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Abstract
Let Ω be a domain in Rn with n ≥ 2 and 0 ∈ Ω. We study anisotropic ellip-

tic equations such as −
∑n

i=1 ∂xi(|∂xiu|pi−2∂xiu) = δ0 in Ω (with Dirac mass δ0

at zero), subject to u = 0 on ∂Ω. We assume that all pi are in (1,∞) with their
harmonic mean p satisfying either Case 1: p < n and max1≤i≤n{pi} < p(n−1)

n−p or
Case 2: p = n and Ω is bounded. We introduce a suitable notion of fundamental so-
lution (or Green’s function) and establish its existence, together with sharp pointwise
upper bound estimates near the origin for the solution and its derivatives. The latter is
based on a Moser-type iteration scheme specific to each case, which is intricate due
to our anisotropic analogue of the reverse Hölder inequality. We also derive some
generalized anisotropic Sobolev inequalities and estimates in weak Lebesgue spaces
as critical tools in our proof.

Keywords. Anisotropic equations, Green’s function, Moser-type iteration scheme

1 Introduction and main result

Anisotropic elliptic equations have received much attention in recent years (see, for ex-
ample, [2, 5, 10, 11, 15, 17, 21, 22, 24, 25, 33, 37, 42, 48] and their references). Time-
dependent versions of these equations have been used as mathematical models to describe
the spread of an epidemic disease, see [4, 6]. Such evolution models also arise in fluid dy-
namics when the media has different conductivities in different directions, see [1, 2].

We study anisotropic elliptic equations with right-hand side the Dirac mass δ0 at zero
in a domain Ω of Rn with n ≥ 2 and 0 ∈ Ω, namely{

−∆−→p u = δ0 in Ω,

u = 0 on ∂Ω.
(1.1)
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We use ∆−→p u to denote div (A(∇u)), where A(∇u) is the vector field whose ith compo-
nent is given by |∂iu|pi−2∂iu with pi > 1 and 1 ≤ i ≤ n. As usual, ∇u = (∂1u, . . . , ∂nu)

stands for the gradient of u. Let meas (E) denote the measure of a measurable setE ⊂ Rn.
Let −→p := (p1, . . . , pn). Without loss of generality, we assume throughout that

1 < p1 ≤ p2 ≤ . . . ≤ pn <∞. (1.2)

In what follows, p denotes the harmonic mean of p1, . . . , pn, that is

1

p
:=

1

n

n∑
i=1

1

pi
. (1.3)

By a fundamental solution (or Green’s function) of (1.1), we mean any non-negative
solution of (1.1). Our main result gives the existence of a fundamental solution of (1.1) in
appropriate spaces and sharp pointwise upper bound estimates near zero for the solution
and its derivatives in two cases:

CASE 1: Let Ω be an arbitrary domain of Rn. Assume that

p < n and pn < p∗, where p∗ := p (n− 1) /(n− p) . (1.4)

CASE 2: Let p = n and Ω be a bounded domain.

The difficulty of this problem arises from the anisotropic character of (1.1) since there
is no explicit formula known for a fundamental solution of (1.1) when pi are not all equal.
Our fundamental solution lies in a suitable anisotropic space, denoted by T 1,−→p

0 (Ω), which
is a natural generalization of the spaces introduced by Bénilan et al. [7] for this type of
problem when pi are all equal. For n ≥ 2 and R > 0, we define E−→p (R) as follows

E−→p (R) :=

{
x ∈ Rn : 0 <

n∑
i=1

|xi|si < R

}
and si :=


pip∗
p∗ − pi

in Case 1,

pi in Case 2.
(1.5)

In Section 2, we define the space T 1,−→p
0 (Ω) and introduce a notion of weak solution of

(1.1), whose existence is proved by Theorem 1.1 below.

Theorem 1.1. Let Case 1 or Case 2 hold and R > 0 be such that E−→p (2R) ⊂ Ω. Then
(1.1) admits a non-negative weak solution Φ ∈ T 1,−→p

0 (Ω) ∩W 1,∞
loc (Ω \ {0}) (and, hence,

Φ is continuous in Ω \ {0}) with the following properties:

1. There exists a positive constant C0 = C0 (n,−→p ) such that

Φ (x) ≤ C0

(
n∑
i=1

|xi|
pi

p∗−pi

)−1

for all x ∈ E−→p (R) in Case 1. (1.6)
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2. There exist positive constants a = a(n,−→p ,meas (Ω)) and b = b(n,−→p ) so that

Φ (x) ≤ a+ b

∣∣∣∣∣ln
(

n∑
i=1

|xi|pi
)∣∣∣∣∣ for all x ∈ E−→p (R) in Case 2. (1.7)

3. There exists a positive constant C1 = C1 (n,−→p ) such that

n∑
i=1

|∂iΦ(x)|pi ≤ C1

(
n∑
i=1

|xi|si
)−1

for a.e. x ∈ E−→p (R) in both cases, (1.8)

where si is defined by (1.5).

The main contribution of this paper is to establish the upper bound estimates in Theo-
rem 1.1. The asymptotic behaviour near zero of a fundamental solution of (1.1) is an open
question when pi are not all equal. In Case 1, Namlyeyeva–Shishkov–Skrypnik conjec-
tured in [37] that the asymptotic behaviour of a fundamental (or source-type) solution of
(1.1) near zero is determined by the function U0 defined by

U0(x) :=

(
n∑
i=1

|xi|
pi

p∗−pi

)−1

for x = (x1, . . . , xn) 6= 0. (1.9)

By [37, Theorem 2.2], we only know that for our fundamental solution Φ of (1.1), the
limit inferior of Φ(x)/U0(x) is finite, whereas its limit superior is greater than zero as x
tends to zero. Note that U0 is given by (1.9) in Case 1, whereas in Case 2 we define U0 by

U0(x) := − ln

(
n∑
i=1

|xi|pi
)

for x ∈ Rn \ {0}. (1.10)

In Theorem 1.1 we prove that the limit superior of Φ(x)/U0(x) is finite as x approaches
zero. Section 5 contains the major technical work which goes into proving (1.6) and (1.7).
We outline the strategy in Section 1.1. The proof of the gradient estimates in (1.8) follows
essentially from (1.6) and (1.7) using rescaling arguments and Lieberman’s results [33],
see Corollary 5.3.

We prove the existence of a fundamental solution of (1.1) in Proposition 4.1 (see Sec-
tion 4) using an approach inspired by Bénilan et al. [7] (see also Boccardo–Gallöuet
[8, 9]). The idea is to consider approximate problems for which distributional solutions
exist (see Lemma 3.1) and show that we can pass to the limit in the weak formulation
to obtain a non-negative weak solution of (1.1). This plan is validated by Lemma 4.2,
whose proof relies essentially on local estimates in weak Lebesgue spaces in Lemma 3.3.
These estimates in Case 2 of Theorem 1.1 are new and more delicate since they require a
refined anisotropic Sobolev inequality, also established in this paper: See Lemma B.1 in
Appendix B, whose critical ingredient is an inequality of Moser–Trudinger type.
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In Case 1, it is usually assumed that Ω is bounded and p1 > p(n−1)
n(p−1)

, so that a fun-
damental solution Φ of (1.1) can be obtained in W 1,1

0 (Ω) (see Bendahmane–Karlsen [5]
and Boccardo–Gallouët–Marcellini [10]). In this case, using an anisotropic Sobolev em-
bedding (see [5, Theorem 2.1]), jointly with ∂iΦ ∈ Lqi(Ω) for all qi ∈ [1, pi(p∗−1)

p∗
)

and i = 1, . . . , n (see [10]), we find that Φ ∈ Lq(Ω) for all q ∈ [1, p∗ − 1). This re-
sult was improved in [5], where the fundamental solution Φ was shown to belong to the
Marcinkiewicz space Mp∗−1(Ω) (or, equivalently, the weak Lebesgue space Lp∗−1,∞(Ω),

see Section 3.2) and ∂iΦ ∈M
pi(p∗−1)

p∗ (Ω) for i = 1, . . . , n. However, if pn ≤ p(n−1)
n(p−1)

, which
implies that p ∈ (1, 2− 1

n
], the fundamental solution is not expected to belong toW 1,1(Ω)

and thus the notions of weak derivatives and distributional solutions do not apply anymore
(see [5]). In Theorem 1.1, we remove the restriction p1 >

p(n−1)
n(p−1)

in Case 1 and extend the
existence of a fundamental solution of (1.1) on any domain Ω. Hence, our fundamental
solution must be understood in an appropriate weak sense (see Definition 2.3) rather than
in a distribution sense considered in [5, 10] (see also Corollary 4.4).

We do not know whether the fundamental solution of (1.1) is unique in our general
framework. However, in a more restrictive setting, it is known that the fundamental so-
lution of the p-Laplacian operator, div (|∇u|p−2∇u) with 1 < p ≤ n, is unique due to
work of Kichenassamy–Véron [30] based on rescaling techniques and a strong maximum
principle. For a different approach, we refer to Trudinger–Wang [45, 46].

The properties of the fundamental solutions of elliptic equations and their construc-
tions have been investigated in many contexts. In the case of a linear operator, see the
pioneer work of Krasovskiı̆ [31]. For a construction in the context of a Riemannian mani-
fold, see Druet–Hebey–Robert [20, Appendix A]. Recent progress in the study of Green’s
functions for the biharmonic or polyharmonic operators has been made, for instance, by
Dall’Acqua–Sweers [18] and Grunau–Robert [28].

The study of the local behaviour of singular solutions to nonlinear elliptic equations
relies heavily on the properties of fundamental solutions. In the case of quasilinear equa-
tions, see the seminal papers by Serrin [40, 41]. For background and other important con-
tributions on the topic of singularities of solutions, we refer to Véron [47]. More recent
progress on the classification of the isolated singularities of solutions has been made for
nonlinear equations involving, for example, divergence-form operators (Brandolini et al.
[12]) or Hardy–Sobolev operators (Cı̂rstea [16]). The fundamental solutions also play a
critical role for singular solutions of fully nonlinear uniformly elliptic equations (see e.g.,
Labutin [32], Felmer–Quaas [23], Armstrong–Sirakov–Smart [3] and their references).

It is worth mentioning that for anisotropic elliptic equations there is little known about
the local behaviour of singular solutions. By analogy with the p-Laplacian, it is expected
that the properties of fundamental solutions will have many consequences for the singular
solutions of anisotropic elliptic equations.
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1.1 Sketch of the proof of (1.6) and (1.7)

We assume that pi are not all equal, otherwise the estimates are trivial since an explicit
fundamental solution can be found (see Section 2.1). Let E−→p (R) be given by (1.5). For
λ ∈ (0, 1) and r ∈ (0, R), we defineAr(λ) as the set E−→p ((1 + λ)r)\E−→p ((1− λ)r). Since
E−→p (R) is included in

⋃
0<r<RAr (1/2), the estimates in (1.6) and (1.7) would follow from

‖Φ‖L∞(Ar(1/2)) ≤

{
Cr−1/p∗ in Case 1,

a+ b| ln r| in Case 2.
(1.11)

Using the weak solution Φε of the approximate problem (3.2) in Lemma 3.1, it is enough
to show that (1.11) holds for Φε instead of Φ. This requires a delicate analysis, which is
carried out separately for Case 1 (see Proposition 5.5) and Case 2 (see Proposition 5.6).

Our approach is based on an anisotropic version of the Moser-type iteration scheme.
One difficulty arises in the running step of the iteration process, which unlike the isotropic
case, does not give a “pure” reverse Hölder inequality between two precisely determined
Lebesgue norms. Our anisotropic analogue renders one Lebesgue norm being dominated
by one out of n possible different Lebesgue norms raised to different powers as follows.

Proposition 1.2 (An anisotropic reverse Hölder inequality). Letm = n/(n−p) in Case 1
and m > 1/(n− 1) in Case 2. For every Γ > m(p− 1) and 0 < λ < λ′ ≤ 3/4, we have

‖Φε‖
Γ
m

LΓ(Ar(λ))
≤ Cr

1
m
−n−p

n max
i=1,...,n

 r
pi(n−p)
p(n−1)

−1

(λ′ − λ)pi
‖Φε‖

Γ
m

+pi−p

L
Γ
m+pi−p(Ar(λ′))

 , (1.12)

where C is a positive constant of the form c(n,−→p ) max{1, (Γ/m− p+ 1)−pn}Γp.

The proof of Proposition 1.2 (see Section 5.1) relies essentially on: (1) a weighted
anisotropic Sobolev inequality (see Lemma A.1 in Appendix A), which is applied to ηΦε
for some suitable function η in C1

c (Ωε \ Bε(0)) and (2) key estimates derived by using

η
Γ
m
−p+piΦ

Γ
m
−p+1

ε as a test function in the weak formulation of the approximate problem
(3.2). Since the definition of m in Proposition 1.2 is different in Case 1 compared with
Case 2, the iteration scheme needs to be devised carefully for each case as follows:

(I) In Case 1, the condition on Γ reads as Γ > p∗ − 1. Since C in (1.12) blows-up as Γ

decreases to p∗ − 1, in the running step we shall require Γ ≥ p∗ − 1 + δ for some
fixed positive δ = δ(n,−→p ). The choice of such a δ is possible because pn < p∗.

