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Abstract

In this paper, we investigate the Dirichlet-to-Neumann operator associated with second order quasi-
linear operators of p-Laplace type for 1 < p < oo, which acts on the boundary of a bounded Lipschitz
domain in R? for d > 2. We establish well-posedness and Holder-continuity with uniform estimates
of weak solutions of some elliptic boundary-value problems involving the Dirichlet-to-Neumann
operator. By employing these regularity results of weak solutions of elliptic problems, we show that
the semigroup generated by the negative Dirichlet-to-Neumann operator on L7 enjoys an LI —C%-
smoothing effect and the negative Dirichlet-to-Neumann operator on the set of continuous functions
on the boundary of the domain generates a strongly continuous and order-preserving semigroup.
Moreover, we establish convergence in large time with decay rates of all trajectories of the semigroup,
and in the singular case (1+¢) Vv f—_& < p < 2 for some € > 0, we give upper estimates of the finite
time of extinction.
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1. Introduction and main results

Let Q be a bounded domain in R? with a Lipschitz boundary 9§, d > 2 and 1 < p < co. Then
for every boundary value ¢ € W1=1/P?(9Q), there is a unique weak solution u € W'?(Q) of the
p-Dirichlet problem

—Ay,u=0 in Q,
{ ! (1)

u=¢ on Jf.
We denote this unique weak solution u by Py. If Py is smooth enough then we define

L p—20P
Ap = |[VPp|P™=Z2.

Here v denotes the outward pointing unit normal vector on 02 and |VP90|1’_2% the p-normal
derivative of Py associated with the p-Laplace operator A, Py := div(|[VPp[P~2V Pyp).
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The aim of this article is to investigate the mapping ¢ — Ay and to establish Holder-continuity
of solutions of some elliptic and parabolic problems associated with this map. The mapping A
is called the Dirichlet-to-Neumann operator associated with the p-Laplace operator and is also
referred as the interior capacity operator (cf. [19, §II.5.1]) or the Neumann operator (cf. [36, p.
41]). This operator appears in a natural way, for instance, in inverse problems associated with
the p-Laplace operator (cf. [15] for p = 2 and [35, 12, 13] for p # 2), in the mathematical notion
of p-capacity (see [19]) or in the celebrated Signorini problem (for instance, cf. [20, 21, 25]). The
Dirichlet-to-Neumann operator A is a monlocal operator; in the sense that for a given boundary
function ¢, the value of Ap on a relatively open neighbourhood of some z € 99 does not only
depend on the value of ¢ on the same neighbourhood of z, but on the value of ¢ at every point of
0f) (see Remark 3.2).

Elliptic and parabolic problems associated with the Dirichlet-to-Neumann operator A attracted
in the past (see, for instance, [19, 36] or [29, 23, 22]) and currently (see, for instance, [6, 17, 37]
concerning the linear case p = 2 and see, for instance, [35, 12, 13] for the general case 1 < p < o)
much interests. However, it seems that already rather much is known about the linear case p = 2
while only partial results exist concerning the general (nonlinear) case 1 < p < co.

To the best of our knowledge, first results on evolution equations in L2(99), 1 < g < oo,
associated with the nonlinear Dirichlet-to-Neumann operator A go back to the papers [20] and
[25]. Results about existence and uniqueness of entropy solution of elliptic and parabolic equations
involving the operator A in L!(9Q) have been first announced in [2] and later established in the
thesis [3] (see also [4, 1]).

The results in this article complement the existing literature by establishing well-posedness of
some elliptic and parabolic problems involving the Dirichlet-to-Neumann operator A associated
with general second order quasi-linear operators A (defined in (19) in Section 3) of Leray-Lions
type (cf. [27]), by proving Holder-continuity of weak solutions of elliptic equations involving A (for
the definition of weak solution see Section 4), by showing that the part A, of A in C(9€) is m-
completely accretive, by establishing the large time asymptotic behaviour with decay rates of all
trajectories of the semigroup generated by the negative Dirichlet-to-Neumann operator on L2(9S)
for 1 < ¢ < oo and on C(99), and by giving upper estimates of the finite time of extinction of the
trajectories of the semigroup in the singular case (14¢)V dQ—fQ < p < 2 for some € > 0. The p-Laplace
operator A = A, is one important prototype operator of the class of Leray-Lions operators. Hence,
we apply our results obtained in this paper to the Dirichlet-to-Neumann operator A associated with
the p-Laplace operator A = A, and present them in this section.

Our first main result of this article reads as follows:

Theorem 1.1. The following assertions hold.

1. For every ¢ € Wn;“‘l/”)’p’(ag) there is a unique weak solution ¢ € Wﬁ:”p’p(aﬂ) of the
elliptic problem

Ap =1 on 012, (2)

/mgpcmzo. (3)

Moreover, the mapping ¥ — ¢ from Wn:“‘”p)’p’(ag) to Wﬁ;”p’p(aﬂ) is continuous.



2. Let q = pf;ig for some ¢ € (0,1) if p < d and ¢ = 1 if p > d. Further, let b € LI(IN)
satisfying (3). Then there are o € (0,1) and c¢q > 0 such that every weak solution ¢ €

W=1/PP(99) of equation (2) belongs to C**(9Q) and satisfies
lellcnean) < ca (101Exfony + 1Pelliey ) +co: @

Here, we denote by ,1{1/””’(89) the subspace of all ¢ € W'~1/PP(9Q) satisfying the so-called
compatibility condition (3) equipped with the induced norm and by W, (/PP '(99) the dual space
of W /PP (99).

The statements of Theorem 1.1 follow as a special case of Theorem 4.2 (stated in Section 4). To
establish well-posedness of problem (2)-(3), we employ the classical theory of monotone operators
(cf. [29]). The Holder-continuity of weak solutions of equation (2) is based on a recent regularity
result [32] of weak solutions of nonlinear elliptic Neumann boundary-value problems on a bounded
domain with Lipschitz boundary.

Our second main result is concerned with the well-posedness of initial value problem

de | g =0 on 9 x (0,00), (5)
¢(0) = o (6)

and to investigate the regularisation effect of mild solutions of (5) depending on the regularity of
the initial value @q. It is worth noting that the parabolic equation (5) is, in fact, equivalent to the
elliptic-parabolic boundary-value problem

—Ayu=0 on € x (0, 00),
du | y|P23L = 0 on 99 x (0, 0).

Note, in this paper, we focus our attention only on the homogeneous equation (5), although our
results (see Proposition 3.13) imply existence and uniqueness of the inhomogeneous equation

é—f—i—/\(p:z/) on 092 x (0,T)

for every given ¢ € L*(0,T; L?(09)) and ¢ € L*(99) (cf. [14]). For 1 < ¢ < oo, we denote by A,
the part of A in L9(99), D(A,) the domain of A,, A, the closure of A, in LI(09), (see Section 3.2),
and Z : W'=V/PP2(9Q) — WP(Q) the linear continuous right-inverse of the trace operator 7r on

WLP(Q); see Section 2 for further details. We now state our second main result.

Theorem 1.2. The negative Dirichlet-to-Neumann operator —Ao in L?(02) generates a strongly
continuous, order preserving semigroup {et"2} of contractions on L*(9R) satisfying:

1. The semigroup {e~t*2} can be extrapolated to a strongly continuous, order preserving semi-
group of contractions on L1(9) for 1 < g < 0o, on the closure D(Ay) in L°(0) for g = oo,
and on the closure D(A.) in C(9S2), where D(A.) = C(9Q) if Q has a C%P boundary from
some 3 € (0,1). In particular, the extrapolated semigroup of {e~ "2} coincides with the semi-
group {e~t2a} generated by —A, on L1(0R) if 1 < q < 2 and with the semigroup {e~*%a}
generated by —A, on LI(0Q) (resp., on D(Ax)) if 2 < g < 0.




2. For every ¢ € L1(09) (1 < q < 0), one has the conservation of mass equality
/ e BodH = pdH for every t > 0, (7)
oQ o0

where B=A, if 1 <q<2and B=A, if2<q< .

3. For every ¢ € L1(00) (2 < q < o) or ¢ € D(A.), the mild solution t — et of (5)-(6)
in L9(0Q) coincides with the unique strong solution of (5)-(6) in L*(92) and has reqularity

e Mg e C([0,00); L1(092)) N C((0, 00); Wl_l/p’p(BQ)) N W ([5,00); L2(09))

for every 6 > 0, et Mg is right-hand side differentiable in L*(0SY) and satisfies
/ Lo hapedt + / IVP(e thap) P2V P(e M)V ZEds = 0
o0 Q
for every € € WI=V/PP(9Q) N L?(98). The function
ts E(e ) = %/|VP(eftAq<p)|p dz (8)
Q

is convezx, decreasing, Lipschitz continuous on [d,00) for every 6 > 0, and

#E(e M) = —[l G (B)e " Mol T2 o0y (9)

for a.e. t>0.

4. For B= A, if 1 <q <2 and B = A, if 2 < q < 0o, we have that for every ¢ € L1(99),
e By € D(B) for every t > 0, e~ Bp € WH([§,00); L1(0N)) for every § > 0, e By is
right-hand side differentiable in L1(0) at every t > 0,

%4_6715'3(,0 +Be By =0 (10)

in LI(0Q) for every t > 0 and there is a C > 0 such that

<C ||80||Lq(aﬂ) (11)

[ ] ooy <
L1(9Q) t

dt +

for every t > 0,
5. for(2\/1%) < ¢ < 0o with some e € (0,1) if p < d and for 2 < g < oo if p > d, there are
a € (0,1) and co > 0 such that
1 2/p
- lellLaoey \7* . I1ellZeo0
lle™ ]| co.e(a0) < Ca (t() + ﬂi/;g) + [ellLaan) | + ca (12)

for every t >0, p € L1(0R), and in particular, e~ € C((0,00) x 99).

Again, the statements of Theorem 1.2 follow from Theorem 5.1 stated and proved in Section 5
as a special case. Under the addition assumption (20) below, we show in Proposition 3.13 that the
Dirichlet-to-Neumann operator associated with quasi-linear operators of Leray-Lions type can be



realised as subgradient in L?(99) of a convex, proper, lower semicontinuous and densely defined
functional on L2(99Q). This result for the Dirichlet-to-Neumann operator associated with the p-
Laplace operator has been first established in [20] and revisited in [25]. But to the best of our
knowledge, this was not known so far for general Dirichlet-to-Neumann operators associated with
second order quasi-linear operators of Leray-Lions type. It was shown in [3] that the entropy
solutions operator associated with A; is m-completely accretive in L'(9€). In this article, we
complement this result by establishing in Proposition 3.12 that the part A. of A in C(99) is m-
completely-accretive in C(9€). In addition, claim (4) in Theorem 5.1 (respectively, claim (5) in
Theorem 1.2) describes a L? — C%“smoothing effect of the semigroup {e~*"a} generated by —A,
on L7(9). The corresponding estimate (12) is based on the regularity result obtained for the weak
solutions of the elliptic equation (2) (see claim (2) of Theorem 1.1) and the positive homogeneity
of the operator A (cf. condition (31) in Section 2.3).

We conclude this article with the following large time stability result of the semigroup {e_“TQ}
with decay rates and upper estimates of the finite time of extinction.

Theorem 1.3. Then the following statements hold true:
1. (Stability) For every ¢ € L1(09),

t—+oo

lim e Byp=5:= m /aQLPdH (13)

in LI(0SY), where B=A, if 1 <q<2and B=A, if2<q < .
2. (Stability in C(09))) For (2V pfzis) < g < oo for somee € (0,1)if p<dand2<q<o0

if p > d, we have that limit (13) holds in C(9Q) for all p € LI(ON).
3. (Decay estimates) There is a constant C' > 0 such that for every p € L*(9S) there is tg > 0

such that
o —Pll200) e € ifp=2,
le™*20 — B| L2 (a0 < (14)
Ct 72 ifp>2,
and
le™2¢ —Blloony < C llo =Bl 00 t7r  ifl<p<2, (15)

for every t > tg.
4. (Finite time of extinction) If (1 +¢) V f—fz < p < 2 for some € > 0, then for every
@ € L2(09), the function e~ 2y extinct in finite time

" ||<,0 - @”i;g)ag)
ext >~ 7 /= p\ ~p
(1-5)C5

where the constant Cs > 0 occurs in the Sobolev-type inequality (71). More precisely, we have
for every ¢ € L?(09) that
1
12— 50
lle — QOHL2€89) t} o

YV =
lle™ 20 —PllL200) < [(1 - %)Cfé] [ 1-2)C%

for every t > 0.



