ = 0 (so that
2 = () then (22) proves the Claim (for then ¥ = & and E; N...N E; = {0} so that
V=mli®...eT).

We may suppose in what follows that £ > 0. Put £ = E;N...N E;. We next prove, by
induction, that we can rewrite & (if necessary) so that the following holds for £ =0,...,¢:

V=5&.05%0eNod..0Td(SiN...NnSNE) (23)

where D; = S; ® S! and S; is a sum of indecomposables with distinct minimal polynomials,
for ¢ = 1,... k. This suffices to prove the Claim, because when k = £ we have

SiN...NSNE = Sn..nSNE = (¢ = {0}.

Note that (22) now becomes the initial case £ = 0 in a proof by induction of (23). Suppose,
as inductive hypothesis, that 0 < k£ < ¢ and we can rewrite Z (if necessary) so that

V=81¢...05%10T1®..oT1® (S N...NS;_;NE)

where D; = S; ® S! and S; is a sum of indecomposables with distinct minimal polynomials
fori=1...,k— 1. By minimality of &,

core(DiN...NDg_1NE) # core(DiN...NDiNE),

that is,
SiN...NS,_ NE # SiN...NS;_yNENcore(Dg) .
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But
Sin...nS,_ NE . (81N...n8;_41 NE)+ core(Dy)
Sin...nS,_,NEncore(Dy) core(Dy)
\%4
< = D)
— core Dy, core(Dy)",

which is a sum of indecomposables with distinct minimal polynomials. Hence
(S1N...NS_1NENcore(Dy)) &S, = S1N...NS_ NE

for some invariant subspace S}y contained in F, which is a sum of indecomposables with
distinct minimal polynomials. Choose any complement (S7 N...NS; ;N E) and put

S, = (S1N...nS,_1NENcore(Dy)) & (S1N...NS_ NE),
which is indeed a complement of S;. Put
Dy = Sy @8},
Observe that core(Dy) = S;. and

S$iN...nS NEncore(Dy) = SiN...NnS_,NENS,

= (S1N...nS,_ NE)N |[(S1N...NS,_; N EnNcore(Dy))

®(S;1N...NnS,_NE)Y
= S1N...NS,_;NENcore(Dy) ,

so we may replace Dy by bvk in Withi)llt disturbing faithfulness or the degree of the
representation afforded by 4. Renaming Dy by Dy, we get
V=5¢&.05%10T1¢..0TLo (S N...0nS,_,NE)
=S51®..08% 0Ti®..eT®((S{N...NS,_;NENcore(Dy)) & Sk)
=510.. 085 10N1e..eTe (Scad(S1N...NS,_NENS,))
=50..o%0T1®..oTid (S N...NS.NE),

completing the inductive step, and (23) is proved. This completes the proof of the Claim
and therefore also the proof of the theorem. O

Formula (21) captures the three alternatives in the previous theorem when s > 1. How-
ever, by Remark 4.4 and Theorem 4.5, we have the following further simplification (even-
tually) if there turn out to be only finitely many generalised Mersenne primes:

Corollary 4.6. With the hypotheses of Theorem 4.5, if s > 1 and there are only finitely
many generalised Mersenne primes, then there is an integer N such that for all ¢ > N,
p(V 3 T) = kipg.

The first alternative in formula (17) is illustrated in Examples 3.4 and 3.5 and the intran-
sitive case of Example 2.5. The second alternative is illustrated in Example 3.6 (and also
occurs in Example 2.5 as an exceptional transitive case when s = 1 and np = pq = k1pq).
In the next two examples, we illustrate the third and fourth alternatives of (17).
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Ezample 4.7. The smallest instance when ¢ > p*~!, so that the third alternative of (17) is
01

able to kick in, occurs when p = 2 and ¢ = 3, so that s = 2. Let T = 11 ], so that

¢r =2+ 2+ 1, and put G = F3 x T = C3 x C3 = Alt(4). As expected, (17) predicts

correctly that u(G) = p* = 4.

