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Abstract. The stochastic Landau–Lifshitz–Gilbert (LLG) equation describes the
behaviour of the magnetization under the influence of the effective field consisting
of random fluctuations. We first reformulate the equation into an equation the
unknown of which is differentiable with respect to the time variable. We then
propose a convergent θ-linear scheme for the numerical solution of the reformulated
equation. As a consequence, we show the existence of weak martingale solutions
to the stochastic LLG equation. A salient feature of this scheme is that it does
not involve a nonlinear system, and that no condition on time and space steps is
required when θ ∈ ( 1

2
, 1]. Numerical results are presented to show the applicability

of the method.

1. Introduction

The study of the theory of ferromagnetism involves the study of the Landau–
Lifshitz–Gilbert (LLG) equation [12, 14]. Let D be a bounded domain in R

d, d = 2, 3,
with a smooth boundary ∂D, and let M : [0, T ] ×D → R

3 denote magnetization of
a ferromagnetic material occupying the domain D, the LLG equation takes the form

(1.1) M t = λ1M ×Heff − λ2M × (M ×Heff) in DT ,

where λ1 6= 0, λ2 > 0, are constants, and DT = (0, T )×D. Here Heff is the effective
field; see e.g. [10]. In the simplest situation when the energy functional consists of
the exchange energy only, the effective field Heff is in fact ∆M , and therefore M
satisfies

M t = λ1M ×∆M − λ2M × (M ×∆M ) in DT ,(1.2a)

∂M

∂n
= 0 on (0, T )× ∂D,(1.2b)

M(0, ·) =M 0 in D.(1.2c)

Noting from (1.2a) that |M (t,x)| = const, we assume that at time t = 0 the material
is saturated, i.e.,

(1.3) |M 0(x)| = 1, x ∈ D,
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and that

(1.4) |M (t,x)| = 1, t ∈ (0, T ), x ∈ D.

We recall that the stationary solutions of (1.2a) are in general not unique; see [3]. In
the theory of ferrormagnetism, it is important to describe phase transitions between
different equilibrium states induced by thermal fluctuations of the effective fieldHeff.
It is therefore necessary to modify Heff to incorporate these random fluctuations. In
this paper, we follow [6, 8] to add a noise toHeff = ∆M so that the stochastic version
of the LLG equation takes the form (see [8])

(1.5) dM =
(
λ1M ×∆M − λ2M × (M ×∆M)

)
dt+ (M × g) ◦ dW (t),

where g : D → R
3 is a given bounded function. Here ◦ dW (t) stands for the

Stratonovich differential. In view of the property (1.4) for the deterministic case,
we assume that M also satisfies (1.4).
We note that the driving noise can be multi-dimensional; for simplicity of presen-

tation, we assume that it is one-dimensional. This allows us to assume without loss
of generality that (see [8])

(1.6) |g(x)| = 1, x ∈ D.

In [8], by using the Faedo–Galerkin approximations and the method of compactness,
the authors show that equation (1.5) with conditions (1.2b) and (1.2c) has a weak
martingale solution. A convergent finite element scheme for this problem is studied
in [6]. It is noted that this is a non-linear scheme which requires a condition of the
type k = O(h2), where h is the space mesh-size and k is the time mesh-size, in order
that Newton’s iteration converges.
In this paper, we employ the finite element scheme developed in [2] (and later im-

proved in [1]) for the deterministic LLG equation. We note that this scheme is also
successfully applied to the Maxwell–LLG equations in [15]. We emphasize that con-
trary to the scheme designed in [6], the finite element scheme we use here is θ-linear,
and hence there is no need to use Newton’s method (see Algorithm 5.1). Moreover,
when θ > 1/2 no condition on h and k is required for convergence of the method.
Since this scheme seeks to approximate the time derivative of the magnetization M ,
which is not well-defined in the stochastic case, we first reformulate equation (1.5)
into an equation not involving dW (t). The unknown of the resulting equation turns
out to be differentiable with respect to the time variable t. Thus the θ-linear scheme
mentioned above can be applied. As a consequence, we show the existence of weak
martingale solution to the stochastic LLG equation.
The paper is organized as follows. In Section 2 we define weak martingale solutions

to (1.5) and state our main result. Section 3 prepares sufficient tools which allow
us to reformulate equation (1.5) to an equation with unknown differentiable with
respect to t. Details of this reformulation are presented in Section 4. We also show
in this section how a weak solution to (1.5) can be obtained from a weak solution of
the reformulated form. Section 5 introduces our finite element scheme and presents
a proof for the convergence of finite element solutions to a weak solution of the
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reformulated equation. Section 6 is devoted to the proof of the main theorem. Our
numerical experiments are presented in Section 7.
Throughout this paper, c denotes a generic constant which may take different values

at different occurences.

2. Definition of a weak solution and the main result

In this section we state the definition of a weak solution to (1.5) and our main
result. Before doing so, we introduce some function spaces and some notations.
The function spaces H1(D,R3) is defined as follows:

H
1(D,R3) =

{
u ∈ L

2(D,R3) :
∂u

∂xi

∈ L
2(D,R3) for i = 1, 2, 3.

}
.

Here, for a domain Ω ⊂ R
3, L2(Ω,R3) is the usual space of Lebesgue squared inte-

grable functions defined on Ω and taking values in R
3. Throughout this paper, we

denote

〈·, ·〉Ω := 〈·, ·〉
L2(Ω,R3) and ‖ · ‖Ω := ‖ · ‖L2(Ω,R3).

Remark 2.1. For u,u,w ∈ H
1(D) we denote

u×∇v :=

(
u×

∂v

∂x1

,u×
∂v

∂x2

,u×
∂v

∂x3

)

∇u×∇v :=
3∑

i=1

∂u

∂xi

×
∂v

∂xi

〈u×∇v,∇w〉D :=
3∑

i=1

〈
u×

∂v

∂xi

,
∂w

∂xi

〉

D

.

Definition 2.2. Given T ∈ (0,∞), a weak martingale solution (Ω,F , (Ft)t∈[0,T ],P,W,M )
to (1.5), for the time interval [0, T ], consists of

(a) a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) with the filtration satisfying the

usual conditions,

(b) a one-dimensional (Ft)-adapted Wiener process W = (Wt)t∈[0,T ],

(c) a progressively measurable process M : [0, T ]× Ω → L
2(D)

such that there hold

(1) M(·, ω) ∈ C([0, T ];H−1(D)) for P-a.s. ω ∈ Ω;
(2) E

(
ess supt∈[0,T ] ‖∇M (t)‖2D

)
< ∞;

(3) |M(t, x)| = 1 for each t ∈ [0, T ], a.e. x ∈ D, and P-a.s.;
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(4) for every t ∈ [0, T ], for all ψ ∈ C
∞
0 (D), P-a.s.:

〈M (t),ψ〉D − 〈M 0,ψ〉D = −λ1

∫ t

0

〈M ×∇M ,∇ψ〉D ds

− λ2

∫ t

0

〈M ×∇M ,∇(M ×ψ)〉D ds

+

∫ t

0

〈M × g,ψ〉D ◦ dW (s).(2.1)

Theorem 2.3. Assume that M 0 ∈ H
2(D) and g ∈ W

2,∞(D) satisfy (1.3) and (1.6).
For each T > 0, there exists a weak martingale solution to (1.5).

3. Technical results

In this section we introduce and prove a few properties of a transformation which
will be used in the next section to define a new variable form M .

Lemma 3.1. Assume that g ∈ L
∞(D). Let G : L2(D) −→ L

2(D) be defined by

(3.1) Gu = u× g ∀u ∈ L
2(D).

