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Abstract

Uniform strong approximation to a local time process is established for a

functional of nonstationary time series. The main result is used to investigate

uniform convergence for a local linear estimator in a nonlinear cointegrating

regression model with non-linear nonstationary heteroskedastic error processes.

Sharp convergence rates and optimal range are obtained. Estimates of a het-

erogeneity generating function (HGF) are also studied. It is shown that, when

weighted by the HGF, the uniform convergence rate associated with local lin-

ear estimator can be improved in the tail. This feature seems to be new to

literature.
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1 Introduction

Let xk,n, 1 ≤ k ≤ n, n ≥ 1 be a triangular array, constructed from some underlying

nonstationary time series and assume that there is a continuous limiting Gaussian

process G(t), 0 ≤ t ≤ 1, to which x[nt],n converges weakly, where [a] denotes the integer

part of a. In many applications, we let xk,n = d−1
n xk where xk is a nonstationary

time series, such as a unit root or long memory process, and dn is an appropriate

standardization factor. A common functional of interest Sn(x) of xk,n is defined by

the sample quantity

Sn(x) =
cn
n

n∑
k=1

g[cn (xk,n + x)], x ∈ R, (1.1)

where cn is a certain sequence of positive constants and g is a real integrable function

on R. These functionals arise in nonparametric estimation and inference problems,

particularly, problems involving nonlinear cointegration models. In such situations,

the underlying time series xk is nonstationary, g is a kernel function, and the secondary

sequence cn depends on the bandwidth used in the nonparametric regression. See

Park and Phillips (1999, 2001), Karlsen, Myklebust and Tjostheim (2007), Wang and

Phillips (2009a, 2009b, 2011, 2012) and the reference therein.

The point-wise limit behavior of Sn(x) in the situation where
∫∞
−∞ g (s) ds 6= 0 was

studied in Wang and Phillips (2009a), where it was shown that when cn → ∞ and

n/cn →∞,
Sn(x)→D

∫ ∞
−∞

g(t)dt LG(1,−x), (1.2)

where LG(t, s) is the local time of the process G(t) at the spatial point s, defined

in the end of this section. In the related works, Jeganathan (2004) investigated the

asymptotic form of similar functionals when xk,n is a the partial sum of linear pro-

cesses, Borodin and Ibragimov (1995), Akonom (1993) and Phillips and Park (1998)

for the particular situation where cnxk,n is a partial sum of iid random variables.

More currently, Wang and Phillips (2011) considered the point-wise asymptotics of

the Sn(x) for the so-called zero energy functional, that is,
∫∞
−∞ g (s) ds = 0. Results of

the type (1.2) and those appeared in Wang and Phillips (2011) have many statistical

applications, especially in nonparametric estimation - see Wang and Phillips (2009a,

2009b, 2011, 2012) and Wang (2014).

The present paper is concerned with developing a uniform approximation of Sn(x)

to the local time LG(1,−x) of the process G(t). Such cases are important in nonlinear

2



cointegrating regression and they appear in the investigation of uniform convergence in

relation to non-parametric estimation. In order to investigate the uniform convergence

for a local linear estimator, for example, we need to consider the lower bound for

inf |x|≤bn Sn(x) in the form g(s) = K(s), where bn is a sequence of positive numbers

approaching zero and K(s) is the kernel function used in nonparametric estimation.

As a direct consequence of our uniform approximation (Theorem 2.1), Corollary 2.1

provides a uniform lower bound of the Sn(x) under a “optimal” range for the x being

held. This result essentially improves the previous those by Chan and Wang (2014).

It should be mentioned that similar uniform lower bounds of Sn(x) are required in

many other areas, such as the transformation regression and the estimation of the

volatility function in a regression model with nonlinear nonstationary heteroskedastic

(NNH) error processes. We refer to Wang and Wang (2013), Oliver and Wang (2013)

and Section 2.3 for further details.

This paper is organized as follows. In next section, we present our main results.

Theorem 2.1 provides a framework for the uniform approximation. It is shown that,

under certain conditions and a rich probability space, Sn(x) can be approximated

by a local time process over R with certain rate. The rate might be not optimal,

but it is enough for many practical applications. Theorem 2.2 gives an important

application of Theorem 2.1 to general linear processes. Our result includes the xk

being a partial sum of ARMA processes and fractionally integrated processes, which

are most commonly used in practice. Using Theorem 2.2 as a main tool, Theorem

2.3 investigates the uniform asymptotics for the local linear estimators in a non-

linear cointegrating regression model with NNH error processes. We also consider the

estimates for the heterogeneity generating function in Theorem 2.4. These results

improve those in existing literature. All technical proofs are given in Section 3.

Throughout the paper, we denote by C,C1, ... the constants, which may change at

each appearance. The process {Lζ(t, s), t ≥ 0, s ∈ R} is said to be the local time of a

measurable process {ζ(t), t ≥ 0} if, for any locally integrable function T (x),∫ t

0

T [ζ(s)]ds =

∫ ∞
−∞

T (s)Lζ(t, s)ds, all t ∈ R,

with probability one.
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2 Main results and applications

2.1 Main results. We make use of the following assumptions in the development of

main results. Except explicitly mentioned, notation will be the same as in Section 1.

Assumption 2.1. supx |x|ρ|g(x)| < ∞ for some ρ > 1,
∫∞
−∞ |g(x)|dx < ∞ and

|g(x)− g(y)| ≤ C|x− y| whenever |x− y| is sufficiently small on R.

Assumption 2.2. On a rich probability space, there exist a process G(t) that has a

local time LG(1, x) satisfying

|LG(1, x)− LG(1, y)| ≤ C|x− y|β, a.s., (2.3)

for some β > 0 and a sequence of stochastic processes Gn(t) such that {Gn(t); 0 ≤ t ≤
1} =D {G(t); 0 ≤ t ≤ 1} for each n ≥ 1 and

sup
0≤t≤1

|x[nt],n −Gn(t)| = oa.s.(n
−δ). (2.4)

for some 0 < δ < 1.

Assumption 2.3. For all 0 ≤ j < k ≤ n, n ≥ 1, there exist a sequence of σ-fields

Fk,n (define F0,n = σ{φ,Ω}, the trivial σ-field) such that,

(i) xj,n are adapted to Fj,n and, conditional on Fj,n, [n/(k− j)]d(xk,n−xj,n) where

0 < d < 1, has a density hk,j,n(x) satisfying that hk,j,n(x) is uniformly bounded by a

constant K and

(ii) supu∈R
∣∣hk,j,n(u + t) − hk,j,n(u)

∣∣ ≤ C min{|t|, 1}, whenever n and k − j are

sufficiently large and t ∈ R.

Assumption 2.4. There is a ε0 > 0 such that cn →∞ and n−1+ε0cn → 0.

We remark that Assumption 2.1 is weak and standard for this type of problem,

and it is satisfied by many functionals such as g(x) is differentiable and has compact

support. Assumption 2.2 is strong approximation version of the result xn,[nt] →D

G(t) on D[0, 1], and it is widely obtainable for many random sequences. A typical

example in statistics and econmetrics is provided in Proposition 2.1 where we establish

Assumption 2.2 for general linear processes. Note that, Gn(x) can not be replaced by

one single process G(x) which is independent of n. Explanation in this regards can

be found in Csörgö and Révész (1981). As for the Lipschitz type condition (2.3), it is

satisfied by the classical Gaussian processes, Levy process and many semimartingales.
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To illustrate, let G(t) be a continuous Gaussian process with covariance function

satisfying

EG(t)G(s) = A {|t|2w + |s|2w − |t− s|2w}, (2.5)

where 0 < w < 1 and A is a constant. It follows from Theorem 30.4 of Geman and

Horowitz (1980) and the remark below it that (2.3) holds for any 0 < β < (1− w)/2w.

Assumption 2.3 is the same as Assumption 2.3 given in Wang and Phillips (2009a),

except that the dkjn in cited paper is repalced by [(k − j)/n]d. As explained in Chan

and Wang (2014), this additional requirement on dl,k,n is mild, which is only used

here for technical convenience. In Assumption 2.4, cn →∞ is necessary. If cn = 1, a

different limit distribution appears. We refer to Berkes and Horvath (2006) for further

details.

We have the following main result.

Theorem 2.1. Suppose Assumptions 2.1–2.4 hold. On the same probability space as

in Assumption 2.2, for any β > 0, we have

sup
x∈R
|Sn(x)− τ LGn(1,−x)| = oP (log−β n) (2.6)

where τ =
∫∞
−∞ g(t)dt 6= 0. The result (2.6) remains true for τ = 0 and, in this

situation, Assumption 2.2 can be removed.

