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ABSTRACT. We prove Liouville type theorems for p-harmonic functions
on exterior domains of Rd, where 1 < p < ∞ and d ≥ 2. We show that
every positive p-harmonic function satisfying zero Dirichlet, Neumann
or Robin boundary conditions and having zero limit as |x| tends to infin-
ity is identically zero. In the case of zero Neumann boundary conditions,
we establish that any semi-bounded p-harmonic function is constant if
1 < p < d. If p ≥ d, then it is either constant or it behaves asymptotically
like the fundamental solution of the homogeneous p-Laplace equation.

1. INTRODUCTION AND MAIN RESULTS

Assume that Ω is a general exterior domain of Rd, that is, a connected
open set such that Ωc = Rd \Ω is compact and nonempty. We assume that
the boundary ∂Ω is the disjoint union of the sets Γ1, Γ2, where Γ1 is closed.
We denote by ν the outward pointing unit normal vector on ∂Ω and H the
(d− 1)-dimensional Hausdorff measure on ∂Ω. For 1 < p < ∞ define the
p-Laplace operator ∆p by ∆pv := div(|∇v|p−2∇v).

The aim of this paper is to establish a Liouville theorem for weak solu-
tions of the elliptic boundary-value problem

(1.1)
−∆pv = 0 in Ω,
Bv = 0 on ∂Ω,

where

Bv :=

{
v|Γ1 on Γ1 (Dirichlet b.c.),
|∇v|p−2 ∂v

∂ν + h(x, v) on Γ2 (Robin/Neumann b.c.).

Here we assume that h : Γ2 ×R → R is a Carathéodory function (see [23])
satisfying

(1.2) h(·, v) ∈ Lp/(p−1)(Γ2) and h(x, v)v ≥ 0 forH-a.e. x ∈ Γ2,

for every v ∈ Lp(Γ2). Note that the first condition in (1.2) implicitly im-
plies a growth condition on the function v 7→ h(·, v); see [17]. As usual, a
function v ∈ W1,p

loc (Ω) ∩ C(Ω) is said to be p-harmonic (or simply harmonic
if p = 2) on Ω if ∆pv = 0 in Ω in the weak sense, that is,∫

Ω
|∇v|p−2∇v∇ϕ dx = 0
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for every ϕ ∈ C∞
c (Ω); see [20]. Throughout, we call a p-harmonic function

v positive if v ≥ 0.
The classical Liouville theorem asserts that every harmonic function on

the whole space Rd is constant if it is bounded from below or from above;
see for instance [3, Theorem 3.1] or [19, p. 111]. The classical Liouville
theorem was generalised to p-harmonic functions on the whole space Rd

for 1 < p < ∞; see [22, Theorem II] or [15, Corollary 6.11]. The result
extends to d-harmonic function on Rd \ {0} for d ≥ 2; see [3, Corollary 3.3]
for p = d = 2 or [16, Corollary 2.2] for p = d ≥ 2. In our investigation, the
fundamental solution

(1.3) µp(x) :=

{
|x|(p−d)/(p−1) if p 6= d,
log|x| if p = d.

on Rd \ {0} plays an important role. If 1 < p < d, then µp provides an
example of a non-constant p-harmonic function bounded from below. An-
other example valid for 1 < p < d is given by v(x) := 1− µp(x) for every
x ∈ Rd \ B1, where B1 denotes the open unit ball. In this case v is a positive
p-harmonic function on the exterior domain Ω := Rd \ B1 satisfying zero
Dirichlet boundary conditions at ∂Ω. Hence, in order to have a chance of
proving a Liouville type theorem for exterior domains we need to make
use of the boundary conditions and the behavior of a p-harmonic function
near infinity.

First, we consider the case 1 < p < d. Then by [21, Corollary, p.84] or [2,
Theorem 2 & Theorem 3] and by rescaling if necessary, we know that for
every positive p-harmonic function v on an exterior domain Ω ⊆ Rd, the
limit

(1.4) b := lim
|x|→∞

v(x) exists and |v(x)− b| ≤ c1 µp(x) whenever |x| ≥ 2

where c1 > 0. With this in mind, our first result is a kind of maximum
principle for weak solution of (1.1) on an unbounded domain. A precise
definition of weak solutions of (1.1) is given in Definition 3.5 below.

Theorem 1.1. Let Ω be an exterior domain with Lipschitz boundary and let 1 <
p < ∞. Suppose that (1.2) is satisfied and that v is a positive weak solution of
(1.1) such that lim|x|→∞ v(x) = 0. Then v ≡ 0.

