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Abstract

This paper develops an asymptotic theory for a non-linear parametric co-integrating
regression model. We establish a general framework for weak consistency that is
easy to apply for various non-stationary time series, including partial sum of linear
process and Harris recurrent Markov chain. We provide a limit distribution for
the nonlinear least square estimator which significantly extends the previous work.
We also introduce endogeneity in the model by allowing the error to be serially
dependent and cross correlated with the regressor.
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1 Introduction

The past few decades has witnessed significant developments in cointegration analysis.

In particular, extensive researches have been focused on cointegration models with linear

structure. Whilst it is convenient for practical implementation, nonetheless, it is restric-

tive, especially in the context of economics, often suggesting nonlinear responses with

some unknown parameters. For empirical examples, we refer to Granger and Teräsvirta

(1993) as well as Teräsvirta et al. (2011). In this situation, it is expected that nonlin-

ear cointegration captures the features of many long-run relationships in a more realistic

manner.
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A typical non-linear parametric cointegrating regression model has the form

yt = f(xt, θ0) + ut, t = 1, ..., n. (1)

where f : R×Rm → R is a known nonlinear function, xt and ut are regressor and regression

errors, and θ0 is an m-dimensional true parameter vector that lies in the parameter set

Θ. With the observed data {yt, xt}nt=1, which may include non-stationary components,

this paper is concerned with the nonlinear least square (NLS) estimation of the unknown

parameters θ ∈ Θ. In this regard, Park and Phillips (1999, 2001), PP henceforth, considers

xt to be an integrated I(1) process. Based on PP framework, Chang et. al (2001)

introduced additional linear time trend term and stationary regressors into model (1).

Chang and Park (2003) extends to nonlinear index models driven by integrated process.

More recently, Choi and Saikkonen (2010), Gao, et al. (2009) and Wang and Phillips

(2012) developed statistical tests for the existence of nonlinear cointegrating relation.

Park and Chang (2011) allows the regressors xt to be contemporaneous correlated with

the regression errors ut. Shi and Phillips (2012) extends the model (1) and incorporates

a loading coefficient.

The present paper has a similar goal to the previous mentioned papers but offers more

general results that we hope has some advantage. First of all, we establish a general

framework for weak consistency of the NLS estimator θ̂n, allowing for the xt to be a wider

class of non-stationary time series. The set of sufficient conditions are easy to apply to

various non-stationary regressors, including partial sum of linear process and recurrent

Markov chain. Furthermore, we provide a limit distribution for the NLS estimator θ̂n. It

deserves to mention that the routine in this paper to establish the limit distribution of

θ̂n is different from previous work, e.g. Park and Phillips (2001). Roughly speaking, our

routine is related to joint distributional convergence of a martingale under target and its

conditional variances, rather than using classical martingale limit theorem by establishing

the convergence in probability for the conditional variance. In nonlinear co-integrating

regression, there are some advantages for our methodology since it is usually difficult to

establish the convergence in probability for the conditional variance, in particular, in the

situation that the regressor xt is a non-stationary time series.

Second, in addition to the commonly used martingale innovation structure, our model

allows for serial dependence in the equilibrium errors ut and the innovations driving xt. It

is important as our model permits joint determination of xt and yt, and hence the system

is a time series structural model. Under such situation, the weak consistency and limit
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distribution of the NLS estimator θ̂n are also established.

This paper is organized as follow. Section 2 presents our main results of weak con-

sistency. The results on limit distribution of the NLS estimator are given in Section 3.

Extension to endogeneity is presented in Section 4. Technical proofs are postponed to Sec-

tion 6. Throughout the paper, we denote constants by C,C1, C2, ... which may be different

at each appearance, and assume that ‖x‖ = (x2
1 + ... + x2

m)1/2 whenever x = (x1, ..., xm).

Furthermore, the parameter set Θ ⊂ Rm is assumed to be compact and convex, and the

true parameter vector θ0 is an interior point of Θ.

2 Weak consistency

This section considers the estimation of the unknown parameters θ in model (1) by NLS.

Let Qn(θ) =
∑n

t=1(yt−f(xt, θ))
2. The NLS estimator θ̂n of θ is defined to be the minimizer

of Qn(θ) over θ ∈ Θ, that is,

θ̂n = arg minθ∈ΘQn(θ), (2)

and the error estimate is defined by σ̂2
n = n−1

∑n
t=1 û

2
t , where ût = yt−f(xt, θ̂n). To inves-

tigate the weak consistency for the NLS estimator θ̂n, this section assumes the regression

model (1) having a martingale structure. In this situation, our sufficient conditions are

closely related to those of Wu (1981), Lai (1994) and Skouras (2000), which provides a

general framework. In comparison to the papers mentioned, our assumptions are easy

to apply, particularly in non-linear cointegrating regression situation, as stated in two

examples below. Extension to endogeneity between xt and ut is investigated in Section 4.

2.1 Main results

We make use of the following assumptions for the development of the weak consistency.

ASSUMPTION 2.1. For each π, π0 ∈ Θ, there exists a real function T : R → R such

that

|f(x, π)− f(x, π0)| ≤ h(||π − π0||)T (x), (3)

where h(x) is a bounded real function such that h(x) ↓ h(0) = 0, as x ↓ 0.

ASSUMPTION 2.2. (i) {ut,Ft, 1 ≤ t ≤ n} is a martingale difference sequence satisfy-

ing E(|ut|2|Ft−1) = σ2, sup1≤t≤nE(|ut|2q|Ft−1) < ∞ a.s., where q > 1; (ii) xt is adapted

to Ft−1, t = 1, ..., n.
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ASSUMPTION 2.3. There exists an increasing sequence 0 < κn →∞ such that

κ−2
n

n∑
t=1

[T (xt) + T 2(xt)] = OP (1), (4)

and for any 0 < η < 1 and θ 6= θ0, where θ, θ0 ∈ Θ, there exist n0 > 0 and M1 > 0 such

that

P
( n∑
t=1

(f(xt, θ)− f(xt, θ0))2 ≥ κ2
n /M1

)
≥ 1− η, (5)

for all n > n0.

THEOREM 2.1. Under Assumption 2.1–2.3, the NLS estimator θ̂n is a consistent es-

timator of θ0, i.e. θ̂n →P θ0.

If in addition κ2
nn
−1 = OP (1), then σ̂2

n →P σ
2, as n→∞.

Assumptions 2.1 and 2.2 are the same as in Skouras (2000), which are standard in

the NLS estimation theory. Also see Wu (1981) and Lai (1994). Assumption 2.3 is used

to replace (3.8), (3.9) and (3.11) in Skouras (2000) in which some uniform conditions are

used. In comparison to Skouras (2000), Assumption 2.3, which is related to the conditions

on the regressor xt, is more natural and easy to apply, particularly in the situation that

T (x) is integrable and the regressor xt is an non-stationary time series, as stated in the

following examples.

Example 1 (Partial sum of linear process). Let xt =
∑t

j=1 ξj, where {ξj, j ≥ 1}
is a linear process defined by

ξj =
∞∑
k=0

φk εj−k, (6)

where {εj,−∞ < j < ∞} is a sequence of iid random variables with Eε0 = 0, Eε20 = 1

and the characteristic function ϕ(t) of ε0 satisfies
∫∞
−∞ |ϕ(t)|dt < ∞. The coefficients φk

are assumed to satisfy one of the following conditions:

C1. φk ∼ k−µρ(k), where 1/2 < µ < 1 and ρ(k) is a function slowly varying at ∞.

