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Abstract

This paper develops an asymptotic theory for a non-linear parametric co-integrating
regression model. We establish a general framework for weak consistency that is
easy to apply for various non-stationary time series, including partial sum of linear
process and Harris recurrent Markov chain. We provide a limit distribution for
the nonlinear least square estimator which significantly extends the previous work.
We also introduce endogeneity in the model by allowing the error to be serially
dependent and cross correlated with the regressor.
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1 Introduction

The past few decades has witnessed significant developments in cointegration analysis.
In particular, extensive researches have been focused on cointegration models with linear
structure. Whilst it is convenient for practical implementation, nonetheless, it is restric-
tive, especially in the context of economics, often suggesting nonlinear responses with
some unknown parameters. For empirical examples, we refer to Granger and Terasvirta
(1993) as well as Terdsvirta et al. (2011). In this situation, it is expected that nonlin-
ear cointegration captures the features of many long-run relationships in a more realistic

manner.
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A typical non-linear parametric cointegrating regression model has the form
Y = f(ﬂft,eo) 4+ u, t=1,....n. (1)

where f : RxR™ — R is a known nonlinear function, z; and u; are regressor and regression
errors, and 6 is an m-dimensional true parameter vector that lies in the parameter set
©. With the observed data {y;, z;}};, which may include non-stationary components,
this paper is concerned with the nonlinear least square (NLS) estimation of the unknown
parameters 6 € O. In this regard, Park and Phillips (1999, 2001), PP henceforth, considers
x; to be an integrated I(1) process. Based on PP framework, Chang et. al (2001)
introduced additional linear time trend term and stationary regressors into model (1).
Chang and Park (2003) extends to nonlinear index models driven by integrated process.
More recently, Choi and Saikkonen (2010), Gao, et al. (2009) and Wang and Phillips
(2012) developed statistical tests for the existence of nonlinear cointegrating relation.
Park and Chang (2011) allows the regressors z; to be contemporaneous correlated with
the regression errors u;. Shi and Phillips (2012) extends the model (1) and incorporates
a loading coefficient.

The present paper has a similar goal to the previous mentioned papers but offers more
general results that we hope has some advantage. First of all, we establish a general
framework for weak consistency of the NLS estimator 6,,, allowing for the x; to be a wider
class of non-stationary time series. The set of sufficient conditions are easy to apply to
various non-stationary regressors, including partial sum of linear process and recurrent
Markov chain. Furthermore, we provide a limit distribution for the NLS estimator 6,. It
deserves to mention that the routine in this paper to establish the limit distribution of
6,, is different from previous work, e.g. Park and Phillips (2001). Roughly speaking, our
routine is related to joint distributional convergence of a martingale under target and its
conditional variances, rather than using classical martingale limit theorem by establishing
the convergence in probability for the conditional variance. In nonlinear co-integrating
regression, there are some advantages for our methodology since it is usually difficult to
establish the convergence in probability for the conditional variance, in particular, in the
situation that the regressor x; is a non-stationary time series.

Second, in addition to the commonly used martingale innovation structure, our model
allows for serial dependence in the equilibrium errors u; and the innovations driving x;. It
is important as our model permits joint determination of x; and 1, and hence the system

is a time series structural model. Under such situation, the weak consistency and limit



distribution of the NLS estimator én are also established.

This paper is organized as follow. Section 2 presents our main results of weak con-
sistency. The results on limit distribution of the NLS estimator are given in Section 3.
Extension to endogeneity is presented in Section 4. Technical proofs are postponed to Sec-
tion 6. Throughout the paper, we denote constants by C, C, Cy, ... which may be different

at each appearance, and assume that ||z|| = (22 + ... + 22,)!/?

whenever x = (x4, ..., T).
Furthermore, the parameter set © C R™ is assumed to be compact and convex, and the

true parameter vector y is an interior point of ©.

2 Weak consistency

This section considers the estimation of the unknown parameters 6 in model (1) by NLS.
Let @, (0) = >0, (ye— f(24,6))?. The NLS estimator 0,, of § is defined to be the minimizer
of Q.(0) over § € O, that is,

~

0, = arg mingeeQn(0), (2)

and the error estimate is defined by 62 =n~' Y"1 | 47, where 4y = y — f (a4, én) To inves-
tigate the weak consistency for the NLS estimator én, this section assumes the regression
model (1) having a martingale structure. In this situation, our sufficient conditions are
closely related to those of Wu (1981), Lai (1994) and Skouras (2000), which provides a
general framework. In comparison to the papers mentioned, our assumptions are easy
to apply, particularly in non-linear cointegrating regression situation, as stated in two

examples below. Extension to endogeneity between x; and u, is investigated in Section 4.

2.1 Main results

We make use of the following assumptions for the development of the weak consistency.

ASSUMPTION 2.1. For each m,my € O, there exists a real function T : R — R such
that

|z, m) = f 2, m0)| < h(||m — mol[)T'(x), (3)
where h(z) is a bounded real function such that h(x) | h(0) =0, as z | 0.

ASSUMPTION 2.2. (i) {u, Fi,1 <t <n} is a martingale difference sequence satisfy-
ing E(|lu]?| Fiz1) = 02, supicycp, E(Jue]*|Fi—1) < 00 a.s., where ¢ > 1; (ii) x; is adapted
to .F;gfl, t= 1, ., n.



ASSUMPTION 2.3. There exists an increasing sequence 0 < k,, — 0o such that

—QZ () + T?(x)] = Op(1), (4)

and for any 0 < n < 1 and 8 # 0y, where 0,0y € O, there exist ng > 0 and My, > 0 such
that

n

P( (e 6) = f(a0,00)* 2 2 /My ) = 1=, (5)

t=1

for all n > ny.

THEOREM 2.1. Under Assumption 2.1-2.3, the NLS estimator 6, is a consistent es-

timator of 0y, i.e. 0, —p Oy.

If in addition k2n~' = Op(1), then 62 —p %, as n — oo.

Assumptions 2.1 and 2.2 are the same as in Skouras (2000), which are standard in
the NLS estimation theory. Also see Wu (1981) and Lai (1994). Assumption 2.3 is used
to replace (3.8), (3.9) and (3.11) in Skouras (2000) in which some uniform conditions are
used. In comparison to Skouras (2000), Assumption 2.3, which is related to the conditions
on the regressor z;, is more natural and easy to apply, particularly in the situation that
T'(x) is integrable and the regressor z; is an non-stationary time series, as stated in the

following examples.