(II) In Case 2, we apply Proposition 1.2 for m = 2 and Γ ≥ q− 1, where q is arbitrarily
larger than some value C0 > 0, say C0 = max{2n + 1, 2(pn − n + 1)}. Unlike
Case 1, the exact value of the threshold is not essential as long as it is big enough.
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With each subsequent iteration, we would need to ensure that Proposition 1.2 can be
applied to all norms in the right-hand side of (1.12), that is for all i = 1, . . . , n we require

Γ/m+ pi − p ≥

{
p∗ − 1 + δ in Case 1,

q − 1 in Case 2.
(1.13)

Let (Γk)k≥1 satisfy limk→∞ Γk =∞ and λk = 1/2 + (1/2)k+1 for k ≥ 1. For k ≥ k0

large and N a fixed large positive integer independent of k, we apply Proposition 1.2 with
Γ = Γk, λ = λk+N+1 and λ′ = λk+N . Let ` denote the maximum number of iterations
permitted under the restrictions in (1.13). Due to the anisotropy in (1.12), we cannot
determine the precise number of iterations `. However, with a careful choice of Γk and
N , we can guarantee that k < `(k) ≤ k + N . After running our iteration scheme, jointly
with various estimates from above, we find that ‖Φε‖LΓk (Ar(λk+N+1)) is dominated by

C̃r

∑`
j=1 m

j(pτj−p∗)
p∗Γk ‖Φε‖

m`Γk,τ1...τ`
Γk

L
Γk,τ1...τ` (Ar(λk+N−`+1))

in Case 1, see (5.32),

C̃
2`

Γk q
n
∑`
j=1 2j

Γk r
−

∑`
j=1 2j−1

Γk ‖Φε‖
2`Γk,τ1...τ`

Γk

L
Γk,τ1...τ` (Ar(λk+N−`+1))

in Case 2, see (5.51).

Here, C̃ denotes a positive constant depending only on n and−→p , while τj ∈ {1, 2, . . . , n}
is in some sense a maximizer for each j = 1, . . . , `. For example, τ1 is the index for which
the right-hand side of (1.12) reaches its maximum and Γk,τ1 is given by Γk/m+ pτ1 − p.

From the definition of `, we have Γk,τ1...τ` < p∗− 1 + δ in Case 1 and Γk,τ1...τ` < q− 1

in Case 2. To further bound ‖Φε‖LΓk,τ1...τ` (Ar(λk+N−`+1))
from above, we invoke interpo-

lation inequalities, together with the local estimates in weak Lebesgue spaces found in
Lemma 3.3. To conclude (1.11) in Case 1, we let k → ∞. In case 2, after some fur-
ther manipulations we can also pass to the limit, leading to (5.59) in which we choose
q = C0 max{| ln r|, 1} to reach (1.11). This concludes the sketch of the proof of the upper
bound estimates in Theorem 1.1.

The Moser iteration scheme represents a milestone in the development of the regularity
theory of elliptic equations (see Gilbarg–Trudinger [26] or Han–Lin [29] for more details).
We mention that for anisotropic equations, other Moser-type iteration schemes, which are
different from ours, have been used to derive local boundedness or gradient estimates of
solutions. See, for instance, works by Fusco–Sbordone [25], Lieberman [33], or the more
recent paper by Cupini–Marcellini–Mascolo [17] and the references therein.

1.2 Plan of the paper

In Section 2, we define the appropriate anisotropic Sobolev spaces for our problem.
In Section 3, we construct the above-mentioned family of solutions Φε to approximate
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problems (see Lemma 3.1) for which we also establish key estimates in weak Lebesgue
spaces (see Lemma 3.3). Section 4 is dedicated to the proof of the existence of a fun-
damental solution of (1.1) (see Proposition 4.1). In Section 5, we prove our upper bound
estimates by performing an iteration scheme as explained above. In Appendix A, we prove
a weighted anisotropic Sobolev inequality, see Lemma A.1, which is invoked in the proof
of the anisotropic reverse Hölder inequality of Proposition 1.2. Finally, in Appendix B, we
establish another anisotropic inequality based on an inequality of Moser–Trudinger type,
see Lemma B.1, which is essential in the derivation of our estimates in weak Lebesgue
spaces pertaining to Case 2 of Theorem 1.1.

2 Functional spaces

In this section, we give a suitable notion of weak solution for studying (1.1). To this end,
we need to introduce appropriate anisotropic spaces since the solutions of (1.1) cannot be
defined in general in the usual distribution sense.

2.1 Motivation

If pi = 2 ≤ n for all i = 1, . . . , n, then ∆−→p u gives the usual Laplacian, whose fundamen-
tal solution is well-known. When all pi are equal to p ∈ (1, n], a non-negative solution of
(1.1) can still be found explicitly. For simplicity, let Ω =

{∑n
i=1 |xi|

p
p−1 < R

1
n−1

}
. By

direct inspection, a fundamental solution of (1.1) takes the form

Φ(x) =


C

( n∑
i=1

|xi|
p
p−1

) p−n
p

−R
p−n
p(n−1)

 if 1 < p < n,

C

(
ln
(
R

1
n−1

)
− ln

(
n∑
i=1

|xi|
n
n−1

))
if p = n

(2.1)

for all x = (x1, . . . , xn) ∈ Ω \ {0} and some normalizing constant C = C(n, p) > 0.
If all pi are equal to p ∈ (1, 2 − 1/n], then the fundamental solution Φ in (2.1) does

not belong to W 1,1
loc (Ω). Indeed, a simple calculation gives that

|∇Φ| = C

(
n− p
p− 1

)( n∑
i=1

|xi|
p
p−1

)−n
p
(

n∑
i=1

|xi|
2
p−1

) 1
2

,

which shows that |∇Φ| ∈ L1
loc(Ω) if and only if p ∈ (2 − 1/n, n). It follows that for

p ∈ (1, 2 − 1/n], we cannot take the gradient of Φ in the anisotropic −→p -Laplacian in
the usual distribution sense. We shall tackle this difficulty as in Bénilan et al. [7] by
introducing the space T 1,1

loc (Ω), which allows us to give a sense to the gradient of u even
if it is not locally integrable in general. This will be done in Section 2.2, see Definition 2.1.
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2.2 Anisotropic Sobolev spaces

We assume that (1.2) holds and Ω is an open subset of Rn with n ≥ 2. For any h > 0 and
u : Ω → R, let Thu denote the truncation of u at height h, namely

Thu : Ω → R, Thu (x) :=

{
u(x) if |u (x)| ≤ h,

h sgn(u(x)) if |u (x)| > h.
(2.2)

Let 1E denote the characteristic function of a measurable set E in Rn.

Definition 2.1. (i) The functional space T 1,1
loc (Ω) is defined as the set of all measurable

functions u : Ω → R whose truncated function Thu belongs to W 1,1
loc (Ω) for all h > 0.

(ii) For any u ∈ T 1,1
loc (Ω), the gradient ∇u is defined as the unique measurable func-

tion v : Ω → Rn such that for all h > 0, we have

∇(Thu) = v1{|u|<h} a.e. in Ω. (2.3)

For the existence and uniqueness (up to a set of measure zero) of v, see [7, Lemma 2.1].

Remark 2.2. (i) The set T 1,1
loc (Ω) is not even a vector space, although if u1 ∈ T 1,1

loc (Ω)

and u2 ∈ W 1,1
loc (Ω) ∩ L∞loc(Ω), then u1 + u2 ∈ T 1,1

loc (Ω) (see [7, p. 245]).
(ii) The above definition of derivative for u ∈ T 1,1

loc (Ω) is not a definition in the sense
of distributions since, in general, if u ∈ T 1,1

loc (Ω) ∩ L1
loc(Ω), then ∇u need not belong to

L1
loc(Ω). However, for u ∈ T 1,1

loc (Ω) we have ∇u ∈ L1
loc(Ω) if and only if u ∈ W 1,1

loc (Ω),
and in this case, v in (2.3) coincides with∇u in the usual weak sense, that is

∂i(Thu) = 1{|u|<h}∂iu a.e. in Ω for every h > 0 and all i = 1, . . . , n.

Given the definition of T 1,1
loc (Ω), we now introduce a concept of weak solution of (1.1).

Definition 2.3. We say a function u : Ω → R is a weak solution of (1.1) if u ∈ T 1,1
loc (Ω)

and |∂iu|pi−1 ∈ L1
loc (Ω) for all i = 1, . . . , n such that

n∑
i=1

∫
Ω

∂iu |∂iu|pi−2 ∂iϕdx = ϕ (0) for all ϕ ∈ C∞c (Ω) . (2.4)

We next introduce other functional spaces needed in our paper:

(i) Let T 1,−→p
loc (Ω) be the set of all u ∈ T 1,1

loc (Ω) such that ∂i(Thu) ∈ Lpiloc(Ω) for every
h > 0 and all i = 1, . . . , n. Notice that W 1,−→p

loc (Ω) ⊂ T 1,−→p
loc (Ω) and

T 1,−→p
loc (Ω) ∩ L∞loc(Ω) = W 1,−→p

loc (Ω) ∩ L∞loc(Ω).

(ii) The set T 1,−→p (Ω) consists of all functions u ∈ T 1,1
loc (Ω) with the property that

∂i(Thu) ∈ Lpi(Ω) for every h > 0 and all i = 1, . . . , n.
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(iii) We define T 1,−→p
0 (Ω) as the set of functions u ∈ T 1,−→p (Ω) such that for any h > 0,

there exists a sequence (ϕk)k∈N in C∞c (Ω) such that as k →∞, it holds{
ϕk → Thu in L1

loc(Ω),

∂iϕk → ∂i(Thu) in Lpi(Ω) for all i = 1, . . . , n.
(2.5)

Note that, similar to Bénilan et al. [7], in the definition of T 1,−→p (Ω) and T 1,−→p
0 (Ω) we

do not require Thu to belong to any Lq(Ω) with q ≥ 1. This condition is obviously
satisfied when Ω is bounded, but it makes a real difference when Ω is unbounded.

As in Appendix II of [7], it can be proved that the above definition of u ∈ T 1,−→p
0 (Ω)

is equivalent to the following: The function u ∈ T 1,−→p (Ω) and there exists a se-
quence (ζk)k in C∞c (Ω) such that as k →∞, we have{

ζk → u a.e. in Ω;

∂i(Th(ζk))→ ∂i(Thu) in Lpi(Ω) for every h > 0 and all i = 1, . . . , n.
(2.6)

Note that the main difference between (2.5) and (2.6) is that in the former case the
sequence (ϕk)k depends on h.

(iv) Let W 1,−→p (Ω) denote the set of all functions u ∈ Lp(Ω) whose weak partial deriva-
tive ∂iu exists and belongs toLpi(Ω) for each i = 1, . . . , n. The anisotropic Sobolev
space W 1,−→p (Ω) is a reflexive and separable Banach space equipped with the norm

‖u‖W 1,−→p (Ω) := ‖u‖Lp(Ω) +
n∑
i=1

‖∂iu‖Lpi (Ω) .

We write un → u in W 1,−→p
loc (Ω) to mean un → u in W 1,−→p (ω) for each ω b Ω. By

ω b Ω, we mean that ω is an open set such that ω is compact and ω ⊂ Ω.

(v) The set W 1,−→p
0 (Ω) is defined as the closure of C∞c (Ω) with respect to ‖ · ‖W 1,−→p (Ω).

Hence, we have the inclusion W 1,−→p
0 (Ω) ⊂ T 1,−→p

0 (Ω). If Thu ∈ W 1,−→p
0 (Ω) for every

h > 0, then u ∈ T 1,−→p
0 (Ω); The converse is also true provided that Ω is bounded.

It can be proved that the definition of u ∈ W 1,−→p
0 (Ω) is equivalent to u ∈ T 1,−→p

0 (Ω)

and ∂iu ∈ Lpi(Ω) for all i = 1, . . . , n when Ω is bounded.

We recall the following Sobolev inequality due to Troisi (see Theorem 1.2 in [43]):

Lemma 2.4. Let p be given by (1.3). Then there exists a constant c > 0 such that

‖u‖Lq(Ω) ≤ c

n∏
i=1

‖∂iu‖1/n
Lpi (Ω) for all u ∈ C∞c (Ω), (2.7)

where c = c(n,−→p ) and q = np/(n − p) if p < n, while c = c(n,−→p , q,meas (suppu))

and q is any positive number if p ≥ n.
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Remark 2.5. If p < n, then (2.7) holds for any u ∈ W 1,−→p
0 (Ω) by a density argument.

Remark 2.6. If p < n, then T 1,−→p
0 (Ω) ⊂ L0(Ω), where L0(Ω) denotes the set of mea-

surable functions u : Ω → R such that the set {|u| > ε} has finite measure for every
ε > 0. Indeed, ∂iThu ∈ Lpi(Ω) for every h > 0 so that Thu ∈ Lnp/(n−p)(Ω) (by a density
argument using (2.7)). Thus, Thu ∈ L0(Ω) for every h > 0.

From our definition of W 1,−→p (Ω) and W 1,−→p
0 (Ω), we recover the usual Sobolev space

W 1,p(Ω) andW 1,p
0 (Ω), respectively when pi = p for all i = 1, . . . , n. On the other hand, if

Ω is bounded and 1 < p <∞, we infer that (2.7) is true with q = p and any u ∈ W 1,−→p
0 (Ω)

so that an equivalent norm on W 1,−→p
0 (Ω) can be taken as |‖u|‖ =

∑n
i=1 ‖∂iu‖Lpi (Ω).

We mention in passing that there are other versions of anisotropic spaces, which may
not coincide with the ones introduced here (see, for example, Nikol’skiı̆ [38], Rákosnı́k
[39] and Troisi [43]).