C2.
∑∞

k=0 |φk| <∞ and φ ≡
∑∞

k=0 φk 6= 0.

Put d2
n = Ex2

n. As in Wang, Lin and Gulati (2003), we have

d2
n = Ex2

n ∼

{
cµn

3−2µρ2(n), under C1,

φ2n, under C2.
(7)

where cµ = 1/((1− µ)(3− 2µ))
∫∞

0
x−µ(x+ 1)−µdx.

We have the following result.
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THEOREM 2.2. If T (x) is bounded and integrable and
∫∞
−∞(f(s, θ) − f(s, θ0))2ds > 0

for all θ 6= θ0, then (4) and (5) hold with κ2
n = n/dn.

Theorem 2.2 improves Theorem 4.1 of PP in two folds. First we allow for more general

regressor. The result under C1 is new, which allows xt to be long memory process,

including the fractionally integrated process as an example. PP only allows xt to satisfy

C2 with additional conditions on φk, that is, requires xt to be a partial sum of short

memory process. Secondly we remove the part (b) required in the definition of I-regular

function given in their Definition 3.3. PP requires f(x, θ) to be piecewise smooth and we

only require the [f(s, θ)− f(s, θ0)]2 to be integrable.

Example 2 (Recurrent Markov Chain). Let {xk}k≥0 be a Harris recurrent Markov

chain with state space (E, E), transition probability P (x,A) and invariant measure π. We

denote Pµ for the Markovian probability with the initial distribution µ, Eµ for correspon-

dent expectation and P k(x,A) for the k-step transition of {xk}k≥0. A subset D of E with

0 < π(D) <∞ is called D-set of {xk}k≥0 if for any A ∈ E+,

sup
x∈E

Ex
( τA∑
k=1

ID(Xk)
)
<∞,

where E+ = {A ∈ E : π(A) > 0} and τA = inf{n ≥ 1 : xn ∈ A}. As is well-known,

D-sets not only exist, but generate the entire sigma E , and for any D-sets C,D and any

probability measure ν, µ on (E, E),

lim
n→∞

n∑
k=1

νP k(C)/
n∑
k=1

µP k(D) =
π(C)

π(D)
, (8)

where νP k(D) =
∫∞
−∞ P

k(x,D)ν(dx). See Nummelin (1984) for instance.

Let a D-set D and a probability measure ν on (E, E) be fixed. Define

a(t) = π−1(D)

[t]∑
k=1

νP k(D), t ≥ 0.

By recurrence, a(t) → ∞. Here and below, we set the state space to be the real space,

that is (E, E) = (R,R). We have the following result.

THEOREM 2.3. If T (x) is bounded and
∫∞
−∞ |T (x)|π(dx) < ∞ and

∫∞
−∞(f(s, θ) −

f(s, θ0))2π(ds) > 0 for all θ 6= θ0, then (4) and (5) hold with κ2
n = a(n).

Theorem 2.3 seems to be new to literature. By virtue of (8), the asymptotic order of

a(t) depends only on {xk}k≥0. It is interesting to notice that Theorem 2.3 does not impose
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the β-regular condition as common used in literature. The Harris recurrent Markov chain

{xk}k≥0 is called β-regular if

lim
λ→∞

a(λt)/a(λ) = tβ, ∀t > 0, (9)

where 0 < β ≤ 1. See Chen (1999) for instance.

Remark 2.1. Although we assume the integrability, Theorem 2.1 allows for certain non-

integrable f(x, θ). For instance, if f(x, θ) = θ xα, where α > 0 is given, (3) holds with

h(x) = |x| and T (x) = |xα|. Under xt/dn ⇒D G(t) on D[0, 1], where G(t) is some

continuous stochastic process, it follows from the continuous mapping theorem that

1

n

n∑
t=1

(xt/dn)2α →D

∫ 1

0

G(t)2αdt (10)

on D[0, 1], which implies the required (4) and (5) with κ2
n = n d 2α

n .

However, some modifications to our Theorem 2.1 are necessary for establishing the

weak consistency of the θ̂n, under more general non-integrable f(x, θ). In this regard, we

follow PP to consider the asymptotic homogeneous function.

Let f : R×Θ→ R have the structure:

f(λx, θ) = v(λ, θ)h(x, θ) + b(λ, θ)A(x, θ)B(λx, θ), (11)

where supθ∈Θ |b(λ, θ) v−1(λ, θ)| → 0, as λ → ∞; supθ∈Θ |A(x, θ)| is locally bounded, that

is, bounded on bounded intervals; supθ∈Θ |B(λx, θ)| is bounded on R; h(x, θ) is regular on

Θ (see Appendix for definition of regularity) and v(λ, θ) belongs to one of the following

cases:

Case 1 (i) v(λ, θ) = v(λ) and v(λ) is bounded away from zero as λ → ∞; (ii) for all

θ 6= θ0 and δ > 0,
∫
|s|≤δ(h(s, θ)− h(s, θ0))2ds > 0.

Case 2 (i) for any θ̄ 6= θ0 and p̄, q̄ > 0, there exist ε > 0 and a neighborhood N of θ̄

such that as λ→∞

inf
|p−p̄|<ε
|q−q̄|<ε

inf
θ∈N
|pv(λ, θ)− qv(λ, θ0)| → ∞; (12)

(ii) for all θ 6= θ0 and δ > 0,
∫
|s|≤δ h

2(s, θ)ds > 0.

THEOREM 2.4. Suppose that f(x, θ) in model (1) has the structure (11), and in

addition to Assumption 2.2, there exists a continuous Gaussian process G(t) such that
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x[nt],n ⇒D G(t), on D[0, 1], where xi,n = xi/dn and 0 < dn → ∞ is a sequence of real

numbers. Then, the NLS estimator θ̂n defined by (2) is a consistent estimator of θ0, i.e.

θ̂n →P θ0.

Remark 2.2. The conditions on f(x, θ) given in Theorem 2.4 are the same as in PP,

which is quite general including many commonly used regression functions. For example,

f(x, θ) = θex/(1 + ex), θ log |x|, θ|x|α and (|x|θ − 1)/θ. Our condition on the regressor xt

is much general than that of PP, where we only requires xt/dn converges to a continuous

Gaussian process. This kind of weak convergence condition is quite weak and very likely

close to necessary.

3 Limit Distribution

This section considers the limit distribution of θ̂n. To what follows, let Q̇n and Q̈n be

the first and second derivatives of Qn(θ) in the usual way, that is, Q̇n = ∂Qn/∂θ and

Q̈n = ∂2Qn/∂θ∂θ
′. Similarly we define ḟ and f̈ . We assume these quantities exist

whenever they are introduced. Under these notation, the first order Taylor expansion of

the term Q̇n yields that

Q̇n(θ̂n) = Q̇n(θ0) + Q̈n(θn)(θ̂n − θ0), (13)

where θn lies in the line segment joining θ̂n and θ0.

