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ABSTRACT. We establish in this paper a new form of Plünnecke-type inequalities for ergodic probability
measure-preserving actions of countable abelian groups. We also introduce the notion of an ergodic basis,
which is parallel, but significantly weaker than the analogous notion of an additive basis, and deduce, via a
correspondence principle for product sets, Plünnecke bounds on their impact functions with respect to both
the upper and lower Banach densities on any countable abelian group. In the special case of the integers
and bases with respect to the upper Banach density, this extends recent results by R. Jin.

1. INTRODUCTION

1.1. General comments. Let G be a countable group and suppose A,B Ă G are non-empty subsets.
We define the product set AB by

AB “
!

ab : a P A, b P B
)

Ă G.

Let MpGq denote the set of means on G, i.e. the convex set of all positive norm-one functionals on the
C*-algebra `8pGq. Note that every λ in MpGq gives rise to a finitely additive probability measure λ1 on
the group G via the formula

λ1pBq “ λpχBq, B Ă G, (1.1)

where χB denotes the indicator function on the set B. Given a set C ĂMpGq, we define the upper and
lower Banach densities of a set B Ă G with respect to C by

d˚CpBq “ sup
λPC

λ1pBq and dC˚pBq “ inf
λPC

λ1pBq,

respectively. Fix A Ă G and C ĂMpGq and define the upper and lower impact functions with respect
to A and C by

C˚Aptq “ inf
!

d˚CpABq : d˚CpBq ě t
)

and CA˚ ptq “ inf
!

dC˚pABq : dC˚pBq ě t
)

,

for 0 ď t ď 1, respectively. A fundamental problem in additive combinatorics is to understand the
behavior of these functions for various classes of sets A Ă G and C ĂMpGq.

In the case of the additive group Z of integers, a classically important subset of MpZq is the set S of
Birkhoff means. We say that λ PMpZq is a Birkhoff mean if it is a weak*-cluster point of the sequence
pλnq of means on Z defined by

λnpϕq “
1

n

n´1
ÿ

k“0

ϕpkq, ϕ P `8pZq.

One readily checks that every Birkhoff mean is invariant, i.e. λ1pgBq “ λ1pBq for all B Ă Z and g in Z.
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We should warn the reader that the associated upper and lower Banach densities with respect to S are
often referred to as the upper and lower asymptotic densities respectively in the literature, and are usually
defined by

d˚SpBq “ lim
nÑ8

|B X r0, ns|

n` 1
and dS˚ pBq “ lim

nÑ8

|B X r0, ns|

n` 1

respectively.

Given a set A Ă G, we denote by Ak the k-fold product set of A with itself. We shall say that A is a
basis of order k with respect to C if d˚CpA

kq “ 1 and A is a uniform basis of order k with respect to C if
dC˚pA

kq “ 1. Clearly, every uniform basis of order k with respect to C is a basis of order k with respect
to C, but the converse does not hold in general. In the case when G “ Z and C “ S, the terms upper and
lower asymptotic basis are more commonly used in the literature.

The following celebrated result by Plünnecke (Satz 1.2 in [8]) gives a non-trivial lower bound on SA˚
when A is a uniform basis of order k (see the proof of Theorem 7.2 in [9] for the easy derivation of this
statement from Plünnecke’s original argument).

Plünnecke’s Theorem. Let S ĂMpZq denote the set of Birkhoff means on Z and suppose A Ă Z is a
uniform basis of order k with respect to S. Then

SA˚ ptq ě t1´
1
k ,

for all 0 ď t ď 1.

On the other hand, Jin constructed in [5] a basis A Ă Z of order 2 with respect to S such that

S˚A
ˆ

1

2

˙

“
1

2
.

1.2. A correspondence principle for product sets. The main aim of this paper is to establish Plün-
necke bounds on the impact functions with respect to the upper and lower Banach densities associated
to the set LG of all invariant means on any countable abelian group G. We shall introduce below the
notion of an ergodic basis of order k, which is significantly weaker than the notion of a basis which we
discussed above. However, before we can do this, we need to give the basic set up.

LetG be a countable abelian group and let LG denote the set of all invariant means onG. By a classical
theorem of Kakutani-Markov, this set is always non-empty. To avoid cluttering with sub-indices, we shall
adopt the conventions

d˚ “ d˚LG
and d˚ “ dLG

˚

from now on, and simply refer to d˚ and d˚ as the upper and lower Banach densities on G respectively.
Let pX,µq be a probability measure space such that the Hilbert space L2pX,µq is separable. If G acts

onX by bi-measurable bijections which preserve the measure µ, then we say that pX,µq is aG-space. If
X in addition is compact and the G-action is by homeomorphisms which preserve µ, then we say that it
is a compact G-space. If there are no G-invariant measurable sets B Ă X with 0 ă µpBq ă 1, then we
say that µ is an ergodic probability measure. If A Ă G and B Ă X is a measurable set, then we denote
by AB the union of all the sets of form aB, where a ranges over A. In particular, if µ is an ergodic
probability measure, then µpGBq equals either zero or one, depending on whether B is a µ-null set or
not.

An important relation between these concepts and the Banach densities discussed earlier can be sum-
marized in the following proposition which will be proved in the Appendix.
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Correspondence Principle. Let G be a countable abelian group and suppose A,B1 Ă G. Then there
exists a compact metrizable space X , equipped with an action of G by homeomorphisms, a clopen set
B Ă X and ergodic G-invariant probability measures µ and ν on X such that

d˚pB1q “ µpBq and d˚pB
1q ď νpBq

and

d˚pAB1q ě µpABq and d˚pAB
1q ě νpABq.

The following notion will play an important role in this paper.

