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Abstract. This article has two purposes. The first is to give an ex-
pository account of the integrable systems approach to harmonic maps
from surfaces to Lie groups and symmetric spaces, focusing on spectral
curves for harmonic 2-tori. The most unwieldy aspect of the spectral
curve description is the periodicity conditions and the second aim is to
present four different forms for these periodicity conditions and explain
their equivalence.

1. Introduction

Harmonic maps from a Riemann surface Σ into a Lie group G or sym-
metric space G/K have been widely studied by expressing the harmonic
map in terms of a loop of flat connections in a principal G-bundle over Σ.
When the domain is a 2-torus, there has been success, for a number of tar-
get spaces, in giving a complete description of the harmonic map in terms
of algebraic geometry [Hit90, PS89, Bob91, McI95, McI96, FPPS92, McI01,
CW08, Car09]). This has been achieved through the construction of an al-
gebraic curve X, called the spectral curve, together with a line bundle on X
and some additional data, from which it is possible to recover the harmonic
map f up to gauge transformations. The harmonic map gives a linear flow
in a sub-torus of the Jacobian of X and through this viewpoint we obtain
an explicit realisation of the harmonic map equations as an algebraically
completely integrable Hamiltonian system.

The spectral curve X must satisfy crucial periodicity conditions which
ensure that the corresponding harmonic map is defined on a 2-torus, rather
than merely on its universal cover. These periodicity conditions most nat-
urally come in two layers. The first of these corresponds to the double-
periodicity of a certain harmonic section of a principal G-bundle over the
complex numbers whilst the second is additionally required to recover an
actual harmonic map. In Theorems 3.2 and 3.3 we give a number of dif-
ferent formulations of both layers of these periodicity conditions together
with a simple proof of their equivalence, in the process explaining why the
periodicity criteria given in [Hit90] and [McI01] are in fact the same. In
particular this makes clear that periodicity depends only upon the spectral
curve and its projection to the projective line, not on the remaining spectral
data.
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The periodicity conditions place transcendental restrictions on the al-
gebraic description of a harmonic 2-torus provided by the spectral curve
data. Given a positive integer g, it natural to ask whether there exist
spectral curves of (arithmetic) genus g satisfying these periodicity condi-
tions. This is geometrically significant because an immediate application
of the spectral curve description is that it shows that a harmonic map of
a 2-torus may be deformed through an n-dimensional family, where n is
the dimension of the sub-torus of the Jacobian of the spectral curve al-
luded to above and is determined by the spectral genus. Furthermore for
several target spaces fundamental invariants of the harmonic maps such
as energy and geometric complexity have been bounded below in terms of
the spectral genus [BLPP07, Has04]. The existence of harmonic tori of ar-
bitrary spectral genus g1 has been proven for a number of target spaces
[EKT93, Jag94, Car07, CM04, CS12], by demonstrating the existence of
spectral curves of the appropriate genus satisfying periodicity conditions.
It is a measure of how unwieldy these conditions are that in all except the
last case this was shown only for spectral curves in some neighbourhood
of a curve of geometric genus zero, in order to simplify the computations.
(In[CS12] it was shown that spectral curves satisfying the periodicity con-
ditions are in fact dense in the space of all spectral curves for the case of
constant mean curvature tori in S3.) The periodicity conditions are by far
the most difficult part of the spectral curve data to handle, and it is hoped
that giving various forms of these conditions and elementary proofs of the
relationships between them will render these conditions more transparent.

More broadly, spectral curves are an important tool in integrable systems.
They provide an algebro-geometric description of the solution to a family
of differential equations in Lax form dAλ(t) = [Aλ(t), Bλ(t)], hence intro-
ducing a new set of techniques to the study of these differential equations
and providing an explicit realisation of such an equation as a completely
integrable Hamiltonian system. Moreover as Griffiths has shown [Gri85],
whenever a natural cohomological condition on the Lax pair is satisfied, the
spectral curve approach provides an explicit linearisation of the Lax equa-
tion as the equation can be reformulated as a linear flow in the Jacobian
of the spectral curve. Familiar integrable systems such as the Toda lat-
tice, geodesics on an ellipsoid, the Euler equations for a free body moving
around a fixed point and Nahm’s equations are accounted for in this way
[AvM80a, AvM80b, Hit83], and in each case the spectral curve is simply the
characteristic polynomial solution to the Lax pair. However the harmonic
map story involves some additional subtleties. In particular, the harmonic
map corresponds not to a single solution to a Lax pair equation as above but
rather an entire algebra of them, prompting a more sophisticated spectral
curve construction than simply taking the characteristic polynomial. We

1Excepting spectral genus g = 1 for constant mean curvature tori in R3 for which no
solutions exist.
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explain the traditional constructions which use either holonomy of a family
of flat connections or polynomial killing fields, which are the solutions to
the Lax pair mentioned above. We also describe a more general approach,
for which the existence of both the family a flat connections and the Lax
pair is superfluous, and discuss the merits of each construction.

For ease of exposition for the equivalent characterisations of periodicity we
restrict ourselves to the specific case of harmonic maps from a 2-torus to S3,
allowing for a more explicit treatment. This was the case studied in detail by
Hitchin in [Hit90]. The various manifestations of the periodicity conditions
are tailored to this case but these are simply different ways of expressing an
element of the Čech cohomology H1(X,O) for an algebraic curve X, and
it is elementary to give the appropriate modification for spectral curves for
another class of harmonic maps.

In section 2 we give basic background material and set up the standard
integrable systems description of harmonic maps by a family of flat connec-
tions. Section 3 contains an analysis of the periodicity conditions, relating
their various forms. The final section describes an alternative approach to
spectral curves of harmonic maps using polynomial Killing fields as well as
the more general approach of the multiplier curve, for which no family of
flat connections is needed.

It is my pleasure to express my gratitude to Hyam Rubinstein for his
support and wisdom over many years and to the Hyamfest organisers for
the opportunity to contribute to these proceedings in his honour.

2. Harmonic maps of surfaces into Lie groups

Harmonic maps of surfaces have many applications in geometry. The
most famous examples are minimal surfaces, a conformal immersion is har-
monic precisely when its image is a minimal (immersed) surface. Physically,
minimal surfaces are modelled by soap films or other thin membranes and
locally provide the surface of least area with a given boundary. If instead we
ask the soap film to enclose a volume, that is we consider soap bubbles, then
mathematically we are considering constant mean curvature surfaces, with
mean curvature H 6= 0. The mean curvature is proportional to the pressure
difference between the inside and outside of the bubble. Surfaces of constant
mean curvature are characterised by having a harmonic Gauss map and so
are also a geometric manifestation of harmonic maps. Other geometrically
interesting surfaces described by harmonic maps include Willmore surfaces,
which are characterised by the harmonicity of their conformal Gauss map.

In this section we introduce the approach to harmonic maps of surfaces
using integrable systems and spectral curves, and provide the relevant back-
ground information.
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2.1. Introduction to harmonic maps. Recall that a smooth function
f : U ⊂ Rm → R is harmonic if its Laplacian vanishes:

∆f = ∇ · ∇f =
∂2F

∂(x1)2
+ · · ·+ ∂2f

∂(xm)2
= 0.

We define the energy of f on a compact set U to be

E(f) =
1

2

∫
U
|df |2 dx.

Then for any smooth u : U → R vanishing on the boundary of U,

d

dε

∣∣∣
ε=0

E(f + εu) =

∫
U
∇f · ∇u dx = −

∫
U
u∆f dx

where the last equality comes from applying the divergence theorem to F =
u∇f . Harmonic functions are thus characterised by being critical for the
energy functional.

Harmonic maps between pseudo-Riemannian manifolds are a generalisa-
tion of harmonic functions and as such satisfy a generalisation of the Laplace
equation. Given a smooth map f : M → N where (M, g) and (N,h) are
pseudo-Riemannian manifolds, the second fundamental form of f is ∇(df),
where ∇ is the connection on Hom(TM, TN) induced from the Levi-Civita
connections on M and N , namely

(∇(df))(X,Y ) = ∇TNdf(X)(df(Y ))− df(∇TMX (Y )).