Ezample 4.8. Let p=2 and ¢ = 7. Then s = 3 and the monic irreducible polynomials over
o with primitive 7th roots in an extension of Fy are m = 2+ r+1and o = 23+ 22 + 1.
Let T1 and T5 be the respective companion matrices, that is,

0 01 0 01
Th = |1 0 1 and o, = |1 0 O
010 0 11

Nowput I3 =111, Ty =TT, Ts =T1eT1®1s, Ts =T1 &1y ®1Tr ®Tr and
G; = V;x T;, where V; is of the appropriate dimension, for each i. Then G; =2 G5, by Lemma
3.1, and, by the third and fourth alternatives of (17), u(G1) = p® = 8, u(Gs) = pq = 14,
w(Gy) = 2p° =16, u(Gs) = pqg + p® = 22 and u(Gg) = 2pq = 28. The underlying methods
yield, for example, the following contrasting transitive minimal faithful representations:
G1 = ((12)(34)(56)(78), (13)(24)(57)(68), (15)(26)(37)(48), (2354786)),
Gs = ((12)(56)(1112)(13 14), (1 2)(34)(7 8)(13 14), (1 2)(3 4)(56)(9 10),
(12)(78)(1112)(13 14), (12)(34)(910)(13 14), (12)(34)(56)(11 12),
(135791113)(2468101214)) .

Theorem 4.9. Suppose that i, ...,y are distinct irreducible polynomials over F,, of degree
s > 2, where s is the order of p modulo q, such that

or = (x—1D)ri...ry and X7 = (x—l)krlfl...rfnm .
We may suppose k1 > ko > ... > k. Then
(k1pg ifk <k andq<pt,
kipq+ (k — k1)p if k> ki and g < p*~ 1,
WV T) = k1p® ifk <k, m=1andq>p, (24)

kip® + kp ifk >k, m=1andq>p',
kopq + (k1 — ka)p® ifk <ky, m>1andq>pt,
kopq + (k1 — ko)p® + (k — ko)p ifk > ko, m > 1 and g > p*~!.

\

Proof. As before, let a be the smallest integer such that ¢ < ap®~!. By Lemma 4.3, a = 1
or 2. We again put k, = 0 when m =1 and a =2. Put G =V x T = V(T). We have a
decomposition V =V & Z, where

V=PV, ad 2Z=2%,

(i.g)el a=1
where the V;; are indecomposable subspaces of V' with minimal polynomials from amongst
T1,...,Tm, adopting the notation of the proof of the previous theorem, and the Z, are
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one-dimensional indecomposable subspaces of V' on which the action of T is trivial (so
Zo(T) = Cp x Cy). By Theorem 4.5 and (21),

p(VAT)) = kapq + p* (k1 — ka) . (25)

Certainly, by (1), we have pu(G) > pu(V(T)). There are two cases, according to whether
ko> kor k, <k.

Case 1: Suppose that k, > k.

Let € be the collection of subgroups described in the first part of the proof of Theorem
4.5 that affords a faithful representation of V(T) of degree u(V(T)), replacing V by V
throughout. For a = 1,...,k, put

U = Wa®Za and  Hy = UpoW,o@Zs.
BFa
where U, is a canonical codimension 1 subspace of U, with trivial core (see Lemma 3.11),
and here W/ denotes a complement of W, in 17, so that
core(fI;) = W, @ Z3 .
Ba
Now put

Cg\: {I/i\-ly7E€7Hk‘+l®za7Hka@Z}U{KJ@Z’(17.7)GX}a

where the notation K; & Z represents the internal semidirect product resulting from joining
K; with Z (since the action of T" on Z is trivial). Then

core(ﬂ?\) = core(ﬂ‘ia”) @ ﬁ@Zﬁ = {0},

a=1 f#a

so € affords a faithful representation of G. Its degree is the same as the degree of the
representation of V(T') afforded by &, which is u(V(T)), so
w(G) < wV(T)) < wG),
whence we have equality. The formula (25) captures the first, third and fifth alternatives
in the statement of the theorem.
Case 2: Suppose that k > k, .
We make the same definitions as in the previous case, except that we put

¢ = {H,... H,} U{K;©Z|(1,j) e X}U{(Vo @ Zs)(T) |a = ka+1,....k} .
B#a

Again the representation of G afforded by % is faithful. Its degree is
kapq + (k = ka)p + p*(k1 — ka) ,

which therefore serves as a lower bound for p(G).

