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Abstract

We generalize Petridis’s new proof of Plünnecke’s graph inequality [6] to graphs whose vertex

set is a measure space. Consequently, by a recent work of Björklund and Fish [2], this gives

new Plünnecke inequalities for measure preserving actions which enable us to deduce, via a

Furstenberg correspondence principle, Banach density estimates in countable abelian groups

that improve on those given by Jin in [5].

1 Introduction

1.1 Background and summary of results

Given an abelian group G with subsets A,B ⊂ G, it is of great interest to estimate the size of the

product set (commonly referred to as the sumset when additive notation is employed) defined by

AB = {ab|a ∈ A, b ∈ B}.

In particular, one is also interested in the sizes of iterated product sets Bk, which may be recursively

defined by B1 = B and Bk = Bk−1B for positive integers k > 1. General inequalities regarding

the cardinalities of these were given by Plünnecke and Ruzsa, a comprehensive treatment of which

may be found in [8]. In particular, it was shown in [7] that if one defines, for finite sets A ⊂ G and

B ⊂ G, the magnification ratios

Dk = min
B′⊂B,B′ 6=∅

|AkB′|
|B′|

then D
1/k
k is a decreasing sequence in k. For infinite subsets we can no longer use cardinalities. It is

natural, instead, to use the notion of an invariant density. This notion can be defined in countable

amenable groups - the groups which possess a Følner sequence. By a Følner sequence, we mean a

sequence of finite subsets Fn ⊂ G such that for each g ∈ G we have

lim
n→∞

|Fn ∩ gFn|
|Fn|

= 1.
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A countable group for which a Følner sequence exists is called amenable. It is well known that all

countable abelian groups are amenable. Each Følner sequence (Fn)n∈N gives rise to corresponding

upper and lower densities for A ⊂ G given by

d(Fn)(A) = lim sup
n→∞

|Fn ∩A|
|Fn|

and

d(Fn)(A) = lim inf
n→∞

|Fn ∩A|
|Fn|

,

respectively. For example, the Følner sequence Fn = [1, n]∩Z in the additive group Z gives rise to

the classical upper and lower asymptotic densities in the natural numbers, which are of particular

interest in Number Theory. Of interest to us is the upper (resp. lower) Banach density, denoted

by d∗(A) (resp. d∗(A)), which may be defined as the maximum (resp. minimum) of the set

{d(Fn)(A)|(Fn)n∈N is Følner}.

The fact that these extrema are attained in any given countable amenable group may be verified

by a simple diagonalisation argument. In fact one can show (see Lemma 3.3 of [1]) the stronger

assertion that given any Følner sequence (Fn)n∈N and A ⊂ G, there exist tn ∈ G such that

d∗(A) = d(tnFN )d(A),

and likewise for lower Banach density. In particular, in the additive group Zd one only needs to look

at sequences of finite cubes of strictly increasing cardinality. One may now ask whether Banach

densities of sumsets satisfy analogous Plünnecke-Ruzsa type inequalities. Indeed, Jin has proven

in [5] such inequalities for the additive semi-group Z≥0.

Theorem 1.1 (Jin). Suppose A,B ⊂ Z≥0, then

d∗(A+B) ≥ d∗(kA)1/kd∗(B)1− 1
k

and

d∗(A+B) ≥ d∗(kA)1/kd∗(B)1− 1
k .

In [2], Björklund and Fish introduced a new dynamical approach for Plünnecke type inequalities.

As a result, they extended Jin’s theorem to any countable abelian group.

Theorem 1.2 (Björklund, Fish). Suppose G is a countable abelian group and A,B ⊂ G. Then

we have

d∗(AB) ≥ d∗(Ak)1/kd∗(B)1− 1
k

and

d∗(AB) ≥ d∗(Ak)1/kd∗(B)1− 1
k .
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Our work extends [2] and provides analogous lower bounds for d∗(AjB) and d∗(A
jB). More pre-

cisely, we prove following.

Theorem 1.3. Suppose that G is a countable abelian group and A,B ⊂ G. Then for integers

0 < j < k we have

d∗(AjB) ≥ d∗(Ak)j/kd∗(B)1−j/k

and

d∗(A
jB) ≥ d∗(Ak)j/kd∗(B)1−j/k.

It seems unclear whether or not our results, even for just G = (Z,+), are attainable from an

application of Jin’s techniques to the inequality D
1/k
k ≤ D

1/j
j . We are also able to obtain a result

involving multiple different factors, which is a generalization of Theorem 1.2.

Theorem 1.4. Suppose G is a countable abelian group and B,A1, . . . , Ak ⊂ G. Then

d∗(A1 . . . Ak) ≤ d∗(B)1−k
k∏
i=1

d∗(AiB)

and

d∗(A1 . . . Ak) ≤ d∗(B)1−k
k∏
i=1

d∗(AiB).

The strategy of the proofs of the main theorems involves employing an ergodic approach. This

approach was developed by Björklund and the second author in [2]. First, we prove a Plünnecke

inequality for measure preserving actions and then we combine it with a Furstenberg correspondence

principle for product sets. Next, we recall the magnification ratios defined for the dynamical setting

in [2].

Definition 1.5 (G acting on a measure space). We say that a group G acts on a measure space

(X,B, µ) if, for each g ∈ G, the map x 7→ g.x is measure preserving, i.e., it is measurable and

µ(gB) = µ(B) for each B ∈ B.

Definition 1.6 ([2]). Given a countable abelian group G acting on a measure space (X,B, µ), let

us define, for A ⊂ G and B ∈ B of finite positive measure, the magnification ratio

c(A,B) = inf

{
µ(AB′)

µ(B′)
|B′ ⊂ B,µ(B′) > 0

}
.

The following is an extension to general j < k of the result in [2].

Theorem 1.7. If A is finite, then for positive integers j < k we have

c(Ak, B)1/k ≤ c(Aj , B)1/j .
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Note that the classical Plünnecke-Ruzsa inequality is the case where X = G, µ is the counting

measure and the action is by multiplication. It follows from the techniques developed in [2] that

Theorem 1.7 implies Plünnecke inequalities for A ⊂ G not necessarily finite.

Theorem 1.8 (Plünnecke inequalities). If µ(X) = 1 and L2(X,B, µ) is separable, then for positive

integers j < k we have

c(Ak, B)1/k ≤ c(Aj , B)1/j .

Next, we recall Furstenberg’s correspondence principle for product sets. This correspondence prin-

ciple can be derived from the seminal work of Furstenberg [4]. Nevertheless, it was noticed much

later in [1]. The following version of the correspondence principle (the third and fourth inequalities)

for product sets is due to Björklund and the second author [3].

