UNIVERSAL GRADED SPECHT MODULES FOR
CYCLOTOMIC HECKE ALGEBRAS
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ABSTRACT. The graded Specht module S* for a cyclotomic Hecke al-
gebra comes with a distinguished generating vector z* € S, which can
be thought of as a “highest weight vector of weight A\”. This paper
describes the defining relations for the Specht module S* as a graded
module generated by z*. The first three relations say precisely what it
means for z* to be a highest weight vector of weight A. The remaining
relations are homogeneous analogues of the classical Garnir relations.
The homogeneous Garnir relations, which are simpler than the classical
ones, are associated with a remarkable family of homogeneous operators
on the Specht module which satisfy the braid relations.

1. INTRODUCTION

Let Sy be the symmetric group on d letters. A central role in represen-
tation theory of Sy is played by certain ZSz;-modules S* labelled by the
partitions A of d. These modules are called Specht modules and their con-
struction goes back to [26}/29,[30]. Specht modules also arise naturally as
cell modules in the cellular structure on the group algebra of S; constructed
by Murphy in [23], see [7,[14,21] for further development of these ideas
which will be important in this paper.

It was shown recently by Brundan and the first author [3] that over an
arbitrary field F', the group algebra F'Sy is explicitly isomorphic to a certain
cyclotomic Khovanov-Lauda-Rouquier (KLR) algebra Rfj\. The algebra Ré\
is Z-graded, and this grading can be transferred to F'S; using the Brundan-
Kleshchev isomorphism. Moreover, in [6], the Specht modules over F' were
also explicitly graded, which played a crucial role in the graded categorifica-
tion theorem of [4] generalizing the Ariki’s categorification theorem [1]. We
refer the reader to [19] for description of these ideas and further references.

Hu and the second author [11] have completed the picture by constructing
a graded cellular structure on the group algebra of the symmetric group,
so that the graded Specht modules of [6] arise as the corresponding cell
modules.

In all constructions above, the Specht module S* comes together with
a remarkable generating vector z* € S*, which can be thought of, infor-
mally, as a “highest weight vector of weight A\”. The goal of this paper
is to describe the defining relations of the Specht module S* over Z as a
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graded module over the KLR algebra Rf} generated by z*. This idea of
presenting Specht modules by generators and relations is responsible for our
terminology universal Specht modules.

Our homogeneous relations for S* are given in Definition The first
three relations say precisely what we mean by z* being a highest weight
vector of weight A\. The fourth and final relation is a remarkable family of
homogeneous Garnir relations, which we consider to be the key innovation
of this paper.

We point out that the classical Garnir relations, which go back to [8,30],
are very far from being homogeneous with respect to the gradings under
consideration. The classical Garnir relations have the form of an alternating
sum of elements of the Specht module corresponding to certain tableaux
(being equated to zero).

Even though substantial initial work is required to define the homogeneous
Garnir relations, they are actually much simpler than the classical ones. For
example, if the underlying Lie type of the KLR algebra is A, which un-
der the isomorphism of [3| corresponds to the case where the field F' has
characteristic 0, then the homogeneous Garnir relation has the form of just
one element corresponding to a special Garnir tableaux (being equated to

zero). In the case where the Lie type is Aéljl, which under the isomorphism
of 3] corresponds to the field F' having characteristic p > 0, the homoge-
neous Garnir relation does look like a sum, but it has roughly p times as
few summands as the classical Garnir relation. For the case of the so-called
calibrated representations of the affine Hecke algebra in characteristic zero
this phenomenon has been known, see for example |24} (5.4)].

Even though so far we have been talking only about the symmetric groups,
the story of Specht modules generalizes to all cyclotomic Hecke algebras,
both degenerate and non-degenerate. This is the generality which we work
with throughout this paper.

In section [2| we collect various combinatorial facts and notation. The key
notion here is that of the degree of a standard tableau which was first defined
in [6]. In section [3| we recall the definition of the affine and cyclotomic
KLR algebras and define “permutation modules” for these algebras using
induction from one-dimensional modules of the parabolic subalgebras in the
affine setting.

In the crucial section [d] we define certain elements which we call block
intertwiners. These intertwiners will later be fed into the definition of the
homogeneous Garnir relations. They permute blocks (or bricks) of size e,
where e can be thought of as the analogue of the characteristic of the ground
field when working with Specht modules for the symmetric groups, and this
part of the story is trivial when e = 0. The block intertwiners 7, are defined
in terms of products of the large number of the KLR generators. The KLR
generators do not satisfy Coxeter relations, so we find it truly remarkable
that the brick intertwiners 7. do! See the key Theorem

In section |5 we define (row) Garnir relations and universal (row) Specht
modules S for the algebra Ré\ by generators and relations, see Definition
Our next goal is to prove that if we identify the cyclotomic KLR algebra R}
with the cyclotomic Hecke algebra H 9 via the Brundan-Kleshchev isomor-
phism, which is only valid over a field, then the universal Specht modules
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are identified with the usual graded Specht modules of [6]. This is done in
section [6

Section [7] develops the parallel story for the column Specht modules S),
which turn out to be dual to the row Specht modules S*. Accidentally, what
we call a column Specht module Sy is what was called a Specht module in
James’ book [13].

The final section [§| contains two applications. Omne is the description
of Specht modules for higher level cyclotomic Hecke algebras as modules
induced from Specht modules of level 1, see Theorem In fact, these
induced modules were sometimes taken as a definition of Specht modules
for higher levels, which was problematic because the connection with the
Specht modules as cell modules had not been established in full generality
before.

Our second application is a generalization of the famous very useful result
from James’ book [13] Theorem 8.15] for symmetric groups:

(8M)* = SV @ sgn.

The analogue of this is proved for arbitrary cyclotomic Hecke algebras in
the graded setting, see Theorem

2. COMBINATORICS

2.1. Lie theoretic notation. Let e € {0,2,3,4,...} and [ :=Z/eZ. Let T’
be the quiver with vertex set I, and a directed edge from ¢ to jif j =i —1
(the orientation differs from the one in [311]). Thus I is a quiver of type Ay
if e=0 or AS_)I if e > 0. The corresponding Cartan matriz (a; ;)i jer is
defined by

2 ifi=j,
IR EANESY
TN =1 ifi—jori+ g, (2.1)
2 ifie .
(The case a; j = —2 only occurs if e = 2.)

Following [15], let (b, IL, IT") be a realization of the Cartan matrix (a;;)i jer,
so we have the simple roots {«; | i € I}, the fundamental dominant weights
{A; | i € I}, and the normalized invariant form (-, -) such that

(Ozi,Oéj) = Qjj, (Ai,Oéj) = (51']' (’L,j € I)
If e > 0, the null-root is
d:=agt+ a1+ -+ Qe_1. (2.2)

Let Py be the set of dominant integral weights, and Q4 := @,.; Z>oa; the
positive part of the root lattice. For av € Q4 let ht(a) be the height of «.
That is, ht(e) is the sum of the coefficients when « is expanded in terms of
the o;’s.

Let &4 be the symmetric group on d letters and let s, = (r,r + 1), for
1 < r < d, be the simple transpositions of &;. Then &4 acts from the left
on the set I¢ by place permutations. If ¢ = (iy,...,iq) € I? then its weight
is |4| := ay, + -+ + a;, € Q4. Then the Gy-orbits on I¢ are the sets

I*={iel’|a=|i}
parametrized by all a € Q4 of height d.
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Throughout the paper, we fix a positive integer [, referred to as the level,
and an ordered [-tuple

k= (k1,..., k) el (2.3)
Define the dominant weight A (of level ) as follows:
A=AK) =Ny, +---+ Ay, € Py (2.4)
Finally, for a € Q, define the defect of v (relative to A) to be
1
def(a) = (A, o) — i(a,a). (2.5)

2.2. Partitions. Recall that in we have fixed a level [ and an [-tuple
k= (k1,...,k;). An l-multipartition of d is an ordered I-tuple of partitions
po= (u, ..., uW) such that Zlmzl ™| = d. We call u(™ the mth
component of p. Let &% be the set of all l-multipartitions of d and put
P = g0 P Of course, 2% only depends on I, and not on &, but
as soon as we consider residues of nodes of multipartitions, the dependence
on k becomes crucial.
The Young diagram of the multipartition = (), ..., u®) € 2" is
{(a,b,m) € Zog x Zng x {1,..., 1} | 1 <b < p{™}.

The elements of this set are the nodes of u. More generally, a node is any ele-
ment of ZsgxZ=ox{1,...,1}. Usually, we identify the multipartition p with

its Young diagram and visualize it as a column vector of Young diagrams.
For example, ((3,1),0, (4,2)) is the Young diagram

=

To each node A = (a,b,m) we associate its residue, which is the following
element of I = 7Z/eZ:

resA =res" A=k, + (b—a) (mod e). (2.6)
An i-node is a node of residue i. Define the residue content of u to be
cont(p) := Z Ores A € Q4. (2.7)
Aep

Denote
P = (e P cont(p) =a}  (a€Qy).
A node A € p is a removable node (of ) if u\ {A} is (the diagram of)
a multipartition. A node B ¢ u is an addable node (for p) if pU{B} is a
multipartition. We use the notation

pa=p\{A},  pP=pu{B}
Let p,v € &2f. Then p dominates v, and we write > v, if

m—1 c m—1 c
SO ™ = DT+ Y™
a=1 b=1 a=1 b=1
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forall 1 <m <l and ¢ > 1. In other words, p is obtained from v by moving
nodes up in the diagram.
We define
K = (=ky, ..., —k1). (2.8)

Now, let = (), ..., uD) € 2% The conjugate of y1 is the multipartition
f =Wy e 2

where each p(™" is the partition conjugate to x(™ in the usual sense, that
is, p(™)" is obtained by swapping the rows and columns of (™.

2.3. Tableaux. Let u = (uV,..., u®) € 25, A p-tableauT = (TV, ..., TO)
is obtained from the diagram of p by inserting the integers 1,...,d into the
nodes, allowing no repeats. For each m = 1,...,1, T(M) is a ,u(m)—tableau,
called the mth component of T. If the node A = (a,b, m) € p is occupied by
the integer r in T then we write r = T(a, b, m) and set resy(r) = res A. The
residue sequence of T is

i(T) = 3%(T) = (i1,...,iq) € 1% (2.9)

where i, = resy(r) is the residue of the node occupied by r in T (1 < r < d).

A p-tableau T is row-strict (resp. column-strict) if its entries increase from
left to right (resp. from top to bottom) along the rows (resp. columns) of
each component of T. A pu-tableau T is standard if it is row- and column-
strict. Let St(u) be the set of standard p-tableaux.

Let T be a u-tableau and suppose that 1 < r # s < d and that r =
T(a1,b1,m1) and that s = T(ag,be,m2). We write r 71 s if m; = ma,
a1 > ao, and by < bo; informally, » and s are in the same component
and s is strictly to the north-east of » within that component. The symbols
—1, \(T, 1 have the similar obvious meanings. For example, r |1t s means
that » and s are located in the same column of the same component of T
and that s is in a strictly lower row of T than r.

Let € &% i € I, A be a removable i-node and B be an addable i-node
of u. We set

- addable i-nodes of |, fremovable i-nodes of u
da(n) = #{ strictly below A } #{ strictly below A }’ (210)

and
B/ N addable i-nodes of |, fremovable i-nodes of u
d™(p) = #{ strictly above B } #{ strictly above B } (211)

Given € &% and T € St(u), the degree of T is defined in [6} section 3.5]
inductively as follows. If d = 0, then T is the empty tableau (), and we
set deg(T) := 0. Otherwise, let A be the node occupied by d in T. Let
T<q € St(pa) be the tableau obtained by removing this node and set

deg(T) := da(p) + deg(T<a)- (2.12)
Similarly, define a dual notion of codegree by
codeg() := 0, codeg(T) := d”(ju4) + codeg(Tq). (2.13)

The definition of the degree and codegree of a tableau depend on the residues
and so, ultimately, they depend on s by (2.6). We write deg”(T) and
codeg”(T) when we wish to emphasize this dependence.
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By [6 Lemma 3.12], using codegree instead of degree for a tableau leads
only to a negation and “global shift” by the defect: more precisely, we have

deg(T) 4 codeg(T) = def(«) (T € St(p), u € 225). (2.14)

The group &, acts on the set of u-tableaux from the left by acting on
the entries of the tableaux. Let T* be the p-tableau in which the num-
bers 1,2,...,d appear in order from left to right along the successive rows,
working from top row to bottom row. Let T, be the p-tableau in which
the numbers 1,2,...,d appear in from top to bottom along the successive
columns, working from the leftmost column to the rightmost column within
a component and moving from the /th component up to the first component.

