
SEIFERT FIBRED KNOT MANIFOLDS

J.A.HILLMAN

Abstract. We consider the question of when is the closed man-
ifold obtained by elementary surgery on an n-knot Seifert fibred
over a 2-orbifold. After some observations on the classical case, we
concentrate on the cases n = 2 and 3. We have found a new family
of 2-knots with torsion-free, solvable group, overlooked in earlier
work. We show also that there are no aspherical Seifert fibred
3-knot manifolds. We know of no higher dimensional examples.

The knot manifolds of the title are the closed manifolds M(K) =
χ(K, 0) obtained by elementary surgery on n-knots K in Sn+2. We
assume that the surgery is 0-framed in the classical case n = 1. In
higher dimensions the corresponding knot manifolds largely determine
the knot. In the classical case this is probably not true, but important
invariants of K such as the Alexander module and the Blanchfield
pairing may be calculated in terms of M(K), and whether K is trivial,
fibred, slice or DNC can each be detected by corresponding properties
of M(K). Thus these manifolds have a privileged role.

Our main interest is in which 2-knot manifolds are Seifert fibred, but
we shall also consider the other dimensions. In the classical case there
are also non-trivial Dehn surgeries, parametrized by Q. If K = Km,n is
the (m,n)-torus knot then the 3-manifolds χ(K, q

p
) obtained by Dehn

surgeries onK are all Seifert fibred, with the sole exception of χ(K, −1
mn

),
which is the sum of two lens spaces [12]. For most other knots only
finitely many Dehn surgeries give Seifert manifolds, and much work
has been done on establishing tight bounds on the numbers of such
“exceptional” Dehn surgeries for hyperbolic knots. Our point of view
is different, in that we concentrate on the case p

q
= 0.

The possible base orbifolds form a restricted class, since the orbifold
fundamental group must have cyclic abelianization. The question of
which such groups have weight 1 suggests potential applications for
the techniques used in [9] to establish the Scott-Wiegold conjecture.
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In the course of constructing examples of 2-knot manifolds which are
Seifert fibred over flat bases, we have discovered a family of knots with
torsion-free polycyclic groups that were overlooked in an old result of
ours (Theorem 6.11 of [5]). This gap does not materially affect much
other work, except that the claim in [7] that the classification of such
knots is complete was unjustified. We shall show here that none of the
new knots is invertible or amphicheiral; and the weight orbits for each
knot group are parametrized by Z. Only the question of reflexivity
remains undecided for these knots.

In higher dimensions we allow the general fibre to be an (orientable)
infrasolvmanifold, rather than just a torus. We shall show that, even
with this broader definition, there are no aspherical Seifert fibred 3-
knot manifolds. There are no examples known in higher dimensions.

1. some necessary conditions

If K is an n-knot such that M(K) is Seifert fibred over an aspherical
2-orbifold B then the knot group πK = π1(M(K)) is an extension of
β = πorb(B) by a torsion free, virtually poly-Z group of Hirsch length n
and orientable type. Since πK is a knot group it has weight 1, π/π′ ∼= Z
and H2(π) = H2(π;Z) = 0. (We shall generally write Hi(X) instead of
Hi(X;Z), when X is a space or a group and the coefficients are simple
and integral.) We shall derive some consequences of these facts here.

Let G be a group with a presentation P with g generators and r
relators, and let m(P) be the r×g matrix with (i, j) entry the exponent
sum of the jth generator in the ith relator. Then G has abelianization
G/G′ ∼= Z if and only if m(P) has rank g − 1 (so all g × g minors of
m(P) are 0) and the highest common factor of the (g − 1) × (g − 1)
minors is 1.

Lemma 1. Let B be an aspherical 2-orbifold B such that β = πorb(B)
has weight 1. Then B is either

(1) S2(a1, . . . , am), with m ≥ 3 and no three of the cone point orders
ai having a nontrivial common factor;

(2) P 2(b1, . . . , bm), with m ≥ 2 and the cone point orders bi being
pairwise relatively prime;

(3) D(c1 . . . , cp, d1, . . . , dq), with p ≤ 2 and 2p + q ≥ 3, the cone
point orders ci being all odd and relatively prime, and at most
one of the dj being even.

Proof. Since β has cyclic abelianization, the surface underlying B is
S2, P 2 or D2. In case (3), the free product ∗pi=1Z/ciZ is a quotient of
β. Since it has weight one, and so p ≤ 2 [9]. The other details on the
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parity and common factors of the cone point orders follow also from
the fact that β/β′ is cyclic and the above observations on determinants,
while the lower bounds on the numbers of cone points and corner points
hold because B is aspherical. �

The groups β for such orbifolds have presentations

〈v1, . . . , vm | vaii = 1 ∀i ≤ m, Πvi = 1〉,

〈u, v1, . . . , vm | u2 = v1 · · · vm, vbii = 1 ∀i ≤ m〉, and

〈v1, . . . , vp, x1, . . . , xq+1 | vcii = 1 ∀ i ≤ p, x2j = (xjxj+1)
dj = 1 ∀ j ≤ q,

xq+1Πvi = (Πvi)x1〉,
respectively. Here the vi are orientation preserving, while u and the xj
are orientating reversing.

