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Abstract

The Yangian characters (or q-characters) are known to be closely related to the

classical W-algebras and to the centers of the affine vertex algebras at the critical

level. We make this relationship more explicit by producing families of generators

of the W-algebras from the characters of the Kirillov–Reshetikhin modules associ-

ated with multiples of the first fundamental weight in types B and D and of the

fundamental modules in type C. We also give an independent derivation of the char-

acter formulas for these representations in the context of the RTT presentation of

the Yangians. In all cases the generators of the W-algebras correspond to the re-

cently constructed elements of the Feigin–Frenkel centers via an affine version of the

Harish-Chandra isomorphism.
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1 Introduction

1.1. Let g be a simple Lie algebra over C . Choose a Cartan subalgebra h of g and a

triangular decomposition g = n−⊕h⊕n+. Recall that the Harish-Chandra homomorphism

U(g)h → U(h) (1.1)

is the projection of the h-centralizer U(g)h in the universal enveloping algebra to U(h)

whose kernel is the two-sided ideal U(g)h ∩U(g)n+. The restriction of the homomorphism

(1.1) to the center Z(g) of U(g) yields an isomorphism

Z(g) → U(h)W (1.2)

called the Harish-Chandra isomorphism, where U(h)W denotes the subalgebra of invariants

in U(h) with respect to an action of the Weyl group W of g; see e.g. [7, Sec. 7.4].

In this paper we will be concerned with an affine version of the isomorphism (1.2).

Consider the affine Kac–Moody algebra ĝ which is the central extension

ĝ = g [t, t−1]⊕ CK,

where g[t, t−1] is the Lie algebra of Laurent polynomials in t with coefficients in g. We

have a natural analogue of the homomorphism (1.1),

U
(
t−1g[t−1]

)h → U
(
t−1h[t−1]

)
. (1.3)

The vacuum module V−h∨(g) at the critical level over ĝ is defined as the quotient of the

universal enveloping algebra U(ĝ) by the left ideal generated by g[t] and K +h∨, where h∨

denotes the dual Coxeter number for g. The vacuum module V−h∨(g) possesses a vertex

algebra structure; see e.g. [11, Ch. 2]. The center of this vertex algebra is defined by

z(ĝ) = {S ∈ V−h∨(g) | g[t]S = 0},

its elements are called Segal–Sugawara vectors. The center is a commutative associative

algebra which can be regarded as a commutative subalgebra of U
(
t−1g[t−1]

)h
. By the

results of Feigin and Frenkel [10], z(ĝ) is an algebra of polynomials in infinitely many

variables and the restriction of the homomorphism (1.3) to the subalgebra z(ĝ) yields an

isomorphism

z(ĝ) → W(Lg), (1.4)

where W(Lg) is the classical W-algebra associated with the Langlands dual Lie algebra Lg;

see [11] for a detailed exposition of these results. The W-algebra W(Lg) can be defined as

a subalgebra of U
(
t−1h[t−1]

)
which consists of the elements annihilated by the screening

operators ; see Sec. 4 below.
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Recently, explicit generators of the Feigin–Frenkel center z(ĝ) were constructed for the

Lie algebras g of all classical types A, B, C and D; see [5], [6] and [24]. Our aim in this

paper is to describe the Harish-Chandra images of these generators in types B, C and D.

The corresponding results in type A are given in [5]; we also reproduce them below in a

slightly different form (as in [5], we work with the reductive Lie algebra glN rather than

the simple Lie algebra slN of type A). The images of the generators of z(ĝ) under the

isomorphism (1.4) turn out to be elements of the W-algebra W(Lg) written in terms of

noncommutative analogues of the complete and elementary symmetric functions.

In more detail, for any X ∈ g and r ∈ Z introduce the corresponding elements of the

loop algebra g[t, t−1] by X[r] = Xtr. The extended Lie algebra ĝ⊕ Cτ with τ = −d/dt is
defined by the commutation relations[

τ,X[r]
]
= −r X[r − 1],

[
τ,K

]
= 0. (1.5)

Consider the natural extension of (1.4) to the isomorphism

χ : z(ĝ)⊗ C [τ ] → W(Lg)⊗ C [τ ], (1.6)

which is identical on C [τ ]; see Sec. 5 for the definition of χ.

1.2. First let g = glN be the general linear Lie algebra with the standard basis elements

Eij, 1 6 i, j 6 N . For each a ∈ {1, . . . ,m} introduce the element E[r]a of the algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ U (1.7)

by

E[r]a =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ Eij[r], (1.8)

where the eij are the standard matrix units and U stands for the universal enveloping

algebra of ĝlN ⊕ Cτ . Let H(m) and A(m) denote the respective images of the symmetrizer

and anti-symmetrizer in the group algebra for the symmetric group Sm under its natural

action on (CN)⊗m; see (2.7). We will identify H(m) and A(m) with the elements H(m) ⊗ 1

and A(m) ⊗ 1 of the algebra (1.7). Define the elements ϕma, ψma ∈ U
(
t−1glN [t

−1]
)
by the

expansions

trA(m)
(
τ + E[−1]1

)
. . .

(
τ + E[−1]m

)
= ϕm0 τ

m + ϕm1 τ
m−1 + · · ·+ ϕmm, (1.9)

trH(m)
(
τ + E[−1]1

)
. . .

(
τ + E[−1]m

)
= ψm0 τ

m + ψm1 τ
m−1 + · · ·+ ψmm, (1.10)

where the traces are taken over all m copies of EndCN . The results of [5] and [6] imply

that all elements ϕma and ψma, as well as the coefficients of the polynomials tr (τ+E[−1])m
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belong to the Feigin–Frenkel center z(ĝlN); see also [25] for a simpler proof. Moreover, each

of the families

ϕ11, . . . , ϕNN and ψ11, . . . , ψNN

is a complete set of Segal–Sugawara vectors in the sense that the elements of each family

together with their images under all positive powers of the translation operator T = ad τ

are algebraically independent and generate z(ĝlN).

The elements µi = Eii with i = 1, . . . , N span a Cartan subalgebra of glN . Elements

of the classical W-algebra W(glN) are regarded as polynomials in the µi[r] with r < 0. A

calculation of the images of the polynomials (1.9) with m = N and tr (τ +E[−1])m under

the isomorphism (1.6) was given in [5]. The same method applies to all polynomials (1.9)

and (1.10) to yield the formulas

χ : trA(m)
(
τ + E[−1]1

)
. . .

(
τ + E[−1]m

)
7→ em

(
τ + µ1[−1], . . . , τ + µN [−1]

)
, (1.11)

χ : trH(m)
(
τ + E[−1]1

)
. . .

(
τ + E[−1]m

)
7→ hm

(
τ + µ1[−1], . . . , τ + µN [−1]

)
, (1.12)

where we use standard noncommutative versions of the complete and elementary symmetric

functions in the ordered variables x1, . . . , xp defined by the respective formulas

hm(x1, . . . , xp) =
∑

i16···6im

xi1 . . . xim , (1.13)

em(x1, . . . , xp) =
∑

i1>···>im

xi1 . . . xim . (1.14)

Relations (1.11) and (1.12) can also be derived from the Yangian character formulas as we

indicate below; see Secs 3.1 and 5.

1.3. Now turn to the Lie algebras of types B, C and D and let g = gN be the orthogonal

Lie algebra oN (with N = 2n or N = 2n + 1) or the symplectic Lie algebra spN (with

N = 2n). We will use the elements Fij[r] of the loop algebra gN [t, t
−1], where the Fij

are standard generators of gN ; see Sec. 2.2 for the definitions. For each a ∈ {1, . . . ,m}
introduce the element F [r]a of the algebra (1.7) by

F [r]a =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ Fij[r], (1.15)

where U in (1.7) now stands for the universal enveloping algebra of ĝN ⊕ Cτ . We let

S(m) denote the element of the algebra (1.7) which is the image of the symmetrizer of

the Brauer algebra Bm(ω) under its natural action on (CN)⊗m, where the parameter ω

should be specialized to N or −N in the orthogonal and symplectic case, respectively. The
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component of S(m) in U is the identity; see (2.18) and (2.19) below for explicit formulas.

We will use the notation

γm(ω) =
ω +m− 2

ω + 2m− 2
(1.16)

and define the elements ϕma ∈ U
(
t−1gN [t

−1]
)
by the expansion

γm(ω) trS
(m)

(
τ + F [−1]1

)
. . .

(
τ + F [−1]m

)
= ϕm0 τ

m + ϕm1 τ
m−1 + · · ·+ ϕmm, (1.17)

where the trace is taken over all m copies of EndCN (we included the constant factor

(1.16) to get a uniform expression in all cases). By the main result of [24], all coefficients

ϕma belong to the Feigin–Frenkel center z(ĝN). Note that in the symplectic case gN = sp2n
the values of m were restricted to 1 6 m 6 2n, but the result and arguments also extend

to m = 2n + 1; see [24, Sec. 3.3]. In the even orthogonal case gN = o2n there is an

additional element ϕ ′
n = Pf F̃ [−1] of the center defined as the (noncommutative) Pfaffian

of the skew-symmetric matrix F̃ [−1] = [F̃ij[−1]],

Pf F̃ [−1] =
1

2nn!

∑
σ∈S2n

sgn σ · F̃σ(1)σ(2)[−1] . . . F̃σ(2n−1)σ(2n)[−1], (1.18)

where F̃ij[−1] = Fij′ [−1] with i′ = 2n− i+1. The family ϕ22, ϕ44, . . . , ϕ2n 2n is a complete

set of Segal–Sugawara vectors for o2n+1 and sp2n, while ϕ22, ϕ44, . . . , ϕ2n−2 2n−2, ϕ
′
n is a

complete set of Segal–Sugawara vectors for o2n.

The Lie algebras o2n+1 and sp2n are Langlands dual to each other, while o2n is self-

dual. In all the cases we denote by h the Cartan subalgebra of gN spanned by the elements

µi = Fii with i = 1, . . . , n and identify it with the Cartan subalgebra of LgN spanned by the

elements with the same names. We let µi[r] = µi t
r with r < 0 and i = 1, . . . , n denote the

basis elements of the vector space t−1h[t−1] so that the elements of the classical W-algebra

W(LgN) are regarded as polynomials in the µi[r].

Main Theorem. The image of the polynomial (1.17) under the isomorphism (1.6) is given

by the formula :

type Bn: hm
(
τ + µ1[−1], . . . , τ + µn[−1], τ − µn[−1], . . . τ − µ1[−1]

)
,

type Dn:
1
2
hm

(
τ + µ1[−1], . . . , τ + µn−1[−1], τ − µn[−1], . . . τ − µ1[−1]

)
+ 1

2
hm

(
τ + µ1[−1], . . . , τ + µn[−1], τ − µn−1[−1], . . . τ − µ1[−1]

)
,

type Cn: em
(
τ + µ1[−1], . . . , τ + µn[−1], τ, τ − µn[−1], . . . τ − µ1[−1]

)
.

Moreover, the image of the element ϕ ′
n in type Dn is given by(

µ1[−1]− τ
)
. . .

(
µn[−1]− τ

)
1. (1.19)
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In the last relation τ is understood as the differentiation operator so that τ 1 = 0.

1.4. The Fourier coefficients of the image of any element of the Feigin–Frenkel center z(ĝ)

under the state-field correspondence map are well-defined operators (called the Sugawara

operators) on the Wakimoto modules over ĝ. These operators act by multiplication by

scalars which are determined by the Harish-Chandra image under the isomorphism (1.4);

see [11, Ch. 8]. Therefore, the Main Theorem yields explicit formulas for the eigenvalues

of a family of the (higher) Sugawara operators in the Wakimoto modules.

Our approach is based on the theory of characters originated in [18] in the Yangian

context and in [14] in the context of quantum affine algebras (the latter are commonly

known as the q-characters). The theory was further developed in [12] where an algorithm for

the calculation of the q-characters was proposed, while conjectures for functional relations

satisfied by the q-characters were proved in [15] and [32]. An extensive review of the role

of the q-characters in classical and quantum integrable systems is given in [19]; see also

earlier papers [20], [22], [30] and [31] where some formulas concerning the representations

we dealing with in this paper had been conjectured and studied. In recent work [28], [29]

the q-characters have been calculated for a wide class of representations in type B, and

associated extended T -systems have been introduced.