Then the operator G is well defined and for any u,v ∈ L
2(D) there hold

G∗ = −G(3.2)

u×Gv = (u · g)v − (u · v)g,(3.3)

u×G2v = (v · g)Gv −Gu×Gv,(3.4)

Gu×Gv =
(
g · (u× v)

)
g = G2u×G2v,(3.5)

Gu×G2v =
(
(g · u)(g · v)− (u · v)

)
g = −G2u×Gv,(3.6)

(Gu) · v = −u · (Gv),(3.7)

G2n+1u = (−1)nGu, n ≥ 0,(3.8)

G2n+2u = (−1)nG2u, n ≥ 0.(3.9)

Proof. The proof can be done by using assumption (1.6) and the following elementary
identities: for all a, b, c ∈ R

3 there hold

(3.10) a× (b× c) = (a · c)b− (a · b)c

and

(3.11) (a× b) · c = (b× c) · a = (c× a) · b.

The last two properties (3.8) and (3.9) also require the use of induction. �

For any s ∈ R the operator esG : L2(D) → L
2(D) has the following properties

which can be proved by using Lemma 3.1.
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Lemma 3.2. For any s ∈ R and u,v ∈ L
2(D) there hold

esGu = u+ (sin s)Gu+ (1− cos s)G2u(3.12)

e−sGesG(u) = u(3.13)
(
esG

)∗
= e−sG(3.14)

esGGu = GesGu(3.15)

esGG2u = G2esGu(3.16)

esG(u× v) = esGu× esGv.(3.17)

Proof. By using Lemma 3.1 and Taylor’s expansion we obtain

esGu =
∞∑

n=0

sn

n!
Gnu

= u+
∞∑

k=0

s2k+1

(2k + 1)!
G2k+1u+

∞∑

k=0

s2k+2

(2k + 2)!
G2k+2u

= u+
∞∑

k=0

s2k+1

(2k + 1)!
(−1)kGu+

∞∑

k=0

s2k+2

(2k + 2)!
(−1)kG2u

= u+ (sin s)Gu+ (1− cos s)G2u,

proving (3.12). Equations (3.13) and (3.14) can be obtained by using (3.12) and (3.9).
Equations (3.15) and (3.16) can be obtained by using (3.12) and the definition (3.1).
Finally, in order to prove (3.17) we use (3.12) and (3.4) to have

esGu× esGv = u× v + sin s
(
u×Gv +Gu× v

)
+ (1− cos s)

(
u×G2v +G2u× v

)

+ sin s(1− cos s)
(
Gu×G2v +G2u×Gv

)

+ sin2 s Gu×Gv + (1− cos s)2G2u×G2v

=: u× v + T1 + · · ·+ T5.

Identities (3.3) and (3.10) give T1 = (sin s)G(u × v). Identity (3.6) gives T3 = 0.
Using successivly (3.6), (3.4) and (3.10) we obtain

T2 + T4 + T5 = (1− cos s)G2(u× v).

Therefore,

esGu× esGv = u× v + (sin s)G(u× v) + (1− cos s)G2(u× v).

Using (3.12) we complete the proof of the lemma. �

In the proof of existence of weak solutions we also need the following results (in
the “weak sense”) of the operators G and esG.

Lemma 3.3. Assume that g ∈ H
2(D). For any u ∈ H

1(D) and v ∈ W
1,∞
0 (D) there

hold

(3.18) 〈∇Gu,∇v〉D + 〈∇u,∇Gv〉D = −〈Cu,v〉D
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and

(3.19)
〈
∇u,∇G2v

〉
D
−
〈
∇G2u,∇v

〉
D
= 〈GCu,v〉D + 〈CGu,v〉D ,

where

Cu = u×∆g + 2
d∑

i=1

∂u

∂xi

×
∂g

∂xi

.

Proof. Recalling the definition of G (see (3.1)) and (3.11) we obtain

〈∇Gu,∇v〉D + 〈∇u,∇Gv〉D = 〈∇u× g,∇v〉D + 〈u×∇g,∇v〉D
+ 〈∇u,∇v × g〉D + 〈∇u,v ×∇g〉D

= 〈u×∇g,∇v〉D − 〈∇u×∇g,v〉D .

By using Green’s identity (noting that v has zero trace on the boundary of D) and
the definition of C we deduce

〈∇Gu,∇v〉D + 〈∇u,∇Gv〉D = −〈∇(u×∇g),v〉D − 〈∇u×∇g,v〉D
= −〈u×∆g),v〉D − 2 〈∇u×∇g,v〉D
= −〈Cu,v〉D ,

proving (3.18).
The proof of (3.19) is similarly. Firstly we have from the definition of G

〈
∇u,∇G2v

〉
D
−
〈
∇G2u,∇v

〉
D

= 〈∇u,∇((v × g)× g)〉D − 〈∇((u× g)× g),∇v〉D
= 〈∇u, (∇v × g)× g〉D + 〈∇u, (v ×∇g)× g〉D
+ 〈∇u, (v × g)×∇g〉D − 〈(∇u× g)× g,∇v〉D
− 〈(u×∇g)× g,∇v〉D − 〈(u× g)×∇g,∇v〉D .

Using again (3.11) and Green’s identity we deduce

〈
∇u,∇G2v

〉
D
−
〈
∇G2u,∇v

〉
D

= 〈(∇u× g)× g,∇v〉D + 〈(∇u× g)×∇g,v〉D
+ 〈(∇u×∇g)× g,v〉D − 〈(∇u× g)× g,∇v〉D
+ 〈∇((u×∇g)× g),v〉D + 〈∇((u× g)×∇g),v〉D .
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Simple calculation reveals
〈
∇u,∇G2v

〉
D
−
〈
∇G2u,∇v

〉
D

= 2 〈(∇u× g)×∇g,v〉D + 2 〈(∇u×∇g)× g,v〉D
+ 〈(u×∆g)× g,v〉D + 2 〈(u×∇g)×∇g,v〉D
+ 〈(u× g)×∆g,v〉D

= 〈(u×∆g)× g,v〉D + 2 〈(∇u×∇g)× g,v〉D
+ 〈(u× g)×∆g,v〉D + 2 〈∇(u× g)×∇g,v〉D

= 〈GCu,v〉D + 〈CGu,v〉D ,

proving the lemma. �

Lemma 3.4. Assume that g ∈ H
2(D). For any s ∈ R, u ∈ H

1(D) and v ∈ W
1,∞
0 (D)

there holds
〈
C̃(s, e−sGu),v

〉
D
=

〈
∇e−sGu,∇v

〉
D
−
〈
∇u,∇esGv

〉
D
,

where

C̃(s,v) = e−sG
(
(sin s)C + (1− cos s)(GC + CG)

)
v.

Here C is defined in Lemma 3.3.

Proof. Letting ũ = e−sGu and using the definition of C̃ we have
〈
C̃(s, e−sGu),v

〉
D
=

〈
C̃(s, ũ),v

〉
D

=
〈
e−sG

(
(sin s)C + (1− cos s)(GC + CG)

)
ũ,v

〉
D
.

Using successively (3.14) and Lemma 3.3 we deduce
〈
C̃(s, e−sGu),v

〉
D
= sin s

〈
Cũ, esGv

〉
D
+ (1− cos s)

〈
(GC + CG)ũ, esGv

〉
D

= − sin s
[〈
∇Gũ,∇esGv

〉
D
+
〈
∇ũ,∇GesGv

〉
D

]

+ (1− cos s)
[〈
∇ũ,∇G2esGv

〉
D
−

〈
∇G2ũ,∇esGv

〉
D

]
.

Simple calculation yields
〈
C̃(s, e−sGu),v

〉
D
=

〈
∇ũ,∇((I − sin sG+ (1− cos s)G2))esGv

〉
D

−
〈
∇(I + (sin s)G+ (1− cos s)G2)ũ,∇esGv

〉
D
.

Using (3.12) and (3.13) we obtain
〈
C̃(s, e−sGu),v

〉
D
= 〈∇ũ,∇v〉D −

〈
∇esGũ,∇esGv

〉
D
.