3 Auxiliary tools

In Lemma 3.1 we establish the existence of a family of approximate solutions for which
later in Lemma 3.3 we give crucial uniform estimates in weak Lebesgue spaces. These
estimates in Case 2 (p = n and Ω is bounded) are new and different from those in Case 1
(p < n). In the former case, they are obtained via anisotropic Sobolev inequalities of
Moser–Trudinger type (see Lemma B.1 in Appendix B). For the reader’s convenience, in
Section 3.2 we introduce the weak Lebesgue spaces and their properties.

3.1 Approximate solutions

Let Ω be a domain of Rn such that 0 ∈ Ω. In this section, we are in either Case 1 (see
(1.4)) or Case 2 (p = n and Ω is bounded). To prove the existence of weak solutions
of (1.1), we consider suitable approximate problems for which existence results can be
obtained easily.

We use B1/ε (0) to denote the ball of center 0 and radius 1/ε. Since Ω may be un-
bounded (when p < n), we approximate Ω using a sequence of bounded domains Ωε

with Ωε → Ω as ε↘ 0. We fix ε0 ∈ (0, 1). For ε ∈ (0, ε0], we define

Ωε :=

{
Ω ∩B1/ε (0) if p < n,

Ω if p = n.

Moreover, for every ε ∈ (0, ε0], we construct a function fε with the following properties:{
fε ∈ C∞c (Bε (0)), fε ≥ 0, and ‖fε‖L1(Ωε) ≤ 1,

fε
?
⇀ δ0 in the sense of measures as ε→ 0.

(3.1)
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Let f1 ∈ C∞c (B1 (0)) be such that f1 ≥ 0 and
∫
B1(0)

f1 (x) dx = 1. For any ε ∈ (0, ε0],
we set fε (x) := ε−nf1 (ε−1x) for all x ∈ Bε(0) and fε = 0 on Rn \ Bε(0). Hence, fε
satisfies (3.1).

Lemma 3.1. Let ε ∈ (0, ε0] be arbitrary. Then the problem{
−∆−→p Φε = fε in Ωε,

Φε = 0 on ∂Ωε

(3.2)

admits a non-negative weak solution Φε ∈ W 1,−→p
0 (Ωε) ∩ L∞loc (Ωε) in the sense that

n∑
i=1

∫
Ωε

∂iΦε|∂iΦε|pi−2∂iϕdx =

∫
Ωε

fε ϕdx for all ϕ ∈ W 1,−→p
0 (Ωε) . (3.3)

Furthermore, for every h > 0, the solution Φε satisfies
n∑
i=1

∫
{Φε≤h}

|∂iΦε|pi dx ≤ h. (3.4)

Proof. For u ∈ W 1,−→p
0 (Ωε) fixed, we define Aεu : W 1,−→p

0 (Ωε)→ R by

〈Aεu, v〉 :=
n∑
i=1

∫
Ωε

∂iu|∂iu|pi−2∂iv dx for every v ∈ W 1,−→p
0 (Ωε) .

Let p′i denote the Hölder conjugate of pi, that is p′i = pi/(pi−1) for i = 1, . . . , n. Clearly,
Aεu belongs to the dual of W 1,−→p

0 (Ωε), denoted by W−1,
−→
p′ (Ωε) with

−→
p′ := (p′1, . . . , p

′
n).

One can easily check that the operatorAε : W 1,−→p
0 (Ωε)→ W−1,

−→
p′ (Ωε) is bounded, mono-

tone, coercive and hemicontinuous (see Bendahmane–Karlsen [5] for more details). Then,
Aε is a surjective operator (see Lions [34, Chapter 2, Theorem 2.1]). Let Bεϕ denote
the right-hand side of (3.3). Since Bε ∈ W−1,

−→
p′ (Ωε), the surjectivity of Aε proves the

existence of Φε ∈ W 1,−→p
0 (Ωε) such that AεΦε = Bε, that is (3.3) holds. Moreover, by

Fusco–Sbordone [25, Remark 3.5], we obtain that Φε ∈ L∞loc (Ωε).
To prove that Φε ≥ 0 a.e. in Ωε, we denote Nε := {x ∈ Ωε : Φε(x) < 0}. If

meas (Nε) 6= 0, then by using Φε1Nε as a test function in (3.3), we find that
n∑
i=1

∫
Nε

|∂iΦε|pi dx =

∫
Nε

fεΦε dx ≤ 0 , (3.5)

which implies that Φε = 0 a.e. in Nε. This contradiction shows that Φε ≥ 0 a.e. in Ωε.
For any h > 0, we have ThΦε = min{Φε, h} ∈ W 1,−→p

0 (Ωε). By using the truncated
function ThΦε as a test function in (3.3), we obtain that

n∑
i=1

∫
{Φε≤h}

|∂iΦε|pi dx =
n∑
i=1

∫
Ωε

∂iΦε |∂iΦε|pi−2 ∂i(ThΦε) dx

=

∫
Ωε

fε ThΦε dx ≤ h

∫
Ωε

fε dx ≤ h ,

(3.6)

which proves (3.4). This ends the proof of Lemma 3.1.
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3.2 Weak Lebesgue spaces

The weak L∞(Ω) space is by definition the usual L∞(Ω) space. Therefore, unless other-
wise stated, we assume throughout this subsection that 0 < q < ∞. Recall that Lq(Ω)

denotes the set of all real-valued measurable functions u on Ω such that |u|q is integrable.
The quasi-norm of such a function u ∈ Lq(Ω) is defined by

‖u‖Lq(Ω) :=

(∫
Ω

|u(x)|q dx
) 1

q

.

Whenever 1 ≤ q <∞, the Minkowski inequality holds:

‖f + g‖Lq(Ω) ≤ ‖f‖Lq(Ω) + ‖g‖Lq(Ω) for all f, g ∈ Lq(Ω), (3.7)

whereas for 0 < q < 1, the inequality (3.7) is reversed when f, g ≥ 0. However, for the
case 0 < q < 1, the inequality (3.7) is replaced by the following

‖f + g‖Lq(Ω) ≤ 2
1−q
q
(
‖f‖Lq(Ω) + ‖g‖Lq(Ω)

)
for all f, g ∈ Lq(Ω).

Note that Lq(Ω) are Banach spaces for q ≥ 1 and quasi-Banach spaces for q ∈ (0, 1).
For a measurable function u : Ω → R, the distribution function of u is the function du

defined on [0,∞) as follows

du(h) := meas({x ∈ Ω : |u (x)| > h}). (3.8)

The distribution function h 7−→ du(h) is a decreasing function.

Definition 3.2. For 0 < q < ∞, we define the weak Lq(Ω) space, denoted by Lq,∞ (Ω),
as the set of all measurable functions u : Ω → R such that

‖u‖Lq,∞(Ω) = sup
h>0

{
h du(h)

1
q

}
<∞. (3.9)

As an analogue of (3.7), for any 0 < q <∞ we have

‖f + g‖Lq,∞(Ω) ≤ max{2, 21/q}
(
‖f‖Lq,∞(Ω) + ‖g‖Lq,∞(Ω)

)
for all f, g ∈ Lq,∞(Ω).

Notice that ‖·‖Lq,∞(Ω) does not define a norm for q ∈ (0,∞), but a quasi-norm in
Lq,∞ (Ω). It can be shown that Lq,∞ (Ω) is a complete quasi-normed space for q ∈ (0,∞).

The weak Lq(Ω) spaces are larger than the usual Lq(Ω) spaces, that is

Lq(Ω) ⊆ Lq,∞(Ω) for 0 < q <∞. (3.10)

Indeed, we have ‖u‖Lq,∞(Ω) ≤ ‖u‖Lq(Ω) for any u ∈ Lq(Ω) by Chebyshev’s inequality:

hq du(h) ≤
∫
{x∈Ω: |u(x)|>h}

|u(x)|q dx.
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Furthermore, the inclusion in (3.10) is strict. Indeed, for any q ∈ (0,∞), the function
u(x) = |x|−n/q is not in Lq(Rn), whereas u belongs to Lq,∞(Rn) with ‖u‖Lq,∞(Rn) being
the measure of the unit ball in Rn to the (1/q)th power.

If Ω is bounded, then for 0 < q0 < q <∞, we have Lq,∞(Ω) ⊆ Lq0(Ω) and

‖u‖Lq0 (Ω) ≤
(

q

q − q0

) 1
q0

(meas (Ω))
1
q0
− 1
q ‖u‖Lq,∞(Ω) for all u ∈ Lq,∞(Ω). (3.11)

The inequality in (3.11) will be applied several times in the paper. For more details on
weak Lebesgue spaces, we refer to Grafakos [27] .

3.3 Key estimates in weak Lebesgue spaces

When p < n, Bendahmane–Karlsen [5] proved (3.12) under more general structure con-
ditions on the anisotropic operator, but with a constant depending on the domain. In our
framework, we prove that the constant in (3.12) depends only on n and −→p . Furthermore,
the case p = n included in Lemma 3.3 is new compared with [5].

Lemma 3.3. For any ε ∈ (0, ε0], let Φε be the weak solution of (3.2).

(1) If (1.4) holds, then there exists a positive constant C = C (n,−→p ) such that

n∑
i=1

‖∂iΦε‖
L
pi(p∗−1)

p∗ ,∞
(Ωε)

+ ‖Φε‖Lp∗−1,∞(Ωε)
≤ C. (3.12)

(2) If p = n andΩ is bounded, then there exists a positive constant C = C (n,−→p ) such
that for all q ≥ 1, we have

‖Φε‖Lq,∞(Ω) ≤ max
{
Cq, (meas (Ω))1+ 1

q

}
,

n∑
i=1

‖∂iΦε‖
piq

q+1

L
piq
q+1 ,∞(Ω)

≤ (Cq)q + n (meas (Ω))q+1.
(3.13)

Proof. (1) We proceed using essentially the same ideas as in [5]. Let p∗ := np/ (n− p).
Since ThΦε ∈ W 1,−→p

0 (Ωε) and p < n, by Remark 2.5 and (3.6), there exists a constant
C = C (n,−→p ) > 0 such that

‖ThΦε‖Lp∗ (Ωε)
≤ C

n∏
i=1

‖∂i(ThΦε)‖1/n
Lpi (Ωε)

≤ Ch1/p for every h > 0. (3.14)

We conclude (3.12) by showing that

‖Φε‖Lp∗−1,∞(Ωε)
≤ C

p∗
p∗−1 and ‖∂iΦε‖

L
pi(p∗−1)

p∗ ,∞
(Ωε)
≤ (Cp∗ + 1)

p∗
pi(p∗−1) (3.15)
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for each i = 1, . . . , n. From (2.2), (3.8), and (3.14), we obtain that

h dΦε (h)
1
p∗ =

(∫
{Φε>h}

(ThΦε)
p∗ dx

) 1
p∗

≤ ‖ThΦε‖Lp∗ (Ωε)
≤ Ch

1
p for all h > 0. (3.16)

The first inequality in (3.15) follows from (3.16) since

dΦε (h) ≤ Cp∗h1−p∗ for every h > 0. (3.17)

Moreover, using (3.6) and (3.17), for each i = 1, . . . , n and h > 0, we find that

d∂iΦε (h) ≤ dΦε
(
hpi/p∗

)
+ meas

({
x ∈ Ωε : Φε (x) ≤ hpi/p∗ and |∂iΦε(x)| > h

})
≤
(
Cp∗ + 1

)
h−pi(p∗−1)/p∗ .

This implies the second inequality in (3.15). Hence, the assertion of (a) holds.

(2) By Lemma B.1 in Appendix B, there exists a constant c = c (n,−→p ) > 0 such that
for all q ≥ 1 and h > 0, we have

‖ThΦε‖n
L

(q+1)n
n−1 (Ω)

≤ c(q + 1)n−1

(
meas (Ω) +

n∑
i=1

∫
{Φε≤h}

|∂iΦε|pi dx

) q+n
q+1

. (3.18)

Since ThΦε = min{Φε, h}, by using (3.8) we see that

‖ThΦε‖n
L

(q+1)n
n−1 (Ω)

≥
(∫
{Φε>h}

h
n(q+1)
n−1 dx

)n−1
q+1

= hndΦε(h)
n−1
q+1 for all h > 0. (3.19)

From (3.4), (3.18), and (3.19), we infer that

hndΦε(h)
n−1
q+1 ≤ c(q + 1)n−1 (meas (Ω) + h)

q+n
q+1 for every h > 0.

Hence, for all h > 0, we have

h dΦε(h)
1
q ≤ c

q+1
q(n−1) (q + 1)

q+1
q
(
h−1meas (Ω) + 1

) q+n
q(n−1)

≤ (c+ 1)
2

n−1 6q
(
h−1meas (Ω) + 1

)n+1
n−1 .

(3.20)

If 0 < h < meas (Ω), then h dΦε(h)
1
q ≤ (meas (Ω))

1
q

+1, whereas for h ≥ meas (Ω) we
obtain from (3.20) that h dΦε(h)

1
q ≤ Cq, where C = C(n,−→p ) > 1. It follows that

‖Φε‖Lq,∞(Ω) = sup
h>0

{
h dΦε(h)

1
q

}
≤ max

{
Cq, (meas (Ω))1+ 1

q

}
.