If p ≥ d, the conclusion of the theorem is valid without any restrictions
on the boundary conditions or regularity of Ω due to a result in [12]; see
Section 4. If 1 < p < d, then under some additional assumptions on v we
can remove the assumption that ∂Ω is Lipschitz. The condition is that v has
a trace in some weak sense which is in Lp(Γ2). Such a condition is satisfied
in the setting discussed in [6, 1, 10, 11].

The proof of Theorem 1.1 relies on the asymptotic decay estimates for
positive p-harmonic functions on exterior domains as stated in (1.4). We
give a simple alternative proof of such estimates in case p = 2 and d ≥ 3 in
Section 2.

If p ≥ d, then there are two alternatives for a positive p-harmonic func-
tion v: Either v is bounded in a neighbourhood of infinity and has a limit
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as |x| → ∞, or v ∼ µp near infinity, that is,

lim
|x|→∞

v(x)
µp(x)

= c

for some constant c > 0; see [12, Theorem 2.3]. In the first case, if v > 0,
then the limit is strictly positive; see [12, Lemma A.2]. See also the related
work in [13]. As an example let Ω := Rd \ B1 and set vp := µp + 1 if p = d
and vp := µp if p > d. Then vp is a positive p-harmonic function on Ω
satisfying zero Robin boundary conditions

|∇v|p−2 ∂v
∂ν

+ |v|p−2v = 0 on ∂Ω.

Similarly, wp := µp if p = d and wp := µp − 1 if p > d satisfies zero Dirich-
let boundary conditions on ∂Ω and is a positive unbounded p-harmonic
function on Ω.

Our second main result is a Liouville theorem for p-harmonic functions
on exterior domains with zero Neumann boundary conditions, that is, the
case Γ2 = ∂Ω and h ≡ 0.

Theorem 1.2. Let Ω be an exterior domain with no regularity assumption on
∂Ω. Suppose that v is a weak solution of (1.1) on Ω that is bounded from below or
from above. Moreover, assume that v satisfies homogeneous Neumann boundary
conditions, that is, h(x, v) ≡ 0 and Γ2 = ∂Ω. If 1 < p < d, then v is constant. If
p ≥ d, then v is either constant or v ∼ ±µp near infinity.

The proofs of the theorems are based on a general criterion for Liouville
type theorems established in Section 3. We fully prove the two Theorems
in Section 4.

There is an intimate relationship between Liouville-type theorems and
pointwise a priori estimates of solutions of boundary value problems. On
the one hand, Liouville’s theorem for some semi-linear equations on Rd

can be seen as a corollary of pointwise a priori estimates; see [8, Lemma 1].
On the other hand, Liouville’s theorem can be used to derive universal up-
per bounds for positive solutions on bounded domains. These connections
were outlined in [22, p.82] and recently revisited in [18]. More precisely,
it is shown in [18, p.556] that Liouville’s theorem and universal bound-
edness theorems are equivalent for semi-linear equations and systems of
Lane-Emden type; see also [16]. This relationship becomes again apparent
in this paper. This article was motivated by application to domain pertur-
bation problems for semi-linear elliptic boundary value problems on do-
mains with shrinking holes; see [9].

Acknowledgement. We thank the referees for the careful reading and point-
ing out some mistakes in an earlier version of the manuskript. Also we
thank for the suggestion to state Lemma 3.2 explicitely.

2. ESTIMATES NEAR INFINITY IN THE LINEAR CASE

In this section we establish pointwise decay estimates for semi-bounded
harmonic functions on an exterior domain Ω ⊆ Rd when d ≥ 3. The re-
sult is a special case of estimates proved in [2], but it seems appropriate to
provide a much shorter proof in the linear case.
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Proposition 2.1. Let v be harmonic on the exterior domain Ω ⊆ Rd, d ≥ 3. Fur-
ther assume that v is bounded from below or from above. Then b := lim|x|→∞ v(x)
exists. Moreover, there exist positive constants r0 and C1 such that

(2.1) |v(x)− b| ≤ C1 |x|2−d

for all |x| ≥ r0.

To prove the proposition let v be a harmonic function on the exterior
domain Ω, and suppose that v is bounded form below or from above. Since
by assumption Ω

c
is bounded, by translating and rescaling if necessary,

we can assume without loss of generality that Ω
c

is contained in the unit
ball B1, and that 0 ∈ Ω

c
. Furthermore, without loss of generality we can

consider non-negative harmonic functions on Ω. Indeed, if v is bounded
from below we consider v + inf v ≥ 0, and if v is bounded from above we
consider −v + sup v ≥ 0.