The desired result now follows from the definition of ũ. �
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4. Equivalence of weak solutions

In this section we use the operator G defined in the preceding section to define a
new variable m from M . Let

(4.1) m(t,x) = e−W (t)GM(t,x) ∀t ≥ 0, a.e.x ∈ D.

It turns out that with this new variable, the differential dW (t) vanishes in the partial
differential equation satisfied bym. Moreover, it will be seen thatm is differentiable
with respect to t. We now introduce the equation satisfied by m in the next lemma.

Lemma 4.1. Assume that g ∈ W
2,∞(D). If m ∈ H

1(DT ) satisfies

〈mt,ψ〉DT
+ λ1 〈m×∇m,∇ψ〉DT

+ λ2 〈m×∇m,∇(m×ψ)〉DT

− 〈F (t,m),ψ〉DT
= 0 ∀ψ ∈ W

1,∞(DT ),(4.2)

where

(4.3) F (t,m) = λ1m× C̃(W (t),m(t, ·))− λ2m× (m× C̃(W (t),m(t, ·))).

then M = eW (t)Gm satisfies (2.1).

Proof. Since M = eW (t)Gm, using Itô’s formula we deduce

dM (t) = GeW (t)Gm dW (t) + eW (t)G dm(t)

+
1

2
G2eW (t)Gm(t) dt+GeW (t)G dm(t) dW (t).

We recall the relation between the Stratonovich and Itô differentials

(4.4) (Gu) ◦ dW (t) =
1

2
G′(u)[Gu] dt+G(u) dW (t)

where
G′(u)[Gu] = G2u

to write the above equation in the form of Stratonovich differential as

dM (t) = GM ◦ dW (t) + eW (t)G dm(t) +GeW (t)G dm(t) dW (t).

Multiplying both sides by a test function ψ ∈ C
∞
0 (D) and integrating over D we

obtain

〈dM ,ψ〉D = 〈GM ,ψ〉D ◦ dW (t) +
〈
eW (t)Gdm,ψ

〉
D

+
〈
GeW (t)Gdm,ψ

〉
D
dW (t)

= 〈GM ,ψ〉D ◦ dW (t) +
〈
dm, e−W (t)Gψ

〉
D

−
〈
dm, e−W (t)GGψ

〉
D
dW (t),(4.5)

where in the last step we used (3.14) and (3.7). On the other hand, it follows from (4.2)
that, for all ξ ∈ W

1,∞(DT ),

〈dm, ξ〉D = −λ1 〈m×∇m,∇ξ〉D dt− λ2 〈m×∇m,∇(m× ξ)〉D dt

+ 〈F (t,m), ξ〉D dt.(4.6)
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It is easy to check that m also satisfies (4.6) for ξ = e−W (t)GGψ or ξ = e−W (t)Gψ by
using (3.12). Since dt dW (t) = 0, we deduce that

〈dm, ξ〉D dW (t) = 0.

Using the above result for ξ = e−W (t)GGψ and the result (4.6) for ξ = e−W (t)Gψ, we
infer from (4.5) that

〈dM ,ψ〉D = 〈GM ,ψ〉D ◦ dW (t)− λ1

〈
m×∇m,∇

(
e−W (t)Gψ

)〉
D
dt

− λ2

〈
m×∇m,∇(m× e−W (t)Gψ)

〉
D
dt

+
〈
F (t,m), e−W (t)Gψ

〉
D
dt.

It follows from the definition (4.3) that

(4.7) 〈dM ,ψ〉D =: 〈GM ,ψ〉D ◦ dW (t) + λ1(T1 + T2) dt+ λ2(T3 + T4) dt,

where

T1 = −
〈
m×∇m,∇

(
e−W (t)Gψ

)〉
D

T2 =
〈
m× C̃(W (t),m), e−W (t)Gψ

〉
D

T3 = −
〈
m×∇m,∇(m× e−W (t)Gψ)

〉
D

T4 = −
〈
m× (m× C̃(W (t),m)), e−W (t)Gψ

〉
D
,

with C̃ defined in Lemma 3.4. By using (3.11), the definition m = e−W (t)GM ,
and (3.17) we obtain

T2 =
〈
C̃(W (t),m), e−W (t)Gψ ×m

〉
D

=
〈
C̃(W (t), e−W (t)GM ), e−W (t)G

(
ψ ×M

)〉
D
.

Lemma 3.4 then gives

T2 =
〈
∇e−W (t)GM ,∇e−W (t)G(ψ ×M )

〉
D
− 〈∇M ,∇(ψ ×M )〉D

= −T1 − 〈∇M ,∇(ψ ×M)〉D ,

implying

T1 + T2 = −〈∇M ,∇(ψ ×M )〉D = −〈M ×∇M ,∇ψ〉D ,

where we used (3.11). Similarly we have

T3 + T4 = −〈M ×∇M ,∇(M ×ψ)〉D .

Equation (4.7) then yields

〈dM ,ψ〉D = 〈GM ,ψ〉D ◦ dW (t)− λ1 〈M ×∇M ,∇ψ〉D dt

− λ2 〈M ×∇M ,∇(M ×ψ)〉D dt.

By integrating with respect to t it follows that M satisfies (2.1), finishing the proof.
�
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The following result can be easily proved.

Lemma 4.2. Under the assumption (1.6), M satisfies (1.4) if and only if m defined

in (4.1) satisfies
|m(t,x)| = 1 ∀t ≥ 0, a.e.x ∈ D,

Proof. The proof can be done by using (3.12) and the following elementary identity:
for any a, b ∈ R

3 there holds

|a× b|2 + (a · b)2 = |a|2 |b|2 .

�

In the next lemma we provide a relationship between equation (4.2) and its Gilbert
form.

Lemma 4.3. If m ∈ H
1(DT ) satisfies

(4.8) |m(t,x)| = 1, t ∈ (0, T ), x ∈ D,

and

λ1 〈mt,ϕ〉L2(DT ) + λ2 〈m×mt,ϕ〉L2(DT )

= µ 〈∇m,∇(m×ϕ)〉DT
+ λ1 〈F (t,m),ϕ〉DT

+ λ2 〈m× F (t,m),ϕ〉
L2(DT ) ∀ϕ ∈ H

1(DT ),(4.9)

where µ = λ2
1 + λ2

2. Then m satisfies (4.2).

Proof. For each ψ ∈ W
1,∞(DT ), using Lemma 8.1 in the Appendix, there exists

ϕ ∈ H
1(DT ) such that

(4.10) λ1ϕ+ λ2ϕ×m = ψ.

By using (3.11) we can write (4.9) as

〈mt, λ1ϕ+ λ2ϕ×m〉
L2(DT ) + λ1 〈m×∇m,∇(λ1ϕ)〉L2(DT )

+ λ2 〈∇m,∇(λ2ϕ×m)〉DT
− 〈F (t,m), λ1ϕ+ λ2ϕ×m〉DT

= 0.(4.11)

On the other hand, by using (3.10) and (4.8) we can show that

λ1 〈m×∇m,∇(λ2ϕ×m)〉
L2(DT ) + λ2 〈∇m,∇(λ1ϕ)〉L2(DT )

− λ2

〈
|∇m|2m, λ1ϕ

〉
L2(DT )

= 0.(4.12)

Moreover, there holds

(4.13) −λ2

〈
|∇m|2m, λ2ϕ×m

〉
L2(DT )

= 0.