Again, the statement of Theorem (1.3) follows as a special case from the general Theorem 6.1
stated and proved in Section 6.

In the next section, we fix some notations used throughout this paper and summarise some
basic properties about weak solutions of the nonlinear Dirichlet problem (28), state some useful
inequalities and briefly recall some basic facts about nonlinear semigroups in Banach spaces.

2. Preliminaries

Throughout this paper, we assume that Q has a Lipschitz boundary 99 in the sense of [31,
Sect. 1.3] and 1 < p < co. Suppose that a : 2 x RY — R? is a Carathéodory functions satisfying

a(z, )& > nlgl? (16)
la(z,€)| < cf¢]P! (17)
(a(z,&1) —a(x,61)) (& —§2) >0 (18)

for a.e. x € Q and all £, &, & € R? with & # &, where ¢, n > 0 are constants independent
of x € Q and ¢ € RY, where ¢ and 7 are positive constance which are independent of x € Q and
¢ € R%. Under these assumptions on the function a, the second order quasi-linear operator

Au = —div(a(z, Vu)) in D'(Q2) (19)

for every u € W,5P(€) belongs to the class of Leray-Lions operators (cf. [27]). In order, to improve
the regularity of mild solutions of nonlinear evolution problems, the following additional assumption
is very useful: suppose that A : Q x RY — R is a Carathéodory functions satisfying

VeA(z,§) = a(z,§) (20)

for a.e. z € Q and all ¢ € R%. By taking a(z,&) = |£[P72¢ for € € RY and any z € (, one easily
sees that the celebrated p-Laplace operator A, belongs to the class of Leray-Lions operators and
which satisfies gradient condition (20).

2.1. Frequently used notations and inequalities

For 1 < g < oo, we denote by L4(Q2) and W4(Q) the usual Lebesgue and first Sobolev spaces.
We denote by C%1(Q) the space of all Lipschitz-continuous functions on the closure Q of Q. The
boundary 92 of Q is equipped with the (d — 1)-dimensional Hausdorff measure dH when we work
with the Lebesgue space LI(99). Moreover, C'(9€) denotes the set of all real-valued continuous
functions on 0f).

Since 2 is a Lipschitz domain, the mapping u — s from C%'(Q) to C%(9Q) has a unique
continuous extension mapping

Tr - WHP(Q) — LP"(09)
called trace operator with p* = %;1) ifl<p<d,p*>1ifp=dandp*=oc0if p>d(cf [31,

Théoreme 4.2, 4.6, and 3.8]). For convenience, we either write u|sq or 7ru for u € WLP(Q) even if

u does not belong to C'(Q2) and call ujpq and Tru the trace of u. The following properties of the
trace operator Tr will be used frequently throughout this article:



1. the kernel ker(7r) := {u € Wl’p(Q)| Tru = 0} of Tr coincides with the Sobolev space
Wy(9),

2. the range Ryg(Tr) := { Tru|u € W'P(Q)} of Tr coincides with the Sobolev-Slobodecki space
W1=1/PP(99) defined as the linear subspace of all ¢ € LP(9f2) with finite semi-norm

e _/ / leep "
o0 JOQ

and equipped with the norm |[¢|ly1-1/5.090) = ¢llLra0) + [¢lp for every ¢ € Wi=1/pr(90)
(cf. [31, Section 3.8]),
3. the trace operator 7r has a linear bounded right inverse

Z: WPr(90) — wir(Q) (21)
(cf. [31, Théoreme 5.7]).

Here, we denote by W~/ (9Q) the dual space of W!=1/PP(9Q) and by (x, 1) the value
of x € W=U=1/p)»(9Q) at yp € WI1/PP(9Q).

Another crucial property of a Lipschitz domain Q is that for 1 < p < oo, the function space
C>=(Q) lies dense in W1P(Q). We state this standard result explicitly for later use.

Lemma 2.1. For 1 <p <o0 and 1 < g < oo, the space C* (Q) lies dense in WLPLQ) and the set
{voa | ve C>®(Q)} is dense in W1=1/P2(9Q) and in LI(0SY). In particular, C>®(Q) lies dense in
Vg = {v e WHP(Q) | voq € Lq(aQ)}

equipped with the sum norm.

Proof. First, by the Stone - Weierstra Theorem, the set {vjpq | v € C*°(R?)}, which may be
identified with a subset of {vjpq | v € C*>°()}, is dense in C(9R). Since the (d — 1)-dimensional
Hausdorftf measure is Borel regular (cf. [24, Theorem 1, Sec. 2.1]), the latter set is dense in L4(9€)
(cf. [34, Theorem 3.14]). Note that this also means that W'=1/P2(9Q) N LI(IN) lies dense in
L9(0€2). Since the set {vjg | v € C>=(R%)} is a subset of C°°(Q), the last claims follows from [31,
Théoréme 3.1 in Chapitre 2, §3]. O

Besides Lemma 2.1, we need the following p-variant of Maz’ya’s remarkable inequality
lull rasa-1 () < C ([VullLe@ys + lluoallLe o)) (22)

holding for all u € WP() provided 1 < p < co. Here the constant C > 0 depends on p, the
volume |Q2|, and the isoperimetric constant C(d) (cf. [30, Cor. 3.6.3] and see also [18]). By using
inequality (22) and Poincaré’s inequality on W1?(Q), on can deduce the following useful inequality

lullzeey < C(IVulzoys + lwjonllaon) (23)

holding for every u € W1P(Q) with trace ujpo € L1(0Q) for 1 < ¢ < oo, where C > 0 is some
constant independent of u. To see this, set ug = \Tlll fQ udx for given u € L'(Q). Then Poincaré’s
inequality on WP (Q) says that there is a C; > 0 such that

lu —uqllLr @) < C1l|Vul pr9)a



for every u € W1P(Q) and so
lullzoe < Co(IVullzoy + lullzre )
for every u € WHP(Q). Applying to this Maz’ya’s inequality (22) for p = 1 and the two inequalities

[Vull gy < C | Vullpsya for ue WHP(Q) and |lullp1o0) < CllullLe@q) for u e L1(0Q) (1 <
q < 00) leads to (23).

2.2. Nonlinear semigroup theory

In this subsection, let X = L1(90Q) for 1 < ¢ < 0o or X = C(99). Then we shall usually view
operators A on X as relations A C X x X, but we also use the notation

Au) = {f € X[(u, f) € A},

which suggests that A is a mapping from X into the power set of X, that is, A is a possibly
multivalued operator. Further, we will make use of the notation of the subgradient

€ = {(u, 1) e L2 x 2(o0) | £ 8w 2 e —(51;)L2<an> }

of a given proper, convex functional £ : L?(9Q)) — R U {+oco} with effective domain D(€) = {u €
L2(09Q) | E(u) < o0}

In order to keep this article self-contained, we recall some basic definitions and results about
nonlinear semigroups in Banach spaces used throughout this paper. An operator A on X is called
accretive in X if for every (u,v), (4,0) € A and every A > 0 one has

lu—dlx < llu—1a+ Mv—19)|x

and an operator A on X is called m-accretive in X if A is accretive in X satisfies the so-called
range condition
Rg(I+XA) =X for some (or equivalently all) A > 0. (24)

In other words, A is accretive if its resolvent operator Jy := (I+\A)~! is a single-valued contraction
from the range Rg(I+AA) to the domain D(A) of A for every A > 0. Due to the celebrated Crandall-
Liggett theorem [16], the condition ” A is m-accretive in X” ensures that for all ug € D(A), the
closure of D(A) in X, the evolution equation

duy Aus0, u(0)=uo (25)

is well-posed in the sense of mild solutions. Here, a mild solution u of Cauchy problem (25) is
a function u € C([0,00); X) with the following property: for every T, ¢ > 0, for every partition
0=ty < -+ <ty =T of the interval [0, T] such that ¢; —t,_1 < ¢ for every ¢ = 1,..., N, there
exists a piecewise constant function u. y : [0,T] — X given by

N
e N () = 1o Ligg—oy () + D uei L,y 1 (1)
=1



where the values w; on (t;_1,t;] solve recursively the finite difference equation
w; + (t; — ti—1)Au; D uiq foreveryi=1,...,N

and
sup ||u(t) —ue, n(t)]|x <e.
te[0,T]
If A is accretive, then every mild solution u of (25) is unique ([8, Theorem 4.1]) and if A, in addition,
satisfies the range condition (24), then by the Crandall-Liggett theorem [16], for every element wug
of D(A), there is a unique mild solution u of (25) given by the exponential formula

. t —n

u(t) = lim (I+£A) " uo (26)
uniformly in ¢ on compact intervals. We call a function u a strong solution of (25) in X if u €
V[/'li’cl((o,—i—oo);X) N C([0,00); X), u(0) = ug and for a.e. t > 0 one has u(t) € D(A) and —4(t) €
Au(t). Tt is not very difficult to see that if A is an accretive operator in X, then any strong
solution of (25) is a mild solution (see [8, p.130]) and hence is unique. For given ug € D(A), setting
e tug = u(t) for every t > 0, where t — u(t) denotes the unique mild solution of (25) in X, defines
a (non-linear) strongly continuous semigroup {e "t} of contractions e=*4 in D(A). More precisely,
the family {e~*4} of mappings e 7?4 : D(A) — D(A) satisfies

o (semigroup property)

e (HH9)A — o—tA 5 oms4 for every t, s > 0,
o (strong continuity)
tl_i>r51+||e_t’4u —ullx =0 for every u € D(A),
e (contraction property)
le™*u — e llx < flu—v|x for all u, v € D(A), t > 0.

The family {e~*4} is called the strongly continuous semigroup generated by —A on D(A). On
the Banach space X there is a linear ordering ”<” defined by u < v for u, v € X if and only if
u(z) < v(z) for ae. (all) z € 90. Having this in mind, we call a mapping S : D(S) — X with
domain D(S) C X a T-contraction if

18w = Sv]llx < lI[w—v]*llx

for every u, v € D(S), where [u]" := max{u,0} and an operator A on X is called T-accretive on X
if its resolvent operator Jy is a T-contraction for every A > 0. Obviously, every T-contraction S on
X is order preserving, that is, for every u, v € D(S) with v < v, one has that Su < Sv. Thus by
the exponential formula (26) one sees that if A is T-accretive and generates a semigroup {e *4},
then each mapping e~ 4 is order preserving. Since we chose either X = L4(99) for 1 < q < oo or
X = C(09), we have that T-contractions on X are contractions on X. In general Banach spaces
X this result is not true (cf. the appendix of [5]).




Let Jy denote the set of all convex, lower semicontinuous functions j : R — [0, oo] satisfying
j(0) =0 and let 1 < ¢ < 0o. We call an operator A in X completely accretive if

/j<u—a>dus/ J(u— i+ Ao —19))du (27)
o0

o0
for every j € Jo, (u,v), (4,0) € A, and A > 0. Furthermore, we call A m-completely accretive
in X if A is completely accretive and satisfies the range condition (24). By taking j(-) = |[]T|*
for 1 < g <ooorj(-)=[ —kt for k> 0 in (27), one easily sees that each completely accretive
operator A is T-accretive in L9(99Q) for all 1 < ¢ < co.
Concluding this section, we emphasise that we follow here the convention that constants denoted
by C or ¢, may vary from line to line.

2.3. The nonlinear Dirichlet problem
In this subsection we review some basic facts about the nonlinear Dirichlet problem

{_ div(a(z,Vu)) =0 in Q, (28)

u=¢ on Jf,

where we assume that a : Q x R — R? is a Carathéodory function satisfying (16)—(18). We start
by recalling the following definition.

Definition 2.2. We call u € W?(Q) a weak solution of equation

loc
—div(a(z, Vu)) =0 in (29)
if u satisfies the integral equation
/ a(xz,Vu)Vudz =0 (30)
Q

for all v € WyP(9).

For later use, we need the following compactness result concerning weak solutions of (29), which
is an immediate consequence of [11, Theorem 2.1 & Remark 2.1]. We leave the details of the proof
of this lemma to the reader as an exercise.

Lemma 2.3. Suppose that a : Q x R* — R? is a Carathéodory function satisfying (16)-(18). If
(un) is a bounded sequence in WP(Q) of weak solution of (29), then there is subsequence (uy, )
of (u,) and a weak solution u € WHP(Q) of (29) such that uy, converges to u weakly in W1P(Q),
strongly in LP (), Vuy, converges to Vu a.e in Q and a(x, Vuy, ) converges to a(xz,Vu) a.e. in §)
and weakly in LP'(Q)).

