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SUMMARY

We develop strategies for variational Bayes approximate inference for models con-
taining elaborate distributions. Such models suffer from the difficulty that the parameter
updates do not admit closed form solutions. We circumvent this problem through a com-
bination of (a) specially tailored auxiliary variables, (b) univariate quadrature schemes
and (c) finite mixture approximations of troublesome density functions. An accuracy
assessment is conducted and the new methodology is illustrated in an application.

Keywords: Asymmetric Laplace distribution; Auxiliary mixture sampling; Bayesian infer-
ence; Generalized Extreme Value distribution; Quadrature; Skew Normal Distribution.

1 Introduction

Variational Bayes refers to a general approach to approximate inference in hierarchical
Bayesian models and offers a fast deterministic alternative to Markov chain Monte Carlo
(MCMC). The approximations are driven by product assumptions on multi-parameter
posterior distributions and lead to fast and, for some models, quite accurate Bayesian
inference. The idea originated in the Physics literature (e.g. Parisi, 1988), where it is
known as mean field theory. It was adopted by Computer Science for Bayesian inference in
the late 1990s (e.g. Attias, 1999) and the term ‘variational Bayes’ was coined. During the
2000s it permeated into the statistical literature (e.g. Teschendorff et al., 2005; McGrory
& Titterington, 2007). Ormerod & Wand (2010) contains a summary of variational Bayes
from a statistical standpoint.

A vital feature of variational Bayes, which allows it to be applied to a wide class of
models, is the localness property. The localness property means that calculations concern-
ing a particular parameter can be confined to ‘nearby’ parameters. It is best understood
using graph theoretic representations of hierarchical Bayesian models, although we post-
pone the details on this to Section 3. Gibbs sampling also possesses the localness prop-
erty and the software package BUGS (Lunn et al. 2000) relies on it to efficiently handle
arbitrary complex models. Recently software packages that make use of the localness
property of variational Bayes have emerged in an effort to streamline data analysis. The
most prominent of these is Infer.NET (Minka, Winn, Guiver & Kannan, 2009) which is a
suite of classes in .NET languages such as C++ and C].

Despite these developments, the vast majority of variational Bayes methodology and
software is restricted to models where the random components have common distribu-
tions such as Normal, Gamma and Dirichlet, and the required calculations are analytic.
This imposes quite stringent restrictions on the set of models that can be handled via
variational Bayes. The current release of Infer.NET is subject to such restrictions.
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In this article we explain how the class of distributions for variables in variational
Bayes algorithms can be widened considerably. Specifically, we show how elaborate dis-
tributions such as t, Skew Normal, Asymmetric Laplace and Generalized Extreme Value
can be handled within the variational Bayes framework. The incorporation of such dis-
tributions is achieved via a combination of

• specially tailored auxiliary variables,

• univariate quadrature schemes,

• finite mixture approximations to troublesome density functions.

Auxiliary variables have already enjoyed some use in variational Bayes contexts. Exam-
ples include Tipping & Lawrence (2003) for t-based robust curve fitting with fixed de-
grees of freedom, Archambeau & Bach (2008) and Armagan (2009) for Laplace and other
exponential power distributions and Girolami & Rogers (2006) and Consonni & Marin
(2007) for binary response regression. Quadrature and finite mixture approximations
have received little, if any, attention in the variational Bayes literature.

We identify five distinct families of univariate integrals which arise in variational
Bayes for the elaborate distributions treated here. The integrals within the families do not
admit analytic solutions and quadrature is required. However, the integrands are well-
behaved and we are able to tailor common quadrature schemes to achieve stable and
accurate computation. It should also be noted that use of accurate quadrature schemes
corresponds to exact variational Bayes updates as opposed to those based on Monte Carlo
methods (e.g. Section 6.3 of Winn & Bishop, 2005).

A recent innovation in the MCMC literature is auxiliary mixture sampling (e.g. Frühwirth-
Schnatter & Wagner, 2006; Frühwirth-Schnatter et al., 2009). It involves approximation of
particular density functions by finite, usually Normal, mixtures. The introduction of
auxiliary indicator variables corresponding to components of the mixtures means that
MCMC reduces to ordinary Gibbs sampling with closed form updates. The same idea is
applicable to variational Bayes, and we use it for troublesome density functions such as
those belonging to the Generalized Extreme Value family.

We confine much of our discussion to simple univariate models, since the forms of
many of the updates for multi-parameter extensions are essentially the same. The local-
ness property of variational Bayes means the these forms are unchanged when embedded
into larger models.

A critical issue of variational Bayesian inference is accuracy compared with more ex-
act approaches such as MCMC. We address this through a simulation study for a se-
lection of elaborate distribution models. We find that the posterior densities of some
parameters can be approximated very well. However the accuracy is only moderate to
good for parameters which possess non-negligible posterior dependence with the intro-
duced auxiliary variables. In particular, the spread of posterior densities are often under-
approximated.

Section 2 contains all definitions and distributional results used in this article. Section
3 summarizes the variational Bayes and elaborates on the aforementioned localness prop-
erty. In Section 4 we treat several location-scale models having elaborate distributional
forms. Section 5 describes modifications when the alternative scale parameter priors are
used. Multiparameter extensions are discussed in Section 6. In Section 7 we discuss ex-
tension to other elaborate distributions including discrete response models. The accuracy
of variational Bayes for elaborate distribution models is assessed in Section 8. Section 9
applies some of the methodology developed in this paper to analysis of data from a res-
piratory health study. Discussion of the methodology and its performance is given in
Section 9. Three appendices provide technical details.
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2 Definitions and Distributional Results

Variational Bayes for elaborate distributions is very algebraic, and relies on several def-
initions and distributional results. We lay out each of them in this section. Each of the
results can be obtained via standard distribution theoretic manipulations.

2.1 Non-analytic Integral Families

A feature of variational Bayes for elaborate distributions is that not all calculations can be
done analytically. Some univariate quadrature is required. The following integral fami-
lies comprise the full set of non-analytic integrals which arise in the models considered
in this article:

F(p, q, r, s, t)≡
∫ t

s
xp exp

[
q{1

2x log(x/2)− log Γ(x/2)} − 1
2rx
]
dx, p ≥ 0, q, r, s, t > 0;

G(p, q, r, s, t)≡
∫ ∞

−∞
xp(1 + x2)q exp

(
−r x2 + s x

√
1 + x2 + tx

)
dx p, q ≥ 0, r > 0;

H(p, q, r)≡
∫ ∞

0
xp exp{−q x2 − log(r + x−2)} dx, p ≥ 0, q, r > 0;

J (p, q, r, s)≡
∫ ∞

−∞
xp exp(qx− rx2 − se−x) dx, p ≥ 0, −∞ < q <∞, r, s > 0

and J +(p, q, r)≡
∫ ∞

0
xp exp(qx− rx2) dx, p ≥ 0, −∞ < q <∞, r > 0.

Since the integrals can take values that are arbitrarily large or small it is recommended
that logarithmic storage and arithmetic be used. Appendix B discusses stable and effi-
cient numerical computation of the members of each of these integral families.

2.2 Distributional Notation

The density function of a random vector v in a Bayesian model is denoted by p(v). The
conditional density of v given w is denoted by p(v|w). The covariance matrix of v is de-
noted by Cov(v). If xi has distribution D for each 1 ≤ i ≤ n, and the xi are independent,
then we write yi

ind.∼ D.
We use q to denote density functions that arise from variational Bayes approximation.

For a generic random variable v and density function q we define:

µq(v) ≡ Eq(v) and σ2
q(v) ≡ Varq(v).

For a generic random vector v and density function q we define:

µq(v) ≡ Eq(v) and Σq(v) ≡ Covq(v).

2.3 Distributional Definitions

We use the common notation, N(µ, σ2), for the Normal distribution with mean µ and
variance σ2. The density and cumulative distribution functions of the N(0, 1) distribution
are denoted by φ and Φ, respectively. Furthermore, we write (φ/Φ)(x) ≡ φ(x)/Φ(x) for
the ratio of these two functions.
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The Inverse-Gaussian density function with mean µ > 0 and precision γ > 0 is given
by

p(x;µ, γ) = γ1/2(2π x3)−1/2 exp
{
− γ(x− µ)2

2µ2 x

}
, x > 0.

We write Inverse-Gaussian(µ, γ) for the corresponding family of distributions.
Table 1 provides the functional forms for the densities that are used for modelling

observed data in Section 4. For simplicity, we given the density with location µ equal to
zero and scale σ equal to one. The general location and scale density function involves
the transition

f(x) 7→ 1
σ

f

(
x− µ

σ

)
where f(x) is as given in the second column of Table 1.

distribution density in x (µ = 0, σ = 1) abbreviation

t
Γ
(

ν+1
2

)
√

πν Γ(ν/2)(1 + x2/ν)
ν+1
2

t(µ, σ, ν) (ν > 0)

Asymmetric τ(1− τ) e−
1
2 |x|+(τ−1

2 )x, Asymmetric-Laplace(µ, σ, τ)
Laplace (0 < τ < 1)

Skew Normal 2φ(x)Φ(λx) Skew-Normal(µ, σ, λ)

Finite Normal (2π)−1/2
∑K

k=1(wk/sk) Normal-Mixture(µ, σ,w,m, s)
Mixture ×φ((x−mk)/sk), (

∑K
k=1 wk = 1, sk > 0)

Generalized Extreme (1 + ξ x)−1/ξ−1 GEV(µ, σ, ξ)
Value ×e−(1+ξ x)−1/ξ

, 1 + ξ x > 0

Table 1: Density functions for modelling observed data. The functions φ and Φ are the density
and cumulative distribution functions of the N(0, 1) distribution. The scale parameter is subject
to the restriction σ > 0 in all cases. The density function argument x and parameters range over
R unless otherwise specified.