Definition 1.1 (Ergodic set). Let pX,µq be an ergodic G-space. We say that a set A Ă G is an ergodic
set with respect to pX,µq if µpABq equals one for every measurable set B Ă X of positive µ-measure.
If A Ă G is an ergodic set with respect to every ergodic G-space, we simply say that A is an ergodic set.

By definition, G itself is an ergodic set. However, no proper subgroup of G can be an ergodic set
for all ergodic G-spaces. There are several criteria which ensure that a set is ergodic. One of the most
well-known involves the notion of equidistributed sets. Recall that a set A Ă G is equidistributed if
there exists an exhaustion pAnq of A by finite sets such that

lim
nÑ8

1

|An|

ÿ

gPAn

χpgq “ 0

for all non-trivial characters χ on G. Every equidistributed set is ergodic, but does not need to have
positive upper Banach density with respect to LG. For instance, the set

A “
!

rn3{2s : n ě 1
)

Ă Z,

where r¨s denotes the integer part, is known to be equidistributed (see e.g. Theorem 1.3 in [2]).

1.3. Statements of the main results. In order to state our results, we need the following definition.

Definition 1.2 (Ergodic basis). Let pX,µq be an ergodic G-space. We say that A Ă G is an ergodic
basis or order k with respect to pX,µq if Ak is an ergodic set with respect to pX,µq. If A is an ergodic
basis or order k with respect to every G-space, then we simply say that A is an ergodic basis of order k.

Clearly, every basis of order k with respect to LG (see Subsection 1.1 for the definition) is an ergodic
basis of order k.

Theorem 1.1. Let G be a countable abelian group and suppose pX,µq is an ergodic G-space. If A Ă G
is an ergodic basis of order k with respect to pX,µq, then

µpABq ě µpBq1´
1
k

for every measurable subset B Ă X .

An application of the Correspondence Principle mentioned in Subsection 1.2 yields the following
Plünnecke bounds with respect to the upper and lower Banach densities on any countable abelian group.

Corollary 1.1. Let G be a countable abelian group and suppose A Ă G is an ergodic basis of order k.
Then,

d˚pABq ě d˚pBq1´
1
k and d˚pABq ě d˚pBq

1´ 1
k

for all B Ă G. In particular, this holds whenever the set Ak is equidistributed in G.
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1.4. Connection to earlier works. For a historical survey on the classical Plünnecke estimates for the
Schnirelmann density on N, as well as the related estimates for the lower asymptotic density, we refer
the reader to the lecture notes [9] by Ruzsa.

In this short section we wish to acknowledge that our interest in Plünnecke-type estimates for the
upper Banach density with respect to LG was spurred by the recent papers [5] and [6] by Jin in which he
proves the following special case of Corollary 1.1. Recall that a subset A Ă Z is a basis of order k with
respect to LZ if d˚pAkq equals one.

Theorem 1.2. Suppose A Ă N is a basis of order k with respect to LZ. Then,

d˚pABq ě d˚pBq1´
1
k and d˚pABq ě d˚pBq

1´ 1
k

for all B Ă N.

Although it is not explicitly mentioned in Jin’s paper, it does not seem that his techniques to prove
Theorem 1.2 can be extended to give a proof of Theorem 1.1 for bases of order k in any countable abelian
group. We also stress that his methods are quite different from ours.

1.5. An outline of the proof of Theorem 1.1. We shall now attempt to break down the proof of Theorem
1.1 into two main propositions which will be proved in Section 2 and Section 3 respectively.

1.5.1. Magnification ratios in G-spaces. Let G be a countable abelian group and suppose pX,µq is a
(not necessarily ergodic) G-space. Given a set A Ă G, a Borel measurable set B Ă X of positive
µ-measure and δ ą 0, we define the magnification ratio of B with respect to the set A by

cδpA,Bq “ inf
!µpAB1q

µpB1q
: B1 Ă B and µpB1q ě δ ¨ µpBq

)

.

We adopt an argument by Petridis in [7] to the setting of G-spaces as follows.

Proposition 1.1. For every set A Ă G and measurable subset B Ă X of positive µ-measure, we have

sup
!

cδpA
1, Bq : A1 Ă Ak is finite

)

ď p1´ δq´k ¨
´µpABq

µpBq

¯k

for every integer k and for all δ ą 0.

1.5.2. An ergodic min-max theorem. For the second step in our proof, we shall assume that pX,µq is an
ergodic G-space. Hence, if A Ă G is an ergodic set with respect to pX,µq, then µpABq “ 1, whenever
B has positive µ-measure. The following proposition shows that this expansion to co-nullity necessarily
happens uniformly for all Borel measurable sets in X of a given positive µ-measure.

Proposition 1.2. LetG be a countable (not necessarily abelian) group and supposeA Ă G is an ergodic
set. For any 0 ă δ ď 1, we have

sup
!

cδpA
1, Bq ; A1 Ă A is finite

)

“
1

µpBq

for every measurable subset B Ă X of positive µ-measure.

1.5.3. Proof of Theorem 1.1. Let G be a countable abelian group and let A Ă G be an ergodic basis of
order k. Suppose pX,µq is an ergodic G-space and fix 0 ă δ ă 1. By Proposition 1.1, the inequality

sup
!

cδpA
1, Bq ; A1 Ă Ak is finite

)

ď p1´ δq´k ¨
´µpABq

µpBq

¯k
,

holds, and by Proposition 1.2, we have
1

µpBq
“ sup

!

cδpA
1, Bq ; A1 Ă Ak is finite

)

.
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Combining these two results, we get

1

µpBq
ď p1´ δq´k ¨

´µpABq

µpBq

¯k
.