Remark 2.1. Due to technical difficulties, the convergence rate in (2.6) may not

be optimal. We conjecture that the rate should have the form n−γ, where γ > 0

is related to δ > 0 given in Assumption 2.2. However, the result (2.6) suffices in

many applications. As a direct consequence, we have the following corollary that

provides the uniform bounds for Sn(x) under “optimal” range. As stated in Section 1,

these uniform bounds are the key to investigate the uniform asymptotics in non-linear

regression with non-stationary time series. See Section 2.3 for more details.

Corollary 2.1. Suppose Assumptions 2.1–2.4 hold. Then supx∈R |Sn(x)| = OP (1)

and, whence
∫∞
−∞ g(t)dt = 0,

sup
x∈R
|Sn(x)| = oP (log−β n), for any β > 0. (2.7)

Furthermore, if
∫∞
−∞ g(x)dx 6= 0 and limn→∞ P (infx∈Ωn LG(1,−x) = 0) = 0 where Ωn

is a subset of R, then [
inf
x∈Ωn
|Sn(x)|

]−1
= OP (1). (2.8)
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Remark 2.2. Corollary 2.1 significantly improves main results of Chan and Wang

(2014), where some restrictions are required on the range of x to achieve the optimal

convergence rate. To illustrate, let G(x) be a standard Wiener process. In this sit-

uation, P (LG(1, 0) = 0) = 0. Hence limn→∞ P (inf |x|≤rn LG(1,−x) = 0) = 0 for any

0 < rn → 0, due to the continuity of local time process. Corollary 2.1 yields that[
inf
|x|≤rn

|Sn(x)|
]−1

= OP (1), (2.9)

for any 0 < rn → 0. In comparison, Chan and Wang (2014) only established[
inf |x|≤M0/ logγ n |Sn(x)|

]−1
= OP (1) for some γ > 0. Furthermore, by noting that

P (LG(1, x) = 0) > 0 for any fixed x 6= 0 (see, for instance, Takacs (1995)), the range

|x| ≤ rn in (2.9) might be optimal. In other words, it can not be improved to |x| ≤ b

for any constant b > 0.

Remark 2.3. Due to {Gn(t); 0 ≤ t ≤ 1} =D {G(t); 0 ≤ t ≤ 1} for each n ≥ 1,

Theorem 2.1 implies that Sn(x) ⇒ τLG(1, x) on C(−∞,∞), where C(−∞,∞) de-

notes the continuous functional space on (−∞,∞) with uniform topology. After the

completeness of this manuscript, the authors notice that the latter was established in

Duffy (2014a) for partial sum of linear processes in a different method (the authors

thank Duffy for his unpublished manuscripts). Using the special structure of linear

process, Duffy (2014b) constructed a refine uniform estimates of Sn(x) in zero energy

situation, which has better convergence rate than that of (2.7). However, duo to the

generality of Assumption 2.3, Duffy’s methodology cannot be extended to this paper.

Since (2.7) is enough for many applications (see Section 2.3), we leave the investiga-

tion for sharp convergence rate (in zero energy situation) under Assumption 2.3 for

future work.

2.2 An application to linear processes. In what follows we consider an appli-

cation of Theorem 2.1 to general linear processes. Let {ξj, j ≥ 1} be linear processes

defined by

ξj =
∞∑
k=0

φk εj−k, (2.10)

where {εj,−∞ < j < ∞} is a sequence of i.i.d. random variables with Eε0 = 0,

Eε20 = 1, E|ε0|r <∞ for some r > 2 and the characteristic function ϕ(t) of ε0 satisfies∫∞
−∞ |ϕ(t)|dt <∞. Throughout the section, the coefficients φk, k ≥ 0 are assumed to

satisfy one of the following conditions:
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C1. φk ∼ k−µ ρ(k), where 1/2 < µ < 1 and ρ(k) is a function slowly varying at ∞,

satisfying |ρ(m+ n)/ρ(n)− 1| ≤ C0m/n for 1 ≤ m ≤ n, where C0 is a positive

constant.

C2.
∑∞

k=0 k|φk| <∞ and φ ≡
∑∞

k=0 φk 6= 0.

We remark that the requirement on ρ(k) under condition C1 is weak, which is

satisfied by a large class of slowly varying functions such as logα x, log logα x and

exp(logβ x), where α ∈ R and 0 < β < 1. See, e.g., Wang et al. (2003). Put

xk =
∑k

j=1 ξj and d2
n = Ex2

n. It is well-known that

d2
n = Ex2

n ∼

 cµ n
3−2µ ρ2(n), under C1,

φ2 n, under C2,
(2.11)

where cµ = 1
(1−µ)(3−2µ)

∫∞
0
x−µ(x+ 1)−µdx. See, e.g., Wang et al. (2003) for instance.

We consider the uniform limit behavior of sample functions of the form:

S1n(x) =
dn
nh

n∑
k=1

g
[
h−1 (xk + x dn)

]
, (2.12)

when h → 0. Let Wd(t) be a fractional Brownian motion with Hurst parameter

−1/2 < d < 1/2 on D[0, 1], defined by

Wd(t) =
1

A(d)

[ ∫ 0

−∞

[
(t− s)d − (−s)d

]
dW ∗(−s) +

∫ t

0

(t− s)ddW (s)
]
,

where

A(d) =
( 1

2d+ 1
+

∫ ∞
0

[
(1 + s)d − sd

]2

ds
)1/2

,

W (s), 0 ≤ s < ∞ is a standard Brownian motion, and W ∗(u), 0 ≤ u < ∞ is an

independent copy of W (s), 0 ≤ s < ∞. It is readily seen that W0(t) = W (t) and

Wd(t) have a continuous local time LWd
(t, s) with regard to (t, s) in [0,∞) × R,

satisfying (2.3). See, e.g., Theorems 22.1 and 30.4 of Geman and Horowitz (1980).

The following results are direct consequences of Theorem 2.1.

Theorem 2.2. Suppose Assumptions 2.1 holds, h→ 0 and n1−ε0h/dn →∞ for some

ε0 > 0. Then, on a rich probability space, there exists a fractional Brownian motion

Yn(t) =

 c
−1/2
µ n−(3/2−µ) ρ−1(n)W1−µ(nt), under C1,

φ−1n−1/2W (nt), under C2,
(2.13)
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such that, for all β > 0

sup
x∈R
|S1n(x)− τ LYn(1,−x)| = oP (log−β n), (2.14)

where τ =
∫∞
−∞ g(x)dx.

Corollary 2.2. Under the condition of Theorem 2.2, we have

sup
x∈R
|

n∑
k=1

g
[
h−1 (xk + x)

]
| = OP (nh/dn). (2.15)

If in addition
∫∞
−∞ g(x)dx = 0, then

sup
x∈R
|

n∑
k=1

g
[
h−1 (xk + x)

]
| = OP

[
(nh/dn) log−β n

]
, (2.16)

for any β > 0. If in addition
∫∞
−∞ g(x)dx 6= 0, then

[
inf

|x|≤rn dn
|

n∑
k=1

g
[
h−1 (xk + x)

]
|
]−1

= OP (dn/(nh)), (2.17)

for any 0 < rn → 0.

Remark 2.4. The key to prove Theorem 2.2 is to verify that xk,n := xk/dn satisfies

Assumptions 2.2 and 2.3. The verification of Assumption 2.3 is given in Chan and

Wang (2014). Recalling that a fraction Brownian motion is a Gaussian process sat-

isfying (2.3) for some 0 < w < 1, Assumption 2.2 can be easily verified by using the

following proposition. We omit the details.

Proposition 2.1. On a rich probability space, there exists a fraction Brownian motion

{W1−µ(t), 0 ≤ t <∞} such that

sup
0≤t≤1

∣∣∣c−1/2
µ

[nt]∑
k=1

ξk − ρ(n)W1−µ(nt)
∣∣∣ = oa.s.[n

(r+1)/r−µ ρ(n)] (2.18)

provided the condition C1 holds.

Similarly, under the condition C2, on a rich probability space, there exists a Brow-

nian motion {W (t), 0 ≤ t <∞} such that

sup
0≤t≤1

∣∣∣φ−1

[nt]∑
k=1

ξk −W (nt)
∣∣∣ = oa.s.(n

1/r). (2.19)

8



The proof of (2.18) is given in Wang et al. (2003) with minor improvement. The

proof of (2.19) is given in Csörgö and Horvath (1993, Page 18).

2.3 Uniform convergence in non-linear cointegrating regression with

NNH errors. As stated in Introduction, Theorems 2.1-2.2 and their corollaries play

a key role in the investigation of non-stationary cointegration regression. Using these

results, this section investigates the uniform convergence in the following nonlinear

cointegrating regression model with NNH errors:

yt = m(xt) + σ(xt)ut, t = 1, 2, ..., n, (2.20)

where m is an unknown function to be estimated with the observed data {xt, yt}nt=1,

σ(x) is a heterogeneity generating function (HGF) and for a filtration Ft to which

xt+1 is adapted, {ut, Ft} forms a martingale difference.