Summing (4.11)–(4.13) gives

〈mt, λ1ϕ+ λ2ϕ×m〉
L2(DT ) + λ1 〈m×∇m,∇(λ1ϕ+ λ2ϕ×m)〉

L2(DT )

+ λ2 〈∇m,∇(λ1ϕ+ λ2ϕ×m)〉
L2(DT ) − λ2

〈
|∇m|2m, λ1ϕ+ λ2ϕ×m

〉
L2(DT )

− 〈F (t,m), λ1ϕ+ λ2ϕ×m〉
L2(DT ) = 0

The desired equation (4.2) follows by noting (4.10) and using (4.8). �
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Remark 4.4. By using (3.11) we can rewrite (4.9) as

λ1 〈m×mt,w〉DT
− λ2 〈mt,w〉DT

= µ 〈∇m,∇w〉
L2(DT ) + 〈R(t,m),w〉DT

,(4.14)

where

R(t,m) = λ2
2m× (m× C̃(W (t),m(t, ·)))− λ2

1C̃(W (t),m(t, ·)),

and w = m × φ for φ ∈ H
1(DT ). It is noted that w ·m = 0. This property will be

exploited later in the design of the finite element scheme.

In the remainder of this section we state the definition of a weak solution to (4.9)
and our main lemma as a consequence of Lemmas 4.3, 4.2 and 4.1.

Definition 4.5. Given T ∗ ∈ (0,∞), a weak martingale solution (Ω,F , (Ft)t∈[0,T ∗],P,W,m)
to (4.9), for the time interval [0, T ∗], consists of

(a) a filtered probability space (Ω,F , (Ft)t∈[0,T ∗],P) with the filtration satisfying the

usual conditions,

(b) a one-dimensional (Ft)-adapted Wiener process W = (Wt)t∈[0,T ∗],

(c) a progressively measurable process m : [0, T ∗]× Ω → L
2(D)

such that there hold

(1) m(·, ω) ∈ H
1(D∗

T )) for P-a.s. ω ∈ Ω;
(2) E

(
ess supt∈[0,T ∗] ‖∇m(t)‖2D

)
< ∞;

(3) |m(t, x)| = 1 for each t ∈ [0, T ∗], a.e. x ∈ D, and P-a.s.;

(4) m(0, ·) =M 0 in D
(5) for every T ∈ [0, T ∗], m satisfies (4.9)

Lemma 4.6. If m is a weak solution of (4.9) in the sense of Definition 4.5, then

M = eW (t)Gm is a weak martingale solution of (1.5) in the sense of Definition 2.2.

Thanks to the above lemma, we now solve equation (4.9) instead of the stochastic
LLG equation.

5. The finite element scheme

In this section we design a finite element scheme to find approximate solutions
to (4.9). More precisely, we prove in the next section that the finite element solutions
converge to a solution of (4.9). Then thanks to Lemma 4.6 we obtain a weak solution
of (2.1).
Let Th be a regular tetrahedrization of the domain D into tetrahedra of maximal

mesh-size h. We denote by Nh := {x1, . . . ,xN} the set of vertices and by Mh :=
{e1, . . . , eM} the set of edges.
Before introducing the finite element scheme, we state the following result proved

by Bartels [5] which will be used in the analysis.

Lemma 5.1. If there holds

(5.1)

∫

D

∇φi · ∇φj dx ≤ 0 for all i, j ∈ {1, 2, · · · , J} and i 6= j,
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then for all u ∈ Vh satisfying |u(xl)| ≥ 1, l = 1, 2, · · · , J , there holds

(5.2)

∫

D

∣∣∣∣∇IVh

(
u

|u|

)∣∣∣∣
2

dx ≤

∫

D

|∇u|2 dx.

When d = 2, condition (5.1) holds for Delaunay triangulation. When d = 3, it holds
if all dihedral angles of the tetrahedra in Th|D are less than or equal to π/2; see [5].
In the sequel we assume that (5.1) holds.
To discretize the equation (4.9), we introduce the finite element space Vh ⊂ H

1(D)
which is the space of all continuous piecewise linear functions on Th. A basis for
Vh can be chosen to be (φn)1≤n≤N , where φn(xm) = δn,m. Here δn,m stands for the
Kronecker symbol. The interpolation operator from C

0(D) onto Vh is denoted by
IVh

,

IVh
(v) =

N∑

n=1

v(xn)φn(x) ∀v ∈ C
0(D,R3).

Fixing a positive integer J , we choose the time step k to be k = T/J and define
tj = jk, j = 0, · · · , J . For j = 1, 2, . . . , J , the solution m(tj, ·) is approximated by

m
(j)
h ∈ Vh, which is computed as follows.
Since

mt(tj, ·) ≈
m(tj+1, ·)−m(tj, ·)

k
≈
m

(j+1)
h −m(j)

h

k
,

we can define m
(j+1)
h from m

(j)
h by

(5.3) m
(j+1)
h =m

(j)
h + kv

(j)
h ,

where v
(j)
h is an approximation of mt(tj, ·). Hence it suffices to propose a scheme to

compute v
(j)
h .

Motivated by the property mt ·m = 0, we find v
(j)
h in the space W

(j)
h defined by

(5.4) W
(j)
h :=

{
w ∈ Vh | w(xn) ·m

(j)
h (xn) = 0, n = 1, . . . , N

}
.

Given m
(j)
h ∈ Vh, we use (4.14) to define v

(j)
h instead of using (4.9) so that the same

test and trial functions can be used (see Remark 4.4). Hence we define bym
(j)
h ∈ Vh

−λ1

〈
m

(j)
h × v(j)h ,w

(j)
h

〉
D
+ λ2

〈
v
(j)
h ,w

(j)
h

〉
D
= −µ

〈
∇(m

(j)
h + kθv

(j)
h ),∇w(j)

h

〉
D

−
〈
Rh,k(tj,m

(j)
h ),w

(j)
h

〉
L2(D)

,(5.5)

where the approximation Rh,k(tj,m
(j)
h ) to R(tj,m(tj, ·)) needs to be defined.

Considering the piecewise constant approximation Wk(t) of W (t), namely,

(5.6) Wk(t) = W (tj), t ∈ [tj, tj+1),
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we define, for each u ∈ Vh,

Ghu = u× IVh
(g)

Ch(u) = u× IVh
(∆g) + 2∇u× IVh

(∇g).

We can then define Rh,k by

(5.7) Rh,k(t,u) = λ2
2u× (u× C̃h,k(t,u))− λ2

1C̃h,k(t,u),

where

Dh,k(t,u) = (sinWk(t)Ch + (1− cosWk(t))(GhCh + ChGh))u(5.8)

C̃h,k(t,u) =
(
I − sinWk(t)Gh + (1− cosWk(t))G

2
h

)
Dh,k(t,u).(5.9)

We summarize the algorithm as follows.

Algorithm 5.1.

Step 1: Set j = 0. Choose m
(0)
h = IVh

m0.

Step 2: Find v
(j)
h ∈ W

(j)
h satisfying (5.5).

Step 3: Define

m
(j+1)
h (x) :=

N∑

n=1

m
(j)
h (xn) + kv

(j)
h (xn)∣∣∣m(j)

h (xn) + kv
(j)
h (xn)

∣∣∣
φn(x).

Step 4: Set j = j + 1, and return to Step 2 if j < J . Stop if j = J .

Since
∣∣∣m(0)

h (xn)
∣∣∣ = 1 and v

(j)
h (xn) ·m

(j)
h (xn) = 0 for all n = 1, . . . , N and j =

0, . . . , J , there hold (by induction)

(5.10)
∣∣∣m(j)

h (xn) + kv
(j)
h (xn)

∣∣∣ ≥ 1 and
∣∣∣m(j)

h (xn)
∣∣∣ = 1, j = 0, . . . , J.

In particular, the above inequality shows that the algorithm is well defined.
We finish this section by proving the following three lemmas concerning some prop-

erties of m
(j)
h and Rh,k.

Lemma 5.2. For any j = 0, . . . , J there hold

‖m(j)
h ‖L∞(D) ≤ 1 and ‖m(j)

h ‖D ≤ |D|,

where |D| denotes the measure of D.

