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Abstract. — Let X be a smooth double cover of a geometrically ruled surface defined
over a separably closed field of characteristic different from 2. The main result of this
paper is a finite presentation of the 2-torsion in the Brauer group of X with generators
given by central simple algebras over the function field of X and relations coming from
the Néron-Severi group of X. The path to this result naturally involves a study of the
2-torsion Brauer classes of a smooth double cover of the projective line, yielding results of
independent interest. Arithmetic applications are given for both curves and surfaces.
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Introduction

Let X be a smooth, projective and geometrically integral variety over a field k. The
Brauer group of X, denoted BrX, is a generalization of the usual notion of the Brauer
group of a field. Our results concern the 2-torsion in BrX for X a desingularization of
a double cover of a ruled surface. Up to birational equivalence, this class of varieties
contains all surfaces with an elliptic or hyperelliptic fibration, all double covers of P2,
and (at least over a separably closed field) all Enriques surfaces. Under fairly mild
assumptions, we obtain a finite presentation of BrX[2] in terms of generators given by
unramified central simple algebras over k(X) and relations coming from the Néron-Severi
group of X, where X denotes the base change of X to a separably closed field.

This result enables a study of the Galois action on BrX[2], and, in some cases, com-
putation of BrX[2]; as a consequence, we expect it to have important arithmetic impli-
cations. More precisely, if k is a global field, then, as Manin [Man71] observed, elements
of the Brauer group can obstruct the existence of k-points, even when there is no local
obstruction. Computation of such an obstruction requires explicit representations of the
elements of BrX; knowledge of the group structure alone does not suffice.

The key feature enabling our results is the fibration induced by the ruling on S, a
fibration whose generic fiber is a double cover C → P1. To understand the relevance
of this, recall that the Brauer group admits a filtration, Br0X ⊆ Br1X ⊆ BrX, where
Br0X := im (Br k → BrX) is the subgroup of constant Brauer classes and Br1X :=
ker
(
BrX → BrX

)
is the subgroup of algebraic Brauer classes. Using the Hochschild-

Serre spectral sequence, the algebraic classes can be understood in terms of the Galois
action on the Picard group of X. In contrast, computation of transcendental Brauer
classes, i.e. those surviving in the quotient BrX/Br1X, is usually much more difficult,
with only a handful of articles addressing the problem [Har96,Wit04,SSD05,HS05,Ier10,
KT11,HVAV11,SZ12,HVA13,Pre13].

In the presence of a fibration as above, one has BrX ⊆ BrC. Moreover, BrC is
algebraic (over the function field of the base curve) by Tsen’s theorem, and may thus
be studied in terms of the Galois action on the geometric Picard group of C. We carry
out such a study for an arbitrary double cover of P1 over a field K, obtaining an explicit
presentation of BrC[2] when K is a C1 field (see Theorem I). In general we obtain a
presentation of a subgroup of (BrC/Br0C)[2] which we show to be large enough for
interesting arithmetic applications.

That a fibration can be used in this way to compute Brauer classes on a surface is
not new, but there are few classes of surfaces for which the method has been carried out
in practice. Our work builds on that of Wittenberg [Wit04] and Ieronymou [Ier10] who
each give an example of a nontrivial transcendental 2-torsion Brauer class on specific
elliptic K3 surface. The surfaces they consider admit a genus one fibration such that the
Jacobian fibration has full rational 2-torsion and such that the generic fiber is a double
cover of P1. We formalize and generalize the technique to deal with fibrations of curves of
arbitrary genus that are double covers of P1 and remove all assumptions on the Jacobian
fibration. As an application, we give an explicit presentation of the Brauer group of any
Enriques surface, and demonstrate the utility of this presentation by giving an example
of an Enriques surface with a transcendental obstruction to weak approximation.

Structure of the paper. — The paper is divided into two parts in which we consider,
respectively, double covers of P1 and double covers of ruled surfaces.
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Part I: Double covers of the projective line. — We consider a smooth, irreducible
double cover π : C → P1 defined over a field K of characteristic not equal to 2. Choosing
a generator x for k(P1) such that π does not ramifiy above the pole of x, we obtain a
model for C of the form y2 = cf(x) with c ∈ K× and f(x) ∈ K[x] monic of even degree.
Let L = K[θ]/f(θ) and let x − α denote the image of x − θ in k(CL) := L ⊗K k(C).
The theory behind explicit descents developed in [PS97] shows that x − α induces a
homorphism PicC/2 PicC → L×/K×L×2. The main result of Part I is an explicit
description of the 2-torsion in the Brauer group of C in terms of the cokernel of this map.

Theorem I. — There is a complex

PicC

2 PicC

x−α−→ Lc
γ−→
(

BrC

Br0C

)
[2] −→ 0 ,

where Lc ⊆ L×/K×L× is the subset of classes that are represented by some ` ∈ L× such
that NormL/K(`) ∈ (K×2 ∪ cK×2), and γ is induced by the map sending ` ∈ L× to the
central simple algebra Cork(CL)/k(C)((`, x − α)2) over k(C). If BrK[2] = 0 or if π has a
K-rational branch point, then this complex is an exact sequence.

Although γ is not surjective in general (see Remark 5.4), we show that its image is
large enough for interesting arithmetic applications (see Proposition 6.4, Remark 6.5
and Theorem 6.7). As an alternative to imposing conditions on K, assumptions on
the Galois structure of the ramification locus can also be used to guarantee exactness
(see Theorems 1.2 and 1.3). The reader will also note that Proposition 2.5 shows how
Cork(CL)/k(C)((`, x− α)2) may be written as a sum of quaternion algebras over K(x).

Part II: Double covers of ruled surfaces. — We consider a desingularization X of
a double cover π : X0 → S of a ruled surface defined over a field k of characteristic not 2.
Let k be a separable closure of k. The ruling on S is given by a map to a smooth curve W
such that the generic fiber is isomorphic to P1

k(W ). If every fiber of S/W is isomorphic to

P1, we that S is geometrically ruled. For the purposes of this introduction we will assume
that the branch locus of X/S is a reduced curve B flat over W ; see §7 for details on the
general case.

The generic fiber of X → S → W is a double cover C → P1
k(W ), and Theorem I gives

a presentation of BrCK [2] as the image of the surjective map, γ : Lc → BrCK [2], where
K = k(W ). The algebra L may be identified with k(B), and by the purity theorem
BrX ⊆ BrCK is the subgroup unramified at all vertical divisors. In §9 we specify a
finite set of functions ` ∈ k(B) such that Cork(CL)/k(CK)((`, x − α)2) is unramified at all
vertical divisors. With these functions we define a finite subgroup Lc,E ⊆ Lc and prove
the following (see Corollary 9.5).

Theorem II. — Let X be as above. Assume that S is geometrically ruled and that B
has at worst simple singularities. Then there is an exact sequence of Gal(k/k)-modules

PicCK
2 PicCK

x−α−→ Lc,E
γ−→ BrX[2] −→ 0.

In §10 we show that this presentation can be used to determine the size of BrX[2]
without using the exponential sequence or knowledge of the Betti numbers. For example,
a double cover of a quadric surface branched along a (4, 4) curve is a K3 surface for which
we recover the well known fact that BrX[2] has F2-dimension 22 − rank NSX. When
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the branch locus of the double cover has worse than simple singularities, we obtain a
presentation for BrU [2] where U ⊂ X is a specified open subvariety (see §9 for more
details).

If S fails to be geometrically ruled, then these methods can still be used to obtain
a presentation for BrX[2] or BrU [2], provided one has sufficient information about the
singular fibers of S → W . We demonstrate this in §11 by applying these methods to
compute the nontrivial element in the Brauer group of an arbitrary Enriques surface, for
which the ruled surface has 2 singular fibers. We then use this in §12 to give an explicit
example of an Enriques surfaces with a transcendental Brauer-Manin obstruction to weak
approximation.

Notation. — Let K be a field, choose a separable closure K and let GK := Gal(K/K)
be the absolute Galois group. If M is a GK-module (with the discrete topology) and
i ≥ 0, then Hi(K,M) := Hi(GK ,M) denotes the ith Galois cohomology group. Similarly
Ci(K,M) and Zi(K,M) are, respectively, the groups of continuous i-cochains and i-
cocycles. More generally, if A is an étale K-algebra, then Hi(A,M) denotes the étale
cohomology group Hi

ét(SpecA,M). If A '
∏
Kj for field extensions Kj/K, Shapiro’s

lemma shows that Hi(A,M) '
∏

Hi(Kj,M). If G is an algebraic group defined over K
we define Hi(K,G) := Hi(K,G(K)), and analogously for the other groups defined above.

The Brauer group of X is the étale cohomology group BrX := H2
ét(X,Gm). Given

invertible elements a, b in an étale K-algebra A, we define the quaternion algebra (a, b)2 :=
A[i, j]/〈i2 = a, j2 = b, ij = −ji〉, which we often conflate with its class in BrA. If
X and S are K-schemes, we set XS := X ×SpecK S. We also define X := XK and
XA := XSpecA, for a K-algebra A of finite type. If X is an integral K-scheme, k(X)
denotes its function field. More generally, if X is a finite union of integral K-schemes Xi,
then k(X) :=

∏
k(Xi) is the ring of global sections of the sheaf of total quotient rings. In

particular, if A '
∏
Kj is an étale K-algebra, then XA is a union of integral K-schemes

and k(XA) '
∏

k(XKj). For r ≥ 0 we use X(r) to denote the set of codimension r points
on X.

Now suppose that X is a smooth, projective and geometrically integral variety over
K. Let PicX be its Picard group and let PicX be its Picard scheme. Then PicX =
DivX/PrincX, where DivX (resp. PrincX) is the group of divisors (resp. principal
divisors) of X defined over K. If D ∈ DivX, then [D] denotes its class in PicX. There
is a bijective map (PicX)GK → PicX(K), but in general the map PicX → PicX(K)
is not surjective. Let Pic0

X ⊆ PicX denote the connected component of the identity,
and use Pic0X to denote the subgroup of PicX mapping into Pic0

X(K). Then NSX :=
PicX/Pic0X is the Néron-Severi group of X. If λ ∈ (NSX)GK , let PicλX denote the
corresponding component of the Picard scheme and use PicλX and DivλX to denote
the subsets of PicX and DivX mapping into PicλX(K). We write AlbX for the Albanese
scheme of X and, for i ∈ Z, write AlbiX for the degree i component of AlbX . Then AlbiX is
a K-torsor under the abelian variety Alb0

X . When X is a curve, NSX = Z, PiciX = AlbiX
for all i ∈ Z and Jac(X) := Pic0

X = Alb0
X is called the Jacobian of X.
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PART I

DOUBLE COVERS OF THE PROJECTIVE LINE

1. Introduction

Throughout Part I, K is a field of characteristic different from 2 and π : C → P1 is an
irreducible double cover of the projective line defined over K with Jacobian J := Jac(C).
We say that π is odd if π is ramified above ∞ ∈ P1(K). Otherwise we say that π is even.
Provided K has sufficiently many elements (e.g. if K is infinite) a change of coordinates
on P1 allows us to obtain an isomorphic double cover which is even. On the other hand, π
is isomorphic to an odd double cover if and only there is a K-rational ramification point.
While there is thus no loss of generality in considering only even double covers, it is
possible to obtain results that are sharper in the case of odd double covers (cf. Theorem
1.3 and Remark 2.8). We have chosen the notation below to allow the two cases to be
treated in parallel.

By Kummer theory, C has a model of the form y2 = cf(x) with c ∈ K× and f(x)
a square free monic polynomial with coefficients in K. The degree of f(x) is either
2g(C) + 2 or 2g(C) + 1, correspondingly as C is even or odd. Moreover, when C is
odd, we can perform a change of coordinates to arrange that c = 1. Let Ω ⊆ C be
the set of ramification points of π, and let L = MapK(Ω, K) denote the étale K-algebra
corresponding to Ω. When C is even we may identify K[θ]/f(θ) with L. When C is
odd, K[θ]/f(θ) can be identified with the subalgebra L◦ ⊆ L consisting of elements
` ∈ L = MapK(Ω, K) that take the value 1 at the ramification point above ∞ ∈ P1(K).
In the odd case this gives a canonical isomorphism L ∼= L◦ ×K.

Set

L =
L×

K×L×2
.

For a ∈ K× and ` ∈ L×, we use a and ` to denote the corresponding classes in K×/K×2

and L, and set

La =
{
` ∈ L : NormL/K

(
`
)
∈ 〈a〉

}
,

where NormL/K denotes the map L → K×/K×2 induced by the norm on L. Note that
when C is odd we have a canonical isomorphism L ∼= L×◦ /L

×2
◦ under which NormL/K

coincides with the map induced by the norm on L◦.
Let x−α denote the image of x−θ in k(CL) := L⊗K k(C); in the odd case this means

x − α is the image of (x − θ, 1) in k(CL◦) × k(C). It is well known from the theory of
explicit descents (see [Sch95,PS97]) that x−α induces a homorphism PicC/2 PicC → L.

For a closed point P ∈ C \ (Ω ∪ π−1(∞)) one defines x(P ) − α =
∏d

i=1(xi − α) ∈ L×,

where P (K) = {(x1, y1), . . . , (xd, yd)}. Every divisor class [D] ∈ PicC can be represented
by a sum

∑
P nPP of such closed points, and (x − α)([D]) is defined to be the class of∏

P (x(P )− α)nP in L.
Let γ′ be the map,

γ′ : L× → Br k(C), ` 7→ Cork(CL)/k(C)((`, x− α)2) .

Proposition 2.5 shows how to write γ′(`) as a sum of quaternion algebras over k(C).
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Theorem 1.1. — The map γ′ induces a complex

PicC

2 PicC

x−α−→ Lc
γ−→
(

BrC

Br0C

)
[2] .

If Pic1C = Pic1
C(K), then the sequence is exact. If BrK[2] = 0, then the sequence is

exact and γ is surjective.

The kernel of x− α is determined in Proposition 4.7, and although γ is not surjective
in general (see Remark 5.4), we show that its image is large enough for arithmetic ap-
plications. Namely, in §6 we recall the well known relationship between Brauer-Manin
obstructions and the Cassels-Tate pairing, and show how the aforementioned results allow
us to compute the pairing for certain elements of X(J)[2]. In a numerical example we
carry out these computations for all quadratic twists of a specific curve, giving an infinite
family of abelian surfaces over Q with nontrivial Shafarevich-Tate group.

As an alternative to imposing conditions on K, assumptions on the Galois structure
of Ω can also be used to obtain a presentation of (BrC/Br0C)[2].

Theorem 1.2. — If Ω admits a GK-stable partition into two sets of odd cardinality,
then γ′ induces an exact sequence

0→ J(K)/2J(K)
x−α−→ L1

γ−→
(

BrC

Br0C

)
[2]→ 0 .

Theorem 1.3. — If C is odd, then γ′ induces an exact sequence

0→ J(K)/2J(K)
x−α−→ L1

γ−→ (Br0C)[2]→ 0 ,

where Br0C denotes the subgroup of BrC consisting of Brauer classes that evaluate to 0
at the K-rational ramificiation point of C lying above ∞ ∈ P1(K).

The proofs of these theorems are inspired by the classical problem of 2-descents on Ja-
cobians of hyperelliptic curves. Here one attempts to compute J(K)/2J(K) by describing
its image under the connecting homomorphism δ in the Kummer sequence,

0→ J(K)/2J(K)
δ→ H1(K, J [2])→ H1(K, J)[2]→ 0 . (1.1)

To make use of this in practice, one requires concrete descriptions of H1(K, J [2]) and
the map δ. When C is odd this is achieved in [Sch95] by giving an explicit isomorphism
H1(K, J [2]) ' L1 whose composition with δ is equal to the x − α map. Moreover, the
existence of a rational point implies an isomorphism H1(K, J)[2] ' Br0(C)[2]. Together
with (1.1) these isomorphisms imply the existence of an exact sequence as stated in
Theorem 1.3, and the task is to verify that the description of γ given is correct. This will
ultimately be achieved by a cocycle computation. In the case that C = J is an elliptic
curve with rational 2-torsion this has been carried out in [Wit04, Prop. 2.2] (see also
[Sko01, p.91]).