If v is positive and harmonic on Ω, then in particular v is positive and
harmonic on Bc

1. Hence, the Kelvin transform K[v] of v given by K[v](x) :=
|x|2−dv(x/|x|2) for x ∈ B1 \ {0} is positive and harmonic on B1 \ {0}; see
[3, Theorem 4.7]. By Bôcher’s theorem there exist a harmonic function w on
B1 and a constant b ≥ 0 such that

K[v](x) = w(x) + b |x|2−d or K[v− b](x) = w(x)

for every x ∈ B1 \ {0} see [3, Theorem 3.9]. Applying the Kelvin transform
again yields

(2.2) v(x)− b = K[w](x) = |x|2−d w(x/|x|2)

for every x ∈ Bc
1. Note that w(x/|x|2) → w(0) as |x| → ∞. Hence (2.2)

implies the existence of constants C1, r0 > 0 such that (2.1) holds whenever
|x| > r0.

3. A GENERAL CRITERION FOR LIOUVILLE TYPE THEOREMS

The proofs of the main theorems are based on a general criterion show-
ing that a function satisfying suitable integral conditions is constant. We
generalise an idea from [5, Lemma 2.1]. Similar ideas were used for in-
stance in [4, 22] or in [7, Theorem 19.8] for p = 2.

Proposition 3.1. Let ϕ ∈ C∞
c (Rd) such that 0 ≤ ϕ ≤ 1 on Rd, ϕ ≡ 1 on B(0, 1)

and with support contained in B(0, 2). For x ∈ Rd and r > 0 let ϕr(x) :=
ϕ(x/r). Let v ∈ W1,p

loc (Ω) and suppose that there exist constants b ∈ R and
C0, C1, r0 > 0 such that

(3.1)
∫

Ω∩B2r

|∇v|p ϕ
p
r dx

≤ C0

r

(∫
(Ω∩B2r)\Br

|∇v|p ϕ
p
r dx

)(p−1)/p (∫
(Ω∩B2r)\Br

|v− b|p dx
)1/p

and

(3.2)
1
rp

∫
(Ω∩B2r)\Br

|v− b|p dx ≤ C1
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for all r > r0. Then v is constant.

The above proposition is a direct consequence of the following stronger
result. To prove Proposition 3.1, we set C := C0C1/p

1 and δ = (p− 1)/p in
the lemma below. Then inequality (3.3) follows from (3.1) and (3.2).

Lemma 3.2. Let ϕ and ϕr be as in Proposition 3.1. Let v ∈W1,p
loc (Ω) and suppose

that there exist constants C, r0 > 0 and δ ∈ (0, 1) such that

(3.3)
∫

Ω∩B2r

|∇v|p ϕ
p
r dx ≤ C

(∫
(Ω∩B2r)\Br

|∇v|p ϕ
p
r dx

)δ

for all r > r0. Then v is constant.

Proof. In a first step we show that ∇v ∈ Lp(Ω)d. In a second step we then
prove that ∇v ∈ Lp(Ω)d and (3.3) imply that ∇v = 0. As Ω is assumed to
be connected we can apply [14, Lemma 7.7] to conclude that v is constant
on Ω.

(i) We first show that ∇v ∈ Lp(Ω)d. If ∇v = 0, then there is nothing to
show, so assume that∇v 6= 0. By possibly increasing r0 we can assume that∫

Ω∩B2r

|∇v|p ϕ
p
r dr > 0

for all r > r0. Rearranging inequality (3.3) and using that δ < 1 yields∫
Ω
|∇v|p ϕ

p
r dx =

∫
Ω∩B2r

|∇v|p ϕ
p
r dx ≤ C1/(1−δ)

for all r > r0. Note that ϕ
p
r → 1Rd pointwise and monotonically increasing

as r → ∞. Hence, the monotone convergence theorem implies that

(3.4)
∫

Ω
|∇v|p dx = lim

r→∞

∫
Ω∩B2r

|∇v|p ϕ
p
r dx ≤ C1/(1−δ) < ∞.

In particular ∇v ∈ Lp(Ω)d as claimed.
(ii) Assuming that ∇v ∈ Lp(Ω)d we now show that ∇v = 0. We can

rewrite (3.3) in the form∫
Ω∩B2r

|∇v|p ϕ
p
r dx ≤ C

(∫
Ω
|∇v|p dx−

∫
Ω∩Br

|∇v|p ϕ
p
r dx

)δ

.