Howie has asked whether every free product of 2k + 1 finite cyclic
groups has weight > k [9]. If the answer to this question is as expected
then m ≤ 4 in case (1). When m = 3 every such group has weight 1, for
we may assume that a1 is odd, and then v−11 v2 is a normal generator.
If m = 4 and (a1, a2) = (a3, a4) = 1 then v1v2 is a normal generator.
However, if m = 4 and the exponents do not form two relatively prime
pairs then the group has a quotient with presentation

〈x, y, z | xa = ybc = zbd = (xyz)cd = 1〉,
where a, b, c and d are distinct primes. Do such groups have weight 1?

In case (2), if m = 2 then v−11 u is a normal generator. If there are
any examples with base P (c1, . . . , cm) and m ≥ 3 then

〈u, x, y, z | u2 = xyz, xa = yb = zc = 1〉
has weight 1 for some distinct primes a < b < c. This seems unlikely.

If B = D(d1, . . . , dq) or B = D(c, d1, . . . , dq), where the di with i ≥ 2
are all odd, then β has weight 1 for any q > 0. If there are any examples
with p = 2 then

〈v, w, x | va = wb = x2 = 1, xvw = vwx〉
has weight 1 for some distinct odd primes a < b. Again, this seems
unlikely. In summary, we expect only m = 3 or 4 in case (1), m = 2 in
case (2) and p ≤ 1 in case (3).

We shall give more details on the low dimensional cases n = 1, 2 or
3 in subsequent sections.

Lemma 2. Let π be an n-knot group which is an extension of a 2-
orbifold group β = πorb1 (B) by a normal subgroup D. Then

(1) if B = S2(a1, . . . , am) then H0(β;D/D′) ∼= Z2;
(2) if B = P 2(b1, . . . , bn) then H0(β;D/D′) ∼= Z;
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(3) if B = D(c1, . . . , cp, d1, . . . , dq) then H0(β;D/D′) ∼= Z⊕ Z/2Z.

Hence D has nontrivial image in π/π′.

Proof. Since β/β′ is finite, the exact sequence of low degree for the
extension reduces to a short exact sequence

0→ H2(β)→ H0(β;H1(D))→ Z→ 0.

In particular, D has nontrivial image in π/π′.
Since β is virtually a PD2-group, H2(β;Q) ∼= Q, if B is orientable,

and is 0 otherwise.
If B = S2(a1, . . . , am) then H2(β) has rank 1. Since β has a presen-

tation of deficiency −1, and β/β′ is finite, H2(β) is cyclic. Therefore
H2(β) ∼= Z, and so H0(β;D) ∼= Z2.

If B = P 2(b1, . . . , bn) then β has deficiency 0, and β/β′ is finite, so
H2(β) = 0. Hence H0(β;D/D′) ∼= Z.

In case (3), the arguments for Theorem 7 below show that there are
homology S1 × S3s which are Seifert fibred with base B (and general
fibre the torus). Considering the above exact sequence for such an
extension of β by Z2, we see first that β must act through a quotient
of order 2, and then that H2(β) = Z/2Z. Hence H0(β;D/D′) ∼= Z ⊕
Z/2Z. �

If a group π is an extension of a 2-orbifold group β of weight 1 by a
solvable normal subgroup and π/π′ is cyclic must π have weight 1 also?

2. the classical case

Let M(0;S) be the Seifert fibred 3-manifold with base orbifold B =
S2(α1, . . . αr) and Seifert data S = {(α1, β1), . . . , (αr, βr)}. (Here 0 is
the genus of the surface underlying the base orbifold, and the general-
ized Euler invariant is ε = Σ βi

αi
.) Then the knot manifold of the (p, q)-

torus knot kp,q is M(0;S), where S = {(p, q), (q, p), (pq,−p2−q2)}. (See
Lemma 4 below.) This knot is fibred, and it has Alexander polynomial

∆1(kp,q) = (tpq−1)(t−1)
(tp−1)(tq−1) , which is a square-free product of cyclotomic

polynomials. We shall extend these properties to other knots whose
associated knot manifolds are Seifert fibred.

Theorem 3. If K is a nontrivial knot such that M(K) is Seifert fibred,
with Seifert fibration p : M → B, then

(1) B is an aspherical orientable orbifold and ε(p) = 0;
(2) K is fibred; and
(3) ∆1(K)/∆2(K) is a square-free product of cyclotomic polynomi-

als.
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Proof. Since K is nontrivial, M = M(K) is aspherical [4]. Let p :
M → B be the projection of the Seifert fibration, let h be the image
of the regular fibre in π = π1(M), and let β = πorb(B). Since β/β′ is
cyclic it is finite, and so the image of h in π/π′ = H1(M) has infinite
order. Therefore β acts trivially on h, and so B is orientable, since M
is orientable. Moreover, ε(p) is 0. The subgroup 〈π′, h〉 ∼= π′ × Z has
finite index in π, and so π′ is finitely presentable. Therefore M fibres
over S1, and the monodromy has finite order in Out(π′).