When C is even, there are complications due to the fact that, in general, neither of
the aforementioned isomorphisms exist. In the first instance we are forced to replace the
isomorphism of [Sch95] with the fake descent setup of [PS97]. This implies the existence
of an exact sequence,

Pic0C

2 Pic0C

x−α−→ L1
d−→ H1(K, J)[2]

〈Pic1
C〉

, (1.2)
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where under suitable hypothesis (e.g. if BrK[2] = 0) the final map is surjective. When
C has no K-rational divisors of degree 1 the second isomorphism above must be replaced
by an exact sequence,

0→
(

BrC

Br0C

)
[2]

h0→
(

H1(K, J)

〈Pic1
C〉

)
[2]→ H3(K,K

×
) . (1.3)

This means that, even under the assumption that K is C1, the image of the map d in (1.2)
may only correspond to an index 2 subgroup of (BrC/Br0C)[2]. Our solution to this
problem is inspired by [Cre] where it is shown how the elements of Lc \ L1 correspond
to certain Pic1

C-torsors under J [2]. The natural images of these torsors in H1(K, J) lie in
the fiber above Pic1

C under multiplication by 2. This allows one to deduce the existence
of an exact sequence

PicC

2 PicC

x−α−→ Lc
d−→
(

H1(K, J)

〈Pic1
C〉

)
[2] , (1.4)

which is compatible with (1.2), and again where the final map is surjective when BrK[2] =
0. To prove Theorem 1.1 we must then show that these maps are compatible in the sense
that h0 ◦ γ = d.

Outline of Part I. — In §2 we compute the residues of an algebra of the form γ′(`)
and use this to show that γ′ induces a complex as stated in the theorems above. Then
in section §3 we define the map h0 and compute h0 ◦ γ′ in terms of cocycles. This is
then related to the cohomological setup for 2-descents in §4. The results of the preceding
sections are then utilized in §5 to prove the theorems above. §6 gives an arithmetic
application of these results which is independent from the results in Part II.

2. Corestriction and residues

Recall that γ′ sends ` ∈ L× to Cork(CL)/k(C) ((`, x− α)2) ∈ Br k(C). We begin by
computing the residues of such an algebra, and use the purity theorem to determine
when it lies in the unramified subgroup BrC ⊆ Br k(C).

Proposition 2.1. — Let ` ∈ L×. If C is odd, then γ′(`) ∈ BrC. If C is even, then
γ′(`) ∈ BrC if and only if ` ∈ Lc.

Proof. — Consider the following diagram:

KM
2 (k(CL))

Nk(CL)/k(C)

��

⊕∂Mw
//

h2
k(CL),2

((PPPPPPPPPPPPP

⊕
w|vK

M
1 (κ(w))

∑
w|v Nκ(w)/κ(v)

��

⊕h1
κ(w),2

))SSSSSSSSSSSSSS

H2(k(CL), µ⊗2
2 )

⊕∂2
w

//

Cork(CL)/k(C)

��

⊕
w|v H1(κ(w), µ2)

∑
w|v Corκ(w)/κ(v)

��

KM
2 (k(C))

∂Mv
//

h2
k(X),2

((QQQQQQQQQQQQ
KM

1 (κ(v))
h1
κ(v),2

))SSSSSSSSSSSSSS

H2(k(C), µ⊗2
2 )

∂2
v

// H1(κ(v), µ2)

(2.1)
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The back, side, top, and bottom squares are all commutative [GS06, Cor. 7.4.3 and Prop.
7.5.1 & 7.5.5]. Therefore, all ways of traversing from KM

2 (k(CL)) to H1(κ(v), µ2) are
equivalent. By the Merkurjev-Suslin theorem [GS06, Thm. 4.6.6], h2

k(CL),2 is surjective so

the front square is commutative. Using the purity theorem [Fuj02] and the commutativity
of the front and right square of (2.1), we obtain the following commutative diagram where
the bottom row is exact.

Br k(CL)[2] −−−→
⊕w∂2

w

⊕
v

(⊕
w|v κ(w)×/κ(w)×2

)
yCork(CL)/k(C)

y∏
w|v Nκ(w)/κ(v)

0 −−−→ BrC[2] −−−→ Br k(C)[2] −−−→
⊕v∂2

v

⊕
v κ(v)×/κ(v)×2

(2.2)

(Here, the direct sum ⊕v ranges over all valuations corresponding to prime divisors on
C, and ⊕w|v ranges over all valuations corresponding to prime divisors in CL lying over
v.)

Thus, Cork(CL)/k(C) ((`, x− α)2) is in BrC if and only if∏
w|v

Corκ(w)/κ(v)

(
(−1)w(`)w(x−α)`w(x−α)(x− α)w(`)

)
(2.3)

is a square in κ(v)×, for all valuations v. Since ` is a constant in k(CL), w(`) = 0 for
all valuations w. When C is odd, w(x − α) ≡ 0 mod 2, for all valuations w, so (2.3) is
clearly a square. Hence we may assume that C is even. Furthermore we can restrict our
attention to valuations v such that there exists a w | v with w(x− α) 6= 0.

For all valuations w such that w(x− α) is positive, we have that w(x− α) ≡ 0 mod 2
so (2.3) is clearly a square. Thus we may consider the valuations v for which there exists
a w | v with w(x− α) < 0. Such valuations v correspond to the points at infinity on C,
and, for every w | v, we have that w(x− α) = −1. In this case (2.3) can be simplified to∏
w|v

Corκ(w)/κ(v)

(
(−1)w(`)w(x−α)`w(x−α)(x− α)w(`)

)
=
∏
w|v

Corκ(w)/κ(v)

(
`−1
)

= NormL/K(`−1).

This shows that γ′(`) ∈ BrC if and only if NormL/K(`) ∈ κ(v)×2. But κ(v) = K(
√
c), so

this is equivalent to requiring that ` ∈ Lc. This completes the proof.

Lemma 2.2. — γ′ induces a homomorphism γ : L→ Br k(C)/Br0C such that the nat-
ural square commutes.

Proof. — The map γ′ is clearly a homomorphism. It remains to show that γ′ sends
K×L×2 into Br0C. Let a ∈ K×, ` ∈ L×; we may expand γ′(a`2) as follows

γ′(a`2) = Cork(CL)/k(C) ((a, x− α)2) + Cork(CL)/k(C)

(
(`2, x− α)2

)
= (a,Normk(CL)/k(C)(x− α))2 = (a, f(x))2 = (a, y2/c)2 = (a, c)2 .

This completes the proof since (a, c)2 ∈ Br0C.

Proposition 2.3. — If P ∈ C \ (Ω ∪ π−1(∞)) is a closed point, then γ′((x(P )− α)) ∈
Br0C.
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Corollary 2.4. — The sequence

PicC
x−α−→ Lc

γ−→ BrC/Br0C

is a complex.

Proof. — [D] ∈ PicC is represented by a linear combination
∑

P nPP of points P as in
the proposition (see [PS97, §5]), and, by definition, (x−α)([D]) is the class of

∏
(x(P )−

α)nP in L.

Proof of Proposition 2.3. — If P is the pullback of a point from P1, then (x(P )−α) ∈ L×2

and so γ′(x(P )− α) = 0. Assume otherwise, and let p(x) ∈ K[x] be the minimal polyno-
mial of the x-coordinate of P . Then γ′(x(P )−α) = CorL(x)/K(x)

(
((−1)deg(P )p(α), x− α)2

)
;

we note this element is in BrK(x) = Br k(P1
K). We will show that the algebras γ′(x(P )−

α) and A := (cf(x), (−1)deg(P )p(x))2 have the same residue at all points of P1
K . Since

BrP1
K = BrK, this shows that γ′(x(P ) − α) and A differ by a constant algebra. To

complete the proof, we note that A ∈ ker(Br k(P1
K)→ Br k(C)).

Considered as an element of Br k(P1), the algebra γ′(x(P )−α) has trivial residue away
from the ∞ and the roots of f(x). The residue at ∞ is NormL/K((−1)deg(P )p(α)) which

is equal to cdeg(P ) in K×/K×2.
Now we compute the residue at the roots of f(x). Let fQ be an irreducible fac-

tor of f corresponding to a root Q of f(x), and let β be the image of θ in κ(Q) =
K[θ]/fQ(θ). There is a unique valuation on κ(Q)(x) ⊆ L(x) lying above Q such that
((−1)deg(P )p(α), x − α)2 has nontrivial residue, namely the valuation corresponding to
the point Q′ = (α : 1). Furthermore, the norm map κ(Q′) → κ(Q) is an isomorphism
which sends α to β. Therefore, using an analogue of (2.2), we see that the residue at Q
is (−1)deg(P )p(β).

Now we consider the algebra A; it has trivial residue away from P , ∞ and the zeros
of f(x). The residue at P is equal to cf(x(P )), which is a square, the residue at ∞ is
(cf(∞))deg(P )((−1)deg(P )p(∞))−2g(C)−2 = cdeg(P ), and the residue at a zero Q of f(x) is
(−1)deg(P )p(β). Therefore, the residues of A and γ′(x(P )− α) are equal.

2.1. Corestriction as a sum of quaternion algebras. — Using Rosset-Tate reci-
procity, one can write the correstriction of a quaternion algebra over an extension as a
sum of quaternion algebras over the base field. This is described in [GS06, Corollary
7.4.10 and Remark 7.4.12]. In our situation this allows us to write γ′(`) as a sum of
quaternion algebras over K(x). We caution the reader that the f and g appearing in the
proposition below are not to be confused with the f and g of [GS06, Corollary 7.4.10].

Proposition 2.5. — Suppose ` ∈ L× \K× and let g(x) ∈ K[x] be the minimal degree
polynomial such that g(α) = `. Set r0 = f(x), r1 = g(x), and for i ≥ 0 define ri+2 to be
the unique polynomial of degree less than deg(ri+1) such that ri+2 ≡ ri mod ri+1. Then

Cork(CL)/k(C) ((`, x− α)2) =

(
n∑
i=0

(ri+1, ri)2

)
+

(
n∑
i=0

(ai+1, ai)2

)
,

where ai is the leading coefficient of ri and n is the first integer such that rn+2 = 0.

Corollary 2.6. — Modulo constant algebras, γ′(`) may be written as a sum of g(C) + 1
quaternion algebras over K(x).
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Proof. — The proposition shows that, modulo constant algebras,

γ′(`)= (r1, r0)2 + (r2, r1)2︸ ︷︷ ︸
=(r1,r0r2)2

+ · · ·+ (rn, rn−1)2 + (rn+1, rn)2︸ ︷︷ ︸
=(rn,rn−1rn+1)2

is a sum of dn/2e quaternion algebras over K(x). On the other hand, the ri are the
remainders obtained by applying the Euclidean algorithm to f(x) and g(x), so n ≤
deg(f(x)) ≤ 2(g(C) + 1).

Proof of Proposition 2.5. — For i ≥ 0, let Ri(y) = ri(x+ y), considered as an element in
the Euclidean ring K(x)[y]. Then, for all i ≥ 0, the leading coefficient of Ri(y) is ai, and

Ri+2(y) ≡ Ri(y) mod Ri+1(y) .

Moreover, R0(−x + α) = f(α) = 0 and R1(−x + α) = g(α) = `, and Ri and Rj are
relatively prime for all i, j since ` ∈ L×. In particular, rn+1 and Rn+1 are nonzero
constants. So by [GS06, Lemma 7.4.6 and Proposition 7.5.5],

CorL(x)/K(x) ((`, x− α)2) = (R1(y)|R0(y))rt ,

where (·|·)rt denotes the Rosset-Tate symbol. For any i ≥ 0, the Rosset-Tate reciprocity
law [GS06, Theorem 7.4.9] and the Merkurjev-Suslin theorem [GS06, Theorem 4.6.6] give

(Ri+1(y)|Ri(y))rt = (Ri+2(y)|Ri+1(y))rt + (Ri+1(0), Ri(0))2 + (ai+1, ai)2

= (Ri+2(y)|Ri+1(y))rt + (ri+1, ri)2 + (ai+1, ai)2 .

From this the result easily follows by induction.

2.2. When C is odd. —

Lemma 2.7. — Suppose that C is odd. Then, for every ` ∈ L×, γ′(`) evaluates to 0 at
the point ∞C ∈ C(K) above ∞ ∈ P1(K).

Proof. — Since deg f(x) is odd, the functions (x−α) and (x−α)deg f(x)

y2 represent the same

class in k(CL)×/k(CL)×2. The latter evaluates to 1 at ∞C , from which it follows that
γ′(`) is trivial at ∞C .

Remark 2.8. — For this lemma it is not enough to assume the existence of a rational
ramification point; one must in fact have an odd double cover. For example, suppose C is
defined by y2 = x(x−a1)(x−a2)(x−a3) with ai ∈ K×. Then L1 ' (K×/K×2)×(K×/K×2)
and γ′ sends (k1, k2) ∈ K××K× to (k1, (x−a1)(x−a3))2+(k2, (x−a2)(x−a3))2. Evaluating
at the ramification point ω = (0, 0) we have the algebra (k1, a1a3)2 + (k2, a2a3)2. The
only conditions these must satisfy are ki, ai ∈ K× and that the ai are distinct. Over say,
K = Q, one can easily find ki, ai for which this algebra is nontrivial.
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3. Computation of cocycles

Consider the following diagram:

BrK // BrC
h

//
� _

φ

�

H1(K,PicC) //
� _

ρ

�

H3(K,Gm)

BrK // H2(K,k(C)×) //

div∗
��

j∗
// H2(K,k(C)×/K

×
) //

div∗
��

H3(K,Gm)

H2(K,DivC) H2(K,DivC)

(3.1)

We claim that this diagram is commutative and that all rows and columns are exact.
The existence and exactness of the morphisms in the top row can be deduced from
exactness in the rest of the diagram. The second row and column come, respectively,
from the Galois cohomology of the exact sequences,

1→ K → k(C)×
j→ k(C)×/K

× → 1 ,

and

1→ k(C)×/K
× div→ DivC → PicC → 0 .

The connecting homomorphism ρ is injective since DivC is a permutation module, which
by Shapiro’s lemma implies that H1(K,DivC) = 0. By Tsen’s theorem the inflation map

inf : H2(K,k(C)×)→ H2(k(C),k(C)
×

) = Br k(C)

is an isomorphism. The map φ is the composition of the inverse of this inflation map with
the inclusion BrC ⊂ Br k(C). Exactness of the first column is proven in [CTS77, Lemme
14]. Commutativity of the bottom square is obvious. The other squares commute by
definition, so the diagram is exact and commutative as claimed.

Remark 3.1. — The existence of an exact sequence as in the top row of (3.1) also
follows from the spectral sequence Hp

ét(K,H
q
ét(C,Gm)) ⇒ Hn

ét(C,Gm). One can check
that these coincide, at least up to sign. See [CTS77, Annexe].

It follows from the definition of φ that the map BrK → BrC in the top row of (3.1)
is the natural map induced by the structure morphism of C. Hence, the map h in the
top row induces an injective homomorphism h0 : BrC/Br0C → H1(K,PicC). The goal
of this section is to compute the composition

Lc
γ−→ BrC

Br0C

h0−→ H1(K,PicC) (3.2)

explicitly. This is accomplished in Proposition 3.2 below, but first we need to fix some
notation.

Given ` ∈ L×, let χ` ∈ Z1(K,µ2(L)) be the corresponding quadratic character, i.e., fix

a square root m ∈ L× of `, and define χ`(σ) = σ(m)/m. Composing χ` with the bijection
µ2 → {0, 1} ⊆ Z sending −1 to 1, we obtain a map χ̃` ∈ C1(K,ZΩ). For any τ ∈ GK ,
we may consider χ̃`(τ) as a map Ω → {0, 1} ⊆ Z whose value at ω ∈ Ω will be denoted
χ̃`(τ)ω. Note that the action of an element σ ∈ GK on the map χ̃`(τ) is then given by
σ(χ̃`(τ))ω = χ̃`(τ)σ−1ω. The norm of χ` is the quadratic character χa ∈ Z1(K,µ2(K))
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associated to a = NormL/K(`) ∈ K×. We let χ̃a ∈ C1(K,Z) denote the corresponding
map to {0, 1}. We can then define a 1-cochain g` ∈ C1(K,Z) by requiring that∑

ω∈Ω

χ̃`(σ)ω = 2g`(σ) + χ̃a(σ) , for all σ ∈ GK . (3.3)

When C is even we use ∞+ and ∞− to denote the points on C lying above ∞ ∈ P1.
When C is odd we use both ∞+ and ∞− to denote the unique point ∞C ∈ C(K) lying
above ∞ ∈ P1(K). In both cases we set m = (∞+ +∞−) ∈ DivC.