Since δ ą 0 is arbitrary, we can let it tend to zero and conclude that

µpABq ě µpBq1´
1
k ,

which finishes the proof.

1.6. An overview of the paper. The paper is organized as follows. In Section 2 we adapt a recent
argument of Petridis in [7] to magnification ratios for G-spaces with respect to finite sets. We then use a
simple increment argument to establish Proposition 1.1.

In Section 3 we outline a general technique to control magnification ratios for G-spaces with respect
to an increasing sequence of finite sets in G. As a corollary of this technique, we prove Proposition 1.2.
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IHP Paris, KTH Stockholm and ETH Zürich. We thank the mathematics departments at these places for
their great hospitality.

The first author acknowledges support from the European Community seventh Framework program
(FP7/2007-2012) grant agreement 203418 when he was a postdoctoral fellow at Hebrew university, and
ETH Fellowship FEL-171-03 since January 2011.

2. PROOF OF PROPOSITION 1.1

Let G be a countable abelian group and suppose pX,µq is a (not necessarily ergodic) G-space. Given
A Ă G and a Borel measurable set B Ă X with positive µ-measure, we define

cpA,Bq “ inf
!µpAB1q

µpB1q
: B1 Ă B and µpB1q ą 0

)

.

A recent combinatorial argument of Petridis in [7] can be adapted to the setting of G-spaces to give a
proof of the following proposition.

Proposition 2.1. For every finite set A Ă G and measurable set B Ă X of positive µ-measure, we have

cpA,Bq ě cpAk, Bq
1
k

for all k ě 1.

A drawback with Petridis argument is that it does not automatically yield any lower bounds on the
µ-measures of the subsets B1 Ă B which almost realize the infimum cpA,Bq. This is taken care of by
the following increment argument.

Proposition 2.2. LetA Ă G be a finite set and letB Ă X be a measurable subset of positive µ-measure.
Fix 0 ă δ ă 1 and a positive integer k. Suppose B1 Ă B is a measurable subset which satisfies

µpAkB1q

µpB1q
ď p1´ δq´k ¨

´µpABq

µpBq

¯k
. (2.1)
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Then, either
µpB1q ě δ ¨ µpBq

or there exists a measurable set B1 Ă B2 Ă B, which satisfies (2.1), such that B2zB1 has positive
µ-measure.

Proof. First note that if B1, B2 Ă B are measurable sets with µ-null intersection, which both satisfy
inequality (2.1), then so does the set B1 YB2.

Assume that B1 Ă B satisfies (2.1) and µpB1q ă δ ¨ µpBq. Set Bo “ BzB1 and note that

µpBoq ě p1´ δq ¨ µpBq

and thus

εo “ 1´ p1´ δq ¨
µpBq

µpBoq
ą 0.

If we define

ε1 “ εo ¨ p1´ δq
´1 ¨

µpABq

µpBq
,

then, by Proposition 2.1, applied to the measurable set Bo of positive µ-measure, there exists a measur-
able set B1o Ă Bo of positive µ-measure, such that

´µpAkB1oq

µpB1oq

¯
1
k
ď ε1 `

µpABoq

µpBoq

ď ε1 ` p1´ εoq ¨ p1´ δq
´1 ¨

µpABoq

µpBq

ď ε1 ` p1´ εoq ¨ p1´ δq
´1 ¨

µpABq

µpBq

“ p1´ δq´1 ¨
µpABq

µpBq
.

Hence, B1o Ă B satisfies inequality (2.1), and since B1o is disjoint to B1, we conclude that the set

B2 “ B1 YB1o Ă B

also satisfies (2.1), which finishes the proof. �

The proof of Proposition 1.1 is now an almost immediate consequence of the two propositions above.

2.0.1. Proof of Proposition 1.1. Let A Ă G be a finite set and suppose B Ă X is a measurable subset
of positive µ-measure. Given 0 ă δ ă 1 and a positive integer k, we wish to establish the inequality

cδpA
k, Bq

1
k ď p1´ δq´1 ¨

µpABq

µpBq
, (2.2)

where

cδpA,Bq “ inf
!µpAB1q

µpB1q
: B1 Ă B and µpB1q ě δ ¨ µpBq

)

.

By Proposition 2.1, we have

cpAk, Bq
1
k ď cpA,Bq ă p1´ δq´1 ¨

µpABq

µpBq
,

and thus there exists a measurable subset B1 Ă B of positive µ-measure, such that
´µpAkB1q

µpB1q

¯
1
k
ď p1´ δq´1 ¨

µpABq

µpBq
. (2.3)
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If µpB1q ě δ ¨ µpBq, then

cδpA
k, Bq

1
k ď

´µpAkB1q

µpB1q

¯
1
k
ď p1´ δq´1 ¨

µpABq

µpBq
,

which is what we wanted to prove.

A potentially problematic case would be when there is no measurable subset B1 Ă B at all with the
lower bound µpB1q ě δ ¨ µpBq and which satisfies (2.3). Assume, for the sake of contradiction, that we
are in this situation and define

E “
!

B1 Ă B : B1 satisfies (2.3),
)

where we also insist that the subsets B1 Ă B are measurable.

Since E is closed under unions of increasing sequences of sets, by the Principle of Exhaustion (see
Lemma 215A in [3]), there exists a measurable subset B8 in E such that whenever B1 is an element in E
with B8 Ă B1, then B1zB8 is a µ-null set. By assumption we have µpB8q ă δ ¨ µpBq, so Proposition
2.2 guarantees that we can find a measurable set B1 in E such that B8 Ă B1 Ă B and with the property
that B1zB8 is not a µ-null set. However, this contradicts the maximality of B8 described above, so we
conclude that µpB8q ě δ ¨ µpBq, and thus

cδpA
k, Bq

1
k ď

´µpAkB8q

µpB8q

¯
1
k
ď p1´ δq´1 ¨

µpABq

µpBq
.