By Proposition 4.1, there exists a collection ¥ = Z U & of subgroups affording a minimal
representation of G, such that 2 = {D;,..., Dy} and & = {E\(T),...,E(T)}, where
Dy, ..., Dy are codimension 1 subspaces of V and, after reordering (if necessary), En, ..., E,
are complements of indecomposables with minimal polynomials from amongst rq,...,7m,
and Ey 41, ..., E; are complements of one-dimensional indecomposables. As before, ¢ > k,
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and, by the same reasoning as before, tg > k1 — ¢ and t —ty > k — £. By definition of a, and
since p # ¢, we have (a — 1)p*~! < ¢, so

pg > (a—1)p° +p.
Hence

w(G) = lpg+ (t —to)p + top®
= kapq + (£ — ka)pg + (t — to)p + top®

> kapq+(€—ka)((a—1)ps+p)+(k—€)p+p5{0 ?fa:l’
ki—¢ ifa=2,
= kapq + (k — ka)p + p*(k1 — ko) ,
whence we have
1(G) = kapq + (k — ka)p + p° (k1 — ka) - (26)

Formula (26) captures the second, fourth and sixth alternatives in the statement of theorem,
and the proof is complete. ]

Mlustrations of formula (24) are implicit in applications in the next section.

5. ADDING DIRECT FACTORS WITHOUT INCREASING THE DEGREE

Results of the preceding section are applied now to investigate possible ways in which
1 may fail to be additive with respect to taking direct products. The question of when
additivity occurs is an important theme in the work of Johnson [11] and Wright [22]. The
failure of additivity in general was demonstrated by a seminal example in [22] and explored
further by Saunders [17-19]. In all their cases, nontrivial groups G and H are exhibited in
which G does not decompose nontrivially as a direct product, H is a cyclic group of prime
order and
WG x H) = p(G) . (27)
We reproduce these examples below as special cases of applications of the formulae in
Theorems 4.5 and 4.9. We finish by exhibiting examples of groups GG that do not decompose
nontrivially as direct products, but such that (27) holds for arbitrarily large direct products
H of elementary abelian groups (with mixed primes).

Ezample 5.1. Consider the groups Gy = F2 x Ty, Gy = F2 x Ty, G = Fz x T3, where

0400
04 0
0 4 140 0
T, = =1 4 Ty =
! 14| 72 00(1)’3 0010
000 1

Then |T1| = |To| = |T3] = 3, ¢y, = xp, = 2°+2+1, ¢p, = Xp, = O, = (2—1) (2> +241)
and xp, = (v — 1)?(2? + © +1). Then Gy = C2 x C3 and u(Gy1) = 15, by the second
alternative of (17). A minimal faithful representation is afforded by a canonical core-free
subspace of F2 (see Lemma 3.11), yielding

G 2 (ay,a2,b | a? = ag =P =1= [a1, as), al{ = ag, ag = aflagl) >~ (ag, 9, B),
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where

a; = (12345)(678910)(11 14 12 15 13),
ay = (12345)(697108)(11 12 13 14 15),
B = (1116)(2127)(3 13 8)(4 14 9)(5 15 10) .

By the first alternative of (24), we have u(G2) = 15. A minimal faithful representation is
afforded by a canonical core-free subspace of F3, yielding

Gy = Gy xC5 = (o, 0,03, 8) ,
where a1, o and S are as above, and
ag = (12345)(678910)(11 12 13 14 15) .