Proposition 3.2. — Let ξ` ∈ C1(K,PicC) be the 1-cochain defined by

ξ`(σ) =

(∑
ω∈Ω

χ̃`(σ)ω[ω]

)
− g`(σ)[m]− χ̃a(σ)[∞+] . (3.4)

If ` represents a class in Lc, then

1. ξ` is a cocycle, and
2. the image of ξ` in H1(K,PicC) is equal to (h ◦ γ′)(`).

To prove Proposition 3.2(2) we will explicitly compute the images of ξ` and γ′(`) under
the maps φ and ρ of diagram (3.1). This will involve a rather technical computation with
cocycles carried out in the lemmas below. Having accomplished this, the proposition will
follow from a simple diagram chase.

Lemma 3.3. — For any σ, τ ∈ GK and ω ∈ Ω we have

1. χ̃`(τ)σ−1ω + χ̃`(σ)ω − χ̃`(στ)ω = 2χ̃`(σ)ωχ̃`(τ)σ−1ω, and

2. g`(τ) + g`(σ)− g`(στ) + χ̃a(σ)χ̃a(τ) = #{ω ∈ Ω : χ̃`(σ)ωχ̃`(τ)σ−1ω = 1}.
If, moreover, ` represents a class in Lc, then

3. σ(χ̃a(τ)∞+) + χ̃a(σ)∞+ − χ̃a(στ)∞+ = χ̃a(σ)χ̃a(τ)m .

Proof. — Since χ` is a 1-cocycle, we have χ`(στ) = σ(χ`(τ))χ`(σ). Evaluating at ω and
rearranging we get χ`(τ)σ−1ω = χ`(στ)ω/χ`(σ)ω. From this it follows that

χ̃`(τ)σ−1ω ≡ χ̃`(σ)ω − χ̃`(στ)ω mod 2 .

Since all of the terms are either 0 or 1 we see that

χ̃`(τ)σ−1ω + χ̃`(σ)ω − χ̃`(στ)ω =

{
2 if χ̃`(σ)ω = χ̃`(τ)σ−1ω = 1 ,

0 otherwise .

This proves (1). To prove (2) we sum both sides of (1) over all ω ∈ Ω and apply (3.3).
This gives

2g`(τ) + 2g`(σ)−2g`(στ) + χ̃a(τ) + χ̃a(σ)− χ̃a(στ) = 2#{ω ∈ Ω : χ̃`(σ)ωχ̃`(τ)σ−1ω = 1} .
Using that

χ̃a(τ) + χ̃a(σ)− χ̃a(στ) = 2χ̃a(σ)χ̃a(τ)

(which is proved by the same argument as above), and then removing the common factor
of 2 gives (2).

If ` represents a class in Lc, then a ∈ crK×2 for some r ∈ {0, 1}. If a ∈ K×2 then both
sides of (3) are trivial, so to prove (3) we may assume a ∈ cK×2. Under this assumption,
the action of GK on ∞+ is determined by the character χa, so all of the terms in (3) are
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determined by the values of χ̃a(σ) and χ̃a(τ). In each of the four possibilities, one can
check directly that (3) holds. This completes the proof.

Lemma 3.4. — Assume that ` represents a class in Lc, let ξ′` ∈ C1(K,DivC) denote
the 1-cochain defined by

ξ′`(σ) =

(∑
ω∈Ω

χ̃`(σ)ωω

)
− g`(σ)m− χ̃a(σ)∞+ ,

and let ∂ : C1(K,DivC)→ C2(K,DivC) denote the coboundary map on cochains. Then
for (σ, τ) ∈ GK ×GK, we have

∂ξ′`(σ, τ) = div
(
Normk(CL)/k(C)

(
(x− α)χ̃`(σ)·σ(χ̃`(τ))

))
.

In particular, ξ` is a cocycle and the image of its class under ρ is represented by the
2-cocycle

(σ, τ) 7→ Normk(CL)/k(C)((x− α)χ̃`(σ)·σ(χ̃`(τ))).

Proof. — The second statement follows easily from the first.
To prove the first statement we compute ∂ξ′` explicitly. For (σ, τ) ∈ GK ×GK we have

(∂ξ′`)(σ, τ) =
∑
ω∈Ω

(σ(χ̃`(τ)ωω) + χ̃`(σ)ωω − χ̃`(στ)ωω) (3.5)

− (g`(τ) + g`(σ)− g`(στ))m (3.6)

−
(
σ(χ̃a(τ)∞+) + χ̃a(σ)∞+ − χ̃a(στ)∞+

)
. (3.7)

Noting that
∑

ω∈Ω χ̃`(τ)ωσ(ω) =
∑

ω∈Ω χ̃`(τ)σ−1ωω and applying Lemma 3.3(1), (3.5)
can be reduced to

∑
ω∈Ω χ̃`(σ)ωχ̃`(τ)σ−1ω2ω. Lemma 3.3(3) states that (3.7) is equal to

−χ̃a(σ)χ̃a(τ)m. Using these facts and then applying Lemma 3.3(2) we obtain,

(∂ξ′`)(σ, τ) =

(∑
ω∈Ω

χ̃`(σ)ωχ̃`(τ)σ−1ω2ω

)
− (g`(τ) + g`(σ)− g`(στ) + χ̃a(σ)χ̃a(τ))m

=

(∑
ω∈Ω

χ̃`(σ)ωχ̃`(τ)σ−1ω2ω

)
−# {ω ∈ Ω : χ̃`(σ)ωχ̃`(τ)σ−1ω = 1}m

=
∑
ω∈Ω

χ̃`(σ)ωχ̃`(τ)σ−1ω (2ω −m)

=
∑
ω∈Ω

div
(
(x− x(ω))χ̃`(σ)ωχ̃`(τ)σ−1ω

)
= div

(
Normk(CL)/k(C)

(
(x− α)χ̃`(σ)·σ(χ̃`(τ))

))
.

This completes the proof.

Lemma 3.5. — Let ε ∈ C2(K,k(C)×) be the 2-cochain defined by

ε(σ, τ) = Normk(CL)/k(C)

(
(x− α)χ̃`(σ)·σ(χ̃`(τ))

)
.

Then ε is a 2-cocycle and the map φ in (3.1) sends γ′(`) to the class of ε in H2(K,k(C)×).
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Proof. — The composition inf ◦φ : BrC → Br k(C) is the natural inclusion. If ε̄ denotes
the cohomology class of ε, then inf(ε̄) is represented by the cocycle εk(C) defined by

εk(C)(σ, τ) = Normk(CL)/k(C)

(
(x− α)ψ̃`(σ)·σ(ψ̃`(τ))

)
,

where ψ̃` ∈ C1
(
k(C), {0, 1}Ω

)
and ψ` ∈ Z1

(
k(C), µ2(L)

)
denote the lifts of χ̃` and

χ`, obtained by considering ` as an element of k(CL). We want to show that εk(C)

represents Cork(CL)/k(C) ((`, x− α)2). We will instead show that Cork(CL)/k(C) ((x− α, `)2)
is represented by the inverse of εk(C). The result then follows from standard properties
of the cup product (or because all elements in question are 2-torsion).

Standard cohomological arguments combined with Shapiro’s lemma give a sequence of
isomorphisms

Br k(CL)[2] ' H2
(
k(CL), µ⊗2

2

)
' H2

(
k(C), µ2(L)⊗2

)
' H2

(
k(C), µ2(L)

)
,

under which (x−α, `)2 is represented by the cup product, (ψx−α ∪ ψ`) ∈ Z2(k(C), µ2(L)⊗2).
Here ψx−α denotes the quadratic character ψx−α ∈ Z1

(
k(C), µ2(L)

)
associated to x− α,

i.e., if s ∈ k(C)
×
L := (k(C)⊗K L)× is a square root of x−α, then ψx−α(σ) = σ(s)/s. The

image in H2(k(C), µ2(L)) of the cup product above is represented by the 2-cochain,

(ψx−α ∪ ψ`) (σ, τ) = ψx−α(σ)⊗ σ(ψ`(τ))

=

(
σ(s)

s

)σ(ψ̃`(τ))

=
σ(sψ̃`(τ))

sσ(ψ̃`(τ))

=

(
σ(sψ̃`(τ))sψ̃`(σ)

sψ̃`(στ)

)(
sψ̃`(στ)

sσ(ψ̃`(τ))sψ̃`(σ)

)
.

We now note that the first factor is the coboundary of the 1-cochain(
σ 7→ sψ̃(σ)

)
∈ C1

(
k(C),k(C)

×
L

)
,

while using the obvious analog of Lemma 3.3(1) we can rewrite the second factor as

(x− α)−ψ̃`(σ)·σ(ψ̃`(τ)) .

The norm of this expression is the inverse of εk(C). This proves that ε is a cocycle, and
that εk(C) represents Cork(CL)/k(C)((x− α, `)2) as required.

Proof of Proposition 3.2. — The first statement was proven in Lemma 3.4. For the sec-
ond statement, suppose ` represents a class in Lc and let ξ̄` denote the class of ξ` in
H1(K,PicC). Lemmas 3.4 and 3.5 show that

(j∗ ◦ φ ◦ γ′)(`) = ρ(ξ̄`).

Since ρ ◦ h = j∗ ◦ φ by (3.1) and ρ is injective, this completes the proof.

4. Cohomological setup for 2-descent

In the previous section we explicitly computed the map h ◦ γ : Lc → H1(K,PicC). In
this section we relate this to the map L1 → H1(K, J)/〈Pic1

C〉 coming from the theory of
explicit 2-descents described in [PS97].

The 2-torsion subgroup of J(K) may be identified (as a Galois module) with the
set of even cardinality subsets of Ω, modulo complements. Under this identification
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addition in J [2] is given by the symmetric difference (i.e., the union of the sets minus
their intersection), and the Weil pairing, denoted e2, of two subsets is given by the parity
of their intersection. By convention, for any ω ∈ Ω, the notation {ω, ω} will be understood
to mean the identity element.

For any ω0 ∈ Ω, we may define a map

eω0 : J [2]→ µ2(L) = Map(Ω, µ2(K)), P 7→ (ω 7→ e2(P, {ω, ω0})) . (4.1)

If ω1 ∈ Ω, then, for every P ∈ J [2], eω0(P ) and eω1(P ) differ by an element of µ2(K) ⊆
µ2(L), namely the constant map ω 7→ e2(P, {ω0, ω1}). Therefore we obtain a map
e : J [2] → µ2(L)/µ2(K) that is independent of the choice of ω0 ∈ Ω. Nondegeneracy
and Galois equivariance of the Weil pairing show that e is an injective morphism of GK-
modules. On the other hand,

∑
ω∈Ω{ω, ω0} = 0 ∈ J [2]. So e fits into a short exact

sequence,

0→ J [2]
e→ µ2(L)/µ2(K)

NormL/K−→ µ2(K)→ 1 . (4.2)

Remark 4.1. — When C is odd we may take ω0 to be the ramification point ∞C ∈
C(K). The identification of L◦ ⊆ L as the subalgebra of elements taking the value 1 at
∞C then induces a canonical isomorphism of short exact sequences of GK-modules:

0 // J [2] � �
e∞C

// µ2(L◦)
NormL◦/K

//

∼=
��

µ2(K) // 1

0 // J [2] � � e
// µ2(L)

µ2(K)

NormL/K
// µ2(K) // 1 .

Applying Galois cohomology to (4.2) gives an exact sequence,

µ2(K) // H1(K, J [2])
e∗

// H1(K,µ2(L)/µ2(K))
(NormL/K)∗

// H1(K,µ2) . (4.3)

If D ∈ Div1(C) is any divisor of degree 1 on C, then the 1-cocycle sending σ ∈ GK

to [σ(D) − D] ∈ Pic0(C) = J(K) represents the class in H1(K, J) of the torsor Pic1
C

parameterizing divisor classes of degree 1. Choosing D = ω for some ω ∈ Ω gives a
cocycle taking values in J [2], whose class in H1(K, J [2]) does not depend on the choice
for ω. We will abuse notation slightly by denoting this class in H1(K, J [2]) also by Pic1

C .
One can then check that −1 maps to Pic1

C under the map µ2(K)→ H1(K, J [2]) in (4.3)
(cf. [PS97, Lemma 9.1]).

Lemma 4.2. — The following are equivalent:

1. The class of Pic1
C in H1(K, J [2]) is trivial.

2. Ω admits an unordered GK-stable partition into two sets of odd cardinality.
3. [m] ∈ 2 PicC.

Proof. — See [PS97, Lemma 11.2]

Remark 4.3. — Note that these equivalent conditions are trivially satisfied when C is
odd. When C is even they occur if and only if f(x) has a factor of odd degree or if the
genus of C is even and there exists a quadratic extension F of K such f(x) is the norm
of a polynomial in F [x].
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Combining (4.3) with the Galois cohomology of

1→ µ2(K)→ µ2(L)
q→ µ2(L)/µ2(K)→ 1 .

we obtain a commutative diagram with exact rows and columns,

L×

K×L×2

NormL/K
//

� _

q∗
�

K×

K×2

H1(K,J [2])

〈Pic1
C〉

� � e∗
/

Υ
&&NNNNNNNNNNN

H1
(
K, µ2(L)

µ2(K)

) (NormL/K)∗
//

��

H1(K,µ2)

BrK[2]

(4.4)

The map labelled Υ sends ξ ∈ H1(K, J [2]) to the image of ξ ∪ Pic1
C under the map

H1(K, J [2]⊗ J [2])→ H2(K,µ2) = BrK[2]

induced by the Weil pairing [PS97, Proposition 10.3]. Exactness at the central term
of (4.4) implies the existence of an exact sequence

1→ L1
d→ H1(K, J [2])

〈Pic1
C〉

Υ→ BrK[2] . (4.5)

The exact sequence of K-group schemes

0→ Pic0
C → PicC

deg→ Z→ 0

induces an isomorphism H1(K, J)/〈Pic1
C〉 ' H1(K,PicC). So, composing with d, the

inclusions J [2] ⊆ J = Pic0
C ⊆ PicC induce maps from L1 to H1(K, J)/〈Pic1

C〉 and to
H1(K,PicC). By abuse of notation we will use d to denote any of these three maps.
The following proposition, due to Poonen and Schaefer, relates (4.5) to the Kummer
sequence (1.1).

Proposition 4.4. — The composition d ◦ (x− α) and the connecting homomorphism δ
in (1.1) define the same map Pic0C → H1(K, J [2])/〈Pic1

C〉.

Corollary 4.5. — There is an exact sequence

Pic0C
x−α−→ L1

d→ H1(K,PicC) .

Proof of Proposition 4.4. — See [PS97, Theorem 9.4] when C is even and [Sch95, Theo-
rem 1.1] when C is odd (see Remark 4.1).

The following lemma gives an explicit description of the map d.

Lemma 4.6. — Suppose ` ∈ L× represents a class ` ∈ L1 and let χ̃`, g` ∈ C1(K,Z) be
as in (3.3). Then d(`) is represented by the 1-cocycle ξ′′` ∈ Z1(K, J [2]) defined by

ξ′′` (σ) =

(∑
ω∈Ω

χ̃`(σ)ω[ω]

)
− g`(σ)[m].
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Proof. — The map q∗ in diagram (4.4) sends the class of ` to the class represented by χ`,
while e∗ is induced by the map in (4.2), itself induced by the map eω0 of (4.1). To prove
the lemma it is enough to show that, for every σ ∈ GK , eω0(ξ′′` (σ)) and χ`(σ) define the
same element of µ2(L)/µ2(K).

For any σ ∈ GK ,

g`(σ)[m] = g`(σ)[2ω0] = 2g`(σ)[ω0] =
∑
ω∈Ω

χ̃`(σ)ω[ω0] .