Proposition 1.9 (Furstenberg’s correspondence principle). Suppose that G is a countable abelian

group and A,B ⊂ G. Then there exists a compact metrizable space X on which G acts by

homeomorphisms such that there exist G-invariant ergodic Borel probability measures µ, ν on X

together with a clopen B̃ ⊂ X such that

d∗(B) = µ(B̃)

d∗(AB) ≥ µ(AB̃)

d∗(B) ≤ ν(B̃)

d∗(AB) ≥ ν(AB̃).

Next, we demonstrate how Theorem 1.8, through Furstenberg’s correspondence principle, implies

Theorem 1.3 and Theorem 1.4.

Proof of Theorem 1.3 and Theorem 1.4: Let (X,µ) and B̃ be as in the correspondence

principle. Note that we may assume that d∗(B) > 0 as the result is trivial otherwise. Note also

that in Section 7 (see Lemma 7.3) we show that d∗(Ak) ≤ µ(AkB̃). Altogether, this gives

(
d∗(AjB)

d∗(B)

)1/j

≥

(
µ(AjB̃)

µ(B̃)

)1/j

≥ c(Aj , B̃)1/j

≥ c(Ak, B̃)1/k

≥
(
d∗(Ak)

d∗(B)

)1/k

,

which shows the first inequality. The second one may be deduced from the same argument applied

to the measure ν instead of µ from the correspondence principle. Moreover, Theorem 1.4 may

be obtained from applying the correspondence principle to the Plünnecke inequality for different

summands (Proposition 6.2). �
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1.2 Outline of paper

The main object introduced in this paper is, what we call, a measure graph. Section 2 provides

all the relevant definitions and basic properties. Intuitively, a measure graph is a directed edge-

labelled graph equipped with a measure on the vertex set that mimics certain elementary com-

binatorial properties of the classical graph-theoretic notion of a matching. The aim is to prove

a measure-theoretic version of the classical Plünnecke inequality for commutative graphs. The

classical approach employs Menger’s theorem, which has no obvious measure theoretic analogue.

However, Petridis [6] has recently found a new proof of this inequality that avoids the use of

Menger’s theorem. In Section 3 we generalize this proof to measure graphs. Immediate corollar-

ies concerning measure preserving actions are given in Section 4. We then, in Section 5, turn to

extending the results regarding c(A,B) with A finite, to ones where A is countable. Section 6

is devoted to a proof of a measure-theoretic analogue of Ruzsa’s Plünnecke inequality involving

different summands. Finally, we prove the correspondence principle for products sets in Section 7.

Acknowledgement: The authors are grateful to Michael Björklund for many discussions on topics

related to the content of the paper and, especially, for the suggestion to work out the case of different

summands (Theorem 1.4).

2 Definitions

By a labelled directed graph we mean a tuple (V,E,A) where V and A are sets and E ⊂ V ×V ×A.

We regard an element (v, w, a) ∈ E as an edge directed from v to w and labelled a. For subsets

W ⊂ V and labels a ∈ A the a-image and a-preimage are defined, respectively, as

Im+
a (W ) = {v ∈ V |(w, v, a) ∈ E for some w ∈W}

and

Im−a (W ) = {v ∈ V |(v, w, a) ∈ E for some w ∈W}.

That is, the a-image of W consists of the vertices that may be approached to from W by walking,

in the direction of the orientation, along an edge labelled a. Moreover we define for W ⊂ V the

(pre)image Im±(W ) =
⋃
a∈A Im

±
a (W ). For each integer h we have the h-fold image Imh(W )

defined recursively by Im0(W ) = W and Imh(W ) = Im+(Imh−1(W )) for h > 0 and Imh(W ) =

Im−(Imh+1(W )) for h < 0. In other words, Imh(W ) consists of all end points of walks with |h| steps

that begin at W and agree (resp. disagree) with the orientation of each edge if h > 0 (resp. h < 0).

Define also the incoming and outgoing degrees of a vetex v as d−(v) = |{(x, y, a) ∈ E|y = v}| and

d+(v) = |{(x, y, a) ∈ E|x = v}| respectively. Note that |Im±({v})| ≤ d±(v) with strict inequality

possible in case of multiple edges between two vertices (of course any two such edges would have

different labels). Given an edge e from v to w, we will call v the tail, denoted tail(e), and w the
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head, denoted by head(e). Let E+(v) denote the edges whose tail is v and E−(v) those edges whose

head is v.

Definition 2.1. A measure graph is a tuple Γ = (V,B, µ,A,E) where (V,B, µ) is a finite measure

space (that is, µ(V ) <∞), A is a finite set and (V,E,A) is a labelled directed graph such that

1. For each a ∈ A the sets

L+
a (Γ) = L+

a = {x ∈ V | There exists y ∈ V such that (x, y, a) ∈ E}

and

L−a (Γ) = L−a = {x ∈ V | There exists y ∈ V such that (y, x, a) ∈ E}

are measurable.

2. For a ∈ A and measurable W ⊂ L±a we have that Im±a (W ) is measurable and µ(W ) =

µ(Im±a (W )).

3. For each label a ∈ A and vertex x ∈ V there is at most one outgoing and at most one incoming

a-labelled edge incident to x. That is, |Im±a (x)| ≤ 1.

Example 2.2 (The (A, Y, h)-orbit graph). Given an abelian group G acting on a measure space

(X,B, µ) one may form for each integer h > 0, finite A ⊂ G and Y ∈ B of finite measure, a measure

graph whose underlying vertex set is
⊔h
k=0A

kY × {k} with edge set

{((x, k), (a.x, k + 1), a)|a ∈ A, x ∈ AkY, k = 0, 1 . . . , h− 1}.

The measure is the restriction of the natural product measure on X × {0, 1, . . . , h}.

Given a labelled graph Γ = (V,E,A) and W ⊂ V , the subgraph induced by W is the directed

labelled graph (W,EW , A) where EW = {(w1, w2, a)|w1, w2 ∈ W,a ∈ A and (w1, w2, a) ∈ E}. We

say that a subgraph of Γ is an induced subgraph if it is induced by some subset of V .

Example 2.3. If Γ = (V,B, µ,A,E) is a measure graph and W ⊂ V is measurable then the

subgraph of Γ induced by W is a measure graph (with the restricted measure, restricted σ-algebra

and the same edge-label set A). Note that the set of vertices with an outgoing edge labelled a ∈ A
is L+

a ∩W ∩ Im−a (L−a ∩W ) and thus is measurable as required.