Due to the general results on the connection of the q-characters with the Feigin–Frenkel

center and the classical W-algebras described in [14, Sec. 8.5], one could expect that the

character formulas would be useful for the calculation of the Harish-Chandra images of

the coefficients of the polynomial (1.17). Indeed, as we demonstrate below, the images in

the classical W-algebra are closely related with the top degree components of some linear

combinations of the q-characters.

We now briefly describe the contents of the paper. We start by proving the character

formulas for some classes of representations of the Yangian Y(gN) associated with the

Lie algebra gN (Sec. 2). To this end we employ realizations of the representations in

harmonic tensors and construct special bases of the representation spaces. The main

calculation is given in Sec. 3, where we consider particular linear combinations of the

Yangian characters and calculate their top degree terms as elements of the associated

graded algebra grY(gN) ∼= U(gN [t]). In Sec. 4 we recall the definition of the classical

W-algebras and write explicit screening operators in all classical types. By translating the

results of Sec. 3 to the universal enveloping algebra U(t−1gN [t
−1]) we will be able to get

them in the form provided by the Main Theorem (Sec. 5). Finally, in Sec 6 we apply our

results to get the Harish-Chandra images of the Casimir elements for the Lie algebras gN
arising from the Brauer–Schur–Weyl duality. We show that our formulas are equivalent to

those previously found in [16].
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2 Characters of Yangian representations

2.1 Yangian for glN

Denote by h the Cartan subalgebra of glN spanned by the basis elements E11, . . . , ENN .

The highest weights of representations of glN will be considered with respect to this basis,

and the highest vectors will be assumed to be annihilated by the action of the elements

Eij with 1 6 i < j 6 N , unless stated otherwise.

Recall the RTT -presentation of the Yangian associated with the Lie algebra glN ; see

e.g. [23, Ch. 1]. For 1 6 a < b 6 m introduce the elements Pab of the tensor product

algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

(2.1)

by

Pab =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ eji ⊗ 1⊗(m−b). (2.2)

The Yang R-matrix R12(u) is a rational function in a complex parameter u with values in

the tensor product algebra EndCN ⊗ EndCN defined by

R12(u) = 1− P12

u
.

This function satisfies the Yang–Baxter equation

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u), (2.3)

where the subscripts indicate the copies of EndCN in the algebra (2.1) with m = 3. The

Yangian Y(glN) is an associative algebra with generators t
(r)
ij , where 1 6 i, j 6 N and

r = 1, 2, . . . , satisfying certain quadratic relations. To write them down, introduce the

formal series

tij(u) = δij +
∞∑
r=1

t
(r)
ij u

−r ∈ Y(glN)[[u
−1]]

and set

T (u) =
N∑

i,j=1

eij ⊗ tij(u) ∈ EndCN ⊗ Y(glN)[[u
−1]].

Consider the algebra EndCN ⊗ EndCN ⊗ Y(glN)[[u
−1]] and introduce its elements T1(u)

and T2(u) by

T1(u) =
N∑

i,j=1

eij ⊗ 1⊗ tij(u), T2(u) =
N∑

i,j=1

1⊗ eij ⊗ tij(u). (2.4)
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The defining relations for the algebra Y(glN) can then be written in the form

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v). (2.5)

We identify the universal enveloping algebra U(glN) with a subalgebra of the Yangian

Y(glN) via the embedding Eij 7→ t
(1)
ij . Then Y(glN) can be regarded as a glN -module

with the adjoint action. Denote by Y(glN)
h the subalgebra of h-invariants under this

action. Consider the left ideal I of the algebra Y(glN) generated by all elements t
(r)
ij with

the conditions 1 6 i < j 6 N and r > 1. By the Poincaré–Birkhoff–Witt theorem for

the Yangian [23, Sec. 1.4], the intersection Y(glN)
h ∩ I is a two-sided ideal of Y(glN)

h.

Moreover, the quotient of Y(glN)
h by this ideal is isomorphic to the commutative algebra

freely generated by the images of the elements t
(r)
ii with i = 1, . . . , N and r > 1 in the

quotient. We will use the notation λ
(r)
i for this image of t

(r)
ii . Thus, we get an analogue of

the Harish-Chandra homomorphism (1.1),

Y(glN)
h → C [λ

(r)
i | i = 1, . . . , N, r > 1]. (2.6)

We combine the elements λ
(r)
i into the formal series

λi(u) = 1 +
∞∑
r=1

λ
(r)
i u−r, i = 1, . . . , N,

which can be understood as the images of the series tii(u) under the homomorphism (2.6).

The symmetrizer H(m) and anti-symmetrizer A(m) in the algebra (2.1) are the operators

in the tensor product space (CN)⊗m associated with the corresponding idempotents in the

group algebra of the symmetric group Sm via its natural action on the tensor product

space (CN)⊗m. That is,

H(m) =
1

m!

∑
s∈Sm

Ps and A(m) =
1

m!

∑
s∈Sm

sgn s · Ps, (2.7)

where Ps is the element of the algebra (2.1) corresponding to s ∈ Sm. Both the symmetrizer

and anti-symmetrizer admit multiplicative expressions in terms of the values of the Yang

R-matrix,

H(m) =
1

m!

∏
16a<b6m

(
1 +

Pab

b− a

)
and A(m) =

1

m!

∏
16a<b6m

(
1− Pab

b− a

)
, (2.8)

where the products are taken in the lexicographic order on the pairs (a, b); see e.g. [23,

Sec. 6.4]. The operators H(m) and A(m) project (CN)⊗m to the subspaces of symmetric and

skew-symmetric tensors, respectively. Both subspaces carry irreducible representations of

the Yangian Y(glN). Consider the tensor product algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ Y(glN)[[u
−1]] (2.9)
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and extend the notation (2.4) to elements of (2.9). All coefficients of the formal series

trH(m)T1(u)T2(u+ 1) . . . Tm(u+m− 1) (2.10)

and

trA(m)T1(u)T2(u− 1) . . . Tm(u−m+ 1) (2.11)

belong to a commutative subalgebra of the Yangian. This subalgebra is contained in

Y(glN)
h. The next proposition is well-known and easy to prove; see also [3, Sec. 7.4], [13,

Sec. 4.5] and [23, Sec. 8.5] for derivations of more general formulas for the characters of the

evaluation modules over Y(glN). We give a proof of the proposition to stress the similarity

of the approaches for all classical types.

Proposition 2.1. The images of the series (2.10) and (2.11) under the homomorphism

(2.6) are given by ∑
16i16···6im6N

λi1(u)λi2(u+ 1) . . . λim(u+m− 1) (2.12)

and ∑
16i1<···<im6N

λi1(u)λi2(u− 1) . . . λim(u−m+ 1), (2.13)

respectively.

Proof. By relations (2.5) and (2.8) we can write the product occurring in (2.10) as

H(m)T1(u) . . . Tm(u+m− 1) = Tm(u+m− 1) . . . T1(u)H
(m). (2.14)

This relation shows that the product on each side can be regarded as an operator on

(CN)⊗m with coefficients in the algebra Y(glN)[[u
−1]] such that the subspace H(m) (CN)⊗m

is invariant under this operator. A basis of this subspace is comprised by vectors of the

form v i1,...,im = H(m) (ei1 ⊗ . . . ⊗ eim), where i1 6 · · · 6 im and e1, . . . , eN denote the

canonical basis vectors of CN . To calculate the trace of the operator, we will find the

diagonal matrix elements corresponding to the basis vectors. Applying the operator which

occurs on the right hand side of (2.14) to a basis vector v i1,...,im we get

Tm(u+m− 1) . . . T1(u)H
(m)v i1,...,im = Tm(u+m− 1) . . . T1(u)v i1,...,im .

The coefficient of v i1,...,im in the expansion of this expression as a linear combination of the

basis vectors is determined by the coefficient of the tensor ei1 ⊗ . . .⊗ eim . Hence, a nonzero

contribution to the image of the diagonal matrix element corresponding to v i1,...,im under
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the homomorphism (2.6) only comes from the term timim(u+m− 1) . . . ti1i1(u). The sum

over all basis vectors yields the resulting formula for the image of the element (2.10).

The calculation of the image of the series (2.11) is quite similar. It relies on the identity

A(m)T1(u) . . . Tm(u−m+ 1) = Tm(u−m+ 1) . . . T1(u)A
(m)

and a calculation of the diagonal matrix elements of the operator which occurs on the right

hand side on the basis vectors A(m) (ei1 ⊗ . . .⊗ eim), where i1 < · · · < im.

2.2 Yangians for oN and spN

Throughout the paper we use the involution on the set {1, . . . , N} defined by i′ = N−i+1.

The Lie subalgebra of glN spanned by the elements Fij = Eij−Ej′i′ with i, j ∈ {1, . . . , N} is
isomorphic to the orthogonal Lie algebra oN . Similarly, the Lie subalgebra of gl2n spanned

by the elements Fij = Eij−εiεjEj′i′ with i, j ∈ {1, . . . , 2n} is isomorphic to the symplectic

Lie algebra sp2n, where εi = 1 for i = 1, . . . , n and εi = −1 for i = n + 1, . . . , 2n. We

will keep the notation gN for the Lie algebra oN (with N = 2n or N = 2n + 1) or spN
(with N = 2n). Denote by h the Cartan subalgebra of gN spanned by the basis elements

F11, . . . , Fnn. The highest weights of representations of gN will be considered with respect

to this basis, and the highest vectors will be assumed to be annihilated by the action of

the elements Fij with 1 6 i < j 6 N , unless stated otherwise.

Recall the RTT -presentation of the Yangian associated with the Lie algebra gN follow-

ing the general approach of [8] and [34]; see also [1] and [2].

For 1 6 a < b 6 m consider the elements Pab of the tensor product algebra (2.1) defined

by (2.2). Introduce also the elements Qab of (2.1) which are defined by different formulas

in the orthogonal and symplectic cases. In the orthogonal case we set

Qab =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ei′j′ ⊗ 1⊗(m−b),

and in the symplectic case

Qab =
N∑

i,j=1

εiεj 1
⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ei′j′ ⊗ 1⊗(m−b).

Set κ = N/2− 1 in the orthogonal case and κ = N/2 + 1 in the symplectic case. The

R-matrix R12(u) is a rational function in a complex parameter u with values in the tensor

product algebra EndCN ⊗ EndCN defined by

R12(u) = 1− P12

u
+

Q12

u− κ
.
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It is well known by [36] that this function satisfies the Yang–Baxter equation (2.3).

The Yangian Y(gN) is an associative algebra with generators t
(r)
ij , where 1 6 i, j 6 N

and r = 1, 2, . . . , satisfying certain quadratic relations. Introduce the formal series

tij(u) = δij +
∞∑
r=1

t
(r)
ij u

−r ∈ Y(gN)[[u
−1]]

and set

T (u) =
N∑

i,j=1

eij ⊗ tij(u) ∈ EndCN ⊗ Y(gN)[[u
−1]].

Consider the algebra EndCN ⊗ EndCN ⊗ Y(gN)[[u
−1]] and introduce its elements T1(u)

and T2(u) by the same formulas (2.4) as in the case of glN . The defining relations for the

algebra Y(gN) can then be written in the form

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v) (2.15)

together with the relation

T ′(u+ κ)T (u) = 1,

where the prime denotes the matrix transposition defined for an N ×N matrix A = [Aij]

by

(A′)ij = Aj′i′ and (A′)ij = εiεj Aj′i′

in the orthogonal and symplectic case, respectively.

We identify the universal enveloping algebra U(gN) with a subalgebra of the Yangian

Y(gN) via the embedding

Fij 7→ t
(1)
ij , i, j = 1, . . . , N.

Then Y(gN) can be regarded as a gN -module with the adjoint action. Denote by Y(gN)
h

the subalgebra of h-invariants under this action.

Consider the left ideal I of the algebra Y(gN) generated by all elements t
(r)
ij with the

conditions 1 6 i < j 6 N and r > 1. It follows from the Poincaré–Birkhoff–Witt theorem

for the Yangian [2, Sec. 3] that the intersection Y(gN)
h ∩ I is a two-sided ideal of Y(gN)

h.