Since [ω]− [ω0] = {ω, ω0}, we may thus rewrite ξ′′` (σ) as

ξ′′` (σ) =
∑
ω∈Ω

χ̃`(σ)ω{ω, ω0}.

Now let υ ∈ Ω. We may express eω0(ξ′′` (σ))(υ) = e2(ξ′′` (σ), {υ, ω0}) as follows

e2(ξ′′` (σ), {υ, ω0}) =
∏
ω∈Ω

e2({ω, ω0}, {υ, ω0})χ̃`(σ)ω =
∏

ω 6=υ,ω0

e2({ω, ω0}, {υ, ω0})χ̃`(σ)ω .

Observing that e2({ω, ω0}, {υ, ω0}) = −1 unless ω = υ, ω = ω0 or υ = ω0, it follows that

eω0(ξ′′` (σ))(υ) = e2(ξ′′` (σ), {υ, ω0}) =
∏

ω 6=υ,ω0

χ`(σ)ω, for any v 6= ω0

Finally, we note that
∏

ω∈Ω χ`(σ)ω = 1 as ` ∈ L1 and obtain the desired conclusion, that
eω0(ξ′′` (σ))(υ) = χ`(σ)υχ`(σ)ω0 .

4.1. The kernel and image of (x − α). — The kernel of (x − α) on Pic0C is given
by [PS97, Theorem 11.3]. Using this we derive the following.

Proposition 4.7. — Let H be the kernel of the map (x− α) : PicC
2 PicC

→ Lc.

1. If Pic1
C(K) = ∅, then H = 0.

2. If Pic1
C(K) 6= ∅ and c /∈ K×2, then H is generated by [m].

3. If c ∈ K×2, then H is generated by [m] and [∞+].

Furthermore, if PicC = PicC(K), then the F2-dimension of (x− α)(PicC) is equal to

rank(PicC) + (r − 2) + dimF2

(
K× ∩ L×2

K×2

)
−

{
1 if c ∈ K×2 ,

0 if c /∈ K×2 ,

where r denotes the number of GK orbits in Ω.

Proof. — Set

∆1 =

{
1 if Pic1

C(K) 6= ∅,
0 if Pic1

C(K) = ∅ ,

∆2 =

{
1 if there is a GK-stable partition of Ω into two sets of odd cardinality

0 otherwise ,

∆c =

{
1 if c ∈ K×2

0 if c /∈ K×2 .

Let Pic(2)C ⊆ PicC denote the subgroup of divisor classes of degree divisible by 2. It

follows immediately from [PS97, Theorem 11.3] that the kernel of (x− α) on Pic(2) C
2 PicC

has
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dimension ∆1−∆2 and contains [m] if and only if ∆1 6= 0. (Note that ∆1−∆2 is always
non-negative by Lemma 4.2.) Clearly (x− α) maps divisors of degree m to classes with
norm in cmK×2. In particular, if c /∈ K×2, then the kernel of (x − α) does not contain
any divisor classes of odd degree. On the other hand, if c ∈ K×2, then [∞+] is defined
over K and lies in ker(x − α). It follows that dimF2 H = ∆1 − ∆2 + ∆c, and the first
three statements are clear.

It remains to compute the dimension of the image of (x − α). By assumption, C has
a K-rational divisor of odd degree if and only if ∆1 = 1, so

dimF2

PicC

2 PicC
= rank(PicC) + (∆1 − 1) + dimF2 J(K)[2] .

Since H has dimension ∆1 −∆2 + ∆c, it suffices to show that

dimF2 J(K)[2] = r − 1 + dimF2

(
K× ∩ L×2

K×2

)
−∆2 . (4.6)

As this does not depend on the model, we may assume C is even. Recall that the
elements of J(K)[2] correspond to unordered GK-stable partitions of Ω into two sets of
even cardinality. These can arise in essentially two ways: from even degree factors of
f(x), and from quadratic extensions F/K such that f(x) is the norm of a polynomial
over F . The partitions corresponding to even degree factors of f(x) over K generate a
subgroup of J(K)[2] of dimension equal to r − 2 or r − 1, correspondingly as f(x) does
or does not have any factors of odd degree. Partitions coming from a factorization over
a quadratic extension only occur when the genus of C is odd, and then only if f(x) has
no factor of odd degree, in which case they generate a subgroup of J(K)[2] of dimension
dimF2(K× ∩ L×2)/K×2. Thus, dimF2 J(K)[2] is equal to

r − 2 if f(x) has a factor of odd degree ,

r − 1 if f(x) has no factor of odd degree and g(C) is even ,

r − 1 + dimF2

(
K×∩L×2

K×2

)
if f(x) has no factor of odd degree and g(C) is odd .

When f(x) has a factor of odd degree we clearly have dimF2 ((K× ∩ L×2)/K×2) = 0
and ∆2 = 1, so (4.6) holds. Now assume that f(x) has no factors of odd degree. When
the genus of C is odd there cannot be a GK-stable partition of Ω into two sets of odd
cardinality because deg f(x) ≡ 0 mod 4. When the genus of C is even, deg f(x) ≡
2 mod 4, and so there can be at most one quadratic extension of K contained in L. If
such an extension exists, then it gives a GK-stable partition of Ω into two sets of odd
cardinality. Thus, when f(x) has no odd degree factors,

∆2 =

{
dimF2

(
K×∩L×2

K×2

)
if g(C) is even ,

0 if g(C) is odd .

Combining this with the dimension of J(K)[2] computed above gives (4.6) as desired.

5. Proofs of the main theorems

For n ≥ 2 define

BrnC =
{
A ∈ BrC : h(A) ∈ image

(
H1(K, J [n])→ H1(K,PicC)

)}
, and

BrΥ
2 C =

{
A ∈ BrC : h(A) ∈ image

(
ker(Υ)→ H1(K,PicC)

)}
,
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where h : BrC → H1(K,PicC) is as in (3.1), Υ : H1(K, J [2])→ BrK[2] is as in (4.5) and
the map H1(K, J [n])→ H1(K,PicC) is induced by the inclusion J [n] ⊆ J = Pic0

C ⊆ PicC .

Proposition 5.1. — There is an exact sequence

Pic0C
x−α−→ L1

γ−→ BrΥ
2 C/Br0C → 0 .

Proof. — From Proposition 3.2 and Lemma 4.6 it is clear that h0 ◦γ and d give the same
map L1 → H1(K,PicC). Since (4.5) is exact, im(d) = ker(Υ), so γ(L1) = BrΥ

2 C/Br0C.
The exactness stated in the proposition now follows immediately from Corollary 4.5.

Lemma 5.2. — Br2C/Br0C = (BrC/Br0C)[2] if and only if Pic1
C(K) 6= ∅ or Pic1

C /∈
2 H1(K, J).

Proof. — Recall that H1(K,PicC) ' H1(K, J)/〈Pic1
C〉. Therefore

Br2C

Br0C
' H1(K, J)[2]

〈Pic1
C〉

and

(
BrC

Br0C

)
[2] '

(
H1(K, J)

〈Pic1
C〉

)
[2] .

The condition in the statement is that Pic1
C is trivial or not divisible by 2 in H1(K, J).

These are precisely the situations in which

H1(K, J)[2]

〈Pic1
C〉

=

(
H1(K, J)

〈Pic1
C〉

)
[2] .

Lemma 5.3. — If BrK[2] = 0 or Ω admits a GK-stable unordered partition into two
sets of odd cardinality, then BrΥ

2 C = Br2C.

Proof. — Either assumption implies that Υ = 0.

Remark 5.4. — In general one should not expect that BrΥ
2 C = Br2C. For example, if

K is a p-adic field, Pic1
C(K) 6= ∅ and Ω does not admit a GK-stable partition into two sets

of odd cardinality, then BrΥ
2 C 6= Br2C. To see this, recall that the the cup product on

H1(K, J [2]) is nondegenerate (see [Tat63, §2]). The above assumptions therefore imply
that there exists some T ∈ H1(K, J [2]) such that Υ(T ) 6= 0. Let T ′ ∈ H1(K,PicC) be the
image of T . Then every lift of T ′ to H1(K, J [2]) is of the form T̃ = T + δ(P ) for some
P ∈ J(K), and none of them lie in ker(Υ) since Υ(T̃ ) = Υ(T ) + Υ(δ(P )) = Υ(T ) 6= 0.
Here Υ(δ(P )) = 0 since Pic1

C lies in the image of δ, which is self-orthogonal with respect to
the pairing (ibid.). This shows that if A ∈ Br2C is such that h(A) = T ′, then A /∈ BrΥ

2 C.
Moreover, such an A exists as H3(K,Gm) = 0.

5.1. Proof of Theorems 1.2 and 1.3. — In the odd case we have already seen
that γ maps L1 to Br0C (Lemma 2.7). Using Lemmas 5.2 and 5.3 we see that the
hypotheses imply that BrΥ

2 C/Br0C = (BrC/Br0C)[2], so the theorems follow from
Proposition 5.1.
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5.2. Proof of Theorem 1.1. —

Lemma 5.5. — We have that γ(Lc \ L1) 6⊆ Br2C/Br0C if and only if Pic1
C(K) = ∅

and Lc 6= L1.

Proof. — The statement is trivially true when Lc = L1. So suppose ` ∈ L× is a represen-
tative for a class ` ∈ Lc\L1. Then h0◦γ(`) is represented by the cocycle ξ` ∈ C1(K,PicC)
of Proposition 3.2. Using that 2[ω] = [m] in PicC we have

2ξ`(σ) =

(∑
ω∈Ω

χ̃`(σ)ω2[ω]

)
− 2g`(σ)[m]− 2χ̃c(σ)[∞+]

= χ̃c(σ)[m]− χ̃c(σ)2[∞+]

= χ̃c(σ)([∞]− − [∞+]) .

This shows that, when considered as a cocycle taking values in Pic0C = J(K), 2ξ`
represents the class of Pic1

C in H1(K, J). This class is trivial if and only if Pic1
C(K) 6= ∅.

The lemma now follows easily from the definition of Br2C.

Proposition 5.6. — The complex

PicC
x−α−→ Lc

γ−→
(

BrC

Br0C

)
[2]

is exact except possibly if Pic1C = ∅ 6= Pic1
C(K) and c̄ ∈ NormL/K(L), in which case the

image of (x− α) is a subgroup of index at most 2 in ker(γ).

Proof. — Consider the following commutative diagram.

Pic0 C
2 Pic0 C

(x−α)
//

��

L1

γ
//

��

Br2 C
Br0 C

��

PicC
2 PicC

(x−α)
// Lc

γ
// BrC
Br0 C

(5.1)

The top row is exact by Proposition 5.1, and the bottom row is a complex by Corollary 2.4.
Let us first consider the case when Lc = L1. This happens if and only if c ∈ K×2 or c̄ /∈

NormL/K(L). When c ∈ K×2 we have [∞+] ∈ ker(x−α), and when c̄ /∈ NormL/K(L) there
are no K-rational divisor classes of odd degree [Cre, Corollary 4.4]. Both possibilities
imply that (x−α)(PicC) = (x−α)(Pic0C), and so exactness of the bottom row follows
from exactness of the top row of (5.1).

Now we consider the case Lc 6= L1, which implies that c̄ ∈ NormL/K(L). Then (x− α)
sends K-rational divisor classes of odd degree to Lc \L1 [Cre, Lemma 4.3]. If [Lc : L1] =[

PicC
2 PicC

: Pic0 C
2 Pic0 C

]
= 2, then exactness follows from the fact that the top row is exact and

the bottom row is a complex. So we may assume there are no K-rational divisors of
odd degree. Then (x − α)(PicC) = (x − α)(Pic0C) ⊆ L1, and exactness follows from
exactness of the top row of (5.1), except possibly if γ(Lc)∩ γ(L1) 6= ∅. Lemma 5.5 shows
that this can only happen when Pic1

C(K) 6= ∅.

To complete the proof of Theorem 1.1 it only remains to show that γ(Lc) = (BrC/Br0C)[2]
when BrK[2] = 0. By Proposition 5.1 and Lemma 5.3 the assumption on BrK[2] implies
that γ(L1) = Br2C/Br0C. Lemma 5.2 allows us to further assume that Pic1

C is nonzero
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and divisible by 2 in H1(K, J). Then Br2C/Br0C has index 2 in (BrC/Br0C)[2], so
using Lemma 5.5 it suffices to show that Lc \ L1 6= ∅. We know that c /∈ K×2, otherwise
Pic1

C would be trivial in H1(K, J). So we are reduced to showing that there exists some
` ∈ L× such that NormL/K(`) ∈ cK×2.

For this we will make use of the theory of torsors under groups of multiplicative type
as described in [Sko01, Part I]. For X = C or X = Pic1

C , let λn denote the canonical
embedding λn : J [n] ∼= Pic0

X [n] ⊆ PicX . An n-covering of X is an X-torsor under
J [n] of type λn. Since Pic1

C ∈ 2 H1(K, J), there exists a 2-covering T → Pic1
C (see

[Sko01, Proposition 3.3.5]). Pulling this back along the canonical embedding C → Pic1
C

gives a 2-covering ψ : Y → C. For any ω ∈ Ω the pull back ψ∗[ω] is a K-rational divisor
class on Y .

If ψ∗[ω] ∈ PicY , then it induces a projective embedding of Y in which the pull backs
of the ramification points on C are hyperplane sections. Up to composition with the
hyperelliptic involution on C, the 2-coverings of C with a model of this type are pa-
rameterized by the elements in the set

{
` ∈ L : NormL/K(`) ∈ cK×2

}
(see [BS09, §3] or

[Cre, Proposition 5.4]). In particular, it will suffice to show that ψ∗[ω] ∈ PicY , for then
there exists some ` ∈ L× with norm in cK×2.

The obstruction to a rational divisor class being represented by a rational divisor is

given by a well known exact sequence, 0→ PicY → PicY (K)
θ→ BrK . In our situation,

2ψ∗[ω] = ψ∗[2ω] = ψ∗[m] ∈ PicY . So θ(ψ∗[ω]) ∈ BrK[2], which is trivial by assumption.
This completes the proof.

Remark 5.7. — If one is willing to assume that K is C1, then the final argument of the
proof above can be simplified: the equation NormL/K(`) = ca[L:K] with ` ∈ L and a ∈ K
gives a homogeneous equation of degree [L : K] in [L : K] + 1 variables. If K is C1, then
it must have a solution.

6. Relation to the Cassels-Tate pairing

Throughout this section K is a number field. Let X be a smooth, projective, and
geometrically integral variety X over K. There is a well known pairing due to Manin,

〈·, ·〉Br : Br(X)×X(AK) −→ Q/Z , 〈A, (Pv)〉Br 7→
∑
v

invv evalPv(A) ,

where the sum runs over all places of K. By the Hasse reciprocity law, the left kernel
contains Br0(X) and the right kernel contains the diagonal image of X(K) in X(AK).
For any subgroup B ⊆ Br(X), we denote by X(AK)B the subset of X(AK) which is
orthogonal to B with respect to the pairing. Define

BrxX =
{
A ∈ BrX : h(A) ∈ im

(
X(Pic0

X)→ H1(K,PicX)
)}

,

where for an abelian variety A over K, X(A) denotes its Tate-Shafarevich group.
The following is a slight generalization of [Sko01, Theorem 6.2.3], which is due to

Manin. Similar methods have been used to give a conditional proof that the Brauer-
Manin obstruction to 0-cycles of degree 1 on smooth projective curves is the only one
(see [ES08, Theorem 1.1], [CT99, Proposition 3.7], [Sai89, Theorem 8.4]). As a corollary
we observe that [Sto07, Corollary 7.7] holds for all curves, not just those possessing a
K-rational divisor class of degree 1.
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Theorem 6.1. — Assume that X(AK) 6= ∅. Let A = Alb0
X , V = Alb1

X and suppose
A ∈ BrxX is such that h(A) is the image of W ∈X(Pic0

X) = X(A∨). Then, for any
adelic point (Pv) ∈ X(AK),

〈A, (Pv)〉Br = −〈V,W 〉ct ,

where 〈·, ·〉ct denotes the Cassels-Tate pairing on X(A)×X(A∨). In particular, X(AK)A

is either empty or equal to X(AK), and X(AK)BrxX = ∅ if and only if Alb1
X is not divisible

in X(A).