For example, if = ((3,1),(2,2)) then

1[2]3] 5[7]8]
4 16
™= __ and T, =
5|6 113
718 2[4
Set
#:=4(T") and 4, :=4(T,). (2.15)
For each p-tableau T define permutations w? and wr in &4 by the equations
w'TH =T = wrTy. (2.16)
If T = (TW,...,7®) € St(u) then the conjugate of T is the standard
p/-tableau T = (T®', ... TM"), where T(™" is the (™) -tableau obtained

by swapping the rows and columns of T for 1 < m < I. For example,
(TH) =Tu.

2.4. Bruhat order. Let ¢ be the length function on &; with respect to
the Coxeter generators si, So,...,S4-1. Let < be the Bruhat order on &y
(so that 1 < w for all w € &4). Define a related partial order on St(u) as
follows: if S, T € St(u) then

ST if and only if ws < wr. (2.17)
If ST then we also write T>S. If S<IT and S # T we write S<T and T S.
Observe that if T € St(u) then T, IT JIT#. There is a similar connection

between the relation w® < w! and the corresponding tableaux. To describe
this, recall conjugate multipartitions and tableaux.

Lemma 2.18. Suppose that p € 24 and that S, T € St(u). Then:
(i) wr = wT;
(ii) TS if and only if wT > wS;
(iil) wre = (wT) " wr and W = wilw? with H(wre) = (wT) + L(wr)
and L(w™) = L(wr) + L(wT).

Proof. (i) Observe that (T#)' = T/, (T,)' = T and St(u) = {T| T' € St(1/) }.

Now, conjugating the equation T = wTT# shows that wp = wT, for T € St(u).
(ii) If U € St(p) and 1 < k < d, let U<y be the subtableau of T containing

the entries 1,2...,k. Then it follows from |21, Theorem 3.8] that S>T if



UNIVERSAL SPECHT MODULES 7

and only if the shape of S<; dominates the Shape of T<k for all 1<k <d.
So T<S if and only if 8’ <IT'. Therefore, by part (i) and (2.17), we get

T§S<:>S SIT <:>ws/§wT/<:>w §w.

(iii) Since wrT, = T = wTT#, we have wruT, = (w’)twrT, which implies
that wye = (w")lwr. Since T, IT < TH we obtain £(wrs) = L(w") + (wr)
using the description of the Bruhat order given in (ii). The remaining claims
are proved similarly. O

We will also need the following result.

Lemma 2.19. [6, Lemma 3.7| Suppose that p € 225, T € St(u), and
1 <r<d suchthatr lrr+1 orr —pr+1. Suppose that S € St(u) and
S s,.T. Then S>> T.

3. KLR ALGEBRAS AND PERMUTATION MODULES

Throughout this paper a graded algebra will mean a Z-graded algebra and
a graded module will be a Z-graded module. If A is a graded algebra then
A-Mod is the category of finitely generated graded (left) A-modules with
degree preserving maps. We use the standard notation of graded represen-
tation theory. In particular, if M = ;c, My then v € My is homogeneous
of degree d = degv. Further, if n € Z then M (n) is the graded module
obtained by shifting the grading on M up by n so that M(n)y = My_,.

3.1. KLR algebras. Let O be a commutative ring with identity and a €
Q+. Recall from [16,17,25] that the (affine) Khovanov-Lauda-Rouquier
algebra, or KLR algebra, R, = R, (0O), is defined to be the unital O-algebra
generated by the elements

{e(d) |4 € I°Y U{yr, . yat U{n,. .. a1}, (3.1)

subject only to the following relations:

e(i)e(f) = dije(4); >icrae(t) =1 (32)
yre(i) - e(i>yr§ wr€<i) - e(sri)wﬁ (3'3)
YrlYs = YslYr; (3.4)
UrYs = Ysr if s#r,r+1; (3.5)
Urhs = sty if |r —s| > 1; (3.6)
7pr:l/r—i-l@(i) = (yrwr + 5ir,ir+1>e(’i> (3'7)
Yr+19re(t) = (Vryr + iy i,y )e(2) (3-8)
0 if 4p = 4pa1,
e(1) if Gpgq # dpy i £ 1,
yre(i) = (yr1— yr> (4) if i = drs1, (3.9)
(yr yr+1 ( ) if Iy <— iT+17
L (Yr+1 — Yr) (Yr — yry1)e(d) if i, 2 dpyq;
(¢r+1¢r¢r+1 + 1)6(7:) if lpt2 = Iy — ip41,
(Yry19rPri1 — 1)e(2) if pgo = ir < tp41,
¢r¢r+1¢r€(i) = (djrﬁ-lw?‘qwbr—&-l — 2Yr11 (310)
+Yr + yr+2)e(i) if ipyo =ip 2 ipqa,
Urp1Urri1e(2) otherwise.
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Recall from (2.4)) that we have fixed A = A(k) € P;. The corresponding
cyclotomic KLR algebra Ré\ = RQ(O) is generated by the same elements

(3.1]) subject only to the relations (3.2)—(3.10|) and the additional cyclotomic

relations (hos)
(' T e(l) =0 (i: (’il,...,id) EIOC). (3.11)
Thus R2 is the quotient of R, by the relations .

The algebras R, and R2 have Z-gradings determined by setting e() to
be of degree 0, y, of degree 2, and v,e(2) of degree —a;, ;,., for all r and
eI

Note that R.(Z) ®z O = R,(0) and RX(Z) @z O = RA(O). In this
paper O will usually be Z or a field F.

3.2. Graded duality. Let o € Q4+ be of height d. It is easy to check
using generators and relations that there exists a homogeneous algebra anti-
involution

T: Ry — Ra, (i) —e(d), yr—yr, s s (3.12)

forallze I% 1<r <d,and 1 < s < d. Note that 7 factors through to an
anti-involution of the cyclotomic quotient RQ, which we also denote by 7.

If M = @4cz Mg is a finite rank graded R,-module, then the graded dual
M® is the graded O-module such that (M®),; := Homep(M_g4, O), for all
d € Z, and where the R,-action is given by (zf)(m) = f(r(x)m), for all
feM® meMxecR,.

3.3. The sign map. For i = (i1,...,iq) € I, set
— i = (=i, .., —ig). (3.13)
If =) ;crai; € Qy, then define
o = Zaia_i.
1€l
We clearly have o € Q4 and ht(a’) = ht(«). Moreover, ¢ € I if and only

if —i € I*. Now, inspecting the relations, there is a unique homogeneous
algebra isomorphism

sgn: Ry — Ry, e(?) —e(—1), Yrr—= —Ypr, s> —1s (3.14)

foralli e I*, 1 <r <d,and 1 < s < d, where d = ht(«).

Recall k = (k1,...,k) from (2.3) and &' = (—ky,...,—K1) from (2.8].
Then, as in (2.4), " determines the dominant weight

N=AK)=A_ +  +A_ € P

Equivalently, if A =37, liA;, then A" = 3", LA,

The algebra RQ is the quotient of R, by the cyclotomic relations (3.11]).
Applying the involution sgn to (3.11)) we obtain

O _ sgn(y:(LAgChl)e(z)) — iyiA,&zl)e(_i) — :l:y:(LA 7(171'1)6(_1:)’

where the right hand side is, up to sign, the cyclotomic relation for RQ/I
Hence sgn factors through to a graded algebra isomorphism

~ /
sgn : Ré\ — RQ,.
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The isomorphism sgn induces equivalences
Re-Mod =5 Ro-Mod  and  RY-Mod —» RA-Mod

of the corresponding categories of graded modules. These equivalences send
the Ry-module M to the R,-module M3®&" where M®8" = M as a graded
vector space and where the R,-action on M8 is given by a-m = sgn(a)m,
for a € R, and m € M38",

3.4. Basis Theorem. Suppose that o € Q- is of height d. For the rest of
this paper we fix a preferred reduced decomposition w = s;, ...s,, for each
element w € &4, where m > 0 is as small as possibleand 1 < ry,...,r, < d.
Define the elements

Y =1p, ..Uy, € Ra (W€ Sy).

In general, v, depends on the choice of a preferred reduced decomposition
of w, but:

Proposition 3.15. Suppose that 1 € 1%, and

W= Sty +--Styy = Sry -+ Srp,

are two reduced decompositions of an element w € &4. Then in Ry, we have

(U wt'me(i) =t ... wrme(i) + X,
where X is a linear combination of elements of the form ., f(y)e(i) such
that uw < w, f(y) is a polynomial in y1,...,yq, and

deg(Puf(y)e(i)) = deg(vr, .. Y, e()) = deg(r, - - - Y1, e(2))-

Proof. This is proved in [6, Proposition 2.5] for corresponding elements of
the cyclotomic KLR algebra R2. As the argument in [6] does not use the
relation (3.11)) the result holds in R,. O

Suppose now that p € &% and that T is a p-tableau. In (2.16) we defined
the permutations wr, w? € &4. Define

YT =1 and Y1 i= Py, (3.16)
These elements will be used to produce bases of various modules below.
By , there is one important case where the elements v, are inde-
pendent of the choice of preferred reduced decomposition of w. An element
w € &y is fully commutative if one can go from any reduced decomposition
of w to any other reduced decomposition of w using only the commuting
braid relations; that is, the relations of the form s,s; = s;s,., for |r —¢| > 1.
We refer the reader to [27] for more details on fully commutative elements.
We record the following easy result for future reference:

Lemma 3.17. Suppose that 1 < s < k and let Z be the set of the minimal
length left coset representatives of the parabolic subgroup S5 x Sp_g in the
symmetric group &y. Then every element of & is fully commutative.

In general we have the following important result:
Theorem 3.18. [16, Theorem 2.5, [25, Theorem 3.7] Let « € Q. Then
{wy™ ..y e(d) | w e &g, my,...,mqg € Lo, 1€ I}
is an O-basis of R,.
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3.5. Induction and restriction for affine KLR algebras. Given o, 3 €
Q4+, we set R, 3 := Ry ® Rg, viewed as an algebra in the usual way. Let
MXN be the outer tensor product of the R,-module M and the Rg-module
N. There is an obvious injective homogeneous (non-unital) algebra homo-
morphism R, 3 — Ra4p mapping e() ® e(j) to e(ij), where i3 is the con-
catenation of the two sequences. The image of the identity element of R, g
under this map is ey g := Zz’ela, jers e(ij). Let Indzjf and Resi}ﬂ be the
corresponding induction and restriction functors between the corresponding
categories of graded modules:

IdS Y = Ratpea,s®r, 47 : Ra,s-Mod = Rayg-Mod,
Resggﬁ = €a,pRat®R, 57 Ratp-Mod — R, g-Mod.

These have obvious generalizations to n > 2 factors:

Indgif_:'ﬁﬁ" : Rg,....3,-Mod — Rg, ...+ 5,-Mod,

Resj! %" Ry 1. p5,-Mod — Rp, . g,-Mod.
The functor Resgi:'gf " is left multiplication by the idempotent eg, . g3,,
so it is exact and sends finite dimensional modules to finite dimensional
modules. The functor Ind? ™7 is left adjoint to Res t1hn, Moreover,

617"’7577« 617"'75”
Rg, y..48.€8,..3, is a free graded right Rg, . g,-module of finite rank, so

Indﬁi+"'ﬁ+5 " sends finite dimensional graded modules to finite dimensional

graded modules. Finally, if M, € Rg,-Mod, for a = 1,...,n, we define
Mo« oM, :=Ind] "M K- ®M,. (3.19)

3.6. Permutation Modules M(5). Fori € I, and N € Z>, let s(i,N) €
IV be the tuple (ji,...,7n5) with 5, =i +7 — 1 (mod e). In other words,
s(i, N) is the segment of length N starting at ¢. Similarly, if N € Z( define
s(i, N) € I™N be the tuple (j1,...,j_n) with j. =i —7+1 (mod e). For
example s(0,e) = (0,1,...,e—1) and s(0,—€) = (0,—1,...,1 —e).

Suppose that s := s(i, N) is a segment and let @ = |s| € Q4. Define
the corresponding segment module M(s) := O - m(s) to be the graded R,-
module which is the free O-module of rank one on the generator m(s) of
degree 0 with action

e(iym(s) = 6;sm(s), wym(s)=0 and ym(s) =0

for all admissible ¢, r and ¢. Equivalently, M(s) = R,/K(s), where K(s) is
the left ideal of R, generated by the elements e(%) — d; s, ¥, and y, for all
admissible ¢, r and ¢.