In fact, G; and G are isomorphic to subgroups of the transitive permutation group intro-
duced at the end of Wright’s paper [22], which was the first published counterexample to
additivity of u with respect to direct product. By contrast, now using the second alterna-
tive of (24), u(Gs) = 15+ 5 = 20. A faithful intransitive representation of Gj is given by
the previous canonical core-free subspace of F2, augmented in an obvious way in Fé, and a
subgroup of index 3, yielding

Iav) Iav) 2 )
G3 - G2 XCS == Gl XC5 - <Oé]_,042,043,044,5>,

where a1, ag, ag and § are as above, but fixing five new letters, and oy = (16 17 18 19 20).
Observe that 1(C5)? = 10, so that

max{p(G1), w(C3)} = 15 < u(G1x C3) = 20 < 25 = p(G1) + u(C3) . (28)

This answers affirmatively a question of Saunders [17], whether there exist groups K and
L such that

max{u(K), u(L)} < p(K x L) < p(K) + (L) . (20)
Note that if G and H are groups such that u(H) < p(G) and u(G x H) = pu(G) <
w(G) + p(H) (such as the example in [22]), then (29) holds easily by taking any group M
of order coprime to |G x H|, putting K = G and L = M x H, and invoking Johnson’s
result that y is additive with respect to taking direct products of groups of coprime order.
However, the solution (28) given here appears to be novel in that only two primes, namely
3 and 5, divide |K x L|, taking K = G and L = C2. This example clearly generalises, by
(24), to an infinite class of examples, where (29) holds and only two distinct primes p and
q divide |K x L|. Note that (29) fails, if K x L is a p-group, since p is additive with respect
to taking direct products of nilpotent groups by a theorem of Wright [22].

Ezample 5.2. Let p and ¢ be primes such that p has order s = ¢ — 1 modulo ¢, so that
m=1+x+...+ 27" is irreducible over F,. Suppose also that (p,q) # (2,3), as this

guarantees that ¢ < p?=2 = p!

, so that the second alternative of (17) will apply. (The
case (p,q) = (2,3) is explored above in Example 4.7 when illustrating the third alternative

of (17).) The smallest case satisfying our conditions is (p,¢) = (2,5). Consider the groups
H =F'xTy =2 C'xC; and Hy =FixT, = ClxCy 2Hy xCp,
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where T7 and T» are matrices over I, in rational canonical form having characteristic poly-
nomials 7w and (1 + z)m respectively. Then

w(Hy) = pqg = p(Hz) = p(Hy x Cy),

by the second alternative of (17) and the first alternative of (24). Observe that H; is
a subgroup of the complex reflection group C(p,p,q), a member of the infinite class of
counterexamples studied by Saunders in [18]. In the smallest case, when p = 2 and ¢ = 5,
the groups become H = C§ sd C5 and Hy = Cg’ sd C5 &£ Hy x (9, where

1
00 01 00010
Lo o1 100 10
Ti=1y 10| 2=]01010
00110

0011
(0000 1|

and
p(Hy) = p(Hy x Cz) = 10 < 12 = p(Hy) + p(Co)

The group H; and these properties appear for the first time in [17]. It is gratifying that
the smallest example that comes from Saunders’ investigations, where he was motivated by
questions about complex reflection groups, also coincides with the smallest example that
arises as an application of Theorems 4.5 and 4.9. By results in [4], it is impossible to create
a smaller example by any method, in the sense that G x H cannot embed in Sym(9) and
have H nontrivial and p(G) = u(G x H).

In the final examples below, given an arbitrarily large direct product H of elementary
abelian groups built from any collection of primes and positive integer exponents, we can
find a group G that does not decompose nontrivially as a direct product, yet u(G x H) =
H. Example 5.10 below is a substantial simplification of Example 5.3, but relies on some
number-theoretic preliminaries.

Ezample 5.3. Let P = {p1,...,pr} be a finite collection of distinct primes and N =
{n1,...,n,} a collection of positive integers. Choose a prime ¢ > 5 and larger than all
of the primes in P. Consider i € {1,...,k}. Let s; be the multiplicative order of p; modulo
q and put m; = s;n;. Then s; > 1 and we can find a monic irreducible polynomial m; € [,
of degree s; such that its roots in an extension of IF,, are primitive gth roots of 1. Let a;

$i=1 50 a; = 1 or a; = 2, by Lemma 4.3. Observe

be the smallest integer such that ¢ < a;p
that if a; = 2 then s; < ¢ — 1 (for otherwise a; = 1, since 5 < ¢ < pg_Q), so m; and m;U; are
distinct, where 7; is the permutation defined by (15). Denote the companion matrix over
a field F of a monic polynomial = € F[z] by M,. If a; = 1, define T; to be the m; x m;
matrix over F,, that is the matrix direct sum of n; copies of My,. If a; = 2, define T; to be
the (2m;) x (2m;) matrix over F, that is the matrix direct sum of n; copies of My, & M, 5.