In Table 2 we describe density families that are used for modelling scale parameters
in the upcoming examples.

2.4 Distributional Results Involving Auxiliary Variables

In this section we give a collection of distributional results that link elaborate distribu-
tions to simpler ones. Each result is straightforward to derive. However, they play vital
roles in variational Bayes for elaborate distributions.

Result 1. Let x and a be random variables such that

x|a ∼ N
(
µ, aσ2

)
and a ∼ Inverse-Gamma(ν

2 , ν
2 ).

Then x ∼ t(µ, σ, ν).

Result 2. Let x and a be random variables such that

x|a ∼ N

(
µ +

(1
2 − τ)σ

aτ(1− τ)
,

σ2

aτ(1− τ)

)
and a ∼ Inverse-Gamma(1, 1

2).
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distribution density in x abbreviation

Inverse Gamma BA

Γ(A) x−A−1e−B/x Inverse-Gamma(A,B) (A,B > 0)

Log Normal 1
Bx

√
2π

exp[− 1
2B2 {log(x)−A}2] Log-Normal(A,B) (B > 0)

Half Cauchy 2A{π(A2 + x2)}−1 Half-Cauchy(A) (A > 0)

Table 2: Density functions used for modelling scale parameters. The density function argument
x ranges over x > 0.

Then x ∼ Asymmetric-Laplace(µ, σ, τ).
Result 2 follows from Proposition 3.2.1 of Kotz, Kozubowski & Podgórski (2001).

Result 3. Let x and a be random variables such that

x|a ∼ N

(
µ +

σλ|a|√
1 + λ2

,
σ2

1 + λ2

)
and a ∼ N(0, 1).

Then x ∼ Skew-Normal(µ, σ, λ).
Result 3 is an immediate consequence of Proposition 3 of Azzalini & Dalle Valle

(1996). These authors trace the result back to Aigner, Lovell & Schmidt (1977).
Our last result involves the Multinomial(1;π) distribution where π = (π1, . . . , πK) is

such that
∑K

k=1 πk = 1. The corresponding probability mass function is p(x1, . . . , xK) =∏K
k=1 πxk

k , xk = 0, 1, for 1 ≤ k ≤ K.

Result 4. Let x be a random variable and a be a K × 1 random vector, having kth entry ak, such
that

p(x|a) =
K∏

k=1

[
(2πs2

k)
−1/2 exp{−1

2(x−mk)2/s2
k}
]ak

, −∞ < x <∞,

and a ∼Multinomial(1;w).

Then x ∼ Normal-Mixture(0, 1,w,m, s).

2.5 Expectation Results

The following expectation results are useful in some of the variational Bayes problems
treated in Section 4. If v ∼ Inverse-Gamma(A,B) then

E(1/v) = A/B and E{log(v)} = log(B)− digamma(A).

If v ∼ Inverse-Gaussian(µ, γ) then

E(v) = µ and E(1/v) =
1
µ

+
1
γ

. (1)

3 Variational Bayes

Variational Bayesian inference relies on product restrictions on posterior densities. For
example, in a model with parameters µ and σ and observed data vector x, the exact joint
posterior density p(µ, σ|x) is replaced by the product density form

q(µ) q(σ) (2)
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in the hope that the latter is more tractable. The Kullback-Leibler distance between
p(µ, σ|x) and (2) is minimized by q∗(µ) and q∗(σ) satisfying:

q∗(µ) ∝ exp{Eq(σ) log p(µ|σ,x)}
and q∗(σ) ∝ exp{Eq(µ) log p(σ|µ,x)}. (3)

The optimal parameters in these q-densities can be determined by an iterative scheme in-
duced by (3). Each iteration is, under mild assumptions, guaranteed to lead to an increase
in

log p(x; q) ≡ Eq(µ,σ){log p(x, µ, σ)− log q(µ, σ)}

(Luenberger & Ye; 2008, p. 253). Successive values of log p(x; q) can be used to moni-
tor convergence. At convergence q∗(µ), q∗(σ) and log p(x; q) are, respectively, the mini-
mum Kullback-Leibler approximations to the posterior densities p(µ|x), p(σ|x) and the
marginal log-likelihood log p(x).

The extension to general Bayesian models with arbitrary parameter vectors and la-
tent variables is straightforward. Summaries may be found in, for example, Chapter
10 of Bishop (2006) and Ormerod & Wand (2010). As described in these references, di-
rected acyclic graph (DAG) representations of Bayesian hierarchical models are very use-
ful when deriving variational Bayes schemes for large models. We make use of DAG
representations in the remainder of this section.

As mentioned in Section 1, an important feature of variational Bayes is the localness
property. In the current paper, this implies that results established for the smaller models
treated in Sections 4–6 also apply to much larger models. We now explain this property
in graphical terms. Consider the generic hierarchical Bayesian model:

x|θ1, θ2, θ3 ∼ p(x| θ1, θ2, θ3),

θ1| θ4 ∼ p(θ1| θ4), θ2| θ5, θ6 ∼ p(θ2| θ5, θ6), θ3| θ6 ∼ p(θ3| θ6) independently,

θ4 ∼ p(θ4), θ5 ∼ p(θ5), θ6 ∼ p(θ6) independently.

(4)

The variational Bayes solutions satisfy

q∗(θi) ∝ exp{Eq(θ−i) log p(θi|x, θ−i)}, 1 ≤ i ≤ 6,

where θ−i denotes the set {θ1, . . . , θ6} with θi excluded. However, from graphical model
theory (Pearl, 1988), we have the result

p(θi|x, θ−i) = p(θi|Markov blanket of θi)

where the Markov blanket of a node on a DAG is the set of parents, co-parents and chil-
dren of that node. From this result we get the simplification

q∗(θi) ∝ exp{Eq(θ−i) log p(θi|Markov blanket of θi)}, 1 ≤ i ≤ 6. (5)

The localness property of variational Bayes is encapsulated in Result (5). It affords con-
siderable simplification for the model at hand, but also allows variational Bayes results
for one model to be transferred to another. We now explain this graphically.

Figure 1 shows the Markov blankets for the each of θ1, . . . , θ6. The θi are known as
hidden nodes in graphical models parlance and the data vector x comprises the evidence
node. The arrows convey conditional dependence among the random variables in the
model. The Markov blanket for θ1 is {θ2, θ3, θ4,x}, which means that q∗(θ1) depends
on particular q-density moments of θ2, θ3 and θ4, but not on their distributions. If, for
example, p(θ2|θ5) is changed from Inverse-Gamma(0.07, θ5) to Log-Norma(25, θ5) then
this will not impact upon the form of q∗(θ1). The variational Bayes solution for q∗(θ4)
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x

θ1 θ2 θ3

θ4 θ5 θ6

x

θ1 θ2 θ3

θ4 θ5 θ6

x

θ1 θ2 θ3

θ4 θ5 θ6

x

θ1 θ2 θ3

θ4 θ5 θ6

x

θ1 θ2 θ3

θ4 θ5 θ6

x

θ1 θ2 θ3

θ4 θ5 θ6

Figure 1: Markov blankets for each of the six parameters (hidden nodes) in the example Bayesian
hierarchical model (directed acyclic graph), given by (4). In each panel the Markov blanket is
shown for the thick-circled blue node, using dashed lines. The shaded node x corresponds to the
observed data (evidence node).

provides a more dramatic illustration of the localness property, since the Markov blanket
of θ4 is simply {θ1}. This means that q∗(θ4) is unaffected by the likelihood p(x|θ1, θ2, θ3).
Therefore, results established for q∗(θ4) for, say, xi|θ1, θ2, θ3

ind.∼ t(θ1, θ2, θ3) also apply to
xi|θ1, θ2, θ3

ind.∼ GEV(θ1, θ2, θ3).
The upshot of the localness property of variational Bayes is that we can restrict atten-

tion to the simplest versions of models involving elaborate distributions with the knowl-
edge that the forms that arise also apply to larger models. For this reason, Section 4 deals
only with such simple models.

4 Univariate Location-Scale Models

Consider univariate Bayesian models of the form

x1, . . . , xn|µ, σ,θ
ind.∼ 1

σ
f

(
x− µ

σ
;θ
)

(6)

where f is a fixed density function, µ ∈ R is the location parameter, σ > 0 is the scale
parameter and θ ∈ Θ is a set of shape parameters. We call (6) a univariate location-scale
model.

We will take the prior on µ to be Gaussian:

µ ∼ N(µµ, σ2
µ), −∞ < µµ <∞, σ2

µ > 0

throughout this article. Gaussian priors for location parameters are generally adequate,
and have a straightforward multi-parameter extension. Prior specification for scale pa-
rameters is somewhat more delicate (Gelman, 2006). In the current section we take the
prior for σ to be of the form

p(σ) ∝ σ−2A−1e−B/σ2
, A, B > 0. (7)
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This is equivalent to the squared scale, σ2, having an Inverse-Gamma prior. Due to conju-
gacy relationships between the Gaussian and Inverse-Gamma families, use of (7) results
in variational Bayes algorithms with fewer intractable integrals. In Section 5 we treat al-
ternative scale parameter priors. Let p(θ) denote the prior on θ. The form of p(θ) will
change from one model to another.

The exact posterior density function for µ is

p(µ|x) =
exp{− 1

2σ2
µ
(µ− µµ)2}

∫
Θ

∫∞
0 σ−n

∏n
i=1 f{(xi − µ)/σ;θ} dσ dθ∫∞

−∞ exp{− 1
2σ2

µ
(µ− µµ)2}

∫
Θ

∫∞
0 σ−n

∏n
i=1 f{(xi − µ)/σ;θ} dσ dθ dµ

.

Similar expressions arise for p(σ|x) and p(θ|x). For elaborate f forms, the integrals in
the normalizing factors are almost always intractable. For multi-parameter extensions
we get stuck with multivariate integrals of arbitrary dimension.