Let § = (s(1),...,s(n)) be an ordered tuple of segments. Set o := [s(r)],
and let A\, := ht(«,) be the length of the segment s(r), for r =1,...,n. Also
set « = a3+ -+a, and d := ht(a). Note that (A\1,...,\,) is a composition
of d. Define the permutation module

M(8) = M(s(1),...,8(n)) := M(s(1))o---o M(s(n)).
This is the graded R,-module generated by the vector
m(s) =1@m(s(1)) ®---®m(s(n)) (3.20)
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in Indg,  ,, M(s(1))X---X M(s(n)). Let &z be the parabolic subgroup
Gy, X -+ x 6, of 4. Define

§(8) == s(1)...s(n) € I° (3.21)

where the product on the right hand side is the concatenation. Now let
K (8) to be the left ideal of R, generated by

{e(?) = 6 j@),ym e |1 € 1%, 1 <r <d, 1 <t <dsuch that s; € Gg}.
Then we have:
M(8) = R,/K(8). (3.22)
Under this isomorphism m(5) is identified with 1+ K (8). With the notation
as above, we have as an immediate consequence of the Basis Theorem [3.18

Theorem 3.23. Let P be the set of the shortest length left coset repre-
sentatives of Sz in Sq. Then {ym(S) | w € Pz} is an O-basis of M(S).
Moreover each basis element 1,,m(8) is homogeneous of degree equal to the
degree of the element 1,e(3(5)) € Ra, and ¥,m(S) € e(w - j(8))M(S).

4. BLOCK INTERTWINERS

Throughout this section we assume that e > 0. Recall from that
d € Q4+ is the null-root. We fix i € I and a composition A = (A1,...,\,) of
k. Define
S(i, A) == (s(i,er1),...,s(i,eNn))
the tuple of segment of lengths e)q,...,e\,, all starting at i. We consider
the corresponding permutation module

M0, ) o= M3 V)
over the algebra Rys as in section Let

3= dre) = 3(8(,\) € I¥
as defined in (3.21). We have j = s(i, ke). Finally, let the corresponding
idempotent be
e(i, A) := e(4(8(i, A))) € Ris
and
m(i, A) :=m(8(i, X)) € M(i, \),
the generator of M(s) as in (3.20).

4.1. The elements o. We consider the element w, of the symmetric group
Gpe defined as the product of transpositions
re
Wy 1= H (a,a+e) (1<r<k). (4.1)
a=re—e+1
Informally, w, permutes the rth “e-block” and the (r + 1)st “e-block”. If
we write w, = w/.sy then f(w,) = £(w].) + 1.
Define

Op = Py, e(i, \) € Rys (1<r<k). (4.2)
Note by Lemma that w, and w]. are fully commutative elements so the
elements 1, and 1, of Rys; do not depend on the choice of preferred re-
duced decompositions for these permutations. Furthermore, ¢y, = 1y ¥re.

To prove the results in this section we will use the graphical representation
of elements of Rys and M(i,\) = Rys/K(5(i,\)) = Rism(i, \) following
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[16]. In fact, the diagram used to represent an element he(i, \) € Rys in [16],
here will represent the element hv € M(i, A), for some v € e(i, \)M (i, ).
Of course, the element v needs to be specified before this makes sense. For
example, if v = m(i, \), then

and

where 1 <r <dand 1< s <d. Also, setting 7’ = (r—1)e, " = (r+1)e+1,
we have

orm(i,\) =

We will colour the strings of the diagr-a.n;lé to iIl’;[.)I:O.VG r-éa.ciability, but these
colours will have no mathematical meaning (and will not be distinguishable
in black and white!).

4.2. The block permutation subspace. Consider the block permutation
subspace

T(i,A) := O-span{oy,0ry ... 0p,m(i, N) | 1 < 71,...,74 < k}.
It is not hard to see using Theorem that
T(i,\) = e(i, \)M (i, \).
It is easy to see that deg(o,e(i,\)) = 0. Therefore,
T(i,\) C M(i, \)o,
the degree zero component of M (i, \).

Lemma 4.4. Suppose that 1 < s,t < ke with t # 0 (mod e). Then the
elements ys and 1y act as zero on T(i, \).

Proof. Let v € T'(i, \). We have
ysv € e(i, )M (i, \) = T(i,\) € M (i, N)o.

On the other hand, deg(ysv) = deg(ys) + deg(v) = 2. Hence ysv = 0.
Moreover, v € e(s; - 7)M(i,A) = 0, the last equality holding by Theo-
rem [3.23] O
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4.3. Quadratic relation. We want to study relations satisfied by the el-
ements o, acting on 7'(7,\). Our main goal is to show that the elements
T, := o, + 1 satisfy the Coxeter relations on T'(i, \). We begin with the
quadratic relations.

Lemma 4.5. Suppose that 1 < r < k and v € T(i,\). Then p.opv =
—2vev. Equivalently, in terms of diagrams we have

i1 Jpt o didl d—1 ikl i—1dpr e

i1 Jpt il i—1 i il i—1dp1 e
where v’ = (r —1)e, " = (r+ 1)e+1 and © = s(i, ke).
Proof. For typographical convenience, we only consider the case where r = 1

and ¢ = 0. We first treat the case e = 2 which is exceptional because in
this case the quiver I is not simply laced. Using the relation (3.9)), and then

(3.7) and (3.8]), we have:

0O 1 0 1 0 1 0 1 01 0 1 0 1 0 1

P81

0 1 0 1 01 0 1 01 0 1

=2 =2 =-2 m‘——w)gv,
as required.

Now suppose that e > 2. To start, using (3.9)) we see that ¥.o1v equals

0 1 2 3 -2-10 1 2 3 -2 -1 0o 1 2 3 -2-10 1 2 3 -2 -1

Let D1 be the first diagram and let D9 be the second diagram. To com-
plete the proof, we show that D; = ¢.v and Dy = —9.v. In fact, the two
equalities are proved similarly, so we give details only for the first one. Using

(3.7), we see that

o 1 2 3 -2 -1 0o 1 2 3 -2 -1

Dy =

0o 1 2 3 -2—-10 1 2 3 -2 -1 0o 1 2 3 —2-10 1 2 3 -2 -1
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The second summand is zero as y1v = 0 by Lemma [4.4] Applying the braid
relations (3.10|) to the first summand, we get that D; equals

0 1 2 3 -2 -1 0 1 2 3 -2 -1 0 1 2 3 -2 -1 o0 1 2 3 -2 -1

Using the braid relations to pull the second 0-string through shows that the
first summand equals

showing that this element is zero since ¥e41v = 0, by Lemma[4.4] Applying
the braid relations to the second summand, we get

0 1 2 3 -2 -1 o0 1 2 3 -2 -1 0 1 2 3 -2 -1 o0 1 2 3 -2 -1

As before, using the braid relations to pull the second 1-string to the top of
the first diagram shows that the first summand is zero. So, by ({3.9)),

0o 1 2 3 -2-10 1 2 3 -2 -1

Dy =

The argument so far has straightened the first three strings in the diagram.
Continuing in this way straightens the first e — 1 strings so that

0o 1 2 3 -2-10 1 2 3 -2 -1

Dy =

Now applying the braid relation for the last time shows that D; equals

0o 1 2 3 -2-10 1 2 3 -2 —1 0 3 —2 -1 9 1 2

/ Loz P
N o

0o 1 2 3 -2-10 1 2 3 -2 -1

as required. O
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Recall from section [.1] that 1)y, = 1) re.
Corollary 4.6. Suppose that 1 < r < k and v € T(i,\). Then c2v =
—20,.
Proof. Using Lemma, we get
70 = Yy Pre0rV = =2y Yrev = — 24y, v = —20,0,
as desired. (|
4.4. Braid relations. This section is dedicated to the proof of the following
Theorem 4.7. Suppose that 1 <r <k and v € T(i,\). Then
(0r0r 4107 — 0107041 — O + 0ry1)v = 0.

In the proof, for typographical reasons, we assume that i = 0 and k = 3
(this corresponds to ignoring vertical strings to the left and to the right of the
relation we are interested in). As in the Lemma all diagrams represent
elements of T'(i, ) obtained by applying the corresponding elements of Ry
to a given v € T(i, A).

First, we need three technical lemmas.

Lemma 4.8. Suppose thate > 2, k=3,i=0, andv € T(i,\). Then:

0 1 -2 -1 0 1 -2 -1 0 1 -2 -1

and

o2V =

Proof. We prove only the first identity for o as the proof of the second one
is almost identical. Let D; be the first diagram on the right hand side of
the first equality. Using more strings for clarity of exposition,

0 1 2 -3 -2 -1 90 1 2 -3 -2 -1 90 1 2 -3 -2 -1

Pulling the rightmost 0-string past the 'X*-crossing immediately to its right
gives zero because 12.1v = 0 by Lemmal4.4] Here, and in similar situations
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below, we will omit such terms which arise when applying the braid relations
(3.10). This observation shows that

0
"
)
‘)
0
",
N

Dy =

o
s
oy
”wo::
W

,;t
()
)

\
)

=}
—
N
|
@
|
N
|
—
=}
-
N

-3 -2 -1 0 1 2 -3 -2 -1

)

)
!
?0

A
I

W
o@o’:”
W

\

A
i
i
i
\

;
|

0

where for the second equality we pulled the rightmost 1-string past the *X*
-crossing. Continuing in this way and pulling the right most (i — 1)-string
past its neighbouring *X‘-crossing, for 3 < i < e — 1, shows that

|
w
|
N
|
—
<)
-

o 1 2 2 -3 -2 -1 o -5 —4 -3 —2 -1

":’s
SR S35
SSSS<TSSSTS
Dy = RS
I SR
===

Another application of the braid relation (3.10)) yields

0 1 2 -3 -2 -1 0 1 2 -3 -2 -1 0 -5 —4 -3 -2 -1

Applying (3.6) we can straighten the rightmost —3, —4, ..., —1 strings com-

pletely and then pull the next e + 1 strings to the right to give

1 2 -3 —2 -1

Dy
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Now applying the quadratic relation (3.9) to the rightmost pair of (—1,0)-
strings, using Lemma and then applying the relation (3.8)), gives

0 1 2 -3 -2 -1 0 1 2 3 -2 -1 0 1 2 -3 -2 -1

0 1 2 -2 -1 o0 1 2 -2 -1 o 1 2 -3 -2 -1

A final application of (3.9) and (3.8) now shows that D; = o1v completing
the proof. O

Lemma 4.9. Suppose that k=3,1 =0, v € T(i,\) and let

Then Ey = o1v + Ef and Ey = o9v + E.

Proof. Both identities are proved similarly, so we consider only the first one.
First consider the exceptional case e = 2. Then we have to show that

o 1 0 1 0 1 0O 1 0 1 0 1

=ov+ . (4.10)
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Applying the braid relation (3.10)), (the first line of) the quadratic relation
(3.9) and Lemma shows that

0O 1 0 1 0 1 0O 1 0 1 0 1 0O 1 0 1 0 1

KK

Applying (3.10)) twice to the first summand and (3.8)) to the second summand
gives

0O 1 0 1 0 1 0O 1 0 1 0 1 0O 1 0 1 0 1

K

The relations , and Lemma show that the first summand
above equals the second summand on the right hand side of and the
second summand above equals oyv.