Example 1 (Partial sum of linear process). Let 2, = 22:1 &;, where {¢;,7 > 1}

is a linear process defined by
&= buejn (6)
k=0

where {e;, —00 < j < oo} is a sequence of iid random variables with Fey = 0, Eel = 1
and the characteristic function ¢(t) of €, satisfies [*_[p(t)|dt < co. The coefficients ¢y,
are assumed to satisfy one of the following conditions:
C1. ¢y ~ k7 #p(k), where 1/2 < < 1 and p(k) is a function slowly varying at oc.
C2. Y 12 |ow|l <ocoand ¢ =D 77, dr #0.
Put d?> = Ez2. As in Wang, Lin and Gulati (2003), we have

2 g c,n* 2 p?(n), under C1, (7)
e &*n, under C2.
where ¢, = 1/((1 — p)(3 = 2p)) [;7 a7 (x + 1) *d.

We have the following result.



THEOREM 2.2. If T(z) is bounded and integrable and [~ _(f(s,0) — f(s,00))*ds > 0
for all 0 # 0y, then (4) and (5) hold with k% = n/d,,.

Theorem 2.2 improves Theorem 4.1 of PP in two folds. First we allow for more general
regressor. The result under C1 is new, which allows x; to be long memory process,
including the fractionally integrated process as an example. PP only allows x; to satisfy
C2 with additional conditions on ¢y, that is, requires x; to be a partial sum of short
memory process. Secondly we remove the part (b) required in the definition of I-regular
function given in their Definition 3.3. PP requires f(z,6) to be piecewise smooth and we

only require the [f(s,0) — f(s,6p)]? to be integrable.

Example 2 (Recurrent Markov Chain). Let {x) }r>¢ be a Harris recurrent Markov
chain with state space (F, £), transition probability P(z, A) and invariant measure m. We
denote P, for the Markovian probability with the initial distribution pu, £, for correspon-
dent expectation and P*(z, A) for the k-step transition of {z)}r>0. A subset D of E with
0 < 7(D) < oo is called D-set of {xy}r>o if for any A € ET,

TA

sup B, () In(Xy)) < oo,
k=1

zel

where ET = {A € £ : 7(A) > 0} and 74 = inf{n > 1: z, € A}. As is well-known,
D-sets not only exist, but generate the entire sigma &£, and for any D-sets C, D and any

probability measure v,y on (E,E),

lim Y vPHC)/ Y uP*(D) = D)’ (8)
k=1 k=1

where vP*(D) = [* P*(x, D)v(dz). See Nummelin (1984) for instance.
Let a D-set D and a probability measure v on (E, &) be fixed. Define

[¢]
a(t) = 7 '(D)) _vP¥D), t>0.

By recurrence, a(t) — oo. Here and below, we set the state space to be the real space,

that is (E,&) = (R, R). We have the following result.

THEOREM 2.3. If T(z) is bounded and [ |T(z)|w(dz) < oo and [ _(f(s,0) —
f(s,60))*m(ds) > 0 for all 6 # 0y, then (4) and (5) hold with k% = a(n).

Theorem 2.3 seems to be new to literature. By virtue of (8), the asymptotic order of

a(t) depends only on {z }r>o. It is interesting to notice that Theorem 2.3 does not impose
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the B-regular condition as common used in literature. The Harris recurrent Markov chain
{2k }r>0 is called p-regular if

lim a(M\)/a(N) = 7, Vt>0, 9)

A—00

where 0 < < 1. See Chen (1999) for instance.

Remark 2.1. Although we assume the integrability, Theorem 2.1 allows for certain non-
integrable f(x,0). For instance, if f(z,0) = 0z, where o > 0 is given, (3) holds with
h(z) = |z| and T(x) = |z*|. Under x;/d, =p G(t) on D[0,1], where G(¢) is some

continuous stochastic process, it follows from the continuous mapping theorem that

%Z(mt/dn)m Sp /0 Gt dt (10)

on D[0, 1], which implies the required (4) and (5) with 2 = nd>*.

However, some modifications to our Theorem 2.1 are necessary for establishing the
weak consistency of the 6,,, under more general non-integrable f(z,#). In this regard, we
follow PP to consider the asymptotic homogeneous function.

Let f: R x ® — R have the structure:
fx,0) =v(A 0)h(x,0) + b(N,0) A(x,0) B(Az,0), (11)

where supgeg |b(A, 0) v (A, 0)] — 0, as A — 00; supgee |A(z, 0)| is locally bounded, that
is, bounded on bounded intervals; supycg | B(Ax, #)| is bounded on R; h(x,#) is regular on
© (see Appendix for definition of regularity) and v(A,#) belongs to one of the following
cases:

Case 1 (i) v(\,0) = v(A\) and v(A) is bounded away from zero as A — oo; (ii) for all
0 # 6o and 6 > 0, [, 5(h(s,0) — h(s,0))*ds > 0.

Case 2 (i) for any 6 # 6, and p,q > 0, there exist ¢ > 0 and a neighborhood N of §
such that as A\ — oo

inf inf [pu(X,0) — qu(X, 0y)| — oo; 12
,of it [pv(A, 0) = qu(A, 6o)| — oo (12)

lg—ql<e

(ii) for all # # 6y and § > 0, f‘s h*(s,0)ds > 0.

|<o

THEOREM 2.4. Suppose that f(x,0) in model (1) has the structure (11), and in

addition to Assumption 2.2, there ezists a continuous Gaussian process G(t) such that
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Tpan =p G(t), on D[0,1], where x;, = x;/d,, and 0 < d,, — o0 is a sequence of real
numbers. Then, the NLS estimator 0, defined by (2) is a consistent estimator of 0y, i.e.

én —p 00.

Remark 2.2. The conditions on f(x,60) given in Theorem 2.4 are the same as in PP,
which is quite general including many commonly used regression functions. For example,
f(z,0) = 0e” /(1 + €%),0log |z|, 8]z|* and (Jx|® — 1)/0. Our condition on the regressor z;
is much general than that of PP, where we only requires x;/d,, converges to a continuous
Gaussian process. This kind of weak convergence condition is quite weak and very likely

close to necessary.

3 Limit Distribution

This section considers the limit distribution of én To what follows, let Qn and Qn be
the first and second derivatives of @, () in the usual way, that is, Q, = 9Q, /96 and
Q, = 02Q,,/0000'.  Similarly we define f and f. We assume these quantities exist
whenever they are introduced. Under these notation, the first order Taylor expansion of

the term @Q,, yields that

Qn(01) = Qn(80) + Qn(6,) (D, — 60), (13)

where 6, lies in the line segment joining 6,, and 6.

