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Abstract. The minimal faithful permutation degree µ(G) of a finite group G is the

least nonnegative integer n such that G embeds in the symmetric group Sym(n). Clearly

µ(G × H) ≤ µ(G) + µ(H) for all finite groups G and H. Wright (1975) proves that

equality occurs when G and H are nilpotent and exhibits an example of strict inequality

where G×H embeds in Sym(15). Saunders (2010) produces an infinite family of examples

of permutation groups G and H where µ(G×H) < µ(G) + µ(H), including the example

of Wright’s as a special case. The smallest groups in Saunders’ class embed in Sym(10).

In this paper we prove that 10 is minimal in the sense that µ(G×H) = µ(G) + µ(H) for

all groups G and H such that µ(G×H) ≤ 9.

1. Introduction

Throughout this paper all groups are assumed to be finite. The minimal faithful permuta-

tion degree µ(G) of a groupG is the smallest nonnegative integer n such thatG embeds in the

symmetric group Sym(n). Recall that the core of a subgroup H of G, denoted by core(H),

is the largest normal subgroup of G contained in H, and that H is core-free if core(H) is

trivial. Thus µ(G) is the smallest sum of indexes for a collection of subgroups G1, . . . , G`
of G such ∩`i=1Gi is core-free. The subgroups Gi are the respective point-stabilisers for the

action of G on its orbits and letters in the ith orbit may be identified with cosets of Gi. If

` = 1 then the representation is transitive and G1 is a core-free subgroup.

For any groups G and H, we always have the inequality

µ(G×H) ≤ µ(G) + µ(H). (1)

Johnson and Wright (see [6, 10]) developed a general theory of minimal degrees of groups

and described conditions for when equality occurs in (1). They proved this to be the case

when G and H have coprime orders and when G and H are nilpotent. Easdown and Praeger

(see [5]) showed that equality holds when G and H are direct products of simple groups.

Wright in [10] asked whether equality occurs in (1) always and an example exhibiting strict

inequality was attached as an addendum, where G and H are given as subgroups of Sym(15).

In that example, G and H generate a subgroup GH of Sym(15) that is an internal direct

product of G and H.

Saunders showed in [7] that the example in [10] fits into a general family that provides

infinitely many instances of strict inequality in (1). There G could be taken to be the

complex reflection group G(p, p, q), where p and q are distinct odd primes satisfying certain
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other conditions, and H the centraliser of the minimally embedded image of G in Sym(pq).

In this family, it was always the case that

µ(G(p, p, q)) = µ
(
G(p, p, q)× CSym(pq)(G(p, p, q))

)
= pq,

and so examples of strict inequality in (1) was assured. The smallest minimal degree of

a direct product in this family was 10, furnished by taking G to be G(2, 2, 5) and thus

H = CSym(10)(G) ∼= C2. In fact, one can take G to be a split extension of the product of 4

copies of C2 (a so-called deleted permutation module for Sym(5) over F2) by any subgroup of

Sym(5) that contains a 5-cycle (see [7] for a description of these complex reflection groups

and exposition of the examples).

The main result of this paper is the following:

Theorem 1.1. If G and H are groups such that µ(G×H) ≤ 9 then µ(G×H) = µ(G)+µ(H).

2. Background and Preliminaries

Wright in [10] considered the class C of groups G such that µ(G) = µ(G1) for some

nilpotent subgroup G1 of G. Wright noted (see Claim 1 and Claim 2 of [10]) that all

symmetric, alternating and dihedral groups are members of C . Because equality occurs

in (1) whenever G and H are nilpotent (see [10, Corollary 2]), the following lemma is

immediate and used often below without comment.

Lemma 2.1. If G,H ∈ C then G×H ∈ C and µ(G×H) = µ(G) + µ(H).

We now briefly state some background results that we will need during the course of our

later proofs. Here, we follow the notation of [4], where further exposition and complete

proofs can be found.

Definition 2.2. Let G be a subgroup of Sym(A).

(i) We say that G acts semi-regularly if, for all x ∈ A, xg = x implies g = 1.

(ii) We say G acts regularly if G acts transitively and semi-regularly.

(iii) If G acts transitively then a block for G is a subset B of A such that, for all g ∈ G,

Bg ∩B = ∅ or Bg = B.

(iv) If H is a subgroup of G then the set of fixed points of H in A is

Fix(H) = {x ∈ A |xh = x, for all h ∈ H}.

Theorem 2.3. Let G be a transitive subgroup of Sym(A) and H the stabiliser of a point

in A. Then C := CSym(A)(G) ∼= NG(H)/H and C acts semi-regularly on A.

Corollary 2.4. Let G be a subgroup of Sym(A) where A = A1 ∪ . . . ∪ Ak and the Ai are

the orbits of G, all of different sizes. Then

CSym(A)(G) ∼= NG(H1)/H1 × . . .×NG(Hk)/Hk

where Hi is the stabiliser of a point in Ai for i = 1, . . . , k.

Proof. Without loss of generality, we may suppose that Ai = {Hig | g ∈ G} for each i.

The map that takes x ∈ NG(Hi) to the permutation Hig 7→ Hix
−1g for g ∈ G induces an

isomorphism

Φi : NG(Hi)/Hi −→ Ci
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where Ci := CSym(Ai)(G|Ai
). Gluing these maps together, we get an embedding

Φ = (Φ1, . . . ,Φk) : NG(H1)/H1 × . . .×NG(Hk)/Hk −→ CSym(A)(G),

where the images are juxtaposed in the usual way since the orbits are disjoint. We claim

that Φ is onto.

Let θ be an arbitrary element of CSym(A)(G). Suppose first that, for some i 6= j, there

exists an x ∈ Ai such that xθ ∈ Aj . Since θ centralises G, the restriction of θ to Ai is an

injective map into Aj , so that |Ai| ≤ |Aj |. But θ−1 also centralises G, so similarly |Aj | ≤
|Ai|, whence |Ai| = |Aj |, contradicting that the orbits have different sizes. Hence the orbits

of θ respect the partition of A given by A1, . . . , Ak. For each i = 1, . . . , k, θ|Ai
: Hi 7→ Higi,

for some gi ∈ G and it quickly follows that gi ∈ NG(Hi) and θ|Ai
= (Hig

−1
i )Φi. Hence

θ = (H1g
−1
1 , . . . ,Hkg

−1
k )Φ, completing the proof that Φ is onto. �

The following propositions are well-known (see [4] or [3] for example).

Proposition 2.5. Let G be a transitive subgroup of Sym(A) and H the stabiliser of a point.

Then Fix(H) is a block for G, the induced permutation group on the block Fix(H) is regular

and |Fix(H)| = |NG(H)/H|.

Proposition 2.6. Let G be a transitive subgroup of Sym(A) with non-trivial block B. Let

GBB denote the induced permutation group on the block B and Ḡ denote the induced action

on the set of blocks. Then G embeds in the wreath product GBB o Ḡ.

We list a few more technical observations here of a general nature relating to minimal

embeddings which we will use repeatedly later on.

Lemma 2.7. Suppose G is a subgroup of Sym(A1) × . . . × Sym(Ak) such that µ(G) =

|A1|+ . . .+ |Ak|.
(i) µ(Gπ) =

∑
i∈X |Ai| for any projection π onto

∏
i∈X Sym(Ai) for X any subset of

{1, . . . , k}.
(ii) For all i in {1, . . . , k}, there exists an α 6= 1 such that (1, . . . , α, . . . , 1) is contained

in G, where α is located in the i-th place.

(iii) If |A1| = 2, then G ∼= C2 ×H where H is a subgroup of Sym(A2)× . . .× Sym(Ak)

and µ(H) = |A2|+ . . .+ |Ak|.
(iv) If |A1| = 3, then (α, 1, . . . , 1) is an element of G for some 3-cycle α.

(v) If |A1| = 4 and (α, 1, . . . , 1) is an element of G for some 3-cycle α, then G contains

Alt(A1)× {1} × . . .× {1}.
(vi) If |A1| = 4, say A1 = {a, b, c, d}, and ((a b), 1, . . . , 1) ∈ G, then ((c d), 1, . . . , 1) ∈ G.

