QUIVER SCHUR ALGEBRAS FOR THE LINEAR QUIVER I

JUN HU AND ANDREW MATHAS

ABSTRACT. We define a graded quasi-hereditary covering for the cyclotomic
quiver Hecke algebras RQ of type A when e = 0 (the linear quiver) or e > n.
We show that these algebras are quasi-hereditary graded cellular algebras by
giving explicit homogeneous bases for them. When e = 0 we show that the
KLR grading on the quiver Hecke algebras is compatible with the gradings
on parabolic category Oﬁ previously introduced in the works of Beilinson,
Ginzburg and Soergel and Backelin. As a consequence, we show that when
e = 0 our graded Schur algebras are Koszul over field of characteristic zero.
Finally, we give an LLT-like algorithm for computing the graded decomposition
numbers of the quiver Schur algebras in characteristic zero when e = 0.
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1. INTRODUCTION

Khovanov and Lauda [28,29] and Rouquier [40] have introduced a remarkable
family of Z-graded algebras which are now known to categorify the canonical bases
of Kac-Moody algebras [11,15,43]. Brundan and Kleshchev [10] initiated the study
of ‘cyclotomic’ quotients of these algebras by showing that they are isomorphic to
the degenerate and non-degenerate cyclotomic Hecke algebras of type G(¢,1,n); see
also [40].

This is the first of two papers which define and study quasi-hereditary covers of
the cyclotomic quiver Hecke algebras of the linear quiver and of ‘large’ cyclic quivers.
These algebras are graded analogues of the cyclotomic Hecke algebras QSJM of
type G(¢,1,n) at non-roots of unity [9,17]. Our first main result is the following.

Theorem A. Suppose that e = 0 or e > n and let Z = K be an arbitrary field.
The algebra S» is a quasi-hereditary graded cellular algebra with graded standard
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modules { A* | p € P2} and irreducible modules { L¥* | up € 22}, Moreover,
there is an equivalence of (ungraded) categories

FA . SA -Mod — SP7™ Mod

which sends standard modules to standard modules and simple modules to simple
modules in the obvious way.

In fact, we define the quiver Schur algebras over more general rings. In particular,
the quiver Schur algebra S2 is defined over Z when e = 0 or when e > n is prime.

Like the cyclotomic Schur algebras, the quiver Schur algebra S is defined to
be the endomorphism algebra of a direct sum of “graded permutation modules”;
see Definition 4.16. Our graded permutation modules turn out to be direct sum-
mands of modules used to define the cyclotomic Schur algebras. Therefore, S
and SP™ are Morita equivalent (Theorem 6.13). The algebras S» and SP'™ are
not isomorphic in general, however, because S2 usually has smaller dimension.

Quite surprisingly, given that their definitions are so different, if A is a dominant
weight of level 2 then we show in [24] that S2 is isomorphic as a graded algebra to
one of the quasi-hereditary covers of the Khovanov’s diagram algebra defined and
studied by Brundan and Stroppel [14]. In particular, in this case S is a positively
graded basic algebra with a Koszul grading.

The key to both the definition and our understanding the algebras S is the
graded cellular bases of the quiver Hecke algebras R% that we constructed in [25].
The graded permutation modules have homogeneous bases which are a subset of
the cellular bases of R? (Theorem 4.10), and we show how to lift the bases of the
permutation modules to give an explicit homogeneous cellular basis for the quiver
Schur algebras over an arbitrary commutative ring when e = 0 (Theorem 4.20).
As a consequence, we show that the quiver Schur algebras are quasi-hereditary
(Theorem 4.25), and that they naturally decompose into a direct sum of blocks
SA = GBBGQI Sé\, with each block Sé\ being a quasi-hereditary graded cellular
algebra (Theorem 4.36). We show that there is a graded Schur functor (Proposi-
tion 4.31), describe the graded Young modules (Proposition 5.6) and give an explicit
description of the graded tilting modules (Corollary 5.15) which is similar in spirit
to Donkin’s construction of the tilting modules of an algebraic group [18].

If e = 0 and we work over the field of complex numbers then Brundan and
Kleshchev have shown that the degenerate cyclotomic Schur algebras are Morita
equivalent to blocks of parabolic category O for the Lie algebra of the general
linear group [9]. By results of Backelin [4], and Beilinson, Ginzburg and Soergel [5],
parabolic category O3 admits a Koszul grading. By [9], the endomorphism algebra
of a prinjective generator of O} is Morita equivalent to the degenerate cyclotomic
Hecke algebra H2 of type A. Therefore, the Koszul grading on O2 induces a grading
on the module category of H2. This gives two ostensibly different gradings on the
degenerate cyclotomic Hecke algebra H2: one coming from parabolic category O
and the KLR grading given by the Brundan-Kleshchev isomorphism H2 = RA [10]
when e = 0.

Theorem B. Suppose that e = 0 and Z = C is the field of compler numbers.
Then graded category O and the quiver Hecke algebra R2 induce graded Morita
equivalent gradings on ’Hﬁ -Mod.

Our proof of Theorem B in section 7.2 is essentially a delicate counting argument
(Proposition 7.17) using the facts that that indecomposable prinjective modules
in O} are rigid, because O is Koszul, and that the graded decomposition numbers
of R2 have been computed by Brundan and Kleshchev [11]. Ultimately, however,
our argument relies on Ariki’s categorification theorem [2] and the Koszulity of
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parabolic category (971) [4,5], both of which are proved using heavy geometric ma-
chinery.

Building on Theorem B, in section 7.3 we prove a graded analogue of [9, Theo-
rem C], thus lifting Brundan and Kleshchev’s “higher Schur-Weyl duality” to the
graded setting.

Theorem C. Suppose thate = 0 and Z = C. Then there are graded Schur functors
FO: 02 -Mod — RA -Mod and F2 : S -Mod — RA -Mod and a graded equivalence
EQ:0) — SA -Mod such that the following diagram commutes:

O
oA " SA Mod
FA
o "
RA -Mod

In particular, S»-Mod is Koszul.

Webster [45, Corollary 5.7] has obtained a graded lift of Brundan and Kleshchev’s
functor E,(? which is similar to our Theorem C. He uses a very different geometric
construction which is based on his categorification of irreducible representations of
Kac-Moody algebras.

Since the module category of S2 is Koszul when e = 0 the graded decomposition
numbers of S} are polynomials with non-negative coefficients which, as one might
expect, are (known) parabolic Kazhdan—Lusztig polynomials. Using our graded
cellular bases of S2, in section 7.5 we give a fast algorithm for computing these
polynomials which is similar in spirit to the LLT algorithm for the Hecke algebras
of type A [32]. This is interesting because our analogue of the LLT algorithm
computes the graded decomposition numbers of the quiver Schur algebras when
e = 0 whereas the extension of the LLT algorithm to the g-Schur algebras [33] is
non-trivial because it requires first computing the action of the bar involution on
the Fock space.

In the sequel to this paper [24] we show that the decomposition numbers of the
quiver Schur algebras are independent of the characteristic of the field when e = 0.
As a consequence, the formal characters of the irreducible modules of the quiver
Hecke algebras are independent of the field when e = 0, thus proving a conjecture of
Kleshchev and Ram [31, Conjecture 7.3]. Moreover, using Theorem C, this implies
that the module category of the cyclotomic quiver Schur algebras is Koszul over an
arbitrary field when e = 0.

As we were finishing this paper we received a preprint by Stroppel and Web-
ster [42] which, building on [45], constructs a family of graded algebras as convo-
lution algebras on the cohomology of quiver varieties. Over an algebraically closed
field of characteristic zero they show that cyclotomic quotients of these algebras
are isomorphic to the cyclotomic Schur algebras associated to arbitrary quivers of
type A. Further, the graded decomposition numbers of the Stroppel-Webster cy-
clotomic quiver Schur algebras are polynomials with non-negative coefficients, so
that the basic algebras of the these algebras are positively graded. Therefore, The-
orem C and the uniqueness of Koszul gradings implies that the Stroppel-Webster
quiver Schur algebras for the linear quiver are graded Morita equivalent to our
quiver Schur algebras in characteristic zero.
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INDEX OF NOTATION

P {pezy |i*el”}
D* Simple Rj-module (e Basis elements of S»
d(t), d,(’t) Permutations: t = t*d(t) = ‘t“d/(f) s, 1L, Basis elements of 'R,Q
da.(q)  [A*:LH], P Identity map on G*
degt Tableau degree Q' Positive root lattice
codegt  Tableau codegree Qr {(BeQ" | 25 #0}
def g Defect of B € Q7 res Residue sequence for tableaux
DM M  Graded dimension of M RA Quiver Hecke algebra
A* V*  Weyl and costandard modules R A block of R
Ax,Va  Sign dual (co)standard modules  sgn Sign automorphism
et ey KLR idempotents e(i*), e(in) SA Quiver Schur algebra
exu(q)  Inverse decomposition number Sh A block of S»
b\“ b;M Graded exterior powers Si: Sign-dual quiver Schur algebra
Fn,Fg3 Graded Schur functors GH S, Graded Specht modules
G’i, Gy Graded permutation modules btd(%,,\) Standard tableaux
Gn Ducarr G* Std(22){t | te t* and res(t) = i* }
End4 End in A-Mod Std, (Z2){t | t, > tand res(t) =i, }
END 4 All A-module endomorphisms 7—>\ { (l"‘75) | = Std“’()\) }
3 Combinatorial Fock space T {(p,s) | s €Stdu(A)}
HA M5 Cyclotomime Hecke algebras ™ T Tﬂti’ng modules "
Hom Degree preserving maps in A-Mod 5 o Trace form on RQ
PLO“A All(é‘)mOdUIe lzorr;omorphisms t”., tu Initial and final p-tableaux
i*i, res(t*) and res(t, uo, TR —
P e | S o =) Vi Vg modaes

(R

K Multicharge determining A, =z A commutative ring
s Restricted multipartitions for R% Az Graded symmetric power
L Simple S;-module >, » Dominance orderings
I Conjugate multipartition [M:L"], Graded decomposition number
Pt Positive weight lattice [N:D*], Graded decomposition number
pr Projective cover of L* ® Contragredient dual
L Multipartitions of n # HoM (?, A)-dual

2. GRADED REPRESENTATION THEORY AND COMBINATORICS

In this chapter we set our notation and give the reader some quick reminders
about graded modules and graded algebras, by which we mean Z-graded modules
and Z-graded algebras. Expert readers may wish to skip this chapter.

2.1. Modules and algebras. Throughout this paper, Z will be an integral do-
main. In this paper a graded Z-module is a Z-graded Z-module M. That is, as
Z-module, M has a direct sum decomposition

M:@Md.

d€Z
If m € My, for d € Z, then m is homogeneous of degree d and we set degm = d.
If M is a graded Z-module and s € Z let M(s) be the graded Z-module obtained
by shifting the grading on M up by s; that is, M (s)q = My_s, for d € Z. Let ¢ be
an indeterminate. If Z = K is a field then graded dimension of M is the Laurent
polynomial

(2.1) DM =Y dimg My € N[g, ¢ '].
dez.
In particular, dimyx M = (DM M) ’q:l' If M is a graded Z-module let M be the

ungraded Z-module obtained by forgetting the grading on M. All modules in this
paper will be graded unless otherwise mentioned.
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If M is a graded module and if f(q) = 3 ,cz faq® € Nlg,¢7'] is a Laurent
polynomial with non-negative coefficients {f;}4ez then define

M = P M(a)®/.
deZ

Thus, DiM(f(¢)M) = f(qg) Dim M.

A graded Z-algebra is a unital associative Z-algebra A = @, , Aq which is
a graded Z-module such that AgA. C Agse, for all d, e € Z. It follows that 1 € Ag
and that Ay is a graded subalgebra of A. A graded (right) A-module is a graded
Z-module M such that M is an A-module and MzA, C My, for all d,e € Z.
Graded submodules, graded left A-modules and so on are all defined in the obvious
way.

Let A-Mod be the category of finitely generated graded A-modules with degree
preserving maps. Then

Homy(M,N) ={f € Homa(M,N) | f(Mg) C NgforalldeZ},

for all M, N € A-Mod. The elements of Homy4 (M, N) are homogeneous maps of
degree 0. More generally, for each d € Z set

Hom (M, N)4 = Hom 4 (M{(d), N) = Homs (M, N{—d)).

Thus, Homy (M, N) = Homs (M, N)g. If f € Homa(M,N)y then f is homoge-
neous of degree d and we set deg f = d. Define

Homa (M, N) = @) Homa(M, N)a = @5 Homa (M(d), N).
deZ deZ
Then Homy4 (M, N) =2 HoM4 (M, N) as a Z-module. Define

Enda (M) =Homu(M,M) and END4(M)=Homa(M,M)

similarly.
If r > 0 and M and N are graded A-modules let Ext’y (M, N) be the space of
r-fold extensions of M by N in the category A-Mod of (graded) A-modules and set

EXT (M, N) = @ Ext}, (M(d), N).
deZ

Once again, Ext’y (M, N) = ExT (M, N), for all r > 0.

We emphasize that Hom4 and Ext 4 are the spaces of homomorphisms and ex-
tensions in the category A-Mod of finitely generated (graded) A-modules. These
should not be confused with Hom 4 and Ext4 in the (ungraded) category A-Mod.

Now suppose that A comes equipped with a homogeneous anti-isomorphism .
Then the contragredient dual of the graded A-module M is the graded A-module

(2.2) M® = Homz (M, 2) = @) Homz(M(d), 2)
deZ

where Z is concentrated in degree zero and where the action of A on M@ is given
by (fa)(m) = f(ma*) for all f € M®, a € A and m € M. The module M is
self dual if M = M® as graded A-modules. If Z = K is a field then, as a vector
space, Md® = Homz(M_g4, K), so that DIM M® = DiM M, where the bar involution
T:Z[q,q Y| — Z[q,q" ] is the linear map determined by ¢ +— ¢~ and ¢~ — q.

If m is an A-module then a graded lift of m is an A-module M such that
M = m as A-modules. In general, there is no guarantee that an A-module will
have a graded lift but it is easy to see that if an indecomposable A-module has
a graded lift then this lift is unique up to isomorphism and grading shift; see
for example [5, Lemma 2.5.3]. The irreducible and projective indecomposable A-
modules always have graded lifts; see [21].
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Suppose that M is a graded A-module and that X = { X* | p€ &} is a col-
lection of A-modules such that { X* | p € &} are pairwise non-isomorphic A-
modules. Then M has a X-module filtration if there exists a filtration

M=MyDM D---DM;=0

such that there exist p, € & and d,. € Z with M, /M, 1 = X*r(d,), for 0 < r < s.
The graded multiplicity of X* in M is the Laurent polynomial

s—1
(2.3) (M:X")y =Y q" €N[g,q¢7"].
r=0

In general, this multiplicity will depend upon the choice of filtration but for many
modules, such as irreducible modules and Weyl modules, the Laurent polynomial
(M : X*), will be independent of this choice. We set [M : X#], = (M : X*), when
this multiplicity is independent of the choice of filtration.