When there are no data xt incorporating in error process, namely σ(x) = 1,

the issue on uniform convergence for the conventional Nadaraya-Watson estimator

in model (2.20) has been currently considered in Chan and Wang (2014), Gao et al.

(2014) and Wang and Chan (2014). In Chan and Wang (2014), the authors also

investigated the uniform convergence for the local linear non-parametric estimator

m̂n(x) of m(x), defined by

m̂n(x) =
n∑
i=1

wi(x)yi/
n∑
i=1

wi(x), (2.21)

where K(x) be a non-negative real function, the bandwidth h ≡ hn → 0, Kj(x) =

xjK(x), Vn,j(x) =
∑n

i=1Kj[(Xi − x)/h] and

wi(x) = K[(xi − x)/h]Vn,2(x)−K1[(xi − x)/h]Vn,1(x).

They further proved that, unlike the point-wise situation where the local linear esti-

mate has no advantages in bias deduction (up to the second order), the performance of

local linear estimator m̂n(x) is superior to that of the conventional Nadaraya-Watson

estimator in uniform asymptotics. See, also, Duffy (2014a, b) for some similar argu-

ments.

In this section, we will consider the uniform convergence of m̂n(x) with the model

that nonlinear nonstationary heterogeneity is incorporated into error process. We also

investigate the uniform convergence for an estimator of the HGF σ(x) in model (2.20).

In this regard, some initial results was established in Wang and Wang (2013), requiring
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some strong restrictions on the range of x. An application of Theorem 2.2 essentially

improves these existing results, in particular, our results provide an “optimal” range

for the values of x to be held in the establishment of uniform convergence for the

m̂n(x) and a sharp (may be optimal) convergence rate. Furthermore it is shown

that, if weighted by the HGF σ(x), the unform convergence rate for the local linear

estimator m̂n(x) can be improved in the tail of the range for x. This feature seems to

be new to literature.

We make use of the following assumptions in the development of our unform

asymptotics.

Assumption 2.5. xt =
∑t

j=1 ξj, where ξj is defined as in (2.10) with φk satisfying

C1 or C2.

Assumption 2.6. {ut,Ft}t≥1 is a martingale difference, where Ft = σ(x1, ..., xt+1, u1, ..., ut),

satisfying supt≥1E(|ut|2p | Ft−1) <∞, where p > 1/ε0 for some 0 < ε0 ≤ 1/2.

Assumption 2.7. K has a compact support,
∫∞
−∞ xK(x)dx = 0 and |K(x)−K(y)| ≤

C|x− y| for all x, y ∈ R.

Assumption 2.8. The first derivative of m(x) exists and there exist a 0 < τ ≤ 1 and

a real positive function m0(x) such that

|m′(y)−m′(x)| ≤ C |y − x|τ m0(x), (2.22)

uniformly for x ∈ R and |y − x| sufficiently small.

Assumption 2.9. infx∈R σ(x) > 0 and for any |y| sufficiently small,

sup
x∈R

|σ(x+ y)− σ(x)|
σ(x)

≤ C |y|, (2.23)

where C is a positive constant.

We remark that Assumptions 2.5-2.9 all are quite natural and easy to verify.

Assumption 2.5 is not necessary, which can be replaced by Assumption 2.3 with

some corresponding modifications in the following theorem. We use Assumption 2.5

in this paper to avoid the complexity of notation. When σ(x) is a positive constant,

Assumption 2.9 is trivially satisfied. In this situation, the model (2.20) and the

conditions imposed are reduced to those of Chan and Wang (2014).

We have the following uniform asymptotic result.
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Theorem 2.3. Suppose Assumptions 2.5–2.9 hold. Let ε0 > 0 be given as in Assump-

tion 2.6, dn be defined as in (2.11) and 0 < rn → 0. Then, for any h satisfying h→ 0

and n1−ε0h/dn →∞, we have

sup
|x|≤bn

|m̂n(x)−m(x)|
σ(x)

= OP

{(
nh/dn

)−1/2
log1/2 n+ h1+τ δn

}
, (2.24)

where δn = sup|x|≤bn
[
m0(x)/σ(x)

]
and bn ≤ rn dn.

Remark 2.5. The convergence rate in (2.24) is sharp and probably optimal. In the sit-

uation where xt is stationary regressor, the sharp rate of convergence is OP [(nh)−1/2 log1/2 n]

(see, e.g., Hansen (2008)). The reason behind the difference is due to the fact that,

the integrated series wanders over the entire real line but spent only O(dn) amount of

sample time around any specific point, while stationary time series spent O(n).

Similarly to the explanation in Remark 2.2, the range |x| ≤ rn dn is optimal in the

situation that bn in (2.24) can not be extended to bn/dn → C > 0. This essentially

improves Theorem 4.1 of Chan and Wang (2014), where the result is established under

σ(x) = 1 and the range |x| ≤M0dn/ log1+γ n for some γ > 0.

Remark 2.6. Under less restrictions on the kernel K(x) and the regression function

m(x), a similar result can be established for the conventional kernel estimator m̃n(x)

defined by

m̃n(x) =

∑n
k=1 K

[
(xk − x)/h

]
yk∑n

k=1K
[
(xk − x)/h

] .
For details, we refer to Chan and Wang (2014) and Duffy (2014a, b). The latter

papers investigated the uniform asymptotics under the random optimal range for the

x to be held.

Remark 2.7. Due to the definition of δn, when it is weighted by the HGF σ(x), the

uniform convergence rate of m̂n(x) −m(x) is improved in the tail. Note that model

(2.20) can be restated as

yt/σ(xt) = m(xt)/σ(xt) + ut.

The limit behavior of [m̂n(x) −m(x)]/σ(x) is improved in the tail is not strange. It

is the first, however, that this feature is noticed in literature.

As in Wang and Wang (2013), the HGF σ(x) can be estimated by

σ̂2(x) =

∑n
t=1[yt − m̂n(xt)]

2K[(xt − x)/h]∑n
t=1K[(xt − x)/h]

.

The following result provides the limit behavior of σ̂2
n(x).
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Theorem 2.4. Suppose Assumptions 2.5, 2.7–2.9 hold, and in addition to Assump-

tion 2.6, E(u2
t | Ft−1) → 1, a.s. and supt≥1E(|ut|4p | Ft−1) < ∞, where p ≥ 1 + 1/ε0

for some ε0 > 0. Let dn be defined as in (2.11) and 0 < rn → 0. Then, for any h

satisfying h→ 0 and n1−ε0h/dn →∞, we have

sup
|x|≤bn

|σ̂2(x)− σ2(x)|
σ2(x)

= OP

{
h+

(
nh/dn

)−1/2
log1/2 n+ h1+τ δn

}
, (2.25)

where δn = sup|x|≤bn
[
m0(x)/σ(x)

]
and bn ≤ rn dn. Consequently,

sup
|x|≤bn

|m̂n(x)−m(x)|
σ̂(x)

= OP

{(
nh/dn

)−1/2
log1/2 n+ h1+τ δn

}
(2.26)

Remark 2.8. A similar result to (2.25) was established in Theorem 3.1 of Wang

and Wang (2013) under |x| ≤ A, where A is a constant. Theorem 2.4 provides both

optimal convergence rate and optimal range for the values of x to be held.

3 Proofs of main results

This section provides proofs of the main results. We start with several preliminary

lemmas in Section 3.1. These lemmas, in particular Lemmas 3.5 and 3.6, are of

interests in their own rights. The proofs of Theorem 2.1, 2.3 and 2.4 are given in

Sections 3.2-3.4, respectively.

3.1 Preliminary Lemmas. Throughout this section, we set ft,s(x) = g(cnx +

t) − g(cnx + s) where g(x) satisfies Assumption 2.1, and assume that xk,n is defined

as in Assumption 2.3.

Lemma 3.1. We have, for any k > j,

|E[ft,s(xk,n)|Fj,n]| ≤ C ndc−1
n (k − j)−d min{|t− s|ndc−1

n (k − j)−d, 1},

E[|ft,s(xk,n)||Fj,n] ≤ C ndc−1
n (k − j)−d,

E[f 2
t,s(xk,n)|Fj,n] ≤ C ndc−1

n (k − j)−d, (3.27)

where C is a uniformly bounded constant on t, s, k and j.