Corollary 6.2. — If X is a smooth, projective, and geometrically integral curve, then
for any n,

X(AK)n-ab = X(AK)BrX[n] ,

i.e., the adelic information coming from an n-descent is precisely the information coming
from the n-torsion in the Brauer group.

Remark 6.3. — The set X(AK)n-ab is defined in [Sto07]; [Sko01, Theorem 6.1.2] shows
that X(AK)n-ab = X(AK)BrnX , where BrnX ⊆ BrX is as defined at the beginning of §5.
Thus the corollary can also be interpreted as saying that the elements of BrX[n] \BrnX
provide no additional information regarding the adelic points of X. In fact, the proof
below shows that the elements of BrX[n] \ BrnX provide no information whatsoever.

Proof of Corollary 6.2. — As remarked above, X(AK)BrX[n] ⊆ X(AK)BrnX = X(AK)n-ab.
So if X has no locally solvable n-coverings, then both sets in question are empty. We
may thus assume that X has an everywhere locally solvable n-covering. This implies that
Pic1

X = nW for some W ∈ X(J) and that 〈·, ·〉ct is alternating [PS99]. Now suppose
w ∈ BrxX has the same image in H1(K,PicX) as W . For any adelic point (Pv) ∈ X(AK),
applying the theorem gives:

〈w, (Pv)〉Br = 〈Pic1
X ,W 〉ct = 〈nW,W 〉ct = n〈W,W 〉ct ,

which is trivial since the pairing is alternating. Hence, X(AK)w = X(AK).
In the exact sequence,

Z→ H1(K,Pic0
X)→ H1(K,PicX)→ 0 ,

1 ∈ Z maps to the class of Pic1
X . It follows that the quotient of (BrX/Br0X)[n] by

BrnX/Br0X is cyclic and generated by the image of w. The result follows since we have
shown that w does not obstruct any adelic points.

Proof of Theorem 6.1. — For the case that X is a torsor under an abelian variety (e.g.,
X = V ) see [Man71, 6. Théorème] or [Sko01, Theorem 6.2.3]. To derive the general
result from this, note that the canonical morphism φ : X → V induces an isomorphism
Pic0

X
∼= Pic0

V , and consequently a commutative diagram,

X(Pic0
V )

φ∗

� � // H1(K,Pic0
V )

φ∗

// H1(K,PicV )

φ∗

��

Br1 V/Br0 V

φ∗

��

X(Pic0
X)

� � // H1(K,Pic0
X) // H1(K,PicX) Br1X/Br0X .

Suppose W ∈ X(Pic0
X) and A ∈ BrxX are as in the statement. From the diagram

above it is clear that there exists A′ ∈ Brx V such that φ∗A′ ≡ A mod Br0X. Then we
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have

〈A, (Pv)〉Br = 〈φ∗A′, (Pv)〉Br = 〈A′, φ(Pv)〉Br = −〈V,W 〉ct ,
since the theorem holds for V .

The final statement follows from the fact that the left and right kernels of the Cassels-
Tate pairing are the maximal divisible subgroups [Tat63].

6.1. Computing Brauer-Manin Obstructions. — The following proposition shows
that, even though γ may not be surjective, its image contains an arithmetically interesting
subgroup of (BrC/Br0C)[2].

Proposition 6.4. — Let C be a double cover of P1
K with C(AK) 6= ∅. Then

(BrxC/Br0C)[2] ⊆ γ(Lc) .

Proof. — Set Brx,2C = (BrxC) ∩ (Br2C). By [PS97, Theorem 13.3], the subgroup
of H1(K, J [2])/〈Pic1

C〉 mapping into X(J)[2]/〈Pic1
C〉 is contained in the kernel of Υ. It

follows that Brx,2C ⊆ BrΥ
2 C, and so Brx,2C/Br0C ⊆ γ(L1) by Proposition 5.1. If

BrxC[2] ⊆ Brx,2C, then there is nothing more to prove. Hence we may assume that
there exists some w ∈ BrxC[2] \ Brx,2C. Then, as in the proof of Corollary 6.2, the
quotient of (BrxC/Br0C)[2] by Brx,2C/Br0C is of order 2.

The existence of w implies that there exists W ∈ X(J) such that 2W = Pic1
C 6= 0.

By [Cre, Theorem 4.6] this implies that there exists some ` ∈ Lc \L1 such that resv(`) ∈
(x−α)(Pic1CKv), for every completion Kv of K. Since γ◦(x−α) = 0 by Corollary 2.4, we
must have γ(`) ∈ BrxC/Br0C. On the other hand, γ(`) /∈ Br2C/Br0C by Lemma 5.2.
Thus γ(`) must generate the quotient of (BrxC/Br0C)[2] by Brx,2C/Br0C. Therefore,
(BrxC/Br0C)[2] ⊆ γ(Lc).

Remark 6.5. — Regardless of whether C is locally solvable or not, the proof of Corol-
lary 6.2 shows that C(AK)(Brx C)[2] = C(AK)Brx,2 C . When C has a Kv-rational divisor
of degree 1 for every completion Kv of K, then Brx,2C/Br0C ⊆ γ(L1). In this case
the subgroup of L1 mapping into BrxC/Br0C is the fake 2-Selmer group of J , denoted
Sel2fake(J). An algorithm for computing it is described in [PS97]. Together with the
following proposition, this gives a practical algorithm for computing the induced map

Sel2fake(J)→ X(J)[2]

〈Pic1
C〉

〈Pic1
C ,·〉−→ Q/Z ,

at least when C(AK) 6= ∅.

Proposition 6.6. — Suppose C : y2 = cf(x) is an even double cover of P1 defined over
K with C(AK) 6= ∅ and that the coefficients of cf(x) are integral. Let β ∈ X(J), and
suppose ` represents ` ∈ Lc such that d(`) and β give the same class in X(J)/〈Pic1

C〉.
Then, for any (Pv) ∈ C(AK).

〈Pic1
C , β〉ct =

∑
v∈S

invv evalPv Cork(CL)/k(C)(`, (x− α))2 ,

The sum here runs over the primes in the finite set S consisting of all primes of K
appearing with multiplicity greater or equal to 2 in 4c2 · disc(f) and all archimedean
primes.
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Proof. — If v does not lie in S, then both (x− α)([Pv]) and ` have even valuation at all
primes w above v, by [BS09, Lemma 4.3] and [Sto01, Proposition 5.10]. For such v the
invariant invv evalPv Cork(CL)/k(C)(`, (x− α))2 = 0.

6.2. An Example. —

Theorem 6.7. — Let c be a square free integer, let C be the locally solvable double cover
of P1

Q given by

C : y2 = c(x2 + 1)(x2 + 17)(x2 − 17) .

Then (−1, x2 − 17)2 ∈ BrxC, and if W ∈X(J) denotes a corresponding torsor, then

〈Pic1
C ,W 〉ct =

#
{
p | c : p is an odd prime, and

(
17
p

)
=
(
−1
p

)
= −1

}
2

+
sign(c)− 1

4

Furthermore, if 〈Pic1
C ,W 〉ct = 1/2, then dimF2 X(J)[2] ≥ 2 and neither W nor Pic1

C is
divisible by 2 in H1(Q, J).

Proof. — We first note that (−1, x2 − 17)2 = γ′(`), for the element

` = (1, 1,−1) ∈ Q(
√
−1)×Q(

√
−17)×Q(

√
17) ' L.

It is easy to see that C is locally solvable. In fact, it has a Qp-rational ramification point

for every prime p. One can also check that resp(`) ∈ (L⊗Qp)
×/Q×p (L⊗Qp)

×2 is trivial for

every prime p (this is weaker than requiring resp(`) ∈ Q×p (L⊗Qp)
×2 everywhere locally).

This imples that γ′(`) ∈ BrxC. Consequently there is a torsor W ∈X(J) whose class
in X(J)/〈Pic1

C〉 is represented by d(`). By Theorem 6.1 and Proposition 6.6, for any
(Pp) ∈ C(AQ), we have

〈Pic1
C ,W 〉ct = 〈γ′(`), (Pp)〉Br =

∑
p

invp
(
evalPp(−1, x2 − 17)2

)
, (6.1)

To ease notation, let us set εp = invp
(
evalPp(−1, x2 − 17)2

)
. Note that, by Theorem 6.1,

εp depends on c, but not on the subsequent choice for Pp.

Lemma 6.8. — Let p be an odd prime. Then

εp =

{
1/2 if

(
−1
p

)
=
(
−17
p

)
= −1 and p | c ,

0 if else .

ε2 =

{
0 if c ≡ 1, 2 or 5 mod 8 ,

1/2 if c ≡ 3, 6 or 7 mod 8 ;

ε∞ =

{
0 if c > 0 ,

1/2 if c < 0 ;
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The lemma is proved below; using it gives:

ε2 = #

{
p | c :

(
−1

p

)
= −1

}
/2

= #

{
p | c :

(
−1

p

)
=

(
17

p

)
= −1

}
/2 + #

{
p | c :

(
−1

p

)
=

(
−17

p

)
= −1

}
/2

= #

{
p | c :

(
−1

p

)
=

(
17

p

)
= −1

}
/2 +

∑
p|c

εp ,

from which the formula in the theorem follows easily.
Now let us prove the final statement of the theorem. Since C(AK) 6= ∅, the pairing
〈·, ·〉ct is alternating [PS99]. Tate’s proof that the left and right kernels of the pairing
are the maximal divisible subgroups [Tat63, Theorem 3.2] shows that 〈·, ·〉ct induces a
nondegenerate alternating pairing on X(J)[2]/2X(J)[4]. As is well known, this implies
that the order of this group is a square. If 〈Pic1

C ,W 〉ct = 1/2, then the group is nontrivial,
and hence has dimension at least 2. To show that this also implies that Pic1

C /∈ 2 H1(K, J),
we use [Cre13, Theorem 3], which states that an element of X(J) is divisible by n in
H1(K, J) if and only if it pairs trivially with the image of X1(K, J [n]) in X(J)[n]. In
our situation we know that W lies in this image of X1(K, J [2]) →X(J), because ` is
locally trivial.

Proof of Lemma 6.8. — Suppose p is odd. If
(

17
p

)
= −1, then ` is trivial since −1 is a

square in Q(
√

17)⊗Qp. So suppose
(

17
p

)
= 1, let a ∈ Qp be a square root of 17 and set

Pp = (a, 0) ∈ C(Qp). Then

εp = invp eval(a,0)(−1, x2 − 17)2

= invp eval(a,0)

(
−1, c(x2 + 17)(x2 + 1)

)
2

= invp(−1, c · 22 · 32 · 17)2

= invp(−1, c)2 ,

which is nontrivial if and only if p | c and
(
−1
p

)
= −1. To arrive at the statement in the

lemma, note that if
(
−1
p

)
= −1 and

(
17
p

)
= 1, then

(
−17
p

)
= −1.

Clearly ε2 depends only on the class of c in Q×2 /Q×2
2 . The table below gives, for

each square class, a value x(P2) ∈ Z for which f(x(P2)) ≡ c mod Q×2
2 , i.e., x(P2) is the

x-coordinate of a Q2-point on the curve y2 = cf(x). The corresponding invariant is then

ε2 = inv2(−1, x(P2)2 − 17)2 ,

The claim above follows immediately from the table.

c mod Q×2
2 1 2 3 5 6 7 10 14

x(P2) 9 5 2 15 13 0 11 3
ε2 0 0 1/2 0 1/2 1/2 0 1/2

For any real point P∞ ∈ C(R) \ Ω, ε∞ = inv∞(−1, x(P∞)2 − 17)2, which can be
nonzero if and only if there are real points with |x(P∞)| <

√
17, which occurs if and only

if c < 0.
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PART II

DOUBLE COVERS OF RULED SURFACES

7. Introduction

Let k be a separably closed field of characteristic not equal to 2, and let $ : S → W be a
ruled surface over k. Let π : X0 → S be a double cover, and let X be the desingularization
of X0 that is obtained by a canonical resolution (see [BHPVdV04, §III.7] for the definition).
In this, the second part of the paper, we aim to give an explicit finite presentation of
BrX[2] in terms of generators given by central simple algebras over k(X). Our main
results in this direction are Theorems 9.3, 10.1 and 11.2. Note that since P2 blown up
at a point is a ruled surface and the Brauer group is a birational invariant, the results in
this part apply to double covers of P2.

7.1. Notation. — Let C be the generic fiber of X → S → W ; it is a double cover
of P1 defined over K = k(W ). As in Part I we may fix an even model for C of the
form y2 = cf(x), where c ∈ K× and f is squarefree and monic of degree 2g(C) + 2.
This implies that C → P1

K is not ramified above the point ∞ ∈ P1
K . We let S denote

the flat closure of ∞ in S. The purity theorem [Fuj02] identifies BrX as the subgroup
of BrC unramified at all vertical divisors. Since k is separably closed, BrK = 0 by
Tsen’s theorem. Hence, Theorem 1.1 gives a presentation of BrC[2] as the image of the
surjective map γ : Lc → BrC[2].

Let B0 denote the union of the connected components of the branch locus of X/S
that map dominantly to W . We will assume that B0 is nonempty. This is equivalent to
assuming that X is geometrically irreducible. The restriction of the map $ : S → W to
B0 may not be flat as B0 may have vertical components. Let B0,fl ⊆ B0 be the maximal
subvariety such that the map B0,fl → W is flat, i.e., B0,fl is the union of all irreducible
components of B that map dominantly to W . We write B for the normalization of B0

in X, and write Bfl for the normalization of B0,fl in X. Note that k(Bfl) = L and
k(B) = L× k(x)n, where n equals the number of vertical components of B0. We denote
the normalization map B → B0 by ν and sometimes conflate ν with ν|Bfl .

Since X was obtained by a canonical resolution, the curve B is smooth [BHPVdV04,
§III.7]. In particular, B is a disjoint union of integral curves Bi. We define Div(B) :=∏

Div(Bi) and Jac(B) :=
∏

Jac(Bi). By convention we set g(B) =
∑
g(Bi) + 1−h0(B),

where h0(B) is the number of connected components of B. The same notation will be
used with Bfl in place of B.

If b ∈ B0,fl is a point lying over w ∈ W and ` ∈ L×, we define

vb(`) :=
∑

b′∈Bfl,b′ 7→b

vb′(`), e(b/w) :=
∑

b′∈Bfl,b′ 7→b

e(b′/w),

where e(b′/w) denotes the ramification index of the map Bfl → W at b′ and vb′(`) is the
valuation of ` at b′.

Since the branch locus of π is generically smooth and S is smooth, X0 is regular in
codimension 1. Let E be the set of curves on X that are either contracted to a point in
X0, or lie over some w ∈ W such that Sw is singular. Since X0 is regular in codimension
1, the morphism X → X0 is an isomorphism away from E . We say that an irreducible
curve F on X is exceptional if F ∈ E and non-exceptional otherwise. If F is a curve on X0,
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we will often abuse notation and let ∂F denote the residue map at the strict transform of
F on X.

Remark 7.1. — There are some curves in E which are not “exceptional” in the usual
sense, i.e., are not the exceptional divisor of some blow-up. Such curves are all components
of X0

w for some w ∈ W such that Sw is not smooth. In particular, if S is geometrically
ruled, i.e., every fiber is isomophic to P1, then every curve in E is the exceptional divisor
of some blow-up.

Remark 7.2. — The surface X considered is in fact birational to a double cover of a
geometrically ruled surface of the form P1 ×W . However, allowing for a more general
ruled surface enables us to choose a model where the branch locus has milder singularities.
This will be used when we consider the Brauer group of an Enriques surface in §11.

Remark 7.3. — Many of the arguments below are simpler and more intuitive when
B0 = B0,fl, and even more so under the additional assumption that B0 is smooth and
irreducible. As many of the results are of equal interest in these cases, the reader may
wish to make these assumptions on a first reading.

Outline of Part II. — In §8, we determine necessary and sufficient conditions for a
Brauer class γ(`) to be unramified outside E , and show that BrX[2] = Br(X \ E)[2]
when S is geometrically ruled and B0 has at worst simple singularities. In §9, we exhibit
functions satisfying these conditions and prove that, when S is geometrically ruled, every
class Br(X \ E)[2] can be represented using a product thereof. In the same section, we
also explain how the results can be used to give a presentation of BrX ′[2] when X ′ is a
smooth double cover of P2. Next, in §10, we use our presentation to determine the size of
BrX[2]. In §11, we compute the non-trivial Brauer class for any Enriques surface, and
in §12 use this class in an example to give a transcendental Brauer-Manin obstruction to
weak approximation.