(vii) If Gπ is transitive where π is the projection onto the first coordinate and |A1| = p

for some prime p such that p > |Ai| for all i ∈ {2, . . . , k}, then (α, 1, . . . , 1) is an

element of G for some p-cycle α.

Proof. Put n = |A1| + . . . + |Ak|. For (i), we observe that if µ(Gπ) <
∑

i∈X |Ai|, then

pasting projections gives an embedding of G in Sym(n− 1), contradicting that µ(G) = n.

For (ii), let π be the projection onto
∏
j 6=i Sym(Aj). Then ker(π|G) is non-trivial, for

otherwise G embeds inside Sym(n− 1), again contradicting that µ(G) = n.
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For (iii), suppose |A1| = 2. By (ii), g = (α, 1, . . . , 1) ∈ G, where Sym(A1) = {1, α}. Let

K be the kernel of the projection of G onto the first coordinate, so

K ∩ 〈g〉 = {(1, . . . , 1)} and G = 〈g〉K,

so that G is the internal direct product of 〈g〉 and K. But the first coordinate of each

element of K is 1, so K ∼= H, where H is the result of ignoring the first coordinate. Thus

G ∼= 〈g〉 ×K ∼= C2×H. Clearly H is a subgroup of Sym(A2)× . . .× Sym(Ak) and H = Gπ

where π projects onto Sym(A2)× . . .× Sym(Ak), so that µ(H) = |A2|+ . . .+ |Ak|, by (i).

For (iv), suppose |A1| = 3. By (ii), we have that g = (α, 1, . . . , 1) ∈ G for some α 6= 1

in Sym(A1). If α is a 3-cycle, then we are done so suppose α = (a b) where A1 = {a, b, c}.
Since µ(G) = n there exists h = (β, h2, . . . , hk) ∈ G for some β that moves c, that is, β

is an element of {(a c), (b c), (a b c), (a c b)}. It follows that [α, β] = (a b c) or (a c b) and so

[g, h] = ([α, β], 1 . . . , 1) is contained in G.

For (v) and (vi), suppose |A1| = 4, say A1 = {a, b, c, d} and let π denote projection

onto the first coordinate. If g = (α, 1, . . . , 1) ∈ G where α = (a b c) then, since µ(G) =

n, there exists some h = (β, h2, . . . , hn) ∈ G such that β moves d, and then 〈g, gh〉 ∼=
Alt(A1) × {1} × . . . × {1}, verifying (v). For (vi), suppose that g = (α, 1, . . . , 1) ∈ G

where α = (a b). Suppose first that Gπ is not transitive. Then, since µ(G) = n, both

{a, b} and {c, d} are orbits of Gπ. By part (ii) applied to G identified with a subgroup of

Sym({a, b}) × Sym({c, d}) × . . . × Sym(Ak), it follows that ((c d), 1, . . . , 1) ∈ G, under the

original embedding in Sym(A1)× . . .× Sym(Ak), and the conclusion of (vi) holds. Thus we

may suppose Gπ is transitive, so there exists some h = (β, h2, . . . , hn), h′ = (γ, h′2, . . . , h
′
n) ∈

G such that β moves a to c and γ moves a to d. If αβ = (c d) or αγ = (c d) then gh

or gh
′

= ((c d), 1, . . . , 1), and the conclusion of (vi) holds. Thus we may suppose that

αβ = (c a) or (c b) and αγ = (d a) or (d b). But α(c b) = (c a) and α(d a) = (d b), so in all

cases we have (c a)(d b) ∈ Gπ. Hence there exists some h′′ = ((c a)(d b), h′′2, . . . , h
′′
k) ∈ G, so

((c d), 1, . . . , 1) = gh
′′ ∈ G, completing the proof of (vi).

For (vii), suppose Gπ is transitive where π is projection onto the first coordinate and

|A1| = p, where p is a prime and p > |Ai| for all i ≥ 2. Then G contains an element

(α1, . . . , αk) of order p, since p divides |G|. This implies that α2 = . . . = αk = 1 since there

is insufficient room for p-cycles in Sym(A2), . . . ,Sym(Ak). �

Lemma 2.8. Let G be a subgroup of Sym(n) such that µ(G) = n ≥ 2. Suppose that the

stabiliser H of some point is normal in G. Then G/H is a cyclic group of prime power

order, a Klein four-group or a generalised quaternion 2-group.

Proof. We may suppose that H is the stabiliser of 1 and the orbit of G containing 1 is

{1, . . . ,m} for some integer m such that 2 ≤ m ≤ n. Because H is normal, H stabilises

each of 1, . . . ,m. Put K = G|{1,...,m}; the induced permutation group on {1, . . . ,m}. Then

K ∼= G/H and |K| = m. By Lemma 2.7 (i), µ(K) = m. Hence, by [6, Theorem 1],

K is a cyclic group of prime power order, a Klein four-group or a generalised quaternion

2-group. �

Corollary 2.9. Let G be a subgroup of Sym(n) such that µ(G) = n and n ≤ 9. Then

C := CSym(n)(G) is abelian or isomorphic to Q8. In particular C ∈ C .
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Proof. We may assume G is nontrivial, so each orbit contains at least two points. Consider

any stabiliser H of any point. Then |NG(H)/H| divides |G : H| and |G : H| ∈ {2, . . . , 9}.
If |G : H| = 6 then, by Lemma 2.8, H is not normal in G, so that |NG(H)/H| ∈ {1, 2, 3}.
It follows that, in all cases, |NG(H)/H| ∈ {1, 2, 3, 4, 5, 7, 8, 9}. (Thus, if |NG(H)/H| 6= 8

then NG(H)/H is abelian.)

Suppose that G is transitive. By Theorem 2.3, C ∼= NG(H)/H where H is the stabiliser

of a point. If H is normal in G then |G/H| ≤ 9 and, by Lemma 2.8, C ∼= G/H is cyclic of

prime power order, a Klein four-group or isomorphic to Q8, and the corollary holds. If H

is not normal in G then |C| = |NG(H)/H| ≤ 4, so certainly C is abelian, and the corollary

holds.

Suppose now that G is intransitive. In cases where the orbit sizes are pairwise distinct,

it follows from the first paragraph of this proof and from Corollary 2.4 that C is a direct

product of groups of order at most 7, avoiding 6, so is abelian. It remains to consider the

following cases for orbit sizes: (i) 5, 2, 2; (ii) 4, 4; (iii) 4, 2, 2; (iv) 3, 3, 3; (v) 3, 2, 2, 2; (vi)

3, 3, 2; (vii) 3, 2, 2; (viii) 3, 3; (ix) 2, 2, 2, 2; (x) 2, 2, 2; (xi) 2, 2. In case (i), by Lemma 2.7,

G contains a subgroup permutation equivalent to K = 〈(1 2 3 4 5), (6 7), (8 9)〉, so that C is

isomorphic to a subgroup of CSym(9)(K) ∼= K, which is abelian. In cases (ii), (iii) and (ix),

by Lemma 2.7, G contains a subgroup permutation equivalent to one of

K1 = 〈(1 2), (3 4), (5 6), (7 8)〉;
K2 = 〈(1 2)(3 4), (1 3)(2 4), (5 6), (7 8)〉;
K3 = 〈(1 2)(3 4), (1 3)(2 4), (5 6)(7 8), (5 7)(6 8)〉;

so that C is isomorphic to a subgroup of CSym(8)(Ki) ∼= C2 × C2 × C2 × C2, for some i, so

C is abelian. In case (iv), by Lemma 2.7, G contains a subgroup permutation equivalent

to K = 〈(1 2 3), (4 5 6), (7 8 9)〉, so that C is isomorphic to a subgroup of CSym(9)(K) ∼= K,

which is abelian. The remaining cases are dealt with similarly, and the proof is complete. �

Remark 2.10. In the above proof C is abelian except in one instance, when G ∼= Q8, in

which case C ∼= Q8. A realisation of this would be, for example, when G and C are as

follows:

G = 〈(1 2 3 4 )(5 6 7 8), (1 5 3 7)(2 8 4 6)〉,
C = 〈(1 2 3 4 )(5 8 7 6), (1 5 3 7)(2 6 4 8)〉.