Proof. Let dk,j,n = [(k − j)/n]d. Due to Assumption 2.3(i), we have

E(ft,s(xn,k) | Fn,j)

=

∫ ∞
−∞

[
g(cnxj,n + cndk,j,ny + t)− g(cnxj,n + cndk,j,ny + s)

]
hk,j,n(y) dy

= c−1
n d−1

k,j,n

∫ ∞
−∞

g(y)
[
hk,j,n(

y − t− cnxj,n
cndk,j,n

)− hj,k,n(
y − s− cnxj,n

cndk,j,n
)
]
dy

12



Now, Assumption 2.3 (ii) and
∫∞
−∞ |g(x)|dx <∞ yield that, for any k > j,

|E(ft,s(xn,k) | Fn,j)| ≤ C c−1
n d−1

k,j,n min{|t− s|c−1
n d−1

k,j,n, 1}

≤ C ndc−1
n (k − j)−d min{|t− s|ndc−1

n (k − j)−d, 1}.

Similarly, using Assumptions 2.1 and 2.3, it follows that

E(f 2
t,s(xn,k) | Fn,j) ≤ C E(|ft,s(xn,k)| | Fn,j)

= C

∫ ∞
−∞

∣∣g(cnxj,n + cndk,j,ny + t)− g(cnxj,n + cndk,j,ny + s)
∣∣hk,j,n(y) dy

= C c−1
n d−1

k,j,n

∫ ∞
−∞

∣∣g(y + t)− g(y + s)
∣∣hk,j,n(

y − cnxj,n
cndk,j,n

) dy

≤ C1 n
dc−1
n /(k − j)d

∫ ∞
−∞

[
g(y + t)− g(y + s)

]2
dy

≤ C2n
dc−1
n /(k − j)d.

The proof of Lemma 3.1 is complete. 2

Lemma 3.2. There exist constants H0 (not depending on t1, t2, t3) and m such that

sup
t,s

E
(
|
t3∑

k=t2

ft,s(xk,n)|m | Fn,t1
)

≤ Hm
0 (m+ 1)!nd c−1

n (t3 − t1)1−d[1 +
{

(t3 − t2)1−dnd c−1
n

}m−1]
. (3.28)

for all 0 ≤ t1 < t2 < t3 ≤ n and integer m ≥ 1. In particular, by letting t1 = 0, t2 = 1

and t3 = n, we have

sup
t,s

E|
n∑
k=1

ft,s(xk,n)|m ≤ Hm
0 (m+ 1)! (n/cn)m. (3.29)

Proof. See Lemma 4.1 of Chan and Wang (2014) with minor improvements. 2

Lemma 3.3. We have

sup
t,s

∣∣ bn∑
k=1

ft,s(xk,n)
∣∣ = Oa.s.

[
(bn/cn) log n

]
(3.30)

for any bn, cn →∞ and cn/n→ 0.

Proof. By virtue of Lemma 3.2, the proof follows from the similar arguments as

in the proof of Theorem 2.1 of Chan and Wang (2014). We omit the details. 2
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Lemma 3.4. Suppose that cn → ∞ and n−1+ε0cn → 0 for some ε0 > 0. Then, for

any β > 0, we have

In := sup
t∈R

sup
s:|s−t|≤εn

∣∣∣cn
n

n∑
k=1

ft,s(xk,n)
∣∣∣ = Oa.s.(log−β n) (3.31)

where εn ≤ cnn
−α for some α > 0.

Proof. It suffices to prove:

I1n := sup
|t|≤cn n2

sup
s:|s−t|≤εn

∣∣∣cn
n

n∑
k=1

ft,s(xk,n)
∣∣∣ = Oa.s.(log−β n). (3.32)

Indeed it is readily seen from (3.32) that

In ≤ I1n +
cn
n

sup
|t|≥cn n2

sup
|s|≥cn n2/2

n∑
k=1

|ft,s(xk,n)|I(|xk,n| ≤ n2/2)

+
C cn
n

n∑
k=1

I(|xk,n| ≥ n2/2)

≤ Oa.s.(log−β n) + 2cn sup
|t|>cnn2/4

|g(t)|+Oa.s(cn/n)

= Oa.s.(log−β n),

where we have used the following fact: sup|t|>cnn2/4 |g(t)| ≤ (cnn
2)−ρ ≤ C/n due to

Assumption 2.1 and ρ ≥ 1, and

P
( n∑
k=1

I(|xk,n| > n2/2) > C, i.o.
)

≤ C lim
r→∞

∞∑
n=r

n−4

n∑
k=1

E|xk,n|2

≤ C lim
r→∞

∞∑
n=r

n−4+1E|ε0|2 ≤ C lim
r→∞

∞∑
n=r

n−3 = 0

which implies
∑n

k=1 I(|xk,n| > n2/2) = O(1), a.s.

To prove (3.32), we first introduce the following blocking scheme. Let ηn =

(n/cn) log−(β+1) n, bn = [n1−ν ], for some 0 < ν < min{ε0, ν0},

ν0 =


(

1
2d

)
α, if 0 < d ≤ 2/3,(

1−d
d2

)
α, if 2/3 < d < 1,

(3.33)

and let Tn be the largest integer s such that sbn ≤ n. Also let −cnn2 = t1 < ... <

tqn1 = cnn
2 and −εn = s1 < ... < sqn2 = εn, with ti−ti−1 ∼ n−7 and si−si−1 ∼ cnn

−10.
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It is readily seen that

n/bn ∼ nν , Tnbn ≤ n, n− Tnbn ≤ bn, qn1, qn2 ≤ n10 (3.34)

due to cn → ∞. Under these notation, to prove (3.32), by the local Lipschitz conti-

nuity of g, it suffices to prove that

max
1≤i≤qn1

max
1≤j≤qn2

∣∣∣ n∑
k=1

fti,ti+sj(xk,n)
∣∣∣

≤ max
1≤i≤qn1

max
1≤j≤qn2

{
|
Tn−1∑
w=2

∆nw(ti, sj)|+ ∆n(ti, sj)
}

+Oa.s.[(n/cn)1/2], (3.35)

where, for w = 1, ..., Tn ,

∆nw(t, s) =

(w+1)bn∑
k=wbn+1

ft,t+s(xk,n),

∆n(t, s) ≤
( 2bn∑
k=1

+
n∑

k=Tnbn

)
|ft,t+s(xk,n)|.

Recall ηn = (n/cn) log−(β+1) n. Using Lemma 3.3 and (3.34), it is readily seen that

max
1≤i≤qn1

max
1≤j≤qn2

∆n(ti, sj) ≤ C
[
(bn + |n− Tnbn|)/cn

]
log n

≤ C (n/cn)n−ν ≤ C ηn log n, a.s.

This, together with (3.35), implies that (3.31) will follow if we prove

max
1≤i≤qn1

max
1≤j≤qn2

(
|

Tn∑
w=2

w∈even

∆nw(ti, sj)|+ |
Tn∑
w=2
w∈odd

∆nw(ti, sj)|
)

= Oa.s.(ηn log n).(3.36)

We only prove (3.36) for w ∈ even. The other is similar and hence the details are

omitted. To this end, let F∗n,v = Fn,(2v+1)bn , v ≥ 0, and M1 > 0 is chosen later,

∆′nw(t, s) = ∆n,2w(t, s)I(|∆n,2w(t, s)| ≤M1 ηn),

∆∗nw(t, s) = ∆′n,w(t, s)− E
(
∆′n,w(t, s) | F∗n,w−1

)
.
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Under these notation, to prove (3.36) for w ∈ even, it suffices to show

λ1n := max
1≤i≤qn1

max
1≤j≤qn2

|
Tn/2∑
w=1

∆∗nw(ti, sj)| = Oa.s.(ηn log n), (3.37)

λ2n := max
1≤i≤qn1

max
1≤j≤qn2

|
Tn/2∑
w=1

E
(
∆n,2w(ti, sj) | F∗n,w−1

)
| = Oa.s.(ηn log n), (3.38)

λ3n := max
1≤i≤qn1

max
1≤j≤qn2

|
Tn/2∑
w=1

(
∆n,2w(ti, sj)I(|∆n,2w(ti, sj)| > M1 ηn)

+E
[
∆n,2w(ti, sj)I(|∆n,2w(ti, sj)| > M1 ηn) | F∗n,w−1

])
= Oa.s.(ηn log n). (3.39)

First notice that, for any 2wbn < k ≤ (2w + 1)bn and |t− s| ≤ cnn
−α,

|E
(
∆n,2w(t, s) | F∗n,w−1

)
| ≤ C |t− s|bnc−2

n (n/bn)2d ≤ C bnc
−1
n n2dν−α (3.40)

due to Lemma 3.1. It follows from (3.33) and (3.40) that

λ2n ≤
Tn/2∑
w=1

max
1≤i≤qn1

max
1≤j≤qn2

|E
(
∆n,2w(ti, sj) | F∗n,w−1

)
|

≤ C (n/cn)n2dν−α = Oa.s.(ηn log n), (3.41)

which yields (3.38).