2.2. Cellular algebras. All of the algebras considered in this paper are (graded)
cellular algebras so we quickly recall the definition and some of the important prop-
erties of these algebras. Cellular algebras were defined by Graham and Lehrer [22]
with their natural extension to the graded setting given in [25].

2.4. Definition (Graded cellular algebra [22,25]). Suppose that A is a Z-graded
Z-algebra which is free of finite rank over Z. A graded cell datum for A is an
ordered quadruple (£, T, B,deg), where (£2,1>) is the weight poset, T()) is a
finite set for A € &, and

B: [] T() xT(A)— A;(5,4) = by, and  deg: [[ T(\)—Z
A€ re

are two functions such that B is injective and

(GCy) If X € & and s,t € T(A) then bs¢ is homogeneous of degree degbs¢ =
degs + deg t.

(GCq) {bst | 5,t€T(N) for A € &} is a Z-basis of A.

(GCy) If 5,t € T(A), for some A € &, and a € A then there exist scalars ry,(a),
which do not depend on s, such that

bsta = Z Tt (a)bsy (mod AP?),
veT(N)

where A™* is the Z-submodule of A spanned by {b%, | p > X and a,b € T'(u) }.
(GC3) The Z-linear map *: A— A determined by (bs¢)* = bys, for all A € & and
all 5,t € T'(\), is a homogeneous anti-isomorphism of A.

A graded cellular algebra is a graded algebra which has a graded cell datum.
The basis {bse | A € & and s,t € T(A} is a graded cellular basis of A.

If we omit the degree assumption (GCgy) then we recover Graham and Lehrer’s [22]
definition of an (ungraded) cellular algebra.

Fix a graded cellular algebra A with graded cellular basis {bs¢}. If A € & then
the graded cell module is the Z-module A* with basis { b, | t € T()\) } and with

A-action
bia = Z T'to(@)by,
veT(N)
where the scalars ry,(a) € Z are the same scalars appearing in (GCz). One of
the key properties of the graded cell modules is that by [25, Lemma 2.7] they come
equipped with a homogeneous bilinear form (, ) of degree zero which is determined
by the equation
<bt7 bu>bsn = bstbuu (mOd ADA) )



QUIVER SCHUR ALGEBRAS 7

for s,t,u,0 € T(A). The radical of this form
rad A* = {z € A* | (z,y) =0 for all y € A*}
is a graded A-submodule of A* so that L* = A*/rad A* is a graded A-module.

2.5. Theorem ( [25, Theorem 2.10]). Suppose that Z is a field and that A is a
graded cellular algebra. Then:

a) If L #0, for A € 2, then L is an absolutely irreducible graded A-module
and (LM)® = L.

b) {LMk) | A€ 2, L* #0 and k € Z} is a complete set of pairwise non-isomorphic
irreducible (graded) A-modules.

Suppose that Z = K is a field and let M be a (graded) A-module and L* be a
graded simple A-module, for p € &. We define

(2.6 0 1, = S LA

d€eZ
to be the graded multiplicity of L* in M. By the Jordon-Hélder theorem, [M : L],
depends only on M and L* and not on the choice of composition series for M. More-
over, [M : L"), € Nlg,¢"*] and [M : L*],—y = [M : L"] is the usual decomposition
multiplicity of L* in M.

2.7. Corollary ( [25, Lemma 2.13]). Suppose that Z is a field and that A\, € A
with L* # 0. Then [A* : LM, =1 and [A* : L*], # 0 only if A > p.

Let Zy = {ue P | L" #0}. Then Dy(q) = ([A* : LM )rem pew, is the
decomposition matrix of A. For each u € &y let P* be the projective cover
of L* in A-Mod. Then C4(q) = ([P* : L*]4)x uc 2, is the Cartan matrix of A.

If M = (my;) is a matrix let M* = (mj;) be its transpose. We will need the
following fact.

2.8. Corollary (Brauer-Humphreys reciprocity [25, Theorem 2.17]).
Suppose that Z = K is a field. Then Ca(q) = Da(q)"Dalq). In particular, C4(q)
is a symmetric matric.

Finally, we note the following criterion for a cellular algebra to be quasi-hereditary.
In particular, this implies that A-Mod is a highest weight category. The definitions
of these objects can be found, for example, in [19, Appendix]. Alternatively, the
reader can take the following result to be the definition of a (graded split) quasi-
hereditary algebra (with a graded duality).

2.9. Corollary ( [22, Remark 3.10]). Suppose that A is a graded cellular algebra.
Then A is a split quasi-hereditary algebra, with standard modules { A* | p € £},
if and only if L # 0 for all p € .

2.3. Basic algebras and graded Morita equivalences. Let Z = K be a field.
Recall that a finite dimensional ungraded graded, K-algebra B, is a basic algebra
if every irreducible By-module is one dimensional. It is well-known that every
finite dimensional (ungraded) K-algebra B is Morita equivalent to a unique (up to
isomorphism) basic algebra B,,. In fact, if {P;,..., P} is a complete set of pairwise
non-isomorphic projective indecomposable B-modules then the basic algebra of B
is isomorphic to Endg(P; & --- @ P,.).

Now let A and B be two finite dimensional graded K-algebras. Following [21, §5],
the algebras A and B are graded Morita equivalent if there is a equivalence of
graded module categories A-Mod 2 B-Mod. Equivalently, by the results of [21, §5],
A and B are graded Morita equivalent if and only if there is an (ungraded) Morita
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equivalence E : A-Mod = B-Mod and a functor of the graded module categories
G : A-Mod — B-Mod such that the following diagram commutes:

A-Mod B-Mod
Forget j j Forget
A-Mod B-Mod
where the vertical functors are the natural forgetful functors. Let {Pi,...,P,}

be a complete set of pairwise non-isomorphic graded projective indecomposable B-
modules such that P; 2 P;(k) for any ¢ # j and k € Z. The graded basic algebra
of A is the endomorphism algebra

"A=ENDus(PL @ ©P,).

By construction, every irreducible ?A-module is one dimensional so A is a basic
algebra. Moreover, ’A is naturally Z-graded and, on forgetting the grading, "A is
the basic algebra of A. Note, however, that unlike in the ungraded case, two graded
Morita equivalent graded basic algebras need not be isomorphic as graded algebras;
see the discussion following [21, Corollary 5.11].

2.4. Schur functors. Several places in this paper rely on Auslander’s theory of
“Schur functors” which we now briefly recall in the graded setting following [8, §3.1].

Let A be a finite dimensional graded algebra (with 1) over a field K and let
A-Mod be the category of finite dimensional graded right A-modules. Suppose
that e € A is a non-zero idempotent of degree zero and consider the subalgebra
eAe of A. Then eAe is a graded algebra with identity element e. (In all of our
applications, A will be a quasi-hereditary graded cellular algebra.)

Define functors F: A-Mod — eAe-Mod and G:eAe-Mod — A-Mod by

(2.10) F(M) = Me = Homa(eA, M) and G(N) = N ®cae €A,

for M € A-Mod and N € eAe-Mod, together with the obvious action on mor-
phisms. By definition, these functors respect the gradings on both categories. In
general, however, these functors do not define equivalences between the (graded)
module categories of A and eAe.

To define an equivalence between eAe-Mod and a subcategory of A-Mod we
need to work a little harder. Suppose that M is an A-module and define O.(M)
to be the largest submodule M’ of M such that F(M’) = 0 and define O¢(M) to
be the smallest submodule M” of M such that F(M/M") = 0. Any A-module
homomorphism M — N sends O.(M) to O.(N) and O¢(M) to O%(N), so O,
and O¢ define functors on the category of A-modules.

2.11. Lemma ( [8, Corollary 3.1c|). Suppose that M and N are A-modules such
that O¢(M) = M and O.(N) = 0. Then Homyu (M, N) = Homa.(FM,FN).

Let A(e)-Mod be the full subcategory of A-Mod with objects all A-modules M
such that O.(M) = 0 and O°(M) = M. It is easy to check that any A-module
homomorphism M — N induces a well-defined map M/O.(M) — N/O(N) so
that there is an exact functor

H:A-Mod— A-Mod; M s M/O.(M).

By [8, Lemma 3.1a], the functors HoGoF and FoHoG are isomorphic to the identity
functors on A(e)-Mod and on eAe-Mod respectively. This implies the following.
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2.12. Theorem ( [8, Theorem 3.1d]). The restrictions of the functors F and HoG in-
duce mutually inverse equivalences of categories between A(e)-Mod and eAe-Mod.

In [8] this result is proved only for ungraded algebras, however, the proof there
generalizes without change to graded module categories.

2.5. Koszul algebras. In this section we recall the definition of Koszul algebras
and the properties of these algebras that we will need. Throughout this section we
work over a field K.

Let A = @,y Aa be a finite dimensional graded K-algebra. Then A is posi-
tively graded if A; = 0 whenever d < 0. That is, all of the homogeneous elements
of A have non-negative degree.

Suppose that A is positively graded and that M = @,., Mg is a finite dimen-
sional A-module. For each d € Z let Gry M = @,~, M. Since A is positively
graded Gr, M is an A-submodule of M. Let a be minimal and z be maximal such
that gr, M = M and Gr, M = 0, respectively. Then the grading filtration of M
is the filtration

M= ,M2gr, M2D---2¢gr, M=0.

If A is semisimple then the quotients Gr, M/ Gr,, , M are semisimple for all d € Z.

Let M Drad' M Drad®? M > --- D rad” M D 0 be the radical filtration of M
so that rad' M = rad M and rad"** M = rad(rad’ M) for each i > 1. Similarly, let
M D soc® M Dsoc® LM D --- D soct M D0 be the socle filtration of M where
soc! M = soc M and soc*! M is the inverse image of soc(M/soc’ M) under the
natural projection M —» M/soc’ M. It is a general fact that the radical and socle
filtrations of finite dimensional modules have the same length ¢¢(M), which is the
Loewy length of M.

An A-module M is rigid if its socle and radical filtrations coincide. That is,

rad” M/ rad™ ' M =2 soc®M)=rF1 /g0 M= pf

for 0 < r < 0U(M).
The following result follows easily from the definitions.

2.13. Lemma ( [5, Proposition 2.4.1]). Suppose that A is positively graded and
that Ag is semisimple and that A is generated by Ay and Ay. Let M be any finite
dimensional A-module.
a) The radical filtration of M coincides with the grading filtration of M, up to
shift, whenever M /rad M is irreducible.
b) The socle filtration of M coincides with the grading filtrations of M, up to
shift, whenever soc M 1is irreducible.

Consequently, M is rigid whenever soc M and M/rad M are irreducible.

2.14. Definition (Beilinson, Ginzburg and Soergel [5, Definition 1.2.1]).
A Koszul algebra is a positively graded algebra A = @,., Aq such that Ay is
semisimple and, as a right A-module, Ay has a (graded) projective resolution

e P25 P P 5 A0
such that P? = P94 is generated by its elements of degree d, for d > 0.
More generally, if A is a graded algebra then A-Mod is Koszul if it is graded

Morita equivalent to the module category of a Koszul algebra.
We will need the following property of Koszul algebras.

2.15. Proposition ( [5, Corollary 2.3.3]). Suppose that A is a Koszul algebra.
Then A is quadratic. That is, A is generated by Ay and A; with homogeneous
relations of degree two.
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3. CycLoToMIC QUIVER HECKE ALGEBRAS AND COMBINATORICS

In this chapter we recall the facts about the cyclotomic quiver Hecke algebras of
type I'. and the cyclotomic Hecke algebras of type G(¢,1,n) that we need in this

paper.

3.1. Cyclotomic quiver Hecke algebras. Khovanov and Lauda [28,29] and
Rouquier [40] introduced (cyclotomic) quiver Hecke algebras for arbitrary oriented
quivers. In this paper we consider mainly the linear quiver of type Ao.

For the rest of this paper we fix a non-negative integer n and an integer e €
{0,2,3,4...}. Let T'. be oriented quiver with vertex set I = Z/eZ and edges
i —>i+1, forall i € I. To the quiver I', we attach the standard Lie theoretic data
of a Cartan matrix (a;j); jer, fundamental weights { A; | ¢ € I}, positive weights
Pt =37, NA;, positive roots QT = @,.; Noy; and we let (-,-) be the bilinear
form determined by

(ai,aj) = Qjj and (Al—,aj) = 51’]’, for ’L,] el

More details can be found, for example, in [27, Chapt. 1].

Fix, once and for all, a multicharge k = (k1,...,#¢) € Z' and define A =
Ak) = Az, + -+ Ag,, where & = k (mod e). Equivalently, A is the unique
element of PT such that

(3.1) (Ayo;)=#{1<1I<{| ki =i(mode) }, for all i € I.

All of the bases for the modules and algebras in this paper depend implicitly on
even though the algebras themselves depend only on A.
Let &,, is the symmetric group on n letters and let s, = (r,r + 1). Then

{51, 82,...,8n—1} is the standard set of Coxeter generators for &,,. The group &,
acts from the left on I"™ by place permutations. More explicitly, if 1 < r < n and
i= (’il, Ce ,Zn) € I™ then s,i = (il, Ce ,’L.Tfl,ir+1,l’r77;r+27 Ce 7’Ln) eI

3.2. Definition. Suppose that n > 0 and e € {0,2,3,4,...}. The cyclotomic
quiver Hecke algebra, or cyclotomic Khovanov-Lauda—Rouquier algebra,
of weight A and type T'. is the unital associative Z-algebra R} = RQ 2 with
generators

{’(ﬂl,...7wn_1}U{yh...,yn}u{e(i) | iEIn}

and relations

g e(i) = 0, e(i)e(j) = dje(i), Yiepmed) =1,
yre(i) = e()yr, Pre(i) = e(s,i)1y, YrYs = YsYrs

(33) wryr—i-le(i) = (Z/M/Jr + 5irir+1)e<i)v yT+1¢’r6(i) - (Qpryr + §irir+1)e(i)7
(3.4) Yrys = Ystr, ifs#rr+1,
’(/)rws = wsw'm if ‘T — S| > 1,
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0, if i, =431,
(Yr+1 — yr)e(i), if i = ipy1,
vre(i) = § (yr — yri1)e(d), if iy =iy,
(Yr+1 = Yr)Wr — yrgr)e(d), ifip S
e(i), otherwise,
(Yr1¥rrgr + De(i), if iy =irp2 = irg1,
(Vr4190rrp1 — De(i), if ip = tpyo < Trp1,
Vrthri1thre(i) =  (Yr1rPrst + Yr — 2Urs1 + yrg2)e(i),

if i, = ir+2 = ir+17

Yrp1rPryre(i), otherwise.

for i,j € I"™ and all admissible » and s. Moreover, R is naturally Z-graded with
degree function determined by

dege(i) =0, degy, =2 and degise(i) = —ay, 4

syts+1)
forl<r<n,1<s<nandiel".

Inspecting the relations in Definition 3.2, there is a unique anti-isomorphism *
of R2 which fixes each of the generators of R2. Thus * is homogeneous of order 2.
Hence, by twisting with « we can define the contragredient dual M® of an RA-
module M® = HoMz (M, Z) as in (2.2).