The tension of f is defined to be the trace of its second fundamental form
with respect to g, that is

τ(f) = gij∇(df)

(
∂

∂xi
,
∂

∂xj

)
where

gij = g(dxi, dxj)

and xi is a local coordinate system for M .

Definition 2.1. We say that a smooth map f : M → N between pseudo-
Riemannian manifolds is harmonic if the tension τ(f) = trg(∇(df)) of f
vanishes.

Writing xi for local coordinates on M and yα for local coordinates on N ,
the generalisation of Laplace’s equation to Riemannian manifolds is

τ(df) = gij
(

∂2fγ

∂xi∂xj
+
∂fβ

∂xi
∂fα

∂xj
NΓγαβ −

M
Γkij

∂fγ

∂xk

)
∂

∂yγ
= 0.

For f : Rm → R,

(∇(df))(
∂

∂xi
,
∂

∂xj
) = ∇TR∂y

∂xi
∂
∂y

(
∂y

∂xj
∂

∂y

)
− df

(
∇TRm

∂

∂xi

( ∂

∂xj

)
=

∂2y

∂xi∂xj
∂

∂y

so that we recover the standard Laplace equation.
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Another fundamental example is obtained by setting the domain to R as
f : R→ N is harmonic precisely when

(∇(df))(
∂

∂t
,
∂

∂t
) = ∇TN

df( ∂
∂t

)
(df(

∂

∂t
))− df(∇TR∂

∂t

(
∂

∂t
))

vanishes, that is when f is a geodesic.
As with harmonic functions, harmonic maps are critical for the energy

functional, and a straightforward computation yields

Proposition 1. A smooth map f : M → N between Riemannian manifolds
is harmonic if and only it is critical for the energy functional

E(f) =
1

2

∫
U
‖df‖2 dvolM ,

in the sense that for any one-parameter variation ft of f ,

d

dt

∣∣∣∣
t=0

E(ft) = 0.

The standard physical interpretation of this result is that one should think
of the target manifold N as being made of marble and the domain manifold
M as formed of rubber, the harmonic map stretches the domain into a shape
which locally minimises energy.

We shall consider now harmonic maps of a Riemann surface into a Lie
group with a bi-invariant pseudo-metric and both assumptions simplify the
harmonic map equation. The condition that the group possess a bi-invariant
pseudo-metric is not onerous, holding true for any reductive Lie group, that
is one whose Lie algebra can be written as a direct sum of a semisimple Lie
algebra and an abelian one. For such groups we can combine the Cartan-
Killing form on the semisimple Lie algebra with any form on the abelian
part. We shall be interested in harmonic maps of surfaces into Lie groups
and symmetric spaces. The latter provide more geometric applications but
as we shall see, using the totally geodesic Cartan embedding, one can study
harmonic maps into symmetric spaces in terms of harmonic maps into Lie
groups and vice versa.

2.2. Harmonic maps from a surface to a Lie group. Any smooth map
into a Lie group G is locally described by a zero curvature condition. To
see this we introduce the Maurer-Cartan form on G, namely the g-valued
1-form on G that is left-invariant and acts as the identity on TeG = g. It is
given explicitly by

ω(v) = (Lg−1)∗v, v ∈ TgG,
where Lg is left multiplication by g. For a linear Lie group, writing g : G→
Mn×n(R) then

ωa = g(a)−1dga
which is often written as

ω = g−1dg.

It is customary to use this notation even when G is not linear.
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A straightforward computation shows that for any Lie group G, the
Maurer-Cartan form ω satisfies the Maurer-Cartan equation

dω +
1

2
[ω ∧ ω] = 0.

Here for g-valued 1-forms ϕ and ψ we define

[ϕ ∧ ψ](X,Y ) = [ϕ(X), ψ(Y )]− [ϕ(Y ), ψ(X)].

The Maurer-Cartan equation can be viewed as a zero-curvature condition,
on a local coordinate neighbourhood we can define a connection by d + ω,
and then the Maurer-Cartan equation precisely says that this connection
is flat. That such an equation locally describes smooth maps into G now
follows from the following observation of Cartan.

Lemma 2.2 (Cartan). Given any smooth map f from a manifold M to
G, we may pull back the Maurer-Cartan form to obtain a g-valued 1-form
φ = f∗ω on M satisfying

dφ+
1

2
[φ ∧ φ] = 0.

Two maps define the same form on M if and only if they differ by left
translation by a fixed element of G.

Conversely, given a g-valued 1-form φ on a simply connected manifold
M satisfying the Maurer-Cartan equation, we may integrate it to obtain a
smooth map f : M → G such that f∗(ω) = φ, where f is defined only up to
left translation. For G linear, φ = f−1df .

We can express the condition for f : M → G to be harmonic in terms of
φ = f∗ω. Trivialising TG by left-translation, we shall write

• ∇L for the left connection (in which the left-invariant vector fields
are parallel).
• ∇R for the right connection
• ∇ for the Levi-Civita connection with respect to the Killing form.

These connections are related by

∇R = ∇L + ω and ∇ =
1

2
(∇L +∇R) = ∇L +

1

2
ω.

Using this, a computation shows that the tension of a map f : M → G is
given by

τ(f) = d∗φ

where d∗ is the adjoint of d and as above, φ = f∗ω. Hence for M a Riemann
surface and G a Lie group with bi-invariant pseudo-metric, f : M → G is
harmonic if and only if

d ∗ φ = 0,

where ∗ is the Hodge star operator

∗dx = dy, ∗dz = −dx.
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Thus a harmonic f : U ⊂ M → G on a simply connected subset U of a
Riemann surface M is equivalent to a g-valued 1-form φ (φ = f∗ω) satisfying

dφ+
1

2
[φ ∧ φ] = 0, d ∗ φ = 0.

That is, writing φ = φzdz + φz̄dz̄ we have

∂φz
∂z̄
− ∂φz̄

∂z
+ [φz̄, φz] = 0

and
∂φz
∂z̄

+
φz̄
∂z

= 0

or more symmetrically,

(1)
∂φz
∂z̄

+
1

2
[φz̄, φz] = 0

and

(2)
∂φz̄
∂z

+
1

2
[φz, φz̄] = 0.

The key observation which underlies the integrable systems approach to
such harmonic maps is the fact that these equations can be expressed as
the requirement that a certain family of connections has zero curvature
[Poh76, Uhl89]. Namely, for λ ∈ C×, consider the connections

(3) ∇λ = ∇L + φλ

where

φλ =
1

2
(1 + λ−1)φzdz +

1

2
(1− λ)φz̄dz̄.

Then it is easy to check that (1) and (2) are equivalent to the each of the
connections ∇λ, λ ∈ C× being flat, that is satisfying

(4) dφλ +
1

2
[φλ ∧ φλ] = 0.

The zero-curvature formulation enables us to give some solutions to the
harmonic map equations simply by integrating a pair of commuting vector
fields on a finite dimensional space, that is by solving a pair of ordinary
differential equations. This is far simpler than dealing with the harmonic
map equations directly and maps obtained in this way are said to be of finite-
type. This formulation is also the basis for describing harmonic maps of
finite type in terms of spectral curves. The zero-curvature equations become
a linear flow in the Jacobian of the spectral curve. This has led to much
interesting moduli-space information as well as descriptions of important
invariants such as energy.
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3. Harmonic tori in S3: spectral curve data and periodicity

We begin by describing Hitchin’s holonomy construction of a spectral
curve for harmonic or constant mean curvature immersions from a 2-torus
to S3 [Hit90]. In this context we then provide a number of different formu-
lations of both layers of the periodicity conditions and an explicit proof of
their equivalence. Although for concreteness we have focused on harmonic
maps to a particular target, as the reader will see it is straightforward to
extend these interpretations to a general algebraic curve.