We next prove (3.39). Using Lemma 3.2 with t1 = 0, t2 = 2sbn + 1 and t3 =

(2s+ 1)bn, for any integer m ≥ 1, we haev

sup
t,s

E|∆n,2w(t, s)|m ≤ Hm
0 (m+ 1)! (n/cn)

{
1 +

[
(n/cn)(n/bn)d−1

]m−1}
≤ 2Hm

0 (m+ 1)!(n/cn)m(n/bn)(d−1)(m−1),

because cn/n
1−ν(1−d) ≤ cn/n

1−ε0 → 0. By virtue of this fact, it follows that

Eλ3n ≤ 2

qn1∑
i=1

qn2∑
j=1

Tn/2∑
w=1

E|∆n,2w(ti, sj)|I(|∆n,2w(ti, sj)| > M1 ηn)

≤ qn1qn2Tn H
m
0 (m+ 1)!(n/cn)

[(n/cn)(n/bn)d−1

M1 ηn

]m−1

≤ C n22(H0/M1)m (m+ 1)! log−(m−1) n,

due to (3.34) and ν > 0. Now, by taking m = log n and letting M1 ≥ 25H0, it follows
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from the Stirling approximation of (m+ 1)! that for any ε > 0,

P [λ3n > ε, i.o.] ≤ lim
s→∞

∞∑
n=s

ε−1Eλ3n

≤ C lim
s→∞

∞∑
n=s

ε−1n22 log5 n exp{−(M1/H0) log n}

≤ C lim
s→∞

∞∑
n=s

ε−1n−3 log5 n→ 0, (3.42)

which implies that λ3n = oa.s.(1), and hence (3.39) follows.

We finally consider (3.37). First note that, by Lemma 3.1, for any |t− s| ≤ cnn
−α,

E[∆∗2nw(t, s)|F∗n,w−1] ≤ 2E[∆2
n,2w(t, s)|Fn,(2w−1)bn ]

≤
(2w+1)bn∑
k=2wbn+1

E
(
f 2
s,t(xk,n) | Fn,(2w−1)bn

)
+ 2

∑
2wbn+1≤k<j≤(2w+1)bn

∣∣E(fs,t(xk,n)fs,t(xj,n)
∣∣∣Fn,(2w−1)bn

)∣∣
≤ C (n/cn)(n/bn)d−1 + 2

∑
2wbn+1≤k<j≤(2w+1)bn

E
(
|fs,t(xk,n)| |Ik,j|

∣∣∣Fn,(2w−1)bn

)
≤ C (n/cn)(n/bn)d−1 + C n2d c−2

n b−dn
∑

2wbn+1≤k<j≤(2w+1)bn

(j − k)−d min{nd−α(j − k)−d, 1}

≤ C (n/cn)(n/bn)d−1 + C n2d c−2
n b1−d

n

bn∑
k=1

k−d min{n−α(n/k)d, 1}

≤ C (n/cn)(n/bn)d−1
[
1 + n1−η0/cn

]
, (3.43)

where Ik,j = E
[
ft,s(xj,n)|Fn,k

]
and

η0 =



α + ν(1− 2d), if 0 < d < 1/2,

α/4, if d = 1/2,(
1−d
d

)
α, if 1/2 < d < 1.

(3.44)

and we have used the fact: for 0 < d < 1, letting ζ = α/d,

bn∑
k=1

k−d min{n−α(n/k)d, 1} ≤
n1−ζ∑
k=1

k−d + nd−α
bn∑

k=n1−ζ+1

k−2d ≤ C n1−d−η0 .
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It follows from this estimate that

max
1≤i≤qn1

max
1≤j≤qn2

Tn/2∑
w=1

E[∆∗2nw(ti, yj) | F∗n,w−1]

≤ C (n/cn)(n/bn)d
[
1 + n1−η0/cn

]
≤


C(n/cn)2 ndν−η0 , if η0 ≤ ε0,

C(n/cn)ndν , if η0 > ε0

≤ C η2
n log n, a.s.

due to dν − η0 < 0 by simple calculation and (n/cn)n−dν < n1−ε0/cn → 0. This,

together with the facts that |∆∗nw(ti, yj)| ≤ ηn and for each i, j, {∆∗nw(ti, sj),F∗n,w}
forms a martingale difference, and the well-known martingale exponential inequality

(see, e.g., de la Pena (1999)) implies that there exists a M0 ≥ 22 such that, as n→∞,

P [λ1n ≥M0ηn log n, i.o.]

≤ P
[
λ1n ≥M0ηn log n, max

1≤i≤qn1
max

1≤j≤qn2

Tn/2∑
w=1

E[∆∗2ns(ti, yj) | F∗n,w−1] ≤ C η2
n log n, i.o.

]
≤ lim

s→∞

∞∑
n=s

P
[
λ1n ≥M0ηn log n, max

1≤i≤qn1
max

1≤j≤qn2

Tn/2∑
w=1

E[∆∗2ns(ti, yj) | F∗n,w−1] ≤ C η2
n log n

]
≤ lim

s→∞

∞∑
n=s

qn1∑
i=1

qn2∑
j=1

P
[ Tn/2∑
w=1

∆∗nw(ti, yj) ≥M0ηn log n,

Tn/2∑
w=1

E[∆∗2nw(ti, yj) | F∗n,w−1] ≤ C η2
n log n

]
≤ lim

s→∞

∞∑
n=s

qn1qn2 exp
{
− M2

0 log2 n

2C log n+ 2M0 log n

}
≤ lim

s→∞

∞∑
n=s

qn1qn2 exp{−M0 log n} = 0, (3.45)

where the last inequality follows from (3.34). This yields λ1n = Oa.s.

(
ηn log n

)
. Com-

bining (3.41)-(3.71), we establish (3.36), and also completes the proof of Lemma 3.5.

2

The following lemma is an extension of Theorem 2.1 in Wang and Chan (2014),

where we use the notation ||x|| = max1≤i≤d |zi| if x = (z1, ..., zd).

Lemma 3.5. Suppose that

(a) (ek, zk), k ≥ 1, is a sequence of random vectors on R×Rd, d ≥ 1. {et,Ft}t≥1 is a

martingale difference, where Ft = σ(z1, ..., zt+1, e1, ..., et), satisfying supt≥1E(|et|2p |
Ft−1) <∞, a.s., for some p ≥ 1;
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(b) fn(x, y), n ≥ 1, is a sequence of real functions on Rd × Rd1, where d, d1 ≥ 1,

satisfying supn,x,y |fn(x, y)| <∞ and there exists an α > 0 such that, whenever

||a|| is sufficiently small,

sup
n,x,y
|fn(x, y + a)− fn(x, y)| ≤ C nα ‖a‖; (3.46)

(c) there exist positive constant sequences γn →∞ and bn = O(nk) for some k > 0

such that

sup
‖y‖≤bn

n∑
k=1

f 2
n(zk, y) = OP (γn). (3.47)

Then, for any n γ−pn logp−1 n = O(1), where p is given in (a), we have

sup
‖y‖≤bn

∣∣∣ n∑
k=1

et fn(zk, y)
∣∣∣ = OP

[
(γn log n)1/2

]
. (3.48)

Proof. It is similar to Theorem 2.1 of Wang and Chan (2014), which is restated in

Appendix for convenience of reading.

Lemma 3.6. Under the conditions of Theorem 2.3, we have

Ψn := sup
y∈R

∣∣ n∑
k=1

σ(xk)

σ(y)
Kj

(xk − y
h

)
uk
∣∣ = OP

[
(nh/dn)1/2 log1/2 n

]
, (3.49)

where Kj(x) = xjK(x). If in addition E(u2
t | Ft−1) → 1, a.s. and supt≥1E(|ut|4p |

Ft−1) < ∞, where p ≥ 1 + 1/ε0 for some ε0 > 0, result (3.49) still holds when uk is

replaced by u2
k − 1.

Proof. Let fn(x, y) = σ(x)
σ(y)

Kj

(
x−y
h

)
. First note that, for some η0 sufficiently small,

C0 := sup
y,|x−y|≤η0

σ(x)

σ(y)
<∞,

due to (2.23). This, together with Kj(z) = 0 for |z| ≥ A, implies that

|fn(x, y)| ≤ C0

∣∣Kj

(x− y
h

)∣∣, (3.50)

uniformly for n, x and y, whenever h is sufficiently small. Similarly, by noting

Kj

(x− y − a
h

)
−Kj

(x− y
h

)
= 0
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if |x− y| ≥ hA+ |a|, it follows from (2.23) and Assumption 2.7 that

|fn(x, y + a)− fn(x, y)| ≤ σ(x)

σ(y + a)

∣∣Kj

(x− y − a
h

)
−Kj

(x− y
h

)∣∣
+|fn(x, y)| |σ(y)− σ(y + a)|

σ(y + a)

≤ C(h−1 + 1)|a| ≤ C n|a|, (3.51)

uniformly for n, x and y, whenever nh→∞ and |a| are sufficiently small.