The remainder of this section involves case-by-case treatment of the univariate location-
scale models that arise when f is set to each of the densities in Table 1. These cases allow
illustration of the difficulties that arise in variational Bayesian inference for elaborate dis-
tributions, and our strategy for overcoming them. Discussion concerning other f forms
is given in Section 7.

4.1 t Model

A Bayesian t model for a univariate random sample is

xi|µ, σ
ind.∼ t(µ, σ, ν),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B), ν ∼ Uniform(νmin, νmax)

(8)

where µµ and A,B, νmin, νmax, σ
2
µ > 0 are hyperparameters. Model (8) and its multipa-

rameter extensions (Section 6) possess attractive robustness properties (e.g. Lange, Little
& Taylor, 1989). Section 9 contains a nonparametric regression example that uses the t
distribution to achieve robustness.

Using Result 1 we can re-write (8) as

xi|ai, µ, σ
ind.∼ N(µ, ai σ

2), ai|ν
ind.∼ Inverse-Gamma(ν

2 , ν
2 ),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B), ν ∼ Uniform(νmin, νmax).

For variational Bayesian inference we impose the product restriction

q(µ, σ, ν, a) = q(µ, ν)q(σ)q(a).

This yields the following forms for the optimal densities:

q∗(µ) ∼ N(µq(µ), σ
2
q(µ))

q∗(σ2) ∼ Inverse-Gamma
(
A + n

2 , B + 1
2

∑n
i=1 µq(1/ai){(xi − µq(µ))2 + σ2

q(µ)}
)

q∗(ai)
ind.∼ Inverse-Gamma

(
µq(ν)+1

2 , 1
2

[
µq(ν) + µq(1/σ2){(xi − µq(µ))2 + σ2

q(µ)}
])

q∗(ν) =
exp

[
n
{

ν
2 log(ν/2)− log Γ(ν/2)

}
− (ν/2)C1

]
F(0, n, C1, νmin, νmax)

, νmin < ν < νmax.

(9)

The last density uses the definition: C1 ≡
∑n

i=1{µq(log ai) + µq(1/ai)}. The parameters in
(9) are determined from Algorithm 1.
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Initialize: µq(µ) ∈ R, σ2
q(µ) > 0, µq(ν) ∈ [νmin, νmax] and µq(1/σ2) > 0.

Cycle:

For i = 1, . . . , n:

Bq(ai) ←
1
2

[
µq(ν) + µq(1/σ2){(xi − µq(µ))2 + σ2

q(µ)}
]

µq(1/ai) ←
1
2(µq(ν) + 1)/Bq(ai)

µq(log ai) ← log(Bq(ai))− digamma(1
2(µq(ν) + 1))

σ2
q(µ) ←

(
µq(1/σ2)

∑n
i=1 µq(1/ai) + 1

σ2
µ

)−1

µq(µ) ← σ2
q(µ)

(
µq(1/σ2)

∑n
i=1 xiµq(1/ai) + µµ

σ2
µ

)
C1 ←

∑n
i=1{µq(log ai) + µq(1/ai)} ; µq(ν) ←

F(1, n, C1, νmin, νmax)
F(0, n, C1, νmin, νmax)

Bq(σ2) ← B + 1
2

∑n
i=1 µq(1/ai){(xi − µq(µ))2 + σ2

q(µ)} ; µq(1/σ2) ←
A+

n
2

Bq(σ2)

until the increase in p(x; q) is negligible.

Algorithm 1: Iterative scheme for obtaining the parameters in the optimal densities q∗(a), q∗(µ),
q∗(ν) and q∗(σ) for the t model.

An explicit expression for log p(x; q) is:

log p(x; q) = n+1
2 + n

2 µq(ν) − n
2 log(2π) + 1

2 log(σ2
q(µ)/σ2

µ)−
(µq(µ) − µµ)2 + σ2

q(µ)

2σ2
µ

+A log(B)− log Γ(A)− (A + n
2 ) log(Bq(σ2)) + log Γ(A + n

2 )
+ logF(0, n, C1, νmin, νmax)− log(νmax − νmin)
+n log Γ(1

2(µq(ν) + 1))− n
2 (µq(ν) + 1) digamma{1

2(µq(ν) + 1)}

although it is only valid after each of the updates in Algorithm 1 have been performed.
Figure 2 shows the results from application of Algorithm 1 to a simulated data set

of size n = 500 from the t(4, 0.5, 1.5) distribution. The algorithm was terminated when
the relative increase in log p(x; q) was less than 10−6. As shown in the first panel of
Figure 2, this required about 75 iterations. The true parameter values are within the high
probability regions of each approximate posterior density function, and this tended to
occur for other realizations of the simulated data.

4.2 Asymmetric Laplace Model

The Asymmetric Laplace model for a univariate random sample is

xi|µ, σ
ind.∼ Asymmetric-Laplace(µ, σ, τ),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B)

(10)

where µµ ∈ R and A,B, σ2
µ > 0 are hyperparameters.

We treat the case where the asymmetry parameter 0 < τ < 1 is fixed number to
be specified by the user. Note that, µ equals the τ quantile of the distribution of the
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Figure 2: Results of application of Algorithm 1 to a simulated random sample of size n = 500
from the t(4, 0.5, 1.5) distribution. The upper-left panel shows successive values of log p(x; q),
up until the meeting of a stringent convergence criterion. The other panels show the approximate
posterior density functions for the three model parameters. The vertical lines correspond to the
true values of the parameters from which the data were generated.

xis. Multiparameter extensions of (10), of the type described in Section 6, corresponds
to Bayesian quantile regression (Yu & Moyeed, 2001). Laplacian variables also arise in
Bayesian representations of the lasso (Park & Casella, 2009) and wavelet-based nonpara-
metric regression.

Using Result 2 we can re-write model (10) as

xi|ai, µ, σ
ind.∼ N

(
µ +

(1
2 − τ)σ

aiτ(1− τ)
,

σ2

aiτ(1− τ)

)
, ai

ind.∼ Inverse-Gamma(1, 1
2),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B).

For variational Bayesian inference we impose the product restriction

q(µ, σ,a) = q(µ)q(σ)q(a). (11)

The optimal densities take the forms:

q∗(µ) ∼ N(µq(µ), σ
2
q(µ)),

q∗(σ) ∼ σ−(2A+n+1) exp(C2/σ − C3/σ2)
J +(2A + n− 1, C2, C3)

and q∗(ai)
ind.∼ Inverse-Gaussian(µq(ai), {4τ(1− τ)}−1).

10



Initialize: µq(µ) ∈ R and σ2
q(µ), µq(1/σ), µq(1/σ2) > 0.

Cycle:

For i = 1, . . . , n:

µq(ai) ←
[
4τ2(1− τ)2µq(1/σ2){(xi − µq(µ))2 + σ2

q(µ)}
]−1/2

.

µq(1/ai) ← 1/µq(ai) + 4τ(1− τ)

σ2
q(µ) ←

{
τ(1− τ)µq(1/σ2)

∑n
i=1 µq(ai) + 1/σ2

µ

}−1

µq(µ) ← σ2
q(µ)

{
τ(1− τ)µq(1/σ2)

∑n
i=1 xiµq(ai) + n(τ − 1

2)µq(1/σ) + µµ/σ2
µ

}
C2 ← n(x− µq(µ))(1

2 − τ)

C3 ← B + 1
2τ(1− τ)

∑n
i=1 µq(ai){(xi − µq(µ))2 + σ2

q(µ)}

µq(1/σ2) ←
J +(2A + n + 1, C2, C3)
J +(2A + n− 1, C2, C3)

; µq(1/σ) ←
J +(2A + n, C2, C3)
J +(2A + n− 1, C2, C3)

until the increase in p(x; q) is negligible.

Algorithm 2: Iterative scheme for obtaining the parameters in the optimal densities q∗(a), q∗(µ)
and q∗(σ) for the Asymmetric Laplace model.

The parameters are determined from Algorithm 2.
An expression for log p(x; q), valid at the bottom of the loop in Algorithm 2, is:

log p(x; q) = 1
2 + log(2) + n log{τ(1− τ)} −

∑n
i=1{1/µq(ai)}
8τ(1− τ)

+ 1
2 log(σ2

q(µ)/σ2
µ)

−
(µq(µ) − µµ)2 + σ2

q(µ)

2σ2
µ

+ A log(B)− log Γ(A) + logJ +(2A + n− 1, C2, C3).

4.3 Skew Normal Model

A Bayesian Skew Normal model for a univariate random sample is

xi|µ, σ
ind.∼ Skew-Normal(µ, σ, λ),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B), λ ∼ N(µλ, σ2

λ)
(12)

where µµ, µλ ∈ R and A,B, σ2
µ, σ2

λ > 0 are hyperparameters. Model (12) is based on the
version of the Skew Normal distribution used by Azzalini & Dalla Valle (1996).

Using Result 3 we can re-write model (12) as

xi|ai, µ, σ, λ
ind.∼ N

(
µ +

λ|ai|√
1 + λ2

,
σ2

1 + λ2

)
, ai

ind.∼ N(0, 1),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B), λ ∼ N(µλ, σ2

λ).

For variational Bayesian inference we impose the product restriction

q(µ, σ, λ,a) = q(µ)q(σ)q(λ)q(a).

11



This leads to the following forms for the optimal densities:

q∗(µ) ∼ N(µq(µ), σ
2
q(µ))

q∗(σ) =
σ−(2A+n+1) exp(C4/σ − C5/σ2)
J +(2A + n− 1, C4, C5)

q∗(λ) =
(1 + λ2)n/2 exp

{
−C6 λ2 + C7λ

√
1 + λ2 + (µλ/σ2

λ)λ
}

G(0, 1
2n, C6, C7, (µλ/σ2

λ))
, −∞ < λ <∞

and q∗(ai) =

√
1 + µq(λ2) exp

{
−1

2(1 + µq(λ2))a2
i + Ci8|ai|

}
2(Φ/φ)(Ci8/

√
1 + µ2

q(λ))
, −∞ < ai <∞, 1 ≤ i ≤ n.