Now consider the case when e > 2. By , F is equal to

By Lemma the second summand is equal to ojv. Using the braid rela-
tions again, the first summand is equal to

Using the braid relations to pull the rightmost —2-string in the second sum-
mand above to the right and observing that the error term of the braid
relation equals zero by (3.9)), shows that the second summand equals

0 1 —-2-1 0 1 -2 -1 0 1 -2 -1

where the last equality follows because t3._1v = 0 in view of Lemma [4.4]
Therefore, E1 = oyv + Ef as claimed. O

Lemma 4.11. Suppose that i #0,—1 and v € T(i,\). Then

0 1 —1 0 i—1 4 i+1  —1 0 1 -1 0 1 —1 0 i—1 4 i1  —1 o 1 -1
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Proof. Let D be the left hand diagram. Then, using the braid relations,

Let the first summand of D be D; and the second one be Ds. Then by the
braid relations, we have

The first summand is zero because we can use (3.10) to pull the rightmost
(i —1)-string to the top of the diagram and then use the fact that ¥e4;v = 0
by Lemma [4.4, The second summand is zero by because 'X'= 0 by |D
Hence, D1 = 0. Now consider Dy. Using the braid relations to pull the
middle ¢-string in Dy to the right, D5 is equal to the diagram on the right

hand side of the formula in the statement of the lemma plus the following
error term
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which using the (error term free) braid relations, equals

The first summand is zero since ;v = 0 by Lemma [£.4] The second term

is zero because of the quadratic relation 3 '= 0. The proof of the lemma is

complete. O
We can now prove Theorem [4.7

Proof of Theorem [{.7. Writing o10907v in terms of diagrams and using Lemmal[£.9]
we have

010201V =
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Hence, applying Lemma (e — 1) times,

0109201V =01V +

=01V — 092V +

where the last equality follows using the identity Fo = oqv + E} from
Lemma The diagram in the last equation is equal to oo0109v, so this
completes the proof of Theorem [4.7] O

4.5. The elements 7. Let 1 < r < k. Recall from the beginning of the
section that o, = 1y,.e(i,\) € Rgs. Define

7 = (or + 1)e(i, N) = o + (i, A) = (Yw, + 1)e(i, A).

Quite remarkably, as we now show, the elements 7,...,7p_1 satisfy the
usual Coxeter relations for the symmetric group &5 when they act on the
block permutation space T'(i, A). Let &) = &y, x ...S,, be the parabolic
subgroup of & indexed by A, O, the trivial representation of &, and 2,
the set of the minimal length left coset representatives of G in &y.

Theorem 4.12. Suppose that 1 < r,s <k andv € T(i,\). Then
(i) T2v = v.

(ii) If |r —s| > 1 then T,75v = TsTrv.

(iii) If r < k — 1 then T, T4 177V = Tp4 1Ty Tr410.
Consequently, &y acts on T(i,\), and the elements T,m(i, \) for u € S
are well-defined. Finally, T (i, \) = indgg’; Oy as OS-modules, and T (i, \)
has O-basis {T,m(i,\) | u € Dr}.
Proof. Part (i) comes from Corollary Part (ii) follows directly from the
definition of o,. For part (iii), by definition

TrTr41770 = (0p + 1)(0p+1 + 1) (0r + 1)V

= (0,0,4107 + 0rOr 41 + Opy10, + 0'3 + 20, + opy1 + 1.

Theorem and Corollary now imply (iii). So we obtain the action of
the symmetric group &y on T'(i, A) with Coxeter generators s, acting as 7,
forallr=1,...,k—1.
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For the final statement of the proposition, consider the parabolic subgroup

G, < 6, generated by
{sr|r# M+ -+ A foralla=1,...,n}.

Note from the definition of 7'(i, \) that 7'(i, A) is an O-span of all elements of
the form 7., ... 7, m(i, A). Moreover, O - m(i, \) = O, is the trivial module
of &) because if s, € &) then 7,m(i, A) = m(i, \) since o,m(i,A) = 0 by
1) So we have a surjective homomorphism from indgg’; O, onto T'(i, A),
which sends the natural cyclic generator of indgg’; O, onto m(i, A). The
injectivity of this map follows from Theorem [3.23] which describes an O-
basis for M (i, \), together with the observation that the transition matrix

for the change of basis from the products of the 7, to the corresponding
products of the o, is unitriangular. O

5. HOMOGENEOUS (GARNIR RELATIONS

In this section we define universal graded (row) Specht modules S* for
R,, by generators and relations, see Definition [5.9] This definition will be
justified in Theorem when we show that these universal graded Specht
modules are isomorphic to the usual graded Specht modules from [6}/11].

5.1. Row Garnir tableaux. The definitions here differ slightly from those
given in [6] but match those in [21]. Let A = (a,b, m) be a node of u € 2.
Then A is a (row) Garnir node if (a+1,b,m) is also a node of p. The (row)
A-Garnir belt B4 is the set of nodes

B ={(a,c;m)ep|b<c<p{™Iu{(a+1l,em)ep[l<c<b}.

For example, if A = (2,3,2) then the A-Garnir belt B4 for = ((1), (7,7,4,1))
is highlighted below:

The (row) A-Garnir tableau is the p-tableaux G4 defined as follows. Let
u=TH(a,b,m) and v = TH(a+1,b, m). Now insert the numbers u, u+1,...,v
into the nodes of the Garnir belt going from left bottom to top right, and
the other numbers into the same positions as in T#. Continuing the previous
example, u = 11,v = 18, and T* and the (2,3, 2)-Garnir tableau are:

T#_2345678 GA_2345678
|9 (10[11{12])13[14]15] ° 1 9110[114]15)16{17]18
16|17]|18|{19 11]12]13|19
20] 20]

Lemma 5.1. Suppose that p € 2%, A is a Garnir node of i, and S € St(p).
If S>GA then S agrees with TH outside the A-Garnir belt.
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Proof. This follows from [6, Lemma 3.9] and Lemma [2.19 O
The importance of the Garnir tableaux comes from the following;:

Lemma 5.2. Suppose that p € 275 and that T is a row-strict p-tableau
which is not standard. Then there exists a Garnir tableau G = G4, for A € p
a row Garnir node, and w € Sy such that T = wG and £(wT) = L(w®) +£(w).

Proof. 1If | =1 this is |21, Lemma 3.14], and the general case follows easily
from the case [ = 1. g

5.2. Bricks. Fix p € 22} and a Garnir node A = (a,b,m) € p. A (row
A-)brick is a set of e successive nodes in the same row

{(¢c,d,m),(c,d+1,m),...,(c,d+e—1,m)} C B4
such that res(c,d, m) = res A. Note that B4 is a disjoint union of the bricks
that it contains together with less than e nodes at the end of row a which
are not contained in a brick and less than e nodes at the beginning of row

a + 1 which are not contained in a brick.
Let k = k4 be the number of bricks in BA. We label the bricks

B B3,... B
going from left to right along row a+ 1 and then from left to right along row
a of G as in the example above. Of course, it might happen that B4 does
not contain any bricks (this is always true if e = 0), in which case k = 0.

For example, the following diagram shows the bricks in the (2, 3, 2)-Garnir
belt of p = ((1),(7,7,4,1)) when e = 2:

By By

[ [
213[4]5]6]7]8

9 |10][14]15{116{17(118
11}{12]13)|19
20

Bf‘

Note that k = 3, there are two bricks Bs!, B4 in row 2 and one brick B{! in
row 3 of the second component. Further, (3,1,2) and (2,7,2) are the only
nodes in the (2,3, 2)-Garnir belt of G4 which are not contained in a brick.
Assume now that k& > 0 and let n = n* be the smallest entry in G4 which
is contained in a brick in BA. In the example above, n = 12. Extending

(4.1)), define

n+re—1
wh = H (a,a+e) € By (1<r<k). (5.3)
a=n-+re—e
Informally, w;f‘ swaps the bricks B4 and Bff‘+1~ The elements wf‘, w2A, ceey w;;‘fl
are the Coxeter generators of the symmetric group
G = (witwd, .. wi ) = Gy

We call G4 the (row) brick permutation group. By convention, G4 is the
trivial group if k = 0.
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Let Gar? be the set of all row-strict p-tableaux which are obtained from
the Garnir tableau G4 by brick permutations; that is, by acting with the
brick permutation group &* on G*. Note that all of the tableaux in Gar4,
except for G4, are standard. Moreover, G* is the minimal element of Gar?,
with respect to the Bruhat order, and there is a unique maximal tableaux
T4 in Gar?. Further, by definition, if T € Gar? then 4(T) = 4(G*). Conse-
quently, we let it = i(GA) be this common residue sequence.

Define f = f4 to be the number of A-bricks in row a of the Garnir belt
B4. Finally, let 24 be the set of minimal length left coset representations
of &y x Gy in 64 = &),. Note that by definition &4 is a subgroup of &g,
so 24 is a subset of &4 and, in particular, its elements act on u-tableaux.
Note that

Car? = {wT? | w € 24}. (5.4)

Continuing the example above, T4 is the tableau

By B

| |
213]4]5]6]7][8]
4 — |9 [1o]p2fi3]iaf1s]1s
11jfre[a71o
20]

Bs

and Gar? = {T4,8 := wiTA, 64 = wlwd T4}, Recall from section that
the residues of the nodes are determined by a fixed choice of the multi-
charge k. If we take k = (0,0) in our example above with e = 2 then the
residues of the nodes in y are as follows:

—
[
o
[

FEE [
(es)

Recalling the notation (3.16]) and using Khovanov-Lauda diagrams, we have
oo 1o 1o 1o 1 0@CDC D1 0@ 01 1
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and

The circles in these diagrams correspond to the bricks in the Garnir belt.

The degree statement in the following lemma is what will guarantee the
homogeneity of our Garnir relations. This result is implicit in the proof
of |6, Proposition 3.16].

Lemma 5.5. Suppose that € &5 and A € p is a Garnir node. Then
Gar\ {G*} = {T € St(u) | T>6* and 4(T) = i'}.
Moreover, deg(T) = deg(G*) for all T € Gar?.

5.3. The row permutation modules MH#. Let y € 22/ be a multipar-
tition with (non-empty) rows Ry,..., Ry counted from top to bottom. If a
row R, has length N and the leftmost node of R, has residue ¢ we associate
the segment r(a) := s(i, N) to R,. Let ¥ = (r(1),...,7(g)), and, recalling
the definitions from section put
MH = M*(O) := M(7) (deg T#).

Note the degree shift by deg T, the significance of which is explained by
Theorem below. The module M* is generated by the vector m* := m(¥)
of degree deg T#. Recalling (3.16)), for any p-tableau T we define

mT = pTmH.
The following is a special case of Theorem [3.23
Theorem 5.6. Suppose that « € Q4 and p € 5. Then
{m" | T is a row-strict p-tableau}
is an O-basis of M*.
5.4. Universal row Specht modules S*. Fix a Garnir node A € yu,

and let &4 be the corresponding block permutation group with generators
wi, ... ,ka_l as defined in section Using the notation of 1 , we define

ol = @Dw;xe(iA) and 7= (ot +1)e(i?), (5.7)
cf. section Any element v € &4 can written as a reduced product
U = erl . ..w;‘i1 of simple generators wf‘, e ,wf_l of 4. In general, the

elements 7 do not have to satisfy Coxeter relations. However, if v is fully
commutative then the element

A A A

Ty = Tpy - Tro

is well-defined, since 74 and 74 commute for |r — s| > 1. In particular, we
have well-defined elements

{7'4;4 | u € @A}.

(As operators on the brick permutation space T4, defined below, the ele-
ments 77! do satisfy Coxeter relations, see Theorem [5.11|(ii).)
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Recall from that Gar? is the set of row-strict tableaux obtained
from the tableau T4 by acting with the elements of 2. Note that for any
S € Gar?, we can write w® = uSw™ so that (wS) = £(uS) + £(w™) and
uS € 2. Moreover, in view of Lemma all elements w®, u®
are fully commutative so the elements ,s, wTA and 5 = ¢us1/)TA are all
independent of the choice of preferred reduced decomposition. Set

A A
mA =m™ =T mt e M*.

A
, and w?

Definition 5.8. Suppose that p € &5 and A € p is a Garnir node. The
(row) Garnir element is

A
gA = Z waT € R,.
uEPA
In the module M* we have
gAm“ = Z TfmA.
u€egPA

By Lemma all of the summands on the right hand side have the same
degree. Finally, if 24 = {1}, we have ¢G* = T4 and g% = Ve,

Definition 5.9. Let a € Q4, d = ht(a), and p € 5. Define the univer-
sal graded (row) Specht module S* = SH(O) to be the graded R,-module
generated by the vector z# of degree deg(T#) subject only to the following
relations:

(i) e(g)zt = 054z for all j € I*;

(i) ypz# =0forall r=1,...,d;

(iii) 2" =0 forallr=1,...,d — 1 such that r —pu r+ 1;
(iv) (homogeneous Garnir relations) g4z* = 0, for all (row) Garnir

nodes A in p.

In other words, S* = (R, /J&)(deg(T")), where J4 is the (homogeneous)

left ideal of R, generated by the elements

(i) e(g) — (5_77,;# for all J € 1%

(i) y, forall r =1,...,d;

(iii) 4, for all » =1,...,d — 1 such that r —u r + 1;

(iv) g4 for all Garnir nodes A € p.
In view of ([3.22), the elements (i)-(iii) generate a left ideal K* such that
R./K" = M*. So we have a natural surjection M*—S* with the kernel
JF of this surjection generated by the Garnir relations g4m* = 0. This
surjection maps m* to z* and J* = JEm*.