In this paper we will mainly be concerned with the special cases when either
e =0 or e > n. We note that if e = 0 then I = Z so that, at first sight, the set
{e(i) | i€ Z"} is infinite and the relation ), ;. e(i) = 1 does not make sense.
However, at least when Z is a field, it follows from Theorem 3.7 below that e(i) # 0
for only finitely many i € I"™. The presentation of Rﬁ} depends on the orientation
of I'., however, it is easy to see that different orientations of I', yield isomorphic
algebras; see the last section of [28].

3.2. Cyclotomic Hecke algebras. Recall that A € P and that we have fixed an
integer e € {0,2,3,4,...}. We now define the ‘integral’ cyclotomic Hecke algebras
HA of type G(£,1,n), where £ =3, _;(A, ;) is the level of A.

Fix a integral domain Z which contains an element & = £(e) such that one of
the following holds:

e ¢ > ( and £ is a primitive eth root of unity in Z.
e ¢ =0 and £ is not a root of unity.
e £ =1 and e is the characteristic of Z.

Define §¢1 = 1if £ =1 and ¢y = 0 otherwise. For k € Z set

w )& ifEF#T,
(3:5) ¢ _{k, ife&=1.

The definition of £ = £(e) above ensures that €0 = ¢li+e)  Hence, £ is well-
defined for all i € I = Z/eZ.

3.6. Definition. The (integral) cyclotomic Hecke algebra H2 = HA(Z,¢)
of type G(¢,1,n) is the unital associative Z-algebra with generators Lq,..., Ly,



12 JUN HU AND ANDREW MATHAS

T1,...,T,_1 and relations
H(Ll _ g(i))(/\m) =0, L.L; =LL,,
i€l
(T, +1)(T, — €) = 0, ToLy + 8¢t = Lot (T — € + 1),
TsTs1Ts = Ts 11T Tsy1,
T.Ly = LT, ift#rr+1,
1.7, = T,T,, if |[r —s| > 1,

where 1 <r<n,1<s<n-—1land1<t<n.

It is well-known that H2 decomposes into a direct sum of simultaneous gener-
alized eigenspaces for the elements Li,..., L, (cf. [23]). Moreover, the possible
eigenvalues for L1, ..., L, belong to the set {£® | i € I'}. Hence, the generalized
eigenspaces for these elements are indexed by I™. For each i € I"™ let e(i) be the
corresponding idempotent in ’Hﬁ (or zero if the corresponding eigenspace is zero).

3.7. Theorem (Brundan-Kleshchev [10, Theorem 1.1]). Suppose that Z = K is a
field, € € K as above, and that A = A(k). Then there is an isomorphism of algebras
RE =2 HA which sends e(i) — e(i), for all i € I™ and

S (=g Lye(i), ifE#1,

Yr e
Yo (Lr—iveli),  ifE=1.
ieln
s = D (Tot Po(i)Qs(0) (i),
ieln

where P,.(1), Q-(1) € R[Yr,Yr11], for L <r <n and1 <s<n.

By [10, Theorem 1.1], the inverse isomorphism H» -~ Eﬁ is determined by

Z Eir(l - yr)e(i)a lff 7é 17

ieln
(38) b D G tyed), ifE=1.
iern
(3.9) To > (¥sQs(i) — Puli))e(i),
ieln

forl1<r<nand1l<s<n.

Henceforth, we identify the algebras EQ and HA under this isomorphism. In
particular, we will not distinguish between the homogeneous generators of Eﬁ and
their images in H2 under the isomorphism of Theorem 3.7.

Even though we will not distinguish between R and H2 we will usually write R
when we are working with graded representations and H2 for ungraded represen-
tations.

3.3. Tableaux combinatorics. This section sets up the tableaux combinatorics
that will be used throughout this paper. Recall that a partition of n is a weakly
decreasing sequence p = (u1 > p2 > ...) of non-negative integers which sum to n.
Set |u| = n.

A multipartition of n is an /-tuple g = (u™M]...|u®) of partitions such that
D]+ -+ || = n. We identify a multipartition with its diagram

p={rel)|1<c<pforr>1and1 <1</},
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which we think of as an /-tuple of boxes in the plane. For example,

= ||_ | |>.

(3,2]2,1%(3,1) = ( | |

The partitions x(M, ..., u) are the components of g and we identify ;) with
the subdiagram { (r,¢,l) | 1 <c¢ < ug) for r > 1} of u. A node is any triple A =
(r,c,l) € N2 x {1,2,...,£}. In particular, the elements of (the diagram of) u are
nodes.

Let &2 be the set of multipartitions of n. Then 2 is a poset under the
dominance order > where A > u, for multipartitions A and p of n, if

-1 i -1 %

l l
(LI UEIEED Wil
k=1 j=1 k=1 j=1

for1<lI</landi>1. If A\> pand X # p then we write A > u.

Suppose that g € &2 is a multipartition of n. Then a p-tableau is a bijective
map t: p—{1,2,...,n}. We think of a p-tableau t = (tV), ... () as a labelling
of (the diagram of) p, where t") is the restriction of t to (™). In this way, we talk
of the rows, columns and components of a tableau t. For example,

12]3]|[6]7]] [w0]11]12] oluafu3] | |5]8]|[1]3]4]
NE B 13] and | o[ 6| 2]
K3 L7

are two (3,2]2,1%]3,1)-tableaux. If t = (t1), ... t)) is a p-tableau then define
Shape(t) = , so that Shape(t™) = u("), for 1 < r < £. If t1(k) = (r,¢,1), then
we set comp, (k) = [.

A p-tableau t is standard if its entries increase along the rows and down the
columns of each component. For example, the two tableaux above are standard. If t
is a standard tableau let t;; be the subtableau of t which contains 1,2, ..., k. Then
a tableau t is standard if and only if Shape(t;y) is a multipartition for 1 < k < n.
The dominance order induces a partial order on the set of tableaux where s > t if

Shape(s,) > Shape(t;), for 1 <k <n,

for 5 € Std(M\) and t € Std(p), where A\, pu € P2, Again we write s > t if 5 > t
and s # t. Let Std(u) be the poset of standard p-tableau and set Std?(p) =
Std(p) x Std(p), Std(2;}) = U,ue pa Std(p) and Std*(2)) = U,ue o1 Std?(p).

We extend the dominance order to Std*(22) by declaring that (s,t) » (u,v)
if s > u and t > v. We write (s,t) » (u,0) if (s,t) » (u,0) and (s,t) # (u,0).

If p € P8 let p' = (u(z)/, cey u(l)l) be the conjugate multipartition which is
obtained from p by reversing the order of its components and then swapping the
rows and columns in each component. Similarly, the conjugate of the p-tableau t
is the p’-tableau t' which is obtained from t by reversing its components and then
swapping its rows and columns in each component. The reader is invited to check
that A > g if and only if g/ > X and that s > tif and only if ' > &/, for A\, u € 22
and for s,t € Std(22).

Fix a multipartition g € 2. Define t* to be the unique standard p-tableau
such that t* > t, for all t € Std(p). More explicitly, t* is the p-tableau which has
the numbers 1,2, ..., n entered in order, from left to right, and then top to bottom,
along the rows of the components ..., ¥ of u. Define ty = (t“')’. By the
last paragraph t,, is the unique p-tableau such that t > t,, for all t, € Std(u).
The numbers 1,2, ...,n are entered in order down the columns of the components
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p® o u® of . The two tableaux displayed above are t* an t,,, respectively, for
n=(3,2[2,12]3,1).

Recall from Section 3.1 that we have fixed a multicharge x € Z’. The residue
of the node A = (r,¢,l) is res(A) = Kk + ¢ — r (mod e) (where we adopt the
convention that ¢ = ¢ (mod 0), for ¢ € Z). Thus, res(A) € I. A node A is an
i-node if res(A) = i. If tis a p-tableaux and 1 < k < n then the residue of k
in t is res¢(k) = res(A4), where A € p is the unique node such that t(4) = k. The
residue sequence of t is

res(t) = (res¢(1),resy(2),...,res((n)) € I™.

As two important special cases we set i* = res(t*) and i, = res(t,,), for p € P2,

Following Brundan, Kleshchev and Wang [13, Definition. 3.5] we now define the
degree and codegree of a standard tableau. Suppose that g € £22. A node A is
an addable node of p if A ¢ p and pU {A} is the (diagram of) a multipartition
of n+ 1. Similarly, a node B is a removable node of p if B € pp and p\ {B} is a
multipartition of n — 1. Given any two nodes A = (r,¢, 1), B = (r/,c, '), say that
B is strictly below A, or A is strictly above B, if either I’ > or I’ =1 and 1’ > r.
Suppose that A is an i-node and define integers

_ addable i-nodes of p removable i-nodes of p
da(p) = #{ strictly below A } - #{ strictly below A }’
and

A _ addable i-nodes of p removable i-nodes of p
d%(p) = #{ strictly above A } o #{ strictly above A }

If t is a standard p-tableau then its degree and codegree are defined inductively
by setting degt =0 = codegt, if n = 0, and if n > 0 then
degt =degty(,—1) +da(pn) and codegt = codegt(,,—1)+ d* (),

where A = t7!(n). The definitions of the residue, degree and codegree of a tableau
all depend on the choice of multicharge k. We write resf, deg” t and codeg™ t when
we want to emphasize this choice.

Recall that Q* = @,.; Na; is the positive root lattice. Fix 3 € Q1 with
> icr(Ai, B) = n and let

IP={iel" | ay+ -+, =0}.

Then I is an &,-orbit of I"™ and it is straightforward to check that every &,-orbit
can be written uniquely in this way for some 8 € Q7.
Fix 8 € QT and set ﬁf} ={Ac 2} |i* c I?}. The defect of 3 is the integer

def = (A.5) — 5(6,5).

The defect of a block is closely related to the degree and codegree of the corre-
sponding tableaux.

3.10. Lemma ( [13, Lemma 3.12]). Suppose that 3 € QF and s € Std(u), for
ne 3%\ Then degt + codegt = def B.

3.4. Standard homogeneous bases. We are now ready to define some bases for
the cyclotomic quiver Hecke algebra R%. Recall from the last section that &, is
the symmetric group on n letters and that {s1,s2,...,s,—1} is the standard set of
Coxeter generators for G,,. If w € G,, then the length of w is the integer

lw)=min{k | w=8p ...5, forsome 1 <ry,...,rp<n}.

A reduced expression for w is a word w = s,, ...s,, such that k = f(w). It
is a general fact from the theory of Coxeter groups that any reduced expression
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for w can be transformed into any reduced expression using just the braid relations
SpSt = St8t, if |1 —t| > 1, and $,8,418r = Sp41878r41, for 1 <r <n—1.

Hereafter, unless otherwise stated, we fix a reduced expression w = s, ... 5y,
for each element w € &,,, with 1 <ry,... 7y < n. We define ¢, = ¢, ...%,,. By
Definition 3.2, the generators ,., for 1 < r < n, do not satisfy the braid relations.
Therefore, the element 1, € R? depends upon our choice of reduced expression
for w.

The symmetric group &,, acts from the right on the set of tableaux by com-
position of maps. If t € Std(u) define two permutations d(t) and d'(t) in &,, by
t = t*d(t) and t = t,d'(t). Conjugating either of the last two equations shows that
d'(t) = d(t). Let w,, = d(t,). Then it is easy to check that w, = d(t)d’(t)~! and
Lwy) = £(d(t)) + €(d' (1)), for all t € Std(p).

Recall from section 3.3 that i* = res(t*) and that i, = res(t,).

3.11. Definition ( [25, Definitions 4.9, 5.1 and 6.9]). Suppose that u € 2. Define
non-negative integers df’, ..., d* and d}“ ..., d,, recursively by requiring that
df + -+ dif = deg(th}) and dj, + -+ d}, = codeg(tur),

for 1 <k <n. Now set e¥ = e(i*), e, = e(ip),
v d . dy,
yH =yt ooyn” and oy, =yt .ynt.
For a pair of tableaux (s, t) € Std*(pu) define
Vst = 1/’,;(5)6”9“7/111(0 and g = ¢§/(5)euyu¢d’(t)-

3.12. Remark. We warn the reader that the element 97, is equal to the element 9., ,
in the notation of [25,26] so care should be taken when comparing the results in
this paper with those in [25,26]. We have changed notation because Definition 3.11
makes several subsequent definitions and results more intuitive. For example, see
Corollary 3.19 and Proposition 3.26 below.

In general, the elements 15 and ., depend upon the choice of reduced expres-
sion that we fixed in Definition 3.11 because v¥1,...,%,_1 do not satisfy the braid
relations. Similarly, 14(s)-1 and 97 will generally be different elements of RA.

It follows from Definition 3.11 and the relations that if (s, t) € Std*(222) then

(313) e(i)wste(j) = 1 res(., j,res(t '(/Jst and e(i)¢;t€(j) = 6i,res(s)6j,res(t)w;ta
for all i,j € I"™. More importantly we have the following.

3.14. Theorem (Hu-Mathas [25, Theorems 5.8 and 6.11]). Suppose that Z is an
integral domain such that e is invertible in Z whenever e # 0 and e is not prime.
Then:

a) {wst | (s,t) € Std*(P2)} is a graded cellular basis of H2 with weight poset
(22:,>) and degree function degsi = degs + degt.
b) {d)st | (s,t) € Std*(P2)} is a graded cellular basis of H2 with weight poset
(22, <) and degree function deg )., = codegs + codeg t.

As we explain in Proposition 3.26 below, these two bases are essentially equiva-
lent. The 1)-basis and the 1)’-basis are dual to each other in the following sense.
3.15. Lemma ( [26, Corollary 3.10]). Suppose that (s, t), (u,v) € Std*(ZZ2). Then:

a) Ysttl, # 0 only if res(t) = res(u) and u > t.

b) ¥l st # 0 only if res(s) = res(v) and v > s

We need the following dominance results. Recall from §3.3 that (s, t) » (u, v) if
s>uand t>v.
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3.16. Lemma ( [26, Corollary 3.11]). Suppose that (s,t) € Std(Z2) and 1 <r < n.
Then
Ystyr = Z ayoPuo  and w;tyr = Z buv P,

(u,0)e P2 (u,0)e 22
(w,0)>(s,t) (5,6)»(u,0)

for some scalars ayy,byy € Z.
The next result strengthens [25, Lemma 5.7].

3.17. Lemma. Suppose that 1s¢ and ﬁﬁt are defined using possibly different reduced
expressions for d(s) and d(t), where 5,t € Std(\) for some X € P2, Then

Vst — TZJEL = Z SwPuo  and w;t - 7[’2{ = Z tutﬂ/’im
(u,0)>(s,t) (5,£)»(u,0)
where sy, # 0 only if res(u) = res(s), res(v) = res(t) and degu+degv = degs+degt
and tyy 7 0 only if res(u) = res(s), res(v) = res(t) and codegu+codeg v = codegs+
codeg t.