Proof. The first inequality follows from (5.10) and the second can be obtained by
integrating over D. �

Lemma 5.3. Assume that g ∈ W
2,∞(D). There exist a deterministic constant c

depending only on g such that

(5.11)
∥∥∥Rh,k(tj,m

(j)
h )

∥∥∥
2

D
≤ c+ c

∥∥∥∇m(j)
h

∥∥∥
2

D
, P− a.s..
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Proof. Recalling the definition (5.7) we have by using the triangular inequality and
Lemma 5.2
∥∥∥Rh,k(tj,m

(j)
h )

∥∥∥
2

D
≤ 2

∥∥∥λ2
2m

(j)
h × (m

(j)
h × C̃h,k(tj,m

(j)
h ))

∥∥∥
2

D
+ 2

∥∥∥λ2
1C̃h,k(tj,m

(j)
h )

∥∥∥
2

D

≤ 2(λ4
1 + λ4

2)
∥∥∥C̃h,k(tj,m

(j)
h )

∥∥∥
2

D
.(5.12)

We now estimate
∥∥∥C̃h,k(tj,m

(j)
h )

∥∥∥
2

D
. From (5.9) we have

C̃h,k(tj,m
(j)
h ) = Dh,k(tj,m

(j)
h )− sinWk(tj)Dh,k(tj,m

(j)
h )× gh

+ (1− cosWk(tj))(Dh,k(tj,m
(j)
h )× gh)× gh.

The Cauchy–Schwarz inequality and Lemma 8.2 then yield
∥∥∥C̃h,k(tj,m

(j)
h )

∥∥∥
2

D
≤

(
1 + sin2 Wk(tj) + (1− cosWk(tj))

2
)(∥∥∥Dh,k(tj,m

(j)
h )

∥∥∥
2

D

+
∥∥∥Dh,k(tj,m

(j)
h )× gh

∥∥∥
2

D
+
∥∥∥(Dh,k(tj,m

(j)
h )× gh)× gh

∥∥∥
2

D

)

≤ c
(
1 + ‖g‖2

L∞(D) + ‖g‖4
L∞(D)

)∥∥∥Dh,k(tj,m
(j)
h )

∥∥∥
2

D
.(5.13)

By using the same technique we can prove
∥∥∥Dh,k(tj,m

(j)
h )

∥∥∥
2

D
≤ c

(
‖∆g‖2

L∞(D) + ‖∆g‖2
L∞(D) ‖g‖

2
L∞(D)

)

+ c
(
‖∇g‖2

L∞(D) + ‖∇g‖2
L∞(D) ‖g‖

2
L∞(D)

)∥∥∥∇m(j)
h

∥∥∥
2

D
.(5.14)

From (5.12), (5.13), and (5.14), we deduce the desired result. �

Lemma 5.4. There exist a deterministic constant c depending on m0, g, µ1, µ2 and

T such that for j = 1, . . . , J there holds

∥∥∥∇m(j)
h

∥∥∥
2

D
+

j−1∑

i=0

k
∥∥∥v(i)h

∥∥∥
2

D
+ k2(2θ − 1)

j−1∑

i=0

∥∥∥∇v(i)h

∥∥∥
2

D
≤ c, P− a.s..

Proof. Taking w
(j)
h = v

(j)
h in equation (5.5) yields to the following identity

λ2

∥∥∥v(j)h

∥∥∥
2

D
= −µ

〈
∇m(j)

h ,∇v(j)h

〉
D
− µθk‖∇v(j)h ‖2

L2(D) −
〈
Rh,k(tj,m

(j)
h ),v

(j)
h

〉
D
,

or equivalently

〈
∇m(j)

h ,∇v(j)h

〉
D
= −λ2µ

−1
∥∥∥v(j)h

∥∥∥
2

D
− θk

∥∥∥∇v(j)h

∥∥∥
2

D
− µ−1

〈
Rh,k(tj,m

(j)
h ),v

(j)
h

〉
D
.

(5.15)

From Lemma 5.1 it follows that
∥∥∥∇m(j+1)

h

∥∥∥
2

D
≤

∥∥∥∇(m
(j)
h + kv

(j)
h )

∥∥∥
2

D
,
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and therefore, by using (5.15), we deduce

∥∥∥∇m(j+1)
h

∥∥∥
2

D
≤

∥∥∥∇m(j)
h

∥∥∥
2

D
+ k2

∥∥∥∇v(j)h

∥∥∥
2

D
+ 2k

〈
∇m(j)

h ,∇v(j)h

〉
D

≤
∥∥∥∇m(j)

h

∥∥∥
2

D
+ k2

∥∥∥∇v(j)h

∥∥∥
2

D
− 2λ2µ

−1k
∥∥∥v(j)h

∥∥∥
2

D

− 2θk2
∥∥∥∇v(j)h

∥∥∥
2

D
− 2kµ−1

〈
Rh,k(tj,m

(j)
h ),v

(j)
h

〉
D
.

≤
∥∥∥∇m(j)

h

∥∥∥
2

D
+ k2(1− 2θ)

∥∥∥∇v(j)h

∥∥∥
2

D
− 2λ2µ

−1k
∥∥∥v(j)h

∥∥∥
2

D

− 2kµ−1
〈
Rh,k(tj,m

(j)
h ),v

(j)
h

〉
D
.

By using the elementary inequality 2ab ≤ α−1a2 + αb2 (for any α > 0) to the last
term on the right hand side, we deduce

∥∥∥∇m(j+1)
h

∥∥∥
2

D
≤
∥∥∥∇m(j)

h

∥∥∥
2

D
+ k2(1− 2θ)

∥∥∥∇v(j)h

∥∥∥
2

D
− 2λ2µ

−1k
∥∥∥v(j)h

∥∥∥
2

D

+ µ−1k

(
λ−1
2

∥∥∥Rh,k(tj,m
(j)
h )

∥∥∥
2

D
+ λ2

∥∥∥v(j)h

∥∥∥
2

D

)
,

which implies

∥∥∥∇m(j+1)
h

∥∥∥
2

D
+ k2(2θ − 1)

∥∥∥∇v(j)h

∥∥∥
2

D
+ λ2µ

−1k
∥∥∥v(j)h

∥∥∥
2

L2(D)

≤
∥∥∥∇m(j)

h

∥∥∥
2

D
+ kµ−1λ−1

2

∥∥∥Rh,k(tj,m
(j)
h )

∥∥∥
2

D
.

Replacing j by i in the above inequality and summing for i from 0 to j − 1 yields

∥∥∥∇m(j)
h

∥∥∥
2

D
+

j−1∑

i=0

k
∥∥∥v(i)h

∥∥∥
2

D
+ k2(2θ − 1)

j−1∑

i=0

∥∥∥∇v(i)h

∥∥∥
2

D

≤ c
∥∥∥∇m(0)

h

∥∥∥
2

D
+ ck

j−1∑

i=0

∥∥Rh,k(ti,m
i
h)
∥∥2

D
.

Since m0 ∈ H
2(D) it can be shown that there exists a deterministic constant c

depending only on m0 such that

(5.16) ‖∇m(0)
h ‖D ≤ c.
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By using (5.11) we deduce

∥∥∥∇m(j)
h

∥∥∥
2

D
+

j−1∑

i=0

k
∥∥∥v(i)h

∥∥∥
2

D
+ k2(2θ − 1)

j−1∑

i=0

∥∥∥∇v(i)h

∥∥∥
2

D

≤ c+ ck

j−1∑

i=0

(
1 +

∥∥∇mi
h

∥∥2

D

)

≤ c+ ck

j−1∑

i=0

∥∥∇mi
h

∥∥2

D
.(5.17)

By using induction and (5.16) we can show that

‖∇mi
h‖

2
D ≤ c(1 + ck)i.

Summing over i from 0 to j − 1 and using 1 + x ≤ ex we obtain

k

j−1∑

i=0

∥∥∇mi
h

∥∥2

D
≤ ck

(1 + ck)j − 1

ck
≤ eckJ = c.