This proves the first inequality in (3.13). Using (3.4) and (3.8), for any h > 0, we find that

d∂iΦε(h) = meas ({x ∈ Ω : |∂iΦε(x)| > h})

≤ meas
({
x ∈ Ω : Φε(x) ≤ h

pi
q+1 and |∂iΦε(x)| > h

})
+ dΦε

(
h

pi
q+1

)
≤ h−pi

∫{
Φε≤h

pi
q+1

} |∂iΦε|pi dx+ dΦε

(
h

pi
q+1

)
≤ h−

piq

q+1

(
1 + ‖Φε‖qLq,∞(Ω)

)
.
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Hence, for every i = 1, . . . , n, we obtain that

‖∂iΦε‖
piq

q+1

L
piq
q+1 ,∞(Ω)

= sup
h>0

{
h
piq

q+1d∂iΦε(h)
}
≤ 1 + max

{
(Cq)q, (meas (Ω))q+1

}
. (3.21)

The second inequality in (3.13) follows from (3.21). This completes the proof.

Remark 3.4. In both cases of Lemma 3.3, we find that

lim
h→∞

dΦε(h) = 0 and lim
h→∞

d∂iΦε(h) = 0 for every i = 1, . . . , n, (3.22)

where all limits hold uniformly with respect to ε ∈ (0, ε0].

4 Existence of a fundamental solution

In this section, we adapt ideas of Bénilan et al. [7] to show that, under the assumptions
of Theorem 1.1, problem (1.1) admits a fundamental solution Φ ∈ T 1,−→p

0 (Ω). This is ob-
tained using an approximation procedure as in Boccardo–Gallöuet [8, 9] and Dall’Aglio
[19]. For more general existence and regularity results for nonlinear measure data prob-
lems, see Mingione [35].

Proposition 4.1. Suppose that either Case 1 or Case 2 in Theorem 1.1 holds. Then (1.1)
has a non-negative weak solution Φ ∈ T 1,−→p

0 (Ω).

We later prove that Φ in Proposition 4.1 belongs to W 1,∞
loc (Ω \ {0}) (see Remark 5.2).

Proof. Let (εk)k∈N be a sequence in (0, ε0] such that εk ↘ 0 as k → ∞. For any k ∈ N,
let Φεk be as in Lemma 3.1. We define Φεk = 0 on Rn \ Ωεk . For every h > 0 and
i = 1, . . . , n, we have the following facts about (ThΦεk)k:

(a) From (2.2) and Φεk ∈ W
1,−→p
0 (Ωεk), we have ThΦεk ∈ W

1,−→p
0 (Ωεk) for all k ∈ N and

∂iThΦεk = 1{Φεk<h}∂iΦεk a.e. in Ω. (4.1)

(b) For any 1 ≤ q ≤ ∞, the family (ThΦεk)k is uniformly bounded in Lqloc(Rn).

(c) The family (∂iThΦεk)k is uniformly bounded in Lpi(Rn) (see (3.4)).

(d) Up to a subsequence, ThΦεk converges in Lqloc(Rn) for all q ∈ [1,∞).

We need only prove (d). Fix R > 0. From (c), we see that (ThΦεk)k is uniformly
bounded inW 1,p1(BR(0)). So, up to a subsequence, (ThΦεk)k converges in Lq(BR(0)) for
every q ∈ [1, p1] due to the compactness of the embedding W 1,p1(BR(0)) b Lp1(BR(0)).
Hence, using (b) and an interpolation between L1(BR(0)) and L∞(BR(0)), we get that,
up to a subsequence, (ThΦεk)k converges in Lq(BR(0)) for all q ∈ [1,∞). Since R > 0 is
arbitrary, by a diagonal argument, we conclude (d).

In the framework of Proposition 4.1, we establish the following auxiliary result.
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Lemma 4.2. Fix K an arbitrary compact subset of Ω. Let ε0 > 0 be small such that
K ⊂ Ωεk for every k ∈ N. Then, for every i = 1, . . . , n, we have:

(i) The family
{
|∂iΦεk |

pi−2 ∂iΦεk
}
k

is uniformly bounded in L1(K) and

lim
h→∞

sup
k∈N

∫
{x∈Ωεk : |∂iΦεk |>h}

|∂iΦεk |pi−1 dx = 0. (4.2)

(ii) There exists a measurable function Φ : Ω → R such that, up to a subsequence,

Φεk → Φ locally in measure and a.e. in Ω as k →∞. (4.3)

(iii) Moreover, Φ ∈ T 1,1
loc (Ω) and, up to a subsequence, ∂iΦεk satisfies

∂iΦεk → ∂iΦ locally in measure and a.e. in Ω as k →∞. (4.4)

Remark 4.3. Let h > 0 be arbitrary. From (d) and (4.3), we get that, up to a subsequence,

ThΦεk → ThΦ in Lqloc(R
n) and a.e. in Ω for every q ∈ [1,∞). (4.5)

We postpone the proof of Lemma 4.2 to complete the proof of Proposition 4.1.

Proof of Proposition 4.1 concluded. We first show that Φ is a weak solution of (1.1)
(see Definition 2.3). Let ϕ ∈ C∞c (Ω) be arbitrary. Then suppϕ ⊂ Ωεk0

if k0 ∈ N is large
enough. Since Φεk is a weak solution of (3.2) with ε = εk and Ω = Ωεk , we have

n∑
i=1

∫
Ωεk

∂iΦεk |∂iΦεk |pi−2∂iϕdx =

∫
Ωε

fεk ϕdx for every k ≥ k0. (4.6)

From Lemma 4.2(i), the family
{
|∂iΦεk |

pi−2 ∂iΦεk
}
k

is uniformly integrable in L1(K).
In view of Lemma 4.2(iii), by Vitali’s convergence theorem (see Brezis [13, p. 122]), we
conclude that |∂iΦ|pi−1 ∈ L1

loc (Ω) and, up to a subsequence of εk, relabelled εk, we have

|∂iΦεk |
pi−2 ∂iΦεk → |∂iΦ|

pi−2 ∂iΦ in L1
loc (Ω) as k →∞. (4.7)

Using (4.7) and (3.1), we can pass to the limit in (4.6) to conclude that

n∑
i=1

∫
Ω

∂iΦ|∂iΦ|pi−2∂iϕdx = ϕ(0) for every ϕ ∈ C∞c (Ω).

Hence, Φ is a weak solution of (1.1). We next show that Φ ∈ T 1,−→p
0 (Ω). Since ThΦεk ∈

W 1,−→p
0 (Ωεk) for any h > 0 and k ∈ N, we find that there exists ϕh,k ∈ C∞c (Ωεk) such that

‖ϕh,k − ThΦεk‖W 1,−→p
0 (Ωεk )

≤ 1/k. (4.8)
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For h > 0 fixed, since (∂iThΦεk)k is uniformly bounded in Lpi(Ω), we deduce that
(∂iϕh,k)k is uniformly bounded in Lpi(Ω). By Lemma 4.2(iii), up to a subsequence, it
holds ∂iThΦεk → ∂iThΦ a.e. in Ω as k →∞. Thus, using (4.5) and (4.8), we get that, up
to a subsequence, (ϕh,k)k satisfies

ϕh,k → ThΦ in L1
loc (Ω) and ∂iϕh,k ⇀ ∂iThΦ in Lpi (Ω) as k →∞ for i = 1, . . . , n.

By Mazur’s lemma (see Brezis [13, p. 61]), there exists
(
ϕ̃h,k

)
k

in C∞c (Ω) such that

ϕ̃h,k → ThΦ in L1
loc (Ω) and ∂iϕ̃h,k → ∂iThΦ in Lpi (Ω) as k →∞

for all i = 1, . . . , n. This proves that Φ ∈ T 1,−→p
0 (Ω). This completes the proof.

Proof of Lemma 4.2. (i) Let i = 1, . . . , n be fixed arbitrarily. Let qi = pi(p∗ − 1)/p∗ in
Case 1 and qi > max{pi− 1, 1} in Case 2. If mi := qi/(qi− pi + 1), then mi > 0 in both
cases. Hence, using (3.8) and (3.11), for every k ∈ N and h > 0, we have

∫
K

|∂iΦεk |pi−1 dx ≤ mi (meas (K))1/mi ‖∂iΦεk‖
pi−1
Lqi,∞(K),∫

{x∈Ωεk : |∂iΦεk |>h}
|∂iΦεk |pi−1 dx ≤ mi

(
d∂iΦεk (h)

)1/mi ‖∂iΦεk‖
pi−1
Lqi,∞(Ωεk ).

By Lemma 3.3 and Remark 3.4, we conclude the assertion of (i).
(ii) We prove that, up to a subsequence, (Φεk)k is a Cauchy sequence with respect to

convergence in measure in K: For every ν, τ ∈ (0,∞), there exists Nν,τ ∈ N such that

meas
({
x ∈ K :

∣∣Φεk′ (x)− Φεk (x)
∣∣ > ν

})
< τ for all k, k′ ≥ Nν,τ . (4.9)

Let ν, τ and h be fixed arbitrarily in (0,∞). For k, k′ ∈ N, we use the notation dΦεk (h)

and dΦεk′ (h) as in (3.8). We define Ih,ν,k,k′ as follows

Ih,ν,k,k′ := meas
({
x ∈ K : Φεk (x) ≤ h, Φεk′ (x) ≤ h and

∣∣(Φεk′ − Φεk) (x)
∣∣ > ν

})
.

Then for every h > 0, we have the following estimates:{
meas

({
x ∈ K :

∣∣(Φεk′ − Φεk) (x)
∣∣ > ν

})
≤ dΦεk (h) + dΦεk′ (h) + Ih,ν,k,k′ ,

Ih,ν,k,k′ ≤ meas
(
{x ∈ K : |(ThΦεk′ − ThΦεk)(x)| > ν}

)
.

(4.10)

From (d) above, we infer that, up to a subsequence, (ThΦεk)k is a Cauchy sequence
with respect to convergence in measure in K. Using Remark 3.4 and (4.10), we conclude
up to a subsequence, (Φεk)k is a Cauchy sequence with respect to convergence in measure
in K. Hence, up to a subsequence, (Φεk)k converges in measure in K to a measurable
function Φ : K → R. By Riesz Theorem, we can further pass to a subsequence, relabelled
εk, such that Φεk → Φ a.e. in K. By a diagonal argument, we conclude the proof of (ii).
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(iii) Let i = 1, . . . , n be arbitrary. We show that, up to a subsequence,
(
∂iΦεk

)
k

is a
Cauchy sequence with respect to convergence in measure in K.

For any ν, h ∈ (0,∞) and k, k′ ∈ N, we introduce the following notation:
Uν,k,k′ :=

{
x ∈ K :

∣∣(∂iΦεk′ − ∂iΦεk) (x)
∣∣ > ν

}
,

Vh,k,k′ :=
{
x ∈ K : |∂iΦεk(x)| ≤ h, |∂iΦεk′ (x)| ≤ h

}
,

Wh,k,k′ :=
{
x ∈ K : |(Φεk′ − Φεk) (x) | ≤ 1/h

}
,

Jh,ν,k,k′ := meas (Uν,k,k′ ∩ Vh,k,k′ ∩Wh,k,k′).

(4.11)

We want to get an upper bound estimate for meas (Uν,k,k′). Let d∂iΦεk (h) and d∂iΦεk′ (h)

be given as in (3.8). Then for all h, ν > 0 and k, k′ ∈ N, we find that

meas (Uν,k,k′) ≤ d∂iΦεk (h) + d∂iΦεk′ (h) + meas(K \Wh,k,k′) + Jh,ν,k,k′ . (4.12)

We next show that Jh,ν,k,k′ → 0 as h→∞ uniformly with respect to k, k′ ∈ N. By testing
problem (3.2) with the truncated function T1/h

(
Φεk′ − Φεk

)
, we obtain that

n∑
i=1

∫
Wh,k,k′

(
|∂iΦεk′ |

pi−2∂iΦεk′ − |∂iΦεk |
pi−2∂iΦεk

) (
∂iΦεk′ − ∂iΦεk

)
dx ≤ 2

h
. (4.13)

Indeed, the left-hand side (LHS) of (4.13) satisfies

(LHS) of (4.13) =

∫
Rn

(
fεk′ − fεk

)
T1/h

(
Φεk′ − Φεk

)
dx ≤ 1

h

∫
Rn

∣∣fεk′ − fεk∣∣ dx ≤ 2

h
.

Moreover, there exists a positive constant C, independent of h > 0, such that

∣∣|s|pi−2 s− |t|pi−2 t
∣∣ ≥ {Chpi−2 |s− t| if pi < 2

C |s− t|pi−1 if pi ≥ 2
(4.14)

for any s, t ∈ (−h, h). By (4.11), (4.13) and (4.14), we infer that

0 ≤ Jh,ν,k,k′ ≤ ν−max{2,pi}
∫
Vh,k,k′∩Wh,k,k′

(
∂iΦεk′ − ∂iΦεk

)max{2,pi} dx

≤ 2

Cνmax{2,pi}hpi−max{2,pi}+1
→ 0 as h→∞.