We start with some heuristic arguments in establishing the limit distribution of θ̂n. To

this end, assume that θ̂n satisfies (2), is an interior point of Θ and a consistency estimator

of θ. Under these assumptions, we have Q̇n(θ̂n) = 0. On the other hand, it is readily seen

that

Q̇n(θ0) = −
n∑
t=1

ḟ(xt, θ0)(yt − f(xt, θ0)) = −
n∑
t=1

ḟ(xt, θ0)ut,

Q̈n(θ) = −
n∑
t=1

ḟ(xt, θ)ḟ(xt, θ)
′ −

n∑
t=1

f̈(xt, θ)(yt − f(xt, θ)),
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for any θ ∈ Θ. Suppose there exists a sequence of constants 0 < κn →∞ such that

1

κ2
n

‖
n∑
t=1

[
ḟ(xt, θn)ḟ(xt, θn)′ − ḟ(xt, θ0)ḟ(xt, θ0)′

]
‖ = oP (1); (14)

1

κ2
n

‖
n∑
t=1

f̈(xt, θn)
[
f(xt, θn)− f(xt, θ0)

]
‖ = oP (1); (15)

1

κ2
n

‖
n∑
t=1

f̈(xt, θn)ut ‖ = oP (1); (16)

{
κ−1
n

n∑
t=1

α′ ḟ(xt, θ0)ut, κ
−2
n

n∑
t=1

f(xt, θ0)
}
→D

{
α′ Y, Z

}
(17)

for any α′ = (α1, ..., αm) ∈ Rm; and{
κ−2
n

∑n
t=1 ḟi(xt, θ0)ḟj(xt, θ0), κ−2

n

∑n
t=1 f(xt, θ0)

}
→D

{
ci,j Z,Z

}
, (18)

for all 1 ≤ i, j ≤ m, where ḟi = ∂f/∂θj, ci,j are constants, Y is a random vector and Z is

a positive random variable. We then have

κ2
n(θ̂n − θ0) →D A−1(θ0)Y/Z, (19)

where A−1(θ0) is an inverse matrices of A(θ0) defined by A(θ0) = (ci,j)1≤i,j≤m.

Indeed, it follows from (14)-(17) that

1

κ2
n

‖ Q̈n(θn)− An(θ0)) ‖ = oP (1),

where An(θ0) =
∑n

t=1 ḟ(xt, θ0)ḟ(xt, θ0)′. Furthermore, by noting∣∣∣∑n
t=1 ḟi(xt, θ0)ḟj(xt, θ0)∑n

t=1 f(xt, θ0)
− ci,j

∣∣∣ = oP (1),

for all 1 ≤ i, j ≤ m due to (18), we have

‖ An(θ0)∑n
t=1 f(xt, θ0)

− A(θ0) ‖ = oP (1).

These facts, together with (13) and ‖θ̂n − θ0‖ = oP (1), implies that

Q̈n(θn)(θ̂n − θ0)∑n
t=1 f(xt, θ0)

= A(θ0) (θ̂n − θ0) + oP (1) = −
∑n

t=1 ḟ(xt, θ0)ut∑n
t=1 f(xt, θ0)

.

This, together with (16), implies that,

κn(θ̂n − θ0) →D A−1(θ0)Y/Z, (20)
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which yields (19).

We remark that the routine in this paper to establish the limit distribution of θ̂n is

different from PP. In comparison to the paper mentioned, their condition AD3 requires

proving convergence in probability of (18). It is equivalent to say that, under the PP’s

routine, one requires to show (at least under an enlarged probability space)

1√
n

n∑
t=1

g(xt)→P

∫ ∞
−∞

g(s)dsLW (1, 0) (21)

where xt is an integrated process, g is a real integrable function and LW (t, s) is the

local time of the standard Brownian Motion W (t)1. The convergence in probability is

usually hard or impossible to establish without enlarging the probability space. Our

routine essentially reduces the convergence in probability to less restrictive convergence

in distribution. Explicitly, in comparison to (21), we only need to show that

1√
n

n∑
t=1

g(xt)→D

∫ ∞
−∞

g(s)dsLW (1, 0) (22)

This allows to extend the nonlinear regression to much wider class of nonstaionary regres-

sor data series, and enables our methodology and proofs straightforward and neat.

We now establish our results on convergence in distribution for the θ̂n, mainly settling

the conditions to ensure (14)–(18) hold. First consider the situation that f(x, θ) is an

integrable function, together with some additional conditions on xt and ut.

ASSUMPTION 3.1. (i) xt is defined as in Example 1, that is, xt =
∑t

j=1 ξj, where

ξj satisfies (6); (ii) Fk is a sequence of increasing σ-fields such that εk ∈ Fk and εk+1 is

independent of Fk for all k ≥ 1, and εk ∈ F1 for all k ≤ 0; (iii) {uk,Fk}k≥1 forms a

martingale difference satisfying maxk≥m |E(u2
k+1 | Fk)− 1| → 0, a.s. and for some δ > 0,

maxk≥1E(|uk+1|2+δ | Fk) <∞.

ASSUMPTION 3.2. (i) f(x, θ0), ḟi(x, θ0) and f̈ij(x, θ0), 1 ≤ i, j ≤ m, are bounded

and integrable real functions; (ii) Σ =
∫∞
−∞ ḟ(s, θ0)ḟ(s, θ0)′ds > 0 and

∫∞
−∞(f(s, θ) −

f(s, θ0))2ds > 0 for all θ 6= θ0; (iii) in addition to Assumption 2.1, ḟi and f̈ij, 1 ≤ i, j ≤ m,

satisfy (3) with T (x) being bounded and integrable.

1Here and below, the local time process LG(t, s) of a Gaussian process G(t) is defined by

LG(t, s) = lim
ε→0

1

2ε

∫ t

0

I
{
|G(r)− s| ≤ ε

}
dr.
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THEOREM 3.1. Under Assumptions 3.1 and 3.2, we have√
n/dn(θ̂n − θ0)→D Σ−1/2 NL

−1/2
G (1, 0), (23)

where N is a standard normal random vector, which is independent of G(t) defined by

G(t) =

{
Wµ−3/2(t), under C1,

W (t), under C2.
(24)

Here and below, Wβ(t) denotes fractional Brownian motion with 0 < β < 1 on D[0, 1],

defined as follows:

Wβ(t) =
1

A(β)

∫ 0

−∞

[
(t− s)β−1/2 − (−s)β−1/2

]
dW (s) +

∫ t

0

(t− s)β−1/2dW (s),

where W (s) is a standard Brownian motion and

A(β) =
( 1

2β
+

∫ ∞
0

[
(1 + s)β−1/2 − sβ−1/2

]2

ds
)1/2

.

Remark 3.1. Theorem 3.1 improves Theorem 5.1 of PP by allowing xt to be long memory

process, which includes fractional integrated process as an example.

Using the same routine and slight modification of assumptions, we have the following

limit distribution when xt is a β-regular Harris recurrent Markov chain.

ASSUMPTION 3.1*. (i) xt is defined as in Example 2, (ii) xt satisfies (9), that is, xt is

a β-regular Harris recurrent Markov chain. (iii) {uk,Fk}k≥1 forms a martingale difference

(iv) maxk≥m |E(u2
k+1 | Fnk)−1| → 0, a.s. and for some δ > 0, maxk≥1E(|uk+1|2+δ | Fnk) <

∞. and E(uk | Fnk) = 0 for any 1 ≤ k ≤ n, n ≥ 1, where Fnk = σ(Fk, x1, ..., xn).

ASSUMPTION 3.2*. (i) f(x, θ0), ḟi(x, θ0) and f̈ij(x, θ0), 1 ≤ i, j ≤ m, are bounded

and integrable (w.r.t. invariant measure π) real functions; (ii) Σπ =
∫∞
−∞ ḟ(s, θ0)ḟ(s, θ0)′π(ds) >

0 and
∫∞
−∞(f(s, θ)−f(s, θ0))2π(ds) > 0 for all θ 6= θ0; (iii) in addition to Assumption 2.1,

ḟi and f̈ij, 1 ≤ i, j ≤ m, satisfy (3) with T (x) being bounded and
∫∞
−∞ |T (x)|π(dx) <∞.