By virtue of (3.50), supn,x,y |fn(x, y)| <∞ and (3.47) holds with γn = nh/dn due

to Corollary 2.2. Similarly, we have (3.46) with α = 1 due to (3.51). Furthermore, by

recalling p > 1/ε0, we have

n γ−pn logp−1 n ≤ (n1−ε0h/dn)−p nε0p−1 logp−1 n = o(1).

Now it follows from Lemma 3.5 that, for any η > 0, there exists a M0 > 0 such that

P
(
Ψn ≥M0(nh/dn)1/2 log1/2 n

)
≤ P ( max

1≤k≤n
|xk| ≥ n4/2) + P

(
sup
‖y‖≤n4

∣∣∣ n∑
k=1

et fn(zk, y)
∣∣∣ ≥M0(nh/dn)1/2 log1/2 n

)
≤ n−4

n∑
k=1

E|xk|+ η ≤ 2η,

when n is sufficiently large, where we have used the facts that E|xk| ≤ nE|ξ1| and,

whenever max1≤k≤n |xk| ≤ n4/2,

sup
‖y‖>n4

∣∣∣ n∑
k=1

et fn(zk, y)
∣∣∣ = 0,

due to Kj(z) = 0 for |z| ≥ A.

This proves (3.49). Under the additional conditions on uk, the proof of (3.49) is

similar, and hence the details are omitted. 2

3.2 Proof of Theorem 2.1. First consider τ =
∫
g(x)dx 6= 0 and, without loss

of generality, assume τ = 1. Define ḡ(x) = g(x)I{|x| ≤ nζ/2}, where 0 < ζ < 1− δ/ρ
is small enough such that nζ/cn ≤ n−δ, where ρ and δ are given in Assumption 2.1

and 2.2 respectively. Further let ε = n−α with 0 < α < min{δ/2, ζ(ρ− 1)}, and for a

fixed x0, define a triangular function

gx0ε(y) =



0, |y − x0| > ε,

y−x0+ε
ε2

, x0 − ε ≤ y ≤ x0,

x0+ε−y
ε2

, x0 ≤ y ≤ x0 + ε.
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It suffices to show that

Φ1n := sup
x∈R

∣∣∣cn
n

n∑
j=1

{
g(cn(xj,n + x))− ḡ(cn(xj,n + x))}

∣∣∣ = oP (log−β n), (3.52)

Φ2n := sup
x∈R

∣∣∣cn
n

n∑
j=1

ḡ(cnxj,n − cnx− nζ/2)− 1

n

n∑
j=1

gxε(xj,n)
∣∣∣

= oP (log−β n), (3.53)

Φ3n := sup
x∈R

∣∣∣ 1
n

n∑
j=1

gxε(xj,n)− LGn(1, x)
∣∣∣ = oP (log−β n), (3.54)

Φ4n := sup
x∈R

∣∣∣LGn(1, x)− LGn(1, x+ nζ/(2cn))
∣∣∣ = oP (log−β n). (3.55)

Indeed it follows from (3.52)–(3.55) that

sup
x∈R

∣∣∣cn
n

n∑
j=1

g
[
cn(xk,n + x)

]
− LGn(1,−x)

∣∣∣
= sup

x∈R

∣∣∣cn
n

n∑
j=1

g
(
cnxk,n − cnx− nζ/2

)
− LGn(1, x+ nζ/(2cn))

∣∣∣
≤ Φ1n + Φ2n + Φ3n + Φ4n = oP (log−β n),

which yields the required (2.14).

The proof of (3.52) is simple. It follows from supx |x|ρ |g(x)| <∞ that

Φ1n ≤ cn sup
|x|≥nζ/2

|g(x)|I{|x| > nζ/2} ≤ C n−ζ ρcn = o(log−β n),

as nζ/cn ≤ n−δ and ρ > δ/(1− ζ).

Recall {Gn(t); 0 ≤ t ≤ 1} =D {G(t); 0 ≤ t ≤ 1} for all n ≥ 1, by Assumption 2.2.

For any ε > 0 and β > 0, we have

P (|Φ4n| ≥ ε log−β n)

= P
(

sup
x∈R

∣∣LG(1, x)− LG(1, x+ nζ/(2cn))
∣∣ ≥ ε log−β n

)
→ 0, as n→∞,

due to (2.3) and nζ/cn ≤ n−δ. This yields (3.55).

Recalling the definition of gxε(y) and
∫∞
−∞ gxε(y)dy = 1, it follows again from (2.3)

that ∣∣∣ ∫ 1

0

gxε(G(t))dt− LG(1, x)
∣∣∣

=
∣∣∣ ∫ ∞
−∞

gxε(y)LG(1, y)dy − LG(1, x)
∣∣∣
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≤
∫ ∞
−∞

gxε(y)|LG(1, y)− LG(1, x)|dy = Oa.s.(ε
β)

uniformly for all x ∈ R. This implies supx
∣∣ ∫ 1

0
gxε(Gn(t))dt− LGn(1, x)

∣∣ = OP (εβ) by

using the similar arguments as in the proof of (3.55). Hence it follows from (??)in

Assumption 2.2 that∣∣∣ 1
n

n∑
j=1

gxε(xj,n)− LGn(1, x)
∣∣∣

≤
∣∣∣ ∫ 1

0

gxε(x[nt],n)dt−
∫ 1

0

gxε(Gn(t))dt
∣∣∣+ 2/(εn) +

∣∣∣ ∫ 1

0

gxε(Gn(t))dt− LGn(1, x)
∣∣∣

= OP

[
ε−2n−δ + 2/(εn) + εβ

]
= OP

[
n2α−δ + 2nα−1 + n−αβ/2

]
= oP (log−β n)

uniformly for all x ∈ R, as α < δ/2, which implies (3.54).

We finally prove (3.53). Let ḡxεn(z) be the step function which takes the value

gxε(x+ knζ/cn) for z ∈ [x+ knζ/cn, x+ (k+ 1)nζ/cn), k ∈ Z. It suffices to show that,

uniformly for all x ∈ R, (letting ḡj(y) = ḡ(cnxj,n − y − nζ/2)),

∆1n(x) :=
∣∣∣ 1
n

n∑
j=1

gxε(xj,n)− 1

n

n∑
j=1

ḡxεn(xj,n)

∫ ∞
−∞

ḡj(y)dy
∣∣∣ = oP (log−β n) (3.56)

∆2n(x) :=
∣∣∣ 1
n

n∑
j=1

ḡxεn(xj,n)

∫ ∞
−∞

ḡj(y)dy −
∫ ∞
−∞

1

n

n∑
j=1

gxε(y/cn)ḡj(y)dy
∣∣∣

= oP (log−β n), (3.57)

∆3n(x) :=
∣∣∣ ∫ ∞
−∞

1

n

n∑
j=1

gxε(y/cn)ḡj(y)dy − cn
n

n∑
j=1

ḡ(cnxj,n − cnx− nζ/2)
∣∣∣

= oP (log−β n), (3.58)

(3.56) first. Note that |gxε(y)− gxε(z)| ≤ ε−2|y − z|, and

|ḡxεn(y)− gxε(z)| ≤ |ḡxεn(y)− gxε(y)|+ |gxε(y)− gxε(z)|

≤ Cε−2(nζ/cn + |y − z|). (3.59)

It follows that, uniformly for all j = 1, ..., n and x ∈ R,∣∣∣gxε(xj,n)− ḡxεn(xj,n)

∫ ∞
−∞

ḡj(y)dy
∣∣∣

≤
∣∣∣gxε(xj,n)− ḡxεn(xj,n)

∣∣∣+ |ḡxεn(xj,n)|
∣∣∣1− ∫ ∞

−∞
ḡj(y)dy

∣∣∣
≤ Cε−2nζ/cn + C1n

−ζ(ρ−1) = oP (log−β n).
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where we have used the fact that (recalling
∫
g(y)dy = 1),∣∣∣1− ∫ ∞

−∞
ḡj(y)dy

∣∣∣ ≤ ∣∣∣ ∫ ∞
−∞

g(y)I{|y| > nζ/2}dy
∣∣∣ ≤ C n−ζ(ρ−1)

due to supy |y|ρ|g(y)| <∞ and ρ > 1.

(3.57) next. By (3.59) and the definition of ḡj(y), we have∫ ∞
−∞
|ḡxεn(xj,n)ḡj(y)− gxε(y/cn)ḡj(y)|dy

≤
(∫ ∞
−∞

g(y)dy
)(

sup
y

∣∣ḡxεn(xj,n)− gxε(y/cn)
∣∣ I{|cnxj,n − y − nζ/2| ≤ nζ/2}

)
≤ C sup

y

[
ε−2(nζ/cn + |xj,n − y/cn|) I

{∣∣xj,n − y/cn − nζ/(2cn)
∣∣ ≤ nζ/(2cn)

}]
≤ Cε−2(nζ/cn) = oP (log−β n).

uniformly for all j = 1, ..., n and x ∈ R.