Let λ be a longitude for K. Then π ∼= πK/〈〈λ〉〉, and so π/π′′ ∼=
πK/πK ′′, since λ ∈ πK ′′. A choice of meridian for K determines an
isomorphism Z[π/π′] ∼= Λ = Z[t, t−1], and the annihilator of π′/π′′ as a
Λ-module is generated by ∆1(K)/∆2(K) [3]. Since M is fibred, so is
K [4], and since the monodromy of the fibration of M has finite order,
∆1(K)/∆2(K) is a square-free product of cyclotomic factors. �

If K = k2,3 is the trefoil knot then M(K) is the flat 3-manifold G5

with holonomy Z/6Z, which is Seifert fibred over S2(2, 3, 6).

Corollary 4. If K is not the trefoil knot then M(K) is a H2 × E1-
manifold.

Proof. If K satisfies the above conditions but is not the trefoil knot then
it has genus ≥ 2, since the figure-eight knot is the only other fibred
knot of genus 1. Hence M is an H2 × E1-manifold, since ε(p) = 0. �

In the classical case, the possible Seifert bases must be orientable.

Lemma 5. Let K be a nontrivial knot such that the knot manifold
M(K) is Seifert fibred, with base B. Then B = S2(a1, . . . , am), for
some m ≥ 3, and no three of the cone point orders ai have a common
factor p > 1. Moreover, Σ 1

αi
≤ m− 2.

Proof. Let π = π1(M), let h be the image of the regular fibre in π and
let β = πorb(B) = π/〈h〉. Since M is orientable, orientation-reversing
elements of β must invert h, and since π = π1(M) is torsion free,
there is no orientation-reversing element of finite order. Thus B has
no reflector curves. It is easily verified from the standard presentations
of the fundamental group that if an orientable 3-manifold is Seifert
fibred over F 2(b1, . . . , bm), where F is a non-orientable closed surface,
then H1(M) has 2-torsion. The only remaining possibility is that B =
S2(a1, . . . , am), with m ≥ 3 and no three of the ai having a nontrivial
common factor, by Lemma 1.

If K = k2,3 is the trefoil knot then Σ 1
αi

= 1. In all other cases B

must be a hyperbolic 2-orbifold, and so χorb(B) = 2−m+Σ 1
αi
< 0. �
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Examples with m = 3 or 4 are easy to find.

Lemma 6. If p > q > (p, q) = 1 then M(kp,q) and M(kp,q#− kp,q) are
Seifert fibred, with three and four exceptional fibres, respectively.

Proof. The Seifert fibration of the exterior X(kp,q) has two exceptional
fibres, of multiplicities p and q. This fibration extends to M(kp,q) =
X(kp,q) ∪D2 × S1, with the core of the solid torus having multiplicity
pq, and so M(kp,q) is Seifert fibred over S2(p, q, pq).

In general, M(K# − L) = X(K) ∪ −X(L), where the boundaries
are identified using the canonical meridian-longitude coordinizations.
If K and L are torus knots then the Seifert fibrations on the boundaries
agree if and only if K = L. Hence M(kp,q#−kp,q) is Seifert fibred over
S2(p, p, q, q). �

It is much harder to find other examples. The first knot in the stan-
dard tables which satisfies the conditions of Theorem 3, but which is
not a torus knot, is 10132. (This is also known as the Montesinos knot
m(−1; (2, 1), (3, 1), (7, 2)), in the notation of [2].) Its knot manifold
M(10132) is Seifert fibred, with base S2(2, 3, 19). This is the only hy-
perbolic arborescent knot whose associated knot manifold is a Seifert
manifold with three exceptional fibres [10, 15]. If K is an alternating
knot such that M(K) is Seifert fibred must K be a (2, q)-torus knot?

If K is any other knot such that M(K) is Seifert fibred with more
than three exceptional fibres then K is either hyperbolic or is a satellite
of a torus knot, with the knot exterior having a JSJ decomposition into
the union of a torus knot exterior and a hyperbolic piece [11].

If the answer to Howie’s question is as expected then each Seifert
fibred knot manifold must have at most 4 exceptional fibres.

3. aspherical seifert fibred 2-knot manifolds

A 2-knot is a locally flat embedding of S2 in a homotopy 4-sphere.
The constructions that we shall use give PL 2-knots in PL homotopy
4-spheres. On the other hand, all homotopy 4-spheres are homeomor-
phic to S4. The groups of 2-knots with aspherical, Seifert fibred knot
manifolds may be characterized as follows.

Theorem 7. A group π is the group of a 2-knot K such that M(K) is
an aspherical, Seifert fibred 4-manifold if and only if π is an orientable
PD4-group of weight 1 and with a normal subgroup A ∼= Z2.

Proof. The conditions are obviously necessary. Suppose that they hold.
Then χ(π) = 0, and so β1(π) = 1

2
β2(π) + 1 > 0. Since H1(π) is cyclic,

we must have H1(π) ∼= Z, and then H2(π) = 0. (See Chapter 3 of [6].)
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Thus π satisfies the Kervaire conditions. It follows from the Lyndon-
Hochschild-Serre spectral sequence for π as an extension of π/A by A
that H2(π/A;Z[π/A]) ∼= Z. Therefore π/A is virtually a PD2-group
[1]. Therefore π = π1(M), where M is a Seifert fibred 4-manifold.
Surgery on a simple closed curve in M representing a normal generator
of π gives a homotopy 4-sphere. The cocore of the surgery is a 2-knot
K with M(K) ∼= M and πK ∼= π. �

The monodromy of a Seifert fibration p : M → B with total space
a 4-manifold, base an aspherical 2-orbifold and general fibre a torus, is
diagonalizable if it is generated by a matrix which is conjugate to a di-
agonal matrix in GL(2,Z). The possible base orbifolds and monodromy
actions are largely determined in the next result. (In Theorem 16.2 of
[6] it is shown that the knot manifolds are s-cobordant to geometric
4-manifolds.)