We give, in Theorem 3.2, four different ways of describing an element of
H1(X,O), for X a spectral curve. Namely, we describe this vector using
the periods of a differential Θ of the second kind, the principal parts of this
differential, derivatives of Abel-Jacobi maps with base points the singular-
ities of Θ, and the derivative of a family of line bundles defined using its
principal parts.

Constant mean curvature surfaces in R3 are characterised by having a
harmonic Gauss map, which of course has target S2 ⊂ S3. These are thus
included in description below, once we take account of an additional condi-
tion needed to ensure that the constant mean curvature surface is doubly
periodic, not merely its Gauss map. Analogously spectral data for constant
mean curvature tori in the 3-sphere or in hyperbolic 3-space are quite similar
to that described below [Bob91].

Hitchin [Hit90] studied harmonic maps f : T 2 → SU(2) by considering
the holonomy of a family of flat connections ∇λ. Writing Hγ

λ (z) for the
holonomy of ∇λ around γ ∈ Π1(T 2, Z), we may define an algebraic curve X,
the spectral curve, by taking the eigenline curve of Hγ

λ (z) as described below.
Since the fundamental group of T 2 is abelian this definition is independent of
the choice of γ, and as choosing a different z ∈ T 2 changes the holonomy only
by conjugation, it is independent of the choice of z. However the eigenline
themselves do depend on z, and we obtain in this way an eigenline bundle
Ez for each z ∈ T 2, and a linear map T 2 → Jac(X).

As explained above, given a harmonic map f : T 2 → S3 ∼= SU(2) and
writing φ = f−1df , the S1-family of one-forms

ϕλ = φλ =
1

2
(1 + λ−1)φ′ +

1

2
(1− λ)φ′′

each satisfies the Maurer-Cartan equation. Allowing λ to be any non-zero
complex number, we obtain a C×-family of flat connections

∇λ = ∇L + φλ

in the bundle V = f∗(TSU(2) ⊗ C), where ∇L is the connection induced
by trivialising the tangent bundle by left translation. For λ ∈ S1, the
holonomy of these connections is valued in SU(2) and for λ ∈ C× it is
valued in the corresponding complex group SL(2,C). Since SU(2) are the
unit quaternions, the SU(2)-structure in the bundle V may be exhibited by a
quaternionic structure j (that is an anti-linear involution whose square is−1)
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together with a symplectic form ω. Note that we could equivalently consider
these connections in the SU(2)-principal bundle P given by the pullback
under f of the trivial bundle SU(2) × SU(2) → SU(2) with projection
(g1, g2) 7→ g1 and action (g1, g2) · h = (g1, g2h), and then f∗(TSU(2)⊗C) =
AdP . When the connections ∇λ arise from a harmonic map f : T 2 →
S3, both ∇1 and ∇−1 are not merely flat but trivial, since they represent
the left and right connections in the pullback of the tangent bundle. The
harmonic map f is precisely the gauge transformation between these two
trivialisations.

If we simply have a family of flat connections ∇λ of the form given above
in a rank two complex vector bundle V with SU(2) structure, where ∇L is
a given connection in this bundle, then this data does not quite correspond
to a harmonic map to SU(2), instead the geometric interpretation of the
corresponding gauge transformation is that it yields a harmonic section f of
the bundle P .

Let π1(T 2, z) denote the fundamental group of the torus T 2 with base
point z, and then for each λ ∈ C× the holonomy Hλ(z) : π1(T 2, z) →
SL(2,C) of the connection ∇λ gives a family of commuting matrices, which
hence have common eigenspaces. The fact that this family is abelian is
crucial, and from this point of view is the reason why attention is restricted
to harmonic maps of genus one domains as this is the only case in which
we have a nontrivial yet abelian fundamental group. Unless the holonomy
is trivial, then away from isolated λ ∈ C× it will have a pair of distinct
eigenlines. Trivial holonomy corresponds to conformal harmonic map into
a totally geodesic S2 ⊂ S3 and is excluded from our considerations. A
key result is that there are only finitely many values λ ∈ C× at which the
holonomy does not have two distinct eigenlines. The proof given by Hitchin
[Hit90, Proposition 2.3] uses both the fact that an elliptic operator on the
compact surface T 2 can have but a finite-dimensional kernel and that due
to the simple structure of the group SU(2), if Hλ for λ ∈ S1 leaves fixed a
single vector it is necessarily trivial.

The spectral curve of a harmonic map f : T 2 → S3 is the eigenline curve
of the holonomy Hλ. For λ ∈ C× such that Hλ(z) has distinct eigenlines,
let us denote these by E1

λ(z) and E2
λ(z). At the isolated points for which

these eigenlines are not distinct, we may for each z ∈ T 2 define the one-
dimensional subspaces E1

λ(z), E2
λ(z) ⊂ Vz by analytic continuation. Chang-

ing the choice of z ∈ T 2 changes the eigenlines by conjugation by a SL(2,C)
matrix and hence does not affect this branching behaviour. The spectral
curve is given by an equation of the form y2 = ã(λ), for λ ∈ C× the poly-
nomial ã has a zero of order n at λ precisely when the eigenlines E1

λ(z) and
E2
λ(z) agree to order n as measured by the symplectic form ω, that is when

ω(E1
λ(z), E2

λ(z)) vanishes to order n. For details, see [Hit90].

The holonomy satisfies H
t
λ̄−1 = H−1

λ so the branching behaviour at λ̄−1

is identical to that at λ. To determine the appropriate completion of the
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open curve one must compute the limiting behaviour of the eigenlines as λ

approaches 0. When f is non-conformal, the eigenlines Ejλ(z) have distinct
limits as λ → 0 and when f is conformal, they agree in the limit to first
order [Hit90, Propositions 3.5, 3.9, 3.10]. Then letting a(λ) be a polynomial
with zeros in C× described above, the spectral curve X of a non-conformal
harmonic f : T 2 → S3 is the hyperelliptic curve y2 = a(λ) whereas when f
is conformal, it is the curve y2 = λa(λ).

For each z ∈ T 2 the eigenlines of the holonomy Hλ(z) with base point z
then define a holomorphic line bundle Ez on the spectral curve X. These
line bundles each have degree g + 1, where g denotes the arithmetic genus
of the spectral curve X. Fixing a point 0 ∈ T 2, the resulting map

T 2 → Jac(X)

z 7→ Ez ⊗ E∗0
is linear.

Choosing generators [0, 1], [0, τ ] for the fundamental group and writing
µ, ν for the eigenvalue functions of the holonomy with respect to thsee
generators, define two differentials of the second kind by Θ = d logµ, Ψ =
d log ν. The construction can be reversed to yield a harmonic map from
spectral data; the following statement is taken from theorem 8.1 and 8.20
of [Hit90].

Theorem 3.1 ([Hit90]). A harmonic map f : T 2 → S3 uniquely determines
a quadruple (X,λ, E0,Θ,Ψ), satisfying the following:

(1) X is a hyperelliptic curve y2 = a(λ), with a fixed point free real
structure ρ covering involution in the unit circle λ 7→ λ̄−1 and such
that X is smooth at λ−1{0,∞};

(2) The differentials satisfy σ∗Θ = −Θ, σ∗Ψ = −Ψ and ρ∗Θ = −Θ,
ρ∗Ψ = Ψ where σ is the hyperelliptic involution;

(3) Θ, Ψ have double poles at λ−1{0,∞} and no residues, and are oth-
erwise holomorphic;

(4) If the domain of the harmonic map f is T 2 = R2/Λ with Λ = 1 ·Z+

τ · Z then τ =
p.p.p0

Ψ

p.p.p0
Θ where p.p. denotes principal part;

(5) E0 ∈ Picg+1X, where g is the arithmetic genus of X, is quaternionic
with respect to ρσ;

together with the periodicity conditions:

(P1) The periods of Θ, Ψ lie in 2π
√
−1Z;

(P2) If γ1 is a curve in X with endpoints the two points in λ−1(1) and γ−1

a curve with endpoints the two points in λ−1(−1) then the integrals
of Θ, Ψ over γ1 and γ−1 are valued in 2π

√
−1Z.