Moreover, the quotient of Y(gN)
h by this ideal is isomorphic to the commutative algebra

freely generated by the images of the elements t
(r)
ii with i = 1, . . . , n and r > 1 in the

quotient. We will use the notation λ
(r)
i for this image of t

(r)
ii and extend this notation to

all values i = 1, . . . , N . Thus, we get an analogue of the Harish-Chandra homomorphism

(1.1),

Y(gN)
h → C [λ

(r)
i | i = 1, . . . , n, r > 1]. (2.16)
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We combine the elements λ
(r)
i into the formal series

λi(u) = 1 +
∞∑
r=1

λ
(r)
i u−r, i = 1, . . . , N

which can be understood as the image of the series tii(u) under the homomorphism (2.16).

It follows from [2, Prop. 5.2 and 5.14], that the series λi(u) satisfy the relations

λi(u+ κ− i)λi′(u) = λi+1(u+ κ− i)λ(i+1)′(u), (2.17)

for i = 0, 1, . . . , n − 1 if gN = o2n or sp2n, and for i = 0, 1, . . . , n if gN = o2n+1, where

λ0(u) = λ0′(u) := 1. Under an appropriate identification, the relations (2.17) coincide

with those for the q-characters, as the λi(u) correspond to the “single box variables”; see

for instance [19, Sec. 7] and [30, Sec. 2]. This coincidence is consistent with the general

result which establishes the equivalence of the definitions of q-characters in [14] and [18];

see [12, Prop. 2.4] for a proof. The q-characters have been extensively studied; see [13],

[14] and [18]. In particular, formulas for the q-characters of some classes of modules were

conjectured in [20], [30] and [31] and later proved in [15] and [32]. However, this was

done in the context of the new realization of the quantum affine algebras. In what follows

we compute some q-characters independently in our setting of the RTT realization of the

Yangians.

Introduce the element S(m) of the algebra (2.1) by setting S(1) = 1 and for m > 2 define

it by the respective formulas in the orthogonal and symplectic cases:

S(m) =
1

m!

∏
16a<b6m

(
1 +

Pab

b− a
− Qab

N/2 + b− a− 1

)
(2.18)

and

S(m) =
1

m!

∏
16a<b6m

(
1− Pab

b− a
− Qab

n− b+ a+ 1

)
, (2.19)

where the products are taken in the lexicographic order on the pairs (a, b) and the condition

m 6 n + 1 is assumed in (2.19). The elements (2.18) and (2.19) are the images of the

symmetrizers in the corresponding Brauer algebras Bm(N) and Bm(−N) under their actions

on the vector space (CN)⊗m. In particular, for any 1 6 a < b 6 m for the operator S(m)

we have

S(m)Qab = Qab S
(m) = 0 and S(m) Pab = Pab S

(m) = ±S(m) (2.20)

with the plus and minus signs taken in the orthogonal and symplectic case, respectively.

The symmetrizer admits a few other equivalent expressions which are reproduced in [24].

13



In the orthogonal case the operator S(m) projects (CN)⊗m to the irreducible represen-

tation of the Lie algebra oN with the highest weight (m, 0, . . . , 0). The dimension of this

representation equals
N + 2m− 2

N +m− 2

(
N +m− 2

m

)
.

This representation is extended to the Yangian Y(oN) and it is one of the Kirillov–

Reshetikhin modules. In the symplectic case with m 6 n the operator S(m) projects

(C2n)⊗m to the subspace of skew-symmetric harmonic tensors which carries an irreducible

representation of sp2n with the highest weight (1, . . . , 1, 0, . . . , 0) (with m copies of 1). Its

dimension equals
2n− 2m+ 2

2n−m+ 2

(
2n+ 1

m

)
=

(
2n

m

)
−

(
2n

m− 2

)
. (2.21)

This representation is extended to the m-th fundamental representation of the Yangian

Y(sp2n) which is also a Kirillov–Reshetikhin module. It is well-known that if m = n + 1

then the subspace of tensors is zero so that S(n+1) = 0.

The existence of the Yangian action on the Lie algebra modules here can be explained by

the fact that the projections (2.18) and (2.19) are the products of the evaluated R-matrices

S(m) =
1

m!

∏
16a<b6m

Rab(ua − ub), (2.22)

where ua = u+ a− 1 and ua = u− a+1 for a = 1, . . . ,m in the orthogonal and symplectic

case, respectively; see [17] for a proof in the context of a fusion procedure for the Brauer

algebra. The same fact leads to a construction of a commutative subalgebra of the Yangian

Y(gN); see [24]. We will calculate the images of the elements of this subalgebra under the

homomorphism (2.16) and thus reproduce the character formulas for the respective classes

of Yangian representations; cf. [19, Sec. 7]. Consider the tensor product algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ Y(gN)[[u
−1]] (2.23)

and extend the notation (2.4) to elements of (2.23).

2.2.1 Series Bn

The commutative subalgebra of the Yangian Y(oN) with N = 2n + 1 is generated by the

coefficients of the formal series

trS(m)T1(u)T2(u+ 1) . . . Tm(u+m− 1) (2.24)

with the trace taken over all m copies of EndCN in (2.23), where gN = oN and S(m) is

defined in (2.18). It follows easily from the defining relations (2.15) that all elements of

this subalgebra belong to Y(oN)
h.
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Proposition 2.2. The image of the series (2.24) under the homomorphism (2.16) is given

by ∑
16i16···6im6N

λi1(u)λi2(u+ 1) . . . λim(u+m− 1)

with the condition that n+1 occurs among the summation indices i1, . . . , im at most once.

Proof. By [24, Prop. 3.1] the operator S(m) can be given by the formula

S(m) = H(m)

⌊m/2⌋∑
r=0

(−1)r

2r r!

(
N/2 +m− 2

r

)−1 ∑
ai<bi

Qa1b1Qa2b2 . . . Qarbr (2.25)

with the second sum taken over the (unordered) sets of disjoint pairs {(a1, b1), . . . , (ar, br)}
of indices from {1, . . . ,m}. Here H(m) is the symmetrization operator defined in (2.7).

Note that for each r the second sum in (2.25) commutes with any element Ps and hence

commutes with H(m).

Recall that the subspace of harmonic tensors in (CN)⊗m is spanned by the tensors v

with the property Qab v = 0 for all 1 6 a < b 6 m. By (2.20) the operator S(m) projects

(CN)⊗m to a subspace of symmetric harmonic tensors which we denote by Hm. This

subspace carries an irreducible representation of oN with the highest weight (m, 0, . . . , 0).

Therefore, the trace in (2.24) can be calculated over the subspace Hm. We will introduce

a special basis of this subspace. We identify the image of the symmetrizer H(m) with the

space of homogeneous polynomials of degree m in variables z1, . . . , zN via the isomorphism

H(m)(ei1 ⊗ . . .⊗ eim) 7→ zi1 . . . zim . (2.26)

The subspace Hm is then identified with the subspace of harmonic homogeneous polyno-

mials of degree m; they belong to the kernel of the Laplace operator

∆ =
n∑

i=1

∂zi∂zi′ +
1

2
∂2zn+1

.

The basis vectors of Hm will be parameterized by the N -tuples (k1, . . . , kn, δ, ln, . . . , l1),

where the ki and li are arbitrary nonnegative integers, δ ∈ {0, 1} and the sum of all entries

is m. Given such a tuple, the corresponding harmonic polynomial is defined by

∑
a1,...,an

(−2)a1+···+an(a1 + · · ·+ an)! z
2a1+···+2an+δ
n+1

a1! . . . an! (2a1 + · · ·+ 2an + δ)!

n∏
i=1

zki−ai
i zli−ai

i′

(ki − ai)! (li − ai)!
, (2.27)

summed over nonnegative integers ai satisfying ai 6 min{ki, li}. Each polynomial contains

a unique monomial (which we call the leading monomial) where the variable zn+1 occurs

with the power not exceeding 1. It is straightforward to see that these polynomials are
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all harmonic and linearly independent. Furthermore, a simple calculation shows that the

number of the polynomials coincides with the dimension of the irreducible representation

of oN with the highest weight (m, 0, . . . , 0) and so they form a basis of the subspace Hm.

By relations (2.15) and (2.22) we can write the product occurring in (2.24) as

S(m)T1(u) . . . Tm(u+m− 1) = Tm(u+m− 1) . . . T1(u)S
(m). (2.28)

This relation together with (2.20) shows that the product on each side can be regarded as

an operator on (CN)⊗m with coefficients in the algebra Y(oN)[[u
−1]] such that the subspace

Hm is invariant under this operator. Now fix a basis vector v ∈ Hm of the form (2.27).

Denote the operator on the right hand side of (2.28) by A and consider the coefficient of v

in the expansion of Av as a linear combination of the basis vectors. Use the isomorphism

(2.26) to write the vector v as a linear combination of the tensors ej1 ⊗ . . . ⊗ ejm . We

have S(m)v = v, while the matrix elements of the remaining product are found from the

expansion

Tm(u+m− 1) . . . T1(u)(ej1 ⊗ . . .⊗ ejm)

=
∑

i1,...,im

timjm(u+m− 1) . . . ti1j1(u)(ei1 ⊗ . . .⊗ eim).

The coefficient of v in the expansion of Av is uniquely determined by the coefficient of

the tensor ei1 ⊗ . . . ⊗ eim with i1 6 · · · 6 im which corresponds to the leading monomial

of v under the isomorphism (2.26). It is clear from formula (2.27) that if a tensor of

the form ej1 ⊗ . . .⊗ ejm corresponds to a non-leading monomial, then the matrix element

timjm(u+m−1) . . . ti1j1(u) vanishes under the homomorphism (2.16). Therefore, a nonzero

contribution to the image of the diagonal matrix element of the operator A corresponding

to v under the homomorphism (2.16) only comes from the term timim(u+m−1) . . . ti1i1(u).

Taking the sum over all basis vectors (2.27) yields the resulting formula for the image of

the element (2.24).

2.2.2 Series Dn

The commutative subalgebra of the Yangian Y(oN) with N = 2n is generated by the

coefficients of the formal series defined by the same formula (2.24), where the parameter

N now takes an even value 2n.

Proposition 2.3. The image of the series (2.24) under the homomorphism (2.16) is given

by ∑
16i16···6im6N

λi1(u)λi2(u+ 1) . . . λim(u+m− 1)

with the condition that n and n′ do not occur simultaneously among the summation indices

i1, . . . , im.
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Proof. As in the proof of Proposition 2.2, we use the formula (2.25) for the symmetrizer

S(m) and its properties (2.20). Following the argument of that proof we identify the image

S(m)(CN)⊗m with the space Hm of homogeneous harmonic polynomials of degree m in

variables z1, . . . , zN via the isomorphism (2.26). This time the harmonic polynomials are

annihilated by the Laplace operator of the form

∆ =
n∑

i=1

∂zi∂zi′ .

The basis vectors ofHm will be parameterized by the N -tuples (k1, . . . , kn, ln, . . . , l1), where

the ki and li are arbitrary nonnegative integers, the sum of all entries is m and at least one

of kn and ln is zero. Given such a tuple, the corresponding harmonic polynomial is now

defined by∑
a1,...,an−1

(−1)a1+···+an−1(a1 + · · ·+ an−1)! z
a1+···+an−1+kn
n z

a1+···+an−1+ln
n′

a1! . . . an−1! (a1 + · · ·+ an−1 + kn)! (a1 + · · ·+ an−1 + ln)!

×
n−1∏
i=1

zki−ai
i zli−ai

i′

(ki − ai)! (li − ai)!
, (2.29)

summed over nonnegative integers a1, . . . , an−1 satisfying ai 6 min{ki, li}. A unique leading

monomial corresponds to the values a1 = · · · = an−1 = 0. The argument is now completed

in the same way as for Proposition 2.2 by considering the diagonal matrix elements of

the operator on right hand side of (2.28) corresponding to the basis vectors (2.29). These

coefficients are determined by those of the leading monomials and their images under the

homomorphism (2.16) are straightforward to calculate.

2.2.3 Series Cn

The commutative subalgebra of the Yangian Y(spN) with N = 2n is generated by the

coefficients of the formal series

trS(m)T1(u)T2(u− 1) . . . Tm(u−m+ 1), (2.30)

with the trace taken over all m copies of EndCN in (2.23) with gN = spN and S(m) defined

in (2.19) with m 6 n.