We start with some heuristic arguments in establishing the limit distribution of 6,. To
this end, assume that 6, satisfies (2), is an interior point of © and a consistency estimator
of 6. Under these assumptions, we have Qn(én) = 0. On the other hand, it is readily seen
that

Qn(f0) = —Zf'(ast,eo)( f (¢, 60)) fot,eo ur,

Qn(0) = —fot, (4,0 fot, — f(z0,0)),



for any 6 € ©. Suppose there exists a sequence of constants 0 < x,, — oo such that

—~ H Z (1, 00).f (2, 00) = f(20,60) (20, 60)'] | = op(L); (14)

—||Zf 2, 00) [ f(20,00) — fze,00)] | = op(1); (15)

SIS fnbdul = op(1) (16)

n

{fi;l ia’f(:ctﬁo)ut, K;QZf(xt,Go)} —D {o/ Y, Z} (17)

for any o = (o, ..., ;) € R™; and

{m? Tiy Fien b0) fyanbo), 1,2 S, flanb0) | =p {ey 2.2}, (18)

for all 1 <1i,5 < m, where fz = 0f/00;, c; j are constants, Y is a random vector and Z is

a positive random variable. We then have
K2(0, —0)) —p ATN0,)Y/Z, (19)

where A71(6p) is an inverse matrices of A(6y) defined by A(6y) = (ci;)1<ij<m-
Indeed, it follows from (14)-(17) that

H Qn(0n) — Anl60)) | = op(1),

where A, (60) = Y27, f(2,00) f(21,60). Furthermore, by noting

RS e = ontr),

for all 1 <,7 < m due to (18), we have

An(0) _
| ST (e, 60) A(6o) || p(1).

These facts, together with (13) and ||, — 6|| = op(1), implies that

Qn(en)<én_00) _ N o _ D i1 (xtaeo)ut
S fn b)) G B or(l) = =S )

This, together with (16), implies that,
Fin(Bn — 00) —p ATY(6)Y/Z, (20)
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which yields (19).

We remark that the routine in this paper to establish the limit distribution of 0, is
different from PP. In comparison to the paper mentioned, their condition AD3 requires
proving convergence in probability of (18). It is equivalent to say that, under the PP’s

routine, one requires to show (at least under an enlarged probability space)

1 n [e%}

\/ﬁ;gm) —p /_OO g(s)ds Ly (1,0) (21)
where z; is an integrated process, g is a real integrable function and Ly (t,s) is the
local time of the standard Brownian Motion W (¢)!. The convergence in probability is
usually hard or impossible to establish without enlarging the probability space. Our
routine essentially reduces the convergence in probability to less restrictive convergence

in distribution. Explicitly, in comparison to (21), we only need to show that

1 n [oe}
7o) o /_oog(s)ds L (1,0) (22)
This allows to extend the nonlinear regression to much wider class of nonstaionary regres-
sor data series, and enables our methodology and proofs straightforward and neat.
We now establish our results on convergence in distribution for the én, mainly settling
the conditions to ensure (14)—(18) hold. First consider the situation that f(x,#) is an

integrable function, together with some additional conditions on z; and wu;.

ASSUMPTION 3.1. (i) z; is defined as in Ezample 1, that is, x; = 23:1 &, where
&; satisfies (6); (ii) Fy, is a sequence of increasing o-fields such that €, € Fi, and €gyq 1S
independent of Fy for all k > 1, and e, € Fy for all k < 0; (iii) {ug, Fr}r>1 forms a
martingale difference satisfying maxysy, |E(uj,, | Fi) — 1] = 0,a.s. and for some 6 > 0,

maxys>1 B(|[ugy1]?t | Fr) < oo

ASSUMPTION 3.2. (i) f(w,eg),fi(x,eg) and fij(a:,éo), 1 <i,7 < m, are bounded
and integrable real functions; (ii) ¥ = [ f(s,60)f(s,60)ds > 0 and I (f(s,0) —
£(5,00))%ds > 0 for all 6 # 6y; (iii) in addition to Assumption 2.1, f; and fi;, 1 <1i,j <m,
satisfy (3) with T'(x) being bounded and integrable.

'Here and below, the local time process Lg(t, s) of a Gaussian process G(t) is defined by



THEOREM 3.1. Under Assumptions 3.1 and 3.2, we have

Vn/d, (6, — 60) —p SV2 NLY*(1,0), (23)
where N is a standard normal random vector, which is independent of G(t) defined by

_ 1
Gt) = {Wu 3/2(t), under C1,

(24)
Wi(t), under C2.

Here and below, Wjs(t) denotes fractional Brownian motion with 0 < 5 < 1 on DJ[0, 1],

defined as follows:

Ws(t) = —— / 0 (= 8)PY2 — (=) 102 aw (s) + /O (t— 51 2aw (s),

—0o0

where W(s) is a standard Brownian motion and

A(B) = (% + /Ooo [(1 +s5)P12 35—1/2]2615) v

Remark 3.1. Theorem 3.1 improves Theorem 5.1 of PP by allowing x; to be long memory

process, which includes fractional integrated process as an example.

Using the same routine and slight modification of assumptions, we have the following

limit distribution when x; is a S-regular Harris recurrent Markov chain.

ASSUMPTION 3.1%*. (i) z; is defined as in Ezample 2, (ii) x; satisfies (9), that is, x; is
a B-reqular Harris recurrent Markov chain. (iii) {ug, Fi}r>1 forms a martingale difference
() maxysm |E(ui | Far)—1] = 0,a.s. and for some § > 0, maxy>1 E(|ups1 [>T | Fur) <

00. and E(uy | Fur) =0 for any 1 <k <n, n>1, where Fop = 0(Fg, T1, ..., Tp).

ASSUMPTION 3.2%. (i) f(x,0,), f;(x,0) and ﬁj(x,eo), 1 <i,7 <m, are bounded

and integrable (w.r.t. invariant measure 7 ) real functions; (it) X = [ f(s,60)f(s,60)n(ds) >
0 and [7°_(f(s,0)— f(s,00))*m(ds) > 0 for all @ # 0y; (iii) in addition to Assumption 2.1,

fi and fi;, 1 <i,j <m, satisfy (3) with T(z) being bounded and 2T (2)|m(dx) < oc.