Proof. By [26, Theorem 3.9] the transition matrices between the 1)-basis and the
(non-homogeneous) standard basis of H2 from [17] is triangular with respect to
strong dominance partial order ». The same remark applies to the 1[1—basis, which
is defined using possibly different choices of reduced expressions. Applying this
result twice to rewrite ’(/AJst in terms of the 1-basis, via the standard basis, proves

the first statement. The second statement can be proved similarly. ]

3.5. The blocks of RL. We now show how Theorem 3.14 restricts to give a basis
for the blocks, or the indecomposable two-sided ideals, of Rﬁ Suppose that 8 € QT
and define
RY = esRE = egRAep, where eg = Z e(i).
iers
Set QFf = {Be€Qt | eg #0in RS }. By [35, Theorem 2.11] and [7, Theorem 1],
if Z= K is a field then R} is a block of R}. That is,

(3.18) Ry = P R5
BeQT
is the decomposition of R into blocks. Theorem 3.7 implies that Eg\ = 7—[2, where
HE = egHDep.
Recall that 25 = {A € 22} | i* € I’ }. Combining Theorem 3.14, (3.13) and
(3.18) we obtain the following.

3.19. Corollary ( [25]). Suppose that Z = K is a field and that 8 € Q. Then
{Wst | 5, € Std(N) for X € 24} and {¥}, | s,t € Std(A) for A € 2} }
are graded cellular bases of Rg. In particular, ’Rg is a graded cellular algebra.

3.6. Trace forms and contragredient duality. Recall that a trace form on A
is a map tr : A— Z such that tr(ab) = tr(ba), for all a,b € A. The trace form tr
is non-degenerate if whenever a € A is non-zero then tr(ab) # 0 for some b € A.
An algebra A is a symmetric algebra if it has a non-degenerate trace form.

3.20. Theorem ( [25, Theorem 6.17]). Suppose that 3 € Q" and that Z = K 1is
a field. Then there is a non-degenerate homogeneous trace form Tg :R/ﬁ\ — K of
degree —2def B such that 78(Vstty,) # 0 only if (u,0) »(s,t), for (s,1), (u,v) €
Std?(2L). Moreover, 5(tsetl}s) # 0, for all (s,t) € Std*(PL). Consequently, Rg
1 a graded symmetric algebra.
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By the results in Section 2.2 the two cellular bases {1} and {¢/,} can both
determine cell modules for R2. Suppose that p € 9{1\ The Specht module S*
is the cell module of R2 corresponding to p determined by the ¢-basis and the
dual Specht module S, is the cell module corresponding to p determined by the
¢’-basis. As their names suggest, the modules S* and S,, are dual to each other.

3.21. Proposition ( [25, Proposition 6.19]). Suppose that p € @é\, where 3 € Q.
Then S* = S%(def ) as graded RA-modules.

We warn the reader that the module S, is denoted S,,, in [25, §6]. This change
in notation is a consequence of Remark 3.12. The notation for Specht modules and
dual Specht modules in this paper is compatible with [30].

As in section 2.2, define D* = SH/rad S#. A multipartition p € 22 is a
Kleshchev multipartition if D* 2 0. Let

Kn={pe2) | D*#0}

be the set of Kleshchev multipartitions. Ariki [1] has given a recursive description
of the Kleshchev multipartitions. Observe that K2 depends on the choice of multi-
charge x and not just on A. Building on Ariki’s result, we classified the irreducible
graded R2-modules.

3.22. Proposition ([25, Corollary 5.11]). Suppose that Z = K is a field. Then
{D*(d) | pe KD andd e Z}
is a complete set of pairwise non-isomorphic irreducible graded Rﬁ—modules.

In the case when e = 0 the Kleshchev multipartition are sometimes called re-
stricted and FLOTW multipartitions in the literature. In this case they have a
particularly simple description.

3.23. Corollary ( [44]). Suppose thate =0, k1 > kg > -+ > kg and p € PN, Then
1) = )

rt+RI—Ki41 —

= (u®, ..., 1®) is a Kleshchev multipartition if and only p
for1<Il<flandr>1.

3.7. The sign isomorphism. Following [30, §3.2] we now introduce an analogue
of the sign involution of the symmetric groups for the quiver Hecke algebras. Unlike
the case of the symmetric groups, this map is generally not an automorphism of R2.

In section 3.1 we fixed the multicharge k = (k1,...,#¢) € Z° which deter-
mines A = A(k). Define & = (—#y,...,—r1) € Z° and let A’ = A(k’). Then
A’ € P*. More precisely, if A = > ier lilg, for I; € N, then A" =37, [;A_;. Simi-
larly, if 8 =3, by, for some b; € N, define ' = Y, bja—;. Then g’ € Q*.

As noted in [30, §3.2], the relations easily imply that there is a unique degree
preserving isomorphism of graded algebras sgn: R,/@\ —)R,/@\; such that

(324) €(i) = 6(—i), Yr = —Yp and 1/)5 = —%

forieI?, 1<r<n,and 1 <s < n. The map sgn induces a graded Morita
equivalence

R% -Mod =+ R4 -Mod

in the sense of Section 2.3. This equivalence sends an Rg,/ -module M to the R/B\—
module M8 where M*®8" is equal to M as a graded vector space and where the
RA-action on M38 is given by m - a = msgn(a), for a € R and m € M3&,

In section 3.3 we defined the residue sequence res(t) = res®(t), degree degt =
deg” t and codegree codegt = codeg™ t of a standard tableau t, all of which depend
on k. Similarly, we set res’(t) = res® (t), deg/(t) = deg”,(t) and codeg’(t) =
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codeg” (t). Recall also that d’(t) € &,, is the permutation determined by t = t,d’(t)
and that t' is the tableau which is conjugate to t.
The following result is easily checked using the definitions.

3.25. Lemma. Suppose that 3 € Q). Then f@é\,/ ={u | pe 9”;} }. Moreover,
ifte Std(gzé‘) then t € Std(@é\/), res’(t) = —res(t'), deg’ t = codegt/, codeg’ t =
degt’, and d'(t) = d(t).

Deploying this notation we obtain a t-basis and a v¢/-basis for R4,. An easy
exercise in the definitions shows that these bases are closely related to the corre-
sponding bases of Rg. More precisely, Definition 3.11 and Lemma 3.25 quickly give
the following:

3.26. Proposition. Suppose that 8 € Q;, that sgn:R/ﬂ\ —>R£,, is the sign iso-
morphism and (s, t) € Std*(2Z)). Then

sgn(Yse) = 55“/’;'0 and sgn(d)i,t) = 5latws’t’a

where e4¢ = (_l)deg t+e(d(s))+(d(t) gnd E;t _ (_1)C0deg tu+f(d'(5))+l(d’(t))'

Applying sgn to the construction of the Specht modules of 7'\’,3,', from section 2.2,
we obtain:

3.27. Corollary. Suppose that Z is an integral domain such that e is invertible
in Z whenever e # 0 and e is not prime. Then

SH = (Su)E  and S, = (SM)ER

This is in agreement with [30, Theorem 8.5]. See also Proposition 3.21.

4. GRADED SCHUR ALGEBRAS

In this chapter we introduce the quiver Schur algebras, or graded cyclotomic
Schur algebras. We will show that they are quasi-hereditary graded cellular alge-
bras. Unless otherwise stated, the following assumption will be in force for the rest
of this paper.

4.1. Assumption. We assume that e = 0 or e > n and that Z is an integral
domain in which e is invertible if e £ 0 and e is not prime.

By [25, Lemma 5.13], this assumption assures that R2 is free as a Z-module. We
expect that this is true for any commutative ring, in which case our quiver Schur
algebras are free over any commutative domain.

4.1. Permutation modules. Following the recipe in [17] we will define the graded
cyclotomic Schur algebra to be the algebra of graded R:-endomorphisms of a par-
ticular RA-module G. In this section we introduce and investigate the summands
of GA.

4.2. Definition. Suppose that p € 2. Define G* and G, to be the RA-modules:
G* = YRy (—degt*) and G, =y, R (—codegty).

The degree shifts appear in Definition 4.2 because we want G* to have a graded
Specht filtration in which S* has graded multiplicity one and we want G, to have
a graded dual Specht filtration in which S,, appears with multiplicity one.

The modules G* and G, are closely related. To explain this recall the isomor-
phism sgn: RA —RA from (3.24).
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4.3. Lemma. Suppose that p € 2%, for B € Q. Then
GH 2 (Gu)*®  and G, = (GH)*
as graded R -modules.
Proof. This is immediate from Definition 4.2 and Proposition 3.26. U
As a consequence, any result which we prove for G* immediately translates into

an equivalent “sign dual” result for G,. Our first aim is to give a basis for these
modules. If g, A € 22 define

Std*(A) = {s € Std(A) | s > t* and res(s) =i* },
Std,(A) = {s € Std(A) | t, > s and res(s) =i, },
and set Std*(22) = Uyemn Std*(A) and Std,(22) = Une pa Stdu(A).
4.4. Lemma. Suppose that p € P2, Then
a) G* is spanned by { uwwibl, | u € Std*(X),v € Std(X) for X € 2M}.
b) Gy is spanned by { ¢y, st | 8 € Stdu(A),t € Std(A) for A € PAY.
Proof. By definition, e#y* = ¥ so, by Theorem 3.14, G* is spanned by the

elements of the form g1, for (u,v) € Std*(22). Hence, part (a) follows from

Lemma 3.15(a). Part (b) follows by a similar argument or by applying Lemma 4.3.
U

For any positive integer m < n set sy, =1 and Yy ;m =1. If 1 <r <m let

Srom = Sp .- Sm—1 and '(/Jr,m =Y. Pm—1,
*

and set sy, , = s;}n and ¢ = ¢y,,. To show that the elements in Lemma 4.4
give bases of G#* and G, we need the following technical lemma. This result does
not require the assumption that e =0 or e > n.

4.5. Lemma. Suppose that e € {0,2,3,4...}, i € I™ and that there exists an
integer r, with 1 < r < n, and non-negative integers d,, ...,dy,dn+1 such that
dr. >ds > d; > dyq1 whenever r < s <t <n and i, =15 = 1.
. d, dn, .
Then ¥yl .. ydre(i) € yr ' . yn™e(sn 1) RE.

Proof. We argue by downwards induction on r. If » = n then %, , = 1 and there
is nothing to prove since, by assumption, d, > d,,+1. Suppose then that » < n. We
divide the proof into two cases.
First suppose that ¢, # i,+1. Then, using (3.3), we have that
., dr n 1) — id dr n ]
wn,ryg7 yr++11 cee yi 6(1) - 'wn,rJrl{lpryg yr++11 R yz 6(1)

dy ,d, dy dn (3
= ¢n7r+1yr+1yr Jrlwryr-ijr; < Yn 6(1)

_ dy dn. , dri2 dy, .
- yr +1wn,7"+1yr+1y7‘+2 ce yn 6(57'1)¢r~
dr . dyy1 dr dy, . . .
Therefore, ¢, yd y .. ydne(i) € yr ™y .. yn T e(snri)RA by induction
because the sequence s,i and the non-negative integers d,,d;4o,...,d, 1 satisfy

the assumptions of the Lemma.

Now consider the remaining case when i,, = i,.11. A quick calculation using (3.3)
shows that 1, commutes with any symmetric polynomial in y, and y,11, so that
wr(yryr—&-l) = (yryr—i-l)qpr- By assumption, d, > d41 > dn+1a S0

. d, . _
¢n,rygr . yiRE(l) = qun,r—&-lwr(yryr-&-l)dr+1yr+52 . yzne(l)y;jr dr1

d, . _
= wn,T+1(yryr+1)dr+lyr++22 s ygne(srl)il)ry}i’" drs

_.d dry1, dri2 d s dr—d
=Y 1Y Y Y e(sel) ey T
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Since i, = i,41 the sequence s,i and the integers d,1,...,d, again satisfy the
assumptions of the Lemma. Hence, the result follows by induction. O

Before we can give bases for G* and G, we need to introduce a special choice
of reduced expression. Recall our definition of ¥,.,, and ¥, (for any 1 < r < n)
above Lemma 4.5. It is well-known and easy to prove that

n= |_| SrnGn_1 (disjoint union),

and that £(s, ,w) = €(spn) + f(w) = l(w) +n —r, for all w € &,,_1. Hence, we
have the following:

4.6. Lemma. Suppose that w € S,,. Then there exist unique integers ra,...,Tn,
with 1 <1, <k, such that w =Sy n...Sry2 and l(w) =L(sp, n) + -+ L(Sry2)-

The factorization w = s, p .. 5152 in Lemma 4.6 gives a reduced word for w.
As a temporary notation, define ww Vrom - Pryo € RY and if (s,t) € Std%(X)
let d)st = 7//d(5)€ Y ?/’d(t) Define 1/) ¢ similarly.

Observe that the choice of reduced expression used to define 1 is compatible
with the natural embeddings &,, — &,, for 1 < m < n. More precisely, if n
appears in t in the same position as r appears in t* then d( ) = sppd(ty, ,) and
0d(t)) = n —r 4 £(d(ty,_,)). Consequently, 1y ® = Yr nU’Q . Similarly, if n
appears in t in the same position as r appears in t,, then d'(t) = 3,,7nd’(t¢"71) and

E(d’( )) =n—r+ g(d/(t\Ln—l)) so that d}d’(t) @[}r,n@[}d/(t%il)
The next Lemma makes heavy use of Assumption 4.1.

4.7. Lemma. Suppose that e =0 or e > n and s € Std*(X) and u € Std,(N), for
some X € PV, Then g € G* and z/AJ{m € Gy.

Proof. We prove only that 77/}59 € G*, the second statement being equivalent by
Proposition 3.26 and Lemma 4.3.

We argue by induction on n. If n = 1 then s = t* and there is nothing to prove,
so assume that n > 0. Let s, = §,(,_1), A® = Shape(s), p, = Shape(tf(n_l)).
Then s; € Std*+(A®+). Suppose that n appears in the same position in s as r does
in *. Let v = Shape(s(-—1)). By definition, zﬁd(ﬁ) = ¢T7nlﬁsi so, recalling the
definition of the integers d7', ..., d; from Definition 3.11, we have

~ ~ ~ A A ~ A A

1/}59‘ = ¢§(5)y)‘€}‘ = '(/);L'wn,ryuygr cee yi"e)‘ = 1/)§¢Z/V¢n,ryg"' oo yi”e)‘,
where the last equality follows because if r < j < n then 1); commutes with y*
by (3.3). In order to apply Lemma 4.5 to the sequence d,, = d2, ... ,d, = d},d, 1 =
dt we have to check that d} > d} > d} > d* whenever r < s < t < n and
i® =i} =i}, To this end, observe because e = 0 or e > n each component contains
at most one addable or removable node of each residue. Therefore, if p € 22 and
1 <m <n then

df =#{1<1<{]|1>compy(m)and k; =i, (mod e) }.

m

Now if r < s <t < n then, by definition, comp () < comp(s) < compya () so
that d» > d2 > d whenever i = i® = i}*. Further, comp (r) < compa(s) <
comp (t) < comp.(n), since s > t#, so that d» > d» > d} > d* because
i) =i = 4% = i¥. Therefore, by Lemma 4.5, there exists h € R such that

A I3

R - A d} 2 d .
bon = Vi e =08y ey (s i)
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. A x .
Note that by definition y** = y”yf«l“rl . .yiil and that y,, commutes with 15, by
(3.4). Therefore, it follows by induction that there exists A’ € R% such that

5 D LA LT ar p, di - A
Yser = Yn ¢;¢y e(i Vit h = yp" eyt .. 'yn—ll h'h e My Ry,

This completes the proof of the Lemma. O

4.8. Remark. If we drop Assumption 4.1 then it is easy to construct examples where
the argument of Lemma 4.9 fails if 0 < e < n.