Now, for any boundary value ¢ € W'=1/PP(99Q), let & € WP (Q) be such that @90 = ¢. Then
it is well known (cf [29, Exemple 2.3.2]) that under the assumptions (16)-(18), the operator
v Av = —div (a(z, Vo + V)

satisfies the hypotheses of the Browder-Minty theorem ([29, Théoréme 2.1]). Hence equation (29)
admits a weak solution u € WP(Q) satisfying u — ® € Wol’p(Q). By the strict monotonicity
condition (18), the solution u of (29) satisfying ujpo = ¢ is unique. Due to the regularity of the
solution u, we arrive to the following definition.
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Definition 2.4. For given boundary value ¢ € W=1/P2(9Q), we call a function u € W'P(Q) a
WP _solution of Dirichlet problem (28) on Q if u — Zp € WyP(Q) and u is a weak solution of
equation (29).

In the next lemma, we collect some well-known properties about W!P-solutions of (1), which
will be very useful later.

Lemma 2.5. Suppose that a : Q x R — R? is a Carathéodory functions satisfying (16)-(18).
Consider the mapping P : W =1/P2(9Q) — WP (Q) defined by assigning to each ¢ € W'=1/PP(9Q)
the unique W1P-solution u of (28) with boundary value . Then the following statements are true.

1. The mapping P is well-defined and injective.

2. The mapping P is continuous.

3. Let p € WI=1/PP(9Q). Then for every ® € WHP(Q) with Qo0 = @, there is a unique
up € Wy P(Q) such that Po = ug + ®.

4. Suppose, in addition, that a satisfies gradient condition (20). Then

Az, VPAp+¢))dz < [ Az, A\VPp+ VV¥)dz
Q Q

for every @, ¥ € WI=1/PP(9Q) and ¥ € W'P(Q) such that V90 =, and every X € R.
5. If the function a : Q x R? — R? satisfies homogeneity condition

a(z, ) = [AP72X a(z, €) (31)
for every A € R, £ € RY, and a.e. x € Q, then P satisfies
PAp) = AP(p)
for every ¢ € W=1/PP(9Q) and \ € R.

Proof. Claim (1), (3) and (5) follow from the existence and uniqueness of boundary value prob-
lem (28). Also claim (4) is well-known, but for later reference, we outline the details of the proof.
Let o € WI1/P2(9Q) and ® € WP(Q) be such that @50 = ¢. We set Ko 1= ® + WP () and
consider the functional F : W?(Q) — R defined by

.F(u):/Q.A(x,Vu)dx (32)

for every u € W1P(Q). The functional F is continuously differentiable by growth condition (17),
the Fréchet-derivate ' : WHP(Q) — (WLP(Q)) is given by

(F'(u),v) :/Qa(x,Vu)Vvdac (33)

for every u, v € WHP(Q), and F is convex by the monotonicity condition (18) (cf. [26, Theorem
6.2.1]). The restriction |, of F on Kg is coercive by condition (16) and by Poincaré’s inequality.
Furthermore, the Fréchet-derivative F' is strictly monotone on the set g by (18). Thus the convex

11



minimisation principle (cf. [39, Theorem 2.E]) implies that there is a unique solution u € W (Q)
of minimisation problem:

min { / Az, Vu)dz | u € WHP(Q) with u — ® € Wol’p(Q)}. (34)
Q

Note that the uniqueness of the minimiser of (34) is independent of the choice of ®. Hence we can
take ® = Zy for every boundary value ¢ € W'=1/PP(9Q), where Z denotes the operator given
in (21). Moreover, u € W'P(£) is the minimiser of (34) if and only if u — ® € W, *(€2) and u is a
weak solution of (29) on Q (cf. [39, Theorem 2.E]). Due to the characterisation of W1P-solutions
of Dirichlet problem (28) as the unique minimiser of problem (34), it follows that claim (4) holds.

In particular, claim (2) is well-known, but for the sake of completeness, we give here the proof.
Let (,) be a sequence in W'=1/P2(9Q) and ¢ € W'=V/PP(9Q) such that ¢, converges to ¢ in
W1=1/pP(9Q). Taking Py, — Zp, as a test function in (29) and using (16) and (17) together with
Holder’s and Young’s inequality yield

g/ﬂ|VPcpn\pdx§C/Q\VZ<pn|pdx (35)

for every n. Since the operator Z : W'=1/PP(9Q) — WP(Q) maps bounded sets into bounded
sets, the sequence (Z¢,) is bounded in W1?(2). Thus, estimate (35) implies that the sequence
(VPg,) is bounded in LP(Q)¢. Now, applying Maz’ya’s inequality (22) yields the sequence (P,,)
is bounded in W?(Q). By Lemma 2.3, there is a weak solution u € W1P(Q) of (29) on Q and there
is a subsequence (¢, ) of (,,) such that Py, converges to u weakly in W1P(Q), Py converges
to Py in LP(Q)), VPypy, converges to Vu a.e. on Q and a(z, VPypy, ) converges to a(xz, VPy)
weakly in L”'(Q)?. By the compactness of the trace operator 7r : W1P(Q) — LP(9Q) and since ¢y,
converges to ¢ in LP(0f2), we can conclude that uw = Py. Since Py, converges to Py in LP(§), it
remains to show that V Py, converges to VPy in LP(Q)9. To see this, note that by monotonicity
condition (18), for every n,

Xk, (#) 1= (a(, VPor, () — a(z, VPe(x)))(VPer, (z) — VP(x)) (36)

is non-negative for a.e. = € Q. Since Pyy, is a weak solutions of (29),

/andx:/a(x,VP(pkn)VZgokndzf/a(x,VP(pkn)VPgodz
Q Q Q

—/ a(x,VPp)(VPyy, —VPy)de.
Q

Therefore and by the weak convergence of a(x, VPyy,) to a(x, VPyp) in L (Q)%, the strong con-
vergence of Zpy, to Zo in WHP(Q), and since Py is a weak solutions of (29), it follows that Y,
converges to 0 in L'(Q). By using the definition of yj, , coercivity condition (16), and Holder’s
inequality, we see that

n?

77/|VP<pkn|pdx§/ a(x,VPpy )VPy, dx
E E

:/ ander/ a(x,VP(pkn)VPgodz+/ a(x,VPp)(VPyy, —VPy)dr
E E E
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1/p
< [ Xt + ol VP iy ( / |vpso|pdw)
E E

1/pr
+ (/ a(x,VPgo)dx) VP, — VP 1)
B

for every measurable subset £ C ). Since the measurable set E was arbitrary, and since yy,, is equi-
integrable in L1(2), (a(-, VP, )) is bounded in LP'(Q) and (V Py, ) is bounded in LP(Q), our
last estimates show that (|V Py, |P) is equi-integrable in L' (Q2). Thus and since V Py, converges
to VPy a.e. on €, it follows by Vitali’s theorem that V Py, converges to VPyp in LP(Q)?. Since
the same arguments hold, for each subsequence of a convergent sequence (i,,) in W'=1/P2(9Q), we
have thereby shown that the operator P is continuous from W'=1/P?(9Q) to WhP(Q). O

3. The Dirichlet-to-Neumann operator

This section is devoted to introduce and to bring together some basic properties of the Dirichlet-
to-Neumann operator A associated with the second order quasi-linear operator A defined in (19).
Throughout this section, we assume that a : @ x R — R? is a Carathéodory function satisfy-
ing (16)—(18). This section is subdivided into three subsections.

8.1. General definition and some basic properties

For given boundary value ¢ € W=1/P2(9Q), let Py be the unique W'P-solution of Dirichlet-
problem (28) with respect to boundary value ¢ as introduced in Lemma 2.5. Furthermore, let A
be the second order quasi-linear operator given by (19). Then, under the assumption that Py and
a(-, VPyp) are smooth enough up to the boundary 99 and that v denotes the outward pointing unit
normal vector on 02, then the co-normal derivative of Py associated with the operator A on 0f)
is formally defined by the dot product

a(x,VPp) - v

on 0f). Since the Dirichlet-to-Neumann operator A associated with the operator A assigns to each
Dirichlet boundary data ¢ the corresponding co-normal derivative of Py, we formally set

Ap =a(x,VPyp) - v.

Multiplying this equation by some function 1 € C'°°(€) with respect to the inner product on L?(952)
and applying Green’s formula yields

/ Ap g dH = / a(x, VPp)V dz.
a0 Q
If, in addition, Ap € LP'(99), then by an approximation argument, we can conclude that
/ ApypdH = / a(x, VPp)VZiy dx
a0 Q

for every ¢ € W'=1/P2(9Q). Even if ¢ and 1 merely belong to W'~1/P2(9Q), the integral on the
right-hand side of this equation exists. Thus, we can use this integral to define the Dirichlet-to-
Neumann operator A for the more general class of functions W'=1/7P(99). By linearity of Z and

13



by using Holder’s inequality together with growth condition (17), one easily sees that the functional
P / a(x, VPp)VZy dx (37)
Q

belongs to the dual space W~(1=1/P):P/(9Q). This justifies why our following definition makes sense
and is consistent to the case of smooth functions.

Definition 3.1. We call the mapping A : W=1/P2(9Q) — W—0-1/P)P'(9Q) defined by
(ot = [ o TPAVZY s (39)
Q

for every o, 1) € Wi—1/pp (09) the Dirichlet-to-Neumann operator associated with the quasi-linear
operator A given by (19).

Remark 3.2. Consider the special case a(x,&) = [£[P72¢ for every x € Q and ¢ € R%. In this
case the local operator A defined in (19) reduces to the celebrated p-Laplace operator A,. If the
boundary 99 of Q is smooth enough (for example, if 99 is of class C%# with 3 € (0,1)), then one
can show by using Hopf’s boundary-point Lemma for the p-Laplace operator (see [38, Theorem 5])
that the associated Dirichlet-to-Neumann operator A has the character of a nonlocal boundary
operator.

The next proposition contains the key properties to establish well-posedness of the elliptic prob-
lems associated with the Dirichlet-to-Neumann operator A. Some results stated in our proposition
are already known but they also complement and improve the known literature (cf. [20, Lema in
Section 2] and [3, Lemme 2.1.1]).

Proposition 3.3. Suppose that a : Q x R* — R? is a Carathéodory function satisfying (16)-
(18). Then the operator A : W=1/Pr(9Q) — W-0=1/P)1r/(9Q) defined by (38) has the following
properties:

1. One has
(A, ) = / a(z, VPp)V Pydz (9)
Q

for every o, ¥ € WI=1/PP(9Q).
2. A is continuous and monotone, that is, for every

(Ap1 — A2, 1 — p2) > 0.