Proposition 2.4. The image of the series (2.30) with m 6 n under the homomorphism

(2.16) is given by ∑
16i1<···<im62n

λi1(u)λi2(u− 1) . . . λim(u−m+ 1) (2.31)

with the condition that if for any i both i and i′ occur among the summation indices as

i = ir and i′ = is for some 1 6 r < s 6 m, then s− r 6 n− i.
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Proof. Using again [24, Prop. 3.1] we find that the operator S(m) can be given by the

formula

S(m) = A(m)

⌊m/2⌋∑
r=0

1

2r r!

(
−n+m− 2

r

)−1 ∑
ai<bi

Qa1b1Qa2b2 . . . Qarbr (2.32)

with the second sum taken over the (unordered) sets of disjoint pairs {(a1, b1), . . . , (ar, br)}
of indices from {1, . . . ,m}. Here A(m) is the anti-symmetrization operator defined in (2.7).

For each r the second sum in (2.32) commutes with any element Ps and hence commutes

with A(m).

As with the orthogonal case, the subspace of harmonic tensors in (CN)⊗m is spanned

by the tensors v with the property Qab v = 0 for all 1 6 a < b 6 m. The operator S(m)

projects (CN)⊗m to a subspace of skew-symmetric harmonic tensors which we denote by

Hm. Hence, the trace in (2.30) can be calculated over the subspace Hm. We introduce a

special basis of this subspace by identifying the image of the anti-symmetrizer A(m) with the

space of homogeneous polynomials of degree m in the anti-commuting variables ζ1, . . . , ζ2n
via the isomorphism

A(m)(ei1 ⊗ . . .⊗ eim) 7→ ζi1 ∧ · · · ∧ ζim . (2.33)

The subspace Hm is then identified with the subspace of harmonic homogeneous polyno-

mials of degree m; they belong to the kernel of the Laplace operator

∆ =
n∑

i=1

∂i ∧ ∂ i ′ ,

where ∂i denotes the (left) partial derivative over ζi.

The basis vectors of Hm will be parameterized by the subsets {i1, . . . , im} of the

set {1, . . . , 2n} satisfying the condition as stated in the proposition, when the elements

i1, . . . , im are written in the increasing order. We will call such subsets admissible. The

number of admissible subsets can be shown to be given by the formula (2.21), which coin-

cides with the dimension of Hm. Consider monomials of the form

ζa1 ∧ ζa′1 ∧ · · · ∧ ζak ∧ ζa′k ∧ ζb1 ∧ · · · ∧ ζbl (2.34)

with 1 6 a1 < · · · < ak 6 n and 1 6 b1 < · · · < bl 6 2n, associated with subsets

{a1, a′1, . . . , ak, a′k, b1, . . . , bl} of {1, . . . , 2n} of cardinality m = 2k + l, where bi ̸= b′j for all

i and j. We will suppose that the parameters bi are fixed and label the monomial (2.34)

by the k-tuple (a1, . . . , ak). Furthermore, we order the k-tuples and the corresponding

monomials lexicographically.

Now let the subset {a1, a′1, . . . , ak, a′k, b1, . . . , bl} be admissible and suppose that the

parameters a1, . . . , ak are fixed too. We will call the corresponding monomial (2.34) ad-

missible. Fix i ∈ {1, . . . , k}. Let s be the number of the elements bj of the subset sat-

isfying ai < bj < a′i. By the admissibility condition applied to ai and a′i, we have the
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inequality 2(k − i) + s < n − ai. Therefore, there exist elements ci, . . . , ck satisfying

ai < ci < · · · < ck 6 n so that none of cj or c′j with j = i, . . . , k belongs to the subset

{a1, a′1, . . . , ak, a′k, b1, . . . , bl}. Taking the consecutive values i = k, k − 1, . . . , 1 choose the

maximum possible element ci at each step. Thus, we get a family of elements c1 < · · · < ck
uniquely determined by the admissible subset. In particular, ci > ai for all i.

Note that our condition on the parameters bi implies that the monomial ζb1 ∧ · · · ∧ ζbl
is annihilated by the operator ∆. We denote this monomial by y and set xa = ζa ∧ ζa′ for
a = 1, . . . , n. The vector

k∑
p=0

(−1)p
∑

16d1<···<dp6k

xa1 ∧ · · · ∧ x̂ad1 ∧ · · · ∧ x̂adp ∧ · · · ∧ xak ∧ xcd1 ∧ · · · ∧ xcdp ∧ y,

where the hats indicate the factors to be skipped, is easily seen to belong to the kernel

of the operator ∆ so it is an element of the subspace Hm. Furthermore, these vectors

parameterized by all admissible subsets form a basis of Hm. Indeed, the vectors are linearly

independent because the linear combination defining each vector is uniquely determined

by the admissible monomial xa1 ∧ · · · ∧ xak ∧ y which precedes all the other monomials

occurring in the linear combination with respect to the lexicographic order.

Note that apart from the minimal admissible monomial xa1 ∧ · · · ∧ xak ∧ y, the linear

combination defining a basis vector may contain some other admissible monomials. By

eliminating such additional admissible monomials with the use of an obvious induction on

the lexicographic order, we can produce another basis of the space Hm parameterized by all

admissible subsets with the property that each basis vector is given by a linear combination

of monomials of the same form as above, containing a unique admissible monomial.

By relations (2.15) and (2.22) we can write the product occurring in (2.30) as

S(m)T1(u) . . . Tm(u−m+ 1) = Tm(u−m+ 1) . . . T1(u)S
(m) (2.35)

and complete the argument exactly as in the proof of Proposition 2.2. Indeed, relations

(2.20) and (2.35) show that the product on each side can be regarded as an operator

on (CN)⊗m with coefficients in the algebra Y(spN)[[u
−1]] such that the subspace Hm is

invariant under this operator. Denote the operator on the right hand side of (2.35) by A

and let v denote the basis vector of Hm corresponding to an admissible subset {i1, . . . , im}
with i1 < · · · < im. The properties of the basis vectors imply that a nonzero contribution

to the image of the diagonal matrix element of the operator A corresponding to v under

the homomorphism (2.16) only comes from the term timim(u−m+ 1) . . . ti1i1(u).

We will be using an equivalent formula for the expression (2.31) given in [21, Prop. 2.4].

The argument there is combinatorial and relies only on the identities (2.17). To state the

formula from [21] introduce new parameters κi(u) for i = 1, . . . , 2n+ 2 by

κi(u) = λi(u), κ2n−i+3(u) = λ2n−i+1(u) for i = 1, . . . , n,
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and κn+2(u) = −κn+1(u), where κn+1(u) is a formal series in u−1 with constant term 1

defined by

κn+1(u)κn+1(u− 1) = λn(u)λn′(u− 1).

Corollary 2.5. The image of the series (2.30) with m 6 n under the homomorphism

(2.16) can be written as ∑
16i1<···<im62n+2

κi1(u)κi2(u− 1) . . .κim(u−m+ 1). (2.36)

Moreover, the expression (2.36) is zero for m = n+ 1.

3 Harish-Chandra images for the current algebras

We will use the character formulas obtained in Sec. 2 to calculate the Harish-Chandra

images of elements of certain commutative subalgebras of U
(
g[t]

)
for the simple Lie algebras

g of all classical types. The results in the case of glN are well-known, the commutative

subalgebras were constructed explicitly in [35]; see also [5], [6], [25], [26] and [27].

3.1 Case of glN

Identify the universal enveloping algebra U(glN) with a subalgebra of U
(
glN [t]

)
via the

embedding Eij 7→ Eij[0]. Then U
(
glN [t]

)
can be regarded as a glN -module with the adjoint

action. Denote by U
(
glN [t]

)h
the subalgebra of h-invariants under this action. Consider the

left ideal I of the algebra U
(
glN [t]

)
generated by all elements Eij[r] with the conditions

1 6 i < j 6 N and r > 0. By the Poincaré–Birkhoff–Witt theorem, the intersection

U
(
glN [t]

)h ∩ I is a two-sided ideal of U
(
glN [t]

)h
. Moreover, the quotient of U

(
glN [t]

)h
by

this ideal is isomorphic to the commutative algebra freely generated by the images of the

elements Eii[r] with i = 1, . . . , N and r > 0 in the quotient. We will denote by µi[r] this

image of Eii[r]. We get an analogue of the Harish-Chandra homomorphism (1.1),

U
(
glN [t]

)h → C [µi[r] | i = 1, . . . , N, r > 0]. (3.1)

Combine the elements Eij[r] and µi[r] into the formal series

Eij(u) =
∞∑
r=0

Eij[r]u
−r−1 and µi(u) =

∞∑
r=0

µi[r]u
−r−1.

Then µi(u) is understood as the image of the series Eii(u) under the homomorphism (3.1).

Consider tensor product algebras

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ U
(
glN [t]

)
[[u−1, ∂u]]

and use matrix notation as in (1.8).

20



Proposition 3.1. For the images under the Harish-Chandra homomorphism (3.1) we have

trA(m)
(
∂u + E1(u)

)
. . .

(
∂u + Em(u)

)
7→ em

(
∂u + µ1(u), . . . , ∂u + µN(u)

)
, (3.2)

trH(m)
(
∂u + E1(u)

)
. . .

(
∂u + Em(u)

)
7→ hm

(
∂u + µ1(u), . . . , ∂u + µN(u)

)
. (3.3)

Proof. The argument is essentially the same as in the proof of Proposition 2.1. Both

relations are immediate from the cyclic property of trace and the identities(
∂u + E1(u)

)
. . .

(
∂u + Em(u)

)
A(m) = A(m)

(
∂u + E1(u)

)
. . .

(
∂u + Em(u)

)
A(m),

H(m)
(
∂u + E1(u)

)
. . .

(
∂u + Em(u)

)
= H(m)

(
∂u + E1(u)

)
. . .

(
∂u + Em(u)

)
H(m),

implied by the fact that ∂u + E(u) is a left Manin matrix ; see [4, Prop. 18].

An alternative (longer) way to proof Proposition 3.1 is to derive it from the character

formulas of Proposition 2.1. Indeed, ∂u + E(u) coincides with the image of the matrix

T (u)e∂u − 1 in the component of degree −1 of the graded algebra associated with the

Yangian. Here we extend the filtration on the Yangian to the algebra of formal series

Y(glN)[[u
−1, ∂u]] by setting deg u−1 = deg ∂u = −1 so that the associated graded algebra

is isomorphic to U
(
glN [t]

)
[[u−1, ∂u]]. Hence, for instance, the element on the left hand side

of (3.2) can be found as the image of the component of degree −m of the expression

trA(m)
(
T1(u)e

∂u − 1
)
. . .

(
Tm(u)e

∂u − 1
)
.

The image of this expression under the homomorphism (2.6) can be found from (2.13).

There is no known analogue of the argument which we used in the proof of Proposi-

tion 3.1 for the B, C and D types. Therefore to prove its counterparts for these types we

have to resort to the argument making use of the character formulas of Sec. 2.2.

3.2 Types B, C and D

Recall that Fij[r] = Fij t
r with r ∈ Z denote elements of the loop algebra gN [t, t

−1], where

the Fij are standard generators of gN ; see Sec. 2.

Consider the ascending filtration on the Yangian Y(gN) defined by

deg t
(r)
ij = r − 1.

Denote by t̄
(r)
ij the image of the generator t

(r)
ij in the (r−1)-th component of the associated

graded algebra grY(gN). By [2, Theorem 3.6] the mapping

Fij[r] 7→ t̄
(r+1)
ij , r > 0,
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defines an algebra isomorphism U
(
gN [t]

)
→ grY(gN). Our goal here is to use this isomor-

phism and Propositions 2.2, 2.3 and 2.4 to calculate the Harish-Chandra images of certain

elements of U
(
gN [t]

)
defined with the use of the corresponding operators (2.18) and (2.19).

These elements generate a commutative subalgebra of U
(
gN [t]

)
and they can be obtained

from the generators (1.17) of the Feigin–Frenkel center by an application of the vertex

algebra structure on the vacuum module V−h∨(gN); see [24, Sec. 5].

We identify the universal enveloping algebra U(gN) with a subalgebra of U
(
gN [t]

)
via

the embedding Fij 7→ Fij[0]. Then U
(
gN [t]

)
can be regarded as a gN -module with the

adjoint action. Denote by U
(
gN [t]

)h
the subalgebra of h-invariants under this action.