Theorem 8. Let K be a 2-knot with group π = πK, and such that
the knot manifold M = M(K) is Seifert fibred, with base B. If π′ is
infinite then M is aspherical and B is either

(1) S2(a1, . . . , am), with no three of the cone point orders ai having
a common factor p > 1, m ≥ 3 and trivial monodromy;

(2) P 2(b1, . . . , bn), with the cone point orders bi being pairwise rel-
atively prime, n ≥ 2 and monodromy of order 2 and non-
diagonalizable;

(3) D(c1 . . . , cp, d1, . . . , dq), with the cone point orders ci all odd and
relatively prime, and at most one of the dj even, p ≤ 2 and
2p+ q ≥ 3, and monodromy of order 2 and diagonalizable.

All such knot manifolds are mapping tori, and are geometric.

Proof. Let A be the image of the fundamental group of the regular fibre
in π. Then A is a finitely generated infinite abelian normal subgroup
of π, and β = πorb(B) ∼= π/A. If M were not aspherical then β would
be finite, so π would be virtually abelian. But then π′ would be finite,
by Theorem 15.14 of [6]. Therefore M is aspherical, so A ∼= Z2 and B
is as in Lemma 1. Hence A ∩ π′ ∼= Z and β/β′ is finite, by Theorem
16.2 of [6], and so β′ and π′ are finitely presentable. Therefore π is
virtually π′ × Z.

Let Θ : β → GL(2,Z) be the action of β on A induced by conjugation
in π. Since M is orientable, det Θ(g) = −1 if and only if g ∈ β is
orientation-reversing. Since A∩π′ ∼= Z, every element of β has at least
one eigenvalue +1. Since β/β′ is finite cyclic, orientation-preserving
elements of β act trivially on A.
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If B = S2(a1, . . . , am) then A is central in π, and π has the presen-
tation

〈x1, . . . , xm, y, z | xaii = yeizfi and xi � y, z ∀i ≤ m, Πxi = ykzl,

yz = zy〉,
for some exponents ei, fi, for 1 ≤ i ≤ m, and k, l. Conversely, if π has
such a presentation then π/π′ ∼= Z if and only if the m+ 2 minors

(k − Σ
ei
ai

)Πai, (l − Σ
fi
ai

)Πai, and (kf1 − le1 + Σj 6=1
e1fj − ejf1

aj
)Πai,

. . . , (kfm − lem + Σj 6=m
emfj − ejfm

aj
)Πai

have highest common factor 1. If so, then (ai, ei, fi) = 1 for all i, and
so π is torsion free.

If B = P 2(b1, . . . , bm), for some m ≥ 2, then β has the presentation

〈u, x1, . . . , xm | u2 = x1 · · ·xm, xbii = 1 ∀i ≤ m〉,

where u is the only orientation-reversing generator. Since Θ(xi) = I for
1 ≤ i ≤ m, the final relation implies that Θ(u)2 = I. We may choose
the basis for A so that Θ(u) has one of the standard forms ( 1 0

0 −1 ) or
( 0 1
1 0 ). If Θ(u) is diagonalizable then π has the presentation

〈u, x1, . . . , xn, y, z | u2 = x1 · · ·xmykzl, xbii = yeizfi and xi � y, z ∀i ≤ m,

uy = yu, uzu−1 = z−1, yz = zy〉,
for some exponents ei, fi, for 1 ≤ i ≤ m, and k, l. But then π/π′ has
2-torsion. Therefore Θ(u) = ( 0 1

1 0 ) and π has the presentation

〈u, x1, . . . , xm, y, z | u2 = x1 · · ·xmykzl, xbii = yeizfi and xi � y, z ∀i ≤ m,

uyu−1 = z, yz = zy〉.
Such a group has abelianization π/π′ ∼= Z if and only if (bi, ei+fi) = 1,
for 1 ≤ i ≤ m, and either one exponent bi is even or k + l + Σ(ei + fi)
is odd. If so, then π is torsion free.