Note that the (A, Y, h)-orbit graph defined above is a generalization of the commutative addition

graph studied in classical Additive Combinatorics, see for example [8], [9]. It is also an example of

what is known as a commutative, or Plünnecke, graph which may be defined as follows.

Definition 2.4. A layered-graph is a directed labelled graph (V,E,A) together with a partition

V = V0 t V1 t . . . t Vh such that if e = (x, y, a) ∈ E is a directed edge then x ∈ Vi and y ∈ Vi+1
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for some i ∈ {0, . . . h − 1}. We call Vk the k-th layer and we say that (V,E,A) is a h-layered

graph (we regard the partition as part of the data of a layered graph). A semi-commutative (or

semi-Plünnecke) graph is a layered graph (V,E,A) such that if (x, y, a) ∈ E is an edge then there

is an injection φ : E+(y) → E+(x) such that (head(φ(e)), head(e), a) ∈ E for all e ∈ E+(y). A

commutative, or Plünnecke, graph Γ is a directed layered graph such that both Γ and the dual

graph (the layered graph obtained by reversing edges and the ordering of the layers) Γ∗ are semi-

commutative.

Example 2.5. The (A, Y, h)-orbit graph defined above is a commutative graph with layering V =⊔h
j=0A

jY × {j}. To check semicommutativity, take a typical edge ((x, j), (ax, j + 1), a) running

from AjY × {j} to Aj+1Y × {j + 1} where 0 ≤ j ≤ h− 1. Then for edges

e = ((ax, j + 1), (a′ax, j + 2), a′) ∈ E+((ax, j + 1))

we may choose φ(e) = ((x, j), (a′x, j + 1), a′) since, by commutativity of G, a.(a′.x) = (a′a.x) and

thus there is an a-labelled edge from head(φ(e)) to head(e) as required. The semi-commutativity

of the dual can be similairly verified.

The following is an easy exercise in commutative graphs (see [8]).

Proposition 2.6. Suppose that (V,E) is a h-layered commutative graph with layers V = V0 . . .tVh.

Then for S ⊂ Vj and T ⊂ Vk, where 0 ≤ j < k ≤ h, we have that the channel between S and T

(that is, the subgraph consisting of all directed paths from S to T ) is a commutative graph. We

denote this subgraph ch(S, T ).

We will be interested in studying channels of an (A, Y, h)-orbit graph, it turns out these are mea-

surable.

Lemma 2.7. Given an h-layered measure graph Γ = (V,B, µ,A,E) with layering1 V = V0t . . .tVh
and measurable S ⊂ Vi, T ⊂ Vj where 0 ≤ i < j ≤ h we have that the channel ch(S, T ) has

measurable vertex set.

Proof: Let us denote the vertex set of a subgraph Γ′ as V (Γ′). We use induction on j − i. The

base case j = i+1 holds since then ch(S, T ) has vertex set V (ch(S, T )) = S∩Im−(T )
⊔
T ∩Im(S).

Now suppose that j − i > 1. Then by the induction hypothesis we have that ch(S, Im−(T ))

has measurable vertex set. By the base case, ch(Im−T, T ) has measurable vertex set. Now let

U = V (ch(S, Im−T )) ∩ V (ch(Im−T, T )) ⊂ Vj−1. Finally we have V (ch(S, T )) = V (ch(S,U)) ∪
V (ch(U, T )) which is measurable again by the induction hypothesis. �

Note that the previous Lemma and Example 2.3 demonstrate that the channel between two mea-

surable sets may be naturally viewed as a measure graph (as channels are induced subgraphs).

We now turn to generalizing the notion of the number of edges in a bipartite graph.

1We always assume implicitly that each layer is measurable.
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Definition 2.8. Fix a 1-layered commutative measure graph (U,B, µ,A,E) with layering U =

U0 t U1. Define the flow of Γ to be the quantity

Flow(Γ) =

∫
U0

d+(v)dµ(v).

We now show that the flow behaves nicely and that d± is a measurable function.

Proposition 2.9. Under the setting of the previous definition, the map d+ : U → R is measurable

and Flow(Γ) = Flow(Γ∗), that is∫
U0

d+(v)dµ(v) =

∫
U1

d−(v)dµ(v).

Proof: Since (by definition of a measure graph) |Im±a ({v})| ≤ 1, we may express

d± =
∑
a∈A

χL±a

and thus d± is measurable. Consequently we have that

Flow(Γ) =
∑
a∈A

µ(L+
a ) =

∑
a∈A

µ(Im+
a (L+

a )) =
∑
a∈A

µ(L−a ) = Flow(Γ∗)

as required. �

3 Plünnecke’s inequality for measure graphs

Definition 3.1. Given a commutative measure graph Γ = (V,B, µ,A,E) with layering V = V0 t
. . . t Vh, the magnification ratio of order j, where j ∈ {1, . . . h}, is

Dj = inf
Y⊂V0,µ(Y )>0

µ(Imj(Y ))

µ(Y )
.

Moreover, for C > 0, define the weight (corresponding to C) to be the measure on B given by

w(S) =

h∑
j=0

C−jµ(S ∩ Vj)

for S ∈ B. Furthermore, we say that S ∈ B is a cutset if any path from V0 to Vh intersects S and

that S is an ε-minimal cutset if S is a cutset such that

w(S) ≤ m0 + ε

where m0 = inf{w(Y )|Y ∈ B is a cutset}.

8



Lemma 3.2. Fix a 2-layered commutative measure graph (U,B, µ,A,E) with layering U = U0 t
U1 tU2 and C > 0. Then if U1 is an ε-minimal cutset (with respect to the weight corresponding to

C), then U0 is an f(ε)-minimal cutset where

f(ε) = ε+ 4|A|2Cε+ 4|A|2ε.

Proof: Let m0 = inf{w(S)|S ∈ B is a cutset}. Firstly note that for measurable S ⊂ U1 we have

that Im(S) t (U1 \ S) is a cutset and thus m0 ≤ w(Im(S)) +w(U1 \ S). On the other hand, since

U1 is ε-minimal we have that w(S) +w(U1 \S)− ε ≤ m0 and thus w(S) ≤ w(Im(S)) + ε. A similair

argument yields that w(S) ≤ w(Im−1(S)) + ε. Thus

Cµ(S) ≤ µ(Im(S)) + C2ε (?)

and

C−1µ(S) ≤ µ(Im−1(S)) + ε (†)

for measurable S ⊂ U1.