Remark 5.10. Our homogeneous Garnir relations are simpler than the
ones defined by Young and Garnir in that they have fewer summands. For
example, if G4 is the only tableau in Gar®, then the Garnir relation is simply
saying that /%" 2# = 0. Note that we always have Gar® = {G4} when e =0
or e >d.

Our main goal is to obtain a basis for the universal Specht modules and
to relate them to the usual Specht modules for cyclotomic Hecke algebras.
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5.5. Row brick permutation space T, Continuing with the notation
of the previous subsection, define the (row) brick permutation space THA C
M* to be the O-span of all elements of the form o2 . .. a;fi mA, cf. section

T "
Theorem 5.11. Suppose that o € Q4, p € Z5, A € pu is a Garnir node
and let k = k* and f = fA. Then:

(i) T*A is the O-span of all elements of the form qu}...T;gmA. In
particular, the elements 7'{4, . ,T,il act on THA.

ii) As O-linear operators on THA, the elements 73, ..., 74 | satisfy

1 k—1

the Coxeter relations for the symmetric group Sy. Thus, we can
consider TM4 as an OG,-module.

iii) Let O¢rp_r be the trivial OS¢ _r-module. There is an isomor-

(fik=f) fk—f

phism of OGy-modules
A~ 106
™ =indogr 3 Oh-—p)
under which m? € THA corresponds to the natural cyclic generator
of the induced module on the right hand side.
(iv) {tAmA | u € 24} is an O-basis of THA.

Proof. Let i = res A, and let n = n? be, as before, the smallest entry in G*
which is contained in a brick in B4. . Set 4 = ' := (i;...,44). For any
3= (1., Jre) € I* define the tuple j4 = (ji,...,jq) where j; = i; for
t<mnandt>n+ek, and jots = js+1 for all s =0,1,..., ke — 1. There is
a (non-unital) embedding of algebras ¢t : Rps— R, such that
LA : 77st = ¢S+n717 Yt = Yt4n—1, 6(_7) = e(jA)

for all admissible s, and j. From now on we are going to suppress the
notation 4 and simply identify Rjs with the subalgebra 14(Ry;) inside Rg.

Consider the Ris-module Rys-m* generated by the vector mA e MH*. We
claim that this module is isomorphic to the permutation module M (i, (f, k—
f)) defined in section Indeed, it is easy to check that e(j)mA = j,s(ijke)mA,
ym? = 0, and Yom? = 0 unless s = ef. This shows that there is
an Rjs-homomorphism from M(i, (f,k — f)) onto Rys - m* which maps
m(8(i, (f,k — f))) to m?. An application of Theorem now implies
that this homomorphism is an isomorphism. Hence, the result follows from
Theorem O

Corollary 5.12. Suppose that € Zf, A € p is a Garnir node of 1, and
S = uTA € Gar? for some u € 24, cf. . Then

mS = TfmA + g CwT{f}mA
wEPA, wu

for some ¢, € O. In particular, {m* | T € Gar?} is an O-basis of THA.

Proof. Let u = wfl . w;‘}l be a reduced decomposition in &4. Then, using
©.7),
mS = Smt = wuwTAm“ = hym? = afl .. .J;th
= (-1 (7 - 1mA,

which implies the result in view of Theorem [5.11 ([
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5.6. A spanning set for the universal row Specht module. Let a €
Q4+ with ht(a) = d, and p € 5. Recall that S* = MHF/JF and M =
mt + J*. Also set
Ai=mA 4 JH e sH

for any Garnir node A € p.

Recall from that for each u-tableau T we have defined the element
YT € R,, which depends on a fixed choice of reduced decomposition of
wT € &4. Hence, we can associate to T the homogeneous element

ol =Tt = mT 4 JH e SH.

Lemma 5.13. Suppose that p € &5 and A be a Garnir node of . Then

A
¢ = g cqvT

TeGar?, T>GA

for some cp € O.

Proof. In view of (5.4)), for each T € Gar?, there exists a unique u* € 24
with T = «*T4. By Corollary there exist dr € O such that

G4 ¢A A A\ A
v o= = (TUGA + Z dTTuT)Z

TeGar?, T#AGA
=gt + Z (dr — 1)7i127,
TeGar?, T#GA

Since g4z* = 0 by Definition [5.9|(iv), the result now follows by (inverting
the equations in) Corollary O

We now make the first step towards describing a standard homogeneous
basis of S#. In Corollary below we show that (5.15]) is a basis.

Proposition 5.14. Let u € &2%5. The elements of the set

{v" | T e St(u)} (5.15)
span S* over O. Moreover, we have deg(vT) = deg(T) for all T € St(p).

Proof. Note that v = ¢Te(i*)2#. Now, using [6, Corollary 3.14], we have
deg(1pTe(#")) = deg(T) — deg(T*), which implies the second statement of the
proposition, as deg(z#) = deg(T*) by definition.

By Theorem it suffices to show that for every row-strict tableau T
of shape u, the vector vT € S* is an O-linear combination of elements in
. We prove this by inverse induction on the Bruhat order on the row-
strict tableaux T. The induction starts when T = T*, the unique maximal
row-strict tableau. In this case T is standard so there is nothing to prove.

For the inductive step, assume that the result has been proved for all row
standard tableaux U T. If the row strict tableau T is standard then there is
nothing to prove, so suppose that T is not standard. Then by Lemma |5.2
there exists a Garnir tableaux G of shape p and w € &4 such that T = wG
and £(wT) = £(w®) + ¢(w). Using Proposition for the second equality,
and then Lemma for the last equality, we get

o = yle(i)2" = (Yo yle(i) + we(i))H = o + ozt

T
= E CTwv _|_sz’

T>G
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where x is a linear combination of elements of the form v, f(y)e(¢) such
that v < w and f(y) is a polynomial in yi,...,y4. The result now follows
by induction. ([

6. CYCLOTOMIC HECKE ALGEBRAS AND SPECHT MODULES

Recall from Definition[5.9]that we have defined by generators and relations
the universal graded (row) Specht modules S* = S#(O) for the KLR algebra
R,, for all multipartitions p € &75. In this section we connect these universal
Specht modules to the usual Specht modules for the affine Hecke algebras H,,
via the isomorphism between the cyclotomic quotients of the KLR algebras
and of the affine Hecke algebras constructed in [3]. This will allow us to
obtain a standard homogeneous basis for S#(Q) using [6,11].

In this section we will need to distinguish between the universal graded
(row) Specht modules S* = S#(O) for R, and the usual graded (row) Specht
modules for H,, which we will denote S%;. The Specht modules S}, are de-
fined as cell modules for the cellular algebra H, é} We review their properties
below.

6.1. Ground field and parameters. Let F' be a field, and £ € F'* be an
invertible element. Let e be the smallest positive integer such that 1 + £ +
c.4£671 = 0, setting e := 0 if no such integer exists. This e allows us to use
the Lie theoretic notation of section In particular, we have I = Z/eZ,
F, Q+, P+, etc.

For i € I define the scalar v(i) € F as follows:

L )i =1,
v(i) = {f’ e (6.1)

6.2. Cyclotomic Hecke algebra. Let H; = Hy(F, &) be the affine Hecke
algebra over the ground field F' associated to the symmetric group &4 with
parameter £. Thus, if £ # 1, then Hy is the F-algebra generated by

+1 +1
Tr,..., Ty, XYoo, X

subject only to the relations

T2=(E-1DT,+¢ (1<r<d), (6.2)
T. 11T =T 1T T 1 (1<r<d-1), (6.3)
T.T, =TT, (I1<rs<d, |r—s|>1). (6.4)
XHXH = xHXxH  (1<rs<d), (6.5)
XX '=1 (1<r<a), (6.6)
T. X, T, =X, 11 (1<r<d), (6.7)
T.Xs = X, T, (1<r<d1<s<d,s#mrr+1). (6.8)
If ¢ =1, then Hy is the F-algebra generated by
Ty,.... Ty 1,X1,..., X4
subject only to the relations — and the relations:
X, X, = X X, (1<rs<d), (6.9)
T, X1 =X, T+ 1 (1<r<d), (6.10)

T, Xs = X1 (1§7’<d,1§5§d,87é7“,7‘+1). (611)
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Recall that in (2.3]) and (2.4) we have fixed a level [, a tuple k = (ki, ..., k),
and the corresponding weight A = Ay, + --- 4+ Ay, € Py. The cyclotomic
Hecke algebra H) = Hé‘(F, €) is the quotient

HY o= Ha [ ( Tlier (X0 = v@) @) ) = Ha /([T y (X1 = v(kn))- (6.12)

6.3. Weight spaces and idempotents. Let i = (i,...,iq) € I and
let M be a finite dimensional H, é‘—module. Define the z-weight space of M
as follows:
Mi={veM| (X, —v(i,))Yv=0for N>0andr=1,...,d}.
It is known (see e.g. |10, Lemma 4.7] and [18, Lemma 7.1.2]) that all eigen-
values of Xi,..., Xy in M are of the form v (i), for i € I, and so we have a
weight space decomposition:
M = @ M;.

ield
Using the weight space decomposition of the left regular H é\—module, one
gets a system of orthogonal idempotents
{e(3) |1 e I} (6.13)

in H%, all but finitely many of which are zero, such that >, jae(i) = 1,
and

e(i)M =M;  (iel?
for any finite dimensional H é\—module M.

If o € Q4 is of height d, define e, := >, ;0 e(3) € H}. By [20] and [2,
Theorem 1], e, is either zero or it is a primitive central idempotent in H é‘.
Hence the algebra

HY = e, H) (6.14)
is either zero or it is a single block of the algebra H C/l\.

6.4. The Isomorphism Theorem. Define elements of H2 as follows:
Yiera(L—=v(in) 7' X0 )e(d), if & #1,
Yp 1= (6.15)
> icre (X — v(ir))e(7), ire=1,

for 1 <r <d. Next, if 1 <r < d and 7 € I we define
Vr = iera(Tr + P, (2)Qr(2) te(s). (6.16)

where P, (i) and Q,(i)~! are certain polynomials in F[y,,y,.+1] which are
explicitly defined in [3]. This gives us the following elements of H2:

{6(1,) ’ 1€ Ia} U {yl, . 7yd} U {1/}1, e ,Qﬂd,l}. (617)
Note that these elements have the same names as the generators of the
KLR algebras in (3.1). This is not a coincidence in view of the following
Isomorphism Theorem:

Theorem 6.18. |3, Theorem 1.1] Suppose that « € Q4+ has height d and
A € Py. Then H is generated by the elements subject only to the

relations f . In other words, HMF, &) = RMF).

In what follows we identify H2(F,€¢) and RA(F). In particular, H2(F, ¢)
is now Z-graded.
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6.5. Graded Specht modules S%; for Hecke algebras. Let o € Q4 be
of height d and fix a multipartition u € £2%. The graded (row) Specht module
Sk = SI\(F) for HY is defined in [6]. These graded Specht modules turn
out to be the cell modules for Héy\ considered as a graded cellular algebra
as in [11]. We will not need the exact definition, only the following key
properties of these modules. Recall the notation of section [2.3

Lemma 6.19. [14, Proposition 3.7] Let u € &2%5. There is a homogeneous
generator 24, of Sty with deg(zt;) = deg(TH), 2 € e(¢*)Sh;, and yyzh; = 0,
forallr=1,...,d.
Let T be a p-tableau. Recall from (3.16)) that we have defined the element
YT =41 in RA(F) = HY(F). Set
v =Tzl € St
Just like 1, the vector v}, will, in general, depend upon on the choice of

preferred reduced decomposition of w' € &,4. Note that z}‘l = U;{;.

Lemma 6.20. [6, Lemma 4.9] Let p € &5 and T € St(u). If r lrr+1 or
r—rr—+1 then

T s
Yy = Z asvy.
SESt(1), Sb T, i(S)=i(s,T)
for some as € F. In particular, wrzl“{ = 0 whenever r —u r + 1.

Theorem 6.21. [6] Suppose that u € Pf. Then

(i) For any p-tableau T we have vi; € e(i(T))Sh;.

(ii) If p € St(p), then deg(vy;) = deg(T).
(iii) {v}; | T € St(p)} is a basis of Sty (F). Moreover, for any p-tableau T,

we have
vl = E bsvy;

SESt()
S T,5(S)=4(T)

for some constants bs € F.
The following corollary should be compared with Lemma [5.13

Corollary 6.22. Suppose that p € P} and that G = G4, where A € p is a
Garnir node. Then
VS = Z crvly

TeGar4, T>G
for some cr € F.