The following simple observation will be used repeatedly in the sequel.

Proposition 2.11. Let G ∈ C with µ(G) = n and identify G with its embedded image in

Sym(n). Let C := CSym(n)(G) be the centraliser of G in Sym(n) with respect to this minimal

embedding and suppose that C is nilpotent. Then every nontrivial subgroup of C intersects

G nontrivially.

Proof. Suppose for a contradiction that there is a nontrivial subgroup P of C such that

G∩P = {1}. Then 〈G,P 〉 = GP is a subgroup of Sym(n) that is an internal direct product

of G and P . But P is nilpotent, being a subgroup of a nilpotent group, so P ∈ C . Since

G ∈ C we have

µ(GP ) = µ(G× P ) = µ(G) + µ(P ) > n,
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contradicting that µ(GP ) ≤ n. �

Corollary 2.12. With notation as in the previous proposition, if C is elementary abelian,

then C ≤ G.

Proof. If C is elementary abelian and 1 6= c ∈ C then 〈c〉 is a subgroup of order p, so c ∈ G
by the previous proposition. �

3. Case by Case that 10 is Minimal

In this section we will prove Theorem 1.1 below in stages, so that there are no examples

of strict inequality in (1) in Sym(n) for n ≤ 9. This is clear for n = 2 and n = 3. Our

approach for n = 4, . . . , 9 is to show that, for a minimally embedded group G in Sym(n),

there is no nontrivial subgroup of the centraliser of G in Sym(n) that intersects trivially

with G. For the most part, this will follow by applying Proposition 2.11, revealing the

pervasiveness of Wright’s class C for permutation groups of small degree.

3.1. The Sym(4), Sym(5) and Sym(6) Cases.

Proposition 3.1. Let G be a finite group such that µ(G) ≤ 6. Then G ∈ C .

Proof. First suppose that µ(G) = 4. If G acts intransitively with respect to the embedding

in Sym(4), then G ∼= C2×C2 by Lemma 2.7 (iii), so G ∈ C . Suppose that G acts transitively.

Then G has a core-free subgroup H of index 4, so that the Sylow 2-subgroups of G have

size 4 or 8. Hence, a copy of C4 or C2 ×C2 is a subgroup of G. Both of these are nilpotent

and have minimal degree 4, so again G ∈ C .

Now suppose that µ(G) = 5. If G acts transitively, then G contains a subgroup of index 5

and so contains a copy of C5, implying that G ∈ C . Suppose that G acts intransitively. By

minimality, the action of G must have two orbits, of sizes 2 and 3 respectively. By Lemma

2.7 (iii),(iv), G contains a subgroup isomorphic to C3 × C2, so again G ∈ C .

Finally suppose that µ(G) = 6. We may identify G with its embedded image in Sym(6).

If 9 or 16 divides |G|, then G contains a Sylow 2 or 3-subgroup of Sym(6) and hence a copy

of C3 × C3 or C2 × C2 × C2, so that G ∈ C .

We may suppose therefore that neither 9 or 16 divides |G|. Suppose first that G acts

intransitively. It follows by Lemma 2.7 (iii), (iv), that G contains a subgroup that is an

internal direct product of subgroups K and L of minimal degrees less than 6 but adding up

to 6. By previous cases, K,L ∈ C , so K × L ∈ C , and it follows that G ∈ C .

Henceforth we may suppose that G acts transitively. In particular, G contains a subgroup

of index 6, so that the possible orders of G are 6, 12, 24, 30, 60 or 120. If |G| = 6 or 12 then,

in the latter case from the Appendix, µ(G) 6= 6, which is impossible. If |G| = 24 then, from

the Appendix, either µ(G) 6= 6, which is impossible, or G contains a copy of C2 ×C2 ×C2,

so that G ∈ C . If |G| = 30 then G contains a copy of C5 × C3 so that µ(G) ≥ 8, which is

again impossible.

Henceforth we may suppose that |G| = 60 or 120. It is well known that the only subgroups

of Sym(6) of orders 60 and 120 are isomorphic to Alt(5) and Sym(5) respectively, so that

µ(G) = 5, which is impossible. This completes the proof of the proposition. �
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Corollary 3.2. Let G be a transitive subgroup of Sym(6) such that µ(G) = 6. Then

C := CSym(6)(G) ≤ G.

Proof. Let H be the stabiliser of a point, so |G : H| = 6. By Theorem 2.3, C ∼= NG(H)/H.

By Lemma 2.8, H is not normal in G, so |C| = 1, 2 or 3. By Proposition 3.1, G ∈ C , so, by

Proposition 2.11, C ≤ G. �

3.2. The Sym(7) Case. Throughout this subsection, put

H := 〈(1 2 3), (1 2)(4 5 6 7)〉 ∼= 〈a, b | a3 = b4 = 1, ab = a−1〉. (2)

Proposition 3.3. Let H be as in (2). Then µ(H) = 7, H 6∈ C and H is up to isomorphism

the unique proper subdirect product of Sym(3)× C4. Further CSym(7)(H) = 〈(4 5 6 7)〉.

Proof. It is easily verified that µ(H) = 7 (and minimal degrees of groups of order 12 are

listed in the Appendix) and that the nilpotent subgroups of G are isomorphic to C2, C3, C4

and C2 × C3, all of which have minimal degree strictly less than 7. Hence G 6∈ C . It is

easy to check that Sym(3) × C4 has a unique subdirect product of order 12 containing an

element of order 4, which must therefore be isomorphic to H.

Put z = (4 5 6 7). Clearly 〈z〉 ⊆ C := CSym(7)(H). Note that the orbits of H are {1, 2, 3}
and {4, 5, 6, 7} and are of different sizes. By Corollary 2.4, C ∼= NH(H3)/H3×NH(H4)/H4,

where H3 = 〈(1 2)(4 5 6 7)〉 and H4 = 〈(1 2 3)〉 are the stabilisers of 3 and 4 respectively.

But NH(H3) = H3 and NH(H4) = H, so that C ∼= H/H4
∼= C4. Therefore C = 〈z〉. �

This group H is also unique in the following sense.

Theorem 3.4. Let G be a group such that µ(G) = 7 and G 6∈ C . Then the image of any

minimal embedding of G in Sym(7) is permutation equivalent to H. In particular, G ∼= H.

Proof. We may regard G as a subgroup of Sym(7). If G is transitive then 7 divides |G|,
being the index of a point stabiliser, so that G contains a copy of C7, and µ(G) = 7 = µ(C7),

contradicting that G 6∈ C . Hence G is intransitive.

If G has an orbit of size 2, then by Lemma 2.7 (iii), G ∼= C2 ×K for some group K such

that µ(K) = 5, so K ∈ C , by Proposition 3.1, whence G ∈ C , a contradiction. It follows

that G has one orbit of size 3 and one of size 4. Without loss of generality we may suppose

these orbits are X1 = {1, 2, 3} and X2 = {4, 5, 6, 7}. By parts (ii) and (iv) of Lemma 2.7,

we may, without loss of generality, assume that α := (1 2 3) ∈ G and there exists β ∈ G
such that β fixes X1 pointwise and moves a letter from X2.

If β is a 4-cycle then G contains the subgroup 〈α, β〉 ∼= C3 × C4. If β is a 3-cycle or a

2-cycle, then, by Lemma 2.7 (v) and (vi), G contains a subgroup isomorpic to C3 × Alt(4)

or C3 × C2 × C2 respectively. In each of these cases, G ∈ C , leading to a contradiction.

Hence β must be a product of two disjoint 2-cycles. Without loss of generality, we suppose

that β = (4 6)(5 7). For any γ ∈ G, we will write γ1 = γ|X1 and γ2 = γ|X2 , so that γ = γ1γ2.

Let π be projection onto Sym(X2), so that Gπ must be a transitive subgroup of Sym(X2).

By [4, Table 2.1] the transitive subgroups of Sym(X2) are itself, Alt(X2) or isomorphic to

C2 × C2, D8 or C4.
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Case (i): Gπ = Sym(X2) or Alt(X2).