3. There are constants C7 > 0 such that
-1
HA@HW*(I*UP%P’(GQ) < ||90||€V1—1/p,p(ag) (40)

for every o € WI=1/Pr(9Q).
4. There is a constant Cy > 0 such that

<A903 §0> > Cy Hw”g[/l—l/p,p(ag) (41)

for every ¢ € W,%;l/p’f’(aﬂ).
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Proof. First, we outline that A can be written equivalently as in (39). To see this let ¢, ¢ €
W1i-1/p2(9Q). By claim (3) of Lemma 2.5, there is a unique uzy, € W, ?(Q) such that Py =
Uz + Zw Thus

(Ap, ) Z/Qa(x,VP@VZz/de:/

a(x,VPcp)VPwdm—/ a(z, VPp)Vuzy dx
Q Q

Since Py is a weak solution of (29), the second integral on the right-hand side equals zero and
hence (39) holds. Next, we show that A is continuous. Let (¢,) € W'1/PP(9Q) and ¢ €
W=1/Pr(99) such that ¢, converges to ¢ in W'=1/PP(9Q). Then by claim (2) of Lemma 2.5,
Py, converges to Py in W'P(Q). Since a : Q x R? — R? is Carathéodory satisfying growth
condition (17), we have

lim a(z, VPg,) = a(z,VPyp)  in LF'(Q)% (42)
n—oo

Fix o € W'=1/PP2(9Q). Then, by Holder’s inequality and since Z : W=1/PP(9Q) — WhP(Q) is
linear bounded, we see that

[(Apn = Ap, )| < Clla(-, VPen) = al-, VPO Lor@ya [19]lwi-1/0.0(a0)

for some constant C' > 0. Thus
[Aprn — Apllw—a-1/m .0 a0) < C lla(-, VPen) — al, VPe)| Lo (q)a

and so limit (42) implies that Ay, converges to Ay in W~(1=1/P)2(5Q). This proves the continuity
of A. To see that A is monotone, let ¢y, po € W'=1/PP2(9Q). Then by (39), we see that

(A1, 01 — 02) = (Ap1, 1) — (A1, 2) = / a(x, VPp1)(VPp1 — VPpy)dr
Q

and similarly,

(A2, 01 — @2) = (A2, p1) — (A2, p2) = / a(x, VPps)(VPp — VPypy)da.
Q
Thus
(Ap1 — Apa, o1 — pa) = (A1, 01 — w2) — (Apa, 1 — pa)

= /Q(a(x, VPy1) —a(x, VPps2)) (VP — VPys)dx,

and hence, monotonicity condition (18) implies that A is monotone. Now, let @, ¢» € W'=1/PP(5Q).
Then, by growth condition (17), Holder’s inequality, by inequality (35), and by the boundedness of
the operator Z : W'=1/P2(9Q) — WLP(Q), we see that

(A, )| < IVPRIT, iy IV 29 1o@)a < Clellismagon 19 lwi-1/mmo0):

which leads to inequality (40). To see that A satisfies (41), let ¢ € W#T_l/p’p(é)@). Then by (39)
and coercivity condition (16) yields

(Ao, 0) 2 IV P, qya- (43)
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On the other hand, since the trace operator Tr : WP (Q) — W1=1/7P(9Q) is linear bounded and
by Maz’ya’s inequality (22), we have that

lllwi-1/00000) < C (IVPellLo@ya + [1Pollr) < C (IVPoll o) + lollLr o))
Applying Poincaré’s inequality (44) (stated in Lemma 3.4 below) to the term ||| »(a0) in the latter
estimate shows that

lellwi-1/9000) < CIVPO|Leg)a-
Hence by (43), A satisfies inequality (41). This completes the proof of this proposition. O

Lemma 3.4. For a function u € L'(99), we set u = m fagud’H. Then, there is a constant
C > 0 such that

/ lu— TP dH < c/ Vul? dz (44)
a0 Q
for every u € WLP(Q).

The proof of Lemma (3.4) is quiet standard in the literature. Hence we omit it.

Remark 3.5. We underline that the operator A is not strictly monotone without an additional
conditions on ¢ € W'=1/PP(9Q). In other words, for given ¢y, py € W1=1/PP(9Q), the implication

(Ap1 —Apa, o1 —p2) =0 = @1 =9

does not hold in general as the following counter-example shows. Let ¢1 = c; and 2 = ¢ on 952
for some c¢1, ¢ € R such that ¢; # co. Then Py; = ¢; on Q and hence, Ap; =0 on OS2 for i = 1, 2.
Thus,

(Apr = Apa, o1 —2) =0 but  ¢1 # ¢
An additional condition on ¢ € W1/PP(9Q) would be compatibility condition (3). As a
result, the space Wi “/P?(9Q) has been introduced by us in Section 1. In fact, A restricted on
W Y/PP(9Q) is strictly monotone. To see this, let ¢y, ¢o € Wi /PP(9Q) such that

(Ap1 — Az, 1 — p2) = 0.
Then by (39) and by the linearity of the operator Z, this equality can be rewritten as

/(a(a:, VPpi)—a(x,VPp1)) (VPp; — VPps)dz = 0.
Q

By the strict monotonicity condition (18), this implies that VPyp; = VPps a.e. on Q. By [40,
Corollary 2.1.9] and since 2 is connected, Pp; = Pps + ¢ on 2 for some ¢ € R. This means that
Po1jaa = ¢1 = @2 + ¢ on 95). However, @1 and ¢, satisfy condition (3). This implies that ¢ = 0
and thereby we have shown that p; = @9 on 912, proving that A is strictly monotone on the space
W /PP (092).

With this remark we can conclude the following statement. We leave the easy proof as an
exercise for the interested reader.
Corollary 3.6. Suppose that a :  x R — R? is a Carathéodory function satisfying (16)-(18).
The restriction of the operator A defined by (38) on the space Wﬁfl/p’p(é)ﬂ), denoted again by
A, is a well-defined, continuous, strictly monotone operator from W#fl/p’p(ﬁﬂ) to the dual space
Wn:(l‘l/P>=P’(aQ) satisfying the inequalities (40) and (41).
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3.2. The Dirichlet-to-Neumann operator Ay on LI(0Q) and on C(09)

In this subsection, we introduce the Dirichlet-to-Neumann operator A, associated with the
differential operator A given by (19) on LI(9€) for 1 < ¢ < oo and A, on C(99) under the
assumptions that a : Q x R? — R is a Carathéodory function satisfying (16)-(18).

Under theses assumptions on a, it was first shown in [3] that A; is completely accretive. In
addition, it was proved in [3, Théoreme 2.3.1] that the entropy solutions operator associated with
A; satisfies the range condition (24) in X = L*(9Q). A few year later, it was shown in [1, p.312]
that, in fact, the closure A; (see Definition ?? below) of the Dirichlet-to-Neumann operator A; in
L'(09) coincides with the corresponding entropy solution operator in L'(99).

For 1 < g < oo, one has that ITq is contained in Aj. Hence, it is not difficult to conclude that
A, is completely accretive for all 1 < ¢ < oo and since (0,0) € A,, one has that A, is m-completely
accretive in L1(092).

However, the result that A, is m-completely accretive in C'(99) is not a straight forward conse-
quence of [3, Théoreme 2.3.1]. It is one of the main results of this article (see Proposition 3.12).

To keep this article self-contained, we give here the details of the previous mentioned results,
but we proceed here in a slightly differently way than in [3] or in [1]. To this end, we begin with
the following two definitions.

Definition 3.7. Let 1 < ¢ < oo and let A be the Dirichlet-to-Neumann operator associated with
the quasi-linear operator A defined in (19). Then, the Dirichlet-to-Neumann operator A, on LI(99)
is defined by the part of A in L2(91), that is,

A= { () € L700) x L1(09) | (¢, v) € A}

and the Dirichlet-to-Neumann operator A, on C(9) is defined by the part of A in C(9), that is,

A= {(pv) € C00) x CO9) | (p.v) € A}

We denote by D(Ag) (resp., by D(A.)) the domain of Ay (resp., of A.) for every 1 < ¢ < co.Further,

we define the closure Ay of Ay in LI(0R) is by

there exists ((¢n, ¥n)) C Ag s.t. lim ¢, = }
n— 00

A, = {(w) € L1(09) x L*(99) & lim ¢, = ¢ in L9(99)

and we call the operator A, closed in L9(0Q) if A, = A,.
Furthermore, we need the following definition.

Definition 3.8. Let 1 < ¢ < oo and v be the outward pointing unit normal vector on 0f2. For a
function u € WHP(Q), we call a function ¢ € L9(92) the generalised co-normal derivative of u in
L4(99) if there exists a function F' € LY(Q) satisfying

/a(-,Vu)Vvdx:/ wvdH—/Fde (45)
Q o9 Q

for every v € C*°(Q). By Lemma 2.1, the set {vjgq |v € C°°(Q)} lies dense in L7(99) for 1 < ¢ < oco.
Thus the function ¢ € L2(9) is uniquely determined by equation (45) for the same F', and hence

it makes sense to set
a(, Vu) - v :=1.
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If a function u € W1P(Q) admits a generalised co-normal derivative in L7(d2), then we also write
a(,Vu) -v € L1(09).

Now, we begin investigating the case ¢ = 2.

Proposition 3.9. Suppose a : Q x R? — R? is a Carathéodory function satisfying (16)-(18) and
for Vo = W=1/PP(9Q) N L2 (0N) equipped with the sum norm, let Ay, be the restriction on Vo of
the Dirichlet-to-Neumann operator A defined in (38). Then the following statements hold true.

1. The operator Ay is the part of the operator Ay, in L*(9Q) and the domain D(Az) of Ay
coincides with the set of all ¢ € Vy satisfying

a(-, VPyp) -v € L*(09).

In particular,
Ap=a(-,VPy)-v

for every ¢ € D(A2) and

Ap&dH = (Ap, &) = / a(x, VPp)VZEdx (46)

o0 Q
for every € € V.

2. The operator Ay is a closed operator in L?(09).

3. The operator Ao is m-completely accretive in L?(0S)) with dense domain in L*(0S). In
particular, for every o € Vg , we have that Jyx¢ converges to ¢ in L?(0€) as X — 0+, where
Jx denotes the resolvent operator of Ao

To prove this proposition, we need the following lemma.

Lemma 3.10. Let () be a sequence in L?(0Q) N W'=1/P2(9Q) and suppose (pn) is bounded in
L?(99) such that (VPp,) is bounded in LP(Q)?. Then there is a ¢ € L*(0Q) N W'~V/PP(9Q) and
a subsequence (¢, ) of (pn) such that ¢y, converges weakly to ¢ in L*(0Q), Py, converges to
Py weakly in WYP(Q). If, in addition, the function A : Q x R — R is a Carathéodory function
satisfying (20), then, in particular, the subsequence (., ) of (¢n) satisfies A(x, VPeyy, ) converges
to A(xz,VPy) a.e. on Q.

Proof. To see that the claim of this lemma holds, let (,,) be a sequence in L?(9Q) N W' =1/P»(90Q)
such that (¢,) is bounded in L2(09) and (VPy,) is bounded in LP(Q)?. By inequality (23),
we can conclude that (Pyp,) is bounded in WP(Q). Thus by Lemma 2.3 and since L2(99) is
reflexive, there is a subsequence (¢k,) of (pn), a weak solution u € WP(Q) of (29) and some
¢ € L*(09Q) such that Py, converges to u weakly in W1P(Q), and ¢y, converges weakly to ¢
in L?(9€2). Thus and since the trace operator Tr : WP(Q2) — LP(9) is compact, it follows that
@ € L2(0Q) N W=1/PP(9Q) and u = Py. If A and a are Carathéodory functions satisfying (20),
then by growth condition (17) and by Lemma 2.3, we see that a(x, VPypy, ) converges to a(xz, VPyp)
a.e. on €, weakly in L (Q)?, and A(z, VPgyy, ) converges to A(x, VPyp) a.e. on . O

Now, we can turn to the proof of Proposition 3.9.
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Proof of Proposition 3.9. To see that claim (1) holds, we note first that if V5 = W=1/»2(9Q) N
L?(09) is equipped with the sum norm, then the dual space V] of is given by the sum space
Vg = W-U=Urw 1 [2(9Q). By construction, Vp is continuously embedded into L?(9Q) by a
bounded linear injection i with a dense image. Hence, the adjoint operator i’ : (L?(9€2))" — Vj is a
continuous injection as well. We identify L?(9€2) with its dual space (L?(9£2))" and so the space V;
can be considered as a linear subspace of L?(9Q) and V{, where L?(9) is an intermediate space
between V) and V{j. With this preliminaries, we see that the restriction Ay, Vo — Vy of A on V)
remains a continuous and monotone operator and A is the part of A}y, in L?(09). Let D be the
set of all ¢ € Vj such that a(-, VPy)-v € L?(99). Then, one easily sees that the set D is contained
in D(Az). On the other hand, by definition of Ay, for every ¢ € D(A3), one has ¢ € V; and there
is a ¢ € L?(99Q) such that

(Ap, &) — /mwsom

for every ¢ € Vj. Hence by definition of A and by Definition 3.8, we have v = a(z, VPy)-v € L*(99).
Therefore the set D(Az) is contained in D and, in particular, by definition of A, the last equation
shows that equation (46) holds. This completes the proof of claim (1) of this proposition.

Next, let o, ¢ € L?(0€) and (p,) and (¥,,) be two sequences in L?(9Q) satisfying

(n:¥n) €Ay foreveryn>1,  lim @, =¢in L2(09), lim 1)y, = ¢ in L?(09). (47)
Then, by claim (1) of this proposition, each ¢, satisfies

/ a(x,VPp,)VZEdx = Y EAH (48)
Q o0

for every £ € V. Taking £ = ¢,, in this equation and subsequently applying (39), Cauchy-Schwarz’s
inequality and coercivity condition (16) yield

. /Q IV Ppul? dz < [dn 200 l0nll 2200

for every n. Therefore and by the assumptions on (¢,,) and (1,,), the sequence (VPy,,) is bounded
in LP(2)?. Due to Lemma 3.10, there is a subsequence (%) of (¢,,) and ¢ € W=1/PP(9Q) such
that Pyy,, converges weakly to Py in W1P(Q2) and a(x, VPyy, ) converges to a(x, VPy) a.e. on
and weakly in LP'(Q)?. Thus sending n — 0o equation (48) for general ¢ € Vj and using the limits
in (47), shows that ¢ = a(-, VPy) € L?(09). Hence by claim (1) of this proposition, (p,%) € As.
This proves that Ay is a closed operator in L?(992). O

Next, we show that Ay is completely accretive. For this, we make use of the following charac-
terisation (see also [5, Corollary A.43]).