These periodicity conditions may equivalently be expressed as

(P1)′ There exist meromorphic functions µ and ν on X \ λ−1{0,∞} such
that logµ and log ν extend to meromorphic functions on X satisfying
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Θ = d logµ and Ψ = d log ν. These functions have symmetries
µσ∗µ = νσ∗ν = 1;

(P2)′ We may choose µ, ν so that µ(p) = ν(p) = 1 for all p ∈ λ−1{±1}.
Conversely, (X, E0, µ, ν) as above determines a harmonic map f : T 2 →

S3 (uniquely determined up to the action of SO(4) on S3).
The harmonic map f is conformal if and only if 0 and ∞ are branch

points of the map λ : X → P1.

The first periodicity condition is sufficient to yield a family of flat con-
nections of the form (3) or equivalently a harmonic section of an SU(2)
principal bundle over T 2. To trivialise this bundle and hence obtain a har-
monic map, the second condition is required. If we have Θ, Ψ satisfying
both periodicity conditions, the meromorphic functions µ, ν are each deter-
mined only up to sign, which corresponds to having a harmonic map on the
torus R2/(2Λ) rather than on R2/Λ. The next theorem will enable us to
variously phrase periodicity condition (P1) in terms of Abel-Jacobi maps on
the spectral curve X, principal parts of the differentials Θ, Ψ or in terms of
derivatives of the eigenline bundles.

We first describe how the above spectral data naturally gives rise to a
linear flow in the Jacobian of the spectral curve. Locally the differential
forms Θ and Ψ may be expressed as the differentials of functions

∫
Θ and∫

Ψ, although these functions are only defined locally their principal parts
give well-defined global sections of the sheaf P of principal parts. This sheaf
appears naturally in the sequence

(5) 0→ O →M P→ P → 0,

where O andM are the sheaves of holomorphic and meromorphic functions
respectively, and P assigns to a meromorphic function its principal parts.
We write

(6) PΘ = P

(∫
Θ

)
, PΨ = P

(∫
Ψ

)
.

Taking the Čech cohomology of (5) on the spectral curve X, since M is a
fine sheaf, H1(X,M) = 0 and so

(7) H1(X,O) ∼=
H0(X,P)

P (H0(X,M))
.

Writing D = λ−1(0 +∞) and denoting by O(D) the sheaf of meromorphic
functions with poles at most on D, we have an exact sequence

0→ O → O(D)→ O(D)|D → 0,

and we can identify O(D) and O(D)|D as sub-sheaves of M and P respec-
tively, with this identification the co-boundary map δ for this sequence is the
same as that for (5). The vectors δ(PΘ) and δ(PΨ) lie in the 2-dimensional
real subspace

W = {l ∈ H1(X,O) | σ∗l = −l, ρ∗l = −l}
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of the four-dimensional complex vector space H1(X,O). Let Λ be the lattice
in W defined by PΘ and PΨ and then we have a natural realisation W/Λ of
the domain 2-torus of the harmonic map f . Furthermore, the coboundary
map δ : W/Λ→ H1(X,O)/H1(X,Z) = Jac(X) is linear, as we easily see by
giving the explicit realisation of this map which we proceed now to do. We
shall give details for the case when X is un-branched over λ = 0,∞ or equiv-
alently when the corresponding map f is non-conformal. The modifications
for the conformal case are clear.

Assume then that D consists of four distinct points, and fix p0 ∈ λ−1(0).
Set

q0 = σ(p0), p∞ = ρ(p0), q∞ = σ(p∞) and let c = PΘ(p0).

We have an isomorphism

R2 ∼= W

z 7→ P cz

where

P cz(p0) = czλ−1, P cz(q0) = −czλ−1, P cz(p∞) = −c̄zλ, P cz(q∞) = c̄zλ.

Note that (2) and (4) of Theorem 3.1 give that

PΘ = P c, PΨ = P cτ .

The scale factor of c is included in the isomorphism because the lattice Λ has
basis vectors c and cτ , whereas for the original domain torus we normalised
these to 1 and τ .

Let U0 be an open neighbourhood of p0 ∈ λ−1(0) on which λ is a local
coordinate, and define V0 = σ(U0), U∞ = ρ(U0), V∞ = σρ(U0). These four
sets together with A = X −{p0, q0, p∞, q∞} form a Leray cover of X. Then
recalling δ : H0(D,O(D))→ H1(X,O) denotes the coboundary of the above
sequence, lP cz = δ(P cz) is defined by the cocycles

(lP cz)AU0
= czλ−1, (lP cz)AV0

= −czλ−1,

(lP cz)AU∞ = −c̄zλ and (lP cz)AV∞ = c̄zλ.

Clearly then δ is linear. For each z ∈ C then we define a line bundle Ez on
X of degree g + 1 by

Ez = exp(lP cz)⊗ E0.

(This is consistent with the construction of spectral data from a harmonic
map, where Ez is defined to be the eigenline bundle with base point z.)

Now using the sequence

0→ C→ O(D)→ dO(D)→ 0,

the periods of Θ and Ψ are obtained as the images of these differentials under
the co-boundary map, identifying these periods as elements of H1(X,C). In
[Hit90, pp 664–5], Hitchin explains how one can use the Čech cohomology
of a commuting diagram of short exact sequences of sheaves to conclude
proof that under the natural injection H1(X,C) → H1(X,O) the periods
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of Θ and Ψ correspond to −δ(PΘ) and −δ(PΨ) respectively. An explicit
argument for this, which is also more in keeping with the expository flavour
of this article, is included in Theorem 3.2. For simplicity we restrict ourselves
to the generic case where X is smooth. In Theorem 3.3 we explain how to
extend our arguments to the case of a curve with ordinary double points,
which is needed in order to extend the various characterisations to include
periodicity condition (P2).

Assume then that X is smooth, so we may choose a standard basis
A1, . . . , Ag, B1, . . . , Bg for the homology of X such that ρ∗Ai = −Ai and
ρ∗(Bi) ≡ Bi mod 〈A1, . . . , Ag〉. The class Ai ∈ H1(X,Z) may be repre-
sented by a lift of a curve in P1 with winding number one about pairs of
branch points λi and ρ(λi) of λ : X → P1 and zero about the other branch
points. Together with the reality conditions on Θ,Ψ, this gives that

si :=

∫
Ai

Θ, ti :=

∫
Ai

Ψ are real.

Let ω1, . . . , ωg be the basis of the holomorphic differentials on X determined
by ∫

Ai

ωj = δij ,

and note that since
∫
Ai
ρ∗ωj =

∫
ρ∗Ai

ωj = −
∫
Ai
ωj = −

∫
Ai
ωj , these differ-

entials satisfy ρ∗ωj = −ωj . Hence

Θ0 := Θ−
g∑
j=1

sjω
j , Ψ0 := Ψ−

g∑
j=1

tjω
j

are differentials satisfying ρ∗Θ0 = −Θ̄0, ρ
∗Ψ0 = −Ψ̄0 and the criteria of

Theorem 3.1 and enjoying the additional property that their A–periods are
zero, or equivalently that all their periods are purely imaginary. Define then
ΠΘ,ΠΨ ∈ H0(X,K)∨ by, for ω =

∑g
j=1 ajω

j

(8) ΠΘ(ω) =

g∑
j=1

aj

∫
Bj

Θ0, ΠΨ(ω) =

g∑
j=1

aj

∫
Bj

Ψ0.

The following theorem allows us to variously express periodicity condition
(P1) in terms of derivatives of the linear family lP cz , the principal parts PΘ

and PΨ or Abel-Jacobi maps on X. As we show in Theorem 3.3 it also
enables us to express both periodicity conditions (P1) and (P2) together in
these various forms.