There is some γ ∈ G such that γ2 = (4 5 6), with γ1 being a 2-cycle or a power of α. It

readily follows that γ2 ∈ G. By Lemma 2.7 (v), C3 ×Alt(4) is isomorphic to a subgroup of

G, and it follows that G ∈ C , a contradiction.

Case (ii): Gπ = 〈(4 5)(6 7), (4 6)(5 7)〉.
There is some γ ∈ G such that γ2 = (4 5)(6 7). If γ1 ∈ 〈α〉 then γ2 ∈ G and 〈α, β, γ2〉
is a subgroup of G isomorphic to C3 × C2 × C2, so that G ∈ C , a contradiction. Hence

γ1 6∈ 〈α〉, so, without loss of generality, γ1 = (1 2). Then 〈α, β, γ〉 is a subgroup of G

isomorphic to Sym(3) × C2, of minimal degree 5, so cannot exhaust all of G. Hence there

exists some δ ∈ G\〈α, β, γ〉. If δ2 = 1 or β, then δ1 ∈ G and δ1 is a 2-cycle, so that

〈α, β, γ, δ〉 ∼= Sym(3) × C2 × C2, so that G ∈ C , a contradiction. Hence δ2 = (4 5)(6 7) or

(4 7)(5 6) and δ1 ∈ 〈α〉. Then 〈α, β, δ〉 ∼= C3 × C2 × C2, so that G ∈ C , a contradiction.

Case (iii): Gπ ∼= D8.

Either β is central or β inverts a 4-cycle in Gπ. Suppose first that β is central in Gπ.

Then there are some γ, δ ∈ G such that γ2 = (4 5 6 7) and δ2 = (4 6). If γ1 ∈ 〈α〉 or

δ1 ∈ 〈α〉 then 〈α, γ〉 ∼= C3 × C4 or 〈α, β, δ〉 ∼= C3 × C2 × C2 respectively, so that G ∈ C ,

a contradiction. Hence γ1 and δ1 are both 2-cycles. By conjugating δ by a power of α,

without any loss of generality, we may assume γ1 = δ1. But then γδ = (4 5)(6 7), so that

〈α, β, γδ〉 ∼= C3×C2×C2, so that G ∈ C , a contradiction. Hence β inverts a 4-cycle in Gπ,

so there is some ε ∈ G such that ε2 is a 4-cycle and ε22 6= β. If ε1 ∈ 〈α〉 then 〈α, ε〉 ∼= C3×C4,

so that G ∈ C , a contradiction. Hence ε1 is a 2-cycle, so that 〈α, β, ε2〉 ∼= C3 ×C2 ×C2, so

that G ∈ C , a contradiction.

Cases (i), (ii) and (iii) produce contradictions, so we must have Gπ ∼= C4. Hence there

is some γ ∈ G such that γ2 = (4 5 6 7). If γ1 ∈ 〈α〉 then 〈α, γ〉 ∼= C3 × C4, so that G ∈ C , a

contradiction. Hence γ1 is a 2-cycle, and it follows that (1 2)(4 5 6 7) ∈ G, so that H ≤ G.

If H 6= G then G ∼= Sym(3) × C4, so that G ∈ C , a contradiction. Hence H = G, and the

theorem is proved. �

3.3. The Sym(8) Case. In this section we prove that all intransitive subgroups and all

but two transitive subgroups of Sym(8) of minimal degree 8 are members of C . The two

exceptions up to isomorphism that are not members of C (see Theorem 3.6 below) turn out

to be primitive:

K = 〈(1 2)(3 4)(5 6)(7 8), (1 3)(2 4)(5 7)(6 8), (1 5)(2 6)(3 7)(4 8), (2 3 5 4 7 8 6)〉
∼= (C2 × C2 × C2) o C7,

L = K〈(3 5 7)(4 6 8)〉 ∼= (C2 × C2 × C2) o (C7 o C3).

That these groups are not in C can be seen by inspection: all nilpotent subgroups of K and

L have minimal degree less than 8. Also note (for the proof of Theorem 3.7 below) that

both CSym(8)(K) and CSym(8)(L) are trivial.

Proposition 3.5. Let G be a group such that µ(G) = 8 and the minimal faithful represen-

tation of G is intransitive. Then G ∈ C .
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Proof. We may suppose throughout that G is not a 2-group. If G has an orbit of size 2 or 3

then, by Lemma 2.7, G contains a subgroup that is an internal direct product of subgroups

H1 and H2 of minimal degrees less than 7 but adding up to 8, so, by Proposition 3.1, H1

and H2 both lie in C , whence G ∈ C .

Hence we may suppose that G has exactly two orbits of size 4, which we may take to be

{1, 2, 3, 4} and {5, 6, 7, 8}. In particular, |G| must be divisible by 3 and 4, but not by 5 or

7. Let S denote a Sylow 2-subgroup and T a Sylow 3-subgroup of G. If 32 divides |S|, then

µ(S) ≥ 8 (because 32 does not divide 7!), so that µ(S) = 8 and G ∈ C . If 9 divides |G|, then

T is a Sylow 3-subgroup of Sym(8), so, without loss of generality, T = 〈(1 2 3), (5 6 7)〉 and,

by Lemma 2.7 (v), G contains the subgroup Alt({1, 2, 3, 4})×Alt({5, 6, 7, 8}), so G ∈ C .

Henceforth we may suppose that 32 and 9 do not divide |G|, so that |G| = 12, 24, or

48. From the Appendix, the only possibilities for G up to isomorphism are C2 ×C2 ×Alt4,

(C2 × C2 × C2 × C2) o C3, C4 × Alt(4) and Alt(4) o C4 (we exclude SL(2, 3), GL(2, 3) as

they act transitively). For the first three cases, G can clearly be seen to lie in C . In the last

case, G contains a copy of the semidirect product (C4 × C2) o C2 that has minimal degree

8, so G ∈ C . �

Theorem 3.6. Let G be a group such that µ(G) = 8 and the minimal permutation represen-

tation is transitive. Then G ∈ C or G is permutation isomorphic to K ∼= (C2×C2×C2)oC7

or L ∼= (C2 × C2 × C2) o (C7 o C3).

Proof. Again we may suppose that G is not a 2-group and that 32 does not divide |G|. Since

the representation is transitive, G contains a core-free subgroup of index 8. In particular,

8 divides |G|. From Butler and McKay’s 1983 classification of small transitive groups

(see [2]), the order of G must be 24, 48, 56, 168 or 336, and their catalogue includes explicit

descriptions of the structure of each possibility for G up to permutation isomorphism. If

|G| = 24 or 48 then, as in the proof of Proposition 3.5, G ∈ C . If |G| = 56 then G is

permutation isomorphic to K. If |G| = 168 then G is permutation isomorphic to L or to

PSL(2, 7). However, the latter possibility is ruled out because PSL(2, 7) is simple with a

subgroup of index 7, so embeds in Sym(7). If |G| = 336 then G is isomorphic to PGL(2, 7),

so has Sylow 2-subgroups isomorphic to D16, which has minimal degree 8, so that G ∈ C ,

and the proof of the theorem is complete. �

Combining results so far we can prove the following stepping-stone towards our main

theorem (Theorem 1.1, also reproduced below as Theorem 3.13).

Theorem 3.7. If G and H are groups such that µ(G×H) ≤ 8 then µ(G×H) = µ(G)+µ(H).

Proof. Suppose by way of contradiction, that there exist subgroups G and H of Sym(8) such

that 〈G,H〉 = GH is an internal direct product and µ(G ×H) < µ(G) + µ(H). Certainly

G and H are nontrivial. By Lemma 2.1, it is not the case that both G and H lie in C .

Without loss of generality, we may suppose that G 6∈ C . By Proposition 3.1, µ(G) ≥ 7. If

µ(G) = 8 then, by Proposition 3.5 and Theorem 3.6, G is permutation isomorphic to K or

L, described in the preamble before Proposition 3.5, so H is trivial (since CSym(8)(K) and

CSym(8)(L) are both trivial), a contradiction. Hence µ(G) = 7.