This together with (5.17) gives the desired result. �

6. Proof of the main theorem

The discrete solutionsm
(j)
h and v

(j)
h constructed via Algorithm 5.1 are interpolated

in time in the following definition.

Definition 6.1. For all x ∈ D and all t ∈ [0, T ], let j ∈ {0, ..., J ]} be such that

t ∈ [tj, tj+1). We then define

mh,k(t, x) :=
t− tj
k

m
(j+1)
h (x) +

tj+1 − t

k
m

(j)
h (x),

m−
h,k(t, x) :=m

(j)
h (x),

vh,k(t, x) := v
(j)
h (x).

The above sequences have the following obvious bounds.

Lemma 6.2. There exist a deterministic constant c depending on m0, g, µ1, µ2 and

T such that for all θ ∈ [0, 1] there holds P-a.s.

‖m∗
h,k‖

2
DT

+
∥∥∇m∗

h,k

∥∥2

DT
+ ‖vh,k‖

2
DT

+ k(2θ − 1) ‖∇vh,k‖
2
DT

≤ c,

where m∗
h,k =mh,k or m−

h,k. In particular, when θ ∈ [0, 1
2
), there holds P-a.s.

‖m∗
h,k‖

2
DT

+
∥∥∇m∗

h,k

∥∥2

DT
+
(
1 + (2θ − 1)kh−2

)
‖vh,k‖

2
DT

≤ c.

Proof. It is easy to see that

‖m−
h,k‖

2
DT

= k

J−1∑

i=0

‖m(i)
h ‖2D and ‖vh,k‖

2
DT

= k

J−1∑

i=0

‖v(i)h ‖2D.
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Both inequalities are direct consequences of Definition 6.1, Lemmas 5.2, and 5.4,
noting that the second inequality requires the use of the inverse estimate (see e.g. [13])

‖∇v(i)h ‖2D ≤ ch−2‖v(i)h ‖2D.

�

The next lemma provides a bound ofmh,k in theH1-norm and relationships between
m−

h,k, mh,k and vh,k.

Lemma 6.3. Assume that h and k go to 0 with a further condition k = o(h2) when
θ ∈ [0, 1

2
) and no condition otherwise. The sequences {mh,k}, {m

−
h,k}, and {vh,k}

defined in Definition 6.1 satisfy the following properties P-a.s.

‖mh,k‖H1(DT ) ≤ c,(6.1)

‖mh,k −m
−
h,k‖DT

≤ ck,(6.2)

‖vh,k − ∂tmh,k‖L1(DT ) ≤ ck,(6.3)

‖|mh,k| − 1‖DT
≤ chk.(6.4)

Proof. Due to Lemma 6.2 to prove (6.1) it suffices to show the boundedness of
‖∂tmh,k‖DT

. First we note that, for t ∈ [tj, tj+1),

‖∂tmh,k(t)‖D =
∥∥∥
m

(j+1)
h −m(j)

h

k

∥∥∥
D
.

Furthermore, it can be shown that (see e.g. [15])
∣∣∣∣∣
m

(j+1)
h (xn)−m

(j)
h (xn)

k

∣∣∣∣∣ ≤
∣∣∣v(j)h (xn)

∣∣∣ ∀n = 1, 2, · · · , N, j = 0, . . . , J.

The above inequality together with Lemma 8.3 in the Appendix yields

‖∂tmh,k(t)‖D ≤ c‖v(j)h ‖D = c‖vh,k(t)‖D.

The bound now follows from Lemma 6.2.
Inequality (6.2) can be deduced from (6.1) by noting that for t ∈ [tj, tj+1) there

holds

∣∣mh,k(t,x)−m
−
h,k(t,x)

∣∣ =
∣∣∣∣∣(t− tj)

m
(j+1)
h (x)−m(j)

h (x)

k

∣∣∣∣∣ ≤ k |∂tmh,k(t,x)| .

Therefore, (6.2) is a consequence of (6.1).

To prove (6.3) we first note that the definition of m
(j+1)
h and (5.10) give

∣∣∣m(j+1)
h (xn)−m

(j)
h (xn)− kv

(j)
h (xn)

∣∣∣ =
∣∣∣m(j)

h (xn) + kv
(j)
h (xn)

∣∣∣− 1.
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On the other hand from the properties
∣∣∣m(j)

h (xn)
∣∣∣ = 1, see (5.10), and m

(j)
h (xn) ·

v
(j)
h (xn) = 0, see (5.4), we deduce

∣∣∣m(j)
h (xn) + kv

(j)
h (xn)

∣∣∣ =
(
1 + k2

∣∣∣v(j)h (xn)
∣∣∣
2
)1/2

≤ 1 +
1

2
k2

∣∣∣v(j)h (xn)
∣∣∣
2

.

Therefore,
∣∣∣∣∣
m

(j+1)
h (xn)−m

(j)
h (xn)

k
− v(j)h (xn)

∣∣∣∣∣ ≤
1

2
k
∣∣∣v(j)h (xn)

∣∣∣
2

.

Using Lemma 8.3 successively for p = 1 and p = 2 we obtain, for t ∈ [tj, tj+1),

‖∂tmh,k(t)− vh,k(t)‖L1(D) ≤ ck ‖vh,k(t)‖
2
D .

By integrating over [tj, tj+1), summing up over j, and using Lemma 5.4 we infer (6.3).
Finally, to prove (6.4) we note that if xn is a vertex of an elementK and t ∈ [tj, tj+1)

then
∣∣∣|m−

h,k(t,x)| − 1
∣∣∣
2

=
∣∣∣|m−

h,k(t,x)| − |m−
h,k(t,xn)|

∣∣∣
2

≤ ch2
∣∣∇m−

h,k(t,x)
∣∣2 = ch2

∣∣∣∇m(j)
h (x)

∣∣∣
2

∀x ∈ K.

Integrating over DT and using Lemma 5.4 we obtain
∥∥∥|m−

h,k| − 1
∥∥∥
DT

≤ ch.

The required result (6.4) now follows from (6.2). �

The following two Lemmas 6.4 and 6.5 show that m−
h,k and mh,k, respectively,

satisfy a discrete form of (4.9).

Lemma 6.4. Assume that h and k go to 0 with the following conditions

(6.5)





k = o(h2) when 0 ≤ θ < 1/2,

k = o(h) when θ = 1/2,

no condition when 1/2 < θ ≤ 1.

Then for any ψ ∈ C
∞
0 (DT ), there holds P-a.s.

−λ1

〈
m−

h,k × vh,k,m
−
h,k ×ψ

〉
DT

+ λ2

〈
vh,k,m

−
h,k ×ψ

〉
DT

+ µ
〈
∇(m−

h,k + kθvh,k),∇(m−
h,k ×ψ)

〉
DT

+
〈
Rh,k(.,m

−
h,k),m

−
h,k ×ψ

〉
DT

= O(h).
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Proof. For t ∈ [tj, tj+1), we use equation (5.5) with w
(j)
h = IVh

(
m−

h,k(t, ·)×ψ(t, ·)
)
to

have

−λ1

〈
m−

h,k(t, ·)× vh,k(t, ·), IVh

(
m−

h,k(t, ·)×ψ(t, ·)
)〉

D

+ λ2

〈
vh,k(t, ·), IVh

(
m−

h,k(t, ·)×ψ(t, ·)
)〉

D

+ µ
〈
∇(m−

h,k(t, ·) + kθvh,k(t, ·)),∇IVh

(
m−

h,k(t, ·)×ψ(t, ·)
)〉

D

+
〈
Rh,k(tj,m

−
h,k(t, ·)), IVh

(
m−

h,k(t, ·)×ψ(t, ·)
)〉

D
= 0.