8. Residues at vertical divisors

8.1. The non-exceptional curves. —

Proposition 8.1. — Fix w ∈ W such that Sw is smooth and fix ` ∈ L× such that ` ∈ Lc.

1. If X0
w is reduced and irreducible, then ∂X0

w
(γ(`)) ∈ κ(X0

w)×2 if and only if

e(b′/w)vb(`) ≡ e(b/w)vb′(`) mod 2 , for all b, b′ ∈ B0
w \ (B0

w ∩S). (8.1)

2. If X0
w is reduced and reducible and Sw is smooth, then ∂F (γ(`)) ∈ κ(F )×2 for all

irreducible components F ⊆ X0
w if and only if

vb(`) ≡ 0 mod 2 , for all b ∈ B0
w \ (B0

w ∩S). (8.2)

3. If Sw ⊆ B0, then ∂(X0
w)red

(γ(`)) ∈ κ((X0
w)red)×2 for all ` ∈ L×.

Corollary 8.2. — Let ` ∈ Lc. Then γ(`) ∈ Br(X \ E) if and only if some (equivalently
every) representative of ` satisfies (8.1) at every w ∈ W such that X0

w is reduced and
irreducible and Sw is smooth and satisfies (8.2) at every w ∈ W such that X0

w is reduced
and reducible and Sw is smooth.
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Proof. — Every non-exceptional vertical curve maps dominantly to a smooth and irre-
ducible Sw for some w ∈ W . If Sw is smooth and irreducible, then X0

w is reduced if and
only if Sw ⊆ B0. Therefore, for every F ∈ X(1) \ E , Proposition 8.1 gives necessary and
sufficient conditions for ∂F (`) ∈ κ(F )×2. This is exactly the content of the Corollary.

Proof of Proposition 8.1. — Fix ` ∈ L× such that ` ∈ Lc and let F ⊆ X0
w be a reduced

and irreducible curve. Using (2.2), we see that

∂F (γ(`)) =
∏

F ′∈(X′
Bfl )(1)

F ′ 7→F dominantly

Normκ(F ′)/κ(F )(`
w′(x−α)(x− α)w

′(`)). (8.3)

Here X ′
Bfl denotes the desingularization of XBfl := X×WBfl, and w′ denotes the valuation

associated to F ′. The surface X ×W Bfl is regular at all codimension 1 points lying over
w ∈ W such that X0

w is reduced.
Assume that X0

w is not reduced, or, equivalently, that Sw ⊂ B0. Then the map on
residues H1(κ(Sw),Q/Z)→ H1(κ(X0

w),Q/Z) is identically zero on 2-torsion classes. Since
γ′(`) ∈ im (res Br k(S)→ Br k(X)), the residue ∂(X0

w)red
(`) ∈ κ((X0

w)red)×2 for all ` ∈ L×.
Henceforth, we assume that X0

w is reduced, or, equivalently, that B0,fl
w = B0

w. Then,
since X ×W Bfl is regular at all codimension 1 points above w, the prime divisors of X ′

Bfl

that map dominantly to F are exactly the prime divisors of XBfl that map dominantly
to F.

To compute the residues at X0
w, we will need to have a model of the fiber. For this, we

will use the following lemma.

Lemma 8.3. — For every w ∈ W such that Sw is smooth, there exists an open set
U ⊂ W containing w and constants a, b ∈ K such that

SU
∼→ P1

k × U, s 7→ (ax(s) + b,$(s)).

Proof. — By the Noether-Enriques theorem [Bea96, Thm. III.4], there is an isomorphism
ϕ : SU → P1 × U which commutes with the obvious morphisms to U . After possibly
composing with an automorphism of P1

k, we may assume that S maps to {∞} × U . To
complete the proof we observe that ϕ must induce an automorphism of P1

K that preserves
∞.

Fix U ⊂ W , a, b ∈ K as in the lemma. Note that, the algebra Cork(CL)/k(C) ((`, a)2) is
constant, and hence trivial. Therefore, Cork(CL)/k(C) ((`, ax+ b− (aα + b))2) = γ′(`).

Hence, by replacing x with ax+ b, α with aα+ b and f with f(x/a− b/a) if necessary,
we may assume that x is a horizontal function, i.e. that it has no zeros or poles along any
fibers of U , and that it restricts to a non-constant function along any fiber of U . Then
the function x−α has non-positive valuation along any fiber of XBfl

U
, and it has negative

valuation on the fibers of XBfl
U

where α has negative valuation.

Assume that Bw ∩S = ∅; then w′(x − α) = 0 for all F ′ lying over F . Moreover, the
norm map, Normκ(F ′)/κ(F ), is an isomorphism for all F ′, so (8.3) gives

∂F (γ(`)) =
∏
P∈Bw

vP (`)≡1 mod 2

(x− α(P )).

If X0
w is irreducible, then (8.1) fails if and only if there exist points b, b′ ∈ B0

w with odd
ramification index over w and such that vb(`) and vb′(`) have different parity. Using this
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equivalence, the assumption that that ` ∈ Lc, as well as the defining equation for X0
w, we

see that ∂F (γ(`)) /∈ κ(F )×2 if and only if (8.1) fails. If X0
w is reducible, then F is rational

and κ(F ) = k(x). One can check that (8.2) fails if and only if there is a b ∈ Bw such that
vb(`) ≡ 1 mod 2 which in turn occurs if and only if ∂F (γ(`)) /∈ κ(F )×2.

It remains to consider the case when B0
w ∩ S 6= ∅. In this case, there is a unique

valuation w′∞ such that w′∞(x − α) < 0; w′(x − α) = 0 for all other F ′ lying over F .
Indeed, this unique valuation w′∞ corresponds to the unique point of intersection B0

w∩S.
Since w′∞(x) = 0, the function (x − α)w

′
∞(`)/`w

′
∞(x−α) reduces to a constant in κ(F ′∞).

Therefore,

∂F (γ(`)) =
∏

b∈B0
w\(B0

w∩S)
vb(`)≡1 mod 2

(x− α(P )).

Using the same reasoning as above, we see that ∂F (γ(`)) /∈ κ(F )×2 if and only if (8.1)
or (8.2) fails, depending whether X0

w is irreducible, respectively reducible.

8.2. Exceptional curves lying over simple singularities. —

Proposition 8.4. — Let F be a (−2)-curve lying over a simple singularity of X0. If
A ∈ Br k(X)[2] is unramified at all curves F ′ ⊂ X that intersect F and that are not
contracted in X0, then A is unramified at F . In particular, if S is geometrically ruled
and B0 has at worst simple singularities, then BrX[2] = Br(X \ E)[2].

Proof of Proposition 8.4. — The canonical resolution of a simple singularity consists of
a series of a blow-ups. Therefore, the preimage of a simple singularity P ∈ X0 is a tree
of (−2)-curves. For the sake of exposition, we will fix a curve F0 as the root of the tree.
Consider any (−2)-curve F which is a leaf of the tree (i.e., has valence 1) and let Q ∈ F
be the (unique) point which intersects another curve in the tree.

As a special case of the Bloch-Ogus arithmetic complex [Kat86, §1, Prop. 1.7], we have
the complex

Br k(X)[2]
⊕∂F ′−→

⊕
F ′∈X(1)

κ(F ′)×

κ(F ′)×2
−→

⊕
P∈X(2)

Z/2Z.

Therefore, for every codimension 2 point P ∈ X, we have∑
F ′∈X(1)

with P∈F ′

vP (∂F ′(A)) ≡ 0 mod 2.

By assumption ∂F ′(A) ∈ κ(F ′)×2 for all F ′ ∈ X(1) whose closure intersects F and is not
contracted in X0. Hence vP (∂F (A)) ≡ 0 mod 2 for all P ∈ X(2) such that P ∈ F and
P 6= Q. Since F is rational, this implies ∂F (A) ∈ κ(F )×2. Therefore A is unramified at
all (−2)-curves which are leaves of the tree.

The same proof then shows that A is unramified at all (−2)-curves F such that all the
children of F are leaves. Then we apply the same argument to all curves F such that all
of the grandchildren of F are leaves, and so on, until we have shown that A is unramified
at all curves in the tree.

For the final claim, we note that if S is geometrically ruled and B0 has at worst simple
singularities, then E consists of (−2)-curves lying over simple singularities of X0.
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9. The presentation of BrX[2]

Corollary 8.2 gives an explicit criterion for determining when a Brauer class of the
form γ(`) lies in Br(X \ E). In this section we identify the functions ` ∈ L× = k(Bfl)×

that satisfy this condition and use them to obtain a presentation for the 2-torsion in the
Brauer group.

9.1. Candidate functions. — The condition of Corollary 8.2 depends only on the set
{b ∈ B0,fl : vb(`) ≡ 1 mod 2}. In particular, it is obviously satisfied if this set is empty.
Functions for which this is the case arise in two ways: from the 2-torsion in Jac(B), and
from cycles on the dual graph Γ of B0.

Since the Jacobians of the vertical components of B are trivial, every class of Jac(B)[2]
can be represented by a divisor D ∈ Div(Bfl) such that 2D is principal. Conversely, if
` ∈ L× is such that div(`) = 2D, then [D] ∈ Jac(B)[2]. Moreover, if div(`) = 2D and
div(`′) = 2D′, then [D] = [D′] if and only if `/`′ ∈ L×2. This means that there is an
injective homomorphism Jac(B)[2] → L×/L×2 whose image consists precisely of those
classes represented by functions whose divisors are doubles. For each [D] ∈ Jac(B)[2], let
us fix a representative D and a function `D ∈ L× such that div(`D) = 2D.

When B0 is singular, it is possible to construct functions ` ∈ L× such that vb(`) ≡
0 mod 2, for every b ∈ B0,fl, but div(`) ∈ Div(B) is not a double. The construction can
be formalized by introducing the dual graph Γ of B0. For every singular point b ∈ B0,
fix an ordering of the preimages b′0, . . . , b

′
s ∈ B of b. We define the vertices of Γ to be in

one-to-one correspondence with the irreducible components of B, and define the edges of
Γ by the following rule: for every singular point b ∈ B0 and every 1 ≤ i ≤ s, there is an
edge eb,i joining the vertices corresponding to the irreducible components containing b′i−1

and b′i.

Remark 9.1. — Strictly speaking it is not correct to refer to the dual graph of B, since
Γ depends on the ordering chosen above. However, its fundamental group does not;
as this is all we are really concerned with below, we will allow ourselves this abuse of
language.

Now suppose C is a cycle on Γ consisting of edges eb1,i1 , . . . , ebn,in , and consider the
corresponding divisor DC =

∑n
j=1(bj)

′
in−1 + (bj)

′
in . On every irreducible component of B,

the degree of DC is even (since a cycle has even degree at every vertex). Thus, since the
Jacobian of B is divisible, there exist functions aC,i ∈ k(x)× and a function `C ∈ L× such
that

div((`C, aC,1, . . . , aC,n)) ≡ DC mod 2 Div(B)

By convention we consider the empty set to be a cycle and set `∅ = 1. The fact that C
is a cycle implies that vb(`) ≡ 0 mod 2, for every b ∈ B0,fl. Although the functions `C
are not uniquely defined, any two choices differ by a function whose divisor is a double.
Furthermore, div(`C) is a double if and only if the class of C in π1(Γ) ⊗ Z/2Z is trivial.
Moreover, if C and C ′ are two cycles with a vertex in common and `CC′ is the function
corresponding to the concatenation of the cycles, then the divisor of `CC′/`C`C′ is a double.
Therefore, the subspace of L×/L×2 generated by the classes of functions in the set

{`C : C ⊆ Γ is a cycle} ∪ {`D : [D] ∈ Jac(B)}
has F2-dimension dimF2 Jac(B)[2] + b1(Γ) and it does not depend on the choices for the
`C and `D.
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Now we consider functions satisfying Corollary 8.2 for which the set {b ∈ B0,fl : vb(`) ≡
1 mod 2} is not necessarily empty. If vb′(`) = e(b′/w), for every w ∈ W and b′ ∈ Bfl

w,
then vb(`) = e(b/w), for every w ∈ W and b ∈ B0,fl

w , in which case it is easy to check
that the condition in Corollary 8.2 is satisfied. In particular, this holds if div(`) ≡
Bfl
w mod 2 Div(Bfl) for some w ∈ W . For every w ∈ W , the degree of Bfl

w is even, so, since
the Jacobian of B is divisible, there exists a function `w ∈ L× such that

div(`w) ≡ Bfl
w mod 2 Div(Bfl) .

Again, `w is not uniquely determined by this condition, but the ratio of any two choices
is a function whose divisor is a double. Moreover, if w,w′ ∈ W , then there exists some
a ∈ K× such that a ·`w/`w′ is a double. Let us fix a function `1 = `w1 ∈ L× corresponding
to some point w1 ∈ W .

Finally, we note that Corollary 8.2 imposes no restriction on the valuations at points
of B0,fl ∩ S. In particular, if the valuation of ` is even outside ν−1(B0,fl ∩ S), then it
satisfies the condition of the Corollary. In light of Proposition 2.1 we are only interested in
functions ` such that div(NormL/K(`)) ≡ div(c) mod 2 Div(W ). Hence we should choose
a function `c ∈ L× such that

div(`c) ≡ (Bfl ∩ S̃) mod 2 Div(Bfl) ,

where S̃ denotes the strict transform of S. Such a function exists because (Bfl ∩ S̃)
has even degree and Jac(B) is divisible; the choice is again unique up to functions whose
divisors are doubles.

9.2. The presentation. — We claim that if S is geometrically ruled, then every class
in Br(X \ E)[2] can be represented as the image under γ′ of a product of the functions
defined in §9.1. More precisely, let LE ⊆ L be the subgroup generated by the classes of
functions in the set

{`1, `c} ∪ {`C : C ⊆ Γ is a cycle} ∪ {`D : [D] ∈ Jac(B)[2]} ,

and define Lc,E = Lc ∩ LE .

Remark 9.2. — For any function ` ∈ L× representing a class in LE , we have that
div(NormL/K(`)) ≡ n div(c) mod 2 Div(W ), for some n ∈ {0, 1}. When S is rational
(i.e., W = P1), this implies that Lc,E = LE .

Theorem 9.3. — If S is geometrically ruled, then there is an exact sequence

PicC

2 PicC

x−α−→ Lc,E
γ−→ Br(X \ E)[2] −→ 0 .

Remark 9.4. — Suppose π : X → S is defined over a subfield k0 of k. Then all abelian
groups in Theorem 9.3 have an action of Gal(k/k0) and the maps in the exact sequence
are morphisms of Galois modules. The same statement holds for the corollaries below.

Corollary 9.5. — If S is geometrically ruled and B0 has at worst simple singularities,
then there is an exact sequence

PicC

2 PicC

x−α−→ Lc,E
γ−→ BrX[2] −→ 0 .

Proof. — Apply Proposition 8.4.
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Corollary 9.6. — Let π′ : X ′ → P2 be a double cover branched over a smooth irreducible
curve B′. Then there is a short exact sequence

0→ PicX ′

〈[H]〉+ 2 PicX ′
→
(

PicB′

KB′

)
[2]→ BrX ′[2]→ 0 .

where [H] ∈ PicX ′ is the pullback of the hyperplane class on P2 and KB′ is the canonical
divisor on B’. In particular, we have dimF2 BrX ′[2] = 2 + 2(2d − 1)(d − 1) − rk PicX ′,
where 2d = deg(B′).

Remark 9.7. — If B′ has at worst simple singularities, then Theorem 9.3 still applies
to give a presentation of BrX ′[2]; however, the presentation cannot solely be given in
terms of a quotient of (PicB′/KB′) [2].

Proof of Corollary 9.6. — The group (PicB′/KB′) [2] consists of the 2-torsion classes in
Jac(B′) and the theta charactistics, and so it has F2-dimension 1 + 2g(B′) = 1 + 2(2d−
1)(d− 1). Therefore, the second claim follows easily from the first.