Suppose finally that B = D(c1, . . . , cp, d1, . . . , dq), for some p, q ≥ 0
with 2p+ q ≥ 3. Then β has the presentation

〈w1, . . . , wp, x1, . . . , xq+1 | wcii = 1 ∀ i ≤ p, x2j = (xjxj+1)
dj = 1 ∀ j ≤ q,

xq+1Πwi = (Πwi)x1〉,
where the generators xj are orientation-reversing. Since the products
xjxj+1 are orientation preserving and of finite order, Θ(xj) = Θ(xj+1)
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for all j ≤ q. Since the subgroups generated by xj and A are torsion-
free, we may choose the basis for A so that Θ(xj) = ( 1 0

0 −1 ) for all j.
Hence π has the presentation

〈w1, . . . , wp, x1, . . . , xq+1, y, z | wcii = yeizfi and wi � y, z ∀i ≤ p,

x2j = y ∀ j ≤ q + 1, xjzx
−1
j = z−1 and (xjxj+1)

dj = ygjzhj ∀ j ≤ q,

xq+1Πwi = (Πwi)x1y
kzl〉,

for some exponents ei, . . . , hj, k, l. Since π is torsion-free, (ci, ei, fi) = 1
for all i ≤ p. Since x2q+1 = x21, k = 0. Extending coefficients to Z[1

2
]

(localizing away from (2)), we see that π/π′ is infinite cyclic if and only
if gj = dj for all j ≤ q, and then π/π′ has rank 1 and no odd torsion.
Reducing modulo (2), we then see that π/π′ ∼= Z if and only if ej = dj
and (2, dj, hj) = 1 for all j ≤ q.

Since the monodromy is finite, these Seifert fibred manifolds are
geometric, with geometry Nil3 × E1 if the base is flat and geometry

S̃L×E1 if the base is hyperbolic [14]. Hence M(K) fibres over S1. �

Every group with such a presentation and having abelianization Z is
the fundamental group of a Seifert fibred homology S1×S3, which may
be obtained by surgery on a knot in an homology 4-sphere. However,
when such groups have weight 1 is a more delicate question. In each
case, there are natural minimal candidates for groups with weight > 1.

If K is the r-twist spin of a classical knot then the rth power of a
meridian is central in πK, and so must have trivial image in β. Since
elements of finite order in 2-orbifold groups are conjugate to cone point
or reflector generators (see Theorem 4.8.1 of [16]), the only possible
bases for Seifert fibred twist spins are S2(a, b, r), with (a, b) = 1, and
D(d1, . . . , dq). In the latter cases, r must be 2. These are realized by
r-twist spins of (a, b)-torus knots and 2-twist spins of Montesinos knots
m(e; (d1, β1), . . . , (dq, βq)), respectively.

When B = P 2(b1, . . . , bm) the knot manifold is also the total space
of an S1-bundle over a Seifert fibred homology S1× S2, since π has an
infinite cyclic normal subgroup 〈z〉 with torsion free quotient. In the
other cases whether this is so depends on the exponents ei, . . . , k, l in
the relators.

There are no known examples of 2-knot manifolds which are total
spaces of orbifold bundles with flat bases and hyperbolic general fibre.
See [8] for a discussion of the possibilities.
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4. flat bases

The three possible flat bases for Seifert fibred knot manifolds are
S2(2, 3, 6), D(3, 3, 3). and D(3, 3). According to Theorem 6.11 of [5],
there should be no examples with base D(3, 3). However, in seeking to
understand why that should be so, we have recently realised that there
was an error in the claim made there that certain Nil3-lattices have
essentially unique meridianal automorphisms.

Let G = π1(M(0; (3, 1), (3, 1), (3, 1 − 3e)), where e is even. Then G
has the presentation

〈h, x, y, z | x3 = y3 = z3 = h, xyz = he〉

= 〈x, z | x3 = (x3e−1z−1)3 = z3〉.

The centre of G is ζG = 〈h〉, and G = G/ζG is the flat 2-orbifold
group πorb1 (S2(3, 3, 3)) ∼= Z2oZ/3Z, with translation subgroup T ∼= Z2

generated by the images of u = z−1x and v = xz−1.
The group of outer automorphism classes Out(G) is generated by

the images of the automorphisms b, r and k, where

b(x) = z2x3e−4, b(z) = z, r(x) = x−1, r(z) = z−1,

k(x) = xz−1x3e−2 and k(z) = x.

In [5] the involution r was called j, and it was asserted there that
jkj−1 = k−1. This passed unchanged in [6] (Theorem 16.15) and in [7].
However, it should be jk = kj (i.e., rk = kr), and there are two classes
of meridianal automorphisms of G, up to conjugacy and inversion in
Out(G), represented by r and rk. (This error did not affect the cases
with parameter η = −1 in the earlier work. In those cases the outer
automorphism group is (Z/2Z)2 and the meridianal class is unique.)

The automorphism r leads to the group π(e, 1), considered in [5, 6, 7].

Theorem 9. Let e be even and let π = G ork Z be the group with
presentation

〈t, x, z | x3 = (x3e−1z−1)3 = z3, txt−1 = x−1zx2−3e, tzt−1 = x−1〉.

Then

(1) π/π′ ∼= Z and π has weight 1;
(2) the centre of π is generated by the image of (t3x)2;
(3) no automorphism of π sends t to a conjugate of t−1;
(4) all automorphisms of π are orientation preserving; and
(5) the strict weight orbits for π are parametrized by Z.
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Proof. The image of t freely generates the abelianization, which is Z
since e is even. Since π is solvable it follows that t normally generates
π. The second assertion is easily verified by direct computation. Since
θ = rk is not conjugate to θ−1 = rk−1 in Out(G), no automorphism
of π inverts t. Since automorphisms of Nil3-lattices are orientation
preserving, it then follows that all automorphisms of π are orientation
preserving.