Hence, using Remark 3.4, (4.9) and (4.12), we find that, up to a subsequence, (∂iΦεk)k is
a Cauchy sequence with respect to convergence in measure in K. By Riesz Theorem, we
can pass to a subsequence such that ∂iΦεk → Ψi a.e. in K for some measurable function
Ψi : K → R and all i = 1, . . . , n. A standard diagonal argument gives that Ψi : Ω → R is
measurable and, up to a subsequence, ∂iΦεk satisfies for i = 1, . . . , n

∂iΦεk → Ψi locally in measure and a.e. in Ω as k →∞. (4.15)
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We next prove that Φ ∈ T 1,1
loc (Ω) and Ψi = ∂iΦ for all i = 1, . . . , n. Let h > 0 and R > 0

be arbitrarily fixed. From (c), we have (∂iThΦεk)k is uniformly bounded in Lpi(Rn) so
that, up to a subsequence, ∂iThΦεk converges weakly to some function Ψi,h in Lpi(Rn)

(and, hence, in Lp1

loc(Rn)). Using (4.5) for q = p1 and the compactness of the embedding
W 1,p1(BR(0)) b Lp1(BR(0)) for all R > 0, we get that ThΦ ∈ W 1,p1(BR(0)) and, up to
a subsequence, ThΦεk ⇀ ThΦ in W 1,p1(BR(0)). We thus deduce that Ψi,h = ∂iThΦ and,
hence, up to a subsequence,

∂iThΦεk ⇀ ∂iThΦ in Lpi (Rn) . (4.16)

In particular, we have Φ ∈ T 1,1
loc (Ω). From (4.1) and (4.15), we find that, up to a subse-

quence, ∂iThΦεk → 1{Φ<h}Ψi a.e. in Ω. This, jointly with (4.16), implies that ∂iThΦ =

1{Φ<h}Ψi a.e. in Ω ∩ BR(0) for every R > 0. Thus ∂iΦ = Ψi a.e. in Ω for i = 1, . . . , n,
which together with (4.15), proves (iii). This finishes the proof of Lemma 4.2.

We next discuss the situations when our fundamental solution Φ in Proposition 4.1
becomes a distributional solution.

Corollary 4.4. If in Case 1 of Theorem 1.1 we let Ω be bounded and p1 >
p(n−1)
n(p−1)

, then Φ

in Proposition 4.1 is a W 1,−→q
0 (Ω)-distributional solution of (1.1), where−→q = (q1, . . . , qn)

and 1 ≤ qi < pi
n(p−1)
p(n−1)

for i = 1, . . . , n. The same conclusion holds in Case 2.

Proof. The same argument applies for both Case 1 and Case 2. Let i ∈ {1, . . . , n} be fixed
arbitrarily. Since T 1,−→p

0 (Ω) ⊂ T 1,−→q
0 (Ω), by (v) in Section 2.2, it is enough to show that

∂iΦ ∈ Lqi(Ω) with 1 ≤ qi < pi
n(p−1)
p(n−1)

. Let (Φεk)k be such that (4.4) holds. By (3.11) and
the weak Lebesgue estimates in Lemma 3.3, we infer that (∂iΦεk)k is uniformly bounded
in Lqi(Ω) and, hence, up to a subsequence, ∂iΦεk converges weakly in Lqi(Ω). Since
∂iΦεk → ∂iΦ a.e. in Ω, we conclude that ∂iΦ ∈ Lqi(Ω) for i = 1, . . . , n.

5 Sharp upper bound estimates

Let Φ be the non-negative fundamental solution of (1.1), which was constructed in Sec-
tion 4. In Theorem 5.1, we prove that Φ satisfies (1.11) from which we get (1.6) in
Case 1 and (1.7) in Case 2. We follow the sketch of the proof outlined in Section 1.1.
For λ ∈ (0, 1) and r > 0, we define Ar (λ) := E−→p ((1 + λ)r) \ E−→p ((1− λ)r), where
E−→p (R) is given by (1.5).

Theorem 5.1. Under the assumptions of Theorem 1.1, the fundamental solution Φ given
by Proposition 4.1 satisfies (1.11) for every r ∈ (0, R).
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Remark 5.2. For any compact subset K in Ω \ {0}, we deduce from (1.11) that Φ = ThΦ

on K for h > 0 large so that Φ ∈ W 1,−→p (K) ∩ L∞(K). It follows from Lieberman (see
[33]) that Φ ∈ W 1,∞

loc (Ω \ {0}) and, hence, Φ ∈ C(Ω \ {0}).

Our proof uses an iteration scheme of Moser-type (see Section 5.2 for Case 1 and Sec-
tion 5.3 for Case 2), whose running step is given by Proposition 1.2 proved in Section 5.1.

Using (1.11), we next prove our gradient estimates in (1.8).

Corollary 5.3 (Gradient estimates). For the fundamental solution Φ constructed in Propo-
sition 4.1, there exists a positive constant C1 = C1 (n,−→p ) such that (1.8) holds.

Proof. We define Φr (x) := r
n−p
p(n−1)Φ

(
r

1
s1 x1, . . . , r

1
sn xn

)
for all r ∈ (0, R) and x ∈

E−→p (2), where si is given by (1.5). Rescaling the equation satisfied by Φ, we get that

div (A(∇Φr)) = 0 in E−→p (2) \ E−→p (1/8) .

Using (1.11), we find that there exists a constant c = c(n,−→p ) > 0 such that

Φr (x) ≤ c for all x ∈ E−→p (3/2) \E−→p (1/4) .

From Lieberman’s gradient estimates in [33], there exists a constant C = C (n,−→p ) > 0

such that |∇Φr (x)| ≤ C for a.e. x ∈ E−→p (1) \E−→p (1/2). Hence, we have

n∑
i=1

|∂iΦ (x)|pi =
n∑
i=1

∣∣∣r− 1
pi ∂iΦr

(
r
− 1
s1 x1, . . . , r

− 1
sn xn

)∣∣∣pi ≤ r−1

n∑
i=1

Cpi

for a.e. x ∈ E−→p (r) \E−→p (r/2). In view of E−→p (R) ⊂
⋃

0<r<R E−→p (r) \E−→p (r/2), we get
the desired estimate (1.8).

Remark 5.4. Since in Case 1, the function U0 in (1.9) belongs to Lp∗−1,∞(Ω), we infer

from (1.6) and (1.8) that Φ ∈ Lp∗−1,∞(Ω) and ∂iΦ ∈ L
pi(p∗−1)

p∗
,∞(Ω) for i = 1, . . . , n.

In Case 2, we derive that Φ ∈ Lq(Ω) for every 1 ≤ q < ∞ and ∂iΦ ∈ Lpi,∞(Ω) for
i = 1, . . . , n by using (1.7) and (1.8).

5.1 Proof of Proposition 1.2

In this subsection, we are in either Case 1 or Case 2 of Theorem 1.1. Let ε ∈ (0, ε0] and
r > 0 be such that Ar (3/4) ⊂ Ωε \Bε (0). We use m to denote n/(n− p) in Case 1 and
any number greater than 1/(n− 1) in Case 2. Let Γ > m(p− 1) be arbitrary.

We define β and Θj with j = 1, . . . , n as follows

β =
Γ

m
− p and Θj :=

r
pj(n−p)
p(n−1)

−1

(λ′ − λ)pj
‖Φε‖

β+pj

Lβ+pj (Ar(λ′))
. (5.1)
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Our assumption on Γ gives that β > −1.
We show that (1.12) holds, meaning that there exists a positive constant c = c(n,−→p )

such that for every 0 < λ < λ′ ≤ 3/4, we have

‖Φε‖
Γ
m

LΓ(Ar(λ))
≤ cmax{1, (β + 1)−pn}Γpr

1
m
−n−p

n max
j=1,...,n

Θj. (5.2)

We split the proof into four steps. We choose a suitable function η ∈ C1
c (Ωε \ Bε(0))

as in Step 1 below. We can suppose that Φε ≥ ν > 0 a.e. on supp η for some ν > 0. If
this is not true, we can consider Φε + ν in our argument and then let ν → 0.

Step 1. We construct a function η ∈ C1(Ωε \Bε(0)) with the following properties:

(a) 0 ≤ η ≤ 1 in Ωε, η = 0 in Ωε \ Ar (λ′) and η = 1 in Ar (λ).

(b) η
β+p1
pn ∈ C1(Ωε) and there exists a positive constant c = c(n,−→p ) such that

η
β+p1
pn
−1|∂jη| ≤

c

p1 + β

r
n−p
p(n−1)

− 1
pj

λ′ − λ
for every j = 1, . . . , n.

To this aim, we choose a function η1 ∈ C1([0,∞)) such that 0 ≤ η1 ≤ 1 in [0,∞),
as well as η1 = 0 on [0, 1− λ′] ∪ [1 + λ′,∞) and η1 = 1 on [1− λ, 1 + λ]. We further
assume that η2 := η

(β+p1)/pn
1 ∈ C1[0,∞) and |η′2| ≤ 2/(λ′ − λ). We now define

η(x) = η1

(
r−1

n∑
i=1

|xi|si
)

for all x ∈ Ωε, (5.3)

where si is given by (1.5). It is easy to check that η in (5.3) satisfies (a) and (b).

Notation. For every i, j = 1, . . . , n, we define Vij and Tij by

Vij :=

∫
Ωε

ηβ+pi−pj |∂jη|pj Φβ+pj
ε dx and Tij :=

∫
Ωε

|∂jΦε|pj ηβ+piΦβε dx. (5.4)

Step 2. There exists a constant C0 = C0 (n,−→p ) > 0 such that for every i = 1, . . . , n,

Tii ≤ C0

n∑
j=1

(
β + pi
β + 1

)pj
Vij <∞. (5.5)

From Step 1 and the definition of Θj in (5.1), we obtain that

max
i=1,...,n

Vij ≤
∫
Ωε

η(β+p1
pn
−1)pj |∂jη|pjΦβ+pj

ε dx ≤
(

c

β + p1

)pj
Θj <∞. (5.6)

Since β + pi > (β + p1) /pn, using Step 1 and our assumption Ar (λ′) ⊂ Ωε \Bε (0), we
have ηβ+pi ∈ C1

c (Ωε \Bε (0)). Taking ηβ+piΦβ+1
ε as a test function in (3.3), we get

n∑
j=1

Tij +
β + pi
β + 1

n∑
j=1

∫
Ωε

|∂jΦε|pj−2 (∂jΦε)(∂jη) ηβ+pi−1Φβ+1
ε dx = 0,
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which implies that

n∑
j=1

Tij ≤
β + pi
β + 1

n∑
j=1

∫
Ωε

|∂jΦε|pj−1 |∂jη| ηβ+pi−1Φβ+1
ε dx . (5.7)

Applying Young’s inequality ab ≤ apj/pj + bp
′
j/p′j in the following situation

p′j =
pj

pj − 1
, a = τ−1+1/pj |∂jη|η−1Φε, b = τ 1−1/pj |∂jΦε|pj−1, and τ =

β + 1

β + pi
,

we arrive at

|∂jΦε|pj−1 |∂jη| η−1Φε ≤
(β + 1)(pj − 1)

(β + pi)pj
|∂jΦε|pj +

1

pj

(
β + 1

β + pi

)1−pj
|∂jη|pj η−pjΦpjε .

Then, the right-hand side (RHS) of (5.7) satisfies

(RHS) of (5.7) ≤
n∑
j=1

pj − 1

pj
Tij +

n∑
j=1

1

pj

(
β + pi
β + 1

)pj
Vij, (5.8)

where Vij and Tij are given by (5.4). From (5.7) and (5.8), we infer that

n∑
j=1

1

pj
Tij ≤

n∑
j=1

1

pj

(
β + pi
β + 1

)pj
Vij. (5.9)

The claim of Step 2 follows immediately from (5.9).

Step 3. There exists a constant C1 = C1 (n,−→p ) > 0 such that for every i = 1, . . . , n

Hi :=
∥∥(ηΦε)

β/pi∂i(ηΦε)
∥∥pi
Lpi (Ωε)

≤ C1 max{1, (β + 1)−pn} max
j=1,...,n

Θj, (5.10)

where Θj is defined by (5.1).

Indeed, for any i = 1, . . . , n, we find that

|∂i(ηΦε)|pi ≤ 2pi−1 (ηpi |∂iΦε|pi + Φpiε |∂iη|
pi) .

Hence, by (5.6) and Step 2, there exist positive constants C0, C̃0, and C1, depending only
on n and −→p , such that

Hi ≤ 2pi−1 (Tii + Vii) ≤ 2pi−1(C0 + 1)
n∑
j=1

(
β + pi
β + 1

)pj
Vij

≤ C̃0

n∑
j=1

(β + 1)−pj
(
pn + β

p1 + β

)pj
Θj ≤ C1 max{1, (β + 1)−pn} max

j=1,...,n
Θj.

(5.11)

This proves the claim of Step 3.
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Step 4. Proof of (5.2) concluded.

We apply Lemma A.1 in Appendix A with Ω = Ωε and ϕ = ηΦε. Clearly, we have
ϕ ∈ L∞(Ωε) and suppϕ is a compact subset of Ωε. We denote ξ = (β + p)/p. The
assumption Γ > m(p− 1) gives that 1 + p(ξ − 1)/p1 > 0.

If ξ ≥ 1 (i.e., Γ ≥ mp), then ηΦε ∈ W 1,−→p (Ωε) since Φε ∈ W 1,−→p (Ωε) and η ∈ C1
c (Ωε).

If ξ < 1, then we find that (ηΦε)
1+

p(ξ−1)
p1 ∈ W 1,−→p (Ωε) since Φ

1+
p(ξ−1)
p1

ε ∈ W 1,−→p (Ωε)

(using that Φε ≥ ν > 0 a.e. on supp η) and η1+
p(ξ−1)
p1 ∈ C1

c (Ωε) (see Step 1).
Then, by Lemma A.1 in Appendix A, there exists a constant c = c(n,−→p ) > 0 so that

‖ηΦε‖
Γ
m

LΓ(Ωε)
≤


cΓp

n∏
i=1

H
p
pin

i in Case 1,

cΓn(meas (Ar(λ′)))
1
m

n∏
i=1

H
1
pi
i in Case 2,

(5.12)

where Hi is defined by (5.10). Since η = 1 in Ar(λ) and
∑n

i=1 1/pi = n/p, from (5.12)
and Step 3, we reach (5.2). This concludes the proof of Proposition 1.2.