The parameters are determined from Algorithm 3.

Initialize: µq(µ) ∈ R and σ2
q(µ), µq(1/σ), µq(1/σ2) > 0.

Cycle:

For i = 1, . . . , n:

Ci8 ← µq(1/σ)µq(λ
√

1+λ2)(xi − µq(µ))

µq(|ai|) ←
Ci8

1+µq(λ2)
+

(φ/Φ)(Ci8/
√

1+µq(λ2))√
1+µq(λ2)

µq(a2
i ) ←

1+µq(λ2)+C2
i8

(1+µq(λ2))
2 +

Ci8(φ/Φ)(Ci8/
√

1+µq(λ2))

(1+µq(λ2))
√

1+µq(λ2)

σ2
q(µ) ←

{
1

σ2
µ

+ nµq(1/σ2)(1 + µq(λ2))
}−1

µq(µ) ← σ2
q(µ)

{
µµ

σ2
µ

+ nµq(1/σ2)(1 + µq(λ2)) x− µq(1/σ)µq(λ
√

1+λ2)

∑n
i=1 µq(|ai|)

}
C4 ← µq(λ

√
1+λ2)

∑n
i=1 µq(|ai|)(xi − µq(µ))

C5 ← B + 1
2(1 + µq(λ2))

{∑n
i=1(xi − µq(µ))2 + nσ2

q(µ)

}
µq(1/σ2) ←

J+(2A+n+1,C4,C5)
J+(2A+n−1,C4,C5)

; µq(1/σ) ←
J+(2A+n,C4,C5)

J+(2A+n−1,C4,C5)

C6 ← µq(1/σ2)

{∑n
i=1(xi − µq(µ))2 + nσ2

q(µ)

}
+
∑n

i=1 µq(a2
i ) + 1

σ2
λ

C7 ← µq(1/σ)

∑n
i=1 µq(|ai|)(xi − µq(µ)).

µq(λ2) ←
G(2, 1

2n, 1
2C6, C7, (µλ/σ2

λ))
G(0, 1

2n, 1
2C6, C7, (µλ/σ2

λ))
; µq(λ

√
1+λ2) ←

G(1, 1
2(n + 1), 1

2C6, C7, (µλ/σ2
λ))

G(0, 1
2n, 1

2C6, C7, (µλ/σ2
λ))

until the increase in p(x; q) is negligible.

Algorithm 3: Iterative scheme for obtaining the parameters in the optimal densities q∗a, q∗(µ),
q∗(σ) and q∗(λ) for the Skew Normal model.
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Note the simplified expression for use in Algorithm 3:

log p(x; q) = 1
2 + n log(2)− (n + 1

2) log(2π) + A log(B)− log Γ(A)

−
(µq(µ) − µµ)2 + σ2

q(µ)

2σ2
µ

+ 1
2 log(σ2

q(µ)/σ2
µ)− 1

2 log(σ2
λ)−

µ2
λ

2σ2
λ

+1
2µq(λ2)

[
µq(1/σ2)

{
n∑

i=1

(xi − µq(µ))
2 + nσ2

q(µ)

}
+

n∑
i=1

µq(a2
i )

]
+ log G(0, 1

2n, 1
2C6, C7, (µλ/σ2

λ)) + logJ +(2A + n− 1, C4, C5)

+
n∑

i=1

Φ(Ci8/
√

1 + µq(λ2)).

4.4 Finite Normal Mixture Model

Consider the model

xi|µ, σ
ind.∼ Normal-Mixture(µ, σ;w,m, s),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B)

(13)

where µµ and A,B, σ2
µ > 0 are hyperparameters. Model (13) is not of great interest in

its own right. However, as illustrated in Section 4.5, it becomes relevant when a trou-
blesome response variable density function is replaced by an accurate normal mixture
approximation.

Using Result 4 we can rewrite model (13) as

p(x|µ, σ,ai) =
∏n

i=1

∏K
k=1

[
σ−1(2πs2

k)
−1/2 exp

{
− 1

2(xi−µ
σ −mk)2/s2

k

}]aik

,

ai
ind.∼ Multinomial(1;w) µ ∼ N(µµ, σ2

µ), σ2 ∼ Inverse-Gamma(A,B)

and aik denotes the kth entry of ai. The auxiliary random vectors ai, 1 ≤ i ≤ n, facilitate
more tractable variational Bayes calculations as is apparent from the derivations given in
Section A.4 of Appendix A. Under the product restriction

q(µ, σ,a) = q(µ)q(σ)q(a)

the optimal densities take the form:

q∗(µ) ∼ N(µq(µ), σ
2
q(µ)),

q∗(σ) =
σ−2A−n−1 exp(C9/σ − C10/σ2)
J +(2A + n− 1, C9, C10)

, σ > 0,

and q∗(ai)
ind.∼ Multinomial(1;µq(ai)).

The parameters are determined from Algorithm 4.
An explicit expression for log p(x; q) is:

log p(x; q) = 1
2 −

n
2 log(2π) + log(2) + A log(B)− log Γ(A) + logJ +(2A + n− 1, C9, C10, 0)

+
K∑

k=1

µq(a• k){log(wk)− 1
2 log(s2

k)− 1
2(m2

k/s2
k)}

+1
2 log

(
σ2

q(µ)

σ2
µ

)
−

(µq(µ) − µµ)2 + σ2
q(µ)

2σ2
µ

−
n∑

i=1

K∑
k=1

µq(aik) log(µq(aik)).

13



Initialize: µq(µ) ∈ R and σ2
q(µ), µq(1/σ), µq(1/σ2) > 0

Cycle:

For i = 1, . . . , n, k = 1, . . . ,K:

νik ← log(wk)− 1
2 log(s2

k)−
1

2s2
k

[
µq(1/σ2){(xi − µq(µ))

2 + σ2
q(µ)}

−2µq(1/σ) mk(xi − µq(µ)) + m2
k

]
For i = 1, . . . , n, k = 1, . . . ,K: µq(aik) ← exp(νik)

/∑K
k=1 exp(νik)

For k = 1, . . . ,K: µq(a• k) ←
∑n

i=1 µq(aik)

σ2
q(µ) ←

(
1/σ2

µ + µq(1/σ2)

∑K
k=1

µq(a• k)

s2
k

)−1

µq(µ) ← σ2
q(µ)

{
µq(1/σ2)

∑n
i=1

∑K
k=1

µq(aik)xi

s2
k
− µq(1/σ)

∑K
k=1

µq(a•k) mk

s2
k

+ µµ

σ2
µ

}
C9 ←

∑n
i=1

∑K
k=1

µq(aik)mk(xi − µq(µ))
s2
k

C10 ← B + 1
2

∑n
i=1

∑K
k=1

µq(aik){(xi − µq(µ))2 + σ2
q(µ)}

s2
k

µq(1/σ2) ←
J +(2A + n + 1, C9, C10)
J +(2A + n− 1, C9, C10)

; µq(1/σ) ←
J +(2A + n, C9, C10)
J +(2A + n− 1, C9, C10)

until the increase in p(x; q) is negligible.

Algorithm 4: Iterative scheme for obtaining the parameters in the optimal densities q∗(a), q∗(µ)
and q∗(σ) for the Finite Normal Mixture model.

14



4.5 Generalized Extreme Value Model

Now consider the case where f is the standard Generalized Extreme Value density func-
tion with shape parameter −∞ < ξ <∞, ξ 6= 0:

f(x; ξ) = (1 + ξ x)−1/ξ−1e−(1+ξ x)−1/ξ
, 1 + ξ x > 0.

Letting ξ → 0 results in the standard Gumbel density

f(x; 0) = exp(−x− e−x), −∞ < x <∞.

Direct variational Bayes is problematic for the location-scale model (6) when f is GEV(0, 1, ξ),
since the likelihood induced by f(; ξ) has complicated dependence on the parameters. A
reasonable way out is to work with normal mixture approximations to the f(·; ξ):

f(x; ξ) ≈
K∑

k=1

wk,ξ

sk,ξ
φ

(
x−mk,ξ

sk,ξ

)
. (14)

Approximations for f(x; 0) have been employed successfully by Frühwirth-Schnatter &
Wagner (2006) for Markov chain Monte Carlo-based inference. A number of extensions
of this work now exist, including Frühwirth-Schnatter et al. (2009) and Nakajima et al.
(2009). In Appendix C we describe normal mixture approximation for other members of
the GEV(0, 1, ξ) family of density functions.

Let Ξ be a finite parameter space for the ξ parameter and consider the univariate GEV
location-scale model:

xi|µ, σ
ind.∼ GEV(µ, σ, ξ),

µ ∼ N(µµ, σ2
µ), σ2 ∼ Inverse-Gamma(A,B), ξ ∼ p(ξ)

(15)

where µµ ∈ R and A,B, σ2
µ > 0 are hyperparameters and p(ξ) is a fixed probability mass

function over ξ ∈ Ξ.
For any fixed ξ ∈ Ξ, suppose we have a normal mixture approximation to f(·; ξ).