THEOREM 3.2. Under Assumptions 3.1* and 3.2* we have

Va(n)(0, —0y) —p o772 NI, (25)

where N is a standard normal random vector, which is independent of Ilg, and for f =1,

IIg =1, and for 0 < 8 < 1, Hgﬁ 1s a stable random variable with Laplace transform

B
E exp{—t H;ﬁ} = exp{ - m}, t > 0. (26)
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Remark 3.2. Theorem 3.2 is new, even for the stationary case (§ = 1) in which a(n) =n
and the NLS estimator 6, converges to a normal variate. The random variable 115 in the
limit distribution, after scaled by a factor of T'(3+1)~!, is a Mittag-Leffler random variable
with parameter 3, which is closely related to stable random variable. For details regarding
the properties of this distribution, see page 453 of Feller (1971) or Theorem 3.2 of Karlsen
and Tjgstheim (2001).

Remark 3.3. Assumption 3.1* (iv) imposes a strong orthogonal property between the
regressor x; and the error sequence u;. It is not clear at the moment whether such
condition can be relaxed to a less restrictive one where z; is adapted to F,,; and z;; is

independent of F,,; for all 1 <t < n. We leave this for future research.

We next consider the limit distribution of ,, when regression function is asymptotically
homogeneous function. In this regard, the result is essentially the same as in PP, except
we use more general regressor z;. We list here for convenience of reading. The technical

proofs are very similar to those of PP and hence the details are omitted.

THEOREM 3.3. Suppose that f,f and f all have the structure (11) under Case 1, and
in addition to Assumptions 2.2, there exists a vector of continuous Gaussian process (G,U)

such that (Tpgn,n " Zgiﬂl w;) =p (G,U), on D|[0,1]?, where x;,, = x;/d, with d> =

var(z,) — 0o. Further assume that ||(v ® 0)"'vi|| < co and f|s|<5 h(s,00)h(s,0y)'ds > 0
for all 6 > 0. Then we have

1

() (B, — 60) —p ( / \I/(t)\If(t)’dt)l /0 1\1:@) dU (1) (27)

0

on D[0,1], as n — oo, where U(t) = h(G(t), ).

Remark 3.4. Except the joint convergence, the other conditions in establishing Theorem
3.3 are the same as in PP. The joint convergence under present paper is quite natural
as f, f and f all are asymptotically homogeneous function. Indeed, under f (Ax,0) ~

0(A)h(z,0), one can easily obtain the following asymptotics under our joint convergence.

mz F (s, B0 —p /0 W(G(E), 60)dU (1) (28)

on DI0, 1], which is required in the proof of (27). See, e.g., Kurtz and Protter (1991) and
Hansen (1992).
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Remark 3.5. If we further assume that the U(t) and G(¢) is asymptotic independent,
that is, the long run relationship between the regressor sequence x; and the innovative
sequence u; vanishes asymptotically, the limiting distribution in (27) will become mixed
normal, specifically, we will have,

1

Vio(d, ) (0~ 00) = ( / \If(t)\If(t)’dt)_l/ N (29)

0

where N is a standard normal random vector.

As in PP, the independence between the asymptotic order v(\, f) and the parameters

0 can be removed if we impose extra conditions on the function f(z,#).

Case 3 For any § > 0 given, there exists € > 0 such that as A\ — oo,

L@@ o) 007 (supyec FOs, 80)1) | = 0

2. A*1+€

(6@ 9) (N B0) ™ (P < UPgenrny [F (A, 0)]) || = 0

3. )\—1+e

(6@ 5@ )\, 80) " (supp<s Suppeen | F (s, 0)])|| = 0

where N (e, \) = {6 : [|o(X, 65) (8 — 6p)]| < A=+

THEOREM 3.4. Suppose that f,f and f all have the structure (11) under Case 3,
and in addition to Assumptions 2.2, there exists a vector of continuous Gaussian process
(G,U) such that (., n~" Zgﬂ u;) =p (G,U), on D[0,1]?, where z;,, = x;/d, with

d? = var(x,) — oo. Further assume that f|s|§c h(s,00)h(s,00)'ds >0 for all ¢ > 0. Then

we have
Vri(dy,, 00) (0, — 0) —p 77 /1 h(G(t), 60)dU (t) (30)
on D|0,1], as n — oo, where T = fol h(G(s),00)h(G(s),0) ds.

Remark 3.6. Again except the joint convergence, the conditions on f(x4, 6) in Theorem
3.4 are the same as in PP. While they are hard to check in general, they allow for popular
regression such as f(z,a, 3) = alz|’. The idea of proof of Theorem 3.4 can be easily
generalized from the Brownian Motion case in PP to general non-stationary time series.

As it only involves slight modification of notation, we omit the details.
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4 Extension to endogeneity

Assumption 2.2 ensures the model (1) having a martingale structure. The result in this
regard is now well known. However, there is little work on allowing for contemporaneous
correlation between the regressors and regression errors. Using a nonparametric approach,
Wang and Phillips (2009b) considered kernel estimate of f and allowed the equation error
u; to be serially dependent and cross correlated with z4 for |t — s| < mg, thereby inducing
endogeneity in the regressor, i.e., cov(u;, z;) # 0. In relation to present paper de Jong
(2002) considered model (1) without exogeneity, and assuming certain mixing conditions.
Chang and Park (2011) considered a simple prototypical model, where the regressor and
regression error are driven by iid innovations. In this section we provide some significant

extension to these works.

ASSUMPTION 4.1. (i) n; = (€;,v4),1 € Z be a sequence of iid random vectors satisfying
Eng = 0 and E||no||** < oo, where ¢ > 1; the characteristic function o(t) of €y satisfies
7 e@®))2dt < 0o and [ [t*|e(t)[™dt < oo for some m > 0;

(ii) x; = E;Zl & where & is defined as in (6), that is, & = > o, Or€j—r with the
coefficient ¢y satisfying C1 or C2;

(iii) wp = > 5 Yk M_y, where the coefficient Yy = (Yg1, Yro) are assumed to satisfy

S0 Rl < oo, Y%gvn # 0 and 3237 k] max{1, |gn]} < oo where ¢ = Y27, ¢

As we do not impose the independence between ¢, and vy, Assumption 4.1 provides
the endogeneity in the model (1), which is much general than that given in Chang and
Park (2011). The conditions on the characteristics function ¢(t) is not very restrictive,
see Remark 4 of Jeganathan (2008) for more details.

We have the following result.

THEOREM 4.1. Let f(x,0) in model (1) satisfy Assumption 2.1 with T'(x) being bounded
and integrable. Then, under Assumption 4.1, the NLS estimator én defined by (2) is a
consistent estimator of 6y, i.e. 0, —p 0.