Note that if A Ă G is any set and A1 is a finite subset of Ak, then there exists a finite set Ao Ă A such
that the inclusion A1 Ă Ako holds. Hence,

cδpA
1, Bq

1
k ď cδpA

k
o , Bq

1
k ď p1´ δq´1 ¨

µpAoBq

µpBq
ď p1´ δq´1 ¨

µpABq

µpBq

for every finite subset A1 Ă Ak and thus,

sup
!

cδpA
1, Bq : A1 Ă Ak is finite

)

ď p1´ δq´k ¨
´µpABq

µpBq

¯k
,

which finishes the proof.

2.1. Proof of Proposition 2.1.

Lemma 2.1. Let A Ă G be a finite set and fix ε ą 0. Then, for any set B1 Ă B such that

µpAB1q ď p1` εq ¨ µpB1q ¨ cpA,Bq

and for every finite set F Ă G, we have

µpFAB1q ď
´

p1` εq ¨ µpFB1q ` ε ¨ |F | ¨ µpB1q
¯

¨ cpA,Bq. (2.4)

Proof. Note that inequality (2.4) trivially holds whenever the set F consists of a single point. Our argu-
ment now goes as follows. Fix a finite set F Ă G for which (2.4) holds and pick g P GzF . We shall
prove that (2.4) then holds for the set F 1 “ F Y tgu.

Since G is abelian, we have the inclusion

ApB1 X g´1FB1q Ď AB1 X g´1FAB1,
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and thus,

F 1AB “ FAB1 Y
´

gAB1zFAB1
¯

“ FAB1 Y g
´

AB1z
`

AB1 X g´1FAB1
˘

¯

Ď FAB1 Y g
´

AB1zApB1 X g´1FB1q
¯

.

Since B1 X g´1FB1 Ă B1 Ă B, we have

µ
`

ApB1 X g´1FB1q
˘

ě µ
`

B1 X g´1FB1
˘

¨ cpA,Bq,

and thus

µ
`

F 1AB1
˘

ď µpFAB1q ` µpAB1q ´ µpApB1 X g´1FB1qq

ď µpFAB1q ` µpAB1q ´ µpB1 X g´1FB1q ¨ cpA,Bq

ď µpFAB1q `
´

p1` εq ¨ µpB1q ´ µpB1 X g´1FB1q
¯

¨ cpA,Bq.

Since (2.4) is assumed to hold for the set F , we conclude that

µ
`

F 1AB1
˘

ď

´

p1` εq ¨ µpFB1q ` ε ¨ |F | ¨ µpB1q ` p1` εq ¨ µpB1q ´ µpB1 X g´1FB1q
¯

¨ cpA,Bq.

Note that
µpFB1q ` µpB1q ´ µpB1 X g´1FB1q “ µpF 1Bq

and thus

µ
`

F 1AB1
˘

ď

´

µpF 1B1q ` ε ¨ |F 1| ¨ µpB1q ` ε ¨ µpFB1q
¯

¨ cpA,Bq

ď

´

p1` εq ¨ µpF 1B1q ` ε ¨ |F 1| ¨ µpB1q
¯

¨ cpA,Bq,

which finishes the proof. �

Remark 2.1. We stress that the inclusion

ApB1 X g´1FB1q Ď AB1 X g´1FAB1,

for all subsets F,A Ă G and B1 Ă B is the only instance in the proof where we use the assumption that
G is an abelian group.

The following proposition strictly contains Proposition 1.1.

Proposition 2.3. LetA Ă G be a finite set and fix an integer k. Then there exists a non-negative constant
Dk, which only depends on k and A, such that whenever 0 ă ε ă 1 and B1 Ă B is a measurable set
with

µpAB1q ď p1` εq ¨ µpB1q ¨ cpA,Bq,

then
µpAk`1B1q

µpB1q
ď p1` εqk`1 ¨ cpA,Bqk`1 ` ε ¨Dk ¨ cpA,Bq

k. (2.5)

In particular,

cpAk, Bq ď cpA,Bqk

for every integer k.
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Proof. Note that inequality (2.5) clearly holds for k “ 0 and Do “ 0. Define D´1 “ 0 and assume that
the inequality has been established for all integers up to k. We wish to prove that the inequality then also
holds for k ` 1.

By Lemma 2.1, applied to the set F “ Ak, we have

µpAk`1B1q ď
´

p1` εq ¨ µpAkB1q ` ε ¨ |A|k ¨ µpB1q
¯

¨ cpA,Bq.

By our induction assumption, there exists a non-negative constant Dk´1, which only depends on k and
the set A, such that

µpAkB1q

µpB1q
ď p1` εqk ¨ cpA,Bqk ` ε ¨Dk´1 ¨ cpA,Bq

k´1,

and thus, since cpA,Bq ě 1, we have

µpAk`1B1q

µpB1q
ď p1` εqk`1 ¨ cpA,Bqk`1 ` ε ¨ p2 ¨Dk´1 ` |A|

kq ¨ cpA,Bqk,

which establishes inequality (2.5) for k ` 1 with Dk “ 2 ¨Dk´1 ` |A|
k. The last assertion now follows

upon letting ε tend to zero. �

3. PROOF OF PROPOSITION 1.2

Let G be a countable (not necessarily abelian) group and suppose pX,µq is an ergodic G-space. Fix a
set A Ă G and a Borel measurable set B Ă X with positive µ-measure. Given δ ą 0, we wish to relate
the quantities cδpA,Bq and

c1δpA,Bq “ sup
!

cδpA
1, Bq : A1 Ă A is finite

)

.