Then we can use Algorithm 4 to obtain variational approximations, with the restriction
q(µ, σ) = q(µ)q(σ), to the conditional posterior densities p(µ|x, ξ) and p(σ|x, ξ). Let these
approximations be denoted by q∗(µ|ξ) and q∗(σ|ξ), respectively. From the relationships

p(µ|x) =
∑
ξ∈Ξ

p(ξ|x)p(µ|x, ξ) and p(σ|x) =
∑
ξ∈Ξ

p(ξ|x)p(σ|x, ξ)

it follows that

p(µ|x) ≈
∑
ξ∈Ξ

p(ξ|x)q∗(µ|ξ) and p(σ|x) ≈
∑
ξ∈Ξ

p(ξ|x)q∗(σ|x, ξ). (16)

The posterior probability mass function for ξ can be approximated by noting the relation-
ship

p(ξ|x) =
p(ξ)p(x|ξ)∑

ξ′∈Ξ p(ξ′)p(x|ξ)

and plugging in the marginal likelihood approximations p(x|ξ), obtained from Algorithm
4 for each fixed ξ ∈ Ξ. This leads to

p(ξ|x) ≈ q∗(ξ) ≡
p(ξ)p(x|ξ)∑

ξ′∈Ξ p(ξ′)p(x|ξ)
.
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In view of (16), appropriate variational Bayes approximations to p(µ|x) and p(σ|x) are
then

q∗(µ) ≡
∑
ξ∈Ξ

q∗(ξ)q∗(µ|ξ) and q∗(σ) ≡
∑
ξ∈Ξ

q∗(ξ)q∗(σ|x, ξ).

Finally, note that the overall marginal log-likelihood is approximated by

p(y; q) ≡
∑
ξ∈Ξ

q∗(ξ)p(x|ξ).

Algorithm 5 summarizes this finite normal mixture approach to variational Bayesian
inference for (µ, σ, ξ) in (15). The algorithm assumes that finite normal mixture approxi-
mations of the form (14) have been obtained for each ξ ∈ Ξ. Such calculations only need
to be done once and can be stored in a look-up table. As described in Appendix C, we
have done them for ξ ∈ {−1,−0.995, . . . , 0.995, 1}with K = 24.

For each ξ ∈ Ξ:

1. Retrieve the normal mixture approximation vectors: (wk,ξ,mk,ξ, sk,ξ), 1 ≤ k ≤
K, for approximation of the GEV(0, 1, ξ) density function.

2. Apply Algorithm 4 with (wk,mk, sk) set to (wk,ξ,mk,ξ, sk,ξ), 1 ≤ k ≤ K.

3. Store the parameters needed to define q∗(µ|ξ) and q∗(σ|ξ).
4. Store the converged marginal likelihood lower bound p(x|ξ).

Form the approximations to the posteriors p(ξ|x), p(µ|x) and p(σ|x) as follows:

q∗(ξ) =
p(ξ)p(x|ξ)∑

ξ′∈Ξ p(ξ′)p(x|ξ)
, q∗(µ) =

∑
ξ∈Ξ

q∗(ξ)q∗(µ|ξ), q∗(σ) =
∑
ξ∈Ξ

q∗(ξ)q∗(σ|ξ).

Algorithm 5: Scheme for approximation of the posteriors p(ξ|x), p(µ|x) and p(σ|x) for the
Generalized Extreme Value model.

4.6 General Univariate Location-Scale Models

As demonstrated in the previous section for the GEV univariate location-scale model,
the auxiliary normal mixture approach offers itself as a viable ‘last resort’ for trouble-
some density functions. Provided f in (6) is reasonably smooth, one can approximate it
arbitrarily well by a finite normal mixture and then use Algorithm 4. If additional param-
eters are present, such as the GEV shape parameter ξ, then there is the option of imposing
a discrete finite prior and using the approach exemplified by Algorithm 5.

Hence, the auxiliary mixture approach can be used for variational Bayesian inference
for general univariate location-scale models.

5 Alternative Scale Parameter Priors

The Inverse Gamma distribution is the conjugate family for variance parameters in Nor-
mal mean-scale models. Since, after the introduction of auxiliary variables, many of the
models in Section 4 involve Normal distributions the conjugacy property helps reduce
the number of non-analytic forms. However, alternative scale parameter priors are of-
ten desirable. Gelman (2006) argues that Half t densities are better for achieving non-
informativity of scale parameters, and pays particular attention to Half Cauchy scale
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priors. The Bayesian variable selection models of Cottet, Kohn & Nott (2008) use Log
Normal priors for scale parameters. In this section we briefly describe the handling of
these alternative scale parameter priors in variational Bayesian inference.

5.1 Half-Cauchy Prior

Consider the following alternative to (8):

xi|µ, σ
ind.∼ t(µ, σ, ν),

µ ∼ N(µµ, σ2
µ), σ ∼ Half-Cauchy(A), ν ∼ Uniform(νmin, νmax)

where µµ ∈ R and A, νmin, νmax, σ
2
µ > 0 are hyperparameters. The only difference is σ2 ∼

Inverse-Gamma(A,B) is replaced with σ ∼ Half-Cauchy(A). As before, we introduce
auxiliary variables of the form ai|ν

ind.∼ Inverse-Gamma(ν
2 , ν

2 ), which allows us to re-write
the data model as

xi|ai, µ, σ
ind.∼ N(µ, ai σ

2).

The optimal q densities are the same as (9), but with

q∗(σ) =
exp(−C11/σ2)

H(n− 2, C11, A2)σn(A2 + σ2)
, σ > 0,

whereH(p, q, r) is as defined in Section 2.1.
The optimal parameters can be obtained using an iterative algorithm similar to Algo-

rithm 1. The only change is that

Bq(σ2) ← B + 1
2

n∑
i=1

µq(1/ai){(xi − µq(µ))
2 + σ2

q(µ)} ; µq(1/σ2) ←
A + n

2

Bq(σ2)

is replaced with

C11 ← 1
2

n∑
i=1

µq(1/ai)

{
(xi − µq(µ))

2 + σq(µ)

}
; µq(1/σ2) ←

H(n, C11, A
2)

H(n− 2, C11, A2)
.

The expression for log p(x; q) becomes:

log p(x; q) = n+1
2 + n

2 µq(ν) − n
2 log(2π) + 1

2 log(σ2
q(µ)/σ2

µ)−
(µq(µ) − µµ)2 + σ2

q(µ)

2σ2
µ

+ log(2A/π) + logH(n− 2, C11, A
2) + logF(0, n, C1, νmin, νmax)

− log(νmax − νmin) + n log Γ(1
2(µq(ν) + 1))

−n
2 (µq(ν) + 1) digamma{1

2(µq(ν) + 1)}.

5.2 Log Normal Prior

Next, consider the following alternative to (8):

xi|µ, σ
ind.∼ t(µ, σ, ν),

µ ∼ N(µµ, σ2
µ), σ ∼ Log-Normal(A,B), ν ∼ Uniform(νmin, νmax)

where µµ ∈ R and A,B, νmin, νmax, σ
2
µ > 0 are hyperparameters. Once again, we introduce

auxiliary variables ai|ν
ind.∼ Inverse-Gamma(ν

2 , ν
2 ), and work with

xi|ai, µ, σ
ind.∼ N(µ, ai σ

2).
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The optimal q densities are the same as (9), but with

q∗(σ) =
2 σ(A/B2)−n−1 exp{−C6/σ2 − (log σ)2/(2B2)}

J (0, A
2B2 − n

2 , 1
8B2 , C6)

, σ > 0.

The optimal parameters can be obtained using an iterative algorithm similar to Algorithm
1. The only change is that

Bq(σ2) ← B + 1
2

n∑
i=1

µq(1/ai){(xi − µq(µ))
2 + σ2

q(µ)} ; µq(1/σ2) ←
A + n

2

Bq(σ2)

is replaced with

C11 ← 1
2

n∑
i=1

µq(1/ai)

{
(xi − µq(µ))

2 + σq(µ)

}
; µq(1/σ2) ←

J (0, A
2B2 − 1− n

2 , 1
8B2 , C6)

J (0, A
2B2 − n

2 , 1
8B2 , C6)

.

The expression for log p(x; q) becomes:

log p(x; q) = n+1
2 + n

2 µq(ν) − n
2 log(2π) + 1

2 log(σ2
q(µ)/σ2

µ)−
(µq(µ) − µµ)2 + σ2

q(µ)

2σ2
µ

−1
2 log(2π)− 1

2(A2/B2)− log(B) + logJ (0, A
2B2 − n

2 , 1
8B2 , C6)

+ logF(0, n, C1, νmin, νmax)− log(νmax − νmin)
+n log Γ(1

2(µq(ν) + 1))− n
2 (µq(ν) + 1) digamma{1

2(µq(ν) + 1)}.

6 Multiparameter Extensions

Up until we have restricted attention to univariate models. This has the advantage that
the various issues that arise with elaborate distributions in variational Bayes can be
addressed with minimal notational effort. The localness property of variational Bayes
means that the non-analytic forms that were identified in Sections 4 and 5 still apply for
larger models. In this section we examine the most common multiparameter extension:
from univariate models to regression models. For shape parameters such as ν, the t dis-
tribution degrees of freedom, this extension has no impact on the updates. The scale
parameter updates are only mildly impacted. The location parameter µ is replaced by a
vector of regression coefficients β. Algebraically, this involves replacement of

1µ by Xβ

in the model specification. The updates for β then involve matrix algebraic counterparts
of µq(µ) and σ2

q(µ). We we will provide details on this extension for the t-distribution
model with Inverse Gamma priors. Extensions for other models are similar.

A Bayesian t regression model (e.g. Lange, Little & Taylor, 1989) is

yi|β, σ
ind.∼ t((Xβ)i, σ, ν),

β ∼ N(µβ,Σβ), σ2 ∼ Inverse-Gamma(A,B), ν ∼ Uniform(νmin, νmax)
(17)

where µβ and Σβ hyperparameters for β. We can re-write (17) as

yi|ai, µ, σ
ind.∼ N((Xβ)i, ai σ

2), ai|ν
ind.∼ Inverse-Gamma(ν

2 , ν
2 )

β ∼ N(µβ,Σβ), σ2 ∼ Inverse-Gamma(A,B), ν ∼ Uniform(νmin, νmax).
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For variational Bayesian inference we impose the product restriction

q(β, σ, ν,a) = q(β, ν)q(σ)q(a).