Consider the left ideal I of the algebra U
(
gN [t]

)
generated by all elements Fij[r] with

the conditions 1 6 i < j 6 N and r > 0. By the Poincaré–Birkhoff–Witt theorem, the

intersection U
(
gN [t]

)h ∩ I is a two-sided ideal of U
(
gN [t]

)h
. Moreover, the quotient of

U
(
gN [t]

)h
by this ideal is isomorphic to the commutative algebra freely generated by the

images of the elements Fii[r] with i = 1, . . . , n and r > 0 in the quotient. We will write

µi[r] for this image of Fii[r] and extend this notation to all values i = 1, . . . , N so that

µi′ [r] = −µi[r] for all i. We get an analogue of the Harish-Chandra homomorphism (1.1),

U
(
gN [t]

)h → C [µi[r] | i = 1, . . . , n, r > 0]. (3.4)

We will combine the elements Fij[r] into the formal series

Fij(u) =
∞∑
r=0

Fij[r]u
−r−1

and write

µi(u) =
∞∑
r=0

µi[r]u
−r−1, i = 1, . . . , N.

Then µi(u) is understood as the image of the series Fii(u) under the homomorphism (3.4).

It is clear from the definitions of the homomorphisms (2.16) and (3.4), that the graded

version of (2.16) coincides with (3.4) in the sense that the following diagram commutes

U
(
gN [t]

)h −−−→ C
[
µi[r]

]y y
grY(gN)

h −−−→ grC
[
λ
(r+1)
i

]
,

(3.5)

where i ranges over the set {1, . . . , n} while r > 0 and the second vertical arrow indicates

the isomorphism which takes µi[r] to the image of λ
(r+1)
i in the graded polynomial algebra

with the grading defined by the assignment deg λ
(r+1)
i = r.

In what follows we extend the filtration on the Yangian to the algebra of formal series

Y(gN)[[u
−1, ∂u]] by setting deg u−1 = deg ∂u = −1. The associated graded algebra will
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then be isomorphic to U
(
gN [t]

)
[[u−1, ∂u]]. We consider tensor product algebras

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ U
(
gN [t]

)
[[u−1, ∂u]] (3.6)

and use matrix notation as in (1.15).

3.2.1 Series Bn

Take gN = oN with N = 2n+ 1 and consider the operator S(m) defined in (2.18). We also

use notation (1.16) with ω = N and (1.13). The trace is understood to be taken over all

copies of the endomorphism algebra EndCN in (3.6).

Theorem 3.2. For the image under the Harish-Chandra homomorphism (3.4) we have

γm(N) trS(m)
(
∂u + F1(u)

)
. . .

(
∂u + Fm(u)

)
7→ hm

(
∂u + µ1(u), . . . , ∂u + µn(u), ∂u + µn′(u), . . . , ∂u + µ1′(u)

)
. (3.7)

Proof. The element ∂u + F (u) coincides with the image of the matrix T (u)e∂u − 1 in the

component of degree −1 of the graded algebra associated with the Yangian. Therefore

the element on the left hand side of (3.7) can be found as the image of the component of

degree −m of the expression

γm(N) trS(m)
(
T1(u)e

∂u − 1
)
. . .

(
Tm(u)e

∂u − 1
)
. (3.8)

Hence, the theorem can be proved by making use of the commutative diagram (3.5) and

the Harish-Chandra image of (3.8) implied by Proposition 2.2. We have

trS(m)
(
T1(u)e

∂u − 1
)
. . .

(
Tm(u)e

∂u − 1
)

=
m∑
k=0

(−1)m−k
∑

16a1<···<ak6m

trS(m) Ta1(u)e
∂u . . . Tak(u)e

∂u .

Each product Ta1(u)e
∂u . . . Tak(u)e

∂u can be written as P T1(u)e
∂u . . . Tk(u)e

∂u P−1, where

P is the image in (3.6) (with the identity component in the last tensor factor) of a permu-

tation p ∈ Sm such that p(r) = ar for r = 1, . . . , k. By the second property in (2.20) and

the cyclic property of trace, we can bring the above expression to the form

m∑
k=0

(−1)m−k

(
m

k

)
trS(m) T1(u)e

∂u . . . Tk(u)e
∂u .
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Now apply [24, Lemma 4.1] to calculate the partial traces of the symmetrizer S(m) over

the copies k + 1, . . . ,m of the algebra EndCN in (2.1) to get

trk+1,...,m S
(m) =

γk(N)

γm(N)

(
N +m− 2

m− k

)(
m

k

)−1

S(k).

Thus, by Proposition 2.2, the Harish-Chandra image of the expression (3.8) is found by

m∑
k=0

(−1)m−k γk(N)

(
N +m− 2

m− k

) ∑
16i16···6ik6N

λi1(u)e
∂u . . . λik(u)e

∂u (3.9)

with the condition that n+1 occurs among the summation indices i1, . . . , ik at most once.

The next step is to express (3.9) in terms of the new variables

σi(u) = λi(u)e
∂u − 1, i = 1, . . . , N. (3.10)

This is done by a combinatorial argument as shown in the following lemma.

Lemma 3.3. The expression (3.9) multiplied by −2
(

N/2−2
N+m−2

)
equals

m∑
r=0

(
N/2− 2

N + r − 3

) ∑
a1+···+a1′=r

σ1(u)
a1 . . . σn(u)

anσn′(u)an′ . . . σ1′(u)
a1′

+
m∑
r=1

(
N/2− 2

N + r − 3

) ∑
a1+···+a1′=r−1

σ1(u)
a1 . . . σn(u)

an
(
σn+1(u) + 2

)
σn′(u)an′ . . . σ1′(u)

a1′ ,

where a1, . . . , a1′ run over nonnegative integers.

Proof. The statement is verified by substituting (3.10) into both terms and calculating the

coefficients of the sum ∑
16i16···6ik6N

λi1(u)e
∂u . . . λik(u)e

∂u (3.11)

for all 0 6 k 6 m, where n + 1 occurs among the summation indices i1, . . . , ik at most

once. Note the following expansion formula for the noncommutative complete symmetric

functions (1.13),

hr(x1 − 1, . . . , xp − 1) =
r∑

k=0

(−1)r−k

(
p+ r − 1

r − k

)
hk(x1, . . . , xp). (3.12)

Take xi = λi(u)e
∂u with i = 1, . . . , n, n′ . . . , 1′ and apply (3.12) with p = 2n to the first

term in the expression of the lemma. Using a similar expansion for the second term we

find that the coefficient of the sum (3.11) in the entire expression will be found as

m∑
r=k

(
N/2− 2

N + r − 3

)(
N + r − 3

r − k

)
=

(
N/2− 2

N + k − 3

)(
N/2 +m− 1

m− k

)
,
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which coincides with

−2 (−1)m−k γk(N)

(
N/2− 2

N +m− 2

)(
N +m− 2

m− k

)
,

as claimed.

Denote the expression in Lemma 3.3 by Am. Since the degree of the element (3.8) is

−m, its Harish-Chandra image (3.9) and the expression Am also have degree −m. Observe

that the terms in the both sums of Am are independent of m so that Am+1 = Am +Bm+1,

where

Bm+1 =

(
N/2− 2

N +m− 2

) ∑
a1+···+a1′=m+1

σ1(u)
a1 . . . σn(u)

anσn′(u)an′ . . . σ1′(u)
a1′

+

(
N/2− 2

N +m− 2

) ∑
a1+···+a1′=m

σ1(u)
a1 . . . σn(u)

an
(
σn+1(u) + 2

)
σn′(u)an′ . . . σ1′(u)

a1′ .

Since Am+1 has degree −m− 1, its component of degree −m is zero, and so the sum of the

homogeneous components of degree −m of Am and Bm+1 is zero. However, each element

σi(u) has degree −1 with the top degree component equal to ∂u +µi(u). This implies that

the component of Am of degree −m equals the component of degree −m of the term

−2

(
N/2− 2

N +m− 2

) ∑
a1+···+a1′=m

σ1(u)
a1 . . . σn(u)

anσn′(u)an′ . . . σ1′(u)
a1′ .

Taking into account the constant factor used in Lemma 3.3, we can conclude that the

component in question coincides with the noncommutative complete symmetric function

as given in (3.7).

As we have seen in the proof of the theorem, all components of the expression in

Lemma 3.3 of degrees exceeding −m are equal to zero. Since the summands do not depend

on m, we derive the following corollary.

Corollary 3.4. The series

∞∑
r=0

(
N/2− 2

N + r − 3

) ∑
a1+···+a1′=r

σ1(u)
a1 . . . σn(u)

anσn′(u)an′ . . . σ1′(u)
a1′

+
∞∑
r=1

(
N/2− 2

N + r − 3

) ∑
a1+···+a1′=r−1

σ1(u)
a1 . . . σn(u)

an
(
σn+1(u) + 2

)
σn′(u)an′ . . . σ1′(u)

a1′

is equal to zero.
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3.2.2 Series Dn

Now take gN = oN with N = 2n and consider the operator S(m) defined in (2.18). We keep

using notation (1.16) with ω = N and (1.13).

Theorem 3.5. For the image under the Harish-Chandra homomorphism (3.4) we have

γm(N) trS(m)
(
∂u + F1(u)

)
. . .

(
∂u + Fm(u)

)
7→ 1

2
hm

(
∂u + µ1(u), . . . , ∂u + µn−1(u), ∂u + µn′(u), . . . , ∂u + µ1′(u)

)
+ 1

2
hm

(
∂u + µ1(u), . . . , ∂u + µn(u), ∂u + µ(n−1)′(u), . . . , ∂u + µ1′(u)

)
.

Proof. We repeat the beginning of the proof of Theorem 3.5 with N now taking the even

value 2n up to the application of the formula for Yangian characters. This time we apply

Proposition 2.3 to conclude that the Harish-Chandra image of the expression (3.8) is found

by
m∑
k=0

(−1)m−k γk(2n)

(
2n+m− 2

m− k

) ∑
16i16···6ik62n

λi1(u)e
∂u . . . λik(u)e

∂u (3.13)

with the condition that n and n′ do not occur simultaneously among the summation indices

i1, . . . , ik. Introducing new variables by the same formulas (3.10) we come to the Dn series

counterpart of Lemma 3.3, where we use the notation

cr = (−1)r−1

(
2n+ r − 2

n− 1

)−1

.

Lemma 3.6. The expression (3.13) multiplied by 2cm equals

2cm
∑

a1+···+a1′=m
an=an′=0

σ1(u)
a1 . . . σ1′(u)

a1′ + cm
∑

a1+···+a1′=m
only one of an and an′ is zero

σ1(u)
a1 . . . σ1′(u)

a1′

−
m∑
r=1

r cr
n+ r − 1

∑
a1+···+a1′=r
an=an′=0

σ1(u)
a1 . . . σ1′(u)

a1′

+
m∑
r=1

(n− 1) cr
n+ r − 1

∑
a1+···+a1′=r

only one of an and an′ is zero

σ1(u)
a1 . . . σ1′(u)

a1′ ,

where a1, . . . , a1′ run over nonnegative integers.
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Proof. Substitute (3.10) into the expression and calculate the coefficients of the sum∑
16i16···6ik62n

λi1(u)e
∂u . . . λik(u)e

∂u . (3.14)

The argument splits into two cases, depending on whether neither of n and n′ occurs among

the summation indices i1, . . . , ik in (3.14) or only one of them occurs. The application of

the expansion formula (3.12) brings this to a straightforward calculation with the binomial

coefficients in both cases.

Let Am denote the four-term expression in Lemma 3.6. This expression equals 2cm times

the Harish-Chandra image of (3.8) and so Am has degree −m. Hence, the component of

degree−m of the expression Am+1 is zero. On the other hand, each element σi(u) has degree

−1 with the top degree component equal to ∂u + µi(u). This implies that the component

of degree −m in the sum of the third and fourth terms in Am is zero. Therefore, the

component of Am of degree −m equals the component of degree −m in the sum of the first

and the second terms. Taking into account the constant factor 2cm, we conclude that the

component takes the desired form.

The following corollary is implied by the proof of the theorem.

Corollary 3.7. The series

−
∞∑
r=1

r cr
n+ r − 1

∑
a1+···+a1′=r
an=an′=0

σ1(u)
a1 . . . σ1′(u)

a1′

+
∞∑
r=1

(n− 1) cr
n+ r − 1

∑
a1+···+a1′=r

only one of an and an′ is zero

σ1(u)
a1 . . . σ1′(u)

a1′

is equal to zero.