If in addition Assumption 3.2, the limit distribution of 6, is given by

Vnjdn(0, — 6)) —p STEAYV2 NLZY?(1,0), (31)
as n — oo, where
A = (2m) [ F(u) f ) 1B +2 5 Euguye )] dp (32)

and f(u) = [ e** f(x,0)dx and N is a standard normal random vector.
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Remark 4.1. Theorem 4.1 is applicable for f(z;,0) being an integrable function. For
asymptotically homogeneous function, it requires a comprehensive analysis of asymptotic

theory of the functional n=* 3" | h(x:/d,)u; converging to a stochastic integral, i.e.

%Zh(:pt/\/ﬁ, fo)us —p auv/o h(W(s),@O)ds+/0 h(W (s), 00)dU (s)

under certain condition on the derivative of f(x,0). See, e.g. Theorem 4.3 of Ibragimov
and Phillips (2008). Such development under various cases of asymptotic homogeneous

functions f(x, ) and regressor x; is lengthy and we leave it for future research work.

Finally, we give the consistency result for the error estimator.

COROLLARY 4.1. Under the assumptions in Theorem 4.1, we have 62 —p Eu2, as

n — o0.

5 Simulation

In this section, we investigate the finite sample performance of the NLS estimator 0, of
nonlinear regression with endogeneity. Chang and Park (2011) performed simulation of
similar model, but only consider the error structure u; to be i.i.d innovation. We intend
to investigate the sampling behavior of 6, under different degree of serially dependence

of u; on itself. To this end, we generate our data in the following way:

Ty = Ty—1 + €,

vy = /1 — p2w; + pe;

f(@,0) = exp{—0|z[} (33)

where {w;} and {¢;} are i.i.d standard normal variable, and p is the correlation coefficient
that controls the degree of endogeneity. The true value of 0 is set as 6y = 0.1. The error
structure is generated according to the following three scenarios

S1: uy = v,

S2: u, = Z;le_w Vi jr1

S3:uy =3 i vjn

Scenario S1 is considered by Chang and Park (2011), which eliminates the case which

uy is serially correlated. Scenarios S2 and S3 introduce self-dependence to the error

14



sequence. The decay rate of S2 is faster than that of S3, which implies that the level of
self dependence of u; increases from S1 to S3.

In our simulation, we drawn samples of size n = 200, 500 to estimate NLS estimator
and its t-ratios. Each simulation is run for 10,000 times, and the density of the NLS
estimator is estimated using kernel method with normal kernel function. Our results are
presented in three tables. Table 1 is the estimated density of centered distribution of
NLS estimator. Table 2 is the estimated density of centered distribution scaled by the
convergence rate of n'/4. Table 3 is the t-ratios of the NLS estimator. In all tables, the
left columns are simulation results base on 200 samples, while the right columns base
on 500 samples. We expect that as p increases, the degree of endogeneity increases, and
therefore the variance of the distribution will increase due to (31). We also expect that
the more serial correlation of u;, the higher the variance of the limit distribution due to
the cross term appeared in (32).

Our simulation results largely corroborate with our theoretical results in Section 4.
Firstly, comparing the S1-S3 curves in each plots, we can see that as the shape S3 curves
have fat tails and lower peak than that of S1-S2. This verifies that high dependence of
uy on its own past will increase the variance of limit distribution. Secondly, comparing
the shape of the curves for different values of p, we can see that the curves with p = 0
have highest peak, and the peakedness decrease as p increases. This matches with our
expectation that, if the cross dependence between u; and x; increases, the variance of
limit distribution will increase.

Finally, the sampling results for t-ratios are also much expected from our limit theories,
that the NLS estimator asymptotically converges to mixed normal under all scenarios
and different values of p. As can be seen in first row (p = 0) of Table 3, the curves
overlap standard normal curve for both cases n = 200,500, this indicates that the t-
ratios converges to a standard normal distribution rapidly when wu,; is independent of
x;. However, for extreme case of complete endogeneity p = 1, the distribution is little
away from standard normal when the sample size is small. Even when n increases, the
limit distribution curve still does not completely overlap the standard normal curve. The
deviation from normal is the most serious for S3 curve. From this we can see that the serial
correlation of u; and its cross dependence with the regressor x; have significant impact on
the convergence rate of the NLS estimator, and in particular, the finite sampling behavior

when n is small.
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p=0,1n=200 p=0n=>500

500 T T T T 500 T T T T
----- S1 H - B1
| - g2 | g2
i) [ i 00 [ -
-- 83 N H -- 83
“f iy,
( .
4 Vo
) |- i 300 | ] ¥
[
Y ; \
Bl A 3 3
i s 35 H 4 M) |- . . £ )
Y -, X i
# i} 3
F kS 1f }
r " ¢ ,
100 |- : o L8 . 4 100 |- : [ A
Pt . IE [
L
; R T ol R
0 gt 7T i 1 | R I} L sLor” ) | |y o
.00 1).002 [N 0002 0.001 .00 0,002 [T [T .00
_ p=05,n=200 X p=0.5n=>500
i) T T T T T 00 T T = T T
----- S1 Fi - B1
i
| --- 82 | : ; - g2
i) [ 1 00 | 1o n 1
-- 83 AR -- 83
i 4
7 [
0 |- . . 300 - B \
i :
- " : o
- ! 14
EE R ; W
s s 13 1
! ; A
) | . . A e . 1 M0 L . . |l o
; 5 f y
P \ ! \
i . 1 N
100 |- . e + : . 100 |- . L .
s o e |
# > ¥, *
oot o 2 ok
ot e - LA L~
-t e =t T
0 b= i | | il 215 W 0 L o | | L e
000 1).002 [N 0002 0.001 .00 0,002 [T [T 0004
_ p=1,n=200 X p=1,n=>500
1] T T W T T T T T
----- S1 - B1
--- 82 --- 82
100 |- 4 100 |- i ] i
- - 83 i § - - S8
' 1
T L
W) |- 4 300 - i 3
3 F
i
- - S 7 a
M | . L R TV LY . 1 00 . . ; =)
s a7 Y £ i
4 - R i b
" T " i
100 | : % iy i i 100 | : A '.\'\
s T E W
Lt - “ea
- ol - Mo
- Y . - i, -
Py 1 | | e 0 e =t T | | it JE
0004 1,2 [N .02 0.001 0.0 0,002 [T [T 0001

6 Conclusion

In this paper, we establish an asymptotic theory for a nonlinear parametric cointegrating
model. A general framework is developed for establishing the weak consistency of the
NLS estimator 6,,. The framework can easily be applied to a wide class of nonstationary
regressors, including the partial sum of linear process and Harris recurrent Markov chain.