Proposition 3.11 ([9, Proposition 2.2]). Let Py denote the set of all functions T € C*°(R) sat-
isfying 0 < T'" < 1, the support supp(T’) of the derivative T' of T is compact, and x = 0 is not
contained in the support supp(T) of T. An operator A on Li(0Q) for 1 < q < oo is completely
accretive in L1(0Q) if and only if
/8 (=) T(p—¢)dH >0 (49)
Q

for every T € Py and every (p,), (¢,7) € A.
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Proof of Proposition 3.9 (Continued). Let T € Py and ¢, ¢ € D(Ag). Since T : R — R is Lipschitz-
continuous such that 7(0) = 0, ® := T(Py — P¢) € WP?(Q) and has trace T(Py — P)jpn =
T(p — ¢). Therefore, by claim (3) of Lemma 2.5 there is a unique up € WyP(Q) satisfying
PT(p—¢) = usp + P. Applying this to formula (46) and using that Py and Pg are weak solutions
of equation (29) yields

|| (o= a1 — )
_ /Q (a(z, VPp) — alz, VPE)VPT(1 — oo) da
_ /Q (a(z, VPp) — a(z, VPS)VT(Pp — P@)de
- /Q (a(x, VPp) — a(z, VPE)) (VP — VPR T'(Pp — P@)da.

Since T"(Py — P$) > 0 and by monotonicity condition (18), the integrand in the last integral of
this calculation is non-negative a.e. on 2, proving that the Dirichlet-to-Neumann operator Ay is
completely accretive.

Now, consider the operator N : Vj — Vj defined by

N =1r200) + Mg

where Ay, : Vo — Vj is the restriction of A on the space Vy. By Proposition 3.3, the operator NV is
continuous and monotone. By Hdlder’s inequality and by inequality (40) in Proposition 3.3, there
is a constant C7 > 0 such that

—1
INellvy < llellzza0) + Ch ||<p||%/171/p,p(a§z)

for every ¢ € Vy. Thus the operator A" maps bounded sets of V; into bounded sets of Vjj. Moreover,
by using the boundedness of the trace operator 7r : WhP(Q) — W1=1/PP(9Q), it is not difficult to
see that for every a € R, the set

<NLP,§0>VO’,VO
— T [e%
llellve =

Ea::{goevo‘

is bounded in Vj, which is equivalent to the fact that

lim 7<Nﬁ’(p”>vé’v° = +00.

llellve #lvo

Therefore by [29, Théoreme 2.1], the operator N : Vi — V{ is surjective and since L?(9) is
continuously injected into V{, we have thereby shown that for every ¢ € L?(9Q), there is a ¢ € Vj
such that ¢ + Ap = 1, proving that A, satisfies the range condition (24) for X = L2(99).

It remains to show that the domain D(Az) lies dense in L?(9Q). By Lemma 2.1, V; is a dense
subspace of L?(9Q) and hence we only need to show that for every ¢ € Vo, ¢y := Jyp € D(Ag)
converges to ¢ in L2(9Q) as A — 0+. To see this, take ¢ € Vj, Then for every A > 0, ¢, is the
unique weak solution of equation

ox— P+ AApy =0
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in L2(09). Multiplying this equation by ¢ — ¢ with respect to the inner product on L?(952), and
then by using (16) and (17) in conjunction with (39), Holder’s and Young’s inequality, we see that
o = @13 oy + AV PR, s < A2 IV PoAIL, 000 + CAIVZGIL, 0
for some constant C' > 0 depending on 7 > 0 and ¢ > 0 from (16) and (17). Rearranging this
inequality, yields
I = @lZiom < CAIVZEIL, 0.

showing that o, converges to ¢ in L?(9Q) as A — 0+. O
Next, we consider the general case 1 < g < oo.

Proposition 3.12. The following statements hold true.

1. For 2 < g < oo, the Dirichlet-to-Neumann operator A, in L1(0R) is closed and m-completely
accretive and for 1 < q < 2, the closure /Tq of the Dirichlet-to-Neumann operator Ay in
L1(0R) is m-completely accretive.

2. The Dirichlet-to-Neumann operator A. in C(0R) is closed and m-completely accretive.

3. For 1 < q < oo, the domain D(A,) lies dense in L1(09Q). If Q has a CYP-boundary O for
some B € (0,1) then the domain D(A.) lies dense in C(09).

Proof. First, let 2 < ¢ < co. First, we show that A, is a closed operator in L?(0€2). To this end, note
that by the continuous embedding of L?(99) into L?(8) and by claim (1) of Proposition 3.9,the
operator A, is contained in Ap = Ay. Thus every (p,) € A, satisfies

/a(;v,VPgo)Vngx:/ Y &jaq dH
Q o0

for every ¢ € C*°(€) and so by Definition 3.8, ¢ = a(-, Pp) - v € L4(02), showing that (¢,1) € A,.

By claim (2) of Proposition 3.9, the Dirichlet-to-Neumann operator Ay is completely accretive
in L2(992) and since A, C Aa, respectively, A. C Ao, it is clear that A, and A, are completely
accretive in L1(09) and in C'(99Q), respectively. In the case 1 < ¢ < 2, one first shows by the same
idea as in the Proposition 3.9 that A, is completely accretive in L7(0€2). Then by passing to the
limit, one sees that, in particular, the closure /Tq of A, is completely accretive in LI(092).

Next, let 2 < ¢ < co. Take ¢p € LI(9Q). Then by the continuous injection of L7(9€2) into
L?(09) and by Proposition 3.13, there is a weak solution ¢ € D(Az) of equation

p+Ap =1 (50)
in L2(99). Since A20 = 0 on 9 and A, is Li-accretive in L?(952), we have

lellan) < llg +Ap — (0 + A0)| Laa) = [|¢]

Thus, by equation (50) and since ¢ € L9(99), it follows that ¢ € D(A,) satisfying Agp = ¢ — o,
proving that A, satisfies the range condition in L7(Q) for every 2 < ¢ < oo.

Now, take ¢ € C(99). Then, ¢ € L>°(9Q) and since Ao, is m-accretive in L>°(0), there is
a weak solution ¢ € D(Ay) of equation (50) in L™ (99Q). Since ¢ — ¢ € L1 (99) for any ¢ > 1,
claim (2) of Theorem 1.1 yields ¢ € C%%(9Q). Hence, ¢ € D(A.) with A.p = 1) — ¢, proving that
A, is m-accretive in C(09Q).

La(09Q2)-
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Now, let 1 € LI(9Q) for 1 < g < 2. Then there is a sequence v, € L'(9Q) N L°°(99) such
that 1, converges to ¢ in L4(9€). Since L'(92) N L>(9N) is continuously imbedded into L?(99),
to every v, there is a weak solution ¢,, € D(As) of ¢, + Asp, = 1,. Since As is Li-accretive in
L2(09) and A20 = 0, it follows that ¢, € LI(9Q). Thus (¢, ¥, — ¢n) € A, and by the accretivity
of Aq in L9(0Q), we see that

llon — @m”LQ(aﬂ) < [(pn + Aq‘Pn) = (Pm + Aq‘/’m)HLq(BQ)
< ¥n — YmllLaon)-

Therefore and since L?(0f2) is a Banach space, there is a function ¢ € LI(dQ) such that ¢,
converges to ¢ in L(d2). This proves that ¢ € D(A,) satisfying ¢ + A, = 1, showing that A,
satisfies the range condition (24) for X = L1(9Q).

Next, we show that D(A,) lies dense in L9(99Q) for 1 < ¢ < oo. Let ¢ € L(9Q). Then by
Lemma 2.1, there is a sequence (@) in D := {vjgq |[v € C°°(Q)} such that ¢, converges to ¢ in
Li(09). Thus for given € > 0, there is a ¢,, € D such that |¢n, — ¢|Lea0) < €/3. For every
A >0, let Jy = (Ir290) + As)~! be resolvent operator of As. Let B = A, if 1 < ¢ < 2 and
B = A, if 2 < g < oco. Since B is completely accretive, B0 = 0 and since B satisfies the range
condition (24) for X = L(0%), it follows that the resolvent operator Jy of Ay coincides with the
resolvent operator of B on L(9Q)NL?(9Q), maps L(9Q)NL2(9Q) into D(B)ND(A3) and extends
to a contractive mapping from L4(952) to a subset of L1(99) for every 1 < ¢ < oo. Thus

I3 = llaan) < [Ine = IaengllLa@n) + 1I3Pne — PnollLaen) + llen, — ¢llLacan)
<2 [lpn, — <P||La(aﬂ) + [[Iapne — <Pno||Lq(aQ)
<2 5+ [Ixpng — P llLacon)-

If ¢ > 2, then

a=2
”J)\@no — Png HL‘?(QQ) < ”JAQDHO - CPTLOHLZO(aQ) ”‘])\@no — Png HLZ(BQ)
a—2
< (||80no||L°°(aQ) + ||<PnoHL°o(aQ)) T [ Iapne — 90n0||L2(aQ)a

where we used that ¢,, € L>(09), Jy is contractive in L*>(9f2), and the fact that A0 = 0. If
1 < ¢ < 2, then by Holder’s inequality,

1
2

1
||J>\90no — Pno HL‘I(BQ) < H(&Q)q

Thus, for all 1 < ¢ < oo, there is a constant C' > 0 such that

| Ix@ro — @nollL2(80)

||J>\<pﬂ0 - gpno”lﬂ(@ﬂ) < % +C HJ)\@TLO - (pn()”LQ(aQ)

for all A > 0. Since for every 1 < g < oo, the set D is contained in L?(9Q) N L7(dN), we have that
Inpn, € D(A,) for every A > 0. Therefore and by claim (3) of Proposition 3.9, the first part of
claim (3) of this proposition holds.

Now, suppose that © has a C'$-boundary 99 for some 3 € (0,1). Then by the regularity
result [28] concerning the weak solutions of Dirichlet problem (28), the set D is a subset of the
domain D(A.). Moreover, by the Stone — Weierstral Theorem, the set D lies dense in C(99),
proving that D(A.) lies dense in C'(99).

O
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3.8. The Dirichlet-to-Neumann operator realised as a subgradient in L?(92)

Here, we give a sufficient condition ensuring that the Dirichlet-to-Neumann operator As can be
realised as the subgradient in L?(9S2) of a proper, convex, lower semicontinuous functional. The
following proposition generalises [20, part (A) of Theorema in Section 2.] and [25, Theorem 2].

Proposition 3.13. Let a : Q x R? — R? be a Carathéodory function satisfying (16) —(18). In
addition, suppose that a satisfies gradient condition (20) for some Carathéodory function A : @ x
R¢ — R. Then the Dirichlet-to-Neumann operator Ay can be realised as the subgradient OE in
L2(09) of the proper, convex, densely defined and lower semicontinuous functional

; 1-1/p,p 2
£(p) = /Q.A(x, VPy)dz, ifpeW (0Q) N L*(09), (51)

+o0, if otherwise
for every ¢ € L?(99).
The proof of Proposition 3.13 is given by the following two lemmata.

Lemma 3.14. The functional £ defined by (51) is proper, convez, densely defined, and lower
semicontinuous in L?(9Q) with domain D(E) = W1=1/PP(9Q) N L?(5Q).

Proof. Since A is a Carathéodory function and by the growth condition (17), the functional £ given
by (51) is well-defined and proper. Furthermore by Lemma 2.1, the domain D(E) lies dense in
L2(09). To see that € is convex, let @1, p2 € D(E) and X € [0,1]. Then, Ap1 + (1 — X)pa € D(E).
Thus, by claim (4) of Lemma 2.5 and since & — A(z, &) is convex on RY for a.e. = € Q,

EO1 + (1= Vo) < / A@@, AV P + (1= NV P () da

SAE(p1) + (1= A) E(p2).