If t̃ is another normal generator with the same image in π/π′ as t
then we may assume that t̃ = tg for some g ∈ π′′ = G′, by Theorem
14.1 of [6]. Since ζG = 〈x3〉 and π has an automorphism f such that
f(g) = g for g ∈ G and f(t) = tx3, we may work modulo ζG. Let π =

π/ζG. Then π′ = G ∼= πorb1 (S2(3, 3, 3)), and T =
√
G/ζG =

√
π/ζπ′.

Since θ differs from the meridianal automorphism of π(e, 1)′ only by
an automorphism which induces the identity on the subquotient T , the
calculation is then as in [7], for such groups. However we shall give
more details here.

Suppose that tg and tgh are two normal generators, with g, h ∈
π′′. If there is an automorphism α of π such that α(tg) = tgh then
θcghγ = γθcg, where cg is conjugation by g (etc.) and γ = α|G. Hence
the images of γ and θ in Out(G) commute, and so γ = cjδ for some
automorphism δ ∈ 〈r, k〉 and some j ∈ G. Since δθ = θδ in Aut(G),
we have cghj = θ−1cjθδcgδ

−1, i.e., ghj = θ−1(j)δ(g). Now θ induces

inversion on G/
√
π = Z/3Z. Hence j must be in

√
π, and so h =

(Θ−1 − I)([j]) + (∆ − I)(g) where Θ and ∆ are the automorphisms
of T induced by θ and δ. Since ∆ is a power of Θ, it follows that
h ∈ Im(Θ − I). Conversely, if h = (Θ − I)(w) for some w ∈ T then
w−1tgw = tgh. Hence the weight orbits correspond to Coker(Θ− I) ∼=
Z. �

These groups have 2-generator presentations, but we do not know
whether they have deficiency 0.

One could also construct these examples by considering torsion-free
extensions of β = πorb1 (D(3, 3)) by A = Z2 which are torsion free and
have abelianization Z. Using the fact that the elements of finite order
in β must act on A as in Theorem 8 leads to presentations equivalent
to those of Theorem 9.

If G is embedded in the affine group Aff(Nil), as in §12 of [7], then
the automorphism rk is induced by conjugation by the affine transfor-
mation Ψw given by Ψw([x, y, z]) = [−y + 1

3
,−x − 1

3
, w − z − x

3
], for

all [x, y, z] ∈ Nil. (The parameter w corresponds to an element of the
centre ζNil.) Since Ψw normalizes the image of G in Aff(Nil), it
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induces a self-homeomorphism ψw of

N = Nil/G = M(0; (3, 1), (3, 1), (3, 1− 3e)).

Corollary 10. If K is a 2-knot with πK ∼= π then M(K) is a Nil3×E1-
manifold. No such 2-knot is invertible or amphicheiral, nor is it a twist
spin.

Proof. The group π is the fundamental group of the mapping torus
N oψw S

1, which is a closed orientable Nil3 × E1-manifold. Since π
is polycyclic and of Hirsch length 4 and χ(M(K)) = χ(N o S1) = 0,
these manifolds are homeomorphic, by Theorem 8.1 of [6].

Parts (2) and (3) of the theorem imply that no such 2-knot is invert-
ible or amphicheiral, while no such knot is a twist spin, since (t3x)2 is
not a power of any weight element tg (with g ∈ π′′). �

The knot K is reflexive if M(K) has a self-homeomorphism which
lifts to a self-homeomorphism of the mapping torus M(Ψw) which
twists the framing. Are any of these knots reflexive? (I suspect not.
One potential complication in checking this is that the fixed point set
of ψw is empty, for all w ∈ R.)

5. spherical and bad bases

If the base orbifold B is good and its orbifold fundamental group β
is finite then B = S2(a, a), P 2(a), D(a), D(a, a), S(2, 3, 3), S(2, 3, 4)
or S(2, 3, 5). In each of the first three cases, β is cyclic, while in the
fourth case β ∼= D2a, the dihedral group of order 2a. In the remaining
cases β is tetrahedral, octahedral or icosahedral, respectively. It follows
from the long exact sequence of homotopy that the image A of the
fundamental group of the general fibre in π has rank 1. Hence the knot
group π has two ends; equivalently, π′ is finite.

If B is a bad 2-orbifold then B = S2(a), S2(a, b) or D(a, b), and β is
cyclic or dihedral. In these cases, π′ is finite cyclic of odd order.

Every 2-knot group with finite commutator subgroup is the group of
a 2-knot K such that M(K) is an S3 × E1-manifold, and thus Seifert
fibred. Most, but not all, are the groups of 2-twist spins. (See Chapters
11 and 15 of [6].)

6. 3-knot manifolds

In this section we shall show that no 3-knot manifold is Seifert fibred
over an aspherical 2-orbifold. We shall develop the argument in a
number of lemmas, in which we show that the fundamental group of
an aspherical, orientable Seifert fibred 5-manifold cannot satisfy all the
Kervaire criteria for a knot group.