Limit distribution of 6, is also established, and thus significantly extend previous works.
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Furthermore, we introduce endogeneity to our model by allowing the error term serially

dependent on itself, and cross-dependent on the regressor. We show that the limit distri-

bution of 6,, under the endogeneity situation is different from that with martingale error

structure. This result is of interest in the applied econometric research area.
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Table 3: Density of 6,, t-ratios.

p=0,1n=200

L RAGRRCEETTT EELEEERPEE SEREPREERE  FECEESPRRT EEREPRETRS I 51
- 852
0.4 £ - 83
B FaRy — N{0.1) []
;N
ol i kY |
/ 3
/ \
02+ ; # kY 8
I3 £y
r“ 3
01 R \\ 4
ra \
—Q"‘_'{I/JI 1 1 1 1 .L“L"""'!‘—
[1X1) 7 - 0 7 5 3 i
p=05,n=200
L RAGRRCEETTT EELEEERPEE SEREPREERE  FECEESPRRT EEREPRETRS I 51 .
- 852
0.4 A -- 83
I 7N — NO.) ]
& i
i N
03 '{ .\'o, 8
I B
' %
”
02 : 7 .\\. 4
2.-:" Ay
P kY
0l . ,-r h J
i/ *
I N
[1X1) T T 5 5 3 El
p=1,n=200
[ T S E P T e PT Y EECPEEPPE AEPCPEETRE: TECCTTPTPT EEPCPRCTTY I 51
52
0.4 -- 83
T — N{O.) []
A
03+ . \ .
0.2} : F .'1\ ]
r‘-} A,
LY
01 . ‘.}f A _ 4
A& M
e T M T o

7 Appendix A: Proofs of main results

p=0n=>500

L RSGREeEEl EECLESPERE SEREPRELPR  FRREPREERY CEREERETES I 1
g2
0.4 “ i, -- 83
’ Pt — N{0.1)
' AY
& A
03 X
i X
£ LY
0.2 # =Y
0.1 f 3
& W,
- .
0.0 T il 1 1 1 | 1 i
T 3 0 2 3
0.5

0.0

LIk

This section provides proofs of the main results. We start with some preliminaries, which

list the limit theorems in common use in the proofs of main results.

7.1 Preliminaries

Denote Ns(mp) = {0 : [|0 — mo|| < 0}, where 7y € © is fixed.
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LEMMA 7.1. Under (4) and Assumption 2.1, we have

sup 4,2 > (If(@1,0) = o, mo)| + [ (20, 0) — fze,m)[?) —p 0 (34)

6eN;s(mo) =1

as n — oo first and then 6 — 0. If in addition Assumption 2.2, then

sup K, Z| f(zg,0) — f(z4,m0)]| |ue] —p O (35)
0eN;(mo) =1

as n — oo first and then 6 — 0.
Proof. Simple and the details are omitted. O

LEMMA 7.2. Under Assumptions 3.1 (i) and 3.2, we have

%QE%%O);‘JCZ ¢, 0 f](xb )_fi(xtveo)fj<xt700)} —p 0, (36>
S sup S| 0) [ 0) — Fan b)) —p 0. (37)

n 0eN;5(60) t=1
as n — oo first and then 6 — 0, for any 1 < i,5 < m. If in addition Assumption 3.1
(i1)—(iii), then
d—n sup fzy x,0)u | —p 0 (38)
n

96/\/5(90 =1

asn — oo first and then 6 — 0, for any 1 <i,5 < m.

The results are still true if Assumption 3.1 (i) and 3.2 are replaced by 3.1% (i) and

3.2% respectively, and d,/n is replaced by a(n)~!.

Proof. First note that, by Assumption 3.2,
sup | fi(x, 0)] < sup | fi(s,0) = filwe, 00)| + | fi(ws, 60)]
0cO 0cO
< sup h((10 — 6ol /T(a1) + | (o1, 0)| < C
€

It follows that

}fz T, 0 f](xh ) - fi<xt700) fj(xt780)|
}fz ZEta Hf] xt7 f] CCta@O }_’_ ‘f] xt700 Hfz xt7 fz(xtaeﬂ)‘
>~ O‘f] xt7 f] xtan ‘"f_cl}fz ZEt, fz(mtae())}

IN

AN
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Therefore, (36) follows immediately from Lemma 7.1. (37) is similar to (36) and thus we
omit the details.

For (38), note that, for any 6 € N3(6y), 1 < 1,5 < m,

‘ Zﬁj(wtae)ut ‘ Zfzg (24, 00w
t=1

Then by (35) in Lemma 7.1 (with 7y = 6y) and Lemma 7.3 below, we obtain the required
(38).
Finally, it can be easily seen that if Assumption 3.1 (i) and 3.2 are replaced by 3.1* (i)

‘Z fzy l‘t, fz](xtaeo Uy

and 3.2* and d,,/n replaced by a(n)~!, the above arguments will hold true, due to Lemma

7.5 instead of Lemma 7.3. O

LEMMA 7.3. Suppose Assumption 3.1 holds. Then, for any g(x) and gi(x) satisfy-
ing f x)| + |g(x )|4+7)dx < oo for some v > 0, ffooo(|gl(x)| + |g1(2)]?)dz < oo,
= gl )dac;«éO and [7_gi(z)dx # 0, we have

{(i—”)l/zig(xt)ut,%igl(mt)} D {ﬁNLé/Q(l,O),TgLG(l,O)}, (39)

2 (o9}
where ¢ = [ g*

dent of G(t).

s)ds, o = f g1(s)ds and N is a standard normal variate indepen-

Proof. Theorem 2.2 of Wang (2011) provides (39) with g,(z) = ¢*(z). It is not difficult
to see that (39) still holds for general g;(z). We omit the details. O

LEMMA 7.4. Under Assumption 4.1, for any bounded g;(x),i = 1,2, satisfying [~ |gi(z)|dz <
oo and [ gi(x)dx # 0, then

S ()il = Op(n/d,) (40)
and

{/dn) 2 S (s, (n/da) ™ i golae) |
S {73 NLY21,0), mLe(1, o)} (41)

where 73 = (2m) [, Gu([Bd + 25, Blugune=5)] dp, (1) = [, g1 (2)de
and 74, = [72_ga(s)ds.