Clearly we always have c1δpA,Bq ď cδpA,Bq, but it is not immediately clear that equality should hold
(not even in the case when A “ G).

Fix an increasing exhausting pAkq ofA by finite sets and choose a sequence pBkq of Borel measurable
subsets of B with µpBkq ě δ ¨ µpBq such that

c1δpA,Bq “ lim
kÑ8

µpAkBkq

µpBkq
.

The aim of this section is to show that if A Ă G is an ergodic set, then

lim
kÑ8

µpAkBkq

µpBkq
ě

1

µpBq
,

for every measurable set B Ă X and 0 ă δ ă 1. The following proposition supplies the crucial step in
the proof.

Proposition 3.1. Let pAkq be an increasing sequence of finite sets in G with union A and let pBkq be a
sequence of measurable subsets of X with a uniform lower bound on their µ-measures. Then there exist
a subsequence pkiq such that the limit

fpxq “ lim
mÑ8

1

m

m
ÿ

i“1

χBki
pxq

exists almost everywhere with respect to µ, and if we define the level sets

Et “
!

x P X : fpxq ě t
)
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for t ě 0, then

lim sup
kÑ8

µpAkBkq

µpBkq
ě

ş1
0 µpAEtq dt
ş1
0 µpEtq dt

.

3.1. Proof of Proposition 1.2. Let pX,µq be an ergodic G-space and suppose A Ă G is an ergodic set
with respect to pX,µq. If B Ă X is a measurable subset of positive µ-measure and δ ą 0, we define

cδpA,Bq “ inf
!µpAB1q

µpB1q
: B1 Ă B and µpB1q ě δ ¨ µpBq

)

.

One readily checks that

cδpA
1, Bq ď cδpA,Bq “

1

µpBq

for every subset A1 Ă A, so it suffices to show that whenever pAkq is an exhaustion of A by finite sets
and pBkq is a sequence of measurable subsets of B with

µpBkq ě δ ¨ µpBq

for all k, then

lim sup
kÑ8

µpAkBkq

µpBkq
ě

1

µpBq
.

By Proposition 3.1, there exists a subsequence pkiq such that the limit

fpxq “ lim
mÑ8

1

m

m
ÿ

i“1

χBki
pxq

exists almost everywhere with respect to µ and if we define

Et “
!

x P X : fpxq ě t
)

Ă X

for t ě 0, then

lim sup
kÑ8

µpAkBkq

µpBkq
ě

ş1
0 µpAEtq dt
ş1
0 µpEtq dt

.

Note that the sets pEtq are decreasing in t, so if we define

r “ sup
 

0 ď t ď 1 : µpEtq ą 0
(

,

then µpEtq ą 0 for all 0 ď t ă r, and thus

µpAEtq “ 1 @ 0 ď t ă r

and µpAEtq “ 0 for t ą r since A is an ergodic set with respect to pX,µq. Hence,
ş1
0 µpAEtq dt
ş1
0 µpEtq dt

“
1

1
r

şr
0 µpEtq dt

.

Note that since all the setsBk are assumed to be subsets ofB, and the function f is defined as an average
of the indicator functions of the sets pBkq, the set

Eo “
!

x P X : fpxq ě 0
)

must also be a subset of B. Since Et Ă Eo for all 0 ď t ď 1, we have

r ¨ µpEoq ě

ż r

0
µpEtq dt “

ż

X
fpxq dµpxq “ lim

mÑ8

1

m

m
ÿ

i“1

µpBkiq ě δ ¨ µpBq.

and thus
µpEoq ě

δ

r
¨ µpBq ě δ ¨ µpBq,
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since 0 ă r ď 1.

In particular, we have

µpAEoq

µpEoq
“

1

µpEoq
ě cδpA,Bq ě

1
1
r

şr
0 µpEtq dt

ě
1

µpEoq
,

by the estimates above, so we can conclude that

cδpA,Bq “
1

µpEoq
ě

1

µpBq
,

which finishes the proof.

3.2. Proof of Proposition 3.1. Proposition 3.1 will be an easy consequence of the following lemma
which will be established in the Subsection 3.3.

Lemma 3.1. Let pAkq be an increasing sequence of finite subsets of G and let pBkq be a sequence of
measurable subsets of X with a uniform lower bound on their µ-measures. Then there exists a subse-
quence pkiq such that the limit

fpxq “ lim
mÑ8

1

m

m
ÿ

i“1

χBki
pxq

exists almost everywhere with respect to µ, and if we define the level sets

Et “
!

x P X : fpxq ě t
)

for all t ě 0, then, for all ε ą 0 and for every integer No, there exists N ě No such that

sup
iěN

µpAkiBkiq

µpBkiq
ě p1´ εq ¨

ş1
0 µpAkNEtq dt
ş1
0 µpEtq dt

.

3.2.1. Proof of Proposition 3.1. Fix an increasing sequence pAkq of finite sets in G with union A and let
pBkq be a sequence of measurable subsets with a uniform lower bound on their µ-measures.

Fix a decreasing sequence pεjq of positive numbers converging to zero. Lemma 3.1 guarantees the
existence of a subsequence pkiq such that the limit

fpxq “ lim
mÑ8

1

m

m
ÿ

i“1

χBki
pxq

exists µ-almost everywhere, and for every j, there exists Nj ě j such that

sup
iěNj

µpAkiBkiq

µpBkiq
ě p1´ εjq ¨

ş1
0 µpAkNj

Etq dt
ş1
0 µpEtq dt

.