By Theorem 3.4, G ∼= 〈a, b | a3 = b4 = 1, ab = a−1〉. Without loss of generality, we may

take a = (1 2 3) or (1 2 3)(4 5 6) and b a permutation of order 4 that inverts a by conjugation.
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By a straightforward calculation, the only permutations of Sym(8) that invert (1 2 3)(4 5 6)

by conjugation have order 2 or 6, contradicting that |b| = 4. Hence a = (1 2 3). Clearly b

must be one of {(1 2)σ, (1 3)σ or (2 3)σ}, where σ is a 4-cycle that fixes 1, 2 and 3. Without

loss of generality, b = (1 3)(4 5 6 7) and G = 〈a, b〉. Clearly CSym(8)(G) = 〈(4 5 6 7)〉 and

CSym(8)(G) ∩G = 〈(4 6)(5 7)〉. But 〈G,H〉 = GH is an internal direct product, so H ∩G =

{1} and H ≤ CSym(8)(G). It follows quickly that H is trivial, again a contradiction. �

3.4. The Sym(9) Case. Again we consider in turn transitive and intransitive embeddings,

though in both cases now there are groups that fall outside Wright’s class C . We show

directly that every nontrivial subgroup of the centraliser intersects nontrivially with our

minimally embedded group.

Proposition 3.8. Let G be a group such that µ(G) = 9 and its minimally embedded image

in Sym(9) is intransitive. Identify G with its embedded image and let C := CSym(9)(G).

Then every nontrivial subgroup of C intersects G nontrivially.

Proof. If at any stage we conclude G ∈ C then we are done by Corollary 2.9 and Proposition

2.11. Without loss of generality, we only need to consider the following three cases.

Case (a): G has an orbit {8, 9}.
By Lemma 2.7, G ∼= C2 × H where H ≤ Sym({1, . . . , 7}) and µ(H) = 7. If H ∈ C , then

G ∈ C , and we are done. Otherwise, by Theorem 3.4, without loss of generality, we may

suppose that

G = 〈(1 2 3), (1 3)(4 5 6 7), (8 9)〉.
Then C = 〈(4 5 6 7), (8 9)〉 and G ∩ C = 〈(4 6)(5 7), (8 9)〉. It quickly follows that every

non-trivial subgroup of C intersects non-trivially with G.

Case (b): G has an orbit {7, 8, 9} and no orbit of size two.

Subcase (i): G has two other orbits both of size 3.

By Lemma 2.7 (iv), G contains a copy of C3 × C3 × C3, so G ∈ C , and we are done.

Subcase (ii): G has an orbit {1, . . . , 6}.
We may regard G as a subgroup of Sym({1, . . . , 6}) × Sym({7, 8, 9}). Let π1 and π2 be

projections onto Sym({1, . . . , 6}) and Sym({7, 8, 9}) respectively. Let K1 = kerπ1|G and

K2 = kerπ2|G and observe that 〈K1,K2〉 = K1K2 is an internal direct product. By Lemma

2.7 (iv), we have (7 8 9) ∈ G. If moreover we have Gπ2 = 〈(7 8 9)〉 or that G contains a

2-cycle supported only on {7, 8, 9}, then G ∼= H×K where µ(H) = 6 and µ(K) = 3, so that

H,K ∈ C , by Proposition 3.1, whence G ∈ C , and we are done. Hence we may assume that

Gπ2 = Sym({7, 8, 9}) and that G does not contain any 2-cycle supported only on {7, 8, 9}.
Therefore C may be identified with a subgroup of Sym({1, . . . , 6}) and C = CSym(6)(Gπ1).

Let H1 be the stabiliser of the letter 1 so that H1π1 has index 6 in Gπ1. By Theorem 2.3 and

Proposition 2.5, |C| = |NGπ1
(H1π1)/H1π1| = |Fix(H1π1)| = 1, 2, 3 or 6. If C is trivial then

we are done. If |C| = 6 then H1 ≤ K1, so that H1 = K1 = 〈(7 8 9)〉 and |G| = 18, so that,

from the Appendix, G ∼= D18, whence G ∈ C , and we are done. We may suppose therefore
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that |C| = 2 or 3. By Proposition 2.5 and Proposition 2.6, Gπ1 embeds in C3 o Sym(2) or

C2 o Sym(3) as a transitive subgroup.

Suppose first that Gπ1 embeds inside C3 o Sym(2). By Lemma 2.7 (i), µ(Gπ1) = 6. By

the classification of transitive subgroups of Sym(6) (see [4, Table 2.1]), it follows that 9

divides |Gπ1|. Therefore 27 divides |G| and G contains a Sylow 3-subgroup with minimal

degree 9. Hence G ∈ C , and we are done.

Now suppose that Gπ1 embeds inside

C2 o Sym(3) ∼= C2 × Sym(4). (3)

Then C has order 2 and may be identified under this isomorphism with the factor C2 in the

second group. Let z be the generator of C; we will show that z ∈ G. Since C = CSym(6)(Gπ1)

from above, we have C ≤ Gπ1 by Corollary 3.2. Hence there is some σ ∈ Sym({7, 8, 9})
such that γ := zσ ∈ G. We will show that σ has order 1 or 3. Suppose to the contrary

that σ has order 2. Since Gπ2 ∼= Sym(3), we have |G| = 6|K2|. On the other hand, since no

2-cycle supported only on {7, 8, 9} is contained in G, we have K1 = 〈(7 8 9)〉 ∼= C3 and so

|G| = 3|Gπ1|. Therefore, |Gπ1| = 2|K2|, and so |G| = 2|K1||K2|. Observe that γ 6∈ K1K2

and γ centralises K2 and normalises K1. Upon comparing orders,

G = 〈K1,K2, γ〉 = K1K2〈γ〉 ∼= K2 × (K1 o 〈γ〉) .

Since K1 = 〈(7 8 9)〉 and (7 8 9)γ = (7 9 8), we have K1 o 〈γ〉 ∼= Sym(3), and since K2 is iso-

morphic to a subgroup of Sym(4), by (3), G is isomorphic to a subgroup of Sym(3)×Sym(4).

Therefore µ(G) ≤ µ(Sym(4)×Sym(3)) = 7, contradicting that µ(G) = 9. Hence σ has order

1 or 3, and it follows immediately that z ∈ G. Hence C ≤ G.

Case (c): G has orbits {1, 2, 3, 4} and {5, 6, 7, 8, 9}.
Let π1 and π2 be projections onto Sym({1, 2, 3, 4}) and Sym({5, . . . , 9}) respectively. As

before, let K1 = kerπ1|G and K2 = kerπ2|G. By Lemma 2.7 (vii), without loss of generality,

there is some γ := (5 6 7 8 9) ∈ G. If Gπ2 = 〈γ〉, then G ∼= Gπ1 × C5 and µ(Gπ1) = 4

by Lemma 2.7 (i), so that Gπ1 ∈ C by Proposition 3.1, whence G ∈ C , and we are

done. Therefore, Gπ2 strictly contains 〈γ〉 and it follows that C ≤ Sym({1, 2, 3, 4}). If

Gπ1 = Alt({1, 2, 3, 4}) or Sym({1, 2, 3, 4}), then C = {1}, and we are done. Therefore we

may assume that Gπ1 is isomorphic to C4, C2 × C2 or D8.

Suppose first that Gπ1 ∼= C4. Without loss of generality, Gπ1 is generated by (1 2 3 4),

so that C = Gπ1. By Lemma 2.7 (ii), (1 3)(2 4) ∈ G, and so G meets every non-trivial

subgroup of C non-trivially.

Now suppose that Gπ1 ∼= C2 ×C2, so that Gπ1 = C = 〈(1 2)(3 4), (1 3)(2 4)〉. By Lemma

2.7, we may suppose, without loss of generality, that α := (1 2)(3 4) ∈ G. We claim that

β := (1 3)(2 4) ∈ G. Certainly βσ ∈ G for some σ ∈ Sym({5, . . . , 9}) and if σ ∈ G or |σ| is

coprime with |β|, then β ∈ G and we are done. If |σ| = 6 then we may replace σ by σ3.