5.2 Proof of Theorem 5.1 in Case 1

Throughout this subsection, we assume that (1.4) holds. Recall that m := n/(n− p). Let
ε ∈ (0, ε0] and r > 0 be such that Ar (3/4) ⊂ Ωε \Bε (0). In what follows, we denote

‖ · ‖Lq(Ar(λ)) := ‖ · ‖q;λ. (5.13)

To keep the notation short, we shall not include r since it is fixed everywhere in the proof.
The desired estimate (1.11) follows from (5.14) below applied to Φεk in Lemma 4.2 and
passing to the limit, up to a subsequence, as k →∞.

Proposition 5.5. There exists a positive constant C = C (n,−→p ) such that

‖Φε‖L∞(Ar(1/2)) ≤ Cr−1/p∗ . (5.14)

Proof. For any Γ∗ > p∗ − 1 and i = 1, . . . , n, we define Γ∗,i as follows

Γ∗,i := σi(Γ∗) = Γ∗/m+ pi − p. (5.15)

In this proof, we fix δ = δ(n,−→p ) so that 0 < δ < (p∗ − pn)n/(2n− p). Hence, we have

σi (p∗ − 1 + δ) < p∗ − 1− δ for all i = 1, . . . , n. (5.16)

By Proposition 1.2, we know that for any Γ∗ ≥ p∗− 1 + δ, there exists a positive constant
C = C(n,−→p ) such that

‖Φε‖Γ∗; λ ≤

[
CΓp∗ max

i=1,...,n

(
r
pi
p∗
−1

(λ′ − λ)pi
‖Φε‖

Γ∗,i
Γ∗,i; λ′

)]m/Γ∗
. (5.17)
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The proof of Proposition 5.5 consists of iterating (5.17). We provide the details below.

The iterative scheme. Let λk := 1/2 + (1/2)k+1 for every k ≥ 1. Hence, we have

λ1 = 3/4 and λk+1 = λk − 2−k−2 for all k ≥ 1. (5.18)

We see that (λk)k≥1 is decreasing and converges to 1/2 as k → ∞. Since pn < p∗ and
m > 1, we can find a large positive integer N so that

n (p∗ − p1) /p+ δ < mNn (p∗ − pn) /p. (5.19)

We construct a sequence (Γk)k≥1 such that

n (p∗ − p1) /p+ δ < Γk/m
k < mNn (p∗ − pn) /p. (5.20)

Since Γk → ∞ as k → ∞, there exists a large integer k0 ≥ 1 such that Γk > p∗ − 1 + δ

for every k > k0. In what follows, we fix k > k0. For each i1, i2 ∈ {1, . . . , n}, we define
Γk,i1 as in (5.15) and Γk,i1i2 = σi2(Γk,i1), that is

Γk,i1 := Γk/m+ pi1 − p, Γk,i1i2 := Γk,i1/m+ pi2 − p. (5.21)

We also need to introduce Bi1 and Bi1i2 as follows
Bi1 := 2

m(k+N+2)pi1
Γk r

m(pi1
−p∗)

p∗Γk ‖Φε‖
mΓk,i1

Γk
Γk,i1 ; λk+N

,

Bi1i2 := Γ
m2p
Γk
k,i1

2

∑2
j=1 m

j(k+N−j+3)pij
Γk r

∑2
j=1 m

j(pij
−p∗)

p∗Γk ‖Φε‖
m2Γk,i1i2

Γk
Γk,i1i2 ; λk+N−1

.

(5.22)

Let τ1, τ2 ∈ {1, . . . , n} be such that Bτ1 = maxi1=1,...,n Bi1 and Bτ1τ2 = maxi2=1,...,n Bτ1i2 .
We first apply (5.17) with Γ∗ = Γk, λ = λk+N+1 and λ′ = λk+N . We obtain that

‖Φε‖Γk; λk+N+1
≤ C

m
Γk Γ

mp
Γk
k Bτ1 . (5.23)

Our choice of Γk ensures that Γk,i1 > p∗ − 1 + δ for all i1 = 1, . . . , n. Thus in (5.23), we
can continue using (5.17) to estimate each ‖Φε‖Γk,i1 ;λk+N

with i1 = 1, . . . , n as follows

‖Φε‖
mΓk,i1

Γk
Γk,i1 ;λk+N

≤ C
m2

Γk Γ
m2p
Γk
k,i1

max
i2=1,...,n

(
2
m2(k+N+1)pi2

Γk r
m2(pi2

−p∗)
p∗Γk ‖Φε‖

m2Γk,i1i2
Γk

Γk,i1i2 ; λk+N−1

)
.

This, jointly with (5.23), leads to

‖Φε‖Γk; λk+N+1
≤ C

m+m2

Γk Γ
mp
Γk
k Bτ1τ2 . (5.24)

If this iteration process works ` times, it gives rise to Γk,i1...i` ,Ai1...i` andBi1...i` , namely

Γk,i1...i` := Γk,i1...i`−1
/m+ pi` − p,

Ai1...i` :=

(∏̀
j=2

Γ
mjp
Γk
k,i1...ij−1

)
2

∑`
j=1 m

j(k+N−j+3)pij
Γk ,

Bi1...i` := Ai1...i` r
∑`
j=1 m

j(pij−p∗)
p∗Γk ‖Φε‖

m`Γk,i1...i`
Γk

Γk,i1...i` ; λk+N−`+1
.

(5.25)
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For the definition of Γk,i1 and Γk,i1,i2 , see (5.21), whereas for Bi1 and Bi1i2 see (5.22). For
each j ∈ {2, . . . , `}, let τj ∈ {1, . . . , n} be such that

Bτ1...τj = max
ij∈{1,...,n}

Bτ1...τj−1ij .

After ` uses of (5.17), we arrive at

‖Φε‖Γk; λk+N+1
≤ C

∑`
j=1 m

j

Γk Γ
mp
Γk
k Bτ1...τ` . (5.26)

Let ` denote the maximum number for which (5.17) can be used iteratively, that is

Γk,τ1...τj ≥ p∗ − 1 + δ for all 1 ≤ j ≤ `− 1 and Γk,τ1...τ` < p∗ − 1 + δ. (5.27)

We next prove that k < ` ≤ k +N . Using (5.25), we find that

Γk,i1...ij = Γk/m
j +

j∑
ν=1

mν−j (piν − p) for all 1 ≤ j ≤ `. (5.28)

Since p1 ≤ pi ≤ pn for all i = 1, . . . , n, it follows from (5.28) that

Γk/m
j − n (p− p1) /p ≤ Γk,i1...ij ≤ Γk/m

j + n (pn − p) /p. (5.29)

This, jointly with (5.20), implies that for any i1, . . . , ik+N ∈ {1, . . . , n}, we have

Γk,i1...ij > p∗ − 1 + δ for all j = 1, . . . , k and Γk,i1...ik+N
< p∗ − 1. (5.30)

Using (5.30), we conclude that k < ` ≤ k +N . Thus from (5.20) and (5.29), we see that

m`

Γk
<

mNp

n(p∗ − p1)
, Γk < mN+k(p∗ − 1) and Γk,τ1...τj−1

< mN+k−j+1(p∗ − 1) (5.31)

for all j = 2, . . . , `. Using (5.31) and a simple calculation, we obtain that

1

Γk

∑̀
j=1

(N + k − j + 1)mj =
m

(m− 1)Γk

[
(N + k − `)m` − (N + k) +

∑̀
j=1

mj

]

<
m

(m− 1)Γk

(
Nm` +

∑̀
j=1

mj

)
< Cn,−→p ,

where Cn,−→p > 0 is a positive constant depending only on n and −→p .
Let Ai1...i` be defined by (5.25). It follows that

Γ
mp
Γk
k Aτ1...τ` ≤ p

p
∑`
j=1 m

j

Γk
∗ m

p
∑`
j=1(N+k−j+1)mj

Γk 2
pn

∑`
j=1 m

j(k+N−j+3)

Γk ,
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which is dominated from above by a positive constant depending on n and −→p . Therefore,
using (5.25) and (5.26), we infer that there exists a constant C̃ = C̃ (n,−→p ) > 0 such that

‖Φε‖Γk; λk+N+1
≤ C̃r

1
p∗Γk

∑`
j=1m

j(pτj−p∗) ‖Φε‖
m`Γk,τ1...τ`

Γk
Γk,τ1...τ` ; λk+N−`+1

. (5.32)

We now estimate the (quasi-)norms in the right hand side of (5.32).

CLAIM. There exists a constant c = c(n,−→p ) > 0 such that

‖Φε‖Γk,τ1...τ` ; λk+N−`+1
≤ c r

p∗−1−Γk,τ1...τ`
p∗Γk,τ1...τ` . (5.33)

Suppose for the moment that (5.33) has been proved. We show how to conclude the proof
of Proposition 5.5. Plugging (5.33) into (5.32), then using (5.28), we find positive con-
stants C̃, c, and c̃, depending only on n and −→p , such that

‖Φε‖Γk; λk+N+1
≤ C̃c

Γk,τ1...τ`
Γk

m`
r
p∗−1−Γk
p∗Γk ≤ c̃ r

p∗−1−Γk
p∗Γk . (5.34)

Letting k →∞ in (5.34), we obtain (5.14).

Proof of (5.33). From (5.27), we have

p∗− 1 + δ > Γk,τ1...τ` = Γk,τ1...τ`−1
/m+ pτ`− p > (p∗− 1)/m+ p1− p = p1− 1. (5.35)

We further distinguish two cases:

CASE A: Let Γk,τ1...τ` ≤ p∗ − 1− δ.

In view of (5.35), we obtain that(
p∗ − 1

p∗ − 1− Γk,τ1...τ`

) 1
Γk,τ1...τ` ≤ c0, where c0 :=

(
p∗ − 1

δ

) 1
p1−1

. (5.36)

From (5.18) and k+N − ` ≥ 0, we infer that meas (Ar (λk+N−`+1)) ≤ meas (Ar (3/4)).
Thus, using (3.11) with q0 = Γk,i1...i` , q = p∗ − 1, and Ω = Ar (λk+N−`+1), we find that

‖Φε‖Γk,τ1...τ` ; λk+N−`+1
≤ c0(meas (Ar (3/4)))

p∗−1−Γk,τ1...τ`
(p∗−1)Γk,τ1...τ` ‖Φε‖Lp∗−1,∞(Ar(λk+N−`+1)) .

This, together with (3.12), proves the claim of (5.33) in Case A.

CASE B: Let p∗ − 1− δ < Γk,τ1...τ` < p∗ − 1 + δ.

We choose θ ∈ (0, 1) with the following property:

1

Γk,τ1...τ`
=

1− θ
p∗ − 1− δ

+
θ

p∗ − 1 + δ
.
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By the interpolation inequality between Lebesgue spaces, we deduce that

‖Φε‖Γk,τ1...τ` ; λk+N−`+1
≤ ‖Φε‖1−θ

p∗−1−δ; λk+N−`+1
‖Φε‖θp∗−1+δ; λk+N−`+1

. (5.37)

From (5.17), jointly with (5.18) and k < ` ≤ k + N , we infer the existence of a positive
constant c1 = c1(n,−→p ) such that

‖Φε‖p∗−1+δ; λk+N−`+1
≤ c1 max

i=1,...,n

(
r
pi
p∗
−1 ‖Φε‖σi(p∗−1+δ)

σi(p∗−1+δ); λk+N−`

) m
p∗−1+δ

. (5.38)

We next use the notation c0 as in (5.36) and c2 := [(p∗ − 1)/δ]1/(p∗−1−δ). Since (5.16)
holds, as in Case A, we employ (3.11) to find that ‖Φε‖σi(p∗−1+δ); λk+N−`

≤ c0(meas (Ar(3/4)))
p∗−1−σi(p∗−1+δ)

(p∗−1)σi(p∗−1+δ) ‖Φε‖Lp∗−1,∞(Ar(λk+N−`))
,

‖Φε‖p∗−1−δ; λk+N−`+1
≤ c2(meas (Ar (3/4)))

δ
(p∗−1)(p∗−1−δ) ‖Φε‖Lp∗−1,∞(Ar(λk+N−`+1)) .

Hence, from (5.37) and (5.38) together with (3.12), we conclude (5.33) in Case B.

5.3 Proof of Theorem 5.1 in Case 2

In this subsection, we let p = n and Ω be bounded. Let ε ∈ (0, ε0] and r > 0 be such that
Ar (3/4) ⊂ Ω \Bε (0). We deduce (1.11) by applying (5.39) below to Φεk in Lemma 4.2
and passing to the limit, up to a subsequence, as k →∞.