Since pAkq is increasing with union A, the σ-additivity of µ now implies that

lim
jÑ8

µpAkNj
Etq “ µpAEtq

for all t ě 0, and thus, by dominated convergence, we have

lim sup
k

µpAkBkq

µpBkq
ě lim

j
sup
iěNj

µpAkiBkiq

µpBkiq
ě

ş1
0 µpAEtq dt
ş1
0 µpEtq dt

,

which finishes the proof.
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3.3. Proof of Lemma 3.1. We first show that we can extract a subsequence from our sequence pBkq
above such that the Cesaro averages of the corresponding indicator functions converge almost every-
where. So far, no assumption on the probability space pX,µq has been made. However, in the proof
of the following lemma, it will be convenient to assume that the associated Hilbert space L2pX,µq is
separable. For the rest of this subsection, we shall insist on this assumption.

Lemma 3.2. Let pX,µq be a probability measure space such that L2pX,µq is a separable Hilbert space
and suppose pϕnq is a sequence of uniformly bounded real-valued measurable functions on X . Then
there exist a bounded measurable function ϕ, a subsequence pnkq and a conull subset X 1 Ă X such that

ϕpxq “ lim
NÑ8

1

N

N
ÿ

k“1

ϕnk
pxq

for all x in X 1.

Proof. By assumption,
M “ sup

n
}ϕn}8 ă 8,

and thus pϕnq is contained in the centered ball of radius M in L2pX,µq. By assumption, L2pX,µq is
separable and thus its unit ball is sequentially weakly compact, so we can extract a subsequence along
which ϕn converges to a (bounded) measurable function ϕ in the weak topology on L2pX,µq. If we
write ψn “ ϕn´ϕ, then ψn converges weakly to the zero function onX , and we wish to show that there
exists a subsequence pnkq such that

lim
NÑ8

1

N

N
ÿ

k“1

ψnk
pxq “ 0

for µ-almost every x in X . Set n1 “ 1, and define inductively nk, for k ą 1, by
ż

X
ψnipxqψnk

pxq dµpxq ď
1

k

for all 1 ď i ă k. One readily checks that

ÿ

Ně1

ż

X

ˇ

ˇ

ˇ

1

N2

N2
ÿ

k“1

ψnk
pxq

ˇ

ˇ

ˇ

2
dµpxq ă 8,

and thus, by the Borel-Cantelli Lemma, there exists a µ-conull subset X 1 Ă X , such that

lim
NÑ8

1

N2

N2
ÿ

k“1

ψnk
pxq “ 0, @x P X 1.

Fix x P X 1 and let pLjq be any increasing sequence. Pick a sequence pNjq with N2
j ď Lj ă pNj ` 1q2

for all j and note that

ˇ

ˇ

ˇ

1

pNj ` 1q2

pNj`1q
2

ÿ

k“1

ψnk
pxq ´

1

Lj

L2
j

ÿ

k“1

ψnk
pxq

ˇ

ˇ

ˇ
ď 5 ¨M ¨

Nj

pNj ` 1q2
,

for all j. Since the right hand side and the first term on the left hand side both converge to zero as j tends
to infinity we conclude that

lim
jÑ8

1

Lj

Lj
ÿ

k“1

ψnk
pxq “ 0,

for all x in X 1, which finishes the proof. �
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The second lemma asserts that unions of finite translates of most level sets of an almost everywhere
convergent sequence of functions behave as one would expect.

Lemma 3.3. Let pX,µq be a G-space and suppose pϕnq is a sequence of measurable functions on X
which converges to a function ϕ almost everywhere with respect to µ. For every real number t and integer
n, we define the sets

Ent “
!

x P X : ϕnpxq ě t
)

and Et “
!

x P X : ϕpxq ě t
)

.

Then, for every finite set A Ă G, we have

lim
nÑ8

µpAEnt q “ µpAEtq

for all but countably many t.

Proof. By Egorov’s Theorem on almost everywhere convergent sequences of measurable functions, there
exist, for every ε ą 0, a measurable subset Xε Ă X with µpXεq ě 1´ ε and an integer nε such that

Et`ε XXε Ă Ent XXε Ă Et´ε XXε

for all n ě nε and for every real number t. In particular, for every finite set A Ă G, we have

µpAEt`εq ´ ε ¨ |A| ď µpAEnt q ď µpAEt´εq ` ε ¨ |A|,

for all n ě nε and for every real number t. Hence,

µpAEt`εq ´ ε ¨ |A| ď lim
nÑ8

µpAEnt q ď lim
nÑ8

µpAEnt q ď µpAEt´εq ` ε ¨ |A|,

for all ε ą 0.
Note that the function t ÞÑ µpAEtq is decreasing in the variable t, and hence its set D of discontinuity

points is at most countable. If t does not belong to D, then the left and right hand side of the inequalities
above tend to µpAEtq as ε tends to zero, which finishes the proof. �

Recall the setup from the beginning of the subsection. We have fixed an increasing sequence pAkq of
finite subsets of A Ă G and a sequence pBkq of Borel subsets of B Ă X with µpBkq ě δ ¨ µpBq such
that

c1δpA,Bq “ lim
kÑ8

µpAkBkq

µpBkq
.

Our third lemma shows that for large enough k, these ratios can be approximated from below by ratios
of Cesaro averages of the terms which occur in the nominator and denominator.

Lemma 3.4. Let pβkq be a sequence of positive real numbers which converges to a positive real number.
Then, for any ε ą 0 and for every integer No, there exists N ě No such that for all n and every positive
sequence pαkq, the inequality

1

n

N`n
ÿ

k“N

αk
βk
ě p1´ εq ¨

´αN ` . . .` αN`n
βN ` . . .` βN`n

¯

holds.

Proof. Let β “ limk βk ą 0 and fix ε ą 0. Choose δ ą 0 such that
1´ δ

1` δ
ě 1´ ε.