THEOREM 3.2. Under Assumptions 3.1* and 3.2* we have√
a(n)(θ̂n − θ0)→D Σ−1/2

π NΠ
−1/2
β (25)

where N is a standard normal random vector, which is independent of Πβ, and for β = 1,

Πβ = 1, and for 0 < β < 1, Π−ββ is a stable random variable with Laplace transform

E exp{−tΠ−ββ } = exp
{
− tβ

Γ(β + 1)

}
, t ≥ 0. (26)
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Remark 3.2. Theorem 3.2 is new, even for the stationary case (β = 1) in which a(n) = n

and the NLS estimator θ̂n converges to a normal variate. The random variable Πβ in the

limit distribution, after scaled by a factor of Γ(β+1)−1, is a Mittag-Leffler random variable

with parameter β, which is closely related to stable random variable. For details regarding

the properties of this distribution, see page 453 of Feller (1971) or Theorem 3.2 of Karlsen

and Tjøstheim (2001).

Remark 3.3. Assumption 3.1* (iv) imposes a strong orthogonal property between the

regressor xt and the error sequence ut. It is not clear at the moment whether such

condition can be relaxed to a less restrictive one where xt is adapted to Fnt and xt+1 is

independent of Fnt for all 1 ≤ t ≤ n. We leave this for future research.

We next consider the limit distribution of θ̂n when regression function is asymptotically

homogeneous function. In this regard, the result is essentially the same as in PP, except

we use more general regressor xt. We list here for convenience of reading. The technical

proofs are very similar to those of PP and hence the details are omitted.

THEOREM 3.3. Suppose that f, ḟ and f̈ all have the structure (11) under Case 1, and

in addition to Assumptions 2.2, there exists a vector of continuous Gaussian process (G,U)

such that (x[nt],n, n
−1
∑[nt]

i=1 ui) ⇒D (G,U), on D[0, 1]2, where xt,n = xt/dn with d2
n =

var(xn) → ∞. Further assume that ‖(v̇ ⊗ v̇)−1vv̈‖ < ∞ and
∫
|s|≤δ ḣ(s, θ0)ḣ(s, θ0)′ds > 0

for all δ > 0. Then we have

√
nv̇(dn)′(θ̂n − θ0)→D

(∫ 1

0

Ψ(t)Ψ(t)′dt
)−1

∫ 1

0

Ψ(t) dU(t) (27)

on D[0, 1], as n→∞, where Ψ(t) = ḣ(G(t), θ0).

Remark 3.4. Except the joint convergence, the other conditions in establishing Theorem

3.3 are the same as in PP. The joint convergence under present paper is quite natural

as f, ḟ and f̈ all are asymptotically homogeneous function. Indeed, under ḟ(λx, θ) ∼
v̇(λ)ḣ(x, θ), one can easily obtain the following asymptotics under our joint convergence.

1√
nv̇(dn)

n∑
t=1

ḟ(xt, θ0)ut →D

∫ 1

0

ḣ(G(t), θ0)dU(t) (28)

on D[0, 1], which is required in the proof of (27). See, e.g., Kurtz and Protter (1991) and

Hansen (1992).
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Remark 3.5. If we further assume that the U(t) and G(t) is asymptotic independent,

that is, the long run relationship between the regressor sequence xt and the innovative

sequence ut vanishes asymptotically, the limiting distribution in (27) will become mixed

normal, specifically, we will have,

√
nv̇(dn)′(θ̂n − θ0)→D

(∫ 1

0

Ψ(t)Ψ(t)′dt
)−1/2

N (29)

where N is a standard normal random vector.

As in PP, the independence between the asymptotic order v(λ, θ) and the parameters

θ can be removed if we impose extra conditions on the function f(x, θ).

Case 3 For any s̄ > 0 given, there exists ε > 0 such that as λ→∞,

1.
∥∥∥(v̇ ⊗ v̇)(λ, θ0)−1

(
sup|s|≤s̄ |f̈(λs, θ0)|

)∥∥∥→ 0,

2. λ−1+ε
∥∥∥(v̇ ⊗ v̇)(λ, θ0)−1

(
sup|s|≤s̄ supθ∈N (ε,λ) |f̈(λs, θ)|

)∥∥∥→ 0

3. λ−1+ε
∥∥∥(v̇ ⊗ v̇ ⊗ v̇)(λ, θ0)−1

(
sup|s|≤s̄ supθ∈N (ε,λ) |

...
f f(λs, θ)|

)∥∥∥→ 0

where N (ε, λ) = {θ : ‖v̇(λ, θ0)′(θ − θ0)‖ ≤ λ−1+ε}.

THEOREM 3.4. Suppose that f, ḟ and f̈ all have the structure (11) under Case 3,

and in addition to Assumptions 2.2, there exists a vector of continuous Gaussian process

(G,U) such that (x[nt],n, n
−1
∑[nt]

i=1 ui) ⇒D (G,U), on D[0, 1]2, where xt,n = xt/dn with

d2
n = var(xn)→∞. Further assume that

∫
|s|≤c ḣ(s, θ0)ḣ(s, θ0)′ds > 0 for all c > 0. Then

we have

√
nv̇(dn, θ0)′(θ̂n − θ0)→D τ−1

∫ 1

0

ḣ(G(t), θ0)dU(t) (30)

on D[0, 1], as n→∞, where τ =
∫ 1

0
ḣ(G(s), θ0)ḣ(G(s), θ0)′ds.

Remark 3.6. Again except the joint convergence, the conditions on f(xt, θ) in Theorem

3.4 are the same as in PP. While they are hard to check in general, they allow for popular

regression such as f(x, α, β) = α|x|β. The idea of proof of Theorem 3.4 can be easily

generalized from the Brownian Motion case in PP to general non-stationary time series.

As it only involves slight modification of notation, we omit the details.
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4 Extension to endogeneity

Assumption 2.2 ensures the model (1) having a martingale structure. The result in this

regard is now well known. However, there is little work on allowing for contemporaneous

correlation between the regressors and regression errors. Using a nonparametric approach,

Wang and Phillips (2009b) considered kernel estimate of f and allowed the equation error

ut to be serially dependent and cross correlated with xs for |t− s| < m0, thereby inducing

endogeneity in the regressor, i.e., cov(ut, xt) 6= 0. In relation to present paper de Jong

(2002) considered model (1) without exogeneity, and assuming certain mixing conditions.

Chang and Park (2011) considered a simple prototypical model, where the regressor and

regression error are driven by iid innovations. In this section we provide some significant

extension to these works.

ASSUMPTION 4.1. (i) ηi ≡ (εi, νi), i ∈ Z be a sequence of iid random vectors satisfying

Eη0 = 0 and E‖η0‖2q < ∞, where q ≥ 1; the characteristic function ϕ(t) of ε0 satisfies∫∞
−∞ |ϕ(t)|2dt <∞ and

∫∞
−∞ |t|

3|ϕ(t)|mdt <∞ for some m > 0;

(ii) xt =
∑t

j=1 ξj where ξj is defined as in (6), that is, ξj =
∑∞

k=0 φkεj−k with the

coefficient φk satisfying C1 or C2;

(iii) ut =
∑∞

k=0 ψk η
′
t−k, where the coefficient ψk = (ψk1, ψk2) are assumed to satisfy∑∞

k=0 k
2‖ψk‖2 <∞,

∑∞
k=0 ψk 6= 0 and

∑∞
k=0 ‖ψk‖max{1, |φ̃k|} <∞ where φ̃k =

∑k
i=0 φi.