Proposition 5.6. There exist positive constants a = a(meas (Ω), n,−→p ) and b = b(n,−→p )

such that
‖Φε‖L∞(Ar(1/2)) ≤ a+ b| ln r|. (5.39)

Proof. Let N ≥ 1 be a large integer such that 2N > 2 (pn − p1) + 1.
Let q ≥ max{2n+ 1, 2(pn − n+ 1)} be arbitrary. It follows that

q − 1 + 2(n− p1)

q − 1− 2(pn − n)
≤ 2(pn − p1) + 1 < 2N . (5.40)

We use the notation ‖ · ‖q;λ in the same way as in (5.13). By Proposition 1.2 with m = 2,
there exists a constant C = C(n,−→p ) > 0 such that for every Γ ≥ q − 1, we have

‖Φε‖Γ
Γ; λ ≤ C2Γ2nr−1 max

i1=1,...,n

(
(λ′ − λ)−2pi1‖Φε‖

2(Γ
2

+pi1−n)
Γ
2

+pi1−n;λ′

)
. (5.41)

We define (λk)k≥1 as in the proof of Proposition 5.5 so that (5.18) holds. In view of (5.40),
we can choose Γk with the property that

2k[q − 1 + 2(n− p1)] < Γk < 2k+N [q − 1− 2(pn − n)] for all k ≥ 1. (5.42)
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For any i1, i2, . . . , ik+N ∈ {1, . . . , n}, we define{
Γk,i1 := Γk/2 + pi1 − n,
Γk,i1...ij := Γk,i1...ij−1

/2 + pij − n for every j = 2, . . . , k +N.
(5.43)

Then, we deduce that

Γk,i1...ij = Γk/2
j +

j∑
s=1

2s−j(pis − n) for every j = 1, . . . , k +N.

This gives us the following estimate

Γk/2
j − 2(n− p1) ≤ Γk,i1...ij ≤ Γk/2

j + 2(pn − n). (5.44)

Hence, our choice of Γk in (5.42) implies that

Γk,i1...ij > q − 1 for every j = 1, . . . , k, whereas Γk,i1...ik+N
< q − 1. (5.45)

Let τ1 ∈ {1, . . . , n} be such that Dτ1 = maxi1=1,...,nDi1 , where Di1 is defined by

Di1 := 22(k+N+2)pi1‖Φε‖
2Γk,i1
Γk,i1 ; λk+N

.

Using (5.41) with Γ = Γk, λ = λk+N+1, and λ′ = λk+N , we find that

‖Φε‖Γk
Γk; λk+N+1

≤ C2Γ2n
k r
−1Dτ1 . (5.46)

Since Γk,τ1 ≥ q − 1, we can use again (5.41) to estimate ‖Φε‖Γk,τ1 ; λk+N
as follows

‖Φε‖
2Γk,τ1
Γk,τ1 ; λk+N

≤ C22

Γ22n
k,τ1

r−2 max
i2=1,...,n

(
222(k+N+1)pi2‖Φε‖

22Γk,τ1i2
Γk,τ1i2 ; λk+N−1

)
. (5.47)

For each i1, i2 ∈ {1, . . . , n}, we define Di1i2 by

Di1i2 := Γ22n
k,i1

2
∑2
j=1 2j(k+N−j+3)pij ‖Φε‖

22Γk,i1i2
Γk,i1i2 ;λk+N−1

.

Let τ2 ∈ {1, . . . , n} be such that Dτ1τ2 = maxi2=1,...,nDτ1i2 .
From (5.46) and (5.47), we deduce that

‖Φε‖Γk
Γk; λk+N+1

≤ C
∑2
j=1 2jΓ2n

k r−
∑2
j=1 2j−1Dτ1τ2 .

If this iteration process continues ` times, we obtain Di1...i` given by

Di1...i` =

(∏̀
j=2

Γ2jn
k,i1...ij−1

)
2
∑`
j=1 2j(k+N−j+3)pij ‖Φε‖

2`Γk,i1...i`
Γk,i1...i` ; λk+N−`+1

. (5.48)

For every j = 2, . . . , `, we define τj ∈ {1, . . . , n} such that

Dτ1...τj = max
ij=1,...,n

Dτ1...τj−1ij .
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We continue the above iterative process, denoting by ` the maximum number of iterations
of (5.41), in the sense that

Γk,τ1...τj ≥ q − 1 for all j = 1, . . . , `− 1 and Γk,τ1...τ` < q − 1. (5.49)

From (5.45), we infer that k < ` ≤ k +N . Hence, after ` uses of (5.41), we obtain that

‖Φε‖Γk
Γk; λk+N+1

≤ C
∑`
j=1 2jΓ2n

k r−
∑`
j=1 2j−1Dτ1...τ` . (5.50)

CLAIM: There exists a positive constant, still denoted by C = C(n,−→p ), such that

‖Φε‖Γk
Γk; λk+N+1

≤ C2`qn
∑`
j=1 2j r−

∑`
j=1 2j−1‖Φε‖

2`Γk,τ1...τ`
Γk,τ1...τ` ; λk+N−`+1

. (5.51)

We conclude (5.51) by using (5.50), combined with the following inequality

Γ2n
k

(∏̀
j=2

Γ2jn
k,τ1...τj−1

)
2
∑`
j=1 2j(k+N−j+3)pτj ≤ C̄2`qn

∑`
j=1 2j (5.52)

for some constant C̄ = C̄(n,−→p ) > 0. We next prove (5.52). Since ` > k, we get that

∑̀
j=1

2j(k +N − j + 3) = 2`+1(k +N − `+ 4)− 2(k +N + 4) < 2`+1(N + 4). (5.53)

From the inequalities in (5.42) and (5.44), we derive that

Γk < 2k+Nq and Γk,τ1...τj−1
< 2k+N−j+1q for every j = 2, . . . , `.

It follows that

Γ2n
k

∏̀
j=2

Γ2jn
k,τ1...τj−1

≤ 2n
∑`
j=1 2j(k+N−j+1)qn

∑`
j=1 2j .

This, jointly with (5.53), proves (5.52). Hence, the assertion of (5.51) holds.

Proof of (5.39) concluded. Since Γk,τ1...τ` < q − 1 (see (5.49)), by using (3.11), we
find that ‖Φε‖Γk,τ1...τ` ; λk+N−`+1

is dominated by

q
1

Γk,τ1...τ` (meas (Ar(λk+N−`+1)))

q−Γk,τ1...τ`
qΓk,τ1...τ` ‖Φε‖Lq,∞(Ar(λk+N−`+1)).

Hence, using Lemma 3.3(2), for some constant C = C(n,−→p ) ≥ 1, we have

‖Φε‖Γk,τ1...τ` ; λk+N−`+1
≤ q

1
Γk,τ1...τ` (Cr)

q−Γk,τ1...τ`
qΓk,τ1...τ` Zq, (5.54)

where we denote Zq := Cq + (meas (Ω))1+ 1
q . Using (5.54) into (5.51), we conclude that

‖Φε‖Γk;λk+N+1
≤ (Zq)

2`

Γk
Γk,τ1...τ`C

2`

Γk

(
2−

Γk,τ1...τ`
q

)
r
q−2`Γk,τ1...τ`

qΓk q
2`(2n+1)−2n

Γk . (5.55)
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From k < ` ≤ k +N and the choice of Γk in (5.42), we obtain that

2−N/q < 2`/Γk < 2N+1/q. (5.56)

Furthermore, in view of the estimates in (5.44), we also find that

2`Γk,τ1...τ`
Γk

= 1 +
Gk

q
, where Gk satisfies − 2N+2n ≤ Gk ≤ 2N+2pn. (5.57)

We now pass to a subsequence of Gk, still denoted by Gk, for which limk→∞Gk = α for
some α ∈ [−2N+2n, 2N+2pn]. Then using (5.56) and (5.57) in (5.55), we arrive at

‖Φε‖Γk;λk+N+1
≤ (Zq)

1+ 2N+2pn
q C

2N+2−1
q

+ 2N+2n
q2 q

2N+1(2n+1)
q

− 2n
Γk r

1
Γk
− 1
q
−Gk
q2 .

Since limk→∞ Γk =∞ and limk→∞ λk = 1/2, by letting k →∞, we obtain that

‖Φε‖L∞(Ar(1/2)) ≤ (Zq)
1+ 2N+2pn

q C
2N+2

q
(1+n

q
)q

2N+1(2n+1)
q r

− 1
q
− α
q2 . (5.58)

Set C0 := max{2n + 1, 2(pn − n + 1)}. Recall that q ≥ C0 is arbitrarily fixed. Hence,
using (5.58), there exists a positive constant C ′ = C ′(n,−→p ) such that

‖Φε‖L∞(Ar(1/2)) ≤ C ′
[
q + (meas (Ω))

1+ 1+2N+2pn
q

+ 2N+2pn
q2

]
r
− 1
q
− α
q2 (5.59)

for any q ≥ C0. Finally, by choosing q = C0 max{| ln r|, 1} in (5.59), we conclude that

‖Φε‖L∞(Ar(1/2)) ≤ a+ b| ln r|,

where a = a(n,−→p ,meas (Ω)) and b = b(n,−→p ) are positive constants. Hence, the asser-
tion of (5.39) holds, which completes the proof of Proposition 5.6.

A Weighted anisotropic Sobolev inequalities

Here, as in the whole paper, we continue to assume (1.2). In Lemma A.1, we establish
a weighted version of Troisi’s [43] anisotropic Sobolev inequality. For the use in the
proof of Proposition 1.2, we make explicit an estimate of the constant with respect to the
parameter ξ. As before, p is given by (1.3). We prove the following result.

Lemma A.1. Let Ω be an open subset of Rn with n ≥ 2. Let p ≤ n and ξ > 1− p1/p.

If ϕ ∈ L∞(Ω) satisfies ϕ|ϕ|min
{

0,
(ξ−1)p
p1

}
∈ W 1,−→p (Ω) and suppϕ is a compact subset

of Ω, then there exists a positive constant C, depending only on n and −→p , such that:

(i) If p < n and p∗ := np/(n− p), then we have

‖ϕ‖ξ
Lp∗ξ(Ω)

≤ Cξ
n∏
i=1

∥∥∥|ϕ| p(ξ−1)
pi ∂iϕ

∥∥∥1/n

Lpi (suppϕ)
<∞. (A.1)
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(ii) If p = n, then for all q > n/ (n− 1), it holds

‖ϕ‖ξ
Lqξ(Ω)

≤ Cqξ (meas (suppϕ))
1
q

n∏
i=1

∥∥∥|ϕ|n(ξ−1)
pi ∂iϕ

∥∥∥1/n

Lpi (suppϕ)
<∞. (A.2)

Proof. We first show that each side in the inequalities of (A.1) and (A.2) is well-defined.
Since ϕ ∈ L∞(Ω) and suppϕ is a compact subset of Ω, we have ϕ ∈ Lτ (Ω) for all
τ > 0. We next introduce αi and σi such that

αi := σi + 1 + p(ξ − 1)/pi with σi ≥ 0 for i = 1, . . . , n. (A.3)

From ξ > 1−p1/p, we see that 1+p(ξ−1)/pi > 0 and thus αi > 0 for i = 1, . . . , n. The
right-hand side of (A.1) and (A.2), respectively is well-defined by proving the following.

CLAIM 1: We have ϕ ∈ W 1,−→p (Ω) and ∂i(ϕ|ϕ|αi−1) ∈ Lpi(Ω) for i = 1, . . . , n with

∂i(ϕ|ϕ|αi−1) = αi|ϕ|αi−1∂iϕ on suppϕ. (A.4)

We prove this claim. For θ > 1 and M > 0, let Gθ,M = G ∈ C1(R) be such that
G(t) = t|t|θ−1 for |t| ≤M . We also assume that there exists C > 0 such that |G′(s)| ≤ C

for every s ∈ R. By adapting the proof of Proposition 9.5 in Brezis [13, p. 270], we
deduce that if u ∈ W 1,−→p (Ω) ∩ L∞(Ω), then for θ > 1 and M = ‖u‖L∞(Ω), we have

G ◦ u ∈ W 1,−→p (Ω) and ∂i(G ◦ u) = (G′ ◦ u) ∂iu for i = 1, . . . , n. (A.5)

To establish Claim 1, we distinguish two cases: If ξ ≥ 1, then ϕ ∈ W 1,−→p (Ω) by our
assumption and we conclude the claim by using (A.5) with u = ϕ and θ = αi for each
i = 1, . . . , n. If ξ < 1, then Claim 1 follows from (A.5) with u = ϕ|ϕ|(ξ−1)p/p1 and
θ = 1/(1 + (ξ − 1)p/p1), respectively θ = αi/(1 + (ξ − 1)p/p1) for i = 1, . . . , n.

CLAIM 2: If αi is given by (A.3) and p′i = pi/(pi − 1) for every i = 1, . . . , n, then(∫
Ω

|ϕ(x)|
∑n
i=1 αi
n−1 dx

)n−1

≤
n∏
i=1

(
αi

∥∥∥|ϕ| p(ξ−1)
pi ∂iϕ

∥∥∥
Lpi (suppϕ)

‖|ϕ|σi‖
Lp
′
i (Ω)

)
. (A.6)

Indeed, by Hölder’s inequality, we obtain that∫
suppϕ

|ϕ|αi−1|∂iϕ| dx ≤ ‖|ϕ|σi‖Lp′i (Ω)

∥∥∥|ϕ| p(ξ−1)
pi ∂iϕ

∥∥∥
Lpi (suppϕ)

. (A.7)

To conclude (A.6), it suffices to show that(∫
Ω

|ϕ(x)|
∑n
i=1 αi
n−1 dx

)n−1

≤
n∏
i=1

(
αi

∫
suppϕ

|ϕ|αi−1|∂iϕ| dx
)
. (A.8)

In what follows, we extend ϕ by 0 outside Ω. As in Corollary 8.11 in Brezis [13, p. 215],
we deduce that t 7−→ |ϕ(x1, . . . , xi−1, t, xi+1, . . . , xn)|αi belongs to the usual Sobolev
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space W 1,pi(R) for i = 1, . . . , n. Since suppϕ is a compact subset of Ω, for a.e. x ∈ Rn,
we have the representation (see Theorem 8.2 in [13, p. 204])

|ϕ(x)|αi =

∫ xi

−∞
∂i (|ϕ(x1, . . . , xi−1, t, xi+1, . . . , xn)|αi) dt ≤

∫
R
|∂i(|ϕ|αi)| dxi

for all i = 1, . . . , n. For simplicity, let x̂i = (x1, . . . , xi−1, xi+1, . . . , xn) and Vi(x̂i) denote

Vi(x̂i) :=

∫
R
|∂i(|ϕ|αi)| dxi = αi

∫
R
|ϕ|αi−1|∂iϕ| dxi for i = 1, . . . , n.