4.9. Corollary. Suppose that e =0 or e > n and s € Std*(X) and u € Std, (),
for X € PL. Then for any t € Std(N), Yse € G* and Y} € G-

Proof. We show only that thy € GH. If ¢y = the then the result follows by
Lemma 4.7. Otherwise, by Lemma 3.17, there exist s,, € Z such that

st = Yot + Z SunWuv,
(u,0)€Std* (1)
(u,0)p(s,t)
where sy, # 0 only if res(u) = res(s). Consequently, if sy, # 0 then u > s > t#
and v > t so that u € Std”(v), for some v > A. By induction on dominance,
Yup = Yue gy belongs to GH whenever (u,u) » (s,t). Moreover, Vs € GH by
Lemma 4.7. Hence, 95 € G* as we wanted to show. O

We can now give bases for G* and G,. Almost everything in this paper relies
on the next result.

4.10. Theorem. Suppose that u € PL. Then

a) {Ys¢ | 5 € Std*(v) and t € Std(v), for v € P2} is a basis of GF.
b) {¢l, | weStd,(v) and v € Std(v), for v € P} is a basis of G,,.

Proof. Parts (a) and (b) are equivalent by Lemma 4.3 and Proposition 3.26, so it
is enough to prove (a). Suppose first that Z = K is a field. By Corollary 4.9,
st € G* whenever s € Std*(v) and t € Std(v), for some multipartition v € 222,
Therefore, by Theorem 3.14,

dimg G* > Y #Std(v).

uEStdH (v)

On the other hand, by Lemma 4.4 the dimension of G* is at most the number on
the right hand side. Hence, the set in the statement of the theorem is a basis of G*,
so that the Lemma holds over any field K.

To prove the proposition when Z is not a field by Assumption 4.1 it suffices to
consider the cases where Z = Z if e = 0 or e is a prime; or Z = Z[e"!] ife > 0
and e is not a prime. In these cases, Z is always a principal ideal domain. Let G be
the Z-module of G* with basis {1 | 5 € Std*(v),t € Std(v), for v € 22 }. We
have a short exact sequence of Z-modules

0—G—Gr —GH/G—0.
Therefore, for every field K which is a Z-algebra there is an exact sequence
G®ZK—>G“’®2K—>G“/G®2K—>O.

By the first paragraph of the proof, the first homomorphism in the last exact
sequence is an isomorphism. It follows that G¥*/G ® z K = 0 for any field K which
is an Z-algebra. Applying Nakayama’s Lemma (see, for example, [3, Proposition
3.8]), G*/G = 0. That is, G* = G. Hence, elements in the statement of the
theorem are a basis for G* as required. O
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Theorem 4.10 has several useful corollaries. We first note that it gives explicit
formulae for the graded dimensions of these two modules:

_ § E deg s+deg t—deg tH*
Dim Gl"‘ — q g g g ,
seStd* (v) teStd(v)
DM G# _ § E qcodeg u+codeg v—codeg t,, .

uestd,, (v) veStd(v)
4.11. Corollary. Suppose that p, A € 2. Then
{ s | 5 € Std*(v) and t € Std*(v), for v € P2}
is a basis of G* N (G*)* and
{4 | 5 € Std(v) and t € Stdx(v), for v € P2}
is a basis of G, N (GA)*.

Proof. Suppose that a € G*¥N(G*)* and write a = Z(s,t)eﬂg TstWst, for re¢ € Z and
(s,t) € Std(22). Then re¢ # 0 only if s € Std*(#2) by Theorem 4.10. Similarly,
since a* € G* we see that r # 0 only if t € Std*(22). Moreover, if s € Std*(v)
and t € Std™(v) then V5 € G N (G*)* by two more applications of Theorem 4.10.
This proves the first claim. The second statement follows similarly. O

4.12. Corollary. Suppose that p € 2.

a) Write Std*(22) = {s1,...,8m}, ordered so that i < j whenever s; > s,
and set v = Shape(s;), for 1 < i,7 < m. Then G* has a (graded) Specht
filtration

GF=G">G"'>...>G' >G"=0
such that G*/G=1 = sV (degs;), for 1 <i<m.

b) Write Std,,(2)) = {u1,...,w}, ordered so that i > j whenever u; > u; and
set v; = Shape(u;), for 1 < i,j < 1. Then G, has a (graded) dual Specht
filtration

Gu=G>2G_12--->2G >2Gy=0
such that G;/G;—1 = Sy, {codegu;), for 1 <i <.
Proof. Suppose that 1 < i < m. Define G’ to be the Z-submodule of G* spanned
by {ts,¢ | 1 <j<iandteStd(r’)}. Then G' is a submodule of G* by Theo-
rem 4.10 and Definition 2.4(GCy). Finally, G*/G*~!' = S¥"(degs;) by the construc-
tion of the cell modules given in section 2.2. More precisely, if § = s; then the
isomorphism is given by 1 — 1bs¢ + G*~ 1, for all t € Std(v?). This proves (a). The
proof of (b) is almost identical. O

In particular, note that S* is a quotient of G* and that S, is a quotient of G,.

4.13. Corollary. Suppose that p € P2, Then:

a) {Ywwl, | v Std*(v) and t € Std(v), for v € P2} is a basis of G*.
b) { ¥, ¥st | 5 € Stdu(v) and t € Std(v), for v € P2 Y s a basis of G,,.

Proof. By Lemma 4.4 and Theorem 3.14(b) the elements in (a) span G, so it
remains to show that they are linearly independent. This is a direct consequence
of Theorem 4.10. The proof of (b) is similar. O

4.14. Corollary. Suppose that p € Wé\ Using the notation of Corollary 4.12:

a) G* has a dual Specht filtration G* = H,,, > Hy_1 > --- > H;1 > Hy =0
such that H;/H;_1 = S,i{degt"* + codegs;), for 1 <i < m.



QUIVER SCHUR ALGEBRAS 23

b) Gy has a Specht filtration G, = H >H1>...> H' > H° =0 such that
H'/H=1 = % {codegt,, + degu;), for 1 <i <.
Proof. We prove only (b). Part (a) can be proved in a similar way. Mirroring the
proof of Corollary 4.12, define H® to be the Z-submodule of G/, spanned by the
elements
{ ¥, Yuye | t€StA(vy) and I+1-i <j <1},

This is an R2-submodule of G}, by Theorem 3.14 and (GCz) of Definition 2.4. As
in the proof of Corollary 4.12 it is easy to verify that H;/H;_; = S¥' (codeg t, +
degu;); compare with [26, Corollaries 3.11, 3.12]. The degree shift is just the

difference of the degrees of the basis elements of S** and the degrees of the elements
wéutu ,(/)Uit' D

Recall from (3.18) that RY = @ﬁ Rg and that Rlﬁ\ carries a non-degenerate
homogeneous trace form 73 of degree —2def 5 by Theorem 3.20. The following
argument is lifted from [36, Proposition 5.13].

4.15. Theorem. Suppose that Z = K is a field and that p € 2%, for B € Q.
Then, as R2-modules,

(G*)® = GH(—2def B) and (G,)® = G, (—2def B).

Proof. Both isomorphisms can be proved similarly, so we consider only the first
one. Using Theorem 4.10 and Corollary 4.13, define a pairing G* x G¥ — Z by

<1/}5t7 1, ¢;n>u =178 (%t%u),

for all s € Std*(A), t € Std(A), u € Std*(v), v € Std(v), for some A, v € 32[/3‘ By
Theorem 3.20, 73(9st¥ys) 7# 0 and 75(¢si1by,,) # 0 only if (u,v) » (s, t). Therefore,
the Gram matrix of (, ), is upper triangular with non-zero elements on the diagonal
so that (, ), is non-degenerate. Recalling the degree shift in the definition of G*
from Definition 4.2, it is easy to check that (, ), is a homogeneous bilinear map of
degree —2def 5. Therefore, to complete the proof it is enough to show that ( , ),
is associative in the sense that

<¢5th7 Qﬁwwwﬁnﬁ = <1/}5t7 wi“t“w;nh*>uu

for all h € R2 and all (s, t) and (u,0) as above. Write 1, h* = > rqpt’,,, where in
the sum (a,b) € Std2(5”é\) and rqp € Z. Then the left hand side is equal to

(ath, Yooy = T8(Wathtlp) = D> TapTa(Watlpy)

(a,b)eStd?(25)

Now 75 is a trace form, so 7g(¥st¥y,) = T5(¥44¥st) is non-zero only if a > s and
res(a) = res(s) by Lemma 3.15, so that a € Std“(g%\). Consequently,

(sth, ¢tutﬂ¢;n>u = Z TabTs (lffsti/fi,u)

aesStd” (v),besStd(v)
ueg’g

— Z Tab (Vst, Vir Wiy )

aeStd* (v),beStd(v)
ue@[/}

- <wst7 ¢t“t”w;nh*>u7

where the last equality follows using Lemma 3.15 and Corollary 4.13. Hence, the
form (, ), is associative. Since taking duals reverses the grading, the map = —
(@, ), for £ € G*, gives the required isomorphism. O
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4.2. Quiver Schur algebras. We are now ready to define the quiver Schur alge-
bras of type I'¢, which are the main objects of study in this paper.

4.16. Definition. Suppose that A € Pt and let G2 = 69;469’\ G*. The quiver
Schur algebra of type (I'c, A) is the endomorphism algebra

Sy =83 (Ie) = ENDRa (Gy).
By definition S is a graded algebra. As a Z-module, S» admits a decomposition

Sy= EP Homga(G”,GM).

v,pu€PH
By Theorem 3.20, R2 is a graded symmetric algebra, so by [16, 61.2]
(4.17) HoMga (GY,G*) = G* N (G¥)*

as graded Z-modules, where the isomorphism is given by ¥ — ¥(e¥y”). By Corol-
lary 4.11, if 5 € Std*(\) and t € Std” (), for A € e@é\, then s € G* N (GY)* so
we can define a homomorphism W4 € Homga (G¥, G*) by

(4.18) T ¥y’ h) = Ygih,  for all h e RA.

We think of U#” as an element of S2 in the obvious way.

4.19. Example It is necessary to include g and v in the notation ¥ because a
given tableau can belong to Std*(v) for many different p. The simplest example
of this phenomenon occurs when t = ([0|0) and x = (0,0), so that A = 2A,.
Let p = (1]-) and v = (—]1). Then t € Std*(p) N Std”(p) and ¢y = ety €
G* N GY N (GH*)* N (G¥)* by Corollary 4.11. Therefore, the tableau t determines
four different maps in S2:

UhH  GH — GH; ePyPh — yih, Uil GF— GY; ePyPh — yih,
U GY — GH;e¥y” h — yih, Y GY —GY;e¥y"h — Pyh.
We have deg UH* = 0, deg UHY = 1 = deg ¥{* and deg ¥¥¥ = 2. O
For A € 22 let T> = {(1,5) | s € Std*(\) for p € 22},

4.20. Theorem. Suppose that e =0 or e > n and let Z be an integral domain such
that e is invertible in Z whenever e # 0 and e is not prime. Then S2 is a graded
cellular algebra with cellular basis { V&Y | (u,5), (v,t) € T> and X € P2}, weight
poset (PN, >) and degree function deg UHY = degs — deg t* + degt — deg t¥.

Proof. By Corollary 4.11 and (4.17) the maps in the statement of the Theorem are
a basis of S, As in [17, §6], it is now a purely formal argument to show that this
basis is a cellular basis of S2. We have already verified axioms (GC4) and (GCy)
from section 2.2. Axiom (GCjs) is a straightforward calculation using the fact that
Y% = s by Theorem 3.14; see [17, Proposition 6.9]. It remains to check (GCs)
but this follows by repeating the argument from [17, Theorem 6.6(ii)], essentially
without change, using Corollary 4.11 and Theorem 3.14. O

4.21. Remark. In [17, Theorem 6.6] the cellular basis of the cyclotomic ¢g-Schur alge-
bras is labelled by semistandard tableauz of type v. The tableaux in 7> are, in fact,
closely related to semistandard tableaux. Using the notation of [17, Definition 4.2],
if (v,t) € T then v(t) is a semistandard A-tableau of type v.

4.22. Example If £ = 2 then it is an interesting combinatorial exercise to show
that Sé\ is positively graded; see [24]. If £ > 2 then Sé\ is in general only Z-graded.
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For example, suppose that A = 3Ag, p = (1]2,1]2?) and

-@ @)

7 8

Then it is easy to check that t € Std*(2,1]22|1) and that degt = 2 < degt* = 3.
Therefore, deg U{H = —2. O
Now that we know that S is a graded cellular algebra we can use the general
theory from section 2.2 to construct cell modules and irreducible S2-modules.
Suppose that A € Z2. The graded Weyl module A? is the cell module for S*
corresponding to X. More explicitly, A* is the S,’L\—module with basis

(4.23) {0V | (v,t) e T}

such that (®ASH + (S2)P*)/(S2)E* = A* under the map which sends U} +
(SMPX to WY, for (v,t) € T™.

As in section 2.2, the graded Weyl module A* comes equipped with a homoge-
neous bilinear form ( , ) of degree zero such that

(4.24) (TE TV TR = TRATHX (mod (D)),

for (u,5), (v,t) € T*. Define L* = A*/rad A*, where rad A* is the radical of this
form. Set VA = (AY)®.

4.25. Theorem. Suppose that e =0 or e > n. Then S is quasi-hereditary graded
cellular algebra with:

weight poset (PN, 1),

graded standard modules { AN | X € 21},

graded costandard modules { V> | A € 22}, and,

graded simple modules { LMk) | A€ ) and k € Z}.

Moreover, L* = (L*)® for all A € 22,

Proof. By definition, \Ilf;\)‘tX is the identity map on G, so <\Ilf‘,\, \Ilf‘,j =1 by (4.24).
Consequently, L* # 0 for all A € Z2. Therefore, L* = (L*)®, for A € &2}, and

{LME) | A e 2D and ke 2}

is a complete set of pairwise non-isomorphic irreducible S*-modules by Theo-
rem 2.5. In turn, this implies that S/ is a quasi-hereditary algebra by Corollary 2.9,
with standard and costandard modules as stated. O

For each A € 22 set U* = XY, . Then U (restricts to) the identity map on G*
and Y, U is the identity element of S2. As an Z-module, every S2-module M
has a weight space decomposition

(4.26) M= P M, where My=MI>
AepL

In particular, if A\,v € 22 then { VY | (v,t) € T*} is a basis of A) by (4.23).

4.27. Remark. Although we will not need this, the reader can check that if (v, t) €
T> then we can identify U¥ with the homomorphism G — S* which sends ¥ h
to Yagh, for h € RA. In this way, A can be identified with a S*-submodule of
Hompa (GA,8*). By Corollary 4.12 there is a projection map 7 : G* — S> such
that 7 (Y h) = Yah, for all h € RY. So, by Theorem 4.20 and the remarks
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after (4.23), the weight space A of the Weyl module A* can be identified with
the set of maps in HoMza (GY, SA) which factor through 7.