Theorem 3.2. Take smooth spectral data (X,λ,Θ,Ψ) satisfying (1)–(5) of
Theorem 3.1 and such that Θ and Ψ have purely imaginary periods. Write
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z = u+ τv for u, v ∈ R. Then we have the following equalities.

− 1

2π
√
−1

ΠΘ =
∂lcz
∂u

= δ(Plog µ) =



c
dAp0

dζ

∣∣∣∣
ζ=0

− c̄ dAp∞
dζ−1

∣∣∣∣
ζ=∞

,

when λ is branched at 0,∞ and ζ2 = λ;

2c
dAp0

dλ

∣∣∣∣
λ=0

− 2c̄
dAp∞
dλ−1

∣∣∣∣
λ=∞

,

when λ is an branched at 0,∞;

(9)

− 1

2π
√
−1

ΠΨ =
∂lcz
∂v

= δ(Plog ν) =



cτ
dAp0

dζ

∣∣∣∣
ζ=0

− c̄τ̄ dAp∞
dζ−1

∣∣∣∣
ζ=∞

,

when λ is branched at 0,∞ and ζ2 = λ;

2cτ
dAp0

dλ

∣∣∣∣
λ=0

− 2c̄τ̄
dAp∞
dλ−1

∣∣∣∣
λ=∞

,

when λ is an branched at 0,∞;

(10)

Here Ap0 denotes the Abel-Jacobi map with base point p0 ∈ λ−1(0) and
p∞ = ρ(p0).

Periodicity condition (P1) is equivalent to requiring that the elements of
H1(X,O) in equations (9) and (10) are integral, that is lie in the lattice
H1(X,Z). In particular, by the last equality this is determined by just the
spectral curve X and the projection λ.

Proof. We shall prove the theorem in the case when λ is unbranched at 0 and
∞, the branched case being similar. The proof is broken into the verification
of the equalities listed below.

(1)
∂lcz
∂u

= δ(PΘ),
∂lcz
∂v

= δ(Plog ν)

This is true essentially by definition, since

∂lcz
∂u

= δ

(
∂P cz

∂u

)
= δ(PΘ)

and similarly for the other equality.

(2)
∂lcz
∂z

= 2c
dAp0

dλ

∣∣∣∣
λ=0

,
∂lcz
∂z̄

= −2c̄
dAp∞
dλ−1

∣∣∣∣
λ=∞

As
∂

∂u
=

∂

∂z
+

∂

∂z̄
,

∂

∂v
= τ

∂

∂z
+ τ̄

∂

∂z̄
,

proving this is equivalent to demonstrating the statements in (9) and
(10) relating derivatives of lcz to derivatives of Abel-Jacobi maps.

It is not difficult to check that

([P ], ω) =
∑
q∈X

Resq(P (q)ω)
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is well-defined and gives a nondegenerate pairing between H0(X,P)
P (H0(X,M))

and H0(X,K). By the arguments above,
∂lP cz

∂z
is given by the equiv-

alence class in H0(P)
P (H0(M))

of the principal part

P (p0) = cλ−1, P (q0) = −cλ−1.

Using the above pairing to consider
∂lcz
∂z

as a linear functional on

H0(X,K),

∂lcz
∂z

(ω) = Resp0

(cω
λ

)
− Resq0

(cω
λ

)
= c(ω(p0)− ω(q0))

= 2cω(p0)

= 2c
d

dλ

∣∣∣∣
λ=0

∫ λ

p0

ω

= 2c
d

dλ

∣∣∣∣
λ=0

Ap0 ,

where we are using the fact that on a hyperelliptic curve all holo-
morphic differentials satisfy σ∗ωj = −ωj . Similarly

∂lcz
∂z̄

(ω) = −2c̄
d

dλ−1

∣∣∣∣
λ=∞

Ap∞ .

(3) ΠΘ = −2π
√
−1

∂lcz
∂u

, ΠΨ = −2π
√
−1

∂lcz
∂v

Until now X has been any algebraic curve satisfying the sym-
metries of Theorem 3.1. For simplicity we now assume that X is
smooth.

We can choose representatives Ai, Bi for our standard homology
basis so that each of the curves emanate from a fixed x0 ∈ X. Then
∆ := X −

⋃g
i=1(Ai ∪Bi) is simply connected, and we may define an

entire function on it by

hj(x) :=

∫ x

x0

ωj .

Then since the values of hj at corresponding points of Ai and A−1
i

differ by the period of ωj over Bj and vice versa, (this is the standard



16 EMMA CARBERRY

reciprocity argument, [GH94])∫
Bj

Θ0 =

g∑
i=1

(∫
Ai

ωj
∫
Bi

Θ−
∫
Bi

ωj
∫
Aj

Θ

)

=

∫
∂∆

hjΘ0

= 2π
√
−1
∑
p∈X

Resp(h
jΘ0)

= −4π
√
−1(ajc+ aj c̄)

where in a neighbourhood of P0,

Θ0 = (−cλ−2 + holomorphic)dλ

ωj = (aj + higher order terms)dλ.

Hence

ΠΘ = 4π
√
−1

(
c̄
∂Ap∞
∂λ−1

∣∣∣∣
λ=∞

− c dAp0

dλ

∣∣∣∣
λ=0

)
.

Similarly,

ΠΨ = 4π
√
−1

(
−cτ dAp0

dλ

∣∣∣∣
λ=0

+ c̄τ̄
dAp∞
dλ−1

∣∣∣∣
λ=∞

)
. �

Recall that periodicity condition (P1), namely that Θ and Ψ have peri-
ods lying in 2π

√
−1Z, guaranteed that the spectral data corresponded to a

harmonic section of an SU(2)-principal bundle over a 2-torus, to obtain a
harmonic map we required also periodicity condition (P2). This can also be
expressed in terms of integrality of periods but to do so we must pull Θ and
Ψ back to the singular curve X̂ defined by

y2 = (λ+ 1)2(λ− 1)2a(λ)

Otherwise said, X̂ is the curve obtained from X by identifying the two
points p1, q1 in λ−1(1) together to form an ordinary double point, and doing
likewise with the two points p−1, q−1 in λ−1(−1).

A line bundle on X̂ can be thought of as a line bundle on X, together with
ecj ∈ C× giving the identification of the points over pj , qj , for j = 1,−1. As
described above, the eigenline bundles Ez are naturally specified with respect
to an open cover consisting of XA = X − λ−1{0,∞} and neighbourhoods of
the points in λ−1{0,∞}. These neighbourhoods are taken sufficiently small
so that they do not contain any of the points pj , qj and so we obtain a linear

flow of line bundles Êz on X̂ by employing the same transition functions.
Periodicity conditions (P1) and (P2) together are now exactly the require-

ment that (P1) holds for X̂. Of the various equalities proven in Theorem 3.2,
only for those involving ΠΘ,ΠΨ did our proof utilise the assumption that X
is smooth. We now explain how to modify our interpretation of the periods
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of Θ and Ψ as elements of the dual of the space of regular differentials for
the case when our curve has a pair of ordinary double points.

We begin by supplementing our normalised homology basis Aj , Bj for X
by additional curves which we push forward under the normalisation map

ι : X → X̂

(λ, y) 7→ (λ, (λ+ 1)(λ− 1)y)

to yield a homology basis for X̂. Recall that we represented our basis by
curves emanating from a single point x0 ∈ X and so that ρ∗(Aj) ∼ −Aj ,
ρ∗(Bj) ∼ Bj mod 〈A1, . . . , Ag〉. For k = ±1 choose an embedded curve γk
from pk to qk not intersecting any Aj , Bj and such that ρ∗γk ∼ −γk.

The regular differentials on X̂ correspond to holomorphic differentials
on X together with meromorphic differentials whose only singularities are
simple poles at the points p1, q1 or p−1, q−1 or both and satisfying

Respkω = −Resqkω for k = 1, 2.