SEIFERT FIBRED KNOT MANIFOLDS 13

Throughout this section we shall assume that K is a 3-knot such
that M = M(K) is Seifert fibred over an aspherical 2-orbifold B, with
general fibre a 3-dimensional infrasolvmanifold F , and we shall write
π = π1(M), β = πorb1 (B) and D = π1(F ). Thus π is an extension of β
by D. Let E = D ∩ π′.

Lemma 11. If a 3-knot manifold is Seifert fibred over an aspherical
2-orbifold then the base orbifold is non-orientable.

Proof. Suppose that M = M(K) is Seifert fibred over B, with general
fibre F , and that B is orientable. Since H0(β;D/D′) ∼= Z2, by Lemma
2, D/D′ has rank at least 2. Therefore D is abelian or nilpotent. Since
D has nontrivial image in π/π′, by Lemma 2 again, E = D ∩ π′ ∼= Z2,
and so D ∼= E oφ Z, for some φ ∈ Aut(E) ∼= GL(2,Z). Since D is
orientable, det(φ) = +1.

If D ∼= Z3 then we may assume that D = 〈e1, e2, e3〉 such that the
images of e1 and e2 represent a basis of H0(β;D). But then g(e1) =
e1 + λ(g)e3, g(e2) = e2 + µ(g)e3 and g(e3) = ν(g)e3 for some functions
λ, µ, ν : β → Z. These are easily seen to be homomorphisms into Z,
Z or Z×, respectively. Since β/β′ is finite, λ = µ = 0, and since π is
orientable, ν(g) = 1 for all g ∈ β. But then H0(β;D) ∼= Z3, contrary
to Lemma 2.

If D is nilpotent but not abelian then ζD ∼= Z and D/ζD ∼= Z2.
Since H0(β;D/D′) ∼= Z2, conjugation in π induces the identity on
D/ζD, Hence it also induces the identity on ζD. (See the analysis of
automorphisms of Nil3-groups in Chapter 8 of [6].) The quotient ρ =
π/ζD is virtually a PD4-group, and D/ζD ≤ ζρ. The epimorphism
from π to ρ induces an isomorphism π/π′ ∼= ρ/ρ′, and so does not split.
The nontrivial torsion elements of ρ must have nontrivial image in β,
and therefore in β/β′. Since ρ/ρ′ ∼= Z it follows that ρ is torsion free.
But then ρ is a PD4-group, and it is orientable since ζD is central in
π. Since ρ has nontrivial centre, χ(ρ) = 0. Hence H2(ρ;Z) = 0, since
H1(ρ;Z) ∼= Z. But this contradicts π being a nonsplit central extension
of ρ by Z. �

Let α : π → Aut(E) ∼= GL(2,Z) be the action determined by conju-
gation in π. Then α(π) normalizes the subgroup 〈φ〉.

Lemma 12. Let A ∈ G = GL(2,Z), and suppose that A 6= ±I. Then
〈A〉 has finite index in its normalizer NG(〈A〉).

Proof. It shall suffice to show that 〈A〉 has finite index in its centralizer
C = CG(A), since Aut(〈A〉) is finite. Let δA(t) = det(A − tI) be the
characteristic polynomial of A. Suppose first that δA is irreducible, and
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let M(A) be the Z[t]/(δA)-module with underlying group Z2 and t act-
ing via A. Then M(A) is torsion free and rank 1, and C = Aut(M(A)).
This is a subgroup of the group of units in the integers of the quadratic
number field Q[t]/(δA). Thus it is finite if δA(t) = t2 + 1 or t2 ± t+ 1,
and is Z⊕ Z/2Z if |tr(A)| > 1.

Otherwise, either δA(t) = t2 − 1, det(A) = −1 and A2 = 1, so
A is conjugate to reflection across an axis or across a diagonal, or
δA(t) = (t − ε)2, where ε = ±1, and A is conjugate to εI + N , where
N2 = 0. In these cases the result is easily checked. �

If α(π) is infinite it has two ends, by Lemma 12. Hence it is an exten-
sion of Z by a finite normal subgroup, since it has cyclic abelianization,
and so cannot map onto the infinite dihedral group Z/2Z ∗ Z/2Z.

We shall show next that there are no Seifert fibrations with aspherical
base and general fibre a flat 3-manifold.

Lemma 13. If a 3-knot manifold M(K) is Seifert fibred over an as-
pherical, non-orientable base orbifold then the general fibre is a Sol3-
manifold.

Proof. Suppose that M(K) is Seifert fibred over an aspherical, non-
orientable base orbifold B, with general fibre F . Orientation-reversing
elements of β = πorb1 (B) must reverse the orientation of F . Therefore
F must be flat or a Sol3-manifold, since every self-homeomorphism of
a closed Nil3-manifold is orientation preserving.

Let tE be the image of a fixed meridian in α(π). Then det(tE) = −1,
and the image of tE generates the abelianization of α(π). Since D is
normal in π and D ∩ π′ = E, we see that φtE = tEφ.

Suppose that F is flat. Then φ has finite order, and so α(π) has
finite abelianization. Therefore it is finite, by the observation preceding
the theorem. Since it has cyclic abelianization and an element with
determinant −1, it must be Z/2Z or S3. Since φ commutes with tE
in α(π) and det(φ) = 1 we must have φ = 1, and so D ∼= Z3. In this
case α factors through β, and D ∼= Z⊕E, where the first summand is
central (as in the second paragraph of the proof of Theorem 10).