As we do not impose the independence between εk and νk, Assumption 4.1 provides

the endogeneity in the model (1), which is much general than that given in Chang and

Park (2011). The conditions on the characteristics function ϕ(t) is not very restrictive,

see Remark 4 of Jeganathan (2008) for more details.

We have the following result.

THEOREM 4.1. Let f(x, θ) in model (1) satisfy Assumption 2.1 with T (x) being bounded

and integrable. Then, under Assumption 4.1, the NLS estimator θ̂n defined by (2) is a

consistent estimator of θ0, i.e. θ̂n →P θ0.

If in addition Assumption 3.2, the limit distribution of θ̂n is given by√
n/dn(θ̂n − θ0)→D Σ−1 Λ1/2 NL

−1/2
G (1, 0), (31)

as n→∞, where

Λ = (2π)−1
∫ ̂̇f(µ)̂̇f(µ)′[Eu2

0 + 2
∑∞

r=1E(u0ure
−iµxr)] dµ (32)

and ̂̇f(µ) =
∫
eiµxḟ(x, θ0)dx and N is a standard normal random vector.
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Remark 4.1. Theorem 4.1 is applicable for f(xt, θ) being an integrable function. For

asymptotically homogeneous function, it requires a comprehensive analysis of asymptotic

theory of the functional n−1
∑n

t=1 h(xt/dn)ut converging to a stochastic integral, i.e.

1√
n

n∑
t=2

h(xt/
√
n, θ0)ut →D σuv

∫ 1

0

ḣ(W (s), θ0)ds+

∫ 1

0

h(W (s), θ0)dU(s)

under certain condition on the derivative of f(x, θ). See, e.g. Theorem 4.3 of Ibragimov

and Phillips (2008). Such development under various cases of asymptotic homogeneous

functions f(x, θ) and regressor xt is lengthy and we leave it for future research work.

Finally, we give the consistency result for the error estimator.

COROLLARY 4.1. Under the assumptions in Theorem 4.1, we have σ̂2
n →P Eu2

0, as

n→∞.

5 Simulation

In this section, we investigate the finite sample performance of the NLS estimator θ̂n of

nonlinear regression with endogeneity. Chang and Park (2011) performed simulation of

similar model, but only consider the error structure ut to be i.i.d innovation. We intend

to investigate the sampling behavior of θ̂n under different degree of serially dependence

of ut on itself. To this end, we generate our data in the following way:

xt = xt−1 + εt,

vt =
√

1− ρ2wt + ρεt

f(x, θ) = exp{−θ|x|} (33)

where {wt} and {εt} are i.i.d standard normal variable, and ρ is the correlation coefficient

that controls the degree of endogeneity. The true value of θ0 is set as θ0 = 0.1. The error

structure is generated according to the following three scenarios

S1: ut = vt

S2: ut =
∑t

j=1 j
−10 vt−j+1

S3: ut =
∑t

j=1 j
−4 vt−j+1

Scenario S1 is considered by Chang and Park (2011), which eliminates the case which

ut is serially correlated. Scenarios S2 and S3 introduce self-dependence to the error
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sequence. The decay rate of S2 is faster than that of S3, which implies that the level of

self dependence of ut increases from S1 to S3.

In our simulation, we drawn samples of size n = 200, 500 to estimate NLS estimator

and its t-ratios. Each simulation is run for 10,000 times, and the density of the NLS

estimator is estimated using kernel method with normal kernel function. Our results are

presented in three tables. Table 1 is the estimated density of centered distribution of

NLS estimator. Table 2 is the estimated density of centered distribution scaled by the

convergence rate of n1/4. Table 3 is the t-ratios of the NLS estimator. In all tables, the

left columns are simulation results base on 200 samples, while the right columns base

on 500 samples. We expect that as ρ increases, the degree of endogeneity increases, and

therefore the variance of the distribution will increase due to (31). We also expect that

the more serial correlation of ut, the higher the variance of the limit distribution due to

the cross term appeared in (32).

Our simulation results largely corroborate with our theoretical results in Section 4.

Firstly, comparing the S1–S3 curves in each plots, we can see that as the shape S3 curves

have fat tails and lower peak than that of S1-S2. This verifies that high dependence of

ut on its own past will increase the variance of limit distribution. Secondly, comparing

the shape of the curves for different values of ρ, we can see that the curves with ρ = 0

have highest peak, and the peakedness decrease as ρ increases. This matches with our

expectation that, if the cross dependence between ut and xt increases, the variance of

limit distribution will increase.

Finally, the sampling results for t-ratios are also much expected from our limit theories,

that the NLS estimator asymptotically converges to mixed normal under all scenarios

and different values of ρ. As can be seen in first row (ρ = 0) of Table 3, the curves

overlap standard normal curve for both cases n = 200, 500, this indicates that the t-

ratios converges to a standard normal distribution rapidly when ut is independent of

xt. However, for extreme case of complete endogeneity ρ = 1, the distribution is little

away from standard normal when the sample size is small. Even when n increases, the

limit distribution curve still does not completely overlap the standard normal curve. The

deviation from normal is the most serious for S3 curve. From this we can see that the serial

correlation of ut and its cross dependence with the regressor xt have significant impact on

the convergence rate of the NLS estimator, and in particular, the finite sampling behavior

when n is small.
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Table 1: Density estimate of θ̂n (unscaled).

6 Conclusion

In this paper, we establish an asymptotic theory for a nonlinear parametric cointegrating

model. A general framework is developed for establishing the weak consistency of the

NLS estimator θ̂n. The framework can easily be applied to a wide class of nonstationary

regressors, including the partial sum of linear process and Harris recurrent Markov chain.

Limit distribution of θ̂n is also established, and thus significantly extend previous works.
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Table 2: Density estimate of θ̂n (scaled by n1/4).

Furthermore, we introduce endogeneity to our model by allowing the error term serially

dependent on itself, and cross-dependent on the regressor. We show that the limit distri-

bution of θ̂n under the endogeneity situation is different from that with martingale error

structure. This result is of interest in the applied econometric research area.
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Table 3: Density of θ̂n t-ratios.

7 Appendix A: Proofs of main results

This section provides proofs of the main results. We start with some preliminaries, which

list the limit theorems in common use in the proofs of main results.

7.1 Preliminaries

Denote Nδ(π0) = {θ : ‖θ − π0‖ < δ}, where π0 ∈ Θ is fixed.
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LEMMA 7.1. Under (4) and Assumption 2.1, we have

sup
θ∈Nδ(π0)

κ−2
n

n∑
t=1

(
|f(xt, θ)− f(xt, π0)|+ |f(xt, θ)− f(xt, π0)|2

)
→P 0 (34)

as n→∞ first and then δ → 0. If in addition Assumption 2.2, then

sup
θ∈Nδ(π0)

κ−2
n

n∑
t=1

|[f(xt, θ)− f(xt, π0)]| |ut| →P 0 (35)

as n→∞ first and then δ → 0.

Proof. Simple and the details are omitted. 2

LEMMA 7.2. Under Assumptions 3.1 (i) and 3.2, we have

dn
n

sup
θ∈Nδ(θ0)

n∑
t=1

∣∣ḟi(xt, θ) ḟj(xt, θ)− ḟi(xt, θ0) ḟj(xt, θ0)
∣∣ →P 0, (36)

dn
n

sup
θ∈Nδ(θ0)

n∑
t=1

∣∣f̈ij(xt, θ) [f(xt, θ)− f(xt, θ0)]
∣∣ →P 0. (37)

as n → ∞ first and then δ → 0, for any 1 ≤ i, j ≤ m. If in addition Assumption 3.1

(ii)–(iii), then

dn
n

sup
θ∈Nδ(θ0)

∣∣ n∑
t=1

f̈ij(xt, θ)ut
∣∣→P 0 (38)

as n→∞ first and then δ → 0, for any 1 ≤ i, j ≤ m.