This yields the following forms for the optimal densities:

q∗(β) ∼ N(µq(β),Σq(µ)),

q∗(σ2) ∼ Inverse-Gamma
(
A + n

2 ,

B + 1
2 µq(1/σ2)

[
(y −Xµq(β))T C12(y −Xµq(β)) + tr{Σq(β)X

T C12X}
])

,

q∗(ai)
ind.∼ Inverse-Gamma

(
µq(ν)+1

2 , 1
2

[
µq(ν) + µq(1/σ2){(y −Xµq(β))2i + (XΣq(β)X

T )ii}
])

and q∗(ν) =
exp

[
n
{

ν
2 log(ν/2)− log Γ(ν/2)

}
− (ν/2)C1

]
F(0, n, C1, νmin, νmax)

, νmin < ν < νmax.

(18)
The last density uses the same definition for C1 that was in the univariate case: C1 ≡∑n

i=1{µq(log ai) + µq(1/ai)}. The parameters in (18) are determined from Algorithm 6.

Initialize: µq(β) ∈ Rk+1, µq(ν) ∈ [νmin, νmax] and µq(1/σ2) > 0.
Cycle:

For i = 1, . . . , n:

Bq(ai) ←
1
2

[
µq(ν) + µq(1/σ2){(y −Xµq(β))2i + (XΣq(β)X

T )ii}
]

µq(1/ai) ←
1
2(µq(ν) + 1)/Bq(ai)

µq(log ai) ← log(Bq(ai))− digamma(1
2(µq(ν) + 1))

C12 ← diag1≤i≤n{µq(1/ai)} ; Σq(β) ←
{

µq(1/σ2)X
T C12X + Σ−1

β

}−1

µq(β) ← Σq(β)

{
µq(1/σ2)X

T C12y + Σ−1
β µβ

}
C1 ←

∑n
i=1{µq(log ai) + µq(1/ai)} ; µq(ν) ←

F(1, n, C1, νmin, νmax)
F(0, n, C1, νmin, νmax)

Bq(σ2) ← B + 1
2 µq(1/σ2)

[
(y −Xµq(β))T C12(y −Xµq(β)) + tr{Σq(β)X

T C12X}
]

µq(1/σ2) ← (A + n
2 )/Bq(σ2)

until the increase in p(x; q) is negligible.

Algorithm 6: Iterative scheme for obtaining the parameters in the optimal densities q∗(a), q∗(β),
q∗(ν), q∗(σ) for the t regression model.

The lower bound on the marginal log-likelihood admits the expression:

log p(x; q) = n+k+1
2 + n

2 µq(ν) − n
2 log(2π)

+1
2 log |Σ−1

β Σq(β)| − 1
2

{
(µq(β) − µβ)TΣ−1

β (µq(β) − µβ) + tr(Σ−1
β Σq(β))

}
+A log(B)− log Γ(A)− (A + n

2 ) log(Bq(σ2)) + log Γ(A + n
2 )

+ logF(0, n, C1, νmin, νmax)− log(νmax − νmin)
+n log Γ(1

2(µq(ν) + 1))− n
2 (µq(ν) + 1) digamma{1

2(µq(ν) + 1)}.
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7 Other Elaborate Response Models

Many other elaborate continuous response distributions could be entertained. Exam-
ples include Skew t (e.g. Azzalini & Capitanio, 2003), Generalized Inverse Gaussian and
Generalized Hyperbolic distributions. There are also numerous elaborate distributions
appropriate for discrete responses, such as Negative Binomial and Beta Binomial dis-
tributions. In the multiparameter case, corresponding to Bayesian generalized additive
models, the link function also impacts tractability of variational Bayes schemes (e.g. Giro-
lami & Rogers, 2006).

Clearly we cannot cover all possible elaborate response distributions. However, we
note that the strategies used in Sections 4 to 6 involving judicious use of auxiliary vari-
ables, quadrature and finite mixture approximations apply generally. For example, equa-
tion (25) of Azzalini & Capitanio (2003) suggests a useful auxiliary variable representa-
tion for Skew t response models. As mentioned in Section 4.6, finite mixture approxima-
tion to the response density is always available as a last resort.

8 Accuracy Assessment

We conducted a simulation study to assess the accuracy of the univaraite location-scale
variational Bayes algorithms described in Sections 4 and 5. One hundred random sam-
ples of size n = 500 were drawn from the t distribution, Asymmetric Laplace, Skew
Normal and Generalized Extreme Value distributions. Without loss of generality we set
the location and scale parameters to be µ = 0 and σ = 1. The shape parameters were:

ν = 1.5 for the t-distribution models,
τ = 0.75 for the Asymmetric Laplace distribution model,
λ = 5 for the skew-Normal distribution model

and ξ = 0.5 for the Generalized Extreme Value distribution model.

The hyperparameters for µ were fixed at µµ = 0 and σ2
µ = 108. For Inverse Gamma

priors on the squared scale we used A = B = 0.01. For the Half Cauchy prior on the
scale we used A = 25 and for the Log Normal prior on the scale we used A = 100 and
B = 10. Shape parameter hyperparameters were νmin = 0.01, νmax = 100, µλ = 0 and
σ2

λ = 108. Finally, p(ξ) was a uniform discrete distribution on Ξ = {0, 0.01, . . . , 0.99, 1}.
The accuracy of variational Bayes approximate posterior density functions was mea-

sured via L1 distance. Let θ be a generic parameter in any one of the models considered
in Section 4 or 5. Then the L1 error, or integrated absolute error (IAE) of q∗, given by

IAE(q∗) =
∫ ∞

−∞

∣∣ q∗(θ)− p(θ|x)
∣∣ dθ.

Note that L1 error is a scale-independent number between 0 and 2 and is invariant to
monotone transformations on the parameter θ (Devroye & Györfi, 1985). The latter prop-
erty implies, for example, that the IAEs for q∗(σ) and q∗(σ2) are identical. The accuracy of
q∗

accuracy(q∗) = 1− {IAE(q∗)/ sup
q a density

IAE(q)} = 1− 1
2 IAE(q∗). (19)

Since 0 ≤ accuracy(q∗) ≤ 1 we express this measure as a percentage in our accuracy as-
sessments. Exact computation of p(θ|x) is difficult so we worked with MCMC samples
obtained using BRugs (Ligges et al. 2010) with a burnin of size 10000. A thinning factor
of 5 was applied to post-burnin samples of size 50000. This resulted in MCMC samples
of size 10000 for density estimation. Density estimates were obtained using the binned
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kernel density estimate bkde() function in the R package KernSmooth (Wand & Rip-
ley, 2009). The bandwidth was chosen using a direct plug-in rule, corresponding to the
default version of the dpik() function in KernSmooth.
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Figure 3: Boxplots of accuracy measurements for the simulation study described in the text.

Figure 3 summarizes the accuracy measures obtained from 100 replications of each of
six models. The left-hand panels show the accuracy of variational Bayes for the three t
models. The results are similar, regardless of form of the scale parameter prior. There is
also very little between sample variability in the accuracy measures and, hence, we will
simply quote average accuracy here. The location parameter µ has its posterior approx-
imated with about 84% accuracy. For the degrees of freedom parameter ν the accuracy
drops to about 71%, while it is only about 65% for the scale parameter σ. The results for
the Asymmetric Laplace show an approximate reversal with the scale parameter having
74% accuracy, but the location parameter posterior at 66% accuracy. The accuracy values
for the Skew Normal model are between 37% and 42% for the three model parameters
µ, σ and λ, indicating that this distribution is particularly challenging for variational
Bayes. For the Generalized Extreme Value model the location and scale have accuracy
each around 50%. But the accuracy for the shape parameter ξ is excellent at 93%.

The nature of the inaccuracies is shown in Figure 4, in which the approximate den-
sities are shown for the first replication of the simulation study. Since there is very little
variability in the accuracies, these plots show typical performance. There is a pronounced
tendency for the variational Bayes densities to be too narrow.

Figure 5 provides some insight into why variational Bayes is prone to inaccuracy for
the models in Sections 4–6. It shows pairwise scatterplots of the MCMC output when
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Figure 4: Comparison of variational Bayes and ‘exact’ (MCMC-based) posterior density functions
and probability mass function for several parameters from the simulation study. In each case, the
approximate posterior densities are obtained from the first replication of the simulation study. For
the density function comparisons, variational Bayes approximations are shown as blue curves
and the ‘exact’ densities are shown as orange curves. Analogous colour-coding applies to the
probability mass functions.
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Figure 5: Pairwise scatterplots and sample correlations of MCMC output for µ, log(σ) and
log(a1) when fitting a univariate asymmetric Laplace model to a sample of size n = 100 with
shape parameter τ = 0.95. The MCMC sample size is 5000.

fitting the asymmetric Laplace model to a simulated random sample of size 100. The
shape parameter was set at τ = 0.95. It is apparent from Figure 5 that the posterior
correlation between σ and a1 is quite strong. The variational Bayes approximation with
product restriction (11) ignores this dependence and, consequently, its accuracy suffers.
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9 Application

Variational Bayes for elaborate distributions has enormous potential for use in applica-
tions. The localness property means that the results for the simple models in Sections
4–6 can be used in larger models tailored to the data at hand. In this section we provide
a brief illustration: robust nonparametric regression based on the t-distribution for data
from a respiratory health study. The data, shown in Figure 6, correspond to measure-
ments on one subject during two separate respiratory experiments. The data are from a
study conducted by Professor Russ Hauser at Harvard School of Public Health, Boston,
USA. In each panel, the (xi, yi) predictor/response pairs are:

xi = time in seconds since exposure to air containing particulate matter
yi = log(adjusted time of exhalation).