It remains to show that £ is lower semicontinuous in L?(99Q). For a > 0, let (¢,) be a sequence
in D(&) and ¢ € L*(09) such that £(p,) < a for all n and ¢,, converges to ¢ in L?(9Q). Then
the sequence () satisfies the hypotheses of Lemma 3.10 and hence, ¢ € D(E) and there is a
subsequence (¢, ) of (¢,) such that A(z, VPyy, ) converges to A(z, VPp) a.e on . Thus and
since A(z, VPypy, ) are non-negative measurable functions from Q to R, Fatou’s lemma and the
assumption £ (g, ) < a for all n imply

E(p) < lirginfg(gpk,,L) <a.

As a > 0 and the convergent sequence (y,) C D(E) were arbitrary, we have thereby shown that &
is lower semicontinuous in L?(992). O

Lemma 3.15. Let £ be the functional given by (51). Then the subgradient OE in L*(0Q) is single-
valued and coincides with Ay on L2(0Q).

Proof. First, let ¢ € D(A2). Then by claim (1) of Proposition 3.9, ¢ belongs to D(€) such that
Aoy € L%(09) satisfying (46). Thus by (39), we have that

/ Ag(pfd"H:/a(:r,VPLp)Vpﬁdx (52)
[219) Q
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for all ¢ € L?(0Q) N WI=Y/P2(9Q). For any ¢ € D(E), ® := Py — Pp € WHP(Q) and has trace
Plog =1 — ¢ € L?(09). By claim (3) of Lemma 2.5, there is a unique ug € WyP(€) such that
P —p) = ug + (P — Pyp). Hence taking £ = ¢ — ¢ in (52) and using that Py is a weak solution
of (29), we see

/ Ao (1 — ) dH = / alw, VPE)(VPY — VPg) da
o Q

By the assumptions (18) and (20), & — A(x, &) is convex on R? satisfying Ve A(z, €) = a(x, &) for
every £ € R? and for a.e. x € 2. Thus

a(x,8)(€ — &) < Az, §) — Az, &)

for all £, & € RY and a.e. = € Q. Applying this inequality with g = VPy and ¢ = VP to the
right-hand side of the last equation, we see that

/ Moo (4 — @) dH < E(8) — E(p).
o0

As ¢ € D(€) was arbitrary, this shows that ¢ € D(9E) and Azp € IE(p). Now, let ¢ € D(IE) and
X € 9E(p). By definition of subgradients in L?(9€), ¢ € D(£) and x € L?(99) satisfy

/mx(w—so) dH < /QA(%VPz/;) d:v—/QA(x,VPcp) dz

for every ¢ € D(E). For A > 0 and ¢ € D(), taking ) = ¢ + A in the previous inequality and
subsequently dividing the resulting inequality by A yield

/med’H = % (/QA("T’VP("D"")‘C))(M—/Q.A(QE,VP@)dx) .

By claim (4) of Lemma 2.5,

/A(m,VP(@—kAC))de/A(m,VPap—FAP()d:c.
Q Q

Hence )
/ X(d’HS(/ A(m,VP(p—FAPQ“)dm—/A(as,VPgo)d:c)
a0 A \Ja Q

for all A > 0. Recall that the functional F given by (32) is convex, Gateaux-differentiable on
WP(Q) and its derivative is given by (33). Thus taking the infimum over all A > 0 in the last
inequality yields

/ xCdH < / a(z, VPp)VP(dx
o0 Q
and so by using again (39),
/ xCdH < / a(z, VPp)VZ(dz.
o0 Q
Since ¢ € D(&) was arbitrary, replacing ¢ by —( in the latter inequality shows that x € L?(92) and
Py € WHP(Q) satisfy equation (45) with F' = 0. Hence, by claim (1) of Proposition 3.9, ¢ € D(A3)

with Asp = x. As x € 0&(p) was arbitrary and Asp is uniquely determined by (45), we have
thereby shown that 9E(¢) = {Azp} for every ¢ € D(9E), completing the proof of this lemma. O
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4. Elliptic problems associated with A

This section is devoted to establish well-posedness of the elliptic problem (2) — (3) for the
Dirichlet-to-Neumann operator A associated with the second order quasi-linear operator A given
by (19) and to prove Holder-regularity of weak solutions of equation (2). Here, we prove Theorem 1.1
in a more general case (see Theorem 4.2 below).

We begin this section with the following definition.

Definition 4.1. Let ¢ € Wi, " ~/P7/(5Q). We call a boundary function ¢ a weak solution of the
elliptic equation (2) if ¢ € W'=1/PP(9Q) and satisfies

/Q a(2, VPO)VZE dz = (16, €) (53)

for all &€ € W'=1/PP(90).
Now, we are in a position to formulate our forth main theorem of this article.

Theorem 4.2. Suppose that a : Q x RY — RY is a Carathéodory function satisfying (16)-(18).
Then the following assertions hold.

1. For every ¢ € W,;“*l/p)f”’(m) there is a unique weak solution ¢ € W,kl/p’p(afz) of the
elliptic problem (2)-(3). Moreover, the mapping ¢ — ¢ is continuous from Wﬁ(lfl/p)’p/(aﬁ)
to Wi /PP(09).

2. Let ¢ = pi]is for some € € (0,1) if p < d and ¢g =1 if p > d. Further, let ¢ € L1(00Q)

satisfying (3). Then there are a € (0,1) and co > 0 such that every weak solution ¢ €
W=1/PP(9) of equation (2) belongs to CO* () and satisfies inequality (4).

4.1. Proof of Theorem 4.2

By Corollary 3.6, the operator A : W,};”””’(ag) — W,;(l_l/p)’p'(ﬁﬁ) is a continuous, strictly

monotone, bounded and coercive. The Banach space W L/Pp (09) is reflexive and separable as
a closed subspace of the reflexive and separable Banach space W1=1/P:» (09)). Therefore, we can
apply [29, Théoreme 2.1 & §2.2] and obtain that for every ¢ € W;(lfl/p)’pl(aﬁ) there is a unique
weak solution ¢ € Wi /% (99) of equation (2).

Now, let (¢n) € Wi " "Y22(90) and o € Wi, " "YPP(9Q) such that 1, converges to 1
in W,;“‘l/"“”(ag). Then, there are unique weak solutions ¢,, and ¢ € W},fl/p”’(aﬁ) of equa-
tion (2) with right-hand sides 1, and 1, respectively. By coercivity inequality (41) and by Young’s
inequality, we obtain

% ||%0n||€vl—1/p,p(ag) < Cs ||'(/)n||W*(1*1/P)vP’(3Q)7 (54)
where Cy > 0 comes from (41) and C5 > 0 is a constant independent of n. Since (¢,,) is
bounded in W;(l_l/p)’pl(ﬁﬁ), inequality (54) implies that (¢,,) is bounded in Wﬁfl/p’p((?()). Since
W#fl/p’p(aﬁ) is reflexive there is a @ € Wi{””’p(ag) and there is a subsequence (¢, ) of (y,)
such that for ¢, = A~14y, , one has

lim ¢, =¢  weakly in W'=V/PP(5Q). (55)

n—oo
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Since the operator Z : W=1/PP(9Q) — WhP(Q) is bounded, the sequence (Zyy, ) is bounded
in WhP(Q) and so inequality (35) implies the boundedness of the sequence (VPgy, ) in LP(Q)<.
Moreover, (g, ) is bounded in LP(99) and so by Maz’ya’s inequality (22), we obtain (P, ) is
bounded in W1P(Q). By Lemma 2.3, there is a weak solution u € WP (Q) of (29) on €2 and there
is a subsequence of (¢, ) denoted again by (v, ) such that for ¢z, = A~14y, , one has

lim Py, =u weakly in WhP(Q). (56)

n—oo

Since the trace operator 7r : WHP(Q) — LP(0€) is compact, by the convergence of Pyy, 190 = ¢k,
to ujpq in LP(0N2) and by (55), we can conclude that u = P and ¢, converges to @ in LP(952).
Thus and since every ¢y, satisfies the compatibility condition (3), we find ¢ € W /PP (09). It
remains to show that ¢ = ¢ and ¢y, converges to ¢ in WTl,fl/ PP(5Q) with respect to the norm
topology. To see that ¢ = ¢, note by Lemma 2.3, a(x, VPyy, ) converges to a(x, VP@) weakly in
LP'(Q)4. Furthermore, every ¢y, is the unique weak solution of (2) with right-hand side 9y, . Thus

(ks €) = (Agh, ) = /Q o,V Py, )V Z€ da

and

lim (v, , &) = /Q a(z, VPRV ZE da

n—oo

for every & € ern_l/p’p(aﬂ). On the other hand, (v, ,&) converges to (¢,&) for every £ €

W,}fl/ PP(9€)). Therefore, $ is a weak solution of (2) with right-hand side 1) and so by uniqueness,
@ = ¢. To see that o, converges to o in W'=1/PP(9Q), recall that by Lemma 2.3, Pypy, converges
to Pgin LP(Q2), and V Py, converges to VP a.e. on §2. Thus it remains to show that (|V Py, |?)
is equi-integrable in L!(2). Following the same idea as given in the proof of Lemma 2.5, it suffices
to show that the non-negative function yy, defined by (36) converges to 0 in L(Q). Since ¢, and
¢ are the unique weak solutions of (2) with right-hand side v, and 1, respectively, we have that

/Qan (z),dr = (Yr,,, Pk, — P) — (Vkns Pr, — ©)-

Therefore and by the convergence of )y, to v in W,,;“‘l/”)’p’(aa) and by the weak limit (55) with
@ = ¢, we see that xj, defined by (36) converges to 0 in L*(£2). Thereby we have shown that
for every sequence (¢,,) C W,;“‘l/p)’p’(asz) converging to some ) € Wn;“‘l/”)*p’(ag), there is a
subsequence (¢, ) of (¢,) such that ¢y, converges to ¢ in W L/Pp (09Q). This proves that the
mapping 1 — ¢ is continuous from anb(lfl/p)’p/(aQ) to W},fl/p’p(aﬂ), completing the proof of
claim (1) of Theorem 4.2.

4.2. Preliminaries for the proof of claim (2) of Theorem 4.2

For 1 < ¢ < o0, let LT (0€2) denote the set of all ¢ € L1(9N) satisfying (3) and let ¢’ be the
Holder-conjugate of ¢ given by % + L = 1. The next result seems to be well-known. But for the
sake of completeness, we supply the proof here.

Lemma 4.3. Letq = % ifp<dandq=1ifp>d. Then er[l/p’p(ﬁQ) 1s continuously embedded
into L%

embedded into Wn;(l_l/p)’p/(ﬁﬂ).

(092) by a continuous injection with a dense image. Moreover, L1 (0) is continuously
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Proof. We prove the claim of this lemma only for p < d since the case p > d is similar. Observe
that the Lebesgue space L% (99) is a closed linear subspace of LY (9§2) and can be identified with
the quotient space L (09)/R. Here we identify the set of constant functions on 9Q with R. Thus,
the dual space (L%, (952))" can be identified with L4, (9Q).

Now, we show that Wﬁ;l/f”f’(aﬂ) — L% (99) by a continuous injection for ¢ = (d —1)/(p — 1).
Note first that ¢ = (d —1)/(p — 1) if and only if ¢ = (d — 1)/(d — p). Moreover, the trace operator
Tr: WhP(Q) — LP"(99Q) with p* = (d — 1)p/(d — p) (see [31, Théoreme 4.2, p. 84]) and its right-
inverse Z : W=1/Pr(9Q) — W'P(Q) are bounded. Using this and since 9 has finite Hausdorff
measure, we see

lelle a0y < CITrZol e 90y < CllZellwir@) < Cllellwi-1/pr60)

for every ¢ € W'=1/P2(9Q). This shows that W'=1/P?(9Q) is continuously injected into LI (9Q)
and hence, in particular, there is a continuous injection i : Wﬁ;l/p’p(aﬂ) — L2 (0Q). If we
can show that Wﬁ;l/P’P(aQ) lies dense in LY (09), then the adjoint operator i’ : L4 (9Q) —
Wn;“‘l“’“”(asz) is also a continuous injection. For this, we set e; = H(9Q)"/?15q. Then
Wy 1= — (p,e1)r200) €1 € W,kl/””’(aﬂ) for every ¢ € W'=1/P2(9Q). Now, let g € L2,(99)
satisfy

(9,¢)L200) =0 for every ¢ € W,}l_l/p’p(aQ). (57)

Then, (g, w¢)L2(aQ) =0 and (g, 61)L2(ag) = 0. Hence,
(9,9)r200) = (9, wo)L200) + (@5 e1)L2(00) (9, €1)L200) =0

for every ¢ € WI=1/PP(9Q). Since the space W ~1/PP(90Q) lies dense in L7 (00) (see Lemma 2.1),
it follows that g = 0. As g € LY (99Q) satisfying (57) was arbitrary, we have thereby proved that

W,};l/””’(aﬂ) lies dense in LY (99), concluding the proof of this Lemma. O

Now, let ¢ = ;% ifp<dand g=1if p > d. In order to prove the Holder regularity of solutions

@ € W=1/PP(9Q) of equation (2) with right-hand side ¢ € L (99), it is crucial to know that
u := Py solves the elliptic Neumann boundary value problem

{_ div(a(z,Vu)) =0 in Q, (58)

a(x,Vu) -v=1 on N
in a weak sense. We recall the definition of a weak solution of problem (58).
Definition 4.4. For ) € L% (99), we call a function u € W1P(Q) a weak solution of the elliptic

Neumann boundary-value problem (58) if u satisfies

/ a(z, Vu)Vudz = PYudH (59)
Q o9
for all v € WP(Q).