Now put
T, = Tial,,
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where I,,, is an identity matrix (over F,,). Then |T;| = \ﬁ| =q,
e ifa; =1, ) ifa; =1,
¢Tl = ~ . XTz = n; ~ . .
mi(mivy)  if a; = 2, ()™ if a; = 2,

bs =

7

(x — 1) ifa; =1, (z —1)"im" ifa; =1,
(@~ e o =2 B Ny ma)n ta=2,

—~ ~

Now let G; =V; x T; and G; =V, x ﬁ,where

Friifa; =1, Frutniif g; =1,
V. = g and V; = :
F2miif a; = 2, F2mitniif g; = 2.

)

Then
wWGi) = wG:) = nipiai , (30)
by Theorems 4.5 and 4.9. Observe that, because I, acts trivially on F)7,
G = Gyx (O (31)
Now put
T=elT, T=¢.T, V=V, V=oaLV,

where the zeros outside the matrix blocks down the diagonals act as formal zeros (not in
any particular field) for the purpose of matrix multiplication, and the elements of V' and
1% may be regarded as column vectors over [F,,, U... U, . Thus, because the construction
respects direct sum decompositions, T" and T may be regarded as acting on V and v (on
the left) by usual matrix multiplication. Hence, as in (10) and (11), we may define

G=VxT and G=VxT.

The actions of T and T on the respective ¢th direct summands is nontrivial, for each i,
and the orders of these direct summands are pairwise coprime and also coprime to ¢, so,
by repeated application of the last alternative in the formula given in Theorem 2.8 and by
(30), we have

k k k
wG) =D wG) = > nipigi = ZM(@) = u(G).

i=1 i=1 i=1

Also, by (31),
G = GxClx...xCl.

Finally, put H = C! X...x Ck, which is our arbitrarily large direct product of elementary
abelian groups, using all of the primes py, ..., pg. Then u(G x H) = u(G). By construction,
the irreducible action on each direct summand guarantees that G does not decompose
nontrivially as a direct product.

Remark 5.4. If there are only finitely many generalised Mersenne primes, then the con-
struction in Example 5.3 would simplify by choosing ¢ to be larger also than the largest
Mersenne prime, for that would guarantee a; = 1 for each i, by Remark 4.4.
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To guarantee simplification in the construction of Example 5.3 (regardless of whether
or not there are infinitely many generalised Mersenne primes), we invoke the following

lemmas. We say that an integer m > 3 is Mersenne with respect to an integer n > 2 if

notl_q < na—l—l'

m=1+mn+...+n® for some integer a. Note that this implies m = *—-—

Lemma 5.5. If m is Mersenne with respect to n then k is not Mersenne with respect to n
form < k <2m.

Proof. If m and k are Mersenne with respect to n and m < k < 2m then there exist
positive integers o and § such that m =1+n+...+n®and k=1+n+... +n*F =
m~+n®tl 4+ .. 4+ n"8 whence

na—i—l < na—&-l_'_.“_'_na—i-ﬁ — k—m < m < na—i—l’
which is impossible. O

The following corollary is of independent interest and probably well-known.

Corollary 5.6. Given a positive integer n, there exists infinitely many primes that are not
Mersenne with respect to n.

Proof. Let N be any positive integer, and choose any prime p; > N. By Bertrand’s postu-
late, there exists a prime po such that p; < po < 2p;. If py is not Mersenne with respect
to n, then we are done. If p; is Mersenne with respect to n then py is not Mersenne with
respect to n, by Lemma 5.5, and again we are done. ]

Lemma 5.7. Letn > 2, k > 3 and N any positive integer. Then any strictly increasing
sequence of k integers between N and 2N contains a consecutive subsequence of |k/2]
elements, none of which are Mersenne with respect to n.