There exists an integer N with the property that

p1` δq ¨ β ě βk ě p1´ δq ¨ β

for all k ě N , and thus
βN ` . . .` βN`n ě p1´ δq ¨ β ¨ n
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for all n. In particular,
βN ` . . .` βN`n

n ¨ βk
ě

1´ δ

1` δ
ě 1´ ε,

for all k ě N and for all n.

Fix a positive sequence pαkq and note that
1

n
¨
αk
βk
ě p1´ εq ¨

αk
βN ` . . .` βN`n

for all k ě N and for all n. Hence,

1

n

N`n
ÿ

k“N

αk
βk
ě p1´ εq ¨

αN ` . . .` αN`n
βN ` . . .` βN`n

,

which finishes the proof. �

The fourth and final lemma before we embark on the proof of Lemma 3.1 is a simple inclusion of level
sets.

Lemma 3.5. Let A Ă G and suppose pBkq is a sequence of subsets of X . Let ppkq be a summable
sequence of positive real numbers and define the sets

Et “
!

x P X :
ÿ

k

pk ¨ χBk
pxq ě t

)

and Ft “
!

x P X :
ÿ

k

pk ¨ χABk
pxq ě t

)

for non-negative t. Then AEt Ă Ft.

Proof. Suppose x P AEt, so that a´1x P Et for some a P A. Then
ÿ

k

pk ¨ χABk
pxq ě

ÿ

k

pk ¨ χBk
pa´1xq ě t,

which shows that x P Ft. �

3.4. Proof of Lemma 3.1. By Lemma 3.2, there exists a subsequence pkiq such that the limit

fpxq “ lim
mÑ8

1

m

m
ÿ

i“1

χBki
pxq

exists µ-almost everywhere. Clearly, we can also arrange so that the sequence µpBkiq converges.

Fix ε ą 0 and an integer No. Since the µ-measures of the sets Bk are assumed to have a lower bound,
Lemma 3.4, applied to the sequences

αi “ µpAkiBkiq and βi “ µpBkiq,

guarantees that there exists N ě No, such that for all n, we have

sup
iěN

µpAkiBkiq

µpBkiq
ě

1

n

N`n
ÿ

i“N

µpAkiBkiq

µpBkiq

ě p1´ εq ¨

řN`n
i“N µpAkiBkiq
řN`n
i“N µpBkiq

ě p1´ εq ¨

řN`n
i“N µpAkNBkiq
řN`n
i“N µpBkiq

,

where in the last inequality w used the inclusion AkN Ă Aki for all i ě N .
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Define the functions

fn,N pxq “
1

n

N`n
ÿ

i“N

χBki
and hn,N pxq “

1

n

N`n
ÿ

i“N

χAkN
Bki

and their associated level sets

En,Nt “

!

x P X : fn,N pxq ě t
)

and Fn,Nt “

!

x P X : hn,N pxq ě t
)

for t ě 0. By Lemma 3.5, we have

AkNE
n,N
t Ă Fn,Nt

for all t ě 0, and thus

1

n

N`n
ÿ

i“N

µpAkNBkiq “

ż

X
hn,N dµ “

ż 1

0
µpFn,Nt q dt ě

ż 1

0
µpAkNE

n,N
t q dt

and

1

n

N`n
ÿ

i“N

µpBkiq “

ż

X
fn,N dµ “

ż 1

0
µpEn,Nt q dt,

for all n and N . We conclude that

sup
iěN

µpAkiBkiq

µpBkiq
ě p1´ εq ¨

ş1
0 µpAkNE

n,N
t q dt

ş1
0 µpE

n,N
t q dt

, (3.1)

for all n ě N .

Note that
ˇ

ˇ

ˇ

1

N ` n

N`n
ÿ

i“1

χBki
pxq ´

1

n

N`n
ÿ

i“N

χBki
pxq

ˇ

ˇ

ˇ
ď 2 ¨

N

N ` n
,

for all n and N , and since the first term converges µ-almost everywhere to fpxq as n tends to infinity, so
does the second term, and hence

fpxq “ lim
nÑ8

fn,N pxq

for all N , whenever fpxq exists. Hence, by Lemma 3.3, we have

lim
nÑ8

µpAkNE
n,N
t q “ µpAkNEtq

and

lim
nÑ8

µpEn,Nt q “ µpEtq

for all but countably many t ě 0. By dominated convergence, we conclude that

sup
iěN

µpAkiBkiq

µpBkiq
ě p1´ εq ¨

ş1
0 µpAkNEtq dt
ş1
0 µpEtq dt

,

upon letting n tend to infinity on the right hand side in (3.1).
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4. APPENDIX: A CORRESPONDENCE PRINCIPLE FOR PRODUCT SETS

The aim of this appendix is to outline a complete proof of the Correspondence Principle stated in
Subsection 1.2.

Let G be a countable group and let MpGq denote the set of means on G, which is a weak*-closed
and convex subset of the dual of `8pGq. Given λ in MpGq, we can associate to it a finitely additive
probability measure λ1 by

λ1pCq “ λpχCq, C Ă G.

Fix a weak*-compact and convex subset C ĂMpGq. If X is a compact hausdorff space, equipped with
an action of G by homeomorphisms of X , such that there exists a point xo in X with a dense G-orbit,
then we have a natural unital, injective and left G-equivariant C*-algebraic morphism

Θxo : CpXq Ñ `8pGq

given by Θxoϕpgq “ ϕpgxoq for all g in G and ϕ in CpXq. Hence, its transpose Θ˚xo maps MpGq into
PpXq. In particular, if µ “ Θ˚xoλ and B Ă X is a clopen set (so that the indicator function χB is a
continuous function on X), then

λ1pBxoq “ µpBq,

where
Bxo “

!

g P G : gxo P B
)

Ă G.