Thus we may suppose that |σ| = 2 or 4 and that σ 6∈ G. Observe that K2 = 〈α〉. On the

one hand, |G| = |K2||Gπ2| = 2|Gπ2|, and on the other, |G| = |K1||Gπ1| = 4|K1|. Therefore

|G| = 2|K1||K2|. Observe that 〈K1,K2〉 = K1K2 is an internal direct product, βσ 6∈ K1K2

and βσ centralises K2 and normalises K1. Therefore, comparing orders, we have

G = 〈βσ,K1,K2〉 = K1K2〈βσ〉 ∼= K2 × (K1〈βσ〉) ∼= K2 × (K1〈σ〉).
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But K2
∼= C2 and K1〈σ〉 is a subgroup of Sym({5, . . . , 9}). Hence G embeds in C2×Sym(5),

so µ(G) ≤ 7, contradicting that µ(G) = 9, and we are done.

Finally suppose that Gπ1 ∼= D8. Without loss of generality, Gπ1 = 〈r, s〉 and C = 〈r2〉
where r := (1 2 3 4) and s := (1 2)(3 4). We claim that r2 ∈ G. This is immediate if r ∈ G,

so we suppose that r 6∈ G. Certainly, rσ ∈ G for some σ ∈ Sym({5, . . . , 9}) such that σ 6∈ G
and |σ| is divisible by 2. If |σ| = 2 or 6 then r2 = (rσ)|σ| ∈ G and we are done. Thus, we

may suppose |σ| = 4. By Lemma 2.7 (ii), since r, r−1 6∈ G, we have r2 or rjs ∈ G for some

j. In the first case we are done, and in the second case

σ2 = (rj−1sσ)2 = (rjsrσ)2 ∈ G,

so that r2 = (rσ)2σ2 ∈ G, and we are done. �

Remark 3.9. It can be verified by Magma that the only groups minimally embedded intran-

sitively in Sym(9) that are not contained in C have orbits of size 2 and 7, or orbits of size

4 and 5. We do not prove this here as we do not need it for our main theorem. For more

details the reader is referred to [8].

We have shown that if G is a minimally embedded intransitive subgroup of Sym(9), then

there is no subgroup H of Sym(9) that centralises G such that µ(G×H) < µ(G) + µ(H).

Before we deal with the transitive case we observe the following lemma, whose proof is a

straightforward direct calculation.

Lemma 3.10. Let W = C3 o Sym(3) and let x1, x2, x3 be the standard generators for the

base group B . Let U = {xi1x
j
2x
k
3 ∈ B | i+ j+k ≡ 0 mod 3} and V = 〈x1x2x3〉. Then V ⊂ U

and U and V are the only non-trivial normal subgroups of W strictly contained in B.

Proposition 3.11. Let G be a group such that µ(G) = 9 and its minimally embedded image

in Sym(9) is transitive. Identify G with its image and put C := CSym(9)(G). Then C ≤ G.

Proof. We may assume C is nontrivial and also that that G is non-abelian, for otherwise,

G = C by [4, Theorem 4.2A]. Let H be a core-free subgroup of G that affords the minimal

faithful representation. By Theorem 2.3, C ∼= NG(H)/H and since |G : H| = 9, |NG(H) :

H| = 3 and so C ∼= C3. By Proposition 2.5, Fix(H) is a block on which the induced

permutation group acts regularly, so by Proposition 2.6, G embeds inside the wreath product

C3 oSym(3). Let π be the projection of G onto the top group Sym(3). Now kerπ is contained

in the base group and so must be a 3-group. Since G is transitive on blocks, Gπ has order

3 or 6. If |Gπ| = 3, then G is a 3-group and so, by Corollary 2.12, C ≤ G. If |Gπ| = 6 then

π is surjective and since kerπ is a normal subgroup of G contained in the base group B it

is normalised by Sym(3). By Lemma 3.10, this kernel must contain V , which is cyclic of

order 3 and central in G. Therefore V = C, and once again C ≤ G. �

Remark 3.12. It can be verified that there are, up to isomorphism, 3 transitive groups

minimally embedded in Sym(9) not contained in C . Again, we do not prove this here as

we do not need it for our main theorem, and for more details the reader is referred to [8].

Combining the results above we can now prove our main theorem which we restate here

for convenience:
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Theorem 3.13. If G and H are groups such that µ(G×H) ≤ 9 then µ(G×H) = µ(G) +

µ(H).

Proof. Suppose by way of contradiction that there exist nontrivial subgroupsG, H of Sym(9)

such that 〈G,H〉 = GH is an internal direct product and µ(G×H) < µ(G)+µ(H). Without

loss of generality, we may suppose G 6∈ C . By Proposition 3.1, µ(G) ≥ 7. If µ(G) = 9,

then, by Proposition 3.8 and Proposition 3.11, H intersects G nontrivially, contradicting

that GH is an internal direct product. Hence µ(G) = 7 or µ(G) = 8.

Suppose that µ(G) = 7. By Theorem 3.4 and (2), G ∼= 〈a, b | a3 = b4 = 1, ab = a−1〉.
Without loss of generality, we may take a = (1 2 3), (1 2 3)(4 5 6) or (1 2 3)(4 5 6)(7 8 9), and

b to be a permutation of order 4 that inverts a by conjugation. By straightforward calcula-

tions, the only permutations in Sym(9) that invert (1 2 3)(4 5 6) or (1 2 3)(4 5 6)(7 8 9) have

order 2 or 6, contradicting that b has order 4. Hence a = (1 2 3). Without loss of generality,

b = (1 3)(4 5 6 7) or (1 3)(4 5 6 7)(8 9) and G = 〈a, b〉. Clearly, in either case,

CSym(9)(G) = 〈(4 5 6 7), (8 9)〉.

But GH is an internal direct product, so H ∩ G = {1} and H ≤ CSym(9)(G). Since H is

non-trivial, it follows that H = 〈(8 9)〉 or H = 〈(4 6)(5 7)(8 9)〉. In both cases, H ∼= C2 so

µ(H) = 2, giving

µ(G×H) < µ(G) + µ(H) = 7 + 2 = 9.

Hence µ(G×H) ≤ 8, contradicting Theorem 3.7.

Thus µ(G) = 8. By Theorem 3.6, G contains a copy of the group K ∼= (C2×C2×C2)oC7

described explicitly in the preamble preceding Proposition 3.5. All elements of the base

group different from 1 are conjugate in K. We may choose generators of the base group

to be x, y and z and the generator corresponding to the copy of C7 to be t, such that

conjugation by t yields the following mapping:

x 7→ y 7→ z 7→ xy 7→ yz 7→ xyz 7→ xz 7→ x.

Suppose first that x is not a product of 4 disjoint 2-cycles. Without loss of generality we

have the following three cases.

Case (i):x = (1 2).

Then y = (a b) commutes with x and so is disjoint from x, and so xy = (1 2)(a b) is not

conjugate to x.

Case (ii):x = (1 2)(3 4).

Without loss of generality, y = (1 3)(2 4), (1 2)(5 6) or (5 6)(7 8). If y = (5 6)(7 8) then

xy = (1 2)(3 4)(5 6)(7 8) is not conjugate to x. If y = (1 3)(2 4) then, without loss of general-

ity, z = (5 6)(7 8), so xz is not conjugate to x. If y = (1 2)(5 6) then z = (1 2)(7 8), (3 4)(7 8)

or (5 6)(7 8) so that (1 2)(3 4)(5 6)(7 8) = xyz, yz or xz respectively is not conjugate to x.

Case (iii):x = (1 2)(3 4)(5 6).

Without loss of generality, y = (1 2)(3 4)(7 8), (1 3)(2 4)(5 6) or (1 3)(2 4)(7 8). Then xy =

(5 6)(7 8), (1 4)(2 3) or (1 4)(2 3)(5 6)(7 8) respectively is not conjugate to x.
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All of these cases lead to a contradiction, so, without loss of generality, x = (1 2)(3 4)(5 6)(7 8).