Fix a point P ∈ P2\B′ such that no line through P is tritangent to B′. Let S := BlPP2,
X := Blπ′−1(P )X

′, and let B denote the strict transform of B′ in S, or equivalently, X.
Projection away from P gives a geometric ruling on S, thus we may apply the theorem.
We may choose coordinates such that S is the exceptional curve above P ; then c = 1
and the two exceptional curves above π′−1(P ) correspond to ∞+ and ∞−. Hence, by
Proposition 4.7 and Theorem 9.3, we have a short exact sequence

0→ PicC

〈[∞+], [∞−]〉+ 2 PicC

x−α−→ Lc,E
γ−→ BrX[2] −→ 0 .

By adjunction, KB′ = (2d− 3)[l]|B′ , and [l]|B′ = [Bw1 ] in Pic(B), where [l] ∈ PicP2 is
the class of a line. (Note that π′∗[l] = [H].) So the theta characteristics are in bijection
with functions ` ∈ L×, considered up to squares, such that div(`) = Bw1 + 2D for some

D ∈ Div(B). This, together with our assumption on the point P , implies that
(

PicB′

KB′

)
[2]

is isomorphic to Lc,E . Furthermore, our assumptions on the point P also implies that

we have an isomorphism PicX ′/[H]
∼→ PicC/〈[∞+], [∞−]〉 obtained by composing the

pullback map with restriction to the generic fiber. This completes the proof.

Proof of Theorem 9.3. — Let ` ∈ L× be such that γ(`) ∈ Br(X \ E) ⊆ BrC. Proposi-
tion 2.1 implies that ` ∈ Lc, and by Theorem 1.1 it suffices to show that ` ∈ LE . Since
` ∈ Lc, the divisor div(NormL/K(`)) is of the form n div(c) + 2D for some n ∈ {0, 1} and
D ∈ Div(W ). After possibly multiplying ` by some power of `c, we may assume that
div(NormL/K(`)) ∈ 2 Div(W ).

Consider the set of points Z ⊆ Bfl where ` has odd valuation. Using the criteria given
in Proposition 8.1, we see that after possibly multiplying ` by an element of K× and a
power of `1, we may assume that Z ⊆ ν−1(S∩B0,fl)∪ν−1(B0,fl

sing) and that
∑

b′ 7→b,b′∈B vb′(`)

is even for all b ∈ B0,fl away from S and the vertical components of B0. Since we
have already assumed that div(NormL/K(`)) ∈ 2 Div(W ), we may further conclude that
Z ⊆ ν−1(B0

sing).

Write {b1, . . . , br} = ν(Z ∩ ν−1(B0
sing)). For each bi such that ν(bi) is not on a vertical

component, there must be an even number of points in Z ∩ ν−1(bi). Moreover, since
div(NormL/K(`)) ∈ 2 Div(W ), for each vertical component F of B, there is an even
number of indices i such that Z∩ν−1(bi) is odd and such that ν−1(bi)∩F 6= ∅. Therefore,
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since principal divisors have degree 0, there are an even number of points in Z∩ν−1(B0
sing)

that lie on a particular irreducible component of B. The combination of these facts implies
that there is a cycle C ⊆ Γ such that vb(`) + vb(`C) is even for all b ∈ B. Thus, after
replacing ` with ``C, we may assume that ` has even valuation at all points of B. Therefore
` = `D for some divisor D whose class in Jac(B) is 2-torsion, and so ` ∈ LE .

Remark 9.8. — The proof of Theorem 9.3 also has consequences when k is not nec-
essarily separably closed: given an algebra γ′(`) ∈ Br k(X), there exists a separable
extension k′/k such that γ′(`) is unramified over k′ (i.e., represents a class in BrXk′) if

and only if the class of ` in L
×
/K
×
L
×2

lies in the subgroup Lc,E ⊆ L
×
/K
×
L
×2

.

10. The dimension of BrX[2]

Theorem 10.1. — Assume that S is geometrically ruled and that B0 is connected with
at worst simple singularities. Then

dimF2 BrX[2] ≤ 4 + 2g(B0)− 2g(W )− rank NSX , (10.1)

with equality if and only if LE = Lc,E .

Corollary 10.2. — Let $ : S → P1 be a rational geometrically ruled surface with in-
variant e ≥ 0, and let Z be a section of $ with self-intersection −e. Suppose that B0 is
a connected curve of type (a, b) ∈ Pic(S) ' ZSw1 ×ZZ with at worst simple singularities.
Then

dimF2 BrX[2] = 2(a− 1)(b− 1)− a(a− 1)e+ 4− rank(NSX) .

Proof. — If S is rational then, as noted in Remark 9.2, LE = Lc,E , so the upper bound in
the theorem is sharp. The formula now follows from the adjunction formula, which gives
g(B0) = (a− 1)(b− 1)− a(a− 1)e/2.

Example 10.3. — If e = 0 and (a, b) = (4, 4), then S = P1×P1 and X is a K3 surface.
We recover the well known fact that dimF2 BrX[2] = 22 − rank(NSX). Note that this
argument does not require knowing that b2(X) = 22 or that H3(X,Z)tors = {1}.

Proof of Theorem 10.1. — Corollary 9.5 readily yields,

dimF2 BrX[2] = dimF2 Lc,E − dimF2 im(x− α) ≤ dimF2 LE − dimF2 im(x− α) .

We will show that dimF2 LE − dimF2 im(x − α) = 4 + 2g(B0) − 2g(W ) − rank NSX. As
we will make a similar argument later under the weaker assumption that S is ruled, but
not necessarily geometrically ruled, we will take care to point out when the geometrically
ruled hypothesis is used; it will not come in until the end of the proof.

Noting that h0(Bfl) is the number of GK orbits in Ω, Proposition 4.7 states that

dimF2 im(x− α) = rank(PicC) + h0(Bfl)− 2 + dimF2

(
K× ∩ L×2

K×2

)
−

{
1 if c ∈ K×2

0 if c /∈ K×2
.

It therefore suffices to show that

dimF2 LE = 2g(B0)− 2g(W ) + 2− rank NSX

+ rank(PicC) + h0(Bfl) + dimF2

(
K× ∩ L×2

K×2

)
−

{
1 if c ∈ K×2

0 if c /∈ K×2
.
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Recall that LE is generated by classes of functions in the set

{`1, `c} ∪ {`C : C ⊆ Γ is a cycle} ∪ {`D : [D] ∈ Jac(B)[2]} .
Clearly these generate a subspace of L×/L×2 of dimension at most dimF2 Jac(B)[2] +
b1(Γ) + 2 = 2g(B) + 2h0(B) + b1(Γ). For this counting argument, we may assume the
point w1 ∈ W used to construct `1 is such that e(b/w1) is odd for some b ∈ B0

w1
\ B0

sing

and that Sw1 is smooth and not contained in B0. Then, by considering the parity of vb(`)
for all b ∈ B, it is clear that the functions `1, `C and `D generate a subspace, modulo
squares, of F2-dimension equal to −1 + 2g(B) + 2h0(B) + b1(Γ). Furthermore, also by
considering the parity of vb(`) for all b ∈ B, we see that `c is in this subspace if and only
if c ∈ K×2. Therefore, the dimension of the subspace of L×/L×2 of elements of this form
is

2g(B) + 2h0(B) + b1(Γ)−

{
1 if c ∈ K×2

0 if c /∈ K×2
.

Now we must determine which functions of the form `n1
1 `

nc
c `C`D are in K×L×2. Since

K×L×2 ⊆ L1, and div(NormL/K(`c)) ∈ 2 Div(W ) if and only if `c ∈ Span(`1, `C, `D), it
suffices to consider when `n1

1 `C`D is in K×L×2. We claim that modulo L×2 the subspace
of L×/L×2 generated by such functions has F2-dimension equal to:

2g(W ) + #{w ∈ W : 2|e(b/w) ∀b ∈ B0,fl
w or Sw ⊆ B0} − dimF2

(
K× ∩ L×2

K×2

)
. (10.2)

First note that (10.2) is always non-negative. Indeed, if an element a ∈ K× \ K×2 is
equal to `2 for some ` ∈ L, then divB(a) ∈ 2 Div(B) and so e(b/w) is even for all w in
the support of a and all b ∈ B0,fl

w .
Let ` := `n1

1 `C`D for some integer n1, cycle C ⊆ Γ, and divisor D ∈ Div(B) whose class
is 2-torsion. Then, by construction, vb(`) is even for all points b ∈ B0,fl away from w1

and the vertical fibers. Moreover vb(`) is odd for some point b ∈ B0
w1

only if n1 = 1.
From this description, it is clear that if ` = a ∈ K×, then for all w ∈ W \ {w1} such that
Sw 6⊆ B0 either vw(a) is even or e(b/w) is even for all b ∈ B0

w. Therefore,

div(a) = nw1w1 +
∑
w∈W

2|e(b/w) ∀b∈B0
w

or Sw⊆B0

nww + 2D,

for some D ∈ Div(W ) and integers nw ∈ {0, 1}. Furthermore, such functions a, modulo
squares, are in one-to-one correspondence with elements of

Jac(W )[2]× {w ∈ W : 2|e(b/w) ∀b ∈ B0
w, or Sw ⊆ B0},

and every such function is of the form `n1
1 `C`D, for some n1, C, D. This proves that the

kernel has dimension at most 2g(W ) + #{w ∈ W : 2|e(b/w) ∀b ∈ B0
w, or Sw ⊆ B0}. To

complete the proof of the claim, we note that such a function a does not contribute to
the kernel if and only if a = `2.

Thus far we have shown that

dimF2(LE) =2g(B) + 2h0(B) + b1(Γ)− 2g(W ) + dimF2((K× ∩ L×2)/K×2)

−#{w ∈ W : 2|e(b/w) ∀b ∈ B0,fl
w or Sw ⊆ B0} −

{
1 if c ∈ K×2

0 if c /∈ K×2
.

34



It remains to show that this expression simplifies to the desired form.
Let an, dn, e6, e7, e8 ∈ Z denote the number of An, Dn, E6, E7, and E8 singularities on

B0 respectively (for definitions see [BHPVdV04, §II.8]). Recall that the δ-invariant of a
singular point P is the difference between the genus of the singular curve and the genus
of the curve obtained by resolving the singularity at P . It can be computed using the
Milnor number and the number of branches of the singularity [Mil68, Thm. 10.5]. Since

δ(An) =

⌊
n+ 1

2

⌋
, δ(Dn) =

⌊
n+ 2

2

⌋
, δ(E6) = 3, δ(E7) = δ(E8) = 4,

the genus of B equals

g(B0)−
∑
n

(
an

⌊
n+ 1

2

⌋
+ dn

⌊
n+ 2

2

⌋)
− 3e6 − 4(e7 + e8).

Furthermore, singularities of type A2k+1, D2k+1 or E7 each contribute exactly one edge
to Γ, and singularities of type D2k each contribute two edges to Γ [BHPVdV04, Table
1, p.109]. Moreover, Γ has h0(B) vertices and, since B0 is connected, Γ has 1 connected
component. Therefore, b1(Γ) =

∑
k(a2k+1 + d2k+1 + 2d2k) + e7 + 1 − h0(B). Combining

these facts, we have

2g(B) + h0(B) + b1(Γ) = 2g(B0)−
∑
n

n(an + dn)− 6e6 − 7e7 − 8e8 + 1.

Since S is geometrically ruled, E consists only of exceptional curves obtained by blowing
up singularities of B0, and so #E =

∑
n n(an + dn) + 6e6 + 7e7 + 8e8. Therefore, we have

dimF2(LE) =2g(B0) + h0(B) + 1−#E − 2g(W ) + dimF2((K× ∩ L×2)/K×2)

−#{w ∈ W : 2|e(b/w) ∀b ∈ B0,fl
w or X0

w non-reduced} −

{
1 if c ∈ K×2

0 if c /∈ K×2
.

Recall that there is a surjective homomorphism from PicX → PicC. By the Lang-Néron
theorem [LN59], PicC is finitely generated, so Pic0X is contained in the kernel of the
map PicX → PicC. Therefore, we have a surjective homomorphism NSX → PicC.
Since S is geometrically ruled, we have

rank ker (NSX → PicC) = #E + 1 + #{w ∈ W : 2|e(b/w) ∀b ∈ B0,fl
w , Sw 6⊆ B0}.

Finally, to complete the proof, we note that h0(B) = h0(Bfl)+#{w ∈ W : Sw ⊆ B0}.

11. The Brauer group of an Enriques surface

An Enriques surface is a smooth projective minimal surface E with nontrivial 2-torsion
canonical divisor and with irregularity h1(OE) = 0. Equivalently, an Enriques surface is
a quotient of a K3 surface by a fixed point free involution. The Brauer group of any
Enriques surface (over a separably closed field) is isomorphic to Z/2Z [HS05, p. 3223].
In this section we give a complete description of BrE.

We shall see below that every Enriques surface is birational to a double cover of a
ruled surface whose branch locus has at worst simple singularities. This implies that
every Enriques surface is birational to a double cover of a geometrically ruled surface;
however, the branch locus of this double cover may have worse singularities. We will find
it more convenient to adapt the methods of the previous sections to ruled surfaces which
fail to be geometrically ruled.
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11.1. Horikawa’s representation of Enriques surfaces. — Let E be an Enriques
surface and let Ẽ be its K3 double cover. Horikawa’s representation of Enriques sur-
faces [BHPVdV04, Chap VIII, Props. 18.1, 18.2] shows that Ẽ is the minimal resolution
of a double cover of a quadric surface S̃0 ⊆ P3 branched over a reduced curve B̃0, which
has at worst simple singularities, and which is obtained by intersecting a quartic hyper-
surface with S̃0. Furthermore, the covering involution σ : Ẽ → Ẽ for the quotient Ẽ → E
descends to the involution

τ : P3 → P3 , (z0 : z1 : z2 : z3) 7→ (z0 : −z1 : −z2 : z3) .

Therefore, B̃0 is invariant and fixed point free under the action of τ . Under the Horikawa
representation, we may take S̃0 to be the quadric cone V (z0z3 − z2

1) if E is special and
S̃0 = V (z0z3 − z1z2) otherwise. (An Enriques surface is special if it is endowed with
the structure of an elliptic pencil together with a (−2)-curve which is a 2-section, and
nonspecial otherwise.) If S̃0 is non-singular, then the morphism

S̃0 → P1
t̃ , ~z 7→ (z1 : z0) = (z3 : z2)

shows that S̃ := S̃0 is a rational geometrically ruled surface. If S̃0 is the quadric cone,
then the rational map

S̃0 99K P1
t̃ , ~z 7→ (z1 : z0) = (z3 : z1) .

shows that the blow up S̃ := Bl(0:0:1:0)(S̃
0) is a rational geometrically ruled surface. In

either case, Ẽ is birational to the double cover X̃0 of S̃ branched over B̃0 (where we abuse
notation using B̃0 to denote its strict transform in S̃).

We may embed S̃/τ in P4 as the vanishing of V (w0w3 − w2
4, w1w2 − w2

4). Under this
embedding, the morphism S̃ → S̃/τ is given by (z0 : z1 : z2 : z3) 7→ (z2

0 : z2
1 : z2

2 : z2
3 : z0z3).

The ruling on S̃ induces a map $ : S̃/τ → P1
t ,w 7→ (w1 : w0) = (w3 : w2) giving S̃/τ the

structure of a ruled surface. Note that the coordinates t̃ and t on the two copies of P1

are related by t̃ =
√
t.

Let S := BlSing(S̃/τ)(S̃/τ). Then E is birational to the double cover X0 of S branched

over the exceptional divisors on S and the strict transform B0 of B̃0/τ . We let X and X̃
be the desingularizations of X0 and X̃0 obtained by canonical resolutions. Observe that,
in agreement with the convention set in §7.1, B0 contains all connected components of
the branch locus that map dominantly to P1. We may thus avail ourselves of the notation
and results established in the previous sections for both X/S and X̃/S̃, using tildes to
denote objects corresponding to X̃.

Remark 11.1. — As a caution, we note that S is not geometrically ruled; the fibers
above 0 and∞ consist of a chain of three arithmetic genus 0 curves with the center curve
appearing with multiplicity 2.