We take a normalised basisH0(X,K) represented by the differentials ω1, . . . , ωg

satisfying
∫
Aj
ωi = δij . Define ηk for k = ±1 to be the meromorphic differen-

tial whose only singularities are simple poles at pk, qk such that
∫
Aj
ηk = 0 for

j = 1, . . . , g and with residue 1
2π
√−1

and − 1
2π
√−1

at pk and qk respectively.

Assume that Θ0, Ψ0 are normalised as above, that is that their Aj-periods

vanish. Then define Π̂Θ, Π̂Ψ ∈ H0(X̂,K)∨ by

Π̂Θ(ωj) =

∫
Bj

Θ0, Π̂Θ0(ηk) =

∫
γk

Θ0 and

Π̂Ψ(ωj) =

∫
Bj

Ψ0, Π̂Ψ(ηk) =

∫
γk

Ψ0 for j = 1, . . . , g, k = ±1.

Theorem 3.3. Let (X,λ,Θ,Ψ) be smooth spectral data satisfying (1)–(5) of

Theorem 3.1 and such that Θ and Ψ have purely imaginary periods. Let X̂
be the curve obtained from X by identifying the two points p1, q1 in λ−1(1)
together to form an ordinary double point, and doing likewise with the two
points p−1, q−1 in λ−1(−1). Then the statement of Theorem 3.2 holds also

for X̂, and periodicity condition (P2) is equivalent to the requirement that

this pair of elements of H1(X̂,O) are integral with respect to the lattice

H1(X̂, 2π
√
−1Z).

Proof. As noted above, the equalities not involving Π̂Θ and Π̂Ψ were already
established in the proof of Theorem 3.2. We argue now that these are given
by the Abel-Jacobi derivatives stated above for the singular curve X̂. As
before we assume that λ is not branched over 0 and ∞.

Denote by ∆ the simply connected region formed by cutting X along the
homology basis A1, . . . , Ag, B1, . . . , Bg specified above. Then exactly as in
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the proof of Theorem 3.2, reciprocity yields that

Π̂Θ(ωj) =

∫
Bj

Θ = 4π
√
−1

(
c̄
dAp∞
dλ−1

(ωj)

∣∣∣∣
λ=∞

− c dAp0

dλ
(ωj)

∣∣∣∣
λ=0

)
Furthermore, set ∆̂k = ∆ \ γk, fix x0 ∈ ∆̂k and define lk(x) =

∫ x
x0
ηk. Then

with γ+
k and γ−k denoting either side of the split left by the deletion of γk as

shown in Figure 1,
A SEMINORMAL BASIS FOR ARIKI-KOIKE ALGEBRAS 5

A1

B1

A�1
1
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1

A2

A�1
g

B�1
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Figure 1. Polygon with cut

2π
√
−1

∑
p∈∆̂k

Resp(lkΘ) =

∫
∂∆̂

lkΘ

=

g∑
j=1

(∫
Aj

ηk
∫
Bj

Θ−
∫
Bj

ηk
∫
Aj

Θ

)
+

∫
γ+
k

lkΘ−
∫
γ−k

lkΘ

=

∫
γ+
k

lkΘ−
∫
γ−k

lkΘ

since ηk and Θ are both normalised to have vanishing A-periods. But for
p+ ∈ γ+

k and the corresponding p− ∈ γ−k ,

lk(p
+)− lk(p−) = 2π

√
−1Respkη

k = 1,

so

ΠΘ(ηk) =

∫
γ

Θ = −2π
√
−1

∑
p∈∆̂k

Resp(lkΘ)

= 4π
√
−1

(
c̄
∂Ap∞
∂λ−1

(ηk)

∣∣∣∣
λ=∞

− c dAp0

dλ
(ηk)

∣∣∣∣
λ=0

)
.
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Similarly,

ΠΨ = 4π
√
−1

(
−cτ dAp0

dλ

∣∣∣∣
λ=0

+ c̄τ̄
dAp∞
dλ−1

∣∣∣∣
λ=∞

)
. �

4. Spectral curves and their applications

4.1. Finite-type harmonic maps from a surface to a symmetric
space. We begin by extending the zero-curvature description of harmonic
maps into symmetric spaces, as these arise more frequently in geometric
applications then do Lie groups. We then introduce the notion of harmonic
maps of the plane of finite-type and explain how a spectral curve construc-
tion can be given for these. Certainly not all harmonic maps of the plane
are finite-type, but in many situations it has been shown that all doubly-
periodic such maps are either totally isotropic (and given by holomorphic
data in terms of a Weierstrass-type representation) or of finite-type and ex-
pressible in terms of spectral curve data. Harmonic maps into Lie groups
and symmetric spaces can be studied in terms of one another due to the
fact that there is a natural totally geodesic immersion from a symmetric
space into the corresponding group, namely the Cartan immersion. As such
we could discuss finite-type solutions at either the Lie group or symmetric
space level, we choose to do the latter due to the aforementioned preva-
lence of symmetric spaces in geometric applications and also because one
can always regard a Lie group G as a symmetric space (G×G)/G.

A homogeneous space G/H is a symmetric space if there exists an invo-
lution σ : G→ G such that

(Gσ)0 ⊂ H ⊂ Gσ

where Gσ denotes the fixed point set of σ, and (Gσ)0 the identity component
of Gσ.

Recall that a map ι : N → P between pseudo-Riemannian manifolds is
totally geodesic when it sends geodesics to geodesics, or equivalently when

second fundamental form of ι = (∇(dι)) = 0.

The Cartan map of a symmetric space is given by

ι : G/H → G

gH 7→ σ(g)g−1.

The following result is standard when G is compact and hence has a bi-
invariant Riemannian metric, and is not difficult to extend to the pseudo-
Riemannian case (see [CT11] for details).

Theorem 4.1. Let G be a semisimple Lie group with bi-invariant (pseudo)-
metric 〈·, ·〉 and G/H a symmetric space with respect to the involution σ :
G→ G. Then ι : gH 7→ σ(g)g−1 is a totally geodesic immersion G/H → G.
If H = Gσ, then ι is additionally an embedding.
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Since the Cartan immersion ι : G/H → G is totally geodesic, a smooth

map f : M → G/H is harmonic if and only if the composition f̃ = ι ◦ f :

M → G is harmonic. Writing Φ = f̃−1df̃ , this is equivalent to

d ∗ Φ = 0.

It is more useful to phrase this in terms of a lift F : U ⊂M → G of f on a
simply connected open set U . The involution σ : g→ g gives a splitting

g = h⊕m

into the (+1)- and (−1)-eigenspaces spaces of σ. Let ϕ := F−1dF and then
ϕ = ϕh + ϕm is the decomposition of ϕ into the eigenspaces of σ.

Since f̃ = σ(F )F−1, we have

Φ = f̃−1df̃ = F
(
σ(F )−1d(σ(F ))− F−1dF

)
F−1 = −2AdF (ϕm).

It is now straightforward to verify that a harmonic map f from a simply
connected surface into G/H is equivalent to an S1-family of g-valued 1-forms

ϕλ = λϕ′m + ϕh + λ−1ϕ′′m

each satisfying the Maurer-Cartan equation

(11) dϕλ +
1

2
[ϕλ ∧ ϕλ] = 0,

where ϕ = F−1dF for F a lift of f into G.
Some solutions to (11) may be obtained merely by solving a pair of com-

muting ordinary differential equations on a finite dimensional loop algebra.
It is upon these finite-type solutions that we shall focus and we begin by
explaining how harmonic maps into symmetric spaces can be described in
this straightforward way.

Let Ωg be the loop algebra

Ωg := {ξ : S1 → g | ξ is smooth.}.