Now both y and z fix 9 since x = xy = xz. If t moves 9, then xt moves 9, contradicting that

xt = y fixes 9. Hence t also fixes 9 and so t is a 7-cycle permuting letters amongst {1, . . . , 8}.
Therefore, t fixes another letter and so, without loss of generality, t is a 7-cycle permuting

1, . . . , 7 in some order. Let w ∈ C := CSym(9)(G). Then w commutes with t, so w = tr, or

w = tr(8 9) for some r. But if w = tr(8 9), then xw moves 9, so xw 6= x, contradicting that

w commutes with x. Hence w = tr, which implies w = 1, since non-trivial powers of t do

not commute with x. Thus H ≤ C = {1}, so H is trivial, a contradiction. This completes

the proof of the theorem. �

The string of results above show that there are no examples of groups G and H such that

µ(G×H) ≤ 9 and

µ(G×H) < µ(G) + µ(H). (4)

In Sym(10), however, G can be taken to be any split extension of the deleted permuta-

tion module for Sym(5) over F2 by a subgroup that contains an element of order 5. It is

well-known that there are 5 such choices for the top group of the split extension, namely

C5, D10, C5 o C4,Alt(5) or Sym(5). So, for the example of smallest order, one takes G to

be (C2×C2×C2×C2)oC5 and H to be C2 (its centraliser in Sym(10)), and all examples

have the property that µ(G) = µ(G×H) < µ(G) + µ(H).

The authors are not aware of any examples of groups G and H that do not decompose

as nontrivial direct products for which

max{µ(G), µ(H)} < µ(G×H) < µ(G) + µ(H). (5)

One can easily transform (4) into an infinite class of examples of (5) by taking direct

products with a new group of order coprime to both G and H (see [9, Section 7]).
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Appendix A.

Minimal Degrees of Groups of Small Order

Below is a table of minimal permutation degrees of groups of small order which we rely

on in the article. Many of these calculations can be done by hand, or can easily be verified

using Magma [1]. The group identification is done using the SmallGroupsLibrary in Magma.

Table 1: Minimal Degrees of Groups of Small Order

Group ID Stucture Minimal Degree Contained in C ?

(56, 1) [C7 : C8] 15 No

(56, 2) [C56] 15 Yes Abelian

(56, 3) [C7 : Q8] 15 No

(56, 4) [C4 ×D14] 11 Yes

(56, 5) [D56] 11 Yes

(56, 6) [C2 × (C7 : C4)] 13 No

(56, 7) [(C14 × C2) : C2] 11 Yes

(56, 8) [C28 × C2] 13 Yes Abelian

(56, 9) [C7 ×D8] 11 Yes Nilpotent

(56, 10) [C7 ×Q8] 15 Yes Nilpotent

(56, 11) [(C2 × C2 × C2) : C7] 8 No

(56, 12) [C2 × C2 ×D14] 11 Yes

(56, 13) [C14 × C2 × C2] 13 Yes Abelian

(54, 1) [D54] 27 Yes

(54, 2) [C54] 29 Yes Abelian

(54, 3) [C3 ×D18] 12 Yes

(54, 4) [C9 × Sym(3)] 12 Yes

(54, 5) [((C3 × C3) : C3) : C2] 9 Yes

(54, 6) [(C9 : C3) : C2] 9 Yes

(54, 7) [(C9 × C3) : C2] 12 Yes

(54, 8) [((C3 × C3) : C3) : C2] 9 Yes

(54, 9) [C18 × C3] 14 Yes Abelian

(54, 10) [C2 × ((C3 × C3) : C3)] 11 Yes Nilpotent

(54, 11) [C2 × (C9 : C3)] 11 Yes Nilpotent

(54, 12) [C3 × C3 × Sym(3)] 9 Yes

(54, 13) [C3 × ((C3 × C3) : C2)] 9 Yes

(54, 14) [(C3 × C3 × C3) : C2] 9 Yes

(54, 15) [C6 × C3 × C3] 11 Yes Abelian

(48, 1) [C3 : C16] 19 No

(48, 2) [C48] 19 Yes Abelian

(48, 3) [(C4 × C4) : C3] 12 No

(48, 4) [C8 × Sym(3)] 11 Yes

(48, 5) [C24 : C2] 11 Yes

(48, 6) [C24 : C2] 11 Yes

Continued on next page
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Table 1 – Continued from previous page

Group ID Structure Minimal Degree Contained in C ?

(48, 7) [D48] 11 Yes

(48, 8) [C3 : Q16] 19 No

(48, 9) [C2 × (C3 : C8)] 13 No

(48, 10) [(C3 : C8) : C2] 11 No

(48, 11) [C4 × (C3 : C4)] 11 No

(48, 12) [(C3 : C4) : C4] 11 No

(48, 13) [C12 : C4] 11 No

(48, 14) [(C12 × C2) : C2] 11 No

(48, 15) [(C3 ×D8) : C2] 11 No

(48, 16) [(C3 : C8) : C2] 11 No

(48, 17) [(C3 ×Q8) : C2] 11 No

(48, 18) [C3 : Q16] 19 No

(48, 19) [(C2 × (C3 : C4)) : C2] 11 No

(48, 20) [C12 × C4] 11 Yes Abelian

(48, 21) [C3 × ((C4 × C2) : C2)] 11 Yes Nilpotent

(48, 22) [C3 × (C4 : C4)] 11 Yes Nilpotent

(48, 23) [C24 × C2] 13 Yes Abelian

(48, 24) [C3 × (C8 : C2)] 11 Yes Nilpotent

(48, 25) [C3 ×D16] 11 Yes

(48, 26) [C3 ×QD16] 11 Yes

(48, 27) [C3 ×Q16] 19 Yes Nilpotent

(48, 28) [SL(2, 3)→ G→ C2] 16 Yes

(48, 29) [GL(2, 3)] 8 Yes

(48, 30) [Alt(4) : C4] 8 Yes

(48, 31) [C4 ×Alt(4)] 8 Yes

(48, 32) [C2 × SL(2, 3)] 10 Yes

(48, 33) [SL(2, 3) : C2] 16 No

(48, 34) [C2 × (C3 : Q8)] 13 No

(48, 35) [C2 × C4 × Sym(3)] 9 Yes

(48, 36) [C2 ×D24] 9 Yes

(48, 37) [(C12 × C2) : C2] 11 No

(48, 38) [D8 × Sym(3)] 7 Yes

(48, 39) [(C2 × (C3 : C4)) : C2] 11 No

(48, 40) [Q8 × Sym(3)] 11 Yes

(48, 41) [(C4 × Sym(3)) : C2] 11 Yes

(48, 42) [C2 × C2 × (C3 : C4)] 11 No

(48, 43) [C2 × ((C6 × C2) : C2)] 9 Yes

(48, 44) [C12 × C2 × C2] 11 Yes Abelian

(48, 45) [C6 ×D8] 9 Yes Nilpotent

(48, 46) [C6 ×Q8] 13 Yes Nilpotent

Continued on next page
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Table 1 – Continued from previous page

Group ID Structure Minimal Degree Contained in C ?

(48, 47) [C3 × ((C4 × C2) : C2)] 11 Yes Nilpotent

(48, 48) [C2 × Sym(4)] 6 Yes

(48, 49) [C2 × C2 ×Alt(4)] 8 Yes

(48, 50) [(C2 × C2 × C2 × C2) : C3] 8 Yes

(48, 51) [C2 × C2 × C2 × Sym(3)] 9 Yes

(48, 52) [C6 × C2 × C2 × C2] 11 Yes Abelian

(40, 1) [C5 : C8] 13 No

(40, 2) [C40] 13 Yes Abelian

(40, 3) [C5 : C8] 13 No

(40, 4) [C5 : Q8] 13 No

(40, 5) [C4 ×D10] 9 Yes

(40, 6) [D40] 9 Yes

(40, 7) [C2 × (C5 : C4)] 11 No

(40, 8) [(C10 × C2) : C2] 9 Yes

(40, 9) [C20 × C2] 11 Yes Abelian

(40, 10) [C5 ×D8] 9 Yes Nilpotent

(40, 11) [C5 ×Q8] 13 Yes Nilpotent

(40, 12) [C2 × (C5 : C4)] 7 Yes

(40, 13) [C2 × C2 ×D10] 9 Yes

(40, 14) [C10 × C2 × C2] 11 Yes Abelian

(36, 1) [C9 : C4] 13 No

(36, 2) [C36] 13 Yes Abelian

(36, 3) [(C2 × C2) : C9] 13 No

(36, 4) [D36] 11 Yes

(36, 5) [C18 × C2] 13 Yes Abelian

(36, 6) [C3 × (C3 : C4)] 10 No

(36, 7) [(C3 × C3) : C4] 10 No

(36, 8) [C12 × C3] 10 Yes Abelian

(36, 9) [(C3 × C3) : C4] 6 Yes

(36, 10) [Sym(3)× Sym(3)] 6 Yes

(36, 11) [C3 ×Alt(4)] 7 Yes

(36, 12) [C6 × Sym(3)] 8 Yes

(36, 13) [C2 × ((C3 × C3) : C2)] 8 Yes

(36, 14) [C6 × C6] 10 Yes Abelian

(32, 1) [C32] 32 Yes Abelian

(32, 2) [(C4 × C2) : C4] 12 Yes Nilpotent

(32, 3) [C8 × C4] 12 Yes Abelian

(32, 4) [C8 : C4] 12 Yes Nilpotent

(32, 5) [(C8 × C2) : C2] 12 Yes Nilpotent

(32, 6) [((C4 × C2) : C2) : C2] 8 Yes Nilpotent

Continued on next page
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Table 1 – Continued from previous page

Group ID Structure Minimal Degree Contained in C ?