For each integer i ≥ 0 let

Xi = {u ∈ U1|d−(v) = i}

Yi = {u ∈ U2|d−(v) = i}

X ′i = {u ∈ U1|d+(v) = i}

Y ′i = {u ∈ U0|d+(v) = i}.

The Xi are measurable and partition U1. Let k = |A|. Define now inductively Tk = Im(Xk) and

Ti = Im(Xi) \ Ti+1 for i = k − 1, k − 2, . . . , 1. Note that the Ti partition the set of vertices in U2

that have at least one incoming edge. Moreover, by the definition of a commutativity we have that

each vertex in Ti has inwards degree at least i (specifically, this is by the semicommutativity of the

dual). Thus we obtain

k∑
i=1

iµ(Ti) ≤
k∑
i=1

Flow(ch(U1, Ti)) = Flow(ch(U1, U2)) (1)

where the right hand side is well defined since induced subgraphs with measurable vertex sets are

measure graphs. From now on we will use the shorthand notation Flow(Ui, Uj) := Flow(ch(Ui, Uj)).

Moreover, since Im(Xj t . . . tXk) = Tj t . . . t Tk we have by (?)

C

k∑
i=j

µ(Xi) ≤
k∑
i=j

µ(Ti) + C2ε. (2)
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Adding these inequalities for j = 1, . . . k we obtain

C.F low(U0, U1) = C
k∑
i=1

iµ(Xi) ≤
k∑
i=1

iµ(Ti) + kC2ε (3)

which implies, together with the preceding inequality, that

C.F low(U0, U1) ≤ Flow(U1, U2) + kC2ε. (4)

We will now apply the same argument to the dual graph to obtain an inequality of the form

Flow(U1, U2) ≤ C.F low(U0, U1) +Ok,C(ε).

To do this, inductively define T ′k = Im−1(X ′k) and T ′i = Im−(X ′i) \ T ′i+1 for i = k − 1, k − 2, . . . , 1.

This time we have, by the duals of the previous arguments (with (†) in place of (?)) and the fact

that flows are the same for duals (Proposition 2.9), that

k∑
i=1

iµ(T ′i ) ≤ Flow(chΓ∗(U1, U0)) = Flow(U0, U1) (5)

and, for each ` ∈ {1, 2 . . . k},

C−1
k∑
i=`

µ(X ′i) ≤
k∑
i=`

µ(T ′i ) + ε (6)

which, by summing as before, gives

C−1Flow(U1, U2) ≤ Flow(U0, U1) + kε.

Thus Flow(U1, U2) is close to C.F low(U0, U1). This means that the inequalities above must have

been close to being equalities. We will now explicitly estimate how close. Let us start with the

inequality (6). We obtain from it, (4), and (5) that for each j ∈ {1, . . . k} we have

C−1
k∑
i=j

µ(X ′i)−
k∑
i=j

µ(T ′i ) + (k − 1)ε ≥ C−1
k∑
i=1

iµ(X ′i)−
k∑
i=1

iµ(T ′i )

≥ C−1.F low(U1, U2)− Flow(U0, U1)

≥ −kCε

where the first inequality is obtained by summing (6) for ` ∈ {1, 2, . . . , k} \ {j}. This finally gives

C−1
k∑
i=j

µ(X ′i)−
k∑
i=j

µ(T ′i ) ≥ −kCε− (k − 1)ε (7)
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and so

|C−1
k∑
i=j

µ(X ′i)−
k∑
i=j

µ(T ′i )| ≤ max{kCε+ (k − 1)ε, ε} ≤ kCε+ kε. (8)

Thus the triangle inequality gives

|C−1µ(X ′i)− µ(T ′i )| ≤ 2kCε+ 2kε. (9)

Now we wish to show that T ′i is approximately Y ′i (that is, they have small symmetric difference).

Note that T ′jt . . .tT ′k ⊂ Y ′j t . . .tY ′k since, as before, the definition of a commutative graph implies

that each vertex in T ′i has outwards degree at least i. Thus

k∑
i=j

µ(T ′i )−
k∑
i=j

µ(Y ′i ) ≤ 0. (10)

Combining this with (6) and (4) we have that for each j ∈ {1, . . . k} we have

k∑
i=j

µ(T ′i )−
k∑
i=j

µ(Y ′i ) ≥
k∑
i=1

iµ(T ′i )−
k∑
i=1

iµ(Y ′i )

≥ C−1
k∑
i=1

iµ(X ′i)− kε−
k∑
i=1

iµ(Y ′i )

= C−1.F low(U1, U2)− Flow(U0, U1)− kε

≥ −kCε− kε.

Thus

|
k∑
i=j

µ(T ′i )−
k∑
i=j

µ(Y ′i )| ≤ kCε+ kε

from which the trianlge inequality implies

|µ(T ′i )− µ(Y ′i )| ≤ 2kCε+ 2kε. (11)

Combining this with (9) yields

|C−1µ(X ′i)− µ(Y ′i )| ≤ 4kCε+ 4kε.

Finally we get

|w(U1)− w(U0)| = |C−1
k∑
i=1

µ(X ′i)−
k∑
i=1

µ(Y ′i )| ≤ 4k2Cε+ 4k2ε

and so in fact U0 is (ε+ 4k2Cε+ 4k2ε)-minimal. �

We will now inductively apply the above lemma to construct ε-minimal cutsets that lie in the union

of the top and bottom layers.
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Lemma 3.3. Suppose that Γ = (V,B, µ,A,E) is a h-layered commutative measure graph with

layering X = X0 t . . .tXh. Fix C > 0 and let w be the weight on Γ corresponding to C. Then for

each ε > 0 there exists an ε-minimal cutset S ∈ B such that S ⊂ X0 tXh.

Proof: We will prove, by induction on j ∈ {h− 1, . . . , 1, 0}, that there exists an ε-minimal cutset

contained in V0 t V1 t . . . t Vj t Vh. The base case j = h− 1 is clear. Thus fix δ > 0 and suppose

that j ∈ {1, . . . , h− 1} and S ⊂ V0 t V1 t . . . t Vj t Vh is a δ-minimal cutset. Let Si = S ∩Xi for

i ∈ {1, . . . , h}. Let U0 ⊂ Vj−1 be those vertices that may be approached to Vj−1 from V0 along a

path that does not intersect S. Let U2 = Vj+1∩ ch(Vj+1, Vh \Sh) be the set of vertices in Vj+1 that

may be approached to Vh \ Sh. We know that U2 is measurable by the measurability of channels

and similairly U0 is measurable by an application of the measurability of channels to the subgraph

induced by
⊔h
i=0 Vi \ Si. Let H = ch(U0, U2) and let U1 ⊂ Vj by the vertices in H that lie in Vj .