The adjusted time of exhalation is obtained by subtracting the average time of exhalation
at baseline, prior to exposure to filtered air. Interest centres upon the mean response as a
function of the time, so an appropriate model is

yi = f(xi) + εi

However, the yis contain outlying values due to an occasional cough or sporadic breath
and it is appropriate to model the errors as εi

ind.∼ t(0, σε, ν). A penalized spline model for
f is

f(x) = β0 + β1 x +
K∑

k=1

ukzk(x), uk
ind.∼ N(0, σ2

u)

where {z1(x), . . . , zK(x)} is an appropriate set of spline basis functions (e.g. Wand &
Ormerod, 2008). Staudenmayer, Lake & Wand (2009) considered a non-Bayesian version
of this model and described fitting via an Expectation-Maximization (EM) algorithm.
Here we consider the Bayesian hierarchical model

yi|β,u, σε
ind.∼ t((Xβ + Zu)i, σε, ν), u|σu

ind.∼ N(0, σ2
uI)

β ∼ N(0, σ2
βI), σε ∼ Half-Cauchy(Aε),

σu ∼ Half-Cauchy(Au), ν ∼ Uniform(νmin, νmax).

(20)

where
X = [1 xi]1≤i≤n and Z = [z1(xi) · · · zK(xi)]1≤i≤n.

We used the following product density assumption in our variational Bayes approxima-
tion:

q(β,u, ν, σu, σε) = q(β,u, ν)q(σu, σε).

Up until now, variational Bayes fitting of (20) has been challenging due to the elaborate
form of the response and the non-conjugate prior distributions on the standard deviation
parameters. However, simple extension of the methodology in Sections 5.1 and 6 permits
its fitting. In particular, all calculations are either analytic or involve members of the
F(p, q, r, s, t) andH(p, q, r) integral families.

The hyperparameters are set at σ2
β = 108, Au = Aε = 25, νmin = 0.01 and νmax = 100

with standardized versions of the (xi, yi) data used in the fitting. This imposes non-
informativeness for all parameters (Gelman, 2006). The results were then transformed
back to the original units.

Inspection of Figure 6 shows that the variational Bayes fits and pointwise 95% credible
sets are quite close to those obtained using MCMC. This high accuracy is aligned with
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Figure 6: Comparison of variational Bayes and MCMC fits for robust t-based nonparametric
regression, corresponding to model 20, for data from the respiratory experiment described in the
text.

that exhibited by q∗(µ) for the univariate t-distribution model (upper left-hand panel of
Figure 3). Staudenmayer et al. (2009) admit that EM-based fitting of these data requires
several hours of computing time. The MCMC fits shown in Figure 6 took 3 minutes on
the first author’s laptop computer (Mac OS X; 2.33 GHz processor, 3 GBytes of random
access memory). A simplistic R implementation of the variational Bayes approximation
took about 15 seconds.

Closing Discussion

Variational Bayes provides an alternative to MCMC when speed is at a premium. In this
article we have significantly enriched the class of models which can be handled via the
variational Bayes paradigm. The numerical studies in Section 8 show that, as with sim-
pler distributions, variational Bayes for elaborate distributions entails a loss in accuracy
for the convenient product restrictions used in our illustrations. Yet to be explored are less
stringent product restrictions for elaborate distribution models of the type considered in
Sections 4–6. These promise higher accuracy, but at the expense of higher computational
overhead.

Appendix A: Derivations

The derivations in make use of the following convenient shorthand. By ‘rest’ we mean all
other random variables in the Baysian model at hand. Additive constants with respect to
the function argument are denoted by ‘const.’. The sample mean of x1, . . . , xn is denoted
by x ≡ 1

n

∑n
i=1 xi.

A.1. t Model

Each of the full conditional density functions satisfy:
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log p(µ|rest) = −1
2

[{∑n
i=1(1/ai)

σ2
+

1
σ2

µ

}
µ2 − 2

{∑n
i=1 xi/ai

σ2
+

µµ

σ2
µ

}
µ

]
+ const.,

log p(σ2|rest) = −(A + 1
2 n) log(σ2)−

{
B + 1

2

n∑
i=1

(xi − µ)2

ai

}/
σ2 + const.,

log p(ν|rest) = n{ν
2 log(ν/2)− log Γ(ν/2)}

−(ν/2)
n∑

i=1

{log(ai) + (1/ai)}+ const., νmin < ν < νmax,

and log p(a|rest) =
n∑

i=1

[
−1

2(ν + 1) log(ai)− 1
2(1/ai)

{
ν +

(xi − µ)2

σ2

}]
+ const.

Then

q∗(µ) ∝ exp
{
Eq(σ2,a) log p(µ|rest)

}
= exp

(
−1

2

[{
µq(1/σ2)

n∑
i=1

µq(1/ai) +
1
σ2

µ

}
µ2 − 2

{
µq(1/σ2)

n∑
i=1

xiµq(1/ai) +
µµ

σ2
µ

}
µ

])
.

Standard manipulations lead to q∗(µ) being the N(µq(µ), σ
2
q(µ)) density function, where

σ2
q(µ) =

(
µq(1/σ2)

n∑
i=1

µq(1/ai) +
1
σ2

µ

)−1

and µq(µ) = σ2
q(µ)

(
µq(1/σ2)

n∑
i=1

xiµq(1/ai) +
µµ

σ2
µ

)
.

The derivations for q∗(σ2), q∗(ν) and q∗(a) involve similar and standard manipulations.

A.2. Asymmetric Laplace Model

The full conditionals satisfy:

log p(µ|rest) = −1
2

{
1
σ2

µ

+
τ(1− τ)

∑n
i=1 ai

σ2

}
µ2 +

{
µµ

σ2
µ

+
τ(1− τ

∑n
i=1 aixi)

σ2
+

n(τ − 1
2)

σ

}
µ

+const.,

log p(σ|rest) = −(2A + n + 1) log(σ)− 1
σ2

(
B + 1

2τ(1− τ)
n∑

i=1

ai(xi − µ)2
)

+
1
σ

n(x− µ)(1
2 − τ) + const.

and log p(a|rest) =
n∑

i=1

[
−3

2 log(ai)− 1
2

{
ai

(xi − µ)2τ(1− τ)
σ2

+
1

ai4τ(1− τ)

}]
+ const..

The derivation of q∗(µ) is similar to that given in Section A.2 for the t model. The optimal
q-density for σ satisfies

q∗(σ) ∝ exp[Eq(µ,a){p(σ|rest)}] = exp(C2/σ − C3/σ2), σ > 0,

where

C2 ≡ n(x− µq(µ))(1
2 − τ) and C3 ≡ B + 1

2τ(1− τ)
n∑

i=1

µq(ai){(xi − µq(µ))
2 + σ2

q(µ)}.

Noting that∫ ∞

0
σ−(2A+n+1+k) exp(C2/σ − C3/σ2) = J +(2A + n− k − 1, C2, C3)
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for each of k ∈ {−2,−1, 0} we get the normalizing factor for q∗(σ) being J +(2A + n −
1, C2, C3) and the expressions for µq(1/σ2) and µq(1/σ) appearing in Algorithm 2. Lastly,

q∗(a) ∝
n∏

i=1

a
−3/2
i exp

[
−1

2

{
aiµq(1/σ2)(xi − µ)2τ(1− τ) +

1
ai4τ(1− τ)

}]
, ai > 0.

After a little algebra, it becomes clear that q∗(a) is a product of Inverse Gaussian densities
q∗(ai) with means

µq(ai) =
[
4τ2(1− τ)2µq(1/σ2){(xi − µq(µ))

2 + σ2
q(µ)}

]−1/2
, 1 ≤ i ≤ n,

and common precision parameter γq(ai) = {4τ(1 − τ)}−1. The expression for µq(1/ai) in
Algorithm 2 follows from the expectation results (1).

A.3. Skew Normal Model

The full conditionals satisfy

log p(µ|rest) = −1
2

{
1
σ2

µ

+
n(1 + λ2)

σ2

}
µ2 +

{
µµ

σ2
µ

+
n(1 + λ2)x

σ2
−

λ
√

1 + λ2
∑n

i=1 |ai|
σ

}
µ + const.,

log p(σ|rest) = −(2A + n + 1) log(σ)− 1
σ2

(
B + 1

2(1 + λ2)
n∑

i=1

(xi − µ)2
)

+
1
σ

λ
√

1 + λ2

n∑
i=1

|ai|(xi − µ) + const.,

log p(λ|rest) = n
2 log(1 + λ2)− 1

2

[
1
σ2

n∑
i=1

(xi − µ)2 +
n∑

i=1

a2
i +

1
σ2

λ

]
λ2

+
λ
√

1 + λ2

σ

n∑
i=1

|ai|(xi − µ) +
µλλ

σ2
λ

+ const.

and log p(a|rest) =
n∑

i=1

{
−(1 + λ2)a2

i

2
+

λ
√

1 + λ2(xi − µ)|ai|
σ

}
+ const..

The derivation for q∗(µ) is similar to that given for each of the previous models. The
derivation for q∗(σ) is similar to that given for the Asymmetric Laplace model.

To obtain q∗(λ) note that

Eq{log p(λ|rest)} = n
2 log(1 + λ2)− 1

2

[
µq(1/σ2)

{
n∑

i=1

(xi − µq(µ))
2 + nσ2

q(µ)

}
+

n∑
i=1

µq(a2
i ) +

1
σ2

λ

]
λ2

+

[
µq(1/σ)

n∑
i=1

µq(|ai|)(xi − µq(µ))

]
λ
√

1 + λ2 +
µλλ

σ2
λ

+ const..