Proof. This comes from Theorem and Lemma [5.5 ]

6.6. Connecting the universal row Specht modules with the cell
modules. Since we have identified the algebras H2(F) and RA(F) we may
consider the Specht modules S%(F) as an RA(F)-module. Inflating from
RA(F) to the affine KLR algebra R, (F), we can now consider St (F) as
an R, (F)-module. The following theorem shows that, as a graded R, (F)-
module, S%;(F') is isomorphic to the universal row Specht module S*(F)
from Definition 5.0l



32 ALEXANDER S. KLESHCHEV, ANDREW MATHAS, AND ARUN RAM

Theorem 6.23. Let p € 5. Then the linear map, which sends the basis
elements v}, € Sk (F) to vT € SK(F) for all T € St(w), is a homogeneous

isomorphism St (F) — SH(F) of graded Ro(F)-modules.

Proof. In this proof all modules and algebras are vector spaces over F, so
we will suppress F' from our notation. We will construct the isomorphism in
the other direction: S# — S%. By Lemmas and the defining re-
lations for M*, cf. (3.22)), there exists a surjective degree zero homogeneous
homomorphism 7 : M#—S%; of graded Ro-modules which maps m” to v},
for any row-strict p-tableau T. By Theorem and Proposition it
now suffices to check that the homogeneous Garnir relations gAszI = 0 hold
in S%, for all Garnir nodes A € p.

Fix a Garnir node A. Let k = k4, f = f4 and 64 = &, be the brick
permutation group defined in section By Corollary {mT | T €
Gar?} is an F-basis of T#4. Note that G is the only non-standard tableaux
in Gar. As 7(T*%) is spanned by the vectors {v}; = w(m") | T € Gar’},
Corollary shows that {v}; | T € Gar?\ {G*}} is a basis of 7(T*4). So
dim 7(TH4) = dim TH4 — 1.

Recall from Theorem that the group &4 acts on the brick permuta-

tion subspace T4 with its simple reflections acting as 7'1‘4, . ,T]‘:‘_l. More-
. . . HvA ~ FGk 3
over, with respect to this action, T =~ mng(f’k_f) Fir—p)- Since the

elements of G4 act on T4 as specific elements of R,, and 7 is an R,-
homomorphism, 7 induces an F&4-homomorphism TH4 — 7(TH4). By
the dimension observations in the previous paragraph, the kernel of this map
is a one dimensional F&}, submodule of T#4 = indﬁgff —h F(yk—p)- There-
fore, unless k = 2, f = 1, and char F' # 2, this kernel is the unique trivial
submodule of indggff’k_f) Fr—y). Hence, in this case, ker 7 is spanned by
S uega TamA = gAmt. Hence g2k = m(gm*) = 0, so that the Garnir
relation holds in the Specht module S%, as desired.

It remains to consider the exceptional case k = 2, f = 1,char F' # 2. In
this case we claim that (7{* + 1)z = 0, for this we need to rule out the
possibility that (7{ — 1)z4 = 0. Since 7{*24 = (¢! +1)24, we just need to
prove that Jf‘zA # 0. Let A = (a,b,m), and r be the entry which occupies
the node (a + 1,b,m) in GA. But by Lemma we have

Yroftat = —2,2t = —20% " £,
since the tableau s, T4 is standard and char F' # 2. O
We can now improve on Proposition

Corollary 6.24. Let p € &2%5. Then the universal row Specht module S*(O)
for Ro(O) has O-basis
{v" | T € St(u)}. (6.25)

Proof. As SH(O) = SH(Z) ®z O, we may assume that O = Z. By Proposi-
tion the elements span S*(Z). Suppose that we have a relation
ZTeSt(M) crvT = 0 with c¢r € Z. Extending scalars to C, we get the relation
> rest(u) crv?T = 0 in S#(C). Pick a parameter ¢ € C which is a primitive
eth root of unity in C if e > 0 and not a root of unity if e = 0. Then by
Theorem we get the relation } regq(, crvl; = 0 in S%(C), which is
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the usual Specht module for H2(C,¢). By Theorem [6.21{(iii), cr = 0 for all
T € St(u). O

Corollary 6.26. Let pn € 225. The universal row Specht module S*(O)
factors through the natural surjection Ry (O)—RA(O) so that SH(O) is nat-
urally a graded RA(O)-module.

Proof. In view of (3.11]), we just need to prove that
i e@SHO) =0 (6= (in,..via) € %),

We may assume that O = Z. Next, since S¥#(Z)—S*(Z) @ C = S*(C), we
may now assume that O = C. Choose £ € C as in the proof of Corollary [6.24]
Then by Theorem we have S#(C) = S%(C), which is the usual Specht
module for HA(C,¢). Hence, S#(C) is a R}(C) module since H2(C,¢) =
R)(C). Hence, the action of RY(C) satisfies the cyclotomic relation (3.11]),
implying that S#(O) is an R2(O)-module as we wanted to show. O

Now the following is clear:

Corollary 6.27. Let € 5.

(i) As a graded R2(O)-module, the universal row Specht module S*(O)
is generated by the homogeneous element z* of degree deg(TH) sub-
ject only to the relations (i)-(iv) from Definition[5.9

(ii) As a graded H2-module, the row Specht module St is generated by
the homogeneous element z* of degree deg(TH) subject only to the

relations (i)—(iv) from Definition [5.9
7. COLUMN SPECHT MODULES

Having a presentation for a module does not automatically imply a pre-
sentation for the dual module. In this section, we define a column version
Sy, of the universal graded Specht module corresponding to a multipartition
. Then in Theorem we show that the universal column Specht module
S, is isomorphic to (a degree shift of) the homogeneous dual (S*)® of the
universal row Specht module S*.

In the section we again work over an arbitrary commutative unital ground
ring O, unless otherwise stated. We fix @ € Q4+, p € £, and set d := ht(a).

7.1. Column block intertwiners. In this section we assume that e > 0.

Recall from that ¢ is the null root and observe that ¢ = § in the

notation of section Therefore, sgn is an automorphism of Rys, see .
Fix ¢ € I and a composition A = (A1,...,A,) of k. Define

S(i,—A) == (s(i,—eA1), ..., s(i, —eAy)).
We consider the corresponding permutation module M (i, —\) := M (5(, —\))
for Rys as in section Let 5 = (J1,---,Jke) := J(8(i,—))) as defined
in (3.21). We have j = s(i,—ke). Let e(i,—\) := e(j) and m(i, =) =
m(8(i, —A)) € M(i,—A) as in (3.20).
Recall from section that if M is an Rjs-module then MS8" is the
Rys-module obtained from M by twisting with the sign automorphism sgn.

Lemma 7.1. We have
(1) Sgn(e(i’ _)‘)) = 6(_i7 )‘)
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(ii) There is an isomorphism M (i, —\) = M(—i, \)%8" of graded Rys-
modules, under which m(i,—M\) corresponds to m(—i, \).

Proof. (i) is clear from (3.14)), and (ii) is clear from ([3.22]). O

From section 4l we have the elements w, € Sk, 0, = Py, e(—i, \) and
T = (o + 1)e(—i, A), for 1 <r < k. Set

0" = (=1)%Py e(i,—A) and 7" = (0" + 1)e(i, —N),

for r = 1,...,k — 1, and define the column block permutation subspace
T(i,—A) € M(i,—\) to be the O-span of all vectors of the form
o ootem(i, —N). (7.2)

Lemma 7.3. We have
(i) sgn(o”) =0, and sgn(7") =7, for 1 <r < k.
(ii) Under the isomorphism of Lemma[7.4|(ii), T(i,—X\) corresponds to
T(—i,\)

Proof. Since K(wr) = 62 we have sgn(vy,) = (—1)% 1y, = (—1)¢ wwr. So
Lemma [7.1{i) yields (i). Part (ii) follows from (i) and Lemma [7.1(ii) O

Lemma [7.3] and Theorem [£.12] now imply the following.

Proposition 7.4. Suppose that 1 <r,s <k andv € T'(i,—\). Then
(i) (") %v = 0.
(i) If |r —s| > 1 then 7"1%v = 7577 0.
(iii) Ifr <k —1 then 777" i1y = 77t irrrrtly
Consequently, &y acts on T(i,—\), and the elements TUm(i, — ) for u €
Sy are well-defined. Finally, T(i,—\) = 1nd86’; O, as O&-modules, and
T(i,—\) has O-basis {T"m(i,—\) | u € D)}.

7.2. Column Garnir tableau. We now rework the combinatorics of row
Garnir tableaux for column Garnir tableaux. A node A = (a,b,m) € p is
a column Garnir node of p if (a,b+ 1,m) is a node of . The (column)
A-Garnir belt B4 is the set of nodes

Ba={(c,bbm)eplczalU{(c,b+1m)epnlc<a}.

Recall from that if T € St(u) then T, <JT and wr € &y is the
permutation such that T = wrT),. Let u = T,(a,b, m) and v = T, (a+1,b,m).
The (column) A-Garnir tableau G4 is the p-tableaux which agrees with 7T},
outside of B4 and where the numbers u,u + 1,...,v are inserted into the
Garnir belt in order, from top right to left bottom.

Just as in section we have the following two results.

Lemma 7.5. Suppose that A € u is a column Garnir node and S € St(u).
If G4 <S then S agrees with T, outside of B 4.

Lemma 7.6. Suppose that T is a column strict p-tableaux which is not
standard. Then there exists a column Garnir tableaur G and w € Sy such

that T = wG and {(wr) = L(wg) + £(w).
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7.3. Column bricks. A (column A-)brick is a set of e nodes
{(¢,d,m),(c+1,d,m),...,(c+e—1,d,m)} CBy

such that res(c,d, m) = res A. The Garnir belt B4 is a disjoint union of
the bricks that it contains together with less than e nodes at the bottom of
column a which are not contained in a brick and less than e nodes at the
top of column a 4+ 1 which are not contained in a brick.

For example, if e = 2, then the (3, 1,2)-Garnir belt of = ((1),(7,7,4,1))
contains two bricks:

38 [1i[14]16[18
4912151719
51013

"\1@[\9»—~

Let k = k4 be the number of bricks in B4. Label the bricks B, B, ... Bffl
in B4 from top to bottom first down column b+ 1 and then down column b
of p. Set k = 0 if B4 does not contain any bricks.

If £ > 0 let n = n4 be the smallest number in G4 which is contained in a
brick in B 4. In the example above, k = 2 and n = 4. Define

n+re—1
wi= [] (a+te)e&s (1<r<k).
a=n+re—e
The (column) brick permutation group is the subgroup &4 of &, generated
by w}4,w124, .. .,wffl_l. Then G4 = Gk.

Let Gary be the set of all column-strict p-tableaux which are obtained
from the Garnir tableau G4 by acting with the brick permutation group & 4
on G4. All tableaux in Gar4 are standard except for G4, G4 is the maximal
element of Gary4, and there is a unique minimal tableaux T4 in Garg. If
T € Garg then 4(T) = 4(Ga). We let ¢4 :=2(G4).

Define f = f4 to be the number of A-bricks in column b of the Garnir
belt B4 and let 24 be the set of minimal length left coset representations
of &y x Gy in G4 = G. Just as in , we have

Gargy = {wT4 | w € Z4}. (7.7)
Finally, as in Lemma [5.5] we have:
Lemma 7.8. Let A € y be a column Garnir node. Then
Garg \ {Ga} ={T € St(u) | TIG4 and i(T) =i4}.
Moreover, codeg(T) = codeg(G4) for all T € Garg.

7.4. The column permutation modules M. Let C1,...,C, be the non-
empty columns of p counted from left to right in the component p(Y), then
from left to right in the component (=1, and so on, until from left to right
in the component p") of . We emphasize that the order of the components
of i is reversed here.



36 ALEXANDER S. KLESHCHEV, ANDREW MATHAS, AND ARUN RAM

To each 1 < a < g we associate the segment c(a) := s(i, —N), where the
column C, has length N and ¢ is the residue of the top node of C,. Let
¢ =(c(1),...,¢c(g9)), and, recalling the definitions from section set

M, = M, (O) := M(E) (codeg T,).
The module M), is generated by the vector m, := m(c) of degree codegT,,.

For any p-tableau T, define mr := t¢rm,,. As a special case of Theorem [3.23]
we have:

Theorem 7.9. {mr | T is a column-strict p-tableau} is an O-basis of M,,.