Thus H is a 2-layered measure subgraph of Γ that is also commutative. Let us equip H with the

measure C−j+1µ instead of µ, since then the weight function on H corresponding to C agrees with

the that of Γ.

Subclaim: The middle layer U1 is a δ-minimal cutset of H.

To see this, firstly note that U1 ⊂ Sj (see Figure 1). If U1 is not δ-minimal, then there exists a

cutset T in H of weight w(T ) < w(U1)−δ ≤ w(Sj)−δ. But then the set S′ = S0∪ . . . Sj−1∪T ∪Sh
is a cutset of Γ of weight

w(S′) ≤
j−1∑
i=0

w(Si) + w(T ) + w(Sh) <

j−1∑
i=0

w(Si) + w(Sj)− δ + w(Sh) = w(S)− δ,

contradicting S being δ-minimal. This proves the subclaim.

12



Figure 1: A dotted 2-length path as shown cannot exist as this gives rise to a path from V0 to Vh

which avoids S, as shown, by the definition of U0 and U2. Thus U1 ⊂ Sj . One can similairly argue

that the S′ given in the proof of the subclaim is a cutset.

Hence we get by Lemma 3.2 that (S ∪ U0) \ Sj is a (δ + f(δ))-minimal cutset, where f is as in

the respective lemma (which we may take with the parameters of Γ, i.e: we consider H as having

labelling set A and thus this f does not depend on H). Taking δ → 0 finishes the induction step

and hence the proof of this lemma. �

We are now ready to show that in the case C = D
1/h
h the bottom layer is in fact a cutset of minimal

weight.

Corollary 3.4. Suppose that Γ = (X,B, µ,A,E) is a h-layered commutative measure graph with

layering X = X0 t . . . t Xh. Suppose that D
1/h
h > 0 and let w be the weight corresponding to

C = D
1/h
h . Then X0 is a cutset of minimal weight.

Proof: We want to show that X0 is ε-minimal for all ε > 0. Choose ε > 0 and by the above lemma

an ε-minimal cutset S ⊂ X0 tXh. Write Si = Xi ∩S. As S is a cutset we have Imh(X0 \S0) ⊂ Sh
and so

µ(Sh) ≥ µ(Imh(X0 \ S0)) ≥ Dhµ(X0 \ S0) = Chµ(X0)− Chµ(S0).

Thus

w(S) = µ(S0) + C−hµ(Sh) ≥ µ(X0) = w(X0)

and so w(X0) is ε-minimal. �

We may now finally prove the Plünnecke inequality for measure graphs.
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Theorem 3.5 (Plünnecke inequality for measure graphs). Suppose that Γ = (X,B, µ,A,E) is a

h-layered commutative measure graph with layering X = X0 t . . . tXh. Then for j ∈ {1, . . . , h}
we have

Dh
j ≥ D

j
h.

Proof: If Dh = 0 then we are done. If Dh > 0 then we may set C = D
1/h
h and apply the above

corollary as follows. For each non-null measurable Z ⊂ X0 we have that (X0 \ Z) t Imj(Z) is a

cutset and thus by minimality of X0 we have

µ(X0) = w(X0) ≤ w((X0 \ Z) t Imj(Z)) = µ(X0)− µ(Z) +D
−j/h
h µ(Imj(Z))

and so

D
j/h
h ≤ µ(Imj(Z))

µ(Z)

which completes the proof as Z ⊂ X0 was arbitrary. �

4 Applications to measure preserving systems

First, we recall the notions of the magnification ratios for the dynamical setting introduced by

Björklund and the second author in [2].

Definition 4.1. Suppose that G is a countable abelian group acting on a measure space (X,B, µ).

Define for A ⊂ G and B ∈ B of positive finite measure the magnification ratio

c(A,B) = inf{µ(AB′)

µ(B′)
|B′ ⊂ B,µ(B′) > 0}.

Moreover, for δ > 0 we may define the δ-heavy magnification ratio

cδ(A,B) = inf{µ(AB′)

µ(B′)
|B′ ⊂ B,µ(B′) ≥ δ.µ(B)}.

Furthermore, if E ⊂ X is measurable then we may define the restricted magnification ratio

c(A,B,E) = inf{µ(AB′ \ E)

µ(B′)
|B′ ⊂ B,µ(B′) > 0}.

By applying the Plünnecke inequality for measure graphs to the case of orbit graphs we obtain the

following Plünnecke inequality for measure preserving systems.

Theorem 4.2. Suppose that G is a countable abelian group acting on a measure space (X,B, µ).

Then for A ⊂ G finite and measurable B ∈ B of positive finite measure, we have

c(Aj , B)1/j ≥ c(Ak, B)1/k

for positive integers j < k.

14



We may also obtain the G-system analogue of a classical restricted addition result.

Theorem 4.3. Suppose that G is a countable abelian group acting on a measure space (X,B, µ).

For finite A ⊂ G, measurable B ⊂ X of positive finite measure and measurable E ⊂ X we have

c(Aj , B,Aj−1E)1/j ≥ c(Ak, B,Ak−1E)1/k

for positive integer j < k.

Proof: Consider the subgraph of the (A,B, k)-orbit graph induced by the subset

B × {0} t
k⊔
j=1

(AjB \Aj−1E)× {j}.

One may check that this subgraph is indeed commutative (see [8]). �

5 Countable set of translates

The inequalities established in Section 4 required the set of translates A ⊂ G to be finite. We now

turn to extending Theorem 4.2 to the case where A is countable. We use the techniques developed

by Björklund and the second author in [2].

The following proposition is analogous to Proposition 2.2 in [2].

Proposition 5.1. Suppose that G is an abelian group acting on a probability space (X,B, µ) and

fix a finite A ⊂ G and non-null B ∈ B together with a 0 < δ < 1 and positive integers j ≤ k. If

B′ ⊂ B is measurable and satisfies(
µ(AkB′)

µ(B′)

)1/k

≤ (1− δ)−1/j

(
µ(AjB)

µ(B)

)1/j

. (12)

Then µ(B′) ≥ δ.µ(B) or there exists B′ ⊂ B′′ ⊂ B such that µ(B′′ \B) > 0 and B′′ satisfies (12).

Proof: Firstly we note that if the hypothesis holds for B′ = B1 and B′ = B2 with B1 and B2

disjoint, then it holds for B1 tB2 since the hypothesis may be rewritten as the inequality

µ(AkB′) ≤ (1− δ)−k/j
(
µ(AjB)

µ(B)

)k/j
µ(B′).