11.2. The Brauer group. —

Theorem 11.2. — For every [D] ∈ Jac(Bfl)[2] and cycle C on the dual graph of B0, the
algebra γ′(`C`D) lies in BrX. Moreover, these elements generate BrX.

Proof. — Fix a cycle C and a divisor D on Bfl whose divisor class is 2-torsion. We claim
that ∂F (γ′(`C`D)) ∈ κ(F )×2 for all reduced and irreducible curves F ⊆ X, and thus that
γ(`C`D) ∈ BrX. If F is a horizontal curve then this follows from Proposition 2.1, since
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`C`D ∈ Lc. Now assume that F is a vertical curve. If F does not map dominantly to
the reduced part of a component of S0 or S∞, then the preimage of F in X̃ consists
of exactly two curves F1, F2, each of which are isomorphic to F . We will show that
∂Fi(Res(γ′(`C`D))) ∈ κ(Fi)

×2, and thus conclude that ∂F (γ′(`C`D)) ∈ κ(F )×2. Since

k(B̃) = k(B̃/τ)⊗k(t) k(
√
t), we have

Res(γ′(`C`D)) = Cork(X̃B̃)/k(X̃) (Res ((x− α, `C`D)2)) .

We may choose our coordinates x and α on the Enriques surface so that Res(x) = x̃/t̃
and Res(α) = α̃/t̃, where x̃ and α̃ are the functions on Ẽ and B̃. Therefore

Cork(ẼB̃)/k(Ẽ) (Res ((x− α, `C`D)2)) = γ̃′(Res(`C`D)) + (t̃,Cor(`C`D))2.

Since `C`D ∈ L1, the algebra (t̃,Cor(`C`D))2 is trivial in the Brauer group. Furthermore,
by construction Res(`C`D) = `C̃`D̃ for some cycle C̃ on the dual graph of B̃ and some

two-torsion divisor D̃ on B̃. Hence, by applying Corollary 9.5 to X̃/S̃ it follows that
∂Fi(γ

′(`C`D)) ∈ κ(Fi)
×2

Now assume that F maps dominantly to the reduced part of a component of S0. If
F maps dominantly to an exceptional divisor of S, then x − α has trivial valuation
and reduces to a constant on all curves F ′ that lie above F in the desingularization
of X ×P1 B. Therefore, ∂F (γ′(`C`D)) ∈ κ(F )×2. Now consider the case when F maps
dominantly to the reduced part of (S̃/τ)0. If the singular locus of B0 is supported away
from the fibers of 0, then, after adjusting D by a principal divisor, we may assume that
vb(`C`D) = 0 for all b ∈ B ∩ ($−1(0)). Then ∂F (γ′(`C`D)) is a constant and so it is clear
that ∂F (γ′(`C`D)) ∈ κ(F )×2. If there is a singularity of B0 lying over 0, then F must
be rational. Since there are no nontrivial étale covers of a rational curve, the preimage
of F in X̃ consists of exactly two curves F1, F2, each of which are isomorphic to F , and
we may apply the same argument used above. The case where F maps dominantly to a
component of (S∞)red follows similarly.

We have shown that the subspace of Lc generated by the `C and the `D maps into
BrX; now we will use a cardinality argument to show that the image of this subspace is
all of BrX. Arguing as in the proof of Theorem 10.1 we see that the functions `C and `D
generate a subspace of L′ ⊆ L of F2-dimension

dimF2 L
′ = 2g(B) + 2h0(B) + b1(Γ)− 1 + dimF2

(
K× ∩ L×2

K×2

)
−#{w ∈ P1 : 2|e(b/w) ∀b ∈ B0,fl

w or Sw ⊆ B0} .

Using that h0(B) = h0(Bfl) + #{w ∈ P1 : Sw ⊆ B0}, we get

dimF2 L
′ = 2g(B) + h0(B) + b1(Γ)− 1 + h0(Bfl) + dimF2

(
K× ∩ L×2

K×2

)
−#{w ∈ P1 : 2|e(b/w) ∀b ∈ B0,fl

w and Sw 6⊆ B0} .
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Since B̃0 is connected and has at most simple singularities, the same is true for B0.
Therefore, the same argument as in the proof of Theorem 10.1 shows that 2g(B) +
h0(B) + b1(Γ)− 1 = 2g(B0)−#E ′, where E ′ is the set of exceptional curves obtained by
blowing up the singularities of B0. (We have #(E \ E ′) = 4 corresponding to the extra
irreducible components of S0 and Sw – see Remark 7.1.) Therefore

dimF2 L
′ = 2g(B0) + h0(Bfl) + dimF2

(
K× ∩ L×2

K×2

)
− E ′ −#{w ∈ P1 : 2|e(b/w) ∀b ∈ B0,fl

w and Sw 6⊆ B0} .

Now noting that the rank of NSX is

#E ′ + 4 + 1 + #{w ∈ P1 \ {0,∞} : 2|e(b/w) ∀b ∈ B0,fl
w and Sw 6⊆ B0}+ rank(PicC) ,

we conclude that

dimL′ = 2g(B0) + h0(Bfl) + dimF2

(
K× ∩ L×2

K×2

)
+ 5 + rank(PicC)

− rank NSX −∆0 −∆∞,

where ∆w equals 1 if e(b/w) is even for all b ∈ Bfl
w and (Sw)red 6⊆ B0 and 0 otherwise.

Since X0 and X∞ are not reduced and B̃0 did not contain the fixed points of τ , both
∆0 and ∆∞ are 1. In addition, rank(NSX) = rank(NSE) + 4 = 10 + 4, and since B0

is the quotient of a genus 9 curve by a fixed-point free involution, g(B0) = 5. Hence,
rearranging and using Proposition 4.7 we obtain,

dimL′ = h0(Bfl)− 1 + dimF2

(
K× ∩ L×2

K×2

)
+ rank(PicC)

≥ dimF2 im(x− α) + 1 .

Therefore, some element of L′ has nontrivial image in Br k(X) and so must be equal to
the unique nontrivial element of BrX.

Remark 11.3. — If B0 is smooth, it is possible to prove Theorem 11.2 without using
that the Néron-Severi group of an Enriques surface has rank 10 and that the Brauer
group of an Enriques surface is Z/2Z. One can instead prove that all other functions in
Lc,E are ramified along some vertical divisor. However, this proof is more complicated as
it requires a detailed study of the desingularization (or at least the normalization) of the
fiber product X ×P1 Bfl.

12. An Enriques surface failing weak approximation

We demonstrate the the previous results are amenable to explicit computation by
exhibiting an Enriques surface with a transcendental Brauer-Manin obstruction to weak
approximation. We note that it was already known that Enriques surfaces need not satisfy
weak approximation due to work of Harari and Skorobogatov [HS05], who constructed
an Enriques surface whose étale-Brauer set was strictly smaller than its Brauer set.
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12.1. Construction of the Enriques surface. — Let S̃ denote the quadric surface
V (z0z3−z1z2) ⊆ P3 and let B̃0 ⊆ S̃ be the (reducible) quartic curve given by the vanishing
of

F (z) :=
(
z2

3 − 3z2
2 − 3z2

1 − 2z2
0 + 3z3z0

)2 − (z3z1 − 2z3z2 + 4z0z2 + z0z1)2 .

We let Ẽ denote the minimal resolution of the double cover

Ẽ0 := V (y2 − F (z), z0z3 − z1z2) ⊆ P(1, 1, 1, 1, 2);

note that Ẽ is a K3 surface defined over Q. There is a fixed point free involution σ0 : Ẽ0 →
Ẽ0, (z0 : z1 : z2 : z3 : y) 7→ (z0 : −z1 : −z2 : z3 : −y) that can be lifted to a fixed point
free involution σ on Ẽ.

Proposition 12.1. — Let E denote the Enriques surface Ẽ/σ. There exists a number
field k such that

E(Ak)
BrEk ( E(Ak)

Br1 Ek .

Remark 12.2. — The surface X from the previous section is a blow-up of the Enriques
surface E. Since the Brauer group is a birational invariant of smooth projective surfaces,
BrE = BrX. We will use this equality throughout this section.

12.2. Coordinates on the generic fiber. — The map P4 → P1,w 7→ (w1 : w0),
induces a morphism $ : S̃/τ → P1 whose generic fiber is isomorphic to P1

Q(t). The generic

fiber of E → S̃/τ → P1 has a model of the form v2 = cf(x), where

f(x) = x4 +
10t− 2

t− 10 + 9/t
x3 +

−7t2 + 19t− 4

t− 10 + 9/t
x2 +

−20t2 − 20t

t− 10 + 9/t
x+

9t3 + 11t2 + 4t

t− 10 + 9/t

and c = t − 10 + 9/t. The isomorphism between this model and E identifies t with
w3/w2 = w1/w0 = w2

4/(w0w2) and identifies x with w4/w0 = w3/w4 = tw2/w4.

12.3. Geometry of the branch curve. — Let E0 := Ẽ0/σ0; he morphism E0 → S̃/τ
is branched over the four singular points of S̃/τ and the irreducible curve B0 := B̃0/τ .
The singular locus of B0 is a degree 5, 0-dimensional reduced subscheme. It consists of one
Q-point, P0 = (1 : 1 : 1 : 1 : 1), which corresponds to the singular point of an irreducible
component of B0, and a degree 4 point which is irreducible over Q. The curve B0 is
embedded in P4 as the complete intersection of 3 quadrics so it has arithmetic genus 5.
One can check that each singularity is an ordinary double point, thus B0 is geometrically
rational. A naive point search quickly finds smooth Q-points, so B0 is birational to P1

Q
and L ∼= Q(s). We fix the following isomorphism between L and Q(s) :

w1

w0

=

(
2s2 − 16s+ 41

−s2 − s+ 29

)2

,
w2

w0

=

(
2s2 − 7s+ 32

−s2 + 8s+ 20

)2

,

w4/w0 =
√
w1w2/w2

0, and w3/w0 = w1w2/w
2
0. Using the above expression for f(x), we

see that this isomorphism sends

α 7→ 4s4 − 46s3 + 258s2 − 799s+ 1312

s4 − 7s3 − 57s2 + 212s+ 580
.
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12.4. Representing a transcendental Brauer class. — Let k1 denote the residue
field of the singular degree 4 Q-subscheme, and let P1 denote a k1-point of the singular
locus different from P0. (In fact, k1 is an S4 extension, so there is a unique such P1.)
We write x1 := w4/w0(P1) and t1 := w1/w0(P1). Let ` be the monic quadratic separable
k1-polynomial in s whose zeros lie above P1. By Theorem 11.2, γ′(`)⊗k k is contained in
BrE. We claim that it represents the nontrivial element in BrE.

Using linear algebra and elimination ideals, we find equations for curves on S̃ which
pass through an even number of the Q points that are Galois conjugate to P1, and meet
B0 with even multiplicity at every point of intersection. There are finitely many such
curves Z, and one checks that for every set of singular points of B0 containing an even
number of the Gal(Q/Q)-conjugates of P1, there is such a reduced and irreducible curve
Z such that π−1(Z) is reducible. By computing intersection numbers, one sees that these
curves, the rulings on S̃, and the exceptional curves generate PicE. Therefore, the above
curves and the horizontal ruling on S generates PicCQ(t). By the construction of these
curves, any function in the image of x − α that has odd valuation at both points in
ν−1(P1) will have odd valuation at both points in ν−1(Pi) for an odd number of points
Pi that are Galois conjugate to P1. Therefore ` 6∈ im(x − α), and so, by Theorem 11.2,
γ′(`)⊗k k is nontrivial in BrE.

Now we will compute a number field k such that γ′(`) ⊗k k ∈ im(BrEk → BrE).
Since ` is defined over k1, we have γ′(`) ∈ Br k(Ek1). However, a direct computation
shows that γ′(`) is ramified at all of the (−2)-curves. There are two linearly independent
quadratic extensions of k1 over which the residues at the exceptional curve above P0 and
P1 respectively become trivial. Then there is a degree 4 extension over the composite
of these quadratic extensions over which the residue at the exceptional curve above the
degree three singular point becomes trivial.(1) We let k denote this degree 16 extension
over k1.

We claim that γ′(`)⊗k k ∈ im(BrEk → BrE), or, more precisely, that the algebra

A := γ′(`) + (t− 1, `(10))2 + (t− 9, `(−2))2

lies in BrEk. The algebras (t − 1, `(10))2 and (t − 9, `(−2))2 are algebraic, so it is clear
that the second claim implies the first. To prove that A ∈ BrEk, we must show that
∂D(A) ∈ κ(D)/κ(D)×2 for all prime divisors D on X. From the definition of A and k and
the proofs of Propositions 2.1 and 8.1, this is certainly true except possibly for the fibers
above t = 0,∞ and for S∞. One can directly check that Normk1(s)/k1(t)(`) ∈ k1(t)×2, so
by Proposition 2.1, γ′(`), and therefore A, is unramified at S∞. To compute the residue
at the fibers above t = 0,∞, we note that (S̃ ×P1√

t
B̃)/τ is a smooth birational model

of S̃/τ ×P1
t
B. Then a direct computation using (8.3) shows that γ̃′(`) and γ′(`) are

unramified at the fibers above t = 0,∞. Thus A ∈ BrEk \ Br1Ek.

12.5. Computing the obstruction. — In this section we will construct a k-adelic
point on E that is not orthogonal to A. First note that Ẽ, and therefore E, has Q-rational
points. Indeed, (1 : 0 : 0 : 0 : ±2) ∈ Ẽ0(Q), and since Ẽ → Ẽ0 is an isomorphism when
y 6= 0, Q := ψ(1 : 0 : 0 : 0 : ±2) ∈ E(Q) (here ψ : Ẽ → E denotes the quotient map).
Hence, if we find a place v of k and a point Qv ∈ E(kv) such that invv A(Qv) 6= invv A(Q),

(1)A Magma [BCP97] script verifying these claims and all other computational claims in this section can
be found with the arXiv distribution of this article.
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then the adelic point that is equal to Q for all places w 6= v and equal to Qv at v is
orthogonal to A.

We will take v to be a place lying over 2. We note that 2 splits completely in k1, and
of these four places lying over 2, there is a unique place and a unique extension v of that
place to k such that kv = Q2(i). Since A ∈ Br k(Ek1) and A is unramified on an open set
of Ek1 containing Q, A(Q) ∈ Br k1 and, consquently, A(Q)⊗kkv ∈ im(BrQ2 → BrQ2(i)).
Thus invv A(Q) = 0. Let

Qv := ψ(1 : −6 : 1 + i : −6− i : 2
√

4255− 4160i).

The point Qv lies over t = 36 and Bt consists of 2 kv-points R1 and R2 and one quadratic
point R; they have s values

19

4
,
−7

2
, and

−11 + 3
√

109

4
.

Since these points are unramified in B → P1 and are away from the support of ` and
α, the cocycle description of γ′(`) in Lemma 3.5 shows that

A(Qv) = (`(−2), 25)2 + (`(−10), 35)2 + γ′(`)(Qv)

= (`(10), 35)2 + CorQ2(i,
√

109)/Q2(i) ((x(Qv)− α(R), `(R))2)

+
2∑
j=1

(x(Qv)− α(Rj), `(Rj))2.

A computation shows that (x(Qv) − α(Rj), `(Rj))2 is trivial in BrQ2(i) for all i, that
(`(10), 35)2 is trivial in BrQ2(i), and that CorQ2(i,

√
109)/Q2(i) ((x(Qv)− α(R), `(R))2) is

nontrivial in BrQ2(i). Therefore invv A(Qv) = 1/2.

12.6. Determining the algebraic Brauer classes. — It remains to prove that this
failure of weak approximation is not accounted for by algebraic Brauer classes. In 12.4,
we outlined how to obtain generators for PicE. Given these generators, a standard, al-
though involved, computation shows that H1(Gk,NumE) = 0, and so H1(Gk, 〈KE〉) �
H1(Gk,PicE). Then, the isomorphism from the Hochschild-Serre spectral sequence
and [Sko01, Thm. 6.2.1] shows that ψ(Ẽ(Ak)) ⊆ E(Ak)

Br1 . Since the adelic point
considered in the previous section is contained in ψ(Ẽ(Ak)), this shows that the adelic
point above lies in E(Ak)

Br1 , as desired.
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