7.5. Universal column Specht modules S,,. Fix a column Garnir node
A € p, and let &4 = (wl,... ,wlj‘_l) be the corresponding block per-
mutation group. For any S € Gary, we can write ws = ugwr, with
l(ws) = l(ug) + ¢(wr,) and us € Z4. By Lemma ws, ug, and wr, are
fully commutative so we have elements g, ¢,y and 7 ,, with ¥s = V11,
each of which is independent of the choice of preferred decomposition.

Set my = mr, = r,m, and define

ol = (=1)Yyre(ia) and 1) := (04 + 1)e(ia).

Any element u € & 4 can written as a reduced product v = wf,‘l . wf,‘m. If u

is fully commutative then 7} := 7,'...7,™ is independent of the choice of
the reduced expression by Lemma [3.17], so we have well-defined elements
{7} |u e D4}

Definition 7.10. Suppose that A € p is a column Garnir node. The column
Garnir element is
gaA ‘= Z TX%A € Ra-

UED A

Since 1, m,, = my, we have gam,, = Zue@A Tima, and, by Lemma
all summands on the right hand side have the same degree. If k¥ = 0 then
P4 = {1}, G4 = T4 and ga = 9g,,.

Definition 7.11. The universal graded column Specht module S,, = S, (O)
is the graded R,-module generated by the vector z, of degree codeg(T,)
subject only to the following relations:

(i) e(g)zy = 05,2, for all j € I

(ii) yrzy =0forallr=1,...,d;

(iii) ¥rzy =0 forallr =1,...,d— 1 such that r |z, r +1;
(iv) (homogeneous (column) Garnir relations) gaz, = 0 for all (column)

Garnir nodes A in p.

In other words, S, = (Ra/Ja,u){(codeg(T,)), where J, , is the left ideal of
R, generated by the elements
(i) e(g) — 94, for all j € I
(ii) y, for all r =1,...,d;
(iii) ¢ for all r =1,...,d — 1 such that r |1, 7+ 1;
(iv) ga for all column Garnir nodes A € p.

Since the elements (i)-(iii) generate the left ideal K, with R,/K, = M,,
we have a natural surjection M,,—S,,, which maps m, to z,, and the kernel
Ju = Ja,umy, of this surjection is generated by the Garnir relations.
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7.6. Column brick permutation space T, o. The (column) brick per-
mutation space Ty, 4 € M, is the O-span of all elements of the form o'} ... 0" m 4.
Repeating the argument of Theorem now gives:

Theorem 7.12. Suppose that A € i is a column Garnir node, and let k =
ka and f = fa. Then:
(i) Tpa the O-span of all elements of the form 7)) ... 7, *my. In par-

ticular, the elements 7'}‘, .. ,Tffl act on Ty, A.
(ii) As O-linear operators on Ty, a, the elements Ti, e ,Tz_l satisfy

the Coxeter relations for the symmetric group Sy. Thus, we can
consider Ty, o as an OG-module.
(iii) There is an isomorphism of O&-modules
Tua =indodt  Opymp)
under which m 4 corresponds to the natural cyclic generator of the
induced module on the right hand side.
(iv) {74ima | u € Da} is an O-basis of T, 4.

Corollary 7.13. Suppose that A € p is a column Garnir node of i, and
S=uTy € Gary for some u € P4. Then

Ysmy, = Tama + Z CwTAMA
WED 4, wlu

for some ¢, € O. In particular, {mr | T € Gara} is an O-basis of T), a.

7.7. A spanning set for the universal column Specht module. Recall
from section that S, = M,/J, and 2z, = m, + J,. Also set z4 =
ma + J, € S, for any column Garnir node A € p. Recall from that
for each p-tableau T we have defined the element ¥ € R, which depends
on a fixed choice of reduced decomposition of wr € &,. We associate to T
the homogeneous element vr := 11z, € S),.

Adapting the arguments from section we obtain the following result.

Proposition 7.14. The elements {vr | T € St(u)} span S, over O. More-
over, we have deg(vr) = codeg(T) for all T € St(pu).

7.8. Graded column Specht modules Sﬁl for Hecke algebras. The

graded column Specht modules for the cyclotomic Hecke algebra H? were
defined in [11} §6] as cell modules for certain graded cellular structure on
H2 (different from the one used to define cell modules S};). We review the
key properties of these modules, paralleling section

Recall the definition of the conjugate multipartition x4’ and conjugate
tableaux from section If 4 € 2% then in general /' ¢ 5. Be-
cause of this we will use a different labelling of the column Specht modules
than [11]. Let SMM(F) be the graded column Specht module for HMF)
constructed in [11; §6.4]. That is, SEM(F) is a graded cell module with
basis {¢7 | T € St(u) }, where deg(7) = codeg(T’) for T € St(u), using the
cellular basis notation of [11} §6.4]. Define

SE(F) = SﬁM(F) and zﬁ =P

The following lemma was proved in [14, Proposition 3.7]:
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Lemma 7.15. Let o € Q, d = ht(a), and p € 2%. As an H2-module,
Sf is generated by z{j, deg(zf) = codeg(T,), zf € e(iu)Sf, and yrzf =0,
forallr=1,...,d.

Proof. Since (T*')’ = T,, the first three claims follow from [11, Proposi-
tion 6.10]. That yrzf = 0 for all 7, can be deduced from |11, (6.2)] and
(6.15]). Alternatively, it is a special case of |12, Corollary 3.11]. O

For each p-tableau T, define vl = @ZJTzf € Sﬁ. By |11, Definition 6.9],

vH is the same as the element ¢/, in the notation of [11]. In particular,

H _  H
Z, =vr,.

Lemma 7.16. Suppose that T € St(u). If r lrr+ 1 orr —rr+ 1 then
11)va = Z agvé{.

SESt(1), ST, i(S)=i(s,T)
for some as € F. In particular, @brzf = 0 whenever r |1, r+ 1.

Proof. This can be deduced from [11, Proposition 6.10(c)] using standard
properties of the (ungraded) dual Murphy basis. Alternatively, it follows
immediately from [12, Corollary 3.12]. O

The next result is the analogue of Theorem [6.21

Theorem 7.17. We have
(i) If T is a p-tableau then vE € e(i(T))SﬁI.
(ii) If T € St(u) then deg(vi) = codeg(T).
(iii) {vff | T € St(u)} is a basis of Sf(F) Moreover, for any p-

tableau T,
vl = Z bsvl!

SESt(p),S <T,5(S)=4(T)
for some constants bs € F'.

Proof. Everything except for the second part of (iii) is clear from results
in [11] and the remarks above. Part (iii) can be deduced from [11, Proposi-
tion 6.10(c)]. Alternatively, it can be deduced from |12, Theorem 3.9]. O

Corollary 7.18. Suppose that A € u is a column Garnir node. Then

H _ 2 : H
UGA — CTUT
TeGard, T<Gy

for some ct € F.

7.9. Connecting the universal column Specht modules with the cell
modules. As in the last section let Sf (F) be the graded column Specht
module for H2, where F is a field. As in section 6.6/ we consider Sf (F) as
an R, (F')-module.

Mimicking the proof of Theorem [6.23] and using, in particular, the results
in section [7.8] Theorem and Corollary we can now show that
SE(F) = S,(F) as an Ro(F')-module. As the argument is similar to the
proof of Theorem we leave the details to the reader.
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Theorem 7.19. There is a homogeneous isomorphism Sf(F) — Su(F)
of graded R, (F)-modules, which maps vi € SE(F) to vy € S, (F) for all
T € St(p).

The following three Corollaries of Theorem [7.19| are proved in exactly the
same way as the corresponding results in section [6.6]

Corollary 7.20. {vr | T € St(p)} is an O-basis of S, (O).

Corollary 7.21. The universal column Specht module S,,(O) factors through
the natural surjection Re(O)—RA(O) so that S, (O) is naturally a graded
RA(O)-module.

Corollary 7.22. We have

(i) As a graded R2(O)-module, the universal column Specht module
S,(0) is generated by the homogeneous element z,, of degree codeg(T,,)
subject only to the relations (i)—(iv) from Definition|7.11].

(ii) As a graded H>-module, the column Specht module S is generated
by the homogeneous element z, of degree codeg(T,) subject only to

the relations (i)—(iv) from Definition|7.11.

7.10. Contragredient duality for Specht modules. Recall from sec-
tion that M® denotes the graded dual of the R,-module M. We now
use [11] to show that S*(O)® = S,(O), up to an explicit degree shift, as
graded R, (O)-modules for any integral domain O.

Recall that { vT | T € St(u) } is a basis of S#(O) and that { vt | T € St(u) }
is a basis of S,(0). Let { fr | T € St(u) } and { fT|T € St(u) } be the cor-
responding dual bases of S#(0)® and S,(0)®, respectively, so that

fs(UT) =ds1= fS(UT),
where S, T € St(u1). By definition, deg fr = — degv® = —deg T and deg fT =
— codeg T. Recalling (2.14]), we now have
deg fr = codeg T — def o and deg fT = deg T — def a. (7.23)

Lemma 7.24. As R,-modules, S*(O)® is generated by fr, and S,(O)® is
generated by ™.
Proof. We only prove that S#(O)® = Rq fr,. The proof of the second state-

ment is similar.
We claim that if T € St(u) then there exist scalars cs € O such that

Jr="1rfr, + Z csfs
SeSt(p)
where cg # 0 only if £(w®) > £(w”). The claim implies that fr € R, fr,, for
all T € St(u), so that S#(O0)® = R, fr, by the remarks above.
To prove the claim we argue by downwards induction on the dominance
order. If T = T, then wr, = 1= z/JTH so that indeed fTu = wTufTu' Next
suppose that T<T, and let S € St(x). Then, by definition,

(Urf1,) (V) = fr, (¥, -10°) = fr, (V-1 us2).

By Lemma [2.18](iii), w™ = wr'w” and £(w™) = £(wg') + £(wT). Conse-
quently, if /(w®) < f(wT) and S # T then w™ can not appear as a subex-
pression of wy 'w® so that (Yr Jf1,)(0%) = 0 by Proposition Therefore,
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the coefficient of fs in vrfr, is zero whenever ¢(w®) < ¢(wT). Finally, con-
sider the case when S = T. By Proposition there exist polynomials
pu(y) € Oly1, - .., ya4) such that

¢w;1¢sz“ = @/}TMZN + Z Yupu(y) 2"

u<wTH

=o' 4 Z Putbu,
u<w
where p, = p,(0) € O and the last equality follows from Lemma It
follows that (¢rfr,)(v") = 1. Hence, if we write 4 fr, with respect to the
basis {fs} then fr appears with coefficient 1. This completes the proof of
the claim and, hence, of the lemma. O

We can now prove the main result of this section.

Theorem 7.25. As graded R, (O)-modules,
SH0O) 2 8,(0)¥(def ) and S,(0) = S*(O)®(def )

Proof. The two isomorphisms are equivalent so we consider only the first
isomorphism. By Lemma [7.24 and (7.23) it is enough to show that fT
satisfies the defining relations from Definition for the element z* as,
taking into account our basis results, this will imply that there is a unique
isomorphism S#(0) — S,,(0)®(def o) which sends z#* to f™. From the
definitions, e(7) f™" = 6x, so it remains to show that

(ii) v f™ =0forall r =1,...,d;

(iii) ¢, f™ =0 for all 7 = 1,...,d — 1 such that r —qu 7 + 1;

(iv) g4f™ =0 for all row Garnir nodes A in pu.

By freeness it is sufficient to consider the case when O = Z and, since S,,(Z)®
embeds into S, (C)®, it is enough to verify the relations when O = C.

As in Section let & = exp(2mi/e) if e > 0 and if e = 0 take £ to be
any non-root of unity in C. Then, by Theorem RA(C) = HMC,¢€), so
we can invoke results from [11]. Hence, as graded R,-modules,

SH(C) = S%(C), by Theorem [6.23
=~ SH(C)® (def o), by [11}, Proposition 6.19),
>~ S, (C)¥(def a), by Theorem

To complete the proof we scrutinize the second isomorphism above.
In our notation, the proof of [11} Proposition 6.19] shows that there exists
a homogeneous associative bilinear form

{, }:8% xSI({defa) — C; (a,b) — {a,b},
such that {v%;,vH} = 0 unless T>S. (When comparing our notation with [11]
the reader should remember that Sf = SﬁM as defined in section )
The isomorphism S} (C) — SH(C)®(def o) is then the map which sends
a € S5(C) to p, € ST(C)¥(defa), where p4(b) = {a,b}, for all b €
Sf (C)®(def ). Observe that the triangularity of the form { , } implies

that @ m is a scalar multiple of fT. Therefore, since the map a + ¢, is
an isomorphism, it follows from Definition [5.9)and Corollary that ¢,
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and hence fT € S,(C)®, satisfies the three relations (ii)—(iv) above. Con-
sequently, fT € S,(Z)® also satisfies these relations and the theorem is
proved. O

Remark 7.26. In principle, it should be possible to prove Theorem
directly by verifying that f™ satisfies the relations in Definition This
appears to be an involved calculation.