3.2.3 Series Cn

Now we let gN = spN with N = 2n and consider the operator S(m) defined in (2.19). We

also use notation (1.16) with ω = −2n and (1.14). Although the operator S(m) is defined

only for m 6 n+1, it is possible to extend the values of expressions of the form (1.17) and

those which are used in the next theorem to all m with m 6 2n+1; see [24, Sec. 3.3]. The

Harish-Chandra images turn out to be given by the same expression for all these values of

m. We postpone the proof to Corollary 5.2 below, and assume first that m 6 n.
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Theorem 3.8. For all 1 6 m 6 n for the image under the Harish-Chandra homomorphism

(3.4) we have

γm(−2n) trS(m)
(
∂u − F1(u)

)
. . .

(
∂u − Fm(u)

)
7→ em

(
∂u + µ1(u), . . . , ∂u + µn(u), ∂u, ∂u + µn′(u), . . . , ∂u + µ1′(u)

)
. (3.15)

Proof. The element ∂u − F (u) coincides with the image of the matrix 1− T (u)e−∂u in the

component of degree −1 of the graded algebra associated with the Yangian. Hence the

left hand side of (3.15) can be found as the image of the component of degree −m of the

expression

(−1)mγm(−2n) trS(m)
(
T1(u)e

−∂u − 1
)
. . .

(
Tm(u)e

−∂u − 1
)
. (3.16)

Now we use the commutative diagram (3.5) and the Harish-Chandra image of (3.16) implied

by Proposition 2.4. We have

trS(m)
(
T1(u)e

−∂u − 1
)
. . .

(
Tm(u)e

−∂u − 1
)

=
m∑
k=0

(−1)m−k
∑

16a1<···<ak6m

trS(m) Ta1(u)e
−∂u . . . Tak(u)e

−∂u . (3.17)

As in the proof of Theorem 3.8, we use the second property in (2.20) and the cyclic property

of trace to bring the expression to the form

m∑
k=0

(−1)m−k

(
m

k

)
trS(m) T1(u)e

−∂u . . . Tk(u)e
−∂u .

Further, the partial traces of the symmetrizer S(m) over the copies k + 1, . . . ,m of the

algebra EndCN in (2.1) are found by applying [24, Lemma 4.1] to get

trk+1,...,m S
(m) =

γk(−2n)

γm(−2n)

(
2n− k + 1

m− k

)(
m

k

)−1

S(k).

By Proposition 2.4 and Corollary 2.5, the Harish-Chandra image of the expression (3.16)

is found by

m∑
k=0

(−1)k γk(−2n)

(
2n− k + 1

m− k

) ∑
16i1<···<ik62n+2

κi1(u)e
−∂ . . .κik(u)e

−∂. (3.18)

Introduce new variables by

σi(u) = κi(u)e
−∂ − 1, i = 1, . . . , 2n+ 2, i ̸= n+ 2, (3.19)

and σn+2(u) = κn+2(u)e
−∂ + 1.
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Lemma 3.9. For m 6 n the expression (3.18) multiplied by 2(−1)m
(
2n−m+1

n+1

)
equals

m∑
r=0

(
2n− r + 2

n+ 1

) ∑
16i1<···<ir62n+2

σi1(u) . . . σir(u)

− 2
m−1∑
r=0

(
2n− r + 1

n+ 1

) ∑
16i1<···<ir62n+2

is ̸=n+2

σi1(u) . . . σir(u),

where n+ 2 does not occur among the summation indices in the last sum.

Proof. Substituting (3.19) into the expression and simplifying gives

m∑
r=0

(
2n− r + 2

n+ 1

) ∑
16i1<···<ir62n+2

(
κi1(u)e

−∂ − 1
)
. . .

(
κir(u)e

−∂ − 1
)
. (3.20)

Now use the expansion formula for the noncommutative elementary symmetric functions

(1.14),

er(x1 − 1, . . . , xp − 1) =
r∑

k=0

(−1)r−k

(
p− k

r − k

)
ek(x1, . . . , xp).

Taking xi = κi(u)e
−∂u with i = 1, . . . , 2n + 2, it is straightforward to verify that the

coefficient of the sum ∑
16i1<···<ik6N

κi1(u)e
−∂u . . .κik(u)e

−∂u

in (3.20) equals

(−1)m−k

(
n− k

m− k

)(
2n− k + 2

n+ 1

)
which coincides with

2(−1)m−kγk(−2n)

(
2n−m+ 1

n+ 1

)(
2n− k + 1

m− k

)
as claimed.

For m 6 n let Am denote the expression in Lemma 3.9. Note that Am coincides with

the Harish-Chandra image of (3.17) multiplied by
(
2n−m+2

n+1

)
. The proof of Lemma 3.9 and

the second part of Corollary 2.5 show that Am is also well-defined for the value m = n+1

and An+1 = 0.

Since the degree of the element (3.16) is −m, for m 6 n the expression Am also has

degree −m. Hence, the component of degree −m of the expression Am+1 is zero; this holds

for m = n as well, because An+1 = 0. Furthermore, each element σi(u) has degree −1 and
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so the component of Am of degree −m must be equal to the component of degree −m of

the expression

2

(
2n−m+ 1

n+ 1

) ∑
16i1<···<im62n+2

is ̸=n+2

σi1(u) . . . σim(u).

The component of σi(u) of degree −1 equals
−∂u + µi(u) for i = 1, . . . , n,

−∂u for i = n+ 1,

−∂u + µi−2(u) for i = n+ 3, . . . , 2n+ 2.

The proof is completed by taking the signs and the constant factor used in Lemma 3.9 into

account.

4 Classical W-algebras

We define the classicalW-algebraW(g) associated with a simple Lie algebra g following [11,

Sec. 8.1], where more details and proofs can be found. We let h denote a Cartan subalgebra

of g and let µ1, . . . , µn be a basis of h. The universal enveloping algebra U(t−1h[t−1]) will

be identified with the algebra of polynomials in the infinitely many variables µi[r] with

i = 1, . . . , n and r < 0 and will be denoted by π0. We will also use the extended algebra

with the additional generator τ subject to the relations[
τ, µi[r]

]
= −r µi[r − 1],

implied by (1.5). The extended algebra is isomorphic to π0 ⊗ C [τ ] as a vector space.

Furthermore, we will need the operator T = ad τ which is the derivation T : π0 → π0
defined on the generators by the relations

T µi[r] = −r µi[r − 1].

In particular, T 1 = 0. The classical W-algebra is defined as the subspace W(g) ⊂ π0
spanned by the elements which are annihilated by the screening operators

Vi : π0 → π0, i = 1, . . . , n,

which we will write down explicitly for each classical type below,1

W(g) = {P ∈ π0 | Vi P = 0, i = 1, . . . , n}.
1Our Vi essentially coincides with the operator V i[1] in the notation of [11, Sec. 7.3.4], which is associated

with the Langlands dual Lie algebra Lg.
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The operators Vi are derivations of π0 so that W(g) is a subalgebra of π0. The subalgebra

W(g) is T -invariant. Moreover, there exist elements B1, . . . , Bn ∈ W(g) such that the

family of elements T rBi with i = 1, . . . , n and r > 0 is algebraically independent and

generates the algebra W(g). We will call B1, . . . , Bn a complete set of generators of W(g).

Examples of such sets in the classical types will be given below.

We extend the screening operators to the algebra π0 ⊗ C [τ ] by

Vi
(
P ⊗Q(τ)

)
= Vi(P )⊗Q(τ), P ∈ π0, Q(τ) ∈ C [τ ].

4.1 Screening operators and generators for W(glN)

Here π0 is the algebra of polynomials in the variables µi[r] with i = 1, . . . , N and r < 0.

The screening operators V1, . . . , VN−1 are defined by

Vi =
∞∑
r=0

Vi [r]

( ∂

∂µi[−r − 1]
− ∂

∂µi+1[−r − 1]

)
,

where the coefficients Vi [r] are found from the expansion of a formal generating function in

a variable z,
∞∑
r=0

Vi [r] z
r = exp

∞∑
m=1

µi[−m]− µi+1[−m]

m
zm.

Define elements E1, . . . , EN of π0 by the expansion in π0 ⊗ C [τ ],(
τ + µN [−1]

)
. . .

(
τ + µ1[−1]

)
= τN + E1 τN−1 + · · ·+ EN , (4.1)

known as the Miura transformation. Explicitly, using the notation (1.14) we can write the

coefficients as

Em = em
(
T + µ1[−1], . . . , T + µN [−1]

)
, (4.2)

which follows easily from (4.1) by induction. The family E1, . . . , EN is a complete set

of generators of W(glN). Verifying that all elements Ei are annihilated by the screening

operators is straightforward. This is implied by the relations for the operators on π0,

Vi T =
(
T + µi[−1]− µi+1[−1]

)
Vi, i = 1, . . . , N − 1. (4.3)

They imply the corresponding relations for the operators on π0 ⊗ C [τ ],

Vi τ =
(
τ + µi[−1]− µi+1[−1]

)
Vi, i = 1, . . . , N − 1, (4.4)

where τ is regarded as the operator of left multiplication by τ . For each i the relation

Vi
(
τ + µN [−1]

)
. . .

(
τ + µ1[−1]

)
= 0
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then follows easily. Indeed, it reduces to the particular case N = 2 where we have

V1
(
τ + µ2[−1]

)(
τ + µ1[−1]

)
=

((
τ + µ1[−1]− µ2[−1]

)
V1 + µ2[−1]V1 − 1

)(
τ + µ1[−1]

)
=

(
τ + µ1[−1]

)
V1

(
τ + µ1[−1]

)
−
(
τ + µ1[−1]

)
= 0.

Showing that the elements T rEi are algebraically independent generators requires a com-

parison of the sizes of graded components of π0 and W(glN).

By the definitions (1.13) and (1.14), we have the relations

m∑
k=0

(−1)k Ek hm−k

(
T + µ1[−1], . . . , T + µN [−1]

)
= 0 (4.5)

for m > 1, where E0 = 1 and Ek = 0 for k > N . They imply that all elements

hm
(
T + µ1[−1], . . . , T + µN [−1]

)
, m > 1, (4.6)

belong to W(glN). Moreover, the family (4.6) with m = 1, . . . , N is a complete set of

generators of W(glN).

Note that the classical W-algebra W(slN) associated with the special linear Lie algebra

slN can be obtained as the quotient of W(glN) by the relation E1 = 0.

4.2 Screening operators and generators for W(oN) and W(spN)

Now π0 is the algebra of polynomials in the variables µi[r] with i = 1, . . . , n and r < 0.

The families of generators of the algebras W(oN) and W(spN) reproduced below were

constructed in [9, Sec. 8], where equations of the KdV type were introduced for arbitrary

simple Lie algebras. The generators are associated with the Miura transformations of the

corresponding equations.

4.2.1 Series Bn

The screening operators V1, . . . , Vn are defined by

Vi =
∞∑
r=0

Vi [r]

( ∂

∂µi[−r − 1]
− ∂

∂µi+1[−r − 1]

)
, (4.7)

for i = 1, . . . , n− 1, and

Vn =
∞∑
r=0

Vn [r]
∂

∂µn[−r − 1]
,

where the coefficients Vi [r] are found from the expansions

∞∑
r=0

Vi [r] z
r = exp

∞∑
m=1

µi[−m]− µi+1[−m]

m
zm, i = 1, . . . , n− 1
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and
∞∑
r=0

Vn [r] z
r = exp

∞∑
m=1

µn[−m]

m
zm.

Define elements E2, . . . , E2n+1 of π0 by the expansion(
τ − µ1[−1]

)
. . .

(
τ − µn[−1]

)
τ
(
τ + µn[−1]

)
. . .

(
τ + µ1[−1]

)
= τ 2n+1 + E2 τ 2n−1 + E3 τ 2n−2 + · · ·+ E2n+1. (4.8)

All of them belong to W(o2n+1). By (4.2) we have

Em = em
(
T + µ1[−1], . . . , T + µn[−1], T, T − µn[−1], . . . , T − µ1[−1]

)
. (4.9)

The family E2, E4, . . . , E2n is a complete set of generators of W(o2n+1). The relation

Vi
(
τ − µ1[−1]

)
. . .