Integrating both sides of the above equation over (tj, tj+1) and summing over j =
0, . . . , J − 1 we deduce

− λ1

〈
m−

h,k × vh,k, IVh

(
m−

h,k ×ψ
)〉

DT
+ λ2

〈
vh,k, IVh

(
m−

h,k ×ψ
)〉

DT

+ µ
〈
∇(m−

h,k + kθvh,k),∇IVh

(
m−

h,k ×ψ
)〉

DT

+
〈
Rh,k(·,m

−
h,k), IVh

(
m−

h,k ×ψ
)〉

DT

= 0.

This implies

− λ1

〈
m−

h,k × vh,k,m
−
h,k ×ψ

〉
DT

+ λ2

〈
vh,k,m

−
h,k ×ψ

〉
DT

+ µ
〈
∇(m−

h,k + kθvh,k),∇(m−
h,k ×ψ)

〉
DT

+
〈
Rh,k(.,m

−
h,k),m

−
h,k ×ψ

〉
DT

= I1 + I2 + I3

where

I1 =
〈
−λ1m

−
h,k × vh,k + λ2vh,k,m

−
h,k ×ψ − IVh

(m−
h,k ×ψ)

〉
DT

,

I2 = µ
〈
∇(m−

h,k + kθvh,k),∇(m−
h,k ×ψ − IVh

(m−
h,k ×ψ))

〉
DT

,

I3 =
〈
Rh,k(.,m

−
h,k),m

−
h,k ×ψ − IVh

(m−
h,k ×ψ)

〉
DT

.

Hence it suffices to prove that Ii = O(h) for i = 1, 2, 3. First, by using Lemma 5.2
we obtain

‖m−
h,k‖L∞(DT ) ≤ sup

0≤j≤J
‖m(j)

h ‖L∞(D) ≤ 1.

This inequality, Lemma 6.2 and Lemma 8.2 yield

|I1| ≤ c
(
‖m−

h,k‖L∞(DT ) + 1
)
‖vh,k‖DT

‖m−
h,k ×ψ − IVh

(m−
h,k ×ψ)‖DT

≤ c‖vh,k‖DT
‖m−

h,k ×ψ − IVh
(m−

h,k ×ψ)‖DT

≤ ch.

The bounds for I2 and I3 can be carried out similarly by using Lemma 6.2 and
Lemma 5.3, respectively, by noting that when θ ∈ [0, 1

2
], a bound of k ‖∇vh,k‖DT

can
be deduced from the inverse estimate as follows

k ‖∇vh,k‖DT
≤ ckh−1 ‖vh,k‖DT

≤ ckh−1.

This completes the proof of the lemma. �
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Lemma 6.5. Assume that h and k go to 0 satisfying (6.5). Then for any ψ ∈
C

∞
0 (DT ), there holds P-a.s.

−λ1 〈mh,k × ∂tmh,k,mh,k ×ψ〉DT
+ λ2 〈∂tmh,k,mh,k ×ψ〉DT

+ µ 〈∇(mh,k),∇(mh,k ×ψ)〉DT

+ 〈Rh,k(·,mh,k),mh,k ×ψ〉DT
= O(hk).(6.6)

Proof. From Lemma 6.4 it follows that

−λ1 〈mh,k × ∂tmh,k,mh,k ×ψ〉DT
+ λ2 〈∂tmh,k,mh,k ×ψ〉DT

+ µ 〈∇(mh,k),∇(mh,k ×ψ)〉DT

+ 〈Rh,k(·,mh,k),mh,k ×ψ〉DT
= I1 + · · ·+ I4,

where

I1 = −λ1

〈
m−

h,k × vh,k,m
−
h,k ×ψ

〉
DT

+ λ1 〈mh,k × ∂tmh,k,mh,k ×ψ〉DT
,

I2 = λ2

〈
vh,k,m

−
h,k ×ψ

〉
DT

− λ2 〈∂tmh,k,mh,k ×ψ〉DT
,

I3 = µ
〈
∇(m−

h,k + kθvh,k),∇(m−
h,k ×ψ)

〉
DT

− µ 〈∇(mh,k),∇(mh,k ×ψ)〉DT
,

I4 =
〈
Rh,k(.,m

−
h,k),m

−
h,k ×ψ

〉
DT

− 〈Rh,k(·,mh,k),mh,k ×ψ〉DT
.

Hence it suffices to prove that Ii = O(h) for i = 1, · · · , 4. Frist, by using triangle
inequality we obtain

λ−1
1 |I1| ≤

∣∣∣
〈
(m−

h,k −mh,k)× vh,k,m
−
h,k ×ψ

〉
DT

∣∣∣

+
∣∣∣
〈
mh,k × vh,k, (m

−
h,k −mh,k)×ψ

〉
DT

∣∣∣

+
∣∣∣〈mh,k × (vh,k − ∂tmh,k),mh,k ×ψ〉DT

∣∣∣ ,

≤ 2‖m−
h,k −mh,k‖DT

‖vh,k‖DT
‖m−

h,k‖L∞(DT )‖ψ‖L∞(DT )

+ ‖vh,k − ∂tmh,k‖L1(DT )‖m
−
h,k‖L∞(DT )‖ψ‖L∞(DT ).

Therefore, the bound of I1 can be obtained by using Lemmas 6.2 and 6.3. The
bounds for I2, I3 and I4 can be carried out similarly. This completes the proof of the
lemma. �

In order to prove the convergence of random variablesmh,k, we first show that the
family L(mh,k) is tight in the following lemma.

Lemma 6.6. Assume that h and k go to 0 satisfying (6.5). Then the set of laws

{L(mh,k)} on the Banach space H
1(DT ) is tight.

Proof. For r ∈ R
+, we define

Br := {u ∈ H
1(DT ) : ‖u‖H1(DT ) ≤ r}.

Firstly, from the definition of L(mh,k) we have

L(mh,k)(Br) = P{ω ∈ Ω : mh,k(ω) ∈ Br} = 1− P{ω ∈ Ω : mh,k(ω) ∈ Bc
r},
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where Bc
r is the complement of Br in H

1(DT ). Furthermore, from the definition of
Br and (6.1), we deduce

L(mh,k)(Br) ≥ 1−
1

r2

∫

Ω

‖mh,k(ω)‖
2
H1(DT )P dω

≥ 1−
c

r2
.

The result follows from the above inequality and [11, Proposition 2.2]. �

From the definition 5.6, the approximation of Wiener processWk belongs to D(0, T ),
which is the so-called Skorokhod space. We recall that the set of laws {L(Wk)} is
tight on D(0, T ) (see e.g. [7]). The following Proposition is a direct consequence of
Lemma 6.6 and the tightness of {L(Wk)} by using [11, Theorem 2.3 and Theorem
2.4].

Proposition 6.7. Assume that h and k go to 0 satisfying (6.5). Then there exist

(a) a probability space (Ω′,F ′,P′),
(b) a sequence {(mh,k,W

′
k)} of random variables defined on (Ω′,F ′,P′) and taking

values in H
1(DT )× D(0, T ),

(c) a random variable (m′,W ′) defined on Ω′,F ′,P′) and taking values in H
1(DT )×

D(0, T )

satisfying

(1) L(mh,k) = L(m′
h,k),

(2) m′
h,k →m′ in H

1(DT ) strongly, P
′-a.s.,

(3) W ′
k → W ′ in D(0, T ) strongly, P′-a.s.

Proof. The result follows from the Skorohod theorem, see for example [11, Theorem
2.4], noting that H1(DT )× D(0, T ) is a separable metric space. �

We now ready to prove the main theorem.
Proof of Theorem 2.3: From property (1) in Proposition 6.7 and (6.4), we deduce

(6.7) ‖|m′
h,k| − 1‖DT

= O(hk), P− a.s..