(32, 7) [(C8 : C2) : C2] 8 Yes Nilpotent

(32, 8) [C2.((C4 × C2) : C2) = (C2 × C2).(C4 × C2)] 16 Yes Nilpotent

(32, 9) [(C8 × C2) : C2] 12 Yes Nilpotent

(32, 10) [Q8 : C4] 12 Yes Nilpotent

(32, 11) [(C4 × C4) : C2] 8 Yes Nilpotent

(32, 12) [C4 : C8] 12 Yes Nilpotent

(32, 13) [C8 : C4] 12 Yes Nilpotent

(32, 14) [C8 : C4] 12 Yes Nilpotent

(32, 15) [C4.D8 = C4.(C4 × C2)] 16 Yes Nilpotent

(32, 16) [C16 × C2] 18 Yes Abelian

(32, 17) [C16 : C2] 16 Yes Nilpotent

(32, 18) [D32] 16 Yes Nilpotent

(32, 19) [QD32] 16 Yes Nilpotent

(32, 20) [Q32] 32 Yes Nilpotent

(32, 21) [C4 × C4 × C2] 10 Yes Abelian

(32, 22) [C2 × ((C4 × C2) : C2)] 10 Yes Nilpotent

(32, 23) [C2 × (C4 : C4)] 10 Yes Nilpotent

(32, 24) [(C4 × C4) : C2] 12 Yes Nilpotent

(32, 25) [C4 ×D8] 8 Yes Nilpotent

(32, 26) [C4 ×Q8] 12 Yes Nilpotent

(32, 27) [(C2 × C2 × C2 × C2) : C2] 8 Yes Nilpotent

(32, 28) [(C4 × C2 × C2) : C2] 8 Yes Nilpotent

(32, 29) [(C2 ×Q8) : C2] 12 Yes Nilpotent

(32, 30) [(C4 × C2 × C2) : C2] 12 Yes Nilpotent

(32, 31) [(C4 × C4) : C2] 12 Yes Nilpotent

(32, 32) [(C2 × C2).(C2 × C2 × C2)] 16 Yes Nilpotent

(32, 33) [(C4 × C4) : C2] 16 Yes Nilpotent

(32, 34) [(C4 × C4) : C2] 8 Yes Nilpotent

(32, 35) [C4 : Q8] 12 Yes Nilpotent

(32, 36) [C8 × C2 × C2] 12 Yes Abelian

(32, 37) [C2 × (C8 : C2)] 10 Yes Nilpotent

(32, 38) [(C8 × C2) : C2] 16 Yes Nilpotent

(32, 39) [C2 ×D16] 10 Yes Nilpotent

(32, 40) [C2 ×QD16] 10 Yes Nilpotent

(32, 41) [C2 ×Q16] 18 Yes Nilpotent

(32, 42) [(C8 × C2) : C2] 16 Yes Nilpotent

(32, 43) [(C2 ×D8) : C2] 8 Yes Nilpotent

(32, 44) [(C2 ×Q8) : C2] 16 Yes Nilpotent

(32, 45) [C4 × C2 × C2 × C2] 10 Yes Abelian

(32, 46) [C2 × C2 ×D8] 8 Yes Nilpotent

Continued on next page
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Table 1 – Continued from previous page

Group ID Structure Minimal Degree Contained in C ?

(32, 47) [C2 × C2 ×Q8] 12 Yes Nilpotent

(32, 48) [C2 × ((C4 × C2) : C2)] 10 Yes Nilpotent

(32, 49) [(C2 ×D8) : C2] 8 Yes Nilpotent

(32, 50) [(C2 ×Q8) : C2] 16 Yes Nilpotent

(32, 51) [C2 × C2 × C2 × C2 × C2] 10 Yes Abelian

(28, 1) [C7 : C4] 11 No

(28, 2) [C28] 11 Yes Abelian

(28, 3) [D28] 9 Yes

(28, 4) [C14 × C2] 11 Yes Abelian

(27, 1) [C27] 27 Yes Abelian

(27, 2) [C9 × C3] 12 Yes Abelian

(27, 3) [(C3 × C3) : C3] 9 Yes Nilpotent

(27, 4) [C9 : C3] 9 Yes Nilpotent

(27, 5) [C3 × C3 × C3] 9 Yes Abelian

(24, 1) [C3 : C8] 11 No

(24, 2) [C24] 11 Yes Abelian

(24, 3) [SL(2, 3)] 8 Yes

(24, 4) [C3 : Q8] 11 No

(24, 5) [C4 × Sym(3)] 7 Yes

(24, 6) [D24] 7 Yes

(24, 7) [C2 × (C3 : C4)] 9 No

(24, 8) [(C6 × C2) : C2] 7 Yes

(24, 9) [C12 × C2] 9 Yes Abelian

(24, 10) [C3 ×D8] 7 Yes Nilpotent

(24, 11) [C3 ×Q8] 11 Yes Nilpotent

(24, 12) [Sym(4)] 4 Yes

(24, 13) [C2 ×Alt(4)] 6 Yes

(24, 14) [C2 × C2 × Sym(3)] 7 Yes

(24, 15) [C6 × C2 × C2] 9 Yes Abelian

(20, 1) [C5 : C4] 9 No

(20, 2) [C20] 9 Yes Abelian

(20, 3) [C5 : C4] 5 Yes

(20, 4) [D20] 7 Yes

(20, 5) [C10 × C2] 9 Yes Abelian

(18, 1) [D18] 9 Yes

(18, 2) [C18] 11 Yes Abelian

(18, 3) [C3 × Sym(3)] 6 Yes

(18, 4) (C3 × C3) : C2] 6 Yes

(18, 5) [C6 × C3] 8 Yes Abelian

(16, 1) [C16] 16 Yes Abelian

Continued on next page
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Table 1 – Continued from previous page

Group ID Structure Minimal Degree Contained in C ?

(16, 2) [C4 × C4] 8 Yes Abelian

(16, 3) [(C4 × C2) : C2] 8 Yes Nilpotent

(16, 4) [C4 : C4] 8 Yes Nilpotent

(16, 5) [C8 × C2] 10 Yes Abelian

(16, 6) [C8 : C2] 8 Yes Nilpotent

(16, 7) [D16] 8 Yes Nilpotent

(16, 8) [QD16] 8 Yes Nilpotent

(16, 9) [Q16] 16 Yes Nilpotent

(16, 10) [C4 × C2 × C2] 8 Yes Abelian

(16, 11) [C2 ×D8] 6 Yes Nilpotent

(16, 12) [C2 ×Q8] 10 Yes Nilpotent

(16, 13) [(C4 × C2) : C2] 8 Yes Nilpotent

(16, 14) [C2 × C2 × C2 × C2] 8 Yes Abelian

(12, 1) [C3 : C4] 7 No

(12, 2) [C12] 7 Yes Abelian

(12, 3) [Alt(4)] 4 Yes

(12, 4) [D12] 5 Yes

(12, 5) [C6 × C2] 7 Yes Abelian
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