The results are still true if Assumption 3.1 (i) and 3.2 are replaced by 3.1* (i) and

3.2* respectively, and dn/n is replaced by a(n)−1.

Proof. First note that, by Assumption 3.2,

sup
θ∈Θ
|fi(xt, θ)| ≤ sup

θ∈Θ
|ḟi(xt, θ)− ḟi(xt, θ0)|+ |ḟi(xt, θ0)|

≤ sup
θ∈Θ

h(‖θ − θ0‖)T (xt) + |ḟi(xt, θ0)| ≤ C

It follows that ∣∣ḟi(xt, θ) ḟj(xt, θ)− ḟi(xt, θ0) ḟj(xt, θ0)
∣∣

≤
∣∣ḟi(xt, θ)∣∣∣∣ḟj(xt, θ)− ḟj(xt, θ0)

∣∣+
∣∣ḟj(xt, θ0)

∣∣∣∣ḟi(xt, θ)− ḟi(xt, θ0)
∣∣

≤ C
∣∣ḟj(xt, θ)− ḟj(xt, θ0)

∣∣+ C1

∣∣ḟi(xt, θ)− ḟi(xt, θ0)
∣∣
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Therefore, (36) follows immediately from Lemma 7.1. (37) is similar to (36) and thus we

omit the details.

For (38), note that, for any θ ∈ Nδ(θ0), 1 ≤ i, j ≤ m,∣∣∣ n∑
t=1

f̈ij(xt, θ)ut

∣∣∣ ≤ ∣∣∣ n∑
t=1

[f̈ij(xt, θ)− f̈ij(xt, θ0)]ut

∣∣∣+
∣∣∣ n∑
t=1

f̈ij(xt, θ0)ut

∣∣∣
Then by (35) in Lemma 7.1 (with π0 = θ0) and Lemma 7.3 below, we obtain the required

(38).

Finally, it can be easily seen that if Assumption 3.1 (i) and 3.2 are replaced by 3.1* (i)

and 3.2* and dn/n replaced by a(n)−1, the above arguments will hold true, due to Lemma

7.5 instead of Lemma 7.3. 2

LEMMA 7.3. Suppose Assumption 3.1 holds. Then, for any g(x) and g1(x) satisfy-

ing
∫∞
−∞(|g(x)| + |g(x)|4+γ)dx < ∞ for some γ > 0,

∫∞
−∞(|g1(x)| + |g1(x)|2)dx < ∞,∫∞

−∞ g(x)dx 6= 0 and
∫∞
−∞ g1(x)dx 6= 0, we have

{(dn
n

)1/2
n∑
t=1

g(xt)ut,
dn
n

n∑
t=1

g1(xt)
}
→D

{
τ1N L

1/2
G (1, 0), τ2 LG(1, 0)

}
, (39)

where τ 2
1 =

∫∞
−∞ g

2(s)ds, τ2 =
∫∞
−∞ g1(s)ds and N is a standard normal variate indepen-

dent of G(t).

Proof. Theorem 2.2 of Wang (2011) provides (39) with g1(x) = g2(x). It is not difficult

to see that (39) still holds for general g1(x). We omit the details. 2

LEMMA 7.4. Under Assumption 4.1, for any bounded gi(x), i = 1, 2, satisfying
∫∞
−∞ |gi(x)|dx <

∞ and
∫∞
−∞ gi(x)dx 6= 0, then

n∑
t=1

g1(xt)|ut| = OP (n/dn) (40)

and {
(n/dn)−1/2

∑n
t=1 g1(xt)ut, (n/dn)−1

∑n
t=1 g2(xt)

}
→D

{
τ3N L

1/2
G (1, 0), τ4LG(1, 0)

}
(41)

where τ 2
3 = (2π)−1

∫∞
−∞ ĝ1(µ)2[Eu2

0 + 2
∑∞

r=1E(u0ure
−iµxr)] dµ, ĝ1(µ) =

∫∞
−∞ e

iµxg1(x)dx

and τ4 =
∫∞
−∞ g2(s)ds.

Proof. See Theorem 3 and 5 of Jeganathan (2008). 2
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LEMMA 7.5. Under Assumption 3.1* (i), for any g such that
∫∞
−∞ |g(x)|π(dx) < ∞

and
∫∞
−∞ g(x)π(dx) 6= 0, we have

n∑
t=1

g(xt) = OP [a(n)],
[ n∑
t=1

g(xt)
]−1

= OP [a(n)−1] (42)

If in addition Assumption 3.1* (ii)–(iv), for any bounded gi(x), i = 1, 2, satisfying
∫∞
−∞ |gi(x)|π(dx) <

∞ and
∫∞
−∞ gi(x)π(dx) 6= 0, we have

{
a(n)−1/2

n∑
t=1

g1(xt)ut, a(n)−1

n∑
t=1

g2(xt)
}
→D

{
τ5N Π

1/2
β , τ6 Πβ

}
(43)

where τ 2
5 =

∫∞
−∞ g

2
1(s)π(ds), τ6 =

∫∞
−∞ g2(s)π(ds) and N is a standard normal variate

independent of Π.

Proof. The proof of (42) sees Theorem 2.1 of Chen (1999). To prove (43), we first

impose an additional assumption that g2(x) = g2
1(x). Denote

∆2
n = a(n)−1

n∑
t=1

g2
1(xt), Znt = a(n)−1/2g1(xt)∆

−1
n , Wn =

n∑
t=1

Zntuk (44)

Recalling that E(ut|Fnt) = 0, it is readily seen that given {x1, ..., xn}, {Zntut,Fnt}nt=1

forms a martingale difference sequence. The result (43) will follow if we prove,

sup
x

∣∣P(Wn ≤ x |x1, ..., xn
)
− Φ(x)

∣∣→P 0 (45)

Indeed, by noting that ∆2
n is measurable with respect to σ(x1, ...xn), we have, for any

α, γ ∈ R, ∣∣E[eiαWn+iβ∆2
n
]
− e−

1
2
α2

E
[
eiβτ5Πγ

]∣∣
≤ E

∣∣∣E(eiαWn|x1, ..., xn
)
− e−

1
2
α2
∣∣∣+ e−

1
2
α2
∣∣∣Eeiγ∆2

n − Eeiγτ5Πβ

∣∣∣→ 0

by dominated convergence theorem, due to (45) and ∆2
n →D τ5Πβ (see, e.g., Theorem 2.3

of Chen (1999)). This implies that

{Wn,∆
2
n} →D {N, τ5Πβ}

where N is a standard normal random variable independent of Πβ. Hence, by continuous

mapping theorem, we have{
a(n)−1/2

n∑
t=1

g1(xt)ut, a(n)−1

n∑
t=1

g2
1(xt)

}
=
{

∆nWn,∆
2
n

}
→D {τ 1/2

5 NΠ
1/2
β , τ5Πβ}
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which implies the required (43).

We now prove (45). By Theorem 3.9 ((3.75) there) in Hall and Heyde (1980) with

δ = q/2− 1 that

sup
x

∣∣P(Wn ≤ x |x1, ..., xn
)
− Φ(x)

∣∣ ≤ A(δ)L1/(1+q)
n a.s.

where A(δ) is a constant depending only on δ and q > 2, and (set F∗n = σ(x1, ..., xn))

Ln = ∆−qn

n∑
k=1

|Znk|qE(|uk|q|F∗n) + E
[∣∣∆−2

n

n∑
k=1

Z2
nk[E(u2

k|Fnk)− 1]
∣∣q/2∣∣∣F∗n].