If α(π) = Z/2Z then we may assume that it is generated by ( 0 1
1 0 ) or

( 1 0
0 −1 ), and so H0(β;E) ∼= Z or Z ⊕ Z/2Z, If α(π) ∼= S3 then we may

assume that it is generated by ( 0 1
1 0 ) and

(
0 −1
1 −1

)
, and so H0(β;E) ∼=

Z/3Z. In neither case is H0(β;D) = Z ⊕ H0(β;E) as predicted by
Lemma 2. Thus F cannot be flat, and so must be a Sol3-manifold. �

We need one more simple lemma before we can eliminate the remain-
ing possibilities.
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Lemma 14. Let C = A ⊗ B ∈ GL(mn,Z), where A ∈ GL(m,Z)
and B ∈ GL(n,Z) are each conjugate over C to diagonal matrices.
Then det(C − tImn) = Π(αiβj − t), where the product is taken over the
eigenvalues αi of A and βj of B (with multiplicities).

Proof. Since det(C − tI) is a monic integral polynomial, it suffices to
extend coefficients to C, where the result is clear. �

Theorem 15. No 3-knot manifold is Seifert fibred over an aspherical
base 2-orbifold.

Proof. Suppose that M = M(K) is a closed orientable 5-manifold
which is Seifert fibred over an aspherical 2-orbifold B, with general
fibre F . We may assume that B is non-orientable and that F is a Sol3-
manifold, by Lemmas 11 and 13. Then φ has infinite order and δφ is
irreducible, with real roots, since F is neither flat nor a Nil3-manifold.
The only torsion in the group of units of Q[t]/(δφ) is ±1. It follows eas-
ily that α(π) ∼= Z. Hence α(π) is generated by tE, and π′ acts trivially
on E.

Since β′ has finite index in β, it is finitely presentable and of type
FP∞. Since π′ is a central extension of β′ by E, and c.d.π′ ≤ 5, it is
finitely presentable and of type FP , and so is an orientable PD4-group.
The exact sequence of low degree for π′ as an extension of β′ by E gives

H2(β
′)→ E → H1(π

′)→ H1(β
′)→ 0.

Now H2(β
′) has rank at most 1 (see Lemma 2) and H1(π

′) cannot have
a finitely generated rank 1 subgroup which is normal in π/π′′, since π
is a knot group. Therefore the homomorphism from E to H1(π

′) in the
above sequence must be injective. Since π′ is torsion-free, it follows that
β′ must be torsion free also. Hence β′ is a PD2-group. It is orientable,
since π′ is a central extension of β′, and so H1(β

′) ∼= Z2g, for some
g > 0. Moreover, B has no corner points, and so nontrivial torsion in
β has nontrivial image in β/β′. Hence the quotient π/E is torsion free.
Since it is virtually a product β′ × Z, it is a PD3-group. Since π/E
acts on E through tE, it is non-orientable, and so H2(π/E) ∼= Z/2Z.
The exact sequence of low degree for π as an extension of π/E by E
gives an isomorphism

H2(π/E) = Z/2Z ∼= H0(π/E;E) = E/(tE − I)E.

Therefore | det(tE − I)| = 2, and so |tr(tE)| = 2, since det(tE) = −1.
The Lyndon-Hochschild-Serre spectral sequence for π as an extension

of π/E by E also gives an exact sequence

H2(π/E;E)→ H0(π/E;H2(E))→ H2(π;Z)→ H1(π/E;E)→ 0.
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The LHS spectral sequence for π/E as an extension of π/π′ ∼= Z by
the PD2 group β′ = π′/E gives an isomorphism

H1(π/E;E) ∼= H0(π/π
′;H1(π

′/E;E)) = H0(π/π
′;H1(β

′)⊗ E)),

since H1(π/π
′;E) = 0. Since π/E is virtually a product, π/π′ acts on

H1(β
′) through a matrix A ∈ GL(2g,Z) of finite order. We now apply

Lemma 14 with A this matrix and B = tE. The tensor product C then
represents the diagonal action of a generator of π/π′ on H1(β

′) ⊗ E.
Let ∆ = det(tE − tI2). Then ∆(t) = t2 ± 2t− 1, since |tr(tE)| = 2. If
ζ = exp(2kπi

n
) then ∆(ζ)∆(ζ−1) = 4(1 + s2), where s = sin2kπ

n
. Since

the eigenvalues of A are roots of unity, it follows that | det(C − I)| ≥
4g > 1, and so H1(π/E;E) 6= 0. But then H2(π) 6= 0, contrary to the
assumption that π is a knot group. This contradiction completes the
argument. �

Are there n-knots with aspherical, Seifert fibred knot manifold for
any larger n? They seem to be hard to find, perhaps because one must
check that Hi(π) = 0 for all 2 ≤ i ≤ [n

2
] + 1. (This is feasible when

n = 3, for if M is an aspherical, orientable 5-manifold such that π =
π1(M) is a knot group then the cocore of surgery on a representative of
a normal generator of π is a 3-knot in S5. Reversing the surgery shows
that M is a knot manifold.)
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