Hence

q∗(λ) ∝ (1 + λ2)n/2 exp
{
−C6 λ2 + C7λ

√
1 + λ2 + (µλ/σ2

λ)λ
}

, −∞ < λ <∞,

where

C6 ≡ µq(1/σ2)

{
n∑

i=1

(xi − µq(µ))
2 + nσ2

q(µ)

}
+

n∑
i=1

µq(a2
i )+

1
σ2

λ

and C7 ≡ µq(1/σ)

n∑
i=1

µq(|ai|)(xi−µq(µ)).
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The normalizing factor is∫ ∞

−∞
(1+λ2)n/2 exp

{
−C6 λ2 + C7λ

√
1 + λ2 + (µλ/σ2

λ)λ
}

dλ = G(0, 1
2n, 1

2C6, C7, (µλ/σ2
λ)).

The expressions for µq(λ2) and µq(λ
√

1+λ2) involve similar manipulations. Finally,

Eq(µ,σ,λ){log p(a|rest)} =
n∑

i=1

{
−1

2(1 + µq(λ2))a
2
i + µq(1/σ)µq(λ

√
1+λ2)(xi − µq(µ))|ai|

}
+ const..

Hence,

q∗(a) ∝
n∏

i=1

exp
{
−1

2(1 + µq(λ2))a
2
i + Ci8|ai|

}
, −∞ < ai <∞, 1 ≤ i ≤ n,

where
Ci8 ≡ µq(1/σ)µq(λ

√
1+λ2)(xi − µq(µ)).

The normalizing factors and moment expressions follow from involve standard manipu-
lations involving the normal density and cumulative distribution functions.

A.4. Finite Normal Mixture Model

The full conditionals satisfy:

log p(µ|rest) = −1
2

[{
1
σ2

K∑
k=1

a•k
s2
k

+
1
σ2

µ

}
µ2 − 2

{
1
σ2

n∑
i=1

K∑
k=1

aikxi

s2
k

− 1
σ

K∑
k=1

a•k mk

s2
k

+
µµ

σ2
µ

}
µ

]
,

+const.

log p(σ|rest) = − (2A + n + 1) log(σ)− 1
σ2

{
B + 1

2

n∑
i=1

K∑
k=1

aik(xi − µ)2

s2
k

}

+
1
σ

n∑
i=1

K∑
k=1

aikmk(xi − µ)
s2
k

+ const.

and log p(a|rest) =
n∑

i=1

K∑
k=1

aik

{
log(wk)− 1

2 log(s2
k)−

(xi − µ− σ mk)2

2σ2s2
k

}
+ const..

where a•k ≡
∑n

i=1 aik. The derivation for q∗(µ) is similar to that given for each of the
previous models. The derivation for q∗(σ) is similar to that given for the Asymmetric
Laplace and Skew Normal models. To obtain q∗(a), first note that

Eq(µ,σ){log p(a|rest)} =
n∑

i=1

K∑
k=1

aikνik + const.

where νik is given in Algorithm 4. It follows that q∗(a) ∝
∏n

i=1

∏K
k=1{exp(νik)}aik . The

requirement that
∑K

k=1 µq(aik) = 1 for all 1 ≤ i ≤ n then leads to

q∗(a) =
n∏

i=1

K∏
k=1

{µq(aik)}aik where µq(aik) = exp(νik)
/ K∑

k=1

exp(νik).
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Appendix B: Numerical Integration

Many of the non-analytic integrals that arise in variational Bayes for elaborate distribu-
tions are of the form

I(θ) =
∫ b

a
exp{h(x;θ)} dx

where h′′(x;θ) < 0 for all a < x < b and θ. In other words, the integrand is log-concave
over the domain for all values of its parameters which, as explained in Appendix B.1.,
aids numerical integration strategies. This is the case for the integral families H(p, q, r),
J (p, q, r, s) and J +(p, q, r) defined in Section 2.1. The family F(p, q, r, s, t) does not have
this property, so needs to be treated more carefully. We will give the details for log-
concave integrands.

The value of I(θ) can be arbitrarily small or large for various values of θ. Hence, it is
prudent to work with log{I(θ)} instead.

B.1. Transforming the integrand to a ‘nice’ scale

In this section, we suppress the dependence of I and h on the parameters θ. We transform
the integrand to a nice scale by borrowing from the ideas of Laplace approximation and
Gauss-Hermite quadrature (e.g. Liu & Pierce, 1994). The log-concavity property means
that the equation

h′(x) = 0

has a unique solution. Using the ideas of Laplace approximation, we use the substitution

u =
x− µ0

σ0

√
2

where
µ0 ≡ the solution to h′(x) = 0 and σ0 ≡ 1/

√
−h′′(µ0).

On substitution into the log I expression we get

log I = h(µ0) + log(σ0

√
2) + log(I0)

where

I0 ≡
∫ (b−µ0)/(σ0

√
2)

(a−µ0)/(σ0

√
2)

exp{h(µ0 + u σ0

√
2)− h(µ0)} du.

B.2. Quadrature for I0

We have now reduced the problem to one involving numerical integration for I0. The
integrand for I0 has the properties of being unimodal, bounded above by unity and has
support ‘similar’ to the standard normal density. For the families G(p, q, r, s, t),H(p, q, r),
J (p, q, r, s) and J +(p, q, r) the integrands have exponentially decaying tails. Therefore,
even simple quadrature such as the trapezoidal or Simpson’s rules can be very accurate
provided we (a) determine the effective support of the integrand; and (b) use a high
number of quadrature points. For (a) a reasonable way to do this is to sequentially enlarge
the support (L,U) until

max{exp{h(µ0 + Lσ0

√
2)− h(µ0)}, exp{h(µ0 + Uσ0

√
2)− h(µ0)}} < ε

for some ‘small’ ε such as 10−15. For (b) we use doubling of the number of quadrature
points until the relative error is below some nominal threshold such as 10−5.
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Appendix C: Finite Normal Mixture Approximation

In this appendix we describe our strategy for finite normal mixture approximation of
Generalized Extreme Value density functions, as required for Algorithm 5.

Recall that the GEV(0, 1, ξ) family of density functions is given by

f(x; ξ) =
{

(1 + ξ x)−1/ξ−1e−(1+ξ x)−1/ξ
, 1 + ξ x > 0, ξ 6= 0

exp(−x− e−x), ξ = 0.

The support is [−1/ξ,∞) for ξ > 0, R for ξ = 0 and (−∞,−1/ξ] for ξ < 0. For ξ = −1
the density function has a jump discontinuity at x = 1 and for ξ < −1 it has a pole at x =
−1/ξ. In the present article we have restricted attention to −1 ≤ ξ ≤ 1. In applications,
this sub-family is usually found to be adequate for modelling sample extrema.

Let

fNM(x;wξ,mξ, sξ) ≡
K∑

k=1

wk,ξ

sk,ξ
φ

(
x−mk,ξ

sk,ξ

)
be a normal mixture approximation to f(x; ξ). The notation is the same as that used
in Table 1, with the addition of a ξ subscript. After fixing K, we considered choice of
(wξ,mξ, sξ) by minimizing both L1 distance:

IAE(wξ,mξ, sξ; ξ) ≡
∫ ∞

−∞
|fNM(x;wξ,mξ, sξ)− f(x; ξ)| dx

and χ2 distance

χ2(wξ,mξ, sξ; ξ) ≡
∫

S
{fNM(x;wξ,mξ, sξ)− f(x; ξ)}2/fNM(x;wξ,mξ, sξ) dx.

where S is the effective support of fNM(·;wξ,mξ, sξ). The Nelder-Mead simplex al-
gorithm (Nelder & Mead, 1965) was used for optimization via the MATLAB function
fminsearch. The entries of wξ were constrained to be at least 10−6. The component
means and variances were constrained to compact intervals. The algorithm was termi-
nated after convergence to a local minimum.

The integrals were approximated using the trapezoidal rule on an adaptive grid. For
ξ < 0 we used 540 grid points to the left of the mode at x = {(1+ξ)−ξ−1}/ξ and 540 grid
points between the mode at the upper end of the support at x = −1/ξ. An additional
120 grid points were used in the interval [−1/ξ,−1/ξ + 4] since fNM(·;wξ,mξ, sξ) may
have a small amount of probability mass above −1/ξ. For ξ ≥ 0 the grid point strategy
required more care due to the heavy right-hand tail. An equi-spaced grid between the
10−8 and 1−10−6 quantiles of fNM(·;wξ,mξ, sξ), but right-truncated at 100000, was used.
The grid sizes increased linearly from 1100 for ξ = 0 to 7500 for ξ = 0.3 and was fixed at
7500 for 0.3 < ξ ≤ 1. Approximating mixtures were determined for ξ ∈ [−1, 1] over an
equally-spaced grid of size 401.

Figure 7 shows some indications of the accuracy of K = 24 mixture normal mix-
ture approximations to the f(·; ξ) density functions. The top panel shows the accuracy
of the L1-based approximation. Since the L1 distance between two density functions is
a scale-independent number between 0 and 2, the vertical axis is immediately meang-
ingful. The fact that the L1 distance is uniformly below 0.01 implies that the accuracy
measure defined by (19) always exceeds 99.5%. The second panel shows accuracy of
χ2-based approximation. The bottom panel compares the two types of approximation
in terms of Kullback-Leibler distance and shows that the χ2-based approximation is al-
most uniformly better. Further error analyses reveal that chi-squared distance leads to
better accuracy in the tails. This is particularly important for ξ > 0 since the upper tail
of f(·; ξ) is heavy compared with those of normal densities. Hence, we recommend the
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Figure 7: Accuracy of both L1-based and χ2-based approximation to GEV(0, 1, ξ) density func-
tions using K = 24 normal mixtures. The top panel plots L1 distance versus −1 ≤ ξ ≤ 1 for
L1-based approximation. The second panel shows an analogous plot for χ2 distance. The bottom
panel plots Kullback-Leibler distance versus −1 ≤ ξ ≤ 1 for both types of approximation.
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chi-squared based normal mixture approximations and these are used in Section 4.5 and
the remainder of this appendix.

A text file containing the fitted normal parameters over the fine grid of ξ values is
available as web-supplement to this article.
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