4.3. Graded Schur functors. We now define an exact functor from the category
of graded S2-modules to the category of graded RA-modules and use this to relate
the graded decomposition numbers of the two algebras. To do this it is useful to
introduce a slightly larger version of the quiver Schur algebra S2.

To this end let 22 = 22U {w}, where w is a dummy symbol, and set G = RA
and GQ = G2 © G¥. The extended quiver Schur algebra is the algebra

S} = Expra(Gh).

Suppose that v € 2. For convenience of notation, set Std“(v) = Std(v) and
define e¥ = 1 = y¥ € R2 so that G¥ = e“y*RE. Let t = 1 and set Yo =
e*y* = 1 and define degt” = 0. Extending (4.18), if v, pu € 222 and 5 € Std*(v)
and t € Std”(v) then define

T (e¥yh) = gh,  for all h € RA.
Then U’ € S and deg U*” = degs — deg t* + degt — degt”. For each multipar-
tition A € P2 set T = { (v, t) | t€ Std”(A) for v € 22} = TAU {w} x Std(A).
4.28. Proposition. The algebra S{LX is a graded cellular algebra with cellular basis

{UH | (u,5), (v, t) € T for xe 22 Y,
weight poset (PN, >) and degree function

deg UEY = degs — deg t* + degt — deg t”.
Moreover, S» is a quasi-hereditary algebra with standard modules (A | xe 2}
and simple modules { LMNK) | A€ 22 and k € Z.}.
Proof. By definition, Sjl\ is a subalgebra of S,/L‘ and, as a Z-module,

S} = 82 @ HoMga (G¥, GL) @ HoMpa (Gh, G¥) & ENDga (G¥).

For g1 € 22 there are isomorphisms of graded Z-modules G* = HoMga (G¥, GH)
given by 15 — WEC for s € Std*(v) and t € Std”(v) and v € 2. Therefore, the
elements in the statement of the Proposition give a basis of S{l\ by Theorem 4.20
and Theorem 4.10. Repeating the arguments from Theorem 4.20 and Theorem 4.25

shows that ST‘L\ is a quasi-hereditary graded cellular algebra. O

By Proposition 4.28, there exist Weyl modules A* and a simple modules > =
AX /rad A* for S2, for cach A € 22, As in (4.23), let {¥¥ | (v,t) € T} be the
basis of A,

Set UA = Z;LGB?‘:} UH and let U“ be the identity map on G* = RA. Then ¥2
is the identity element of S» and WA + ¥ is the identity element of S». By
definition, ¥ and % are both idempotents in S and WASAWA = SA Therefore,
by (2.10), there are exact functors

F@:SA - Mod — 82 -Mod and G":S»-Mod — S*-Mod
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given by F¥(M) = M¥A and G*(N) = N ®sa WASA By section 2.4 we also have
functors H,,, O, 0¥ : S» -Mod — SA -Mod such that H,, (M) = M /O (M).

4.29. Lemma. The functors F% and ij mduce mutually inverse equivalences of
categories between S2-Mod and S2 -Mod. Moreover,

Fo(AM =AY and  Fy(LY) =L,
for all X\ € 22,

Proof. Let M be an S{l\—module. Then, extending (4.26), M has a weight space
decomposition

M= M,, where M,, = M¥*,
pnEPH
Then, essentially by definition, F¥ (M) = GBAe@;} M. That is, F¥ removes the w-
weight space of M. In particular, F¥(A*) = A* and F¥(L*) = L*, for all yp € 22,
The fact that F¥(L*) = L¥ for all u € 22 implies that O“(M) = M, O, (M) =0,
for all M € SM-Mod. Therefore, H,, is the identity functor and Gﬁ = H,o Gg
Hence, the Lemma is an immediate consequence of Theorem 2.12. O

The identity map ¥U* on Rﬁ = GY is idempotent in ST’L\ and there is a graded
isomorphism of Z-algebras U SAWw = RA. Therefore, by (2.10), there are functors
(4.30) FA.SA Mod—RA-Mod and G2 :R2-Mod— S2 -Mod
given by FA(M) = M¥* = M, and GA(N) = N QR PUSA,

4.31. Proposition. Suppose that Z = K is a field. Then there is an exact functor
FA:SA _Mod — RA -Mod given by

FO (M) = (M @52 ST, for M € S&-Mod,
such that if X, u € P2 then FA(AN) = 5> and

FQ(LM) ~ {Duy if pe ks,

0, ifp¢Kp.
Proof. By definition, FA = FA 0 G, so F2 is an exact functor from S2-Mod to
RA -Mod. The functor Fﬁ is nothing more than projection onto the w-weight space.
Hence, if A € 22 then FA(A*) is spanned by the maps { ¥% | t € Std(X) }, since
Std“(A) = Std(A). The map &Y — 1y, for t € Std(X), shows that FA(AX) = >,
Hence, FA(A*) = S by Lemma 4.29. By Theorem 2.12, FA(L#) is an irreducible
RA-module whenever it is non-zero. A straightforward argument by induction on
the dominance ordering using FA(A*) = S*, Corollary 2.7 and Corollary 3.22 now
shows that FA(LK) = D# if yu € K2 and that FA(L#*) = 0 otherwise. O

Since F2 is an exact functor, we obtain the promised relationship between the
graded decomposition numbers of S and R2.

4.32. Corollary. Suppose that Z = K is a field and that X € Z) and p € K2.
Then [S* : D¥], = [A> : L¥],.

The graded decomposition multiplicities [A* : L¥], are one of the main objects
of interest in this paper so we give them a special name.
4.33. Definition. Suppose that A\, u € 2. Set

dap(q) = [AY : LF], = " [A* : LH(d)] ¢
dEZ
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Let DS;}((]) = (dAu(Q>)>\,u69’,§} and DRQ(Q) = (dz\u<Q)))\eﬁz’£,ueKﬁ be the graded
decomposition matrix of S and R2, respectively.

By Corollary 4.32, Dga(g) can be considered as a submatrix of Dga(g). For
future use we note the following important property of these (Laurent) polynomials.
This is a special case of Corollary 2.7.

4.34. Corollary. Suppose that A\, € PX. Then d,,.(q) = 1 and dx,(q) # 0 only
fAD> pwand A\, p € :@g for some B € Q.

4.4. Blocks of quiver Schur algebras. We now give the block decomposition of
the graded Schur algebra S2. The key observation is the following double centralizer
result.

4.35. Lemma (A double centralizer property). There are canonical isomorphisms
of graded algebras such that

Sy 2 ENDra(Gh)  and R} = ENDgu(Gh).
Proof. The first isomorphism is the definition of S» whereas the second follows
directly from the definition of S2 because

RA =~ HoMpga (RA,RE) = WSAI™ = Expg, (US2),
and USA = GA as right SA-modules. g
In order to describe the block decomposition of S2 we set Gg = D,.c ) G*
and define 8§ = ENDga(G3) if 8 € Q;f. Equivalently, §§ = ¥/S)W¥P, where
\Ijﬁ - Zp,e gZé\ .
The subalgebras Sé\ of SA are the blocks of S». More precisely, we have the

following.

4.36. Theorem. Suppose that Z = K is a field. Then
A A
Sy= D S5
BEQY

is the block decomposition of S» into a direct sum of indecomposable two-sided
ideals. Moreover, if B € Q then the cellular basis of S» in Theorem .20 restricts
to give a graded cellular basis of Sé\. In particular, Sé‘ 18 a quasi-hereditary graded
cellular algebra, for each B € Q.

Proof. First observe that if A € 2% and p € @é\, for a # B € QT, then all

of the composition factors of G* and G* belong to different blocks by 3.18 and
Corollary 4.12. Therefore, HOMRQ(GA, G*) = 0 so that, as Z-modules,

Sy = ENDRQ(GQ) = @ HOMRQ(GQ,GQ)

a,BeQt
_ Ay _ A
— @ Bewgy (@ - @ S
BeQ BeQ

It follows that the cellular basis of Theorem 4.20 restricts to give cellular bases for
the algebras Sé‘7 for 8 € Q. Therefore, Sé\ is a quasi-hereditary graded cellular
algebra for each 8 € Q.

It remains to show that each of the algebras Sé‘ is indecomposable. By the

double centralizer property, Lemma 4.35, the algebras R2 and S{l\ have the same

number of blocks and S» and S» have the same number of indecomposable two-
sided ideals by Lemma 4.29. By (3.18) the blocks of R are indexed by Q. As
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the elements of Q;F also index the subalgebras 83, the non-zero algebras Sé\ must
be indecomposable giving the result. O

For each 8 € @, define FS(M) = FAMYP), for an SA-module M. Tracing
through the constructions of section 2.4 we obtain the following.

4.37. Corollary. Suppose that 8 € Q. Then F2 restricts to give an exact functor
F4: 85 -Mod — R} -Mod..
Moreover, there is a decomposition of functors F» = Dscor Fg.

4.38. Corollary. Suppose that 3 € Q;. Then Sé‘ is a quasi-hereditary cover of Rg
in the sense of Rouquier [41, Definition 4.34].

Proof. This follows because, by definition, Fg is the composition of Fﬁb‘ with an

equivalence of categories and Fﬁ is fully faithful on projectives by Lemma 2.11. O

4.5. Sign-dual quiver Schur algebras. Suppose that 8 € Q;} and recall the sign
isomorphism sgn:R2—>T\’,§,’ from (3.24). Consider the R/B\,/ -module

G = P Gu.
nePh
The sign-dual quiver Schur algebra of type (I'., A')s is the algebra
sz: = Sf,,(l“e) = ENDRQ; (Gﬁl/).
By (3.24) and Lemma 4.3 we have

8% = Exngy (@@ Gu) = Exvgy (@ 6*) = b,
nePh nePL

That is, SP) = Sg as graded algebras. For X' € 3%\ let
Ta={w | @) eTV}={(v,t) | teStdu(A) for v e 25 }.

Chasing the isomorphism Sf: =~ Sé\ through Theorem 4.20, using Proposition 3.26,
shows that sz: is a graded cellular algebra with weight poset (9%‘;, <) and basis

{\Ijitu ‘ (u75)7(yat)€73\f0rA€<@§/},
where W5}, is the Rg: -endomorphism of Gﬁl, given by
\I'f/,tu(epyph) = 5pu¢;th7

for (u,s) and (v,t) as above and p € @g,/. Alternatively, this can be proved by
applying sgn to Theorem 4.25.

If A € 24 let Ay be the corresponding Weyl module of Sf: determined by this
basis and let Ly = Ax/rad Ay be its simple head.

Following the development of section 4.2 it is easy to show that S,’(i: is a quasi-
hereditary graded cellular algebra with weight poset (3%/},/, <). Alternatively, this
can be proved by applying sgn to Theorem 4.25. Applying sgn to the graded Weyl
modules and graded simple modules for s :—modules we deduce the following result
which should be compared with Corollary 3.27.
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4.39. Theorem. Suppose that 3 € Q. The sign isomorphism sgn: Rg —>R§/l n-
duces a canonical degree persevering, poset reversing, isomorphism of quasi-hereditary
graded cellular algebras sgn:Sé\HSK/. Moreover, we have isomorphisms

AH =~ Aig,n and LM = Lig,n
of Sé\-modules, for p e 9’;} Consequently,
[AA . L“]q = [A)\/ : LN’L}’
for all p, X\ € @é‘

5. TILTING MODULES

In this chapter we introduce the tilting modules for S, and the closely related
Young modules for R2, which play an important role in the following chapters.
Throughout this chapter we maintain our standing assumption 4.1.

5.1. Young modules. In this section we show that there exists a family of in-
decomposable RA-modules indexed by @,{b\ and that G* is a direct sum of these
modules, for each pu € 222,

Fix 8 € Q; and recall from (4.26) that every Sé‘—module has a weight space

decomposition. Analogously, as a right Sé‘—module, the regular representation of Sé\
has a decomposition into a direct sum of left weight spaces:

(5.1) Sé\ = @ Z#,  where ZH = \II“SQ for p € gzé\
nEPY

Since WH is an idempotent in S%, each weight space Z* is a projective Sé,\-module.

Let P* be the projective cover of L* (in the category of graded Sé\—modules).
By the theory of (graded) cellular algebras, P* has a filtration by Weyl modules
such that A* appears with graded multiplicity [A* : L¥],. On the other hand, Z*
has basis { W4 | (u,s), (v,t) € T and X € 2} }.

Write Std“(,@é\) ={s1,...,8,}, ordered so that a > b whenever A, > A;, where
A. = Shape(s.). In particular, s; = t*. If a > 1 let M, be the Z-submodule
of Z# spanned by the elements { W& | t € Std”(\,) for v € 24 and b > a}. By
Theorem 4.20, and Definition 2.4(GCy),

(52) ZW =M DMyD---DM, D0

is an Sé\—module filtration of Z* with M,/My1 = A*e(degs, — degt*), for 1 <
a < z. Thus, in the notation of section 2.1, Z* has a A-filtration in which A*
appears with graded multiplicity

(5.3) [ZH AA]q = Z qdegs—deg -
sEStdH (A)

Since Sg is quasi-hereditary [Z# : A*], is independent of the choice of A-filtration.

By the last paragraph [Z* : AM], = 1 and there is a surjection Z¥ — AW,
Moreover, A* appears in Z* only if XA > u. Therefore, since Z* is projective, it
follows that

(5.4) Z* = P* & @ pau(q) P>,

A>p
for some Laurent polynomials px,(q) € N[g, ¢ ].
5.5. Definition. Suppose that p € @g The graded Young modules are the
Rg—modules YH = Fg(P”) and Y, = (Y#)* where Y* is a Young module
for Sﬁ:
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The next result gives some justification for this terminology. In Lemma 6.11
below we will show that the graded Young modules are graded lifts of the Young
modules for H2 introduced in [36].

5.6. Proposition. Suppose that 3 € Q. and that A\, p € 9’2\ Then:
a) Y* and Y, are indecomposable Rg—modules,
b) If d € Z then Y* =2 Y¥(d) if and only if X\ = p and d = 0. Similarly,
Y, = Ya(d) if and only if A\ = p and d = 0.
C) GH=YHto EBAlzu p)\“(q)YA and Gu = Yu @ @Aﬁu pX#’(Q)Y)\-
d) Y* has a graded Specht filtration in which S* appears with graded multiplicity
(Y. S)‘)q =[A*: L*],
and Y,, has a dual graded Specht filtration in which Sx appears with graded
multiplicity
(Vi1 5x)g = [Ax = Lylg-
e) if pe IC? then Y* is the projective cover of DH.
Proof. By Corollary 4.38, the functor Fg is fully faithful on projective modules, so
ENDRQ (YH) = ENDSQ(P“) is a local ring since P* is indecomposable. Hence, Y'*
and Y, are indecomposable Ré\—modules. Moreover, the fact that Fg is fully faithful
on projectives also implies (b) since the P#(d) are pairwise non-isomorphic.
Applying the Schur functor from Proposition 4.31,

F§(Z") = UHSHU = Hompy (R, G*) = G,

Hence, part (c) follows from (5.4).