Recall from Assumption 3.2 (iv) and the fact that ∆2
n =

∑n
k=1 Z

2
nk, we have,

E
[∣∣∆−2

n

n∑
k=1

Z2
nk[E(u2

k|Fnk)− 1]
∣∣q/2∣∣∣F∗n]→P 0

by dominated convergence theorem. Hence, routine calculations show that

Ln ≤ C ∆−(q−2)
n a(n)−(q−2)/2 + oP (1) = oP (1)

because ∆−2
n = OP (1) by (42) and q > 2. This proves (45), which implies that (43) holds

true with g2(x) = g2
1(x). Finally, note that, for any a, b ∈ R,

a(n)−1

n∑
t=1

{
ag2

1(xt) + bg2(xt)
}
→D

∫ ∞
−∞

[
ag2

1(s) + bg2(s)
]
π(ds) Πβ

due to Theorem 2.3 of Chen (2009), which implies that{
a(n)−1

n∑
t=1

g2
1(xt), a(n)−1

n∑
t=1

g2(xt)
}
→D

{∫ ∞
−∞

g2
1(s)π(ds) Πβ,

∫ ∞
−∞

g2(s)π(ds) Πβ,
}

Hence, by continuous mapping theorem,∑n
t=1 g

2
1(xt)∑n

t=1 g2(xt)
→P

∫ ∞
−∞

g2
1(s) π(ds)

/∫ ∞
−∞

g2(s) π(ds)

This shows that (43) is still true with general g2(x). 2

LEMMA 7.6. Let Dn(θ, θ0) = Qn(θ)−Qn(θ0). Suppose that, for any δ > 0,

lim inf
n→∞

inf
|θ−θ0|≥δ

Dn(θ, θ0) > 0 in probability, (46)

then θ̂n →P θ0.

Proof. See Lemma 1 of Wu (1981). 2
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7.2 Proof of Theorems

Proof of Theorem 2.1. Let N be any open subset of Θ containing θ0. Since θ̂n is the

minimizer of Qn(θ) in Θ, therefore, by Lemma 7.6, proving consistency is equivalent to

showing that, for any 0 < η < 1 and θ 6= θ0, where θ, θ0 ∈ Θ, there exist n0 > 0 and

M1 > 0 such that

P
(

inf
θ∈Θ∩N c

Dn(θ, θ0) ≥ κ2
n/M1

)
≥ 1− η (47)

for all n > n0.

DenoteNδ(π0) = {θ : ‖θ−π0‖ < δ}. Note that Θ∩N c is compact, by the finite covering

property of compact set, (47) will follow if we prove that, for any fixed π0 ∈ Θ ∩N c,

sup
θ∈Nδ(π0)

κ−2
n

∣∣∣Dn(θ, θ0)−Dn(π0, θ0)
∣∣∣→P 0 (48)

as n → ∞ first and then δ → 0, and for ∀ε > 0, there exists M1 > 0 and n > n0 such

that for all n > n0,

P
(
Dn(π0, θ0) ≥ κ2

n/M1

)
≥ 1− 2η. (49)

The result (48) is simple. Indeed, by Lemma 7.1, it follows that, for each fixed π0 ∈ Θ∩N c,

sup
θ∈Nδ(π0)

κ−2
n

∣∣∣Dn(θ, θ0)−Dn(π0, θ0)
∣∣∣

= sup
θ∈Nδ(π0)

κ−2
n

n∑
t=1

(f(xt, θ)− f(xt, π0))2

− sup
θ∈Nδ(π0)

κ−2
n

n∑
t=1

|f(xt, θ)− f(xt, π0)||ut|

→P 0 (50)

as n→∞ first and then δ → 0, which yields (48).

To prove (49), we write

Dn(π0, θ0) =
n∑
t=1

(f(xt, π0)− f(xt, θ0))2 −
n∑
t=1

(f(xt, π0)− f(xt, θ0))ut

Similar arguments as in Lemma 7.1 yields that

n∑
t=1

(f(xt, π0)− f(xt, θ0))ut = oP (κ2
n)
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Hence, it follows from Assumption 2.3 that, for any η > 0, there exists n0 > 0 and M1 > 0

such that for all n > n0,

P
(
Dn(π0, θ0) ≥M−1

1

)
≥ P

( n∑
t=1

(f(xt, π0)− f(xt, θ0))2 ≥ κ2
nM

−1
1 /2

)
− η

≥ 1− 2η

which implies (49).

Finally for the error estimate σ̂2
n, note that by Assumption 2.2 and strong law of large

number, Q(θ0) = n−1
∑n

t=1 u
2
t →P σ

2. Then it immediately follows from the consistency

of θ̂n and (48) that

|σ̂2
n − σ2| ≤ Cκ−2

n |Qn(θ̂n)−Qn(θ0)|+ oP (1) = oP (1).

2

Proof of Theorem 2.2. It follows from Lemma 7.3 that

dn
n

n∑
t=1

(f(xt, θ)− f(xt, θ0))2 →D

(∫ ∞
−∞

(f(s, θ)− f(s, θ0))2ds
)
LG(1, 0)

where

G(t) =

{
Wµ−3/2(t), under C1,

W (t), under C2.
(51)

The result (5) follows from the well known fact that P (LG(1, 0) > 0) = 1 and
∫∞
−∞(f(s, θ)−

f(s, θ0))2ds > 0, for any θ 6= θ0.

By noting E[T (xk)+T 2(xk)] ≤ C d−1
k due to Lemma 3.2 of Wang and Phillips (2009b),

simple calculations show that

dn
n

n∑
k=1

E[T (xk) + T 2(xk)] ≤ C

which implies (4). 2

Proof of Theorem 2.3. The results (4) and (5) follow from Lemma 7.5 with g(x) =

T (x) + T 2(x) and g(x) = (f(x, θ)− f(x, θ0))2, respectively. 2

Proof of Theorem 2.4. The proof is essentially the same as that given in Theorems

4.2 and 4.3 of PP. We only provide a outline for f(x, θ) satisfying the Case 2, which is

related to the verification of the conditions in Lemma 7.6.
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Let Θ0 = {‖θ−θ0‖ ≥ δ} where δ > 0 is a constant. By virtue of Lemma 7.6, it suffices

to prove that, for any η,M0 > 0, there exist a n0 > 0 such that, for all n > n0,

P
(
n−1 inf

θ∈Θ0

Dn(θ, θ0) > M0

)
> 1− η. (52)

To prove (52), first note that
∑n

t=1 u
2
t/n ≤ M0 in probability, for some M0 > 0, due to

the Assumption 2.2 (i). This, together with Cauchy-Schwarz Inequality, yields that

n−1Dn(θ, θ0)

=
1

n

n∑
t=1

(f(xt, θ)− f(xt, θ0))2 − 2

n

n∑
t=1

(f(xt, θ)− f(xt, θ0))ut

≥ 1

n

n∑
t=1

(f(xt, θ)− f(xt, θ0))2 − 2

n

( n∑
t=1

(f(xt, θ)− f(xt, θ0))2
)1/2( n∑

t=1

u2
t

)1/2

≥Mn(θ, θ0)
[
1−

2
√
M0 + oP (1)

Mn(θ, θ0)1/2

]
, (53)

where Mn(θ, θ0) = 1
n

∑n
t=1(f(xt, θ) − f(xt, θ0))2. Hence, for any equivalent process x∗k of

xk (i.e., x∗k =d xk, 1 ≤ k ≤ n, n ≥ 1, where =d denotes equivalence in distribution), we

have

P
(
n−1 inf

θ∈Θ0

Dn(θ, θ0) > M0

)
≥ P

(
inf
θ∈Θ0

M∗
n(θ, θ0)

[
1−

2
√
M0 + oP (1)

M∗
n(θ, θ0)1/2

]
> M0

)
, (54)

where M∗
n(θ, θ0) = 1

n

∑n
t=1(f(x∗t , θ)− f(x∗t , θ0))2.