By Theorem 4.2 we know that there exists non-null measurable B′ ⊂ B such that (12) is satisfied.

Suppose that µ(B′) < δ.µ(B), thus we wish to construct a strictly larger B′′ ⊃ B that satisfies (12)

and is contained in B. Set B0 = B \B′. We have that

µ(B0)

µ(B)
(1− δ)−1 > 1

15



and thus there exists B′0 ⊂ B0 such that(
µ(AkB′0)

µ(B′0)

)1/k

≤
(
µ(B0)

µ(B)
(1− δ)−1

)1/j (µ(AjB0)

µ(B0)

)1/j

= (1− δ)−1/j

(
µ(AjB0)

µ(B)

)1/j

≤ (1− δ)−1/j

(
µ(AjB)

µ(B)

)1/j

and thus we may set B′′ = B′ tB′0. �

We will now apply the above lemma to construct a set B′ ⊂ B such that µ(B′) ≥ δ.µ(B) and (12)

holds. The idea is to choose a set B′ ⊂ B that satisfies (12) and that is maximal in the sense that

B does not contain any measurable B′′ ⊃ B′ of strictly larger measure that satisfies (12). Such a

set would have to necessarily satisfy µ(B′) ≥ δ.µ(B). The existence of such a maximal B′ follows

from the continuity of measure together with the following easy lemma on monotone classes.

Lemma 5.2. Suppose that (X,B, µ) is a finite measure space andM⊂ B is non-empty and closed

under countable nested unions (that is, if Mi ∈ M with Mi ⊂ Mi+1 then
⋃∞
i=1Mi ∈ M). Then

there exists M ∈M such that µ(M) = µ(M ′) for all M ′ ∈M with M ⊂M ′.

Proof: ForM ∈M let s(M) = sup{µ(M ′)|M ′ ∈M,M ⊂M ′}. ChooseM1 ∈M. Now inductively

choose Mn+1 ∈ M such that Mn ⊂ Mn+1 and µ(Mn+1) ≥ µ(Mn)+s(Mn)
2 . Let M =

⋃∞
n=1Mn. We

claim that µ(M) = s(M). To see this, note that µ(Mn)→ µ(M) and s(Mn) ≥ s(M). Thus

µ(M) = lim
n→∞

µ(Mn+1) ≥ lim sup
n→∞

µ(Mn) + s(Mn)

2
≥ lim sup

n→∞

µ(Mn) + s(M)

2
=
µ(M) + s(M)

2

and thus µ(M) ≥ s(M) as required. �

If we setM = {B′ ⊂ B|B′ satisfies (12)} then we see thatM is non-empty by Theorem 4.2 and is

closed under countable nested unions by the continuity of measure. Thus by the discussion above

we obtain a B′ ⊂ B such that µ(B′) ≥ δ.µ(B) and (12) holds. Consequently we have shown

Lemma 5.3. Suppose that G is an abelian group acting on a probability space (X,B, µ) and fix a

finite A ⊂ G and non-null B ∈ B together with a 0 < δ < 1 and positive integers j ≤ k. Then

cδ(A
k, B)1/k ≤ (1− δ)−1/j

(
µ(AjB)

µ(B)

)1/j

.

We may now obtain our first result about the case where A ⊂ G is not necessarily finite.

Lemma 5.4. Suppose that G is an abelian group acting on a probability space (X,B, µ) and fix

a (not necessarily finite) set A ⊂ G and non-null B ∈ B together with a 0 < δ < 1 and positive

integers j ≤ k. Then

sup{cδ(A′, B)1/k|A′ ⊂ Ak, A′ is finite} ≤ (1− δ)−1/j

(
µ(AjB)

µ(B)

)1/j

.
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Proof: If A′ ⊂ Ak is finite then one may choose a finite A0 ⊂ A such that A′ ⊂ Ak0. Consequently

cδ(A
′, B)1/k ≤ cδ(Ak0, B)1/k ≤ (1− δ)−1/j

(
µ(Aj0B)

µ(B)

)1/j

≤ (1− δ)−1/j

(
µ(AjB)

µ(B)

)1/j

and so as A′ was arbitrary this completes the proof. �

The next non-trivial result due to Björklund and Fish allows us to extend the Plünnecke inequalities

for a finite set of translates (Theorem 4.2) to the case of an infinite set of translates.

Theorem 5.5 (Proposition 4.1 of [2]). Suppose that G is a countable group acting on a probability

space (X,B, µ) such that L2(X,B, µ) is separable and fix a (not necessarily finite) set A ⊂ G and

non-null B ∈ B together with a 0 < δ < 1. Then

c(A,B) ≤ sup{cδ(A′, B)|A′ ⊂ A, A′ is finite}.

Theorem 5.6. (Plünnecke inequalities for an infinite set of translates) Suppose that G is a count-

able abelian group acting on a probability space (X,B, µ) such that L2(X,B, µ) is separable and

fix a (not necessarily finite) set A ⊂ G and non-null B ∈ B together with a 0 < δ < 1 and positive

integers j ≤ k. Then

c(Ak, B)1/k ≤ c(Aj , B)1/j ≤
(
µ(AjB)

µ(B)

)1/j

.

Proof: By the previous two results we obtain for each δ > 0 the inequalities

c(Ak, B)1/k ≤ sup{cδ(A′, B)1/k|A′ ⊂ Ak, A′ is finite} ≤ (1− δ)−1/j

(
µ(AjB)

µ(B)

)1/j

.

Taking δ → 0 gives

c(Ak, B)1/k ≤
(
µ(AjB)

µ(B)

)1/j

.

Now applying this to non-null Bi ⊂ B such that

µ(AjBi)

µ(Bi)
→ c(Aj , B)

gives

c(Ak, B)1/k ≤ c(Ak, Bi)1/k ≤
(
µ(AjBi)

µ(Bi)

)1/j

→ c(Aj , B)1/j

as desired. �
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6 Different summands

Given measure preserving actions G y (X,B, µ) and G′ y (X ′,B′, µ′) one can form the measure

preserving product action G ⊕ G y (X × X,B ⊗ B′, µ × µ′) given by (g, g′).(x, x′) = (g.x, g′.x′).

We will now verify that the corresponding multiplication ratios are multiplicative.

Lemma 6.1. Suppose that G and G′ are countable groups acting on probability spaces (X,B, µ)

and (X ′,B′, µ′) respectively. Then for A ⊂ G, A′ ⊂ G′ and non-null B ⊂ X, B′ ⊂ X ′ we have

c(A,B)c(A′, B′) = c(A×A′, B ×B′).