Now consider (d). If p € 24 then L* # 0 by Theorem 4.25. Therefore,

[PH . A, = [A*: LM,
by Corollary 2.8, for A € ,@é\ In particular, the multiplicity [P* : A*], depends
only on A and p. Since Fg is exact, and using Corollary 3.27,
(Yu 1 Sx)q = (YH/ : Sx)q = [AX : Lul]q =[Ax: Lulq,

where the last equality comes from Theorem 4.39. Hence, (d) holds. Note that
we are not claiming that the graded Specht filtration multiplicities for Y# are
independent of the choice of filtration.

Finally, part (e) follows by the exactness of F,/B\ and Proposition 4.31 because P*
is the projective cover of L*. O
5.7. Remark. The Laurent polynomials px/,/(¢) and [Ax : L,], in parts (c) of
Proposition 5.6 must be computed using the algebra N

Using Theorem 4.15 to argue by induction on the dominance ordering we obtain

the following.
5.8. Corollary. Suppose that p € ﬂé\, for B € QF. Then, as Ré\-modules

(YM)® = YH(—2def B) and (Y,))® = Y, (—2def B).

Proof. If p is maximal in @é\ then Y# = G* so in this case the result is a special
case of Theorem 4.15. If p is not maximal then the result follows by induction on
dominance using Proposition 5.6(b) and Theorem 4.15. O

Finally, we note that because P* is the projective cover of L#, and because Fg
is an exact functor, that we have the following.

5.9. Corollary. Suppose that pu € K5, for B € Q. Then Y* is the projective cover
of D*.
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5.2. Tilting modules. By Theorem 4.25, Sé\ is a quasi-hereditary algebra. An
Sé\—module T is a (graded) tilting module if it has both a filtration by shifted
Weyl modules A*(k), for X € 32;3\ and k € Z, and a filtration by the contragredient
duals of shifted Weyl modules.

On forgetting the grading, Theorem 4.25 says that the ungraded algebra Qﬁ is
quasi-hereditary. Therefore, by a famous theorem of Ringel [39], for each X € @é\
there exists a unique Qﬁ—module I)‘ such that

a) T is indecomposable.

b) T has both a A-filtration and a V-filtration.

¢) [T*: A =1 and [T*: A¥] # 0 only if X > p.
Ringel’s construction (see the proof of [39, Lemma 3]), extends to the graded case to
show that every tilting module for §ﬁ has a graded lift. Since T* is indecomposable
it follows that there is a unique graded lift T# of T* for which has a degree zero
homomorphism A¥ — T#. The aim of this section is to show that TH = (TH)® is
graded self-dual. To prove this we need another description of these modules.

Fix p € 9/’3\ and let 6,, € HoMpa (R§7 G.) be the map in S} given by

Ou(h) =i, ,h,  forall heRE.
We define analogues of the exterior powers for 8;3\ using the functor F¥ from (4.30).
5.10. Definition. Suppose that p € 24 Define E* = F(0,SM)(— def B).

Observe that E* is a right Sé\-module under composition of maps because, by
definition, E* is the set of maps from G to G, which factor through 6,,:

!
o ¥ wy
X lo"
Gu

This is similar to the description of the Weyl module A* given in Remark 4.27.

Our first aim is to give a basis for E#. Notice that if A € @é\, s € Std,(A)
and t € Std”(X) then ¢f ¢ s € G N (GY)* by Corollary 4.13. Therefore, we can
define 64" € HoMpa (G¥, Gp) by

61 (e¥yh) = U, Yoih,
for all h € Rj.
5.11. Theorem. Suppose that p € c@é\, for B € Q. Then
{087 | (p.s) € Ta and (v,t) € T for some X € 2} }
is a basis of E¥*. Moreover, considered as an element of B,
deg 0t = degs — degt, + degt — degt”.

Proof. Let E# = 9u5‘é‘- Then E* is a right S{l‘—modulc under composition of maps
and E# = F%(E*). By Proposition 4.28, E¥ is spanned by the maps 6, Uty for

m,v e 3”7/1\, s € Std,(A), t € Std¥(A), and A € @é\ By definition, we have that

9“ \I]slfty (euyuh) = 6uw '@[11” t Ysih.
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Therefore, applying Lemma 3.15, 6, U4 is non-zero only if p = w, res(s) = res(t,,)
and t,, > s. Moreover, in this case, 0, 947 = 047 Therefore, the elements

{047 | s € Std,(X) and t € Std” () for some v € P2 and A € 2} }

span E#. On the other hand, these elements are linearly independent because
{08F (e”y)} is a linearly independent subset of G,, by Corollary 4.13(a). Hence,
we have found a basis for E#. Applying the functor Fﬁ kills the w-weight space
of E*. So F¥ maps the basis we have found for E* to the elements in the statement
of the Theorem.

Finally, if (p,s),(v,t) € T*, for A € ﬂg, it remains to compute deg 6t
when 05" is considered as an element of E*. Recalling the degree shifts in the
definition of the three modules G¥, G, and E*, we find that

deg 6%} = codegt,, + degs + degt — degt” — def .

Applying Lemma 3.10 this is equal to the expression in the statement of the theo-
rem. (]

Let Std“(@é\) = {s1,...,8,} ordered so that a > b whenever A, > Ay, where
we set A, = Shape(s.) for 1 < ¢ <y. (Thus, s, =t,.) The proof of Theorem 5.11

shows that 0% = 0, ¥¥Y, so arguing as in (5.2) we obtain the following.

5.12. Corollary. Suppose that p € ,@é\ Then E* has a A-filtration
Et =FE, >Ey,>--->E, >0,

such that E,/E, {1 = A (degs, — deg t,), where v, = Shape(s,), for 1 <r <uy.
In particular, A" is a submodule of E¥, [E* : AP], =1 and [E¥ : A*], # 0 only
if AD> pu.

We now give a second basis of E#* and use it show that F* is a tilting module.
Suppose that u € Std,(v) and v € Std*(v), for A\, v € 4. Then ¢, €
G (G*)* by Corollary 4.12. Therefore, we can define 6453 € HOMRQ(G)‘, G,) by

Z&(ekykh) = quﬁt*tk h,
for h € Rj.

5.13. Lemma. Suppose that Z = K is a field and that p € 33[’3\ Then

{05, | (1) € Ta, (v,0) € T for some A € 25 }
is a basis of E¥*. Moreover, considered as an element of B,
deg Gfﬁ, = codegu — codeg t,, + codeg b — deg t*.

Proof. We first show that 6);;, € E# whenever u € Std,(A) and v € Std”(X), for

some X € 32113‘ By Theorem 4.10, 4y, = ¢y, @, for some z € Rg Therefore,

Gﬁi(eyyuh) = Yyorewh = 7//:/(“{“93%%"}1 =0 (2 ).

That is, 0),;, factors through 6, so that 0}, € E* as claimed. The elements in the
statement of the theorem are linearly independent because {0};;,(e”y”)} is a linearly
independent subset of G, by applying x to Theorem 4.13(a). Therefore, since we
are working over a field, we see that we have a basis by counting dimensions using
Theorem 5.11.

Finally, the degree of 9,‘;‘1’, is easy to compute using Lemma 3.10 as in the last

paragraph of the proof of Theorem 5.11. O
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Notice that unlike Theorem 5.11, the basis of Lemma 5.13 does not obviously
yield a A-filtration of E* because it is not clear how to write the basis elements
O, (e¥y”) in terms of the cellular basis of Sé‘. By appealing to Theorem 4.39 it
is possible to construct a V-filtration of E* using the basis of Lemma 5.13. The
existence of a V-filtration is also implied by the next result.

5.14. Theorem. Suppose that Z = K is a field and that p € @é\, for B e Q.
Then E¥ = (EP)®.

Proof. Using the two bases of E* given by Theorem 5.11 and Lemma 5.13, define
<, >,:E# x E¥ — K to be the unique bilinear map such that

<9£I‘ttl” 9;1?,.>N =78 ("/Jstz%u)v
for (p,s) € Ta, (v,1) € T, (1,u) € T, and (7,0) € TP for some X, p € @/’3\ By
Theorem 3.20, <@£¥,655 >, # 0 and <@, 645>, # 0 only if (u,v) »(s,t) and
deg(¥se)y, ) = 2def B. Therefore, <, >, is a non-degenerate bilinear form.

We claim that the bilinear form <, >/, is homogeneous. To see this suppose that
<O“*, 0>y # 0, for basis elements as above. Then deg (519, ) = 2 def 3 since 75
is homogeneous of degree —2 def 3. Using the degree formulae in Theorem 5.11 and
Lemma 5.13, together with Lemma 3.10, this implies that deg 95{)‘ + deg O, =
Hence, <, >, is a homogeneous bilinear form of degree zero.

To complete the proof it is enough to show that the form <, >, is associative
because then the map which sends 9?{)‘ to the function x — <95t)‘, x>, is an Sg—
module homomorphism. This can be proved by essentially repeating the argument
from the proof of Theorem 4.15. O

5.15. Corollary. Suppose that Z = K is a field and that p € @é\ Then E* is a
tilting module. Moreover,

E* =TH & @) tau(@)T?,
AD>p
for some Laurent polynomials tx,(q) € Nlg, ¢ '] such that tx,(q) = tau(g™t).
Proof. By Corollary 5.12 E* has a A-filtration. Therefore, since E¥ = (EH)®
it also as a V-filtration. Hence, E* is a tilting module so that E* has a unique
decomposition into a direct sum of tilting modules. By Corollary 5.12 T is a
summand of E* only if A > p and, moreover, T# appears with multiplicity one.
Therefore, E# = T" & Py, tux(q)T™ for some polynomials tx,(q) € Ng,q ™).
Finally, ta,(q) = tan(g™!) since E¥ is (graded) self-dual and because T 2 T%(d)
only if A\=v and d = 0. O
Arguing by induction on dominance we obtain the main result of this section.

5.16. Corollary. Suppose that p € 3%\ Then (TH)® = T#,

5.3. Twisted tilting modules. This section introduces the twisted tilting mod-
ules of Sé‘ which will later play the role of the canonical bases in the Fock space.
We start by discussing Ringel duality in the graded setting.

A full tilting module for Sé\ is a tilting module which contains every indecom-
posable tilting module, up to shift, as a direct summand. Hence,

A
By = P B
ue@[’;

is a full tilting module for Sg. Define the Ringel dual of Sg to be the graded
algebra ENDSQ (Eé\) (Strictly speaking, this is a Ringel dual of Sé\)

Recall the graded Schur functor Fg : 8;3\ -Mod —>R/ﬁ\ -Mod from Proposition 4.31.
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5.17. Lemma. Suppose that p € 3%‘ Then Fg(E“) = Gu(—def B) as an Rg—
module.

Proof. By Proposition 4.31 and Lemma 4.29 ; and Definition 5.10,
FACEM) = FA (FS (0,82) (— def 8)) = F (0,82 (— def B)) = 0,82 9%(— def §)
=~ HoMga (Riy, Gu)(— def B) = G, (— def B),
as required. [l

5.13. lCorollary. Suppose that p € @g Then Fg(T“) =Y, (—def 8) as an R/B\—
module.

Proof. If p is maximal with respect to dominance in @g then E#* = T* by Corol-
lary 5.15 and G, = Y,, by Proposition 5.6(b), so the result is just Lemma 5.17 in
this case. If p is not maximal in gzé\ the result follows by downwards induction on
the dominance order using Lemma 5.17, Corollary 5.15 and Proposition 5.6(b). O

If A is an algebra let A°P be the opposite algebra which is obtained by reversing
the order of multiplication.

5.19. Theorem. Suppose that 8 € Q7. Then the Ringel dual of Sg is 1somorphic
to (S/Q)"p. In particular, ENDSQ(E[/}) 1s a quast-hereditary graded cellular algebra.

Proof. There is an injection HOMRg (Gu,Gy) — HOMS/Q (E*, E¥) given by compo-
sition of maps, for p, v € 32[’3\ By Lemma 5.17 this map is surjective. Therefore, the
Ringel dual of Sg is isomorphic, as a graded algebra, to Endsg (G’i)oi’ = (Sf)"p. O

By Theorems 4.39, Sﬁ = Sé\,/ as graded algebras. Note, however, that this is not
an isomorphism of quasi-hereditary algebras because the isomorphism reverses the
partial ordering on the standard and irreducible modules of these algebras.

By standard arguments (see, for example, [19, Lemma A4.6]), we have:

5.20. Corollary. Suppose that A, p € ,@é\, for B € Q. Then
[T>: VM, = [Au : Lalg,

where [A,, : Ly]q s a graded decomposition number for the sign-dual quiver Schur
algebra Sf.

Even though we have been working with the tilting modules T# throughout this
chapter, it is actually the twisted tilting modules that we will need later. In analogy
with Theorem 4.39 we make the following definition.

5.21. Definition. Suppose that A € f@é\ and let Tf,/ be the self-dual tilting module
for the sign dual quiver Schur algebra S?. The twisted tilting module is the

Sé\-module Ty = (Tf,/)Sg“.
By Theorem 5.19, Tf,/ is the tilting module of the Ringel dual of 8/13\,'.

5.22. Proposition. Suppose that 3 € Q} and X € @é‘, for B € Qf. ThenT\ 2Ty
is a self-dual tilting module and [Tx : A*], = [AK : LN'],, for all p € @é\

Proof. Using the definitions it is straightforward to check that there is an isomor-
phism of functors sgno ® = ® o sgn from 8%, -Mod to Sé‘ -Mod. Therefore,

(13" = (T)o°% = (T oomen = (1) = T,
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by Corollary 5.16. For the second statement, using Theorem 4.39, if A\, € Qé\
then

[T : VH)y = (T3, : Vywlg = [A* LY,

where the last equality uses the analogue of Corollary 5.20 for S/’(i: Taking duals,
[Ta : AM], = [T : VK], = [A# : LN], as required. O

5.23. Remark. The uniqueness of self-dual tilting modules implies that there is an
involution | on the set of multipartitions such that Ty = T, for all A € 3%‘
IfXe ICS then it follows from [12, Theorem 2.7] that Al is given by the inverse
rectification map of [12, (2.33)].

6. CYCLOTOMIC SCHUR ALGEBRAS

We are now ready to connect the quiver Schur algebras with the (ungraded)
cyclotomic Hecke algebras introduced in [17] and [9, Theorem C].

6.1. Cyclotomic permutation modules. Throughout this section we work with
the ungraded Hecke algebra 2. Consequently, as in Theorem 3.7, we assume that
Z = K is a suitable field. If w € &,, define T}, = T3, ...T;,, where w = s;, ... s,
is a reduced expression for w. Unlike the element v, € R2, T, is independent of
the choice of reduced expression for w.

Suppose that p € 22 Recall that if 1 < k < nand t = (t1,... 1) is a
tableau then comp,(k) = s if k appears in t(*). Define m#* = u*x* where

n 14
ut = H H (L — %)) and at = Z Tw,
k=1 s=comp x (k)+1 weS,,

where £*) is as defined in (3.5). These definitions reduce to [17, Definition 3.5]
when £ # 1 and to [9, (6.12)—(6.13)] when & = 1.