Recalling x[nt]/dn ⇒ G(t) on D[0, 1] and G(t) is a continuous Gaussian process, by the

so-called Skorohod-Dudley-Wichura representation theorem (e.g., Shorack and Wellner,

1986, p. 49, Remark 2), we can chose an equivalent process x∗k of xk so that

sup
0≤t≤1

|x∗[nt]/dn −G(t)| = oP (1). (55)

For this equivalent process x∗t , it follows from the structure of f(x, θ) that

m(dn, θ)
2 :=

1

nv(dn, θ)2

n∑
t=1

f(x∗t , θ)
2

=
1

n

n∑
t=1

h(x∗t/dn, θ)
2 + oP (1)

=

∫ 1

0

h(x∗[ns]/dn, θ)
2ds+ oP (1)

→P

∫ 1

0

h(G(s), θ)2ds =: m(θ)2, (56)
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uniformly in θ ∈ Θ. Due to (56), the same arguments as in the proof of Theorem 4.3 in

PP yields that

inf
θ∈Θ0

M∗
n(θ, θ0)→∞, in probability,

which, together with (54), implies (52). 2

Proof of Theorem 3.1. According to the introductory remark of Section 3, it suffices

to verify the conditions (14)–(18) with

κ2
n = n/dn, ci,j =

∫ ∞
−∞

ḟi(s, θ0)ḟj(s, θ0)ds/

∫ ∞
−∞

f(s, θ0)ds,

Y = Σ1/2 NL
1/2
G (1, 0), Z =

∫ ∞
−∞

f(s, θ0)dsLG(1, 0),

under Assumptions 3.1 and 3.2.

Recalling θ̂n →P θ0 due to Theorems 2.1 and 2.2, θ̂n falls in Nδ(θ0) = {θ : ‖θ−θ0‖ < δ}
in probability. This, together with Lemma 7.2, yields (14)–(16).

It follows from Lemma 7.3 with g(x) = α′ḟ(x, θ0) and g1(x) = f(x, θ0) that{(dn
n

)1/2
n∑
t=1

α′ ḟ(xt, θ0)ut,
dn
n

n∑
t=1

f(xt, θ0)
}

→D

{
τ N L

1/2
G (1, 0), Z

}
=D

{
α′ Y, Z

}
(57)

where τ 2 =
∫∞
−∞[α′ḟ(s, θ0)]2ds, N is a standard normal random variable independent of

G(t) and we have used the fact that

τ N =
(∫ ∞
−∞

[α′ḟ(s, θ0)]2ds
)1/2

N

=D α′
(∫ ∞
−∞

ḟ(s, θ0)ḟ(s, θ0)′ds
)1/2

N = α′Σ1/2 N.

This proves (17).

Finally, it follows from Lemma 7.3 with g1(x) = β1ḟi(x, θ0)ḟj(x, θ0) + β2f(x, θ0) that

dn
n

n∑
t=1

[
β1ḟi(xt, θ0)ḟj(xt, θ0) + β2f(xt, θ0)

]
→D τ0 LG(1, 0),

where τ0 =
∫∞
−∞

[
β1ḟi(x, θ0)ḟj(x, θ0) + β2f(x, θ0)

]
dx. This yields (18), that is,

{dn
n

n∑
t=1

ḟi(xt, θ0)ḟj(xt, θ0),
dn
n

n∑
t=1

f(xt, θ0)
}
→D

{
ci,j Z,Z

}
.

2
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Proof of Theorem 3.2. As in Theorem 3.1, we need to verify the conditions

(14)–(18), but with

κ2
n = a(n), ci,j =

∫ ∞
−∞

ḟi(s, θ0)ḟj(s, θ0)π(ds)/

∫ ∞
−∞

f(s, θ0)π(ds),

Y = Σ1/2
π NΠβ, Z =

∫ ∞
−∞

f(s, θ0)π(ds) Πβ,

under Assumptions 3.1* and 3.2*. The details are similar to that of Theorem 3.1, with

Lemma 7.3 replaced by Lemma 7.5, and hence are omitted. 2

Proof of Theorem 4.1. We first establish the consistency result. The proof goes

along the same line as in Theorem 2.1. It suffices to show that for any fixed π0 ∈ Θ∩N c,

sup
θ∈Nδ(π0)

dn
n

n∑
t=1

|[f(xt, θ)− f(xt, π0)]ut| →P 0 (58)

as δ → 0 uniformly for all large n, and

n∑
t=1

(f(xt, π0)− f(xt, θ0))ut = oP (n/dn). (59)

For (58). By (40) in Lemma 7.4 with g1(x) = |T (x)|, we have,

sup
θ∈Nδ(π0)

dn
n

n∑
t=1

|[f(xt, θ)− f(xt, π0)]ut| ≤ sup
θ∈Nδ(π0)

h(‖θ − π0‖)
dn
n

n∑
t=1

|T (xt)||ut|

≤ C sup
θ∈Nδ(π0)

h(‖θ − π0‖)OP (1)→P 0

as δ → 0.

Also, by (41) in Lemma 7.4 with g1(x) = f(x, π0)− f(x, θ0), we have that

n∑
t=1

(f(xt, π0)− f(xt, θ0))ut = OP [(n/dn)1/2]

which implies the required (59) immediately.

We next give the limit distribution. As in Theorem 3.1, we need to verify the conditions

(14)–(18), but with

κ2
n = n/dn, ci,j =

∫ ∞
−∞

ḟi(s, θ0)ḟj(s, θ0)ds/

∫ ∞
−∞

f(s, θ0)ds,

Y = Λ1/2 NL
1/2
G (1, 0), Z =

∫ ∞
−∞

f(s, θ0)dsLG(1, 0),

under Assumptions 4.1.
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The proof for (14), (15) and (18) are exactly same as that of Theorem 3.1, and using

similar arguments, (17) will follow from Lemma 7.3.

For (16). Because θ̂n →P θ0, by (58) with π0 = θ0, and (59), we have, for any

1 ≤ i, j ≤ m,∣∣∣dn
n

n∑
t=1

f̈ij(xt, θn)ut

∣∣∣ ≤ ∣∣∣dn
n

n∑
t=1

[f̈ij(xt, θn)− f̈ij(xt, θ0)]ut

∣∣∣+
∣∣∣dn
n

n∑
t=1

f̈ij(xt, θ0)ut

∣∣∣
= oP (1)

which yields the required (16). 2

8 Appendix B: Definition of regular function

H is called a regular function if there exists for each ε > 0 continuous functions Hε, Hε,

and a constant δε > 0 such that Hε(x) ≤ H(y) ≤ Hε(x) for all |x − y| < δε on K, a

compact set of R, and such that
∫
K

(Hε −Hε)(x)dx→ 0 as ε→ 0.
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