Letting r → ∞, making use of (3.4) and the fact that δ > 0, we deduce that
‖∇v‖p ≤ 0, that is, ‖∇v‖p = 0. �

Remark 3.3. Suppose that v ∈ W1,p
loc (Ω) satisfies inequality (3.1), and that

there exists r0 > 0 such that v ∈ L∞(Ω ∩ Bc
r0
). Then, for every b ∈ R

1
rp

∫
B2r\Br

|v− b|p dx ≤ ‖v− b‖p
∞

rp

∫
B2r\Br

1 dx ≤ ωd

d
(2d − 1)‖v− b‖p

∞rd−p

for all r ≥ r0, where ‖v− b‖∞ := ‖v− b‖L∞(Bc
r0
) and ωd is the surface area

of the unit sphere in Rd. If p ≥ d, then Proposition 3.1 implies that v is
constant.
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We next show that weak solutions of (1.1) satisfy (3.1). Before we can do
that we want to state our precise assumptions and give a definition of weak
solutions of boundary-value problem (1.1).

Assumption 3.4. By assumption, an exterior domain Ω as defined in the
introduction is an open connected set such that Ωc is compact. In particular
∂Ω is compact. Thus there exists r0 > 0 such that ∂Ω ⊆ Br := B(0, r) for all
r ≥ r0. We consider solutions of (1.1) that lie in

V1,p(Ω) :=
{

v ∈W1,p
loc (Ω) : v ∈W1,p(Ω ∩ Br) for all r > r0

}
.

For simplicity we now assume that ∂Ω is Lipschitz. We assume that Γ1, Γ2
are disjoint subsets of ∂Ω such that Γ1 is closed and Γ1 ∪ Γ2 = ∂Ω. We let
V1,p

Γ1
(Ω) be the closure of the vector space{

v ∈ V1,p(Ω) : v = 0 in a neighbourhood of Γ1

}
in V1,p(Ω). If h(x, v) ≡ 0 no regularity assumption on ∂Ω is needed.

We use the space V1,p(Ω) because we do not want to assume that the
solutions of (1.1) are in Lp(Ω).

Definition 3.5. We say that a function v is a weak solution of the boundary
value problem (1.1) on Ω if v ∈ V1,p

Γ1
(Ω) and

(3.5)
∫

Ω
|∇v|p−2∇v∇ϕ dx +

∫
Γ2

h(x, v) ϕ dH = 0

for every ϕ ∈ V1,p
Γ1

(Ω) with supp(ϕ) ⊆ Br.

The above definitions have to be modified in an obvious manner for non-
smooth domains. In particular, when using the setting from [1, 10, 11] we
require that v is in the Maz’ya space W1

p,p(Ω∩ Br, ∂Ω) for all r large enough.
If Ω admits the divergence theorem and the solution v is smooth enough,

then an integration by parts shows that v is a weak solution of (1.1) if and
only if v satisfies (1.1) in a classical sense. We next show that positive solu-
tions of (1.1) satisfy (3.1).

Proposition 3.6. Let Assumption 3.4 be satisfied and let ϕr be as in Proposi-
tion 3.1, and r0 > 0 such that Ωc ⊆ Br0 . Suppose that (1.2) is satisfied and that
v is a weak solution of (1.1). Then, inequality (3.1) holds with b = 0. In the
case of homogeneous Neumann boundary conditions, that is, if h(x, v) ≡ 0 and
Γ2 = ∂Ω, then every weak solution of (1.1) satisfies (3.1) for every b ∈ R.

Proof. Let r ≥ r0 and let ϕr be the same test-function as in Proposition 3.1.
Then vϕ

p
r ∈ W1,p

loc (Ω) with support in B2r. Moreover, by definition of ϕr we
have vϕp = v on Ω ∩ Br. Hence vϕp is a suitable test function to be used in
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(3.5). Using that v is a weak solution of (1.1) gives

0 =
∫

Ω∩B2r

|∇v|p−2∇v∇(vϕ
p
r )dx +

∫
Γ2

h(x, v) v ϕ
p
r dH

=
∫

Ω∩B2r

|∇v|p ϕ
p
r dx +

p
r

∫
(Ω∩B2r)\Br

vϕ
p−1
r |∇v|p−2∇v∇ϕ(·/r)dx

+
∫

Γ2

h(x, v) v ϕ
p
r dH.

Rearranging this equation we arrive at∫
Ω∩B2r

|∇v|p ϕ
p
r dx +

∫
Γ2

h(x, v) v ϕ
p
r dH

= − p
r

∫
(Ω∩B2r)\Br

vϕ
p−1
r |∇v|p−2∇v∇ϕ(·/r)dx.