(
τ − µn[−1]

)
τ
(
τ + µn[−1]

)
. . .

(
τ + µ1[−1]

)
= 0 (4.10)

is verified for i = 1, . . . , n−1 in the same way as for glN with the use of (4.4). Furthermore,

Vn τ =
(
τ + µn[−1]

)
Vn,

so that

Vn
(
τ − µn[−1]

)
τ
(
τ + µn[−1]

)
=

(
τ Vn − 1

)
τ
(
τ + µn[−1]

)
= τ

(
τ + µn[−1]

) (
τ + 2µn[−1]

)
Vn,

which implies that (4.10) holds for i = n as well.

By (4.5) all elements

hm
(
T + µ1[−1], . . . , T + µn[−1], T, T − µn[−1], . . . , T − µ1[−1]

)
(4.11)

belong to W(o2n+1). The family of elements (4.11) with m = 2, 4, . . . , 2n forms another

complete set of generators of W(o2n+1).

4.2.2 Series Cn

The screening operators V1, . . . , Vn are defined by (4.7) for i = 1, . . . , n− 1, and

Vn =
∞∑
r=0

Vn [r]
∂

∂µn[−r − 1]
,

where
∞∑
r=0

Vn [r] z
r = exp

∞∑
m=1

2µn[−m]

m
zm.
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Define elements E2, . . . , E2n of π0 by the expansion(
τ − µ1[−1]

)
. . .

(
τ − µn[−1]

)(
τ + µn[−1]

)
. . .

(
τ + µ1[−1]

)
= τ 2n + E2 τ 2n−2 + E3 τ 2n−3 + · · ·+ E2n.

All of them belong to W(sp2n). By (4.2) we have

Em = em
(
T + µ1[−1], . . . , T + µn[−1], T − µn[−1], . . . , T − µ1[−1]

)
.

The family E2, E4, . . . , E2n is a complete set of generators of W(sp2n). The relation

Vi
(
τ − µ1[−1]

)
. . .

(
τ − µn[−1]

)(
τ + µn[−1]

)
. . .

(
τ + µ1[−1]

)
= 0 (4.12)

is verified for i = 1, . . . , n− 1 in the same way as for glN with the use of (4.4). In the case

i = n we have

Vn τ =
(
τ + 2µn[−1]

)
Vn,

so that

Vn
(
τ − µn[−1]

)(
τ + µn[−1]

)
=

((
τ + µn[−1]

)
Vn − 1

)(
τ + µn[−1]

)
=

(
τ + µn[−1]

)(
τ + 3µn[−1]

)
Vn,

and (4.12) with i = n also follows.

It follows from (4.5) that the elements

hm
(
T + µ1[−1], . . . , T + µn[−1], T − µn[−1], . . . , T − µ1[−1]

)
with m = 2, 4, . . . , 2n form another complete set of generators of W(sp2n).

4.2.3 Series Dn

The screening operators V1, . . . , Vn are defined by (4.7) for i = 1, . . . , n− 1, and

Vn =
∞∑
r=0

Vn [r]

( ∂

∂µn−1[−r − 1]
+

∂

∂µn[−r − 1]

)
where

∞∑
r=0

Vn [r] z
r = exp

∞∑
m=1

µn−1[−m] + µn[−m]

m
zm.

Define elements E2, E3, . . . of π0 by the expansion of the pseudo-differential operator(
τ − µ1[−1]

)
. . .

(
τ − µn[−1]

)
τ−1

(
τ + µn[−1]

)
. . .

(
τ + µ1[−1]

)
= τ 2n−1 +

∞∑
k=2

Ek τ 2n−k−1.
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The coefficients Ek are calculated with the use of the relations

τ−1µi[−r − 1] =
∞∑
k=0

(−1)k (r + k)!

r!
µi[−r − k − 1]τ−k−1.

All the elements Ek belong to W(o2n). Moreover, define E ′
n ∈ π0 by

E ′
n =

(
µ1[−1]− T

)
. . .

(
µn[−1]− T

)
, (4.13)

so that this element coincides with (1.19). The family E2, E4, . . . , E2n−2, E ′
n is a complete

set of generators of W(o2n). The identity

Vi
(
τ − µ1[−1]

)
. . .

(
τ − µn[−1]

)
τ−1

(
τ + µn[−1]

)
. . .

(
τ + µ1[−1]

)
= 0 (4.14)

is verified with the use of (4.4) and the additional relations

Vi τ
−1 =

(
τ + µi[−1]− µi+1[−1]

)−1
Vi, i = 1, . . . , n− 1,

and

Vn τ
−1 =

(
τ + µn−1[−1] + µn[−1]

)−1
Vn. (4.15)

In comparison with the types Bn and Cn, an additional calculation is needed for the case

i = n in (4.14). It suffices to take n = 2. We have

V2
(
τ − µ1[−1]

)(
τ − µ2[−1]

)
τ−1

(
τ + µ2[−1]

)(
τ + µ1[−1]

)
=

((
τ + µ2[−1]

)
V2 − 1

)(
τ − µ2[−1]

)
τ−1

(
τ + µ2[−1]

)(
τ + µ1[−1]

)
=

((
τ + µ2[−1]

)(
τ + µ1[−1]

)
V2 − 2τ

)
τ−1

(
τ + µ2[−1]

)(
τ + µ1[−1]

)
.

Furthermore, applying the operator V2 we find

V2
(
τ + µ2[−1]

)(
τ + µ1[−1]

)
=

((
τ + µ1[−1] + 2µ2[−1]

)
V2 + 1

)(
τ + µ1[−1]

)
= 2

(
τ + µ1[−1] + µ2[−1]

)
and so by (4.15),

V2 τ
−1

(
τ + µ2[−1]

)(
τ + µ1[−1]

)
= 2

thus completing the calculation.

The relations

Vi
(
µ1[−1]− T

)
. . .

(
µn[−1]− T

)
= 0, i = 1, . . . , n,

are verified with the use of (4.3).
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5 Generators of the W-algebras

Here we prove the Main Theorem stated in the Introduction by deriving it from Theo-

rems 3.2, 3.5 and 3.8.

Choose a basis X1, . . . , Xd of the simple Lie algebra g and write the commutation

relations

[Xi, Xj] =
d∑

k=1

c kij Xk

with structure constants c kij. Consider the Lie algebras g[t] and t
−1g[t−1] and combine their

generators into formal series in u−1 and u,

Xi(u) =
∞∑
r=0

Xi[r]u
−r−1 and Xi(u)+ =

∞∑
r=0

Xi[−r − 1]ur.

The commutation relations of these Lie algebras written in terms of the formal series take

the form

(u− v) [Xi(u), Xj(v)] = −
d∑

k=1

c kij
(
Xk(u)−Xk(v)

)
,

(u− v) [Xi(u)+, Xj(v)+] =
d∑

k=1

c kij
(
Xk(u)+ −Xk(v)+

)
.

Observe that the second family of commutation relations is obtained from the first by

replacing Xi(u) with the respective series −Xi(u)+.

On the other hand, in the classical types, the elements of the universal enveloping

algebra U(g[t]) and their Harish-Chandra images calculated in Proposition 3.1 and Theo-

rems 3.2, 3.5 and 3.8 are all expressed in terms of the series of the form Xi(u). Therefore,

the corresponding Harish-Chandra images of the elements of the universal enveloping al-

gebra U(t−1g[t−1]) are readily found from those theorems by replacing Xi(u) with the

respective series −Xi(u)+.

To be consistent with the definition for the Wakimoto modules in [11], we will write

the resulting formulas for the opposite choice of the Borel subalgebra, as compared to the

homomorphism (3.4). To this end, in types B, C and D we consider the automorphism σ

of the Lie algebra t−1gN [t
−1] defined on the generators by

σ : Fij[r] 7→ −Fji[r]. (5.1)

We get the commutative diagram

U
(
t−1gN [t

−1]
)h −−−→ C

[
µi[r]

]
σ

y yσ

U
(
t−1gN [t

−1]
)h χ−−−→ C

[
µi[r]

]
,

(5.2)
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where i ranges over the set {1, . . . , n} while r < 0. The top and bottom horizontal arrows

indicate the versions of the Harish-Chandra homomorphism defined as in (3.4), where the

left ideal I is now generated by all elements Fij[r] with the conditions 1 6 i < j 6 N and

r < 0 for the top arrow, and by all elements Fij[r] with the conditions N > i > j > 1 and

r < 0 for the bottom arrow (which we denote by χ). The second vertical arrow indicates

the isomorphism which takes µi[r] to −µi[r].

Note that an automorphism analogous to (5.1) can be used in the case of the Lie

algebra glN to get the corresponding description of the homomorphism χ and to derive

the formulas (1.11) and (1.12). However, these formulas follow easily from the observation

that τ +E[−1] is a Manin matrix by the same argument as in the proof of Proposition 3.1.

To state the result in types B, C and D, introduce the formal series

γm(ω) trS
(m)

(
∂u + F1(u)+

)
. . .

(
∂u + Fm(u)+

)
, (5.3)

where we use notation (1.16) with ω = N and ω = −N in the orthogonal and symplectic

case, respectively, and

F (u)+ =
N∑

i,j=1

eij ⊗ Fij(u)+ ∈ EndCN ⊗ U
(
t−1gN [t

−1]
)
[[u]].

We will assume that in the symplectic case the values of m in (5.3) are restricted to

1 6 m 6 2n + 1; see [24, Sec. 3.3 and Sec. 4.1]. The trace is taken over all m copies

EndCN in the algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ U
(
t−1gN [t

−1]
)
[[u, ∂u]] (5.4)

and we use matrix notation as in (1.15). We set

µi(u)+ =
∞∑
r=0

µi[−r − 1]ur, i = 1, . . . , n.

Proposition 5.1. The image of the series (5.3) under the homomorphism χ is given by

the formula :

type Bn: hm
(
∂u + µ1(u)+, . . . , ∂u + µn(u)+, ∂u − µn(u)+, . . . ∂u − µ1(u)+

)
,

type Dn:
1
2
hm

(
∂u + µ1(u)+, . . . , ∂u + µn−1(u)+, ∂u − µn(u)+, . . . ∂u − µ1(u)+

)
+ 1

2
hm

(
∂u + µ1(u)+, . . . , ∂u + µn(u)+, ∂u − µn−1(u)+, . . . ∂u − µ1(u)+

)
,

type Cn: em
(
∂u + µ1(u)+, . . . , ∂u + µn(u)+, ∂u, ∂u − µn(u)+, . . . ∂u − µ1(u)+

)
.
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Proof. We start with the orthogonal case gN = oN . The argument in the beginning of this

section shows that the image of the series

γm(N) trS(m)
(
∂u − F1(u)+

)
. . .

(
∂u − Fm(u)+

)
under the homomorphism given by the top horizontal arrow in (5.2) is found by Theo-

rems 3.2 and 3.5, where µi(u) should be respectively replaced by −µi(u)+ for i = 1, . . . , n.

Therefore, using the diagram (5.2) we find that the image of the series

γm(N) trS(m)
(
∂u + F t

1 (u)+
)
. . .

(
∂u + F t

m(u)+
)

(5.5)

under the homomorphism χ is given by the respective Bn and Dn type formulas in the

proposition, where we set F t(u)+ =
∑

i,j eij ⊗ Fji(u)+. It remains to observe that the

series (5.5) coincides with (5.3). This follows by applying the simultaneous transpositions

eij 7→ eji to all m copies of EndCN and taking into account the fact that S(m) stays

invariant.

In the symplectic case, we suppose first that m 6 n. Starting with the Harish-Chandra

image provided by Theorem 3.8 and applying the same argument as in the orthogonal case,

we conclude that the image of the series

γm(−2n) trS(m)
(
∂u − F1(u)+

)
. . .

(
∂u − Fm(u)+

)
(5.6)

under the homomorphism χ agrees with the Cn type formula given by the statement of the

proposition. One more step here is to observe that this series coincides with (5.3). Indeed,

this follows by applying the simultaneous transpositions eij 7→ εiεj ej′i′ to all m copies of

EndCN . On the one hand, this transformation does not affect the trace of any element

of (5.4), while on the other hand, each factor ∂u − Fi(u)+ is taken to ∂u + Fi(u)+ and the

operator S(m) stays invariant.