Proof: For non-null B0 ⊂ B and B′0 ⊂ B′ we have

c(A×A′, B ×B′) ≤ µ× µ′(A×A′.B0 ×B′0)

µ× µ′(B0 ×B′0)

=
µ(A.B0)

µ(B0)

µ(A′.B′0)

µ(B′0)
.

By selecting appropriateB0 andB′0, the right hand side may be made arbitrarily close to c(A,B)c(A′, B′)

and thus

c(A,B)c(A′, B′) ≥ c(A×A′, B ×B′).

We now aim to show the reverse inequality. For U ⊂ X ×X ′ and (x0, x
′
0) ∈ X ×X ′ let

Ux0 = {x′ ∈ X ′|(x0, x
′) ∈ U}

and

Ux
′
0 = {x ∈ X|(x, x′0) ∈ U}.

Also, let B(V ) denote the measurable subsets of V where V is any subset of a measurable space.

Define

φ : B(X ×B′)→ B(X ×X ′)

by

φ(U) =
⊔
x∈X
{x} ×A′Ux = ({1G} ×A′).U.

By Fubini’s theorem we have

µ× µ′(φ(U)) =

∫
X
µ′(A′Ux)dµ(x)

≥
∫
X
c(A′, B′)µ′(Ux)dµ(x)

= c(A′, B′)

∫
X
µ′(Ux)dµ(x)

= c(A′, B′) · µ× µ′(U).

18



Thus µ×µ′(φ(U)) ≥ c(A′, B′) ·µ×µ′(U) for U ⊂ X ×B′. We may reverse the role of co-ordinates

to obtain a similair inequality, from which we finally get that

µ× µ′((A×A′).U) = µ× µ′(({1G} ×A′)(A× {1G′}).U))

≥ c(A′, B′) · µ× µ′((A× {1G′}).U))

≥ c(A′, B′)c(A,B) · µ× µ′(U)

for U ⊂ B ×B′. This implies that c(A,B)c(A′, B′) ≤ c(A×A′, B ×B′), as required. �

Proposition 6.2. Suppose that G is a countable abelian group acting on a probability space

(X,B, µ). Then for A1, A2, . . . Ak ⊂ G and non-null B ∈ B we have

c(A1 . . . Ak, B) ≤
k∏
i=1

µ(AiB)

µ(B)
.

Proof: Choose rational numbers

αi >
µ(AiB)

µ(B)

and choose n ∈ Z>0 such that for each i ∈ {1, . . . k} we have

ni :=
n

αi
∈ Z>0.

Suppose that there exists Ti ⊂ G with |Ti| = ni such that the map

T1 × . . .× Tk × (A1A2 . . . AkB)→ X

(t1, . . . , tk, y) 7→ t1 . . . tky

is injective. We may assume, without loss of generality, that we are in this case by naturally

embedding G ↪→ G ⊕ Z/NZ and X ↪→ X × Z/NZ and replacing the measure preserving system

G y X with the product measure preserving system G ⊕ Z/NZ y X × Z/NZ, for large enough

N . Let A =
⋃k
i=1AiTi and notice that

µ(AB) ≤
k∑
i=1

µ(AiTiB) ≤
k∑
i=1

ni · µ(AiB) < µ(B)
k∑
i=1

niαi = k · n · µ(B)

and thus, by Theorem 5.6, we obtain non-null B′ ⊂ B such that

µ(AkB′) ≤ (k · n)k µ(B′).

However, by the injection above, we have

µ(AkB′) ≥ µ(T1 . . . TkA1A2 . . . AkB
′) =

(
k∏
i=1

ni

)
µ(A1 . . . AkB

′).
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Combining the previous two inequalities gives

c(A1 . . . Ak, B) ≤ µ(A1 . . . AkB
′)

µ(B′)
≤ kk

k∏
i=1

αi.

Since the αi >
µ(AiB)
µ(B) were arbitrary rational numbers, we obtain

c(A1 . . . Ak, B) ≤ kk
k∏
i=1

µ(AiB)

µ(B)
. (13)

We now wish to remove the kk constant. This may be done by consdering a large cartesian

power, as follows. Let us denote V ×m = V × V . . . × V and V ⊕m = V ⊕ V . . . ⊕ V , where m

factors are present. For each positive integer m, an application of (13) and Lemma 6.1 to the sets

A⊕m1 . . . A⊕mk = (A1A2 . . . Ak)
⊕m ⊂ G⊕m and B×m ⊂ X×m gives

c(A1 . . . Ak, B) ≤ kk/m
k∏
i=1

µ(AiB)

µ(B)
.

Taking the limit m→∞ gives the desired result. �

7 Correspondence principle for product sets

We will now establish a Furstenberg correspondence principle for product sets. The first appearance

of the correspondence principle for product sets was in [1]. The principle appearing in this paper

is due to Björklund and Fish, and appeared in [3]. Given a countable group G and B ⊂ G, we

define the Furstenberg G-system corresponding to B to be the topological G-system G y X, i.e.,

G acts on compact metric space X by homeomorphisms, given by the following construction. Let

X0 = {0, 1}G be the space of all sequences indexed by G equipped with the product topology. Let

z ∈ {0, 1}G be the indicator function of B, that is zg = 1 if and only if g ∈ B. Note that there is a

natural action of G on X0 given by

(g.x)h = xgh

for g, h ∈ G and (xk)k∈G ∈ X0.

Let X = Gz = {gz | g ∈ G} be the closure of the orbit of z. Note that X is G-invariant. This

defines the system corresponding to B. Moreover, we define the clopen set corresponding to B to

be the set

B̃ = {x ∈ X | x1 = 1},

which is a clopen subset of X.
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Lemma 7.1. Suppose that G is a countable abelian group, B ⊂ G and X is the G-system corre-

sponding to B. Suppose that µ is a G-invariant Borel probability measure on X. Then for finite

A0 ⊂ G we have that

d∗(A0B) ≥ µ(A0B̃) ≥ d∗(A0B).

Proof: Note that it suffices to prove this for µ ergodic by either of the following arguments.

Suppose that the result holds for all ergodic µ, and thus holds for all convex combinations of

ergodic measures. It is a well known fact that the extreme G-invariant measures are precisely the

ergodic measures. The Krein-Milman theorem therefore implies that any G-invariant probability

measure is in the weak∗ closure of the set of all convex combinations of ergodic measures. Since the

map ν 7→ ν(A0B̃) is weak∗ continuous (since A0B̃ is clopen), we obtain the result. Alternatively, one

may use Bauer’s maximum principle (instead of the Krein-Milman) which says that the maximum

(resp. minimum) of the the map ν 7→ ν(A0B̃) is attained at an extremal (hence ergodic) measure,

say µ∗ (resp. µ∗), and thus for any G-invariant µ we have

d∗(A0B) ≤ µ∗(A0B̃) ≤ µ(A0B̃) ≤ µ∗(A0B̃) ≤ d∗(A0B).