Proof. See Theorem 3 and 5 of Jeganathan (2008). O
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LEMMA 7.5. Under Assumption 3.1% (i), for any g such that [~ _|g(z)|m(dz) < oo
and [7_g(x)m(dx) # 0, we have

n

> g(@) = Oplan)], [> g(@)] " = Opla(n)™] (42)

t=1
If in addition Assumption 3.1* (ii)~(iv), for any bounded g;(x),i = 1,2, satisfying [~ _|gi(z)|7(dz) <
0o and [ gi(x)m(dx) # 0, we have

{a(nw/?igl(agt)ut, a(n)~! igg(xt)} = {m NI 7 11} (43)

where 2 = [7°_gi(s)m(ds), 76 = [*_go(s)m(ds) and N is a standard normal variate

independent of 11.

Proof. The proof of (42) sees Theorem 2.1 of Chen (1999). To prove (43), we first

impose an additional assumption that go(z) = ¢g?(x). Denote

Y G, Zu=al) o)A W= Zuu (44)

=1
Recalling that E(u|Fn) = 0, it is readily seen that given {z1,...,x,}, {Znste, Frt iy

forms a martingale difference sequence. The result (43) will follow if we prove,
sup’P(anle,...,xn) —CID(x)} —p0 (45)

Indeed, by noting that A? is measurable with respect to o(z1,...z,,), we have, for any

a,v € R,

’E[eiaWnHﬁAi] . ef%cﬁ E[eiﬁrg)m”

2 i 2 i
Een — Bels | — 0

< E)E(emW”\ X1, ,:cn) — 72 | 4 o3

by dominated convergence theorem, due to (45) and A2 —p 75115 (see, e.g., Theorem 2.3
of Chen (1999)). This implies that

{W,, A2} —p {N, 75115}

where NV is a standard normal random variable independent of I1g. Hence, by continuous

mapping theorem, we have
{am) 23" giwus am) ™Y g b= {BaWi A2} —p (7PN, 11)
t=1 t=1
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which implies the required (43).
We now prove (45). By Theorem 3.9 ((3.75) there) in Hall and Heyde (1980) with
d =q/2— 1 that

sup |P(Wy, < @ |2y,...,z,) — P(2)] < ALY O+D g5,

where A(J) is a constant depending only on § and ¢ > 2, and (set Ff = o(z1,...,2,))

L= 8031 Zul Eunl')F2) + B[ |82 Y 23 B Fa) - 1|7 7]
k=1 k=1

Recall from Assumption 3.2 (iv) and the fact that A2 =77 | Z2, | we have,

3

*Y 2B Fu) — 1]
k=1

f;] —p 0
by dominated convergence theorem. Hence, routine calculations show that
L, <CA;TDqa(n)"@72/2 4 op(1) = op(1)

because A,%2 = Op(1) by (42) and ¢ > 2. This proves (45), which implies that (43) holds
true with go(x) = ¢g#(x). Finally, note that, for any a, b € R,
()Y {agh(en) + boa(o)} o [ [agh(s) + boa(o)] (@) Ly

t=1 -

due to Theorem 2.3 of Chen (2009), which implies that

{3 atte0 a0 Saate} 2o { [ domas i [ aaimtas e}

—00

Hence, by continuous mapping theorem,

% —P /Z g%(s)w(ds)/ /C: go(s) m(ds)

This shows that (43) is still true with general go(z). O
LEMMA 7.6. Let D, (0,00) = Qn(0) — Qn(6p). Suppose that, for any § > 0,

liminf inf D,(0,00) >0 in probability, (46)

n—o00 |0—0g|>d
then én —p .
Proof. See Lemma 1 of Wu (1981). O
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7.2 Proof of Theorems

Proof of Theorem 2.1. Let NV be any open subset of © containing 6. Since 6, is the
minimizer of @,(0) in O, therefore, by Lemma 7.6, proving consistency is equivalent to
showing that, for any 0 < n < 1 and 6 # 6, where 0,0, € O, there exist ng > 0 and
M; > 0 such that

. 9 .
P<06g%fN D, (0,0) = mn/M1> >1-1 (47)

for all n > ny.
Denote Ns(mo) = {0 : ||§—mo|| < §}. Note that ©NN is compact, by the finite covering
property of compact set, (47) will follow if we prove that, for any fixed 7 € © NN,

sup w22 Dn(8,60) — Dy (o, e@‘ S0 (48)

0eN5(mo)

as n — oo first and then 6 — 0, and for Ve > 0, there exists M; > 0 and n > ng such

that for all n > ny,
P(Dn(wo,eo) > Ki/Ml) >1- 2. (49)

The result (48) is simple. Indeed, by Lemma 7.1, it follows that, for each fixed 7y € ONN*,

sup K, 2| Dn(0,00) — D, (7o, 00)

0eN5 (o)

= sup "%72 Z(f(xt, 0) — f(xy, WO))2
0eN; (o) t=1

— sup /@722”(%,9)—f(xta7TO>||ut|

0eN;(mo) =1

as n — oo first and then ¢ — 0, which yields (48).
To prove (49), we write

n n

Dy (mo,00) = Y (f (e, m0) = f(x,00))* = > (f (w1, m0) — f (s, 60) Juy

t=1 t=1

Similar arguments as in Lemma 7.1 yields that

n

Z(f(ﬂftﬂTO) — f(@, 00))us = op(ky)

t=1
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Hence, it follows from Assumption 2.3 that, for any n > 0, there exists ng > 0 and M; > 0
such that for all n > ng,

n

P(Du(mo,00) = M) = P(D_(Flarmo) = flas,60))* = 52 MT/2) =

t=1

>1-2n

which implies (49).
Finally for the error estimate 62, note that by Assumption 2.2 and strong law of large

number, Q(fy) =n"'>."  u? —p 0% Then it immediately follows from the consistency
of 6, and (48) that

67 = 0°| < Cr*1Qu(Bn) — Qu(8o)| + 0p(1) = 0p(1).