Therefore, we find that

|ϕ(x)|
∑n
i=1 αi
n−1 ≤

n∏
i=1

(Vi(x̂i))
1

n−1 for all x ∈ Rn. (A.9)

If n = 2, then by integrating (A.9) with respect to x1, then x2, we obtain (A.8).
If n ≥ 3, then we integrate the inequality (A.9) successively with respect to the vari-

ables x1, x2, . . . , xn, using each time the generalized Hölder inequality∫
R

n−1∏
i=1

fi(t) dt ≤
n−1∏
i=1

‖fi‖Ln−1(R), where fi ∈ Ln−1(R) for every i = 1, . . . , n− 1.

We thus obtain that∫
R
|ϕ(x)|

∑n
i=1 αi
n−1 dx1 ≤ (V1(x̂1))

1
n−1

∫
R

n∏
i=2

(Vi(x̂i))
1

n−1 dx1

≤ (V1(x̂1))
1

n−1

n∏
i=2

[∫
R
Vi(x̂i) dx1

] 1
n−1

.

A similar integration over the variables x2, . . . , xn leads to (A.8). This proves Claim 2.

Proof of Lemma A.1 concluded. Let q > n/(n− 1) if p = n. Choose σi > 0 such that

p′iσi = α :=

{
ξp∗ if p < n,

ξ[q − n/(n− 1)] if p = n.
(A.10)

With this choice of σi, let αi be given by (A.3) for i = 1, . . . , n. Notice that

n∏
i=1

‖|ϕ|σi‖
Lp
′
i (Ω)

=

(∫
Ω

|ϕ|α dx
)n(p−1)

p

. (A.11)

By (A.10), there exists a constant c = c (n,−→p ) > 0 such that for all i = 1, . . . , n

1 + p(ξ − 1)/pi < αi ≤

{
c ξ if p < n,

c qξ if p = n.
(A.12)
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Proof of (i). Let p < n. Since
∑n

i=1 αi/(n−1) = p∗ξ, from (A.6) and (A.11), we have(∫
Ω

|ϕ(x)|p∗ξ dx
) 1

p∗

≤
n∏
i=1

(
αi

∥∥∥|ϕ|p(ξ−1)/pi ∂iϕ
∥∥∥
Lpi (suppϕ)

) 1
n

. (A.13)

From (A.12) and (A.13), we conclude the assertion of (A.1).

Proof of (ii). Let p = n. Since
∑n

i=1 αi/(n− 1) = qξ, Hölder’s inequality gives that∫
Ω

|ϕ(x)|α dx ≤
(∫

Ω

|ϕ(x)|
∑n
i=1 αi
n−1 dx

) α
qξ

(meas (suppϕ))1− α
qξ . (A.14)

From (A.10), it holds q − α/ξ = n/(n− 1). Then, (A.6), (A.11) and (A.14) imply that

‖ϕ‖ξ
Lqξ(Ω)

≤ (meas (suppϕ))
1
q

n∏
i=1

(
αi

∥∥∥|ϕ|n(ξ−1)
pi ∂iϕ

∥∥∥
Lpi (suppϕ)

) 1
n

. (A.15)

Using (A.12) and (A.15), we reach (A.2). This ends the proof of Lemma A.1.

B Auxiliary derivations

A crucial tool in the proof of Lemma 3.3(2) is the anisotropic Sobolev inequality (B.1) of
Lemma B.1 below. The main step in proving it is an inequality of Moser–Trudinger-type
([36, 44]), whose derivation relies essentially on Theorem 1 in Cianchi [14].

Lemma B.1. Let Ω be a bounded open set in Rn with n ≥ 2. If (1.2) and p = n hold,
then there exists a positive constant C, depending only on n and −→p , such that

‖u‖n
L

qn
n−1 (Ω)

≤ Cqn−1

(
meas (Ω) +

n∑
i=1

∫
Ω

|∂iu|pi dx

)1+n−1
q

(B.1)

for all q ≥ 1 and all u ∈ W 1,−→p
0 (Ω).

Proof. Define A(ξ) := max {
∑n

i=1 |ξi|,
∑n

i=1 |ξi|pi} for every ξ = (ξ1, . . . , ξn) ∈ Rn.
We split the proof into two steps:

Step 1. There exists a constant L = L(n,−→p ) > 0 such that for every u ∈ W 1,−→p
0 (Ω)∫

Ω

e
|u(x)|n/(n−1)

L(
∫
Ω A(∇u) dx)1/(n−1)

dx ≤ en
(

meas (Ω) +

∫
Ω

A(∇u) dx

)
. (B.2)

For ease of reference, we shall use the notation

[A ≤ t] := {ξ ∈ Rn : A(ξ) ≤ t} for every t > 0.

Note that A : Rn → [0,∞) is a convex function satisfying (1.1) and (1.2) in [14], namely:
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1. A(0) = 0 and A(ξ) = A(−ξ) for every ξ ∈ Rn;

2. For every t > 0, the set [A ≤ t] is compact, whose interior contains 0.

CLAIM: There exists a positive constant C1, depending only on n and −→p , such that

meas ([A ≤ t]) ≤ C1 min{t, tn} for every t > 0. (B.3)

We prove this assertion. We define Dn and Fn,−→p as follows

Dn := meas

{
ξ ∈ Rn :

n∑
i=1

|ξi| ≤ 1

}
, Fn,−→p := meas

{
ξ ∈ Rn :

n∑
i=1

|ξi|pi ≤ 1

}
.

Clearly, Dn and Fn,−→p are finite. For any t ∈ (0, 1], we have

meas ([A ≤ t]) = meas

{
ξ ∈ Rn :

n∑
i=1

|ξi| ≤ t

}
= Dnt

n. (B.4)

Hence, (B.3) holds for every t ∈ (0, 1]. To conclude (B.3), we show that

meas ([A ≤ t]) ≤ En,−→p + Fn,−→p t for every t > 1, (B.5)

where we define En,−→p by

En,−→p := meas

{
ξ ∈ Rn : A(ξ) =

n∑
i=1

|ξi|

}
. (B.6)

We show that En,−→p < ∞. If we assume that there exists a sequence (ξk)k≥1 in En,−→p
with limk→∞ |ξk| = ∞, then limk→∞maxi=1,...,n |ξki| = ∞, where ξk = (ξk1, . . . , ξkn)

for every k ≥ 1. Hence, there exists k1 ≥ 1 such that maxi=1,...,n |ξki|pi−1 > n for every
k > k1, which gives that

n∑
i=1

|ξki|pi ≥ max
i=1,...,n

|ξki|pi > n max
i=1,...,n

|ξki| ≥
n∑
i=1

|ξki| for all k > k1.

This contradicts that ξk ∈ En,−→p for all k ≥ 1. We thus conclude that En,−→p <∞.
Since p = n, we observe that for every t > 0, it holds

meas

{
ξ ∈ Rn :

n∑
i=1

|ξi|pi ≤ t

}
= Fn,−→p t

∑n
i=1 1/pi = Fn,−→p t. (B.7)

By the definition of A(ξ), we have that meas ([A ≤ t]) is bounded from above by

meas

{
ξ ∈ Rn : A(ξ) =

n∑
i=1

|ξi| ≤ t

}
+ meas

{
ξ ∈ Rn :

n∑
i=1

|ξi|pi ≤ t

}
.
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Hence, using (B.6) and (B.7), we conclude (B.5). This proves the claim of (B.3).

Let ωn denote the measure of the n-dimensional unit ball. We define A∗(s) by

A∗(s) := sup{t > 0 : meas ([A ≤ t]) < ωns
n} for s ≥ 0.

From (B.4), we infer that A∗(s) = (ωn/Dn)1/ns for every 0 ≤ s ≤ (Dn/ωn)1/n. Conse-
quently, A∗ satisfies (1.3) in [14], that is∫

0+

(
t

A∗(t)

) 1
n−1

dt <∞.

Using (B.3), we conclude that for every s > 0, it holds

A∗(s) ≥ g(s), where g(s) := sup{t > 0 : C1 min{t, tn} < ωns
n}. (B.8)

Following Cianchi [14], we define H : [0,∞)→ [0,∞) by

H(r) :=

(∫ r

0

(
t

A∗(t)

) 1
n−1

dt

)n−1
n

for r ≥ 0. (B.9)

Let B be given by B = A∗ ◦ H−1, where H−1 denotes the inverse of H . By Theorem 1
in [14], there exists a positive constant K, depending only on n, such that∫

Rn
B

(
|u(x)|

K
(∫

Rn A(∇u) dy
)1/n

)
dx ≤

∫
Rn
A(∇u) dx (B.10)

for every real-valued weakly differentiable function u on Rn decaying to 0 at infinity.
We next show that if C2 := (C1/ωn)1/n, then

B(τ) ≥ en[(τ/C2)
n
n−1−1] if τ ≥ C2. (B.11)

Indeed, by the definition of g in (B.8), we have g(s) = max{s/C2, (s/C2)n} = (s/C2)n

if s ≥ C2 and g(s) = s/C2 if 0 < s < C2. This, jointly with (B.9), implies that

H(r) ≤ C2 [ln(e r/C2)]
n−1
n if r ≥ C2.

Hence, we find that H−1(τ) ≥ C2e
(τ/C2)

n
n−1−1 ≥ C2 if τ ≥ C2. Using (B.8), we get that

B(τ) = A∗(H
−1(τ)) ≥ g(H−1(τ)) = (H−1(τ)/C2)n ≥ en[(τ/C2)

n
n−1−1] if τ ≥ C2.

This proves (B.11). Let u ∈ W 1,−→p
0 (Ω) and K as in (B.10). We define v as follows

v(x) :=
u(x)

C2K
(∫

Ω
A(∇u) dy

)1/n
for x ∈ Ω.
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From (B.10) and (B.11), we deduce that∫
{x∈Ω: |v(x)|≥1}

e
n
[
|v(x)|

n
n−1−1

]
dx ≤

∫
Ω

A(∇u) dx.

Consequently, we have∫
Ω

e
n
[
|v(x)|

n
n−1−1

]
dx ≤ meas (Ω) +

∫
Ω

A(∇u) dx,

which proves (B.2) with the constant L = L(n,−→p ) given by L = (1/n)(C2K)n/(n−1).

Step 2. Proof of (B.1) concluded.

Set M0 := max{
∑n

i=1 |ξi| : ξ ∈ En,−→p }, where En,−→p is given by (B.6). Using that
A(ξ) = max{

∑n
i=1 |ξi|,

∑n
i=1 |ξi|pi}, we get an upper bound estimate for

∫
Ω
A(∇u) dx:∫

Ω

A(∇u) dx ≤
∫
{x∈Ω:

∑n
i=1 |∂iu|>

∑n
i=1 |∂iu|pi}

n∑
i=1

|∂iu| dx+

∫
Ω

n∑
i=1

|∂iu|pi dx

≤M0 meas (Ω) +
n∑
i=1

∫
Ω

|∂iu|pi dx.
(B.12)

For u ∈ W 1,−→p
0 (Ω), we define Pu as follows

Pu := meas (Ω) +
n∑
i=1

∫
Ω

|∂iu|pi dx. (B.13)

Using (B.12) in (B.2), we find positive constants M and C3, depending only n and −→p ,
such that for every positive integer k, we have

1

k!

∫
Ω

|u(x)|
kn
n−1

Mk (Pu)
k

n−1

dx ≤
∫
Ω

e(1/M)|u(x)|
n
n−1 (Pu)

− 1
n−1

dx ≤ C3Pu.

Consequently, we arrive at

‖u‖n
L
kn
n−1 (Ω)

≤ C
n−1
k

3 Mn−1(k!)
n−1
k (Pu)1+n−1

k .

Hence, by Stirling’s formula, there exists a positive constant C4 = C4(n,−→p ), such that

‖u‖n
L
kn
n−1 (Ω)

≤ C4k
n−1 (Pu)1+n−1

k (B.14)

for every positive integer k. Let q ≥ 1 be arbitrary. We define θ := bqc(bqc + 1 − q)/q,
where bqc denotes the integer part of q. Since 1/q = θ/bqc+ (1− θ)/(bqc+ 1), by using
an interpolation inequality and (B.14), we conclude that

‖u‖n
L

qn
n−1 (Ω)

≤ ‖u‖nθ
L
bqcn
n−1 (Ω)

‖u‖n(1−θ)

L
(bqc+1)n
n−1 (Ω)

≤ C4bqc(n−1)θ(bqc+ 1)(n−1)(1−θ) (Pu)1+n−1
q ≤ Cqn−1 (Pu)1+n−1

q

for some positive constant C = C(n,−→p ). This, jointly with (B.13), proves (B.1).
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[7] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J. L.: An
L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22, no. 2, 241–273 (1995)
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