Finally for (3.58). Using Lemma 3.4, we have

∆3n =
∣∣∣ ∫ ∞
−∞

1

n

n∑
j=1

gxε(y/cn)ḡ(cnxj,n − y − nζ/2)dy

− cn
n

n∑
j=1

ḡ(cnxj,n − cnx− nζ/2)
∣∣∣

≤ sup
|y−cnx|≤cnε

∣∣∣cn
n

n∑
j=1

{
ḡ(cnxj,n − y − nζ/2)− ḡ(cnxj,n − cnx− nζ/2)

}∣∣∣
×
( 1

cn

∫ ∞
−∞

gxε(y/cn)dy
)

= oP (log−β n). (3.60)

uniformly in x ∈ R. The proof of (2.6) for τ 6= 0 is now complete.

The proof of (2.6) for τ = 0 is similar except more simpler. Indeed, under the

notation above, we have

sup
x∈R

∣∣∣cn
n

n∑
j=1

g
[
cn(xk,n + x)

]∣∣∣ ≤ Φ1n + ∆2n + ∆3n + ∆̃1n, (3.61)

where

∆̃1n = sup
x∈R

∣∣∣ 1
n

n∑
j=1

ḡxεn(xj,n)

∫ ∞
−∞

ḡj(y)dy
∣∣∣.

Recalling |ḡxεn(x)| ≤ ε−1 = nα, α < ζ(ρ− 1) and∣∣ ∫ ∞
−∞

ḡj(y)dy
∣∣ ≤ |

∫ ∞
−∞

g(y)I{|y| > nζ/2}dy
∣∣∣ ≤ C n−ζ(ρ−1)
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due to
∫
g(x)dx = 0, supy |y|ρ|g(y)| <∞ and ρ > 1, it is readily seen that

∆̃1n ≤ C nα−ζ(ρ−1) = O(log−β n),

for any β > 0. Taking this estimates, (3.52), (3.57) and (3.58) into (3.61), we obtain

the claim required. This completes the proof of Theorem 2.1. 2

3.3. Proof of Theorem 2.3. Let Vn(x) =
∑n

i=1 wi(x). It is readily seen that

m̂n(x)−m(x) = Γ1n(x) + Γ2n(x), (3.62)

where Γ1n(x) = V −1
n (x)

∑n
i=1wi(x)σ(xi)ui and

Γ2n(x) = V −1
n (x)

n∑
i=1

wi(x)
[
m(xi)−m(x)

]
.

Recall Vn,j(x) =
∑n

i=0Kj

(
xi−x
h

)
with Kj(x) = xjK(x), j = 0, 1, 2. It follows from

(2.15) in Corollary 2.2 with g(x) = K1(x) that

sup
x∈R
|Vn,1(x)| = sup

x∈R
|

n∑
i=1

K1

(xi − x
h

)
| = OP

[
(nh/dn) log−β n

]
, (3.63)

for any β > 0. Similarly, by Corollary 2.2 with g(x) = Kj(x), we get

sup
x∈R
|Vn,j(x)| = OP (nh/dn),

{
inf
|x|≤bn

|Vn,j(x)|
}−1

= OP

[
dn/(nh)

]
,

for j = 0 and 2. It follows from these facts that{
inf
|x|≤bn

|Vn(x)|/Vn,2(x)
}−1

≤
{

inf
|x|≤bn

∣∣Vn,0(x)−
V 2
n,1(x)

Vn,2(x)

∣∣}−1

=
{

inf
|x|≤bn

|Vn,0(x)| − oP (nh/dn)
}−1

= OP

[
dn/(nh)

]
and sup|x|≤bn |Vn,1(x)|/Vn,2(x) = oP (log−β n) for any β > 0. Now it follows from

Lemma 3.6 that

sup
|x|≤bn

|Γ1n(x)|
σ(x)

≤
{

inf
|x|≤bn

|Vn(x)|
Vn,2(x)

}−1{
sup
|x|≤bn

∣∣∣ n∑
i=1

K
(xi − x

h

)σ(xi)

σ(x)
ui

∣∣∣
+ sup
|x|≤bn

|Vn,1(x)|
Vn,2(x)

∣∣∣ n∑
i=1

K1

(xi − x
h

)σ(xi)

σ(x)
ui

∣∣∣}
= OP

[( dn
nh

)1/2

log1/2 n
]
. (3.64)
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To consider Γ2n(x), note that
∑n

i=1wi(x)(xi − x) = 0 and by Assumption 2.8,

|m(y)−m(x)−m′(x)(y − x)| =
∣∣∣ ∫ y

x

m′(s)−m′(x)ds
∣∣∣

≤ m0(x)

∫ y

x

|s− x|τds = m0(x)|y − x|τ+1.

It follows from these facts and Assumption 2.7 that

sup
|x|≤bn

|Γ2n(x)|
σ(x)

= sup
|x|≤bn

|
∑n

i=1 wi(x)
[
m(xi)−m(x)−m′(x)(xi − x)|

]
σ(x)Vn(x)

≤ sup
|x|≤bn

|m0(x)|
2σ(x)

∑n
i=1 |wi(x)||xi − x|τ+1

Vn(x)

≤ C δn sup
|x|≤bn

∣∣∣∑n
i=1 |xi − x|τ+1K[(xi − x)/h]

V −1
n,2 (x)Vn(x)

+

[
∑n

i=1 |xi − x|τ+2K[(xi − x)/h]
]

V −1
n,2 (x)Vn(x)

{ |Vn,1(x)|
Vn,2(x)

}∣∣∣
≤ Cdn h

τ+1δn
nh

sup
|x|≤bn

n∑
i=1

K
(xi − x

h

)
≤ C hτ+1δn. (3.65)

Taking (3.64) and (3.65) into (3.62), we prove (2.24). 2

3.4. Proof of Theorem 2.4. First note that, due to Assumption 2.9 and

K(s) = 0 if |s| ≥ A,

|σi(xk)− σi(x)|
σi(x)

K
[
(xk − x)/h

]
≤ C hK

[
(xk − x)/h

]
,

for i = 1, 2, all x ∈ R and h sufficiently small. Similarly, whence bn ≥ Ah, we have

|m̂n(xk)−m(xk)|iK
[
(xk − x)/h

]
/σi(x)

≤ σi(xk)

σi(x)
K
[
(xk − x)/h

]
sup
|x|≤2bn

{
|m̂n(x)−m(x)|i /σi(x)

}
,

for i = 1, 2, |x| ≤ bn and h sufficiently small. By virtue of these estimates, simple
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calculations show that (recalling Vn,0(x) =
∑n

k=1K
[
(xk − x)/h

]
)

|σ̂2(x)− σ2(x)|
σ2(x)

≤ V −1
n,0 (x)

∣∣∣ n∑
k=1

K
(xk − x

h

)
(u2

k − 1)
∣∣∣

+V −1
n,0 (x)

n∑
k=1

K
(xk − x

h

){ |m̂n(xk)−m(xk)|2

σ2(x)

+
|σ2(xk)− σ2(x)|

σ2(x)
u2
k + 2

|m̂n(xk)−m(xk)|
σ(x)

σ(xk)

σ(x)
|uk|
}

≤ V −1
n,0 (x)

∣∣∣ n∑
k=1

K
(xk − x

h

)
(u2

k − 1)
∣∣∣

+V −1
n,0 (x)∆n

n∑
k=1

[
1 +

σ2(xk)

σ2(x)

]
(1 + u2

k)
]
K
(xk − x

h

)
,

for |x| ≤ bn and h sufficiently small, where

∆n = h+ sup
|x|≤2bn

|m̂n(x)−m(x)|
σ(x)

+ sup
|x|≤2bn

|m̂n(x)−m(x)|2

σ2(x)
.

Consequently, by using Lemmas 3.6, we get

sup
|x|≤bn

|σ̂2(x)− σ2(x)|
σ2(x)

= OP

{
h+

(
nh/dn

)−1/2
log1/2 n+ h1+τ δn

}
,

which yields (2.25).

It follows from this estimate that

sup
|x|≤bn

∣∣∣∣σ(x)

σ̂(x)
− 1

∣∣∣∣ ≤ sup
|x|≤bn

σ(x)

σ̂(x)

|σ̂2(x)− σ2(x)|
σ2(x)

= oP (1) sup
|x|≤bn

σ(x)

σ̂(x)
= oP (1).

This, together with (2.24), implies (2.26), and also completes the proof of Theorem

2.4. 2
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Csörgö, M. and Révész, P. (1981). Strong approximations in probability and statistics.