Proof of Theorem 2.2. It follows from Lemma 7.3 that

—Z (1,0) — f(21,00))2 =1 (/_Oo(f(s,e)—f(s,@o))2d3>LG(1,O)
where
) Wyu_3p2(t), under CI,
¢t = {W(t), under C2. (51)

The result (5) follows from the well known fact that P(L¢(1,0) > 0) = 1and [~ _(f(s,0)—
f(s,00))%ds > 0, for any 6 # 6.
By noting E[T (1) +T%(x;)] < Cd;' due to Lemma 3.2 of Wang and Phillips (2009b),

simple calculations show that

dn
"
which implies (4). O
Proof of Theorem 2.3. The results (4) and (5) follow from Lemma 7.5 with g(z) =
T(z) +T?*(x) and g(x) = (f(z,0) — f(x,0p))?, respectively. O
Proof of Theorem 2.4. The proof is essentially the same as that given in Theorems
4.2 and 4.3 of PP. We only provide a outline for f(z,0) satisfying the Case 2, which is

related to the verification of the conditions in Lemma 7.6.
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Let ©¢ = {||0 —0o|| > 6} where 6 > 0 is a constant. By virtue of Lemma 7.6, it suffices
to prove that, for any n, My > 0, there exist a ng > 0 such that, for all n > ny,

P<n—1 jnt Da(0,60) > MO) >1-7. (52)

To prove (52), first note that Y u?/n < M, in probability, for some My > 0, due to
the Assumption 2.2 (i). This, together with Cauchy-Schwarz Inequality, yields that

nian(G,Qo)
1 & 2 n
- - (f(fL't,Q) xt790 _ Z I‘t7 xt,eo))
i o
1 ¢ 2 [ — /2 , 1/2
> =3 (flan ) = flan00)* = = (D (Flan6) = flanb0)?) (Do i)
t=1 t=1 t=1

2 M0+0p(1)}’ (53)

= M (6 60) [1 — M,(6,0,)1/?

where M, (0,600) = = >0 (f(2,0) — f(x,60))?. Hence, for any equivalent process xj of

x (e, 2} =4 25,1 < k < m,n > 1, where =4 denotes equivalence in distribution), we

have

. 2\/ My +op(1)
1 > . 0
P(n jnt D,(0,60) > My) > P(91€n®foM (6,601 TR | > ), 69

where M; (0., 60y) = Zt (f (@, 0) — f (g, 60))°
Recalling 2y /d,, = G(t) on D[0, 1] and G(t) is a continuous Gaussian process, by the

so-called Skorohod-Dudley-Wichura representation theorem (e.g., Shorack and Wellner,
1986, p. 49, Remark 2), we can chose an equivalent process zj of x; so that
sup |zp,/dn — G(t)] = op(1). (55)

0<t<1

For this equivalent process z7, it follows from the structure of f(z,0) that
m(d,,0)? = L Xn:f(rc* 0)°
ns . nU(dn’0)2 pa to
1 - * 2
= = h(a}/dn,0)* + op(1)
i3
1
_ / W/ 025 + 0p(1)
0

e /0 h(G(s), 0)2ds = m(6)2, (56)
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uniformly in 0 € ©. Due to (56), the same arguments as in the proof of Theorem 4.3 in
PP yields that

inf M (60,60y) — oo, in probability,

[ASSH

which, together with (54), implies (52). O

Proof of Theorem 3.1. According to the introductory remark of Section 3, it suffices

to verify the conditions (14)—(18) with
9=l g [ o0 0ds/ [ rs o0
Y = SY2NLY*(1,0), / f(s,60)ds Le(1,0),

under Assumptions 3.1 and 3.2.

Recalling ,, —p 0 due to Theorems 2.1 and 2.2, 6,, falls in N5(6y) = {6 : [|0—6o|| < 6}
in probability. This, together with Lemma 7.2, yields (14)-(16).

It follows from Lemma 7.3 with g(z) = o/ f(z,6y) and gy (z) = f(x,6,) that

{<%>1/z g;aff'(xt,eo)ut, %éf(mt,eo)}
b {TNLg/Q(LO),Z} —b {o/ Y,Z} (57)

where 72 = [ [/ f(s,0,)]?ds, N is a standard normal random variable independent of

G(t) and we have used the fact that

N = (/_Z[a'f<s,eo)]2ds)”21v

— /( < ( / 1/2 _ . Iy1/2
=p « f(s,00)f(s,00)ds N=ao3"/"N.

This proves (17).
Finally, it follows from Lemma 7.3 with g, (z) = 81 f;(x, 00) f;(z, 60) + Baf (2, 6,) that

% > " [Bifilae, o) fi(xi, 00) + Baf (x1,60)] —p 70 La(L,0),
t=1

where 79 = [ [51ﬁ(x, 00) f;(x,00) + Baf (x, 00)]dx. This yields (18), that is,

{ Zfzxt,eof] 21, 00), fot,eo} »{e2.2).
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Proof of Theorem 3.2. As in Theorem 3.1, we need to verify the conditions

(14) (18), but with
@ = o). g [ st tras)/ [ 1o
Y = XVZNIlg, Z:/Oo f(s,00)m(ds) g,

under Assumptions 3.1* and 3.2*. The details are similar to that of Theorem 3.1, with

Lemma 7.3 replaced by Lemma 7.5, and hence are omitted. O

Proof of Theorem 4.1. We first establish the consistency result. The proof goes
along the same line as in Theorem 2.1. It suffices to show that for any fixed 7y € © NN,

sup Z| [z, 0) — f(xy,m0)]ug| —p O (58)
66N5 7r0

as 0 — 0 uniformly for all large n, and

n

> (f(wmo) = f(ai, 60))ue = op(n/dy). (59)

t=1

For (58). By (40) in Lemma 7.4 with ¢;(x) = |T'(z)|, we have,

n

dy
up (e 0) — Fnmolud < sup A8 = mol) 2 S [T u
96/\/5 7T0 Z ' ! ' 96/\/5(71'0) n Z ' '
<C sup h(]0~ 7ToH)OP( ) =p 0
6€Ns(mo)
as 0 — 0.

Also, by (41) in Lemma 7.4 with ¢;(z) = f(z,m) — f(z, 6y), we have that

n

> (flae,m0) = f(xe,60))ur = Op[(n/dy)"/?]

t=1

which implies the required (59) immediately.
We next give the limit distribution. Asin Theorem 3.1, we need to verify the conditions

(14)—(18), but with
K2 = n/d,, c;= /00 fi(5,00)f;(s,60)ds/ /00 f(s,00)ds
Y = AYV2NLZ*(1,0), / f(s,60)ds L (1,0),

under Assumptions 4.1.
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The proof for (14), (15) and (18) are exactly same as that of Theorem 3.1, and using
similar arguments, (17) will follow from Lemma 7.3.

For (16). Because 6, —p 6y, by (58) with mo = 6, and (59), we have, for any
1 <i4,5<m,

dy = - dy e, - . dy = -
?Zfij(xhen)ut < ?Z[fij(l‘hen)_fij(xhgo)] ug| + EZfij(l'taQO)ut
t=1 t=1 t=1
= op(1)

which yields the required (16). O

8 Appendix B: Definition of regular function

H is called a regular function if there exists for each ¢ > 0 continuous functions H,, H.,
and a constant . > 0 such that H () < H(y) < H(z) for all |z —y| < §. on K, a
compact set of R, and such that [, (H. — H_)(z)dz — 0 as € — 0.
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