Proof. Let t1,...,t; be a strictly increasing sequence of integers between N and 2N. If
t; is not Mersenne with respect to n for all 7, then we are done using the entire sequence.
Suppose then that some element in the sequence is Mersenne with respect to n, and let ¢; be
the least such element. Then, for all £ such that j < ¢ <k, we have N <t; <t;, < 2N < 2t;,
so that ty is not Mersenne with respect to n, by Lemma 5.5. If j > |k/2] then t1,... ;)9
is a consecutive subsequence of |k/2| elements, none of which are Mersenne with respect
to n, and we are done. Otherwise j < |k/2] and tj1,...,t; is a consecutive subsequence
with k —j > k — |k/2] > |k/2] elements, none of which are Mersenne with respect to n,
and again we are done. O

Theorem 5.8. If p1,...,pr are prime numbers then there exist infinitely many primes that
are not Mersenne with respect to p; for each i.

Proof. Let p1,...,pr be primes and N any positive integer. By the Green-Tao theorem [7]
there exists an arithmetic progression of primes
q-M, —M+15 --- > 40 =4, 41, ---, qM

for some M > max{N,2*}. We may suppose the common difference is s so that ¢ =
q_rr + Ms > 2Fs and ¢; = g +is for each i = 1,..., M. In particular,

g < q < ... <qu < 2q. (32)
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By Lemma 5.7, there exists a consecutive subsequence of qi,...,qu, starting at ¢;, for
some i3 > 1, of length My = |[M/2] > 2k=1 consisting of elements none of which are
Mersenne with respect to p;, which starts an induction. Suppose j < k and, as inductive
hypothesis, that we have a consecutive subsequence starting at g;;_, of length M; 1 >
2k=7+1 consisting of elements none of which are Mersenne with respect to pi, ..., pj—1. By
Lemma 5.7, this contains a consecutive subsequence starting at g;; for some i; > ;1 of
length M; > [M;_1/2| > 2*7J consisting of elements none of which are Mersenne with
respect to p1,...,pj, establishing the inductive step. The lemma now follows by induction
by observing that M), > 2¥=% = 1, so that we have found at least one prime ¢i, > N that
is not Mersenne with respect to pi,..., pg. O

Remark 5.9. Ramanujan [16] showed that 7(n) — 7(n/2) tends to infinity as n does, where
m(n) denotes the number of primes less than or equal to n, generalising Bertrand’s postulate.
This also guarantees the existence of an integer g and primes ¢y, . . ., ¢y such that (32) holds,
and the proof of Theorem 5.8 proceeds as above, but avoiding use of the Green-Tao theorem.

Ezample 5.10. Again let P = {pi,...,pr} be a finite collection of distinct primes and
N = {ni,...,n;} a collection of positive integers. This time, we choose a prime ¢ that is
not Mersenne with respect to all of the primes in P, and larger than all of the primes in P,
the existence of which is guaranteed by Theorem 5.8. For each i, define T;, ﬁ =T, & 1,,
Vi, ‘2, G; = V; x T; and /G\Z X ﬁ, as in Example 5.3, but noting that a; = 1, since q is
not Mersenne with respect to p;, by Lemma 5.5. Again, |T;| = ]Zm = ¢, but now V; = F}'i,

Vi = Fzz“r”i, and we have the following simplifications:
o, = T, X, = m", <Z5ﬁ = (z—1)m, Xp = (@ —1)™Mm .

Both (30) and (31) hold as before:

wGi) = p(Gy) = nipigi and Gi = G x cpi.
As before, putting T = @leTi, T = @leﬁ, V = @leVi, V= 69?:1‘2, G =V x T and

G=VxT=EGxC) x...x Cpk, we have

k k k
wG) = ZM(Gz‘) = Znipi(h' = Zﬂ(é\i) = u(G).
i=1 i=1 =1

Finally, as before, put H = C}! x ... x Cp*. Then u(G x H) = p(G), so (27) holds, yet G
does not decompose nontrivially as a direct product. Note that when H = C),, x ... x (),
the action of G on each Sylow p;-subgroup is irreducible. The authors are not aware of any
simpler method for achieving this last property, which appears to be inextricably linked to
number-theoretic properties of the particular primes involved.
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