For studying maps into symmetric spaces it is helpful to consider the twisted
loop group

ΩσG = {γ : S1 → G : γ(−λ)} = σ(γ(λ))}
and corresponding twisted loop algebra Ωσg. The (possibly doubly infinite)
Laurent expansion

ξ(λ) =
∑
j

ξjλ
j , ξeven ∈ hC, ξodd ∈ mC, ξ−j = ξ̄j

allows us to filtrate ΩσgC by finite-dimensional subspaces

Ωσ
d = {ξ ∈ Ωg | ξj = 0 whenever |j| > d}.

Choose a Cartan subalgebra t of g such that t ⊂ h and recall that a non-
zero α ∈ (tC)∗ is a root with corresponding root space Gα ⊂ gC if [X1, X2] =
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α(X1)X2 for all X1 ∈ t and X2 ∈ Gα. Fix also a set of simple roots, that is
roots α1, . . . , αN such that every root α can be written uniquely as

α =
N∑
j=1

mjαj ,

where the mj are either all positive integers or all negative integers.
The roots act also on kC and writing n for the positive root spaces of hC

with respect to this choice of simple roots, we obtain an Iwasawa decompo-
sition

hC = n⊕ tC ⊕ n̄.

Define r : hC → hC by

r(η) = ηn̄ +
1

2
ηk

and note that

(ηdz)h = r(η)dz + r(η)dz̄.

The following result is the symmetric space analogue of [BFPP93, Theorem
2.1].

Theorem 4.2. Suppose G is a semisimple Lie group with a bi-invariant
pseudo-metric and G/H is a symmetric space. If d is a positive odd integer
and ξ : R2 → Ωσ

d satisfies the Lax pair

∂ξ

∂z
= [ξ, λξd + r(ξd−1)]

then there exists F : R2 → G unique up to left translation, such that the
map f : R2 → G/H framed by F is harmonic and ϕ = F−1dF satisfies

(12) ϕ′m = ξd, ϕ′h = ξd−1.

If G is compact then global solutions of the Lax pair exist for any choice of
initial condition.

Proof. Suppose that ξ : R2 → Ωd satisfies (12) and hence also the conjugate
equation

(13)
∂ξ

∂z̄
= −[ξ, λ−1ξ−d + r(ξd−1)].

Then

dξ = [ξ, φλ],

where ϕλ = (λξd + r(ξd−1))dz + (λ−1ξ−d + r(ξd−1))dz̄. Writing

ϕ = (ξd + r(ξd−1))dz + (ξ−d + r(ξd−1))dz̄

= (ϕ′p + ϕ′k) + (ϕ′′p + ϕ′′k ),
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equations (12) and (13) yield

dϕ′p + [ϕk ∧ ϕ′p] = 0(14)

dϕk +
1

2
[ϕk ∧ ϕk] + [ϕ′p ∧ ϕ′′p ] = 0

dϕ′′p + [ϕk ∧ ϕ′′p ] = 0.

which are the various components of the Maurer-Cartan equation (11).
Now suppose that G is compact and note that since the coefficient of λd+1

on the right hand side of

Z(ξ) =
1

2
(X(ξ)− iY (ξ)) = λξd + r(ξd−1)

vanishes, this equation defines defines vector fields X, Y and Z on Ωd. Tak-
ing Z̄ to be the vector field conjugate to Z, then X,Y commute if and only
if [Z, Z̄] = 0. This follows from a straightforward but tedious computation,
using the Jacobi identity as well as the inclusions [tC, n] ⊂ n, [n̄, n̄] ⊂ n̄,
[n, n] ⊂ n which one sees for example by taking a Chevalley basis for kC.

The flows of the vector fields X,Y are given by Lax equations dξ
dx =

[ξ, X̂(ξ)] and dξ
dy = [ξ, Ŷ (ξ)] for X̂, Ŷ : Ωd → Ωd and the L2 inner product

on Ωg is ad-invariant. Thus

d

dx
〈ξ, ξ〉 = 2〈[ξ, X̂(ξ)], ξ〉

= −2〈[ξ, ξ], X̂(ξ)〉 = 0

and similarly for Y , so the flows evolve on spheres and hence are complete
whenever G is compact. Therefore this pair of complete commuting vector
fields defines an action of R2 on Ωd via

(x, y) · ξ = Xx
1 ◦X

y
2 (ξ).

We see that for any ψ0 ∈ Ωd, we may define ξ : R2 → Ωd by

ξ(x, y) = (x, y) · ξ0

and the ξ so defined satisfies (12). �

Given a harmonic map f : R2 → G/H, we may define a family of flat
connections φλ as above and then a solution ξ : S1 → Ωd to the Lax pair

∂ξ

∂z
= [ξ, φ′λ]

is called a polynomial Killing field and if furthermore ξd+ r(ξd−1) = φz̄ then
the polynomial Killing field is said to be adapted. As Theorem 4.2 demon-
strates, the harmonic map f can be recovered from an adapted polynomial
killing field.

Definition 4.3. Harmonic maps f : R2 → G/H arising from the above
construction, or equivalently those possessing an adapted polynomial Killing
field are said to be of finite-type.
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Harmonic maps into groups can be analysed analogously or by considering
the group as a symmetric space. Harmonic maps of finite type can thus be
constructed by remarkably more simple means than general harmonic maps.
The obvious question of course is how special are these maps? Certainly by
no means all harmonic maps of the plane are of finite type but if we restrict
our attention to maps which are periodic with respect to a rank-two lattice
Λ ⊂ R2 then the compactness of the domain R2/Λ makes it reasonable to
ask whether all such doubly periodic maps are of finite type. The first finite-
type results were contained in the work of Hitchin on harmonic maps of a 2-
torus R2/Λ to the 3-sphere [Hit90] and in the study by Pinkall and Sterling
[PS89] of constant mean curvature immersions of the plane in Euclidean-
3 space. As described in the previous section, Hitchin gave a complete
characterisation of harmonic R2/Λ → S3 ∼= SU(2) in terms of a spectral
curve. He showed that with the exception of conformal harmonic maps
into a totally geodesic S2 ⊂ S3 (the so-called totally isotropic maps), all
harmonic maps R2/Λ→ S3 are of finite type (the totally isotropic are dealt
with by separate means, [Cal67]). His approach used the holonomy of the
family of flat connections rather than polynomial Killing fields and this
result came down to an application of the fact that an elliptic operator on
a compact domain (the 2-torus) has but a finite dimensional kernel.

The approach by Pinkall and Sterling was the first in a series of papers
[FPPS92, BPW95, BFPP93] showing a large classes of harmonic maps of tori
are of finite type. Indeed a major advantage of the polynomial killing field
approach is that it has been more amenable to proving finite-type results.
In particular this approach yielded the following quite general two theorems.

Theorem 4.4 ([BFPP93]). Let f : T 2 = R2/Λ → G be a semi-simple
adapted harmonic map into a compact semi-simple Lie group. Then f is of
finite type.

From this point of view the importance of the double-periodicity condition
comes from the fact that the 1-form 4iξd = f∗ω

(
∂
∂z

)
is holomorphic, since

the harmonic map equation may be expressed as the condition that

f−1∇G∂
∂z̄

f∗
∂

∂z
= 0.

On a genus-one surface the only holomorphic differentials are constant.

Theorem 4.5 ([BFPP93]). Suppose G is compact and the symmetric space
G/H has rank one. A harmonic map f : R2/Λ → G/H is of finite type if
and only if it is non-conformal.

The rank is the maximum dimension of a subspace of the tangent space
(to any point) on which the sectional curvature is identically zero. Rank
one symmetric spaces include spheres and projective spaces.