Note that every functional of form λ ÞÑ λ1pCq for C Ă G is weak*-continuous, so by the weak*-
compactness of C, both the supremum and the infimum in the definitions of the upper and lower Banach
densities with respect to C are attained. Furthermore, since C is also assumed convex, Bauer’s Maximum
Principle (see e.g. Theorem 7.69 in [1]) guarantees that these extremal values are attained at extremal
elements of C, i.e. elements of C which cannot be written as non-trivial convex combinations of other
elements in C. Since Θ˚xo is affine and weak*-continuous on MpGq, we see that the image

Cxo “ Θ˚xopCq Ă PpXq

is weak*-compact and convex. Note that ifA Ă G andB Ă X is any set, thenABxo “ pABqxo . Hence,
if A1 Ă A is a finite set and B is a clopen set in X , then A1B is again clopen in X , so that if µ “ Θ˚xoλ
for some λ in C, then

λ1pA1Bxoq “ λ1ppA1Bqxoq “ µpA1Bq.

In particular, we have

d˚CpABxoq ě sup
!

d˚CpA
1Bxoq : A1 Ă A is finite

)

ě sup
!

λ1pA1Bxoq : A1 Ă A is finite
)

“ sup
!

µpA1Bq : A1 Ă A is finite
)

“ µpABq,

where the last equality holds because µ is σ-additive. We conclude that for every A Ă G and clopen set
B Ă X , there exists an extremal element µ in Cxo such that

d˚CpBxoq “ µpBq and d˚CpABq ě µpABq.

The same argument also gives the following inequality. Fix A Ă G and a clopen set B Ă X . We can
find an extremal element λ in C such that

dC˚pABxoq “ λ1pABxoq.
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If we let ν “ Θ˚xoλ, then ν is an extremal element in Cxo and

νpBq “ λ1pBxoq ě dC˚pBxoq.

Furthermore, we have

dC˚pABxoq “ λ1pABxoq “ λ1ppABqxoq

ě sup
!

λ1ppA1Bqxoq : A1 Ă A is finite
)

“ sup
!

νppA1Bqxoq : A1 Ă A is finite
)

“ νpABq,

where the last equality holds because ν is σ-additive. We conclude that whenever A Ă G and B Ă X is
a clopen set, then there exists an extremal element ν in Cxo such that

dC˚pBxoq ď νpBq and dC˚pBxoq ě νpABq.

So far, everything we have said works for every compact hausdorff space X , equipped with an action of
G by homeomorphisms, every clopen subsetB Ă X and point xo with dense orbit. The triple pX,B, xoq
gives rise to a set Bxo Ă G and what we have seen is that one can estimate product sets of Bxo with any
set A Ă G in terms of the size of the union AB of translates of the set B under the elements in A with
respect to certain extremal elements in Cxo . We wish to show that every subset B1 Ă G is of this form.

This undertaking is not hard. Let 2G denote the set of all subsets of G equipped with the product
topology. Since G is countable, this space is metrizable. Note that G acts by homeomorphisms on 2G by
right translations and the set

U “
!

x P 2G : e P x
)

Ă 2G

is clopen. Given any set B1 Ă G, we shall view it as an element (suggestively denoted by xo) in 2G and
we letX denote the closure of theG-orbit of xo. If we writeB “ UXX , thenB is a clopen set inX and
Bxo “ B1. We can summarize the entire discussion so far in the following Correspondence Principle,
which essentially dates back to Furstenberg [4].

Correspondence Principle I. Given A,B1 Ă G, there exists a closed G-invariant subset X Ă 2G, a
clopen set B Ă X , a point xo in X with a dense G-orbit and extremal (σ-additive) probability measures
µ and ν in Θ˚xopCq such that

d˚CpB
1q “ µpBq and dC˚pB

1q ď νpBq

and
d˚CpAB

1q ě µpABq and dC˚pAB
1q ě νpABq.

Up until now, the discussion has been very general and no assumptions have been made on either the
group G or the set C of means involved. In order for the correspondence principle to be useful we need
to be able to better understand the extremal elements in C.

We shall now describe a situation when such an understanding is indeed possible. LetG be a countable
abelian group and denote by LG the set of all invariant means onG. By a classical theorem of Kakutani-
Markov, this set is always non-empty and it is clearly weak*-compact and convex. Given any compact
hausdorff space X , equipped with an action of G by homeomorphisms of X and containing a point xo
in X with a dense G-orbit, the map

Θxo : CpXq Ñ `8pGq

defined above is injective and left G-equivariant. Hence, its transpose must map LG onto the space of all
G-invariant probability measures on X , which we denote by PGpXq. It is well-known that the extremal
elements in PGpXq can be alternatively described as the ergodic probability measures on X , i.e. those
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G-invariant measures which do not admit any G-invariant Borel sets with µ-measures strictly between
zero and one.

In particular, applying the discussion above to the set C “ LG and adopting the conventions

d˚ “ d˚LG
and d˚ “ dLG

˚ ,

we have proved the following version of the Correspondence Principle stated in Subsection 1.2.

Correspondence Principle II. Let G be a countable abelian group and suppose A,B1 Ă G. Then there
exists a closed G-invariant subset X Ă 2G, a clopen set B Ă X and ergodic G-invariant probability
measures µ and ν on X such that

d˚pB1q “ µpBq and d˚pB
1q ď νpBq

and
d˚pAB1q ě µpABq and d˚pAB

1q ě νpABq.

We stress that this version of the correspondence principle does not apply to the set S Ă MpZq of
Birkhoff means on Z as its extremal points are not all ergodic.
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