We have the following characterisation of weak solutions of equation (2).

Lemma 4.5. For ) € L3, (99), the function ¢ € W'=Y/PP(9Q) is a weak solution of equation (2)
if and only if Py is a weak solution of (58).
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Proof. Let ¢ € L2,(99) arbitrary but fixed and suppose ¢ € W~1/7P(99Q) is a weak solution of
equation (2). Then, by Definition 4.1, Py satisfies

/ a(x, VPp)VZEdx = Y E&AH (60)
Q o0

for every ¢ € W1=1/P2(9Q). For every v € WP(Q), the function £ := vjaq belongs to Wi=1/pr(90)

and satisfies v — Z(vjpq) € WyP(Q). Thus and since Py is a weak solution of equation (29),
equation (60) is equivalent to

/a(x,VPcp)Vvdmz/ Yujpq dH
Q a0

for every v € WP(2). Therefore, o € W'=1/PP(9Q) is a weak solution of equation (2) if and only
if Py satisfies equation (59), meaning Py is a weak solution of Neumann problem (58). O

4.3. Proof of Theorem 4.2 (Continued)

Suppose that ¢. := pf;ia ifp<dand ¢. :=1if p > d for £ € [0,1). Since I has finite

measure, since qg < ¢., we see by Lemma 4.3 that

L% (09) < LI(9Q) — W, A=1/P)P (9Q)

respectively by continuous injections. Thus, claim (1) of Theorem 4.2 ensures that for every ¢ €
L% (992), there is a unique weak solution ¢ € Wi, /P*(9) of the elliptic problem (2)-(3).

Now, let ¢ € (0,1) and suppose that ¢ € W'=1/PP(9Q) is a weak solution of (2) for some
right-hand side ¢ € L% (09). By Lemma 4.5, Py is a weak solution of Neumann problem (58).
Thus, [32, Theorem 3.7] implies that Py € C%*(Q) and satisfies

1

1Pello@ < ca (161 ETom, + 1Pelse ) + co

for some a € (0,1) and C, > 0 independent of ¢ and ¢. Therefore, ¢ € C%*(9Q) and since
[ellcoe@a) < [[Pellcoa gy, the last estimate shows that ¢ satisfies the desired inequality (4).
Thus, claim (2) of Theorem 4.2 holds, completing the proof of this theorem.

5. Parabolic problems associated with A

In this section, we investigate the the well-posedness of initial value problem (5)-(6) for the
the Dirichlet-to-Neumann operator A associated with the second order quasi-linear operator A
defined in (19) under the general assumptions that a : Q x RY — R? is a Carathéodory function
satisfying (16)—(18). It is one of the main task of this section to outline the L? — (%% regularisation
effect of the mild solutions of (5)-(6) depending on the initial value ¢g. Note that Theorem 1.2
follows from the next theorem as a special case.

Theorem 5.1. Suppose that a : Q x RY — R? is a Carathéodory function satisfying (16)-(18).
Then the following statements hold true:

1. The negative Dirichlet-to-Neumann operator —As in L2(0S)) generates a strongly continuous
order-preserving semigroup {e~*2} of contractions on L?(0S).
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2. The semigroup {e"t"2} can be extrapolated to a strongly continuous, order preserving semi-
group of contractions on L1(0) for 1 < g < 0o, on the closure D(As) in L°(0) for g = oo,
and on the closure D(A.) in C(0R), where D(A.) = C(09) if Q has a CYP boundary for some
B € (0,1). In particular, the extrapolated semigroup on L9(9Q) of {e~ 22} coincides with the
semigroup {e—th} generated by —A, on L1(0Q) if 1 < q < 2 and with the semigroup {e~*44}
generated by —A, on LI(0Q) (resp., on D(Ax)) if 2 < g < 0.

3. For every ¢ € L1(0Q) (1 < ¢ < 00), the mild solution e *By satisfies the conservation of
mass equality (7), where B=Ag if 1 <g<2and B=A,; if 2 < g < 0.

4. For (2V pf}ig) < g < 0o with some € € (0,1) if p < d and for 2 < q < oo if p > d, there are
a € (0,1) and cq > 0 such that

1

le™ R pllco.om) < ca |l e 0l fagon) + 1P @)l o) | + ca (61)

for every t > 0 and every ¢ € D(A,). For ¢ € D(Ax), inequality (61) holds for any
(2\/pf§i5) < g < o0 with some e € (0,1) if p < d and for any 2 < g < oo if p>d.
5. If a satisfies gradient condition (20) for some Carathéodory function A : Q x RY — R, then
for every p € LI(0Q) (2 < q <o) (resp., ¢ € D(A¢)),
(a) the mild solution t +— e~y of (5)-(6) in LI(OQ) coincides with the strong solution
of (5)-(6) in L*(9S2) and has regularity

e~ Mg e C((0, 00); Wl_l/m’@Q)) N WL ([8,00); L2(09)) N C([0, 00); L1(09Q))

for every & > 0 (resp., e~ N € C((0,00) x ON)), e~ Ny is right-hand side differentiable
in L2(0Q) at every t > 0 and

/ %+€_tAq(pde + / a(z, VP(e M)\ VZede =0
o9 Q

for every € € W=1/P2(9Q) N L?(09),
(b) the function

tis (e Hagp) = / Az, VP(e ) da (62)
Q
is convez, decreasing, Lipschitz continuous on [8,00) for every § > 0, and
FE(eT M) = — || e M gp||72 og)

for a.e. t > 0.
6. Suppose that a satisfies either homogeneity condition (31) if p # 2 or is linear if p = 2. Then

(a) for B=A, if1 <q<2and B=A, if 2 < q < 0o, we have that for every ¢ € L1(99),
e By € D(B) for everyt > 0, e~ By € WH([§,00); L1(ON)) for every § > 0, e By
is right-hand side differentiable in L1(0Q)) at every t > 0 and satisfies equation (10)
in LI(0Q) for every t > 0. In particular, there is a C > 0 such that e *By satisfies
inequality (11) for every t > 0,

(b) for (2fo%i€) < g < oo with somee € (0,1) if p<d and for 2 < g < oo if p > d, there
are a € (0,1) and ¢, > 0 such that inequality (12) holds for every t > 0, ¢ € L1(0%),
and in particular, e~ "ap € C((0,00) x 99).
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5.1. Proof of Theorem 5.1

By Proposition 3.9 and by the Crandall-Liggett theorem [16], it follows that claim (1) of this
theorem holds. Furthermore, by Proposition 3.12 and since A0 = 0, the theory developed in [9]
shows that claim (2) holds. To see that claim (3) holds, take ¢ € L2(99Q) if 1 < ¢ < oo and
¢ € D(A.) if ¢ = co. For t > 0 and any integer N > 1, let ¢; = i & for every i =0,...,N. We set
wo = ¢ and for every i = 1,..., N, let ¢; € D(B) be the unique solution of equation

@i + 5 Bpi = pi-1, (63)

where B =4, if 1 <g<2and B=A,if 2 <q < oco. By the Crandall-Liggett theorem [16], the
step function

N
O (t) =0 Lggg—op (t) + > @i Dty 0 (1)
=1

converges to e "By in LI(9€) as N — oo for every ¢ > 0. By (63) and since Z(1sq) = laq,

/ (pic1 —pi)dH =0
00

forall i=1,..., N. Therefore sending N — oo in equation

/ Oy (t)dH = pdH
00 o9

shows that the conservation of mass equality (7) holds. Next, let ¢ € D(A,) for (2\/p_1_E <
with some ¢ € (0,1) if p < d and for 2 < ¢ < oo if p > d. Then by the regularity result of mild
solution [8, Theorem 4.6], the mild solution e~ %4 of (5)-(6) in L(dS) is a strong solution of (5)-

(6) in L9(9N), at every ¢t > 0 the function e~* %4 is differentiable form the right, 4 e~*Aay is right

) a_;'_
continuous, and %+e_tAq<p+Aqe_tA‘1gp = 0. In particular, for every t > 0, e~ *A¢p is a weak solution
of the elliptic equation (2) with right-hand side ¢ = —%Jre*“‘q(p. Since %Jre’mq o € LI (09),

we can apply Theorem 4.2, proving that inequality (61) holds. By using this and the continuous
embedding of L (9€2) in L1(9N), we see that claim (4) holds.

By Proposition 3.13, we can apply the classical theory of non-linear semigroups in Hilbert spaces
(more precisely, see [14, Théoréme 3.2]) and obtain that the first part of claim (5) holds. It remains
to show that for every ¢ € L?(99Q),

e~ M2p e O((0,00); WV/PP(0Q)). (64)

By the continuity of the trace operator Tr : W1P(Q) — W1=1/PP(99), to see that (64) holds, we
only need to show that P(e~2¢) € C((0,00); WP(Q)). To this end, suppose (t,) is a sequence
in (0,00) converging to some tq € (0,00). Then, e"'*2¢ converges to e %42 in L?(9€2). More-
over, the function £(e~2¢) given by (62) is continuous on (0,00). Thus by inequality (23),
the sequence (P(e~'"%2¢)) is bounded in W'P(Q)). By Lemma 2.3, there is a weak solution
u € WHP(Q) of equation (29) on 2 and there is a subsequence (t,) of (t,,) such that P(e~tknA2)
converges to u weakly in WP(Q) and strongly in LP(Q), VP(e *n%20p) converges to Vu a.e.
on Q and a(x, VP(e t*nt2¢)) converges to a(x, Vu) weakly in L (Q)? and a.e. on Q. Thus
and since the trace operator Tr : W1P(Q) — LP(9Q) is compact, Tr(P(e tnl2)) = etz
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converges to Tru in LP(JQ). On the other hand, e %2 converges to e toA2¢ in L2(9Q).
Thus Tru = e~tA2¢ and since u € WHP(Q) is a weak solution of equation (29) on Q, we have
u = P(e tM2p). Tt remains to show that VP(e tn’2¢p) converges to VP (e "2¢) strongly in
LP(Q)?. By Lemma 2.3, VP(e *n%2¢) converges to VP(e %A2¢) a.e. on Q. Hence, it remains
to show that (|VP(e "t nA2¢)|P) is equi-integrable in L'(£2). To see this, consider the non-negative

function x, defined by (36) with ¢y, := e t*n"2¢ and ¢ := e~?42¢. Recall that for every t > 0,
AzeitAzgp = 7%_"_67“\2()0.

Thus and by (39), we see that

_(d _—toA d ot Ao —te, A —toA
/an de = (g e "o — g e Fnp e R — e 0 0) a0
Q

—toA2 _ d

—tr, A
< g et — & el

iy A —toA
20 — e 20| 1250

<P||L2(BQ) e
Since %+6_‘A2<p € L>([5,00); L?(99)) for every & > 0 and by the convergence of e =424 to
e~toA2in [2(0Q), we have that xy, converges to 0 in L'(Q). Now, we employ the same arguments
as in the proof of Lemma 2.5 to conclude that (|V Py, |P) is equi-integrable in L'(£2). Since the con-
vergent sequence (t,,) in (0, 00) was arbitrary, we have thereby shown that Py € C((0, 00); WHP(Q)).