Of course the most geometrically interesting harmonic maps into sym-
metric spaces are the conformal ones, and when the target is a sphere or
complete projective space, Burstall [Bur95] showed that all but the totally
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isotropic harmonic maps of 2-tori have lifts into an appropriate flag mani-
fold which are of finite type (this involves expanding the notion somewhat
to primitive maps into k-symmetric spaces). The compactness assumption
also excludes a number of geometrically interesting situations, but recently
Turner and the author have shown [CT11, CT12] that maps of 2-tori into
G/T possessing a Toda frame are necessarily of finite-type, for G a simple
Lie group with bi-invariant pseudo-metric and T a Cartan subgroup. In par-
ticular then superconformal harmonic maps of 2-tori to de-Sitter spheres S2n

1

whose harmonic sequence is everywhere defined lift to maps of finite type.
Since Willmore surfaces in S3 without umbilic points are characterised by
the property that their conformal Gauss maps, which take values in S4

1 , are
harmonic this result yields a simple proof that Willmore tori without umbilic
points are all of finite-type. Using the multiplier curve described below, the
Willmore result is proven in [Sch02, Boh] without the umbilic assumption.

4.2. A comparison of spectral curve constructions. As with Hitchin’s
holonomy construction for harmonic 2-tori in S3, one would like to use poly-
nomial Killing fields to build spectral curves for other harmonic maps. The
reason to not necessarily use holonomy directly is simply that beyond the
case G = SU(2) there has not been success in proving in this way that the
resulting spectral curve is actually algebraic, that is has finite genus. A map
being of finite-type means exactly that the resulting spectral curve has finite
genus. The polynomial Killing fields are solutions to a Lax pair, and there is
a long and rich history of spectral curve constructions in the study of solu-
tions to Lax pair equations (see for example [AvM80a, AvM80b]). However
when studying classical examples such as the Toda lattice, or geodesics on
an ellipsoid, or more modern examples such as Higgs bundles, one is con-
cerned with a single solution to the Lax equation. The natural approach is
then to take the characteristic polynomial of this solution. When consid-
ering harmonic maps, one is presented with an entire algebra of solutions.
These solutions for example have differing degrees, and hence the character-
istic polynomials clearly yield algebraic curves of different genus. The genus
has geometric meaning, since the dimension of the space on which one can
choose the eigenline bundle determines the dimension of the family in which
the harmonic map lies. The eigenline bundle can usually be chosen from
an appropriate Prym variety or perhaps a Prym-Tjurin subvariety of the
Jacobian and the dimension of this variety can be computed in terms of the
spectral genus.

In [McI95, McI96], McIntosh considers the entire algebra of polynomial
Killing fields for harmonic 2-tori in CPn by taking the spectrum of a maxi-
mal abelian subalgebra, then proving that the resulting curve is independent
of the choice of maximal abelian subalgebra. Another construction which is
somewhat simpler is to take the “eigenline” curve of (a maximal abelian sub-
algebra) of the polynomial Killing fields, as in [FPPS92]. However McIntosh
and Romon have given an example in which the spectral curve obtained by



HARMONIC MAPS AND INTEGRABLE SYSTEMS 25

this construction is different to that obtained by using the spectrum [MR11]
(and it is possible to reconstruct the map from the latter but not the former)
and so some caution is required with the eigenline approach.

The spectral curve clearly offers a powerful tool in studying the moduli
space of harmonic maps and as such has been instrumental in a number of
recent approaches on various geometric conjectures. In [KSS10], the authors
present a detailed analysis of the moduli space of equivariant constant mean
curvature tori in S3 and show that the spectral curve of any embedded equi-
variant minimal tori of positive (arithmetic) spectral genus can be deformed
through a family of spectral curves of constant mean curvature tori to a
curve of geometric genus zero and arithmetic genus one, which is known not
to be the spectral curve of any constant mean curvature torus. This contra-
diction implies that any embedded equivariant minimal torus in S3 must in
fact have (arithmetic) spectral genus zero and hence be the Clifford torus,
proving the equivariant case of Lawson’s conjecture that the only embedded
minimal torus in S3 is the Clifford torus. A similar approach was employed
in the preprint [KS10] to yield the Pinkall-Sterling conjecture that the only
embedded constant mean curvature tori in S3 are those of revolution, a
fortiori as yielding the full Lawson conjecture. An analogous approach to
the Willmore conjecture shows promise, with partial results established in
[Sch02] (in this context we mention also the recent announcement of a proof
of the Willmore conjecture using rather different methods [MN12].

More recently, another spectral curve construction has come into vogue,
namely the multiplier, or Fermi curve [Tai97, Sch02, BLPP07]. In a sense
this has its roots in the holonomy construction, but it is more general in
that it does not rely upon the existence of a family of flat connections and
so applies to maps which are not necessarily harmonic. Instead one considers
maps f from a Riemann surface Σ into S4 which are merely conformal or
equivalently, (quaternionic) holomorphic as maps into HP1 ∼= S4. As with
holomorphic maps into complex projective spaces, such f correspond to
quaternionic line sub-bundles of the trivial rank two quaternionic vector
bundle V on Σ. Geometrically, the multiplier curve encodes a subspace of
the space of Darboux transforms of the original map. These are a natural
generalisation of classical Darboux transforms, where two surfaces in R3 are
classical Darboux transforms of one another if they share a common sphere
congruence. More generally, given a surface Σ and conformal immersion
f : Σ → S4, a Darboux transform of f is a conformal map f̂ : Σ → S4

such that for each p ∈ Σ, f(p) 6= f̂(p), and there is a smooth oriented
sphere congruence S : M → {oriented round 2-spheres in S4} such that S

left-envelopes f̂ and S both left- and right-envelopes f .
To say that S left-envelopes f̂ means that for all p ∈ M, f̂(p) ∈ S(p),

and the oriented great circles in S3 corresponding to the tangent planes of
f̂(M) and S(p) at f̂(p) differ by left translation in S3 ∼= SU(2). Right-
enveloping is defined analogously. Alternatively, considering the oriented
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Grassmannian of 2-planes in R4 as S2 × S2, one can think of having a pair
of Gauss maps given by the left and right normals and we require that the
left normal of f̂ matches that of S whilst both the left and right normals of
f match those of S. Darboux transforms of f are exactly the maps defined

away from isolated points by holomorphic sections of the pull-back Ṽ/L of
the quotient bundle V/L to the universal cover of Σ. The multiplier spectral
curve is then the the space of holonomies realised by holomorphic sections

of Ṽ/L.
For the fundamental case of constant mean curvature tori in R3, we have in

this quaternionic line bundle also a family of flat connections, gauge equiva-
lent to the family of flat connections described in section 2. The holomorphic

structure on Ṽ/L is precisely the (0, 1) part of these connections (which is
independent of the spectral parameter λ). Thus sections which are actually
parallel with respect to some connection ∇λ are in particular holomorphic
sections, and the corresponding Darboux transforms are termed λ-Darboux
transforms. These maps are included in Hitchin’s study of harmonic maps
into S3, as the Gauss map of the constant mean curvature surface is har-
monic and vice versa. In terms of Hitchin’s spectral curve, the fact that
the map corresponds to a constant mean curvature torus means precisely
that the curve is unbranched over 0 and ∞ and it possesses a holomorphic
involution covering λ 7→ −λ. If we term the quotient of Hitchin’s curve by
this involution the eigenline spectral curve, we have the following [CLP11].

Theorem 4.6 ( [CLP11]). The eigenline and multiplier curves of a constant
mean curvature torus in R3 are not birational, however they have the same
normalisation. The multiplier curve is always singular whereas the eigenline
curve is generically smooth.

This point of view is a particularly natural way of recovering the original
constant mean curvature immersion.

Theorem 4.7 ( [CLP11]). The original constant mean curvature immersion
f : T 2 → R3 is given by the limit of the λ-Darboux transforms as λ tends
toward 0 or ∞.

Clearly it would be highly desirable to be able to extend spectral curve
methods to harmonic maps of surfaces of genus higher than one. The multi-
plier curve offers an approach here, as by considering only the holomorphic
structure (so “half” the connection ∇λ), one is not so tightly tied to the
assumption that the fundamental group must be abelian but can rather
consider abelian representations of the holonomy of the more general holo-
morphic sections.
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