Finally, extending the argument of [24, Sec. 3.3] to the case m = 2n+ 1 and using the

results of [24, Sec. 5], we find that for all values 1 6 m 6 2n + 1 the coefficients Φ
(s)
ma in

the expansion

γm(−2n) trS(m)
(
∂u + F1(u)+

)
. . .

(
∂u + Fm(u)+

)
=

m∑
a=0

∞∑
s=0

Φ(s)
ma u

s∂ a
u

belong to the Feigin–Frenkel center z(ŝp2n). The image of the element Φ
(s)
ma under the

isomorphism (1.4) is a polynomial in the generators T rE2k of the classical W-algebra

W(o2n+1), where k = 1, . . . , n and r > 0; see (4.9). For a fixed value of m and vary-

ing values of n the coefficients of the polynomial are rational functions in n. Therefore,

they are uniquely determined by infinitely many values of n > m. This allows us to extend

the range of n to all values n > (m− 1)/2 for which the expression (5.3) is defined.
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Corollary 5.2. Theorem 3.8 holds for all values 1 6 m 6 2n+ 1.

Proof. This follows by reversing the argument used in the proof of Proposition 5.1.

With the exception of the formula (1.19) for the image of the element ϕ′
n in type Dn, all

statements of the Main Theorem now follow from Proposition 5.1. It suffices to note that

the coefficients of the polynomial (1.17) and the differential operator (5.3) are related via

the vertex algebra structure on the vacuum module V−h∨(gN). In particular, the evaluation

of the coefficients of the differential operator (5.3) at u = 0 reproduces the corresponding

coefficients of the polynomial (1.17). This implies the desired formulas for the Harish-

Chandra images in the Main Theorem; see e.g. [11, Ch. 2] for the relevant properties of

vertex algebras.

Now consider the element E ′
n of the algebraW(o2n) defined in (4.13) and which coincides

with the element (1.19). To prove that the Harish-Chandra image of the element ϕ′
n

introduced by (1.18) equals E ′
n, use the automorphism of the Lie algebra t−1o2n[t

−1] defined

on the generators by

Fk l[r] 7→ Fk̃ l̃[r], (5.7)

where k 7→ k̃ is the involution on the set {1, . . . , 2n} such that n 7→ n′, n′ 7→ n and k 7→ k

for all k ̸= n, n′. Note that ϕ′
n 7→ −ϕ′

n under the automorphism (5.7). Similarly, E ′
n 7→ −E ′

n

with respect to the automorphism of t−1h2n[t
−1] induced by (5.7).

As a corollary of the Main Theorem and the results of [24] we obtain from the isomor-

phism (1.4) that the elements

Fm = 1
2
hm

(
T + µ1[−1], . . . , T + µn−1[−1], T − µn[−1], . . . T − µ1[−1]

)
+ 1

2
hm

(
T + µ1[−1], . . . , T + µn[−1], T − µn−1[−1], . . . T − µ1[−1]

)
,

withm = 2, 4, . . . , 2n−2 together with E ′
n form a complete set of generators ofW(o2n) (this

fact does not rely on the calculation of the image of the Pfaffian). Observe that all elements

T rF2k with k = 1, . . . , n− 1 and r > 0 are stable under the automorphism (5.7). Since the

Harish-Chandra image χ(ϕ′
n) is a unique polynomial in the generators of W(o2n) and its

degree with respect to the variables µ1[−1], . . . , µn[−1] does not exceed n, we can conclude

that χ(ϕ′
n) must be proportional to E ′

n. The coefficient of the product µ1[−1] . . . µn[−1] in

each of these two polynomials is equal to 1 thus proving that χ(ϕ′
n) = E ′

n. This completes

the proof of the Main Theorem.

The properties of vertex algebras mentioned above and the relation χ(ϕ′
n) = E ′

n im-

ply the respective formulas for the Harish-Chandra images of the Pfaffians Pf F̃ (u)+ and

Pf F̃ (u) defined by (1.18) with the matrix F̃ [−1] replaced by the skew-symmetric matrices

F̃ (u)+ = [Fij′(u)+] and F̃ (u) = [Fij′(u)], respectively.
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Corollary 5.3. The Harish-Chandra images of the Pfaffians are found by

χ : Pf F̃ (u)+ 7→
(
µ1(u)+ − ∂u

)
. . .

(
µn(u)+ − ∂u

)
1,

Pf F̃ (u) 7→
(
µ1(u)− ∂u

)
. . .

(
µn(u)− ∂u

)
1,

where the second map is defined in (3.4).

Proof. The first relation follows by the application of the state-field correspondence map to

the Segal–Sugawara vector (1.18) and using its Harish-Chandra image (1.19). To get the

second relation, apply the automorphism (5.1) to the first relation to calculate the image

of Pf F̃ (u)+ with respect to the homomorphism defined by the top arrow in (5.2),

Pf F̃ (u)+ 7→
(
µ1(u)+ + ∂u

)
. . .

(
µn(u)+ + ∂u

)
1.

Now replace F̃ (u)+ with −F̃ (u) and replace µi(u)+ with −µi(u) for i = 1, . . . , n.

The isomorphism (1.4) and the Main Theorem provide complete sets of generators of

the classical W-algebras. In types B and C they coincide with those introduced in Sec. 4.2,

but different in type D, as pointed out in the above argument.

Corollary 5.4. The elements F2,F4, . . . ,F2n−2, E ′
n form a complete set of generators of

W(o2n).

To complete this section, we point out that the application of the state-field corre-

spondence map to the coefficients of the polynomial (1.17) and to the additional element

(1.18) in type Dn yields Sugawara operators associated with ĝN . They act as scalars in the

Wakimoto modules at the critical level. The eigenvalues are found from the respective for-

mulas of Proposition 5.1 and Corollary 5.3 as follows from the general theory of Wakimoto

modules and their connection with the classical W-algebras; see [11, Ch. 8].

6 Casimir elements for gN

We apply the theorems of Sec. 3 to calculate the Harish-Chandra images of certain Casimir

elements for the orthogonal and symplectic Lie algebras previously considered in [16]. Our

formulas for the Harish-Chandra images are equivalent to those in [16], but take a different

form. We will work with the isomorphism (1.2), where the Cartan subalgebra h of the Lie

algebra g = gN is defined in the beginning of Sec. 2 and the subalgebra n+ is spanned by

the elements Fij with 1 6 i < j 6 N . We will use the notation µi = Fii for i = 1, . . . , N

so that µi + µi′ = 0 for all i.

Consider the evaluation homomorphism

ev : U(gN [t]) → U(gN), Fij(u) 7→ Fiju
−1,
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so that Fij[0] 7→ Fij and Fij[r] 7→ 0 for r > 1. The image of the series µi(u) then coincides

with µi u
−1. Applying the evaluation homomorphism to the series involved in Theorems 3.2,

3.5 and 3.8 we get the corresponding Harish-Chandra images of the elements of the center

of the universal enveloping algebra U(gN). The formulas are obtained by replacing Fij(u)

with Fiju
−1 and µi(u) with µi u

−1. Multiply the resulting formulas by um from the left.

In the case gN = o2n+1 use the relation

um (∂u + F1u
−1) . . . (∂u + Fmu

−1) = (u∂u + F1 −m+ 1) . . . (u∂u + Fm) (6.1)

to conclude that the Harish-Chandra image of the polynomial

γm(N) trS(m)(F1 + v −m+ 1) . . . (Fm + v) (6.2)

with v = u∂u is found by ∑
16i16···6im61′

(µi1 + v −m+ 1) . . . (µim + v),

summed over the multisets {i1, . . . , im} with entries from {1, . . . , n, n′, . . . , 1′}. By the ar-

guments of [16], the Harish-Chandra image of the polynomial (6.2) is essentially determined

by those for the even values m = 2k and a particular value of v.

Corollary 6.1. For gN = o2n+1 the image of the Casimir element

γ2k(N) trS(2k) (F1 − k) . . . (F2k + k − 1)

under the Harish-Chandra isomorphism is given by∑
16i16···6i2k61′

(µi1 − k) . . . (µi2k + k − 1), (6.3)

summed over the multisets {i1, . . . , i2k} with entries from {1, . . . , n, n′, . . . , 1′}. Moreover,

the element (6.3) coincides with the factorial complete symmetric function∑
16j16···6jk6n

(
l2j1 − (j1 − 1/2)2

)
. . .

(
l2jk − (jk + k − 3/2)2

)
, (6.4)

where li = µi + n− i+ 1/2 for i = 1, . . . , n.

Proof. The coincidence of the elements (6.3) and (6.4) is verified by using the character-

ization theorem for the factorial symmetric functions [33]; see also [16]. Namely, both

elements are symmetric polynomials in l21, . . . , l
2
n of degree k, and their top degree compo-

nents are both equal to the complete symmetric polynomial hk(l
2
1, . . . , l

2
n). It remains to

verify that each of the elements (6.3) and (6.4) vanishes when (µ1, . . . , µn) is specialized to

a partition with µ1 + · · ·+ µn < k which is straightforward.
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Similarly, if gN = o2n use the same relation (6.1) to conclude from Theorem 3.5 that

the Harish-Chandra image of the polynomial

2 γm(N) trS(m)(F1 + v −m+ 1) . . . (Fm + v)

is found by∑
16i16···6im62n

is ̸=n

(µi1 + v −m+ 1) . . . (µim + v) +
∑

16i16···6im62n
is ̸=n′

(µi1 + v −m+ 1) . . . (µim + v),

where the summation indices in the first sum do not include n and the summation indices

in the second sum do not include n′.

Corollary 6.2. For gN = o2n the image of the Casimir element

γ2k(N) trS(2k) (F1 − k) . . . (F2k + k − 1)

under the Harish-Chandra isomorphism is given by

1
2

∑
16i16···6i2k62n

is ̸=n

(µi1 − k) . . . (µi2k + k − 1) + 1
2

∑
16i16···6i2k62n

is ̸=n′

(µi1 − k) . . . (µi2k + k − 1).

Moreover, this element coincides with the factorial complete symmetric function∑
16j16···6jk6n

(
l2j1 − (j1 − 1)2

)
. . .

(
l2jk − (jk + k − 2)2

)
,

where li = µi + n− i for i = 1, . . . , n.

Proof. The coincidence of the two expressions for the Harish-Chandra image is verified in

the same way as for the case of o2n+1 outlined above.

Now suppose that gN = sp2n and use the relation

um (−∂u + F1u
−1) . . . (−∂u + Fmu

−1) = (−u∂u + F1 +m− 1) . . . (−u∂u + Fm)

to conclude from Theorem 3.8 and Corollary 5.2 that the Harish-Chandra image of the

polynomial

γm(−2n) trS(m)(F1 + v +m− 1) . . . (Fm + v)

with v = −u∂u is found by ∑
16i1<···<im61′

(µi1 + v +m− 1) . . . (µim + v),

summed over the subsets {i1, . . . , im} of the set {1, . . . , n, 0, n′, . . . , 1′} with the ordering

1 < · · · < n < 0 < n′ < · · · < 1′, where µ0 := 0. Taking m = 2k and v = −k + 1 we get

the following.
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Corollary 6.3. For gN = sp2n the image of the Casimir element

γ2k(−2n) trS(2k) (F1 + k) . . . (F2k − k + 1)

under the Harish-Chandra isomorphism is given by∑
16i1<···<i2k61′

(µi1 + k) . . . (µi2k − k + 1), (6.5)

summed over the subsets {i1, . . . , i2k} ⊂ {1, . . . , n, 0, n′, . . . , 1′}. Moreover, the element

(6.5) coincides with the factorial elementary symmetric function

(−1)k
∑

16j1<···<jk6n

(
l2j1 − j21

)
. . .

(
l2jk − (jk − k + 1)2

)
, (6.6)

where li = µi + n− i+ 1 for i = 1, . . . , n.

Proof. To verify that the elements (6.5) and (6.6) coincide, use again the characterization

theorem for the factorial symmetric functions [33]; see also [16]. Both elements are sym-

metric polynomials in l21, . . . , l
2
n of degree k, and their top degree components are both

equal to the elementary symmetric polynomial (−1)k ek(l
2
1, . . . , l

2
n). Furthermore, it is eas-

ily seen that each of the elements (6.5) and (6.6) vanishes when (µ1, . . . , µn) is specialized

to a partition with µ1 + · · ·+ µn < k.
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