On the other hand, from Lemma 6.5,
(
mh,k,Wk

)
satisfies (6.6) P- almost surely.

Therefore,
(
m′

h,k,W
′
k

)
satisfies the following equation P

′-a.s.

−λ1

〈
m′

h,k × ∂tm
′
h,k,m

′
h,k ×ψ

〉
DT

+ λ2

〈
∂tm

′
h,k,m

′
h,k ×ψ

〉
DT

+ µ
〈
∇(m′

h,k),∇(m′
h,k ×ψ)

〉
DT

+
〈
Rh,k(·,m

′
h,k),m

′
h,k ×ψ

〉
DT

= O(hk).(6.8)

Taking the limitation of equations (6.7) and (6.8) as h, k tend to 0 and using proper-
ties (2) and (3) in Proposition 6.7, we obtain that

(
m′,W ′

)
satisfies (4.8) and (4.9)

P
′-a.e.. Finally, from Lemma 4.6, M ′ := eW

′(t)Gm′ is a weak martingale solution
to (1.5). This completes the proof of the main theorem.
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7. Numerical experiments

In this section we solve an academic example of the stochastic LLG equation which
is studied in [4, 6].
The computational domain D is the unit square D = (−0.5, 0.5)2, the given func-

tion g = (1, 0, 0) is constant, and the initial condition M 0 is defined below:

M 0(x) =





(2x∗A,A2 − |x∗|2)/(A2 + |x∗|2), |x∗| < 1
2
,

(−2x∗A,A2 − |x∗|2)/(A2 + |x∗|2), 1
2
≤ |x∗| ≤ 1,

(−x∗, 0)/|x∗|, |x∗| ≥ 1,

where x∗ = 2x and A = (1− 2|x∗|)4. From (4.1), (3.12) and noting that W (0) = 0,
we have m(0, ·) = M(0, ·). We set the values for the other parameters in (1.5) as
λ1 = λ2 = 1 and the parameter θ in Algorithm 5.1 is chosen to be 0.7.
We generate the discrete Brownian paths as below:

Wk(tj+1)−Wk(tj) ∼ N (0, k) for all j = 1, · · · , J.

Approximations of expected values are computed as averages of L discrete Brownian
paths. In our experiments, we choose L = 400.
The discrete solutions Mh,k and M−

h,k of (1.5), associated with M j
h, are defined

analogously to Definition 6.1, where M j
h := eWk(tj)Gh(mj

h) for j ∈ 0, · · · , J .
In the first set of experiments, to observe convergence of the method, we solve with

T = 1, h = 1/n where n = 10, 20, 30, 40, 50, and different time steps k = h, k = h/2,
and k = h/4. For each value of h, the domain D is partitioned into uniform mesh of
size h.
Noting that

E2
h,k := E

(∫

DT

∣∣1− |M−
h,k|

∣∣2 dx dt

)
= E

(
‖|M | − |M−

h,k|‖
2
DT

)

≤ E
(
‖M −M−

h,k‖
2
DT

)
,

we computed and plotted in Figure 1 the error Eh,k for different values of h and k.
The figure suggests a clear convergence of the method.
In the second set of experiments to observe boundedness of discrete energies, we

solve the problem with a fixed value of h = 1/60 and a smaller value of k = 1/100.
In Figure 2 we plot t 7→ E (‖∇Mh,k(t)‖

2
D) for different values of λ2 which seems to

suggest that these energies approach 0 when t → ∞. It appears that there is no
blow-up for the expected value of the solution.
Finally, in Figure 3 we plot snapshots of the magnetization vector field E (Mh,k)

at different time levels, where h = 1/50 and k = 1/80. These vectors are coloured ac-
cording to their magnitudes. A comparision of our method and the method proposed
in [4] is presented in Table 1.
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Figure 1. Plot of error Eh,k

Table 1. A comparision between Baňas, Bartels and Prohl’s method
and our method( *: for the convergence of nonlinear system)

BBP method Our method
The discrete system nonlinear linear
Degrees of freedom 3N 2N
Required condition k = O(h2) * No

Change of basis functions NO YES
at each iteration

Systems to be solved
at each iteration L 1
when g = const.

8. Appendix

Lemma 8.1. For any real constants λ1 and λ2 with λ1 6= 0, if ψ, ζ ∈ R
3 satisfy

|ζ| = 1, then there exists ϕ ∈ R
3 satisfying

(8.1) λ1ϕ+ λ2ϕ× ζ = ψ.
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Figure 2. Plot of energy E (‖∇Mh,k(t)‖
2
D)

As a consequence, if ζ ∈ H
1(DT ) with |ζ(t, x)| = 1 a.e. in DT and ψ ∈ W 1,∞(DT ),

then ϕ ∈ H
1(DT ).

Proof. It is easy to see that (8.1) is equivalent to the linear system

Aϕ = ψ

where

A =




λ1 λ2ζ3 −λ2ζ2
−λ2ζ3 λ1 λ2ζ1
λ2ζ2 −λ2ζ1 λ1




and ζ = (ζ1, ζ2, ζ3). It follows from the condition |ζ| = 1 that det(A) = λ1(λ
2
1+λ2

2) 6=
0, which implies the existence of ϕ. The fact that ϕ ∈ H

1(DT ) when ζ ∈ H
1(DT )

and ψ ∈ W 1,∞(DT ) can be easily checked. �

Lemma 8.2. For any v ∈ C(D), vh ∈ Vh and ψ ∈ C
∞
0 (DT ) there hold

‖IVh
v‖L∞(D) ≤ ‖v‖L∞(D),

‖m−
h,k ×ψ − IVh

(m−
h,k ×ψ)‖

2
L([0,T ],H1(D)) ≤ ch2‖m−

h,k‖
2
L([0,T ],H1(D))‖ψ‖

2
W2,∞(DT ),

where m−
h,k is defined in Defintion 6.1
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Figure 3. Plot of magnetizations E (Mh,k(t, x)) at t = 0, 0.0625,
0.3125, 0.4375; vectors are coloured according to the value of |E (Mh,k) |
(red: value = 1, pink: value ≈ 0.98, blue: value ≈ 0.87, green: value
≈ 0.82)

Proof. We note that for any x ∈ D there are atmost 4 basis functions φni
, i = 1, . . . , 4,

being nonzero at x. Moreover,
∑4

i=1 φni
(x) = 1. Hence

|IVh
v(x)| =

∣∣∣∣∣

4∑

i=1

v(xni
)φni

(x)

∣∣∣∣∣ ≤ ‖v‖L∞(D).

The proof for the second inequality can be done by using the interpolation error (see
e.g. [13]) and the linearity of m−

h,k on each triangle K, as follows

‖m−
h,k ×ψ − IVh

(m−
h,k ×ψ)‖

2
H1(K) ≤ ch2‖∇2

(
m−

h,k ×ψ
)
‖2K

≤ ch2‖m−
h,k‖

2
H1(K)‖ψ‖

2
W2,∞(K).

We now obtain the second inequality by summing over all the triangles of Th and
integrating in time the above inequality, which completes the proof. �

The next lemma defines a discrete L
p-norm in Vh which is equivalent to the usual

L
p-norm.
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Lemma 8.3. There exist h-independent positive constants C1 and C2 such that for

all p ∈ [1,∞] and u ∈ Vh there holds

C1‖u‖
p
Lp(Ω) ≤ hd

N∑

n=1

|u(xn)|
p ≤ C2‖u‖

p
Lp(Ω),

where Ω ⊂ R
d, d=1,2,3.

Proof. A proof of this lemma for p = 2 and d = 2 can be found in [13, Lemma 7.3]
or [9, Lemma 1.12]. The result for general values of p and d can be obtained in the
same manner. �
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