Probability and Mathematical Statistics. Academic Press, Inc., New York-London

Duffy, J. (2014 a). A Uniform law for the convergence to local time, unpublished

manuscript, Yale University.

Duffy, J. (2014 b). Uniform in bandwidth converbgence rates, on a maximal domain,

in structure nonparametric cointegrating regression, unpublished manuscript, Yale

University.

Gao, J., Maxwell, K., Lu, Z., Tjøstheim, D. (2009a). Nonparametric specification

testing for nonlinear time series with nonstationarity. Econometric Theory, 25,

1869–1892.

Gao, J., Maxwell, K., Lu, Z., Tjøstheim, D. (2009b). Specification testing in nonlinear

27



and nonstationary time series autoregression. The Annals of Statistics, 37, 3893–

3928.

Gao, J., Li, D. and Tjøstheim, D. (2011). Uniform consistency for nonparametric

estimates in null recurrent time series. Working paper series No. 0085, , The

University of Adelaide, School of Economics.

Geman, D. and Horowitz, J. (2004). Occupation densities. Annals of Probability, 8,

1–67.

Hall, P., and Heyde, C. C. (1980) Martingale Limit Theory and Its Application.

Academic

Hansen, B. E. (2008). Uniform convergence rates for kernel estimation with dependent

data. Econometric Theory 24, 726–748.

Jeganathan P. (2004). Convergence of functionals of sums of r.v.s to local times of

fractional stable motions. Annals of Probability, 32, 1771–1795.

Kasparis, I. and Phillips, P. C. B. (2012). Dynamic misspecification in nonparametric

cointegrating regression. Journal of Econometrics, 168(2), 270–284.

Karlsen, H. A., Myklebust, T. and Tjøstheim, D. (2007). Nonparametric estimation

in a nonlinear cointegration model. The Annals of Statistics, 35, 252–299.

Linton, O. and Wang, Q. (2013). Non-parametric transformation regression with

non-stationary data, Econometric Theory, Accepted.

Marmer, V. (2008). Nonlinearity, nonstationarity, and spurious forecasts. Journal of

Econometrics, 142, 1–27.

Park, J. Y. and Phillips P. C. B. (1999). Asymptotics for nonlinear transformation

of integrated time series. Econometric Theory, 15, 269-298.

Park, J. Y. and Phillips P. C. B. (2001). Nonlinear regressions with integrated time

series. Econometrica, 69, 117-161.

Phillips, P. C. B. and Park J. Y. (1998). Nonstationary Density Estimation and

Kernel Autoregression. Cowles Foundation discuss paper No. 1181.

de la Pena, V. H. (1999). A General Class of Exponential Inequalities for Martingales

and Ratios. Annals of Probability, 27, 537–564.

Revuz, D. and Yor, M. (1994) Continuous Martingales and Brownian Motion. Fun-

damental Principles of Mathematical Sciences 293. Springer-Verlag

Wang, Q. (2014). Martingale limit theorems revisited and non-linear cointegrating

regression. Econometric Theory, online.

Wang, Q. and Chan, N. (2014). Uniform convergence rates for a class of martingales

28



with application in non-linear co-integrating regression. Bernoulli, 1, 207230.

Wang, Q., Lin, Y. X., Gulati, C. M., (2003). Strong approximation for long memory

processes with applications. Journal of Theoretical Probability, 16, 377–389.

Wang, Q. and Phillips, P. C. B., (2009a). Asymptotic theory for local time density

estimation and nonparametric cointegrating regression. Econometric Theory, 25,

710-738.

Wang, Q. and Phillips, P. C. B., (2009b). Structural nonparametric cointegrating

regression. Econometrica, 77, 1901-1948.

Wang, Q. and Phillips P. C. B. (2011). Asymptotic theory for zero energy functionals

with nonparametric regression applications. Econometric Theory, 27, 235-259.

Wang, Q. and Phillips, P. C. B., (2012). A specification test for nonlinear nonsta-

tionary models. The Annals of Statistics, 40, 727-758.

Wang, Q. and Wang, R. (2013). Non-parametric cointegrating regression with NNH

errors. Econometric Theory, 29, 1–27.

29



Appendix

Proof of Lemma 3.5. We split the set An = {y : ‖y‖ ≤ bn} into mn balls of the

form

Anj = {y : ‖y − yj‖ ≤ 1/m′n}

where m′n = [n1+α/(γn log n)1/2], mn = (bnm
′
n)d and yj are chosen so that An ⊂

⋃
Anj.

It follows that

sup
‖y‖≤bn

∣∣ n∑
t=1

et fn(zt, y)
∣∣

≤ max
0≤j≤mn

sup
y∈Anj

n∑
t=1

|et|
∣∣fn(zt, y)− fn(zt, yj)

∣∣
+ max

0≤j≤mn

∣∣ n∑
t=1

et fn(zt, yj)
∣∣

:= λ1n + λ2n. (3.66)

Recalling (3.46) and 1
n

∑n
k=1 |ek| = OP (1) due to supt≥1E(|et||Ft−1) <∞, it is readily

seen that

λ1n ≤
n∑
t=1

|et| max
0≤j≤mn

sup
y∈Anj

∣∣fn(zt, y)− fn(zt, yj)
∣∣

≤ C (nαm′n)−1

n∑
t=1

|et|

≤ C (γn log n)1/2 1

n

n∑
t=1

|et| = OP [(γn log n)1/2]. (3.67)

In order to investigate λ2n, write e′t = etI[|et| ≤ (γn/ log n)1/2] and e∗t = e′t−E(e′t |
Ft−1). Recalling E(et | Ft−1) = 0 and supn,x,y |fn(x, y)| <∞, we have

λ2n ≤ max
0≤j≤mn

∣∣ n∑
t=1

e∗t fn(zt, yj)
∣∣

+ max
0≤j≤mn

∣∣ n∑
t=1

[
|et − e′t|+ E(|et − e′t| | Ft−1)

]
fn(zt, yj)

∣∣
≤ max

0≤j≤mn

∣∣ n∑
t=1

e∗t fn(zt, yj)
∣∣+ C

n∑
t=1

[
|et − e′t|+ E(|et − e′t| | Ft−1)

]
:= λ3n + λ4n. (3.68)
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Routine calculations show that, under supt≥1E(|et|2p | Ft−1) <∞ and n γ−pn logp−1 n =

O(1),

λ4n ≤
n∑
t=1

[
|et|I{|et| > (γn/ log n)1/2

}
+ E

(
|et|I{|et| > (γn/ log n)1/2}|Ft−1

)]
≤ C

( γn
log n

)(1−2p)/2
n∑
t=1

[
|et|2p + E(|et|2p | Ft−1)

]
≤ C (γn log n)1/2 1

n

n∑
t=1

[
|et|2p + E(|et|2p | Ft−1)

]
= OP

[
(γn log n)1/2

]
, (3.69)

Next consider λ3n. As E[(e∗t )
2 | Ft−1] ≤ 2(E[|et|2p | Ft−1])1/p, a.s., Conditions (a)

and (c) imply that

max
0≤j≤mn

n∑
t=1

f 2
n(zt, yj)E[(e∗t )

2 | Ft−1] = OP (γn). (3.70)

Hence, for any η > 0, there exists a M0 > 0 such that

P
(

max
0≤j≤mn

n∑
t=1

σ2
tj ≥M0γn) ≤ η.

where σ2
tj = f 2

n(zt, yj)E[(e∗t )
2 | Ft−1], whenever n is sufficiently large. This, together

with |e∗t | ≤ 2(γn/ log n)1/2 and the well-known martingale exponential inequality (see,

e.g., de la Pana (1999)), implies that, for any η > 0, there exists a M0 ≥ 6d(k+2+α)

(k is as in condition c and α is given in (3.46)) such that, whenever n is sufficiently

large,

P [λ3n ≥M0(γn log n)1/2]

≤ P
[
λ3n ≥M0(γn log n)1/2, max

0≤j≤mn

n∑
t=1

σ2
tj ≤M0γn

]
+ η

≤
mn∑
j=0

P
[ n∑
t=1

e∗tfn(zk, yj) ≥M0(γn log n)1/2,
n∑
t=1

σ2
tj ≤M0 γn

]
+ η

≤ mn exp
{
− M2

0 γn log n

6M0γn

}
+ η ≤ mnn

−M0/6 + η ≤ 2η, (3.71)

where we have used the following fact:

mn ≤ C[nk+1+α /(γn log n)1/2]d ≤ C1 n
(k+1+α)d,

as γn → ∞. This yields λ3n = OP

[
(γn log n)1/2

]
. Combining (3.66)-(3.71), we estab-

lish (3.48), and also complete the proof of Lemma 3.5. 2
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