In order to see that statement (a) of claim (6) holds, we first consider the case p = 2 and
suppose that the Carathéodory function a :  x R* — R? is linear in the second variable. Then it
is well-known (cf. [6]) that Ay is a positive and self-adjoint linear operator on L?(9€2). Moreover,
—Ay generates a strongly continuous semigroup {e~**2} of self-adjoint contractions on L2(9Q),
which is Markovian and has a holomorphic extension on L?(92; C). Hence, by the classical theory
of extrapolation of linear Cyp-semigroups (cf. [7, §7.1, §7.2]), the semigroup {e **?} extends to a
positive holomorphic Cy-semigroup of bounded linear operators on L4(99) for 1 < ¢ < co. Thus
by claim (2) of this theorem and for B = A, if 1 < ¢ <2 and B = A, if 2 < ¢ < oo, the semigroup
{e7'BY on L9(0N) generated by —B is holomorphic. Hence for every ¢ € L9(052), the function
e~ By is a classical solution of (10) in L7(9€) and satisfies inequality (11) (see also [33]).

Now, suppose that 1 < p < 0o, p # 2, and the function a satisfies homogeneity condition (31). By
Lemma 2.5, the Dirichlet-to-Neumann operator A : W=1/PP(9Q) — W~1=1/P)P'(9Q) is positive

homogeneous of degree p — 1 > 0, that is,
A(re) =177 A(p)

for all 7 > 0 and ¢ € W'~1/PP(9Q). Obviously, this property is also satisfied by A4 (respectively,
for A,) for every 1 < ¢ < oo. Since for 1 < ¢ < oo, the Lebesgue space L?(92) is uniformly
convex, [10, Theorem 4] (see also [9, Theorem 4.4]) and [8, Theorem 1.16 & Theorem 4.6], imply
that statement (a) of claim (6) also holds.

Finally, suppose that (2 V pf}is) < ¢ < oo with some ¢ € (0,1) if p < d and for 2 < ¢ < o0
if p > d. Then by statement (a) of claim (6), for every ¢ € L(92), the function e~ 4y satisfies
equation (10) in L9(9Q) with B = A, for every t > 0. Therefore, by claim (4), e~*Aa¢p satisfies
inequality (61) for every ¢t > 0 and some « € (0,1) and constant ¢, > 0. Combining inequality (61)
with inequality (11) yields

_1
e~ gllcneian < o | (L4927 4 P 1) + o (65)
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Since L9(99) is continuously embedded into L2(92), e thap = e~*A2 is the strong solution of (5)-
(6) in L?(99). Thus and by applying inequality (23), Cauchy-Schwarz’s inequality and inequal-
ity (11) to the term [|[P(e™" )| 1»(q) gives

_ _ _ 1 _

1P(e= )| Lr() < C ((A2€ thaip, e~ o) ooy + lle tAq‘P”L‘?(&Q))
- 1 - 1 _
< C (IAae™ a0l E pq lle™ 00l e + lle™ 60l Laon)
Heimq"a”i/;)(an) —tA

Cl——m7—2 tlle ™ ¢llLoa)

< e 200
<O =7 +lelliaoea

IA

where the constant may vary from line to line. Inserting this estimate into inequality (65) shows
that inequality (12) holds for every ¢ > 0.

By inequality (12), the set {e"*Aa¢p |t > 6} is bounded in C%*(9Q) for every § > 0. Thus the
theorem of Arzela-Ascoli implies that e * e € C((0,00) x 982). This completes the proof of this
theorem.

6. Large time stability of the semigroup and finite time of extinction

In this section, we establish large time stability of the semigroup {e~**2} and the phenomenon
of finite time of extinction by assuming merely that a : Q x R? — R? is a Carathéodory function
satisfying (16)-(18). Note that the statement of Theorem 1.3 is included in following main result
of this section.

Theorem 6.1. Suppose that a : Q x RY — RY is a Carathéodory function satisfying (16)-(18).
Then the following statements hold true:

1. (Stability) For every ¢ € L1(09Q), the limit (13) holds in L1(992), where B = A, if 1 < g < 2
and B=Aq if 2 < g < oo.

2. (Stability in C(90Q)) If a satisfies either homogeneity condition (31) if p # 2 or is linear if
p=2, thenfor(Z\/pf;iE) < g< oo for somee € (0,1)if p<dand2<qg<o0ifp>d, we
have that limit (13) holds, in particular, in C(99Q) for all ¢ € L1(ON).

3. (Decay estimates) There is a constant C > 0 such that for every ¢ € L?(9S2) there is tg > 0
such that the estimates (14) and (15) hold for every t > to.

4. (Finite time of extinction) If (1 4+ ¢) V % < p < 2 for some € > 0, then for every
@ € L?(09), the function e~ 2 extinct in finite time

_2—

. ”‘P_ <)0||L2(paQ)

ext >~ ~ /5 DN _ ~D
(1-5)nCg

where the constant Cs > 0 occurs in the Sobolev-type inequality (71). More precisely, we have
for every ¢ € L?(0Q) that

e — 2727 =
L2(09) (66)

= A2y Gl s <la-gynoy|™" | 2D
le=A2¢ wHL(am—{( 2)7 S} (1-5)nCs

for every t > 0.
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Proof of Theorem 6.1. First, we begin to show that the decay estimates (14) and (15) hold. Since
D(Az) lies dense in L?(99), a standard density argument shows that it sufficient to show that the
decay estimates (14) and (15) hold for any initial values ¢ € D(As). Note that for every ¢ € R,
one has that e~"*2¢ = ¢ for every ¢ > 1. Hence the decay estimates (14) and (15) hold for every
constant ¢. Now, let ¢ € D(A2) be not constant. Then ¢ # @. By claim (1) of Theorem 5.1 and
[8, Theorem 4.6], the mild solution e~*2¢ of (5)-(6) in L?(9N) is a strong solution of (5)-(6) and
satisfies equation (10) for B = Ay in L2(99Q) for every t > 0. By claim (3) of Theorem 5.1, one has

ethp =07

for all ¢ > 0. Thus multiplying equation (10) by e **2¢ — % with respect to the L2-inner product
and by using coercivity condition (16) yields

Lle —?l7200) < —UQL\VP(B_tA2¢)|p dz (67)

and so by Poincaré’s inequality (44),

—tA — —tA _
alle™20 —BlT2(a0) < ~Clle™ 20 =Bl 50, (68)
for a.e. t > 0 and some constant C' > 0 containing n and the constant occurring in inequality (44).
Now, consider first the case p > 2. Then by applying the continuous embedding of L?(92) into

L?(99) to the right-hand side of inequality (68), shows that the non-negative function
y(t) = lle™20 — @220 (69)
for every t > 0 satisfies the differential inequality
)< -0yl (70)

for a.e. t > 0, where the constant C' > 0 may differ from the one given in (68). In addition, since
the semigroup {e~*A2} is contractive on L?(9Q) and since e *A2% = % for all t > 0, the function
y is non-increasing along [0, 00). In particular, if y(tg) = 0 for some ¢y > 0, then y(t) = 0 for all
t >ty and so in this case estimates (14) is true for all ¢ > #y. Thus, it remains to consider the case
y(t) > 0 for all t > 0. To do so, we divide inequality (70) by y?/2(t) and subsequently integrating
over (0,t) for given ¢ > 0. Then and since p > 2, we see that the decay estimates (14) hold for all
t > 0.

Now, consider the case 1 < p < 2. By the continuous embedding from L?(9Q) into LP(9) and

by claim (2) of Theorem 5.1, we have that e "2 = ¢ "Ar¢ for every ¢ € D(A;). Multiplying

equation (10) by e **2¢ — % and then integrating over (0,t) for given ¢ > 0 yields

t t
/ (Aae 2, e7*20) 129y ds < §]le ™0 — B2 (90, +/ (Ase M2 e 20) 1250 ds
0 0
= 3llo— ¢||2L2(aﬂ)-

Applying to this inequality, coercivity condition (16) and Poincaré’s inequality (44), we see that
to t -
& |10 =l ds < [ ITP )l gy ds
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t _ _

< [ (Aoe™* v, e P p) 20 ds
0

< e — D172 (a0)-

Ao = 5 for all t > 0, we

Since {e~A+} is a semigroup of contractions on LP(992) and since e~
see that the function ¢ — |[e™*Arp — Pllzr (a0 is non-increasing along [0, 00). Applying this to our
previous estimate, we obtain
AL — _
E s Nl — B0, o < 6 — Fl220m,

showing that decay estimate (15) holds, completing the proof of claim (3) of this theorem.

Next, we show that claim (1) of this theorem holds. To see this, we need to treat the cases
p > 2 and p < 2 separately. Here, we only outline the case p > 2 since the case 1 < p < 2 is shown
similarly. Hence, let p > 2. If 1 < ¢ < 2, then the continuous embedding from L?(0R) into L(09)

—tAo —t

and claim (2) of Theorem 5.1 imply that one has e p =e " and

Yo o 1_1 —tA- —
le™* ™ — Bl Lacony < HOQ) 72 [le” 20 — || L2(a0)

for every t > 0 and every ¢ € L?(9Q). Therefore and since by claim (3) of this theorem, limit (13)
holds in L2(0Q) for B = A, for every ¢ € L?(99), it follows that limit (13) holds in L9(99) for
B = A, for every ¢ € L?(99Q). Now, using that L*(99) lies dense in L9(99Q) and the fact that
the projection ¢ +— @lsq is contractive on L2(0f2), we obtain that limit (13) holds in L4(9)
for B = A, for every ¢ € L4(0Q). If ¢ > 2, then by the continuous injection of L°(d€) into
L2(09), by using that e"*2p = ety for every ¢ € L>®(00Q), Holder’s inequality, and by the
L>-contractivity of the semigroup {e7**2} on L2(f2), we see that

le~™00 — Bl aomy < e — BlaLroey lle20 — 71

Y — PliLaon) > Y= Lo (092) Y—® L2(09)
a=2 =2 _ 2
<27« thz |z2(39)

16172 ey e~ — 7
for every t > 0 and every ¢ € L*°(99). In the last inequality we used that the map ¢ — Plyq is
contractive on L (9€2). By this estimate, and since L>°(0) lies dense in L?(052), we can conclude
that limit (13) holds in L2(0N?) for B = A, and g > 2. This shows that claim (1) of this theorem
holds.

In order to show that claim (2) of this theorem holds, note that under the hypotheses of this
statement, for every ¢ € LI(99), the set {e "y ¢ > 1} is bounded in C%*(99) due to inequal-
ity (12). Thus this statements holds by applying the theorem of Arzela-Ascoli.

To see that claim (4) of this theorem holds, let (1 +¢) V % < p < 2 for some € > 0 and
¢ € D(A3). For such p, the trace operator Tr : WhP(Q) — L?(99Q) is linear bounded. Moreover,
the solution operator P introduced in Lemma 2.5 satisfies

P+ clpg) = Py +clg
for every ¢ € W=1/PP(9Q) and every ¢ € R. Hence, by Maz’ya’s inequality (22), we see that
le™ 0 — Bl L200) = [ITF(P(e™ 10 — 7))l L2 (00

< C||P(e ey D) lwrr )
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=C (IVP(e "™ @) o(ays + | P(e ™ 0) =215l Lr (o)
< C ([|[VP(e ™ 9) || Loaye + lle ™™ — Bl 1o (a0))

for every t > 0, where the constant C' > 0 may vary from line to line. By equality (7), we may
apply Poincaré’s inequality (44) to the term [le=*¢ — B||1s(50) in the last estimate. Then

le™ a0 — Bl 1200y < Cs [VP(e"10)|| 1oy (71)

for every t > 0 and some constant C's > 0. Now, applying inequality (71) to estimate the right-hand
side of inequality (67) yields

—tAo t

Fle™20 —Bl|T2(a0) < —n2C% lle” AW—@H%(BQ)

for a.e. t > 0, showing that the non-negative and non-increasing function y given by (69) satisfies
differential inequality (70) for a.e. ¢ > 0. Recall that if y(¢o) = 0 for some ty > 0, then y(t) = 0
for all t > to. In other words, ty describes an extinction time of the function e~ *e¢ — . Suppose
that for some tep; > 0, y(t) > 0 for every t € [0,tep;). Then, dividing inequality (70) by y?/2,
subsequently integrating over (0, t.,+), and using that p < 2 leads to inequality (66) for p € D(As).
By employing a standard density argument, we see that claim (4) of this theorem holds, in particular,
for all ¢ € L?(0€). This completes the proof of Theorem 6.1. O
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