Now we turn to the proof of the Lemma under the assumption that µ is ergodic. Given any Følner

sequence (Fn)n∈N and continuous f ∈ C(X) we have, by the Von Neumann mean ergodic theorem,

that

1

|FN |
∑
g∈FN

f ◦ g →
∫
fdµ (14)

in the L2-norm. We may then, by the Borel-Cantelli lemma, pass to a subsequence of (Fn)n∈N to

obtain almost everywhere pointwise convergence in (14). In particular we may apply this result to

f = χ
A0B̃

and get a Følner sequence (Fn)n∈N such that

1

|FN |
∑
g∈FN

χ
A0B̃

(gx)→ µ(A0B̃)

for some x ∈ X. Now fix N ∈ N and note that since X = Gz we have hiz → x for some hi ∈ G and

thus χ
A0B̃

(ghiz)→ χ
A0B̃

(gx) for each g ∈ FN . Therefore, for some large M , we have for qN := hM

the equality
1

|FN |
∑
g∈FN

χ
A0B̃

(gx) =
1

|FN |
∑
g∈FN

χ
A0B̃

(gqNz) =
|qNFN ∩A0B|
|qNFN |

where the second equality is obtained from the fact that, by construction of the corresponding

system and clopen set, we have gqNz ∈ A0B̃ if and only if gqN ∈ A0B. Since (qNFN )N∈N is a

Følner sequence, the limit (as N → ∞) of this quantity must be between d∗(A0B) and d∗(A0B).

�

In fact, notice that the inequality d∗(A0B) ≥ µ(A0B̃) in the previous lemma is also true for infinite

A0 since we can always write A0 as an increasing union A1 ⊂ A2 . . . of finite sets and thus

d∗(A0B) ≥ d∗(AkB) ≥ µ(AkB̃)→ µ(AB̃) as k →∞.
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Proposition 7.2 (Correspondence principle for product sets [2]). Suppose that G is a countable

abelian group and A,B ⊂ G. Then there exists a compact metrizable space X on which G acts by

homeomorphisms such that there exist G-invariant ergodic Borel probability measures µ, ν on X

together with a clopen B̃ ⊂ X such that

d∗(B) = µ(B̃)

d∗(AB) ≥ µ(AB̃)

d∗(B) ≤ ν(B̃)

d∗(AB) ≥ ν(AB̃).

Proof: The space X and clopen set B̃ will be those coming from the correspondence. Note that

the second and third inequalities are satisfied for all µ, ν by the lemma above. Moreover, this

lemma shows that d∗(B) ≥ µ(B̃), for all µ. Therefore to construct µ satisfying the first equality, it

is enough to construct a not necessarily ergodic µ and then apply Bauer’s maximum principle. Let

z be as in the construction of the correspondence. Choose a Følner sequence Fn ⊂ G such that

|Fn ∩B|
|Fn|

→ d∗(B).

Consider now the following averages of point mass measures

µn =
1

|Fn|
∑
g∈Fn

δg.z

and let µ = limk→∞ µnk
be a weak∗ limit of a subsequence of these. Since (Fn)n∈N is Følner, we

have the µ is G-invariant. Note that for C ⊂ G

µn(CB̃) =
|Fn ∩ CB|
|Fn|

.

In particular, the C = {1} case shows that the choice of Følner sequence, together with the fact

that B̃ is clopen, implies that d∗(B) = µ(B̃). Now we turn to dealing with the final inequality.

To construct such a ν, it is enough to construct such a not necessarily ergodic ν by the following

argument. The map ν 7→ ν(AB̃) is weak∗ lower semicontinuous since AB̃ is open. Thus Bauer’s

minimum (but not maximum) principle applies and thus if at least one not necessarily ergodic

ν satisfies the final inequality, then some ergodic minimizer does too. Write A as a union of an

increasing sequence of finite sets A1 ⊂ A2 ⊂ . . . and choose a Følner sequence Em ⊂ G such that

|Em ∩AB|
|Em|

→ d∗(AB) as m→∞.

As before, we have that the averages

νm =
1

|Em|
∑
g∈En

δg.z
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have a weak∗ convergent subsequence νmj → ν. Since each AkB̃ is clopen, we have

d∗(AB) = lim
j→∞

|Emj ∩AB|
|Emj |

≥ lim
j→∞

|Emj ∩AkB|
|Emj |

= lim
j→∞

νmj (AkB̃) = ν(AkB)→ ν(AB̃) as k →∞.

�

The following statement was proven in [2].

Lemma 7.3 ([2]). Suppose that G is a countable abelian group that acts ergodically on a prob-

ability space (X,B, µ) such that L2 = L2(X,B, µ) is separable (for instance, a Borel probability

space). Then

d∗(A) ≤ µ(AB)

for A ⊂ G and non-null B ∈ B.

Proof: Choose a Følner sequence (Fn)n∈N such that

lim
n→∞

|Fn ∩A|
|Fn|

= d∗(A).

Define

fN =
1

|FN |
∑
g∈FN

χg−1AB ∈ L2.

As ‖fN‖2 ≤ 1 and L2 is separable (and thus has unit ball compact metrizable in the weak topology),

we may pass to a subsequence of (Fn)n∈N such that fN converges weakly to some f ∈ L2. But f is

G-invariant and thus constant by ergodicity. Therefore

µ(AB) = 〈fN , 1〉 → 〈f, 1〉 = f

and so in fact f is the constant function µ(AB).

Notice that for b ∈ B we have

fN (b) =
1

|FN |
|{g ∈ FN |b ∈ g−1AB}|

=
1

|FN |
|{g ∈ FN |gb ∈ AB}|

≥ 1

|FN |
|{g ∈ FN |g ∈ A}|

and so d∗(A) ≤ lim infN→∞ fN (b). In other words, we have

χBd
∗(A) ≤ χB lim inf

N→∞
fN .

Integrating this inequality and applying Fatou’s lemma yields

µ(B)d∗(A) ≤
∫
χB lim inf

N→∞
fN

≤ lim inf
N→∞

∫
χBfN

= 〈χB, f〉

= µ(B)µ(AB).
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As µ(B) > 0, we obtain the desired inequality. �
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