By assumption (1.2) we have h(x, v)v ≥ 0. Setting C0 := p ‖∇ϕ‖L∞(B2) and
applying Hölder’s inequality we obtain∫

Ω∩B2r

|∇v|p ϕ
p
r dx

≤ C0

r

(∫
(Ω∩B2r)\Br

|∇v|p ϕ
p
r dx

)(p−1)/p (∫
(Ω∩B2r)\Br

|v|p dx
)1/p

,

which is (3.1) with b = 0. In the case of homogeneous Neumann boundary
conditions, for every b ∈ R, the function v− b is another weak solution of
(1.1). Hence we can replace v by v− b in the above calculations to obtain
(3.1). �

Remark 3.7. Note that the above proof only uses that

0 ≤
∫

Γ2

h(x, v)vϕ
p
r dH =

∫
Γ2

h(x, v)v dH < ∞.

4. PROOFS OF THE MAIN THEOREMS

This section is dedicated to the proofs of Theorems 1.1 and 1.2. By rescal-
ing, we can assume without loss of generality that Ωc ⊆ B1 and that v is
p-harmonic on Bc

1.

4.1. Proof of Theorem 1.1. Assume that 1 < p < d, and that v is a positive
weak solution of (1.1) satisfying lim|x|→∞ v(x) = 0. We need to show that
v ≡ 0. Due to Propositions 3.1 and 3.6 we only need to show that there
exists r0 > 0 such that v satisfies (3.2) with b = 0 for all r ≥ r0. By (1.4) or
Proposition 2.1 if p = 2, there are constants c1, c2 > 0 such that

0 ≤ v(x) ≤ c1 |x|(p−d)/(p−1)

for every x ∈ Bc
2. Hence,

(4.1)
1
rp

∫
B2r\Br

|v|p dx ≤
cp

1
rp

∫
B2r\Br

|x|p (p−d)/(p−1) dx

= cp
1

ωd

rp

∫ 2r

r
sp (p−d)/(p−1)sd−1 ds = cp

1 ωd c2 r(p−d)/(p−1)
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for all r ≥ r0 := 2, where ωd is the surface area of the unit sphere in Rd

and c2 = ln 2 if d = p2 and c2 = p−1
d−p2 (2(p2−d)/(p−1) − 1) if d 6= p2. As

p < d we conclude that v satisfies (3.2) with b = 0 for every r ≥ 2. As
lim|x|→∞ v(x) = 0 we conclude that v ≡ 0.

If p ≥ d, then every non-trivial positive bounded solution of (1.1) has a
strictly positive limit as |x| → ∞; see [12, Lemma A.2]. Because we assume
that the limit is zero, we must have v ≡ 0. Observe that these arguments
do not make use of the boundary conditions. This completes the proof of
Theorem 1.1.

4.2. Proof of Theorem 1.2. Let v be a semi-bounded weak solution of prob-
lem (1.1) with homogeneous Neumann boundary conditions, that is, Γ2 =
∂Ω and h(x, v) ≡ 0. Recall also that no regularity assumptions on ∂Ω are
needed.

Note that the p-Laplace operator ∆p is an odd operator, that is, ∆p(−v) =
−∆pv. Hence, for every c ∈ R, the function c ± v is another solution
of problem (1.1). If v is bounded from below we can therefore replace
v by v − infx∈Ω v(x), and if v is bounded from above we can replace v
by supx∈Ω v(x) − v. In either case we get a new solution v ≥ 0 with
infx∈Ω v(x) = 0. As before, we also assume that Ωc ⊆ B1.

If 1 < p < d, then by (1.4) the finite limit b := lim|x|→∞ v(x) exists. By
Proposition 3.6 inequality (3.1) is satisfied. To show that v satisfies (3.2)
with b just defined we repeat the calculation (4.1) with v replaced by v− b,
using the decay estimate from (1.4). We can now apply Proposition 3.1 to
conclude that v is constant.

It remains to deal with the case p ≥ d. Recall that by [12, Theorem 2.3],
every positive p-harmonic function v on Ω is either bounded in a neigh-
bourhood of infinity and has a limit b := lim|x|→∞ v(x) or v ∼ µp near in-
finity. In the second case the original solution considered is asymptotically
equivalent to ±µp near infinity. Assume now that v has a limit as |x| → ∞.
To show that v is constant we first note that by Proposition 3.6, v satisfies
(3.1) with b = 0. As v is bounded in a neighbourhood of infinity and since
p ≥ d, Remark 3.3 implies that v satisfies (3.2). Hence by Proposition 3.1, v
is constant. This completes the proof of Theorem 1.2.
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