8. TWO APPLICATIONS
In this section we work again over an arbitrary commutative unital ring O.

8.1. Specht modules for higher levels as induced modules. Let p =
(uD, ... 10y € 2% with o™ = cont(u(™), for m = 1,...,1. Then a =
(km).

o) + ...+ o). Consider each partition p(™ as an element of D

that is, as a partition whose (1,1)-node has residue k,,. Then we have

Ak, —
Lmys for m =

the universal graded Specht modules SH™ for the algebras R
1,...,l. Inflating along the surjection Ra(m>—»R2fj’:j> we may consider gut™
as a graded R (m)-module. Note that this graded module is generated by
the element 24" of degree deg(T“(m)).

Asin , considered the graded R,-module S(u(M)o---08(u®) which
is generated by the element

1 l 1
JC NI (z“( )

® ") (8.1)
of degree deg 4 deg AR

Our new definition of Specht modules by generators and relations makes
the following useful result almost obvious. Note that in [28], [5, (3.24)] the
right hand side of (8.3)) was taken as the definition of the Specht module.

Theorem 8.2. Suppose that p = (u, ... uW) € 2%, Then
st gn oo 94 (d), (8.3)
where " "
d, = deg(T") — deg(T" ') — - -+ —deg(T" 7).
as graded R.-modules. In particular, s oo ge (dy) factors through
the surjection Ra—R%, and the isomorphism s also an isomorphism

’

of graded R2-modules.

Proof. The vector 2Dl from satisfies the defining relations on
the vector z# € S* from Definition [5.9] This yields a homogeneous module
homomorphism S# — S 0. ..o gn" (d,) which maps z* onto AR
To construct the inverse homomorphism, by Frobenius Reciprocity, it suffices
to construct a homomorphism of R, 1) ,m-modules

1 l
PR 1S s Res® SH
o). alm) ’

which maps #Y g 2" onto z#. Such homomorphism arises by Defini-
tion again, using defining relations for the modules S“(l), . ,S/‘(”. ([
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8.2. Column Specht modules as signed row Specht modules. In this
final section we investigate the analogue of tensoring the Specht modules
with the sign representation. Recall the isomorphism sgn : R, — R, from
and the sgn-twist M%8" € R,-Mod of a module M € R,-Mod. We
determine what happens to the Specht modules of R, under this twist.

For each u € &5 we have row Specht module S* and column Specht mod-
ule S, with bases {v"} and {vr}, respectively, parametrized by T € St(u).
Similarly, for each v € 95 we have row Specht module S” and column
Specht module S,, with bases {v3} and {vs}, respectively, parametrized by
S € St(v). The definition of these modules and bases depends on x and &/,
respectively.

In sectionwe defined the conjugate multipartition u/ € 3”5,/ of the mul-
tipartition p € Z2%. Recall from section [2.3|that the definition of degree and
codegree of a tableau T depends on k. We write deg™(T), codeg”(T), res" A,
etc., when we want to emphasize dependence on x. Finally, the conjugate
tableau T’ is defined in section and if 4 € I® then —i € I is defined in
(13.13)).

For any node A = (a,b, m) define A" := (b,a,l —m+1). Note that A € u
if and only if A’ € 4/, in which case T(A) = T/(A’). Moreover, we have
res® A = —res™ A’ by , and A is above B if and only if A’ is below B’.
The following lemma now follows from definitions.

Lemma 8.4. Suppose that € 2% and T € St(w). Then i* (T') = —i"(T),
deg”™(T) = codeg” (T') and codeg®(T) = deg” (T').

The main result of this section is:
Theorem 8.5. Suppose that o € Q4+ with d = ht(«), and p € PL. Then
St (S)% and S, = (S*)%E
as graded R (O)-modules.

Proof. We claim that there are degree zero homomorphisms of graded R, (O)-
modules
or . St — (S)%8" and 0, : (S)%" — S
such that 6#(z") = 2,y and 0,/(z,y) = 2". As 2" and z, generate the two
Specht modules, this claim implies the theorem.
Note that

deg z# = deg"(T#) = codeg“/(TM/) = deg 2
by Lemma [8.4] So to prove the existence of #*, it suffices to check that
2y € (S,/)%8" satisfies the defining relations of S* from Definition The
map 6,/ is constructed similarly using Definition instead, so we only

give details for 0*.

By Lemma [8.4] i = ¢(T*) = —i(T,1) = —i,s. Therefore, if j € I then
6(]) C Ry = 6(_j)zﬂ' = (Lj,iﬂ,z“r = (5_.7"_,'#2’“/ = 0512yl -
Therefore, 2,/ satisfies Definition i). Moreover, y;, - 2z, = —yrz, = 0 for
all 1 < r < d. Next observe that if 1 < r < d then r = r + 1 if and
only if r |1 , 7+ 1. Hence, 1, - 2,y = =92,y = 0, by Definition (iii) and

Definition [7.11{(iii).
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It remains to check that z, € (S,/)%8" satisfies the row Garnir relations
from Definition [5.9(iv). Recall the node correspondence A <> A’ defined
before Lemma Which sends a node A € pto A’ e /. If A € pis a
row Garnir node then A’ € p’ is a column Garnir node and, further, this
correspondence sends row bricks in g to column bricks in g/. In particular,
kA = k4, where k% is the number of row bricks in B4 and k4 is the number
of column bricks in Ba. Moreover, sgn(7/!) = 77, by Lemma (i), for
1 <r < kg, so that sgn(gA) = gar. Therefore,

A A
9" - 2w = sgn(g”)zw = garzw =0,
where the last equality is a column Garnir relation in S, U

REFERENCES

[1] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m,1,n), J.
Math. Kyoto Univ. 36 (1996), 789-808.

[2] J. Brundan, Centers of degenerate cyclotomic Hecke algebras and parabolic cate-
gory O, Represent. Theory 12 (2008), 236-259.

[3] J. Brundan and A. Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-
Lauda algebras, Invent. Math. 178 (2009), 451-484.

[4] J. Brundan and A. Kleshchev, Graded decomposition numbers for cyclotomic
Hecke algebras, Adv. Math. 222 (2009), 1883-1942

[5] J. Brundan and A. Kleshchev, The degenerate analogue of Ariki’s categorification
theorem, Math. Z. 266 (2010), 877-919.

[6] J. Brundan, A. Kleshchev and W. Wang, Graded Specht modules,
arXiv:0901.0218, to appear in J. reine angew. Math.

[7] R. Dipper, G. D. James and A. Mathas, Cyclotomic g-Schur algebras, Math. Z.
229 (1998), 385-416.

[8] H. Garnir, Théorie de la representation lineaire des groupes symétriques, Mém.
Soc. Roy. Sci. Liége (4) 10 (1950).

[9] J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), 1-34.

[10] I. Grojnowski, Affine sl, controls the representation theory of the symmetric group
and related Hecke algebras, arXiv:math.RT/9907129.

[11] J. Hu and A. Mathas, Graded cellular bases for the cyclotomic Khovanov-Lauda-
Rouquier algebras of type A, Adv. Math., 225 (2010), 598-642.

[12] J. Hu and A. Mathas, Graded induction for Specht modules; arXiv:1008.1462.

[13] G. D. James, The representation theory of the symmetric groups, Lecture Notes in
Mathematics 682, Springer, Berlin, 1978.

[14] G. D. James and A. Mathas, The Jantzen sum formula for cyclotomic g-Schur
algebras, Trans. Amer. Math. Soc. 352 (2000), 5381-5404.

[15] V. G. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press, 1990.

[16] M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quan-
tum groups I, Represent. Theory 13 (2009), 309-347.

[17] M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quan-
tum groups II; arXiv:0804.2080.

[18] A. Kleshchev, Linear and Projective Representations of Symmetric Groups, Cam-
bridge University Press, Cambridge, 2005.

[19] A. Kleshchev, Representation theory of symmetric groups and related Hecke alge-
bras, Bull. Amer. Math. Soc. 47 (2010), 419-481.

[20] S. Lyle and A. Mathas, Blocks of cyclotomic Hecke algebras, Advances Math. 216
(2007), 854-878.

[21] A. Mathas, Twahori-Hecke algebras and Schur algebras of the symmetric group,
University Lecture Series 15, American Mathematical Society, Providence, RI,
1999.

[22] A. Mathas, Matrix units and generic degrees for the Ariki-Koike algebras, J. Al-
gebra, 281 (2004), 695-730.



44

[23]

[24]

[29]

[30]

ALEXANDER S. KLESHCHEV, ANDREW MATHAS, AND ARUN RAM

G. E. Murphy, On the representation theory of the symmetric groups and associ-
ated Hecke algebras, J. Algebra 152 (1992), 492-513.

A. Ram, Skew shape representations are irreducible, 161-189 in Combinatorial
and geometric representation theory (Seoul, 2001), Contemp. Math., 325, Amer.
Math. Soc., Providence, RI, 2003.

R. Rouquier, 2-Kac-Moody algebras; arXiv:0812.5023.

W. Specht, Die irreduziblen Darstellungen der symmetrischen Gruppe, Math. Z.
39 (1935), 696-711.

J.R. Stembridge, On the fully commutative elements of Coxeter groups, J. Alge-
braic Combin. 5 (1996), 353-385.

M. Vazirani, Parameterizing Hecke algebra modules: Bernstein-Zelevinsky mul-
tisegments, Kleshchev multipartitions, and crystal graphs, Transform. Groups 7
(2002), 267-303.

A. Young, On the quantitative substitutional analysis I, Proc. London Math. Soc.
(1) 33 (1900), 97-145.

A. Young, On the quantitative substitutional analysis II, Proc. London Math. Soc.
(1) 34 (1901), 361-397.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OR 97403, USA
E-mail address: klesh@uoregon.edu

SCHOOL OF MATHEMATICS AND STATISTICS FO7, UNIVERSITY OF SYDNEY, NSW 2006,
AUSTRALIA
E-mail address: andrew.mathas@sydney.edu.au

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF MELBOURNE, VIC
3010, AUSTRALIA
E-mail address: aram@unimelb.edu.au



	1. Introduction
	2. Combinatorics
	2.1. Lie theoretic notation
	2.2. Partitions
	2.3. Tableaux
	2.4. Bruhat order

	3. KLR algebras and permutation modules
	3.1. KLR algebras
	3.2. Graded duality
	3.3. The sign map
	3.4. Basis Theorem
	3.5. Induction and restriction for affine KLR algebras
	3.6. Permutation Modules M()

	4. Block intertwiners
	4.1. The elements 
	4.2. The block permutation subspace
	4.3. Quadratic relation
	4.4. Braid relations
	4.5. The elements 

	5. Homogeneous Garnir relations
	5.1. Row Garnir tableaux
	5.2. Bricks
	5.3. The row permutation modules M
	5.4. Universal row Specht modules S
	5.5. Row brick permutation space T,A
	5.6. A spanning set for the universal row Specht module

	6. Cyclotomic Hecke algebras and Specht modules
	6.1. Ground field and parameters
	6.2. Cyclotomic Hecke algebra
	6.3. Weight spaces and idempotents
	6.4. The Isomorphism Theorem
	6.5. Graded Specht modules SH for Hecke algebras
	6.6. Connecting the universal row Specht modules with the cell modules

	7. Column Specht modules
	7.1. Column block intertwiners
	7.2. Column Garnir tableau
	7.3. Column bricks
	7.4. The column permutation modules M
	7.5. Universal column Specht modules S
	7.6. Column brick permutation space T,A
	7.7. A spanning set for the universal column Specht module
	7.8. Graded column Specht modules SH for Hecke algebras
	7.9. Connecting the universal column Specht modules with the cell modules
	7.10. Contragredient duality for Specht modules

	8. Two applications
	8.1. Specht modules for higher levels as induced modules
	8.2. Column Specht modules as signed row Specht modules

	References