6.1. Definition ( [9,17]). Suppose that u € 22 and define M* = mrHA.

We write M* rather than M* to emphasize that M* is not (naturally) Z-graded.
We will not define a graded lift of M*, instead, the aim of this section is to show
that G* is a direct summand of M*.

Remind the reader of our standing assumption that e = 0 or e > n. This
assumption is crucial for the next two results — and consequently for all of the
results in this section.

6.2. Lemma. Suppose that A € P> and 1 # w € Sx. Then e*pe = 0.

Proof. By Definition 3.2, ¥,e* = e(j), where j = w -i*. Now, the assumption
that e = 0 or e > n implies that all of the nodes in row a of A(!) have pairwise
distinct residues whenever )\g) #0, for a >0 and 1 <1 < ¢. Consequently, j # i*
since 1 # w € &y. Therefore, e*p,e* = ere(j)i, = 0. O

6.3. Lemma. Suppose that X\ € 2. Then e*u* = g*(y)ery>, where g™ (y) is an
invertible element of K[y1,...,Yn].

Proof. We prove the Lemma only when £ # 1 and leave the case when £ = 1,
which is similar, to the reader. Write i* = (i1,...,4,) and let d7,...,d} be as
defined in Definition 3.11, so that d» = {comp(r) <t < ¥ | i, = k; (mod e) },
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for 1 < r <mn. Then, using (3.8),

n 4
M = H H €>‘(L7- - fnt)
=11 I - —cy)

n
. >N d>‘ . i
= [l JT e - =g
r=1 comp x (r)<t<¢
irZke (mod e)

=P J[e™ [ (€ - =gy,
r=1 comp x (r)<t<£
irZke (mod e)
The factor to the right of e*y> in the last equation is a polynomial in K[y, ..., yn]
with non-zero constant term. Since each y, is nilpotent (it has positive degree), it
follows that g(y) is invertible. All of the terms in the last equation commute, so
the lemma follows. O

6.4. Theorem. Suppose that e = 0 or e > n and let X € P>. Then there exists
an invertible element f*(y) € K[yi,...,yn] such that

Amre = fA ()M,

Proof. By Lemma 6.3, there exists an invertible element ¢*(y) € K[y1, ..., ys] such
that

Amrer = et = A (y)y? Z AT,
weG

By (3.9), if w € 6,, and j € I" then Tre(j) = (¥rQr([) — P-(J))e(j) so the last
equation can be rewritten as

emrer = Ayt D ruy)et e,
weS
for some 74, (y) € K[y1,.-.,Yn]. Applying Lemma 6.2, this sum collapses to give
AmAer = A y)ery i (y) = P y)ety,
for some polynomial f*(y) € K[yi,-..,¥ys]. It remains to show that f*(y) is invert-
ible or, equivalently, that it has non-zero constant term. By [26, Corollary 3.11], if
1 <7 <mnand (s,t) € Std*(F2) then y,1)s is a linear combination of terms )y,
where (u,0) B (5,t). Therefore, since e*y* = 1, there exist scalars by, € K
such that
f}\(y)e)\y)\ =bppPpe + Z buvPuv,
(1,0)p (2,61
u,0eStd™ (2L
where b = f2(0) is the constant term of f*(y). On the other hand, by [26,
Theorem 3.9] there exist scalars ¢y, € K such that cpx # 0 and

A A A A A
e"m-e” =e ( E cunwuu)e = cpp e + E CupPuv,

w0 p > u, 0 A
u,0eStd™ (22)

where the second equality follows from (3.13). Hence, f2(0) = ciagx # 0 by Theo-
rem 3.14, and the proof is complete. O
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6.5. Remark. Using Theorem 6.4 it is possible to show that e*m> = f*(y)ery> + €
where € is a linear combination of homogeneous terms of degree strictly greater than
2deg t* = deg(e*y™). To see this first show that e*m?> is a linear combination of
terms of the form e*mye(j), wherej € I* = {i€ I" | i = o - i* for some o € &y }.
The key observation is then that deg,e(j) > 0 whenever 1 # w € Gy and j € I*,
which can be proved by adapting the argument of Lemma 6.2. Consequently, e*y>
is the homogeneous component of e*m> of minimal degree. Examples show that
this does not always happen if we drop the assumption that e =0 or e > n.

6.6. Corollary. Suppose that X € 2. Then
AM» = AmAHE = AL = MPHE = G

Proof. By definition, e*M> = AmAHL and G = eAyMHD so we only need
to check the two middle equalities. By Theorem 6.4 there exists an invertible
element f*(y) such that e*m*e* = fX(y)ery>. Consequently, e*m e AHA =

Ay A, To complete the proof it is enough to show that e*m> € ey H2. This

is immediate because e*m* = eruPrz? € Xy HA by Lemma 6.3. O

6.7. Definition. Suppose that A € 2. Let 7> :M> — e*M™ be the surjective
HA-module homomorphism given by 7*(h) = e*h, for h € M™.

6.8. Proposition. Suppose that A € ,@TIL\ Then the epimorphism ©> splits. That
is, 7™ has a right inverse ¢ and M =AM & Ker 1.

Proof. By Theorem 6.4, eAm*e* = f*(y)e*y> where is an invertible element of H2.
Define ¢* to be the map

P* i eAMN — M e yMhos mAe fA (y) A,
for h € H2. To prove that ¢* is well-defined suppose that e*y*h = 0 for some
h € H2. By Corollary 6.6, there exists h* € HA such that e*m* = ery n™.
Let * be the non-homogeneous anti-isomorphism of H2 which fixes each of the
non-homogeneous generators 7, and Lg, for 1 < r < n and 1 < s < n.. Then
(eryAh)* = (hM)*ery> because e* and y> are polynomials in Ly, -, L, by [25,
Proposition 4.8] and Theorem 3.7, respectively. Therefore,
mAeX fA(y) T h = (AR P )T = () A ) T ety e =0,
That is, ¢*(e*y*h) = 0. Hence, ¢* is a well-defined #*-module homomorphism.
Moreover, if h € H2 then
(7% 0 o) (*yrh) = EmreA A (y)Tth = AP ) A (y) T h = P
That is, 7> o ¢* is the identity map on A M. Hence, 7 splits as claimed. O
6.9. Corollary. Suppose that A € 222, Then ¢> induces an H2-module isomor-
phism e mAHL 2 mAeAHD.
Proof. This follows directly from the proof of Proposition 6.8. In fact, we have that
o™ (e"m"?—lﬁ) = m e MHA. O

6.2. Cyclotomic Schur algebras. We are now ready to show that S{L‘ is Morita
equivalent to one of the cyclotomic Schur algebras introduced in [9,17].
6.10. Definition ( [9,17]). The cyclotomic Schur algebra is the algebra

S~ By ( €D M%)
nePh
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Again, we write QEJM to emphasize that §5JM is not Z-graded. Note that the
algebra QEJM depends implicitly on the dominant weight A.

By [17, Corollary 6.18], QSJM is a quasi-hereditary cellular algebra with Weyl
modules Ay, and irreducible modules LB, for A, p € 22 By [35, Theo-
rem 2.11] and [7] the blocks of SP™ are again labelled by Q;, however, the direct
summands of M* do not necessarily belong to the same block so it is difficult to
describe the blocks of SP™ explicitly; however, see [37, Theorem 4.5].

Recall the graded Young modules Y#, for u € #2», from Definition 5.5.

6.11. Lemma. Suppose that p € P2, Then M* = YH* @ @ADH(K)‘)"‘M for some
integers my, € N.

Proof. By [36, (3.5)] there is a family of (ungraded) indecomposable H2-modules
{y* | p € 22} which are uniquely determined, up to isomorphism, by the prop-
erty that

(6.12) MM =yt @ @(yA)@’lnAp.

SN
for some integers my,, € N. We show by induction on the dominance ordering that
Y¥ = y¥, for all v € 2.

First suppose that u € &2 is maximal in the dominance ordering. Then M* =
y* by (6.12) and G* = Y* by Proposition 5.6(c). Therefore, Y* = y* since G* is
a summand of M* by Proposition 6.8. B

Now suppose that p is not maximal in the dominance ordering. Then Y* is
isomorphic to a direct summand of G* by Proposition 5.6(c). Therefore, there
exists a multipartition X > g such that that Y* = y> by Proposition 6.8 and (6.12).
By induction, if v > g then y” = Y, so this forces A = p by Proposition 5.6(b).
That is, Y* = y* as claimed. This completes the proof. U

6.13. Theorem. Suppose that Z is a field and that e =0 or e > n. Then there is
an equivalence of highest weight categories

EN o S -Mod =5 SPTM _Mod
such that Py (A) 2 AN jup and ERjp(L*) = L¥ 10 for all A\, p € P2,

Proof. By Lemma 6.11, the algebra

Endys (€D %)

nezh

is the basic algebra of §,/: and it is also the basic algebra of §BJM. Hence the result
follows by the discussion in section 2.3. O

Using the combinatorics of the cellular bases of the algebras SP'™ and S2 it
is easy to see that over field dim QQ < dim QSJM and that this equality is strict
except for small n; see Remark 4.21. In particular, the algebras QQ and §5 M are
not isomorphic in general.

6.14. Corollary. Suppose that Z is a field and that e = 0 or e > n. Then, up to
Morita equivalence, QT?JM depends only on e, A and the characteristic of Z.

In particular, if e = 0 or e > n then the decomposition numbers of the degenerate
and non-degenerate cyclotomic Schur algebras depend only e, A and the character-
istic of the field. This generalizes [10, Corollary 6.3] which is the analogous result
for the cyclotomic Hecke algebras (without any restriction on e).

Using Lemma 6.11 it is not hard to show that the degenerate and non-degenerate
cyclotomic Schur algebras are isomorphic over any field when e = 0. Gordon and
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Losev [20, Proposition 6.6] have constructed an explicit isomorphism between these
algebras over C, extending Brundan and Kleshchev’s isomorphism theorem 3.7.

7. POSITIVITY, DECOMPOSITION NUMBERS AND THE FOCK SPACE

Theorem 6.13 shows that S2-Mod induces a grading on the category of finite
dimensional modules for the cyclotomic Schur algebras QSJM. On the other hand,
in the degenerate case Brundan and Kleshchev [9] have constructed an equivalence
of categories O} = SP™M _Mod, where O} is a sum of certain integral blocks of
the BGG parabolic category O for gl (C). Deep results of Beilinson, Ginzburg
and Soergel [5, Theorem 1.1.3] and Backelin [4, Theorem 1.1] show that O2 admits
a Koszul grading and hence that QBJM can be endowed with a Koszul grading
as well. This chapter matches up the gradings on R2 and S2 with the gradings
coming from category (’)f} and, as a consequence, shows that the graded module
category S2 -Mod is Koszul.

Throughout this chapter we assume that e = 0 and that Z = C, considerably
strengthening our standing assumption 4.1.

7.1. Parabolic category O. Recall from section 3.1 that the dominant weight
A=Ay, + - +A,, is determined by our fixed choice of multicharge kK = (K1, ..., K¢).
For the rest of this chapter we assume that

k1 =02 Ky > > Ky.

There is no loss of generality in making this assumption because we can permute
the numbers in the multicharge, and shift all of the generators L1, ..., L, of H in
Definition 3.6 by the same scalar, without changing the isomorphism type of H2
or the graded isomorphism type of RA.

Fix an integer m > n — Ky and define gy = m + k;, for 1 < [ < /. Then
w=(p1,-..,me) is a partition of N = p; + - -+ pg and, by assumption, pg > -+ >
e >n. Let p/ = (uy,...,ul,) be the partition which is conjugate to p.

Let J={1-m,2—m,...,n—1} and J; := JU (J +1). The diagram of A
with respect to p, which should not be confused with the Young diagram defined in
section 3.3, is the array of boxes with rows indexed by J in increasing order from
bottom to top and with ) boxes in row ¢ and p; boxes in column j. A A-tableau
is a labelling of the boxes of the A-diagram with the integers in J,, possibly with
repeats. The ground state A-tableau is the A-tableau with an j in all of the boxes
in row 7, for all j € J.

For example, if £ = 4, k = (0,0,—2,—3), so that A = 2Ag + A_2 + A_3, and
n =3, m =6 then u = (6,6,4,3), 1 = (4,4,4,3,2,2), N = 19 and the ground
state A-tableau is

010

-1(-1
-2(-21-2
-31-3(-3]-3
-41-41-4]-4
-5[-5]-9]-5

Let glx(C) be the general linear Lie algebra of N x N matrices with its standard
Cartan subalgebra h. Let p be the standard parabolic subalgebra of gl (C) which
has Levi subalgebra g, (C)®--- @ gl,,(C).

Let O be the category of all finitely generated gl (C)-modules which are locally
finite over p and integrable over h. This is the usual parabolic analogue of the BGG
category O, except that we are only allowing modules with integral weights or,
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equivalently, integral central characters. The irreducible modules in category O2
are naturally parametrised by highest weights. Following [9, 12] we give a non-
standard labelling of the irreducible modules in O by the multiplications |J 3 :@é\,
for suitable 5. To this end, let £1,...,ex € b* be the standard coordinate functions
on h so that if M = (mgp) is a matrix in gl (C) then ;(M) = my; picks out the
i*? diagonal entry of M.

Following [12, (2.50)], if A € &2 then the A-tableau of X is the A-tableau T
which has A% + 7 in row r € J+ NZ=Y and column k € {1,2,...,¢}. For example,
the A-diagram of the empty multipartition is the ground state A-tableau. The
column reading of T? is the sequence (ti,...,t,) where ty,to,...,ty are the
entries of T, read from top to bottom and then from left to right down the columns
of TA. Set wt(A\) = t161 + (t2 + 1)eg + -+ + (tx + N — 1)en, a dominant weight
for gl (C). Now define L3 to be the irreducible highest weight module in O* of
highest weight wt(X).

Now suppose that 8 € Q;F. Then v € ,@g if and only if the A-tableau of v
has the weight A — 3, see [12, section 2.1] for the definition of the weight of a
A-tableau. Let Oé\ be the Serre subcategory of O* generated by the irreducible
9lx(C)-modules { L, | v € Wé\ }. That is, Og is the full subcategory of O* con-
sisting of modules which have all their composition factors in {Lp, | v € ﬂé\ }.
Brundan [7, Theorem 2] shows that (93 is a single block of parabolic category O*
and, moreover, that
(7.1) ot = o}

BEQ+
is the block decomposition of OA. Set O} = Dsecor (’)g.

n

We are almost ready to state a deep result of Backelin’s, that builds on fun-
damental work of Beilinson, Ginzburg and Soergel [5, Theorem 1.1.3], which says
that (’)fix admits a Koszul grading. In fact, Backelin proved this result more gener-
ally for the blocks of parabolic category O for an arbitrary semisimple complex Lie
algebra.

To state Backelin’s theorem we need to know that there is a ‘dual’ category Ofi
to (’)g which has irreducible modules { LS | v € ,@é\ }. The category (’)/ﬁ\ is again
a subcategory of O and it is defined in completely analogous way to (’)’6\. As we do
not need to know the precise description of Ofi we omit further details and refer
the interested reader to [4]. Now define

5§ = Bxtiy (L9.L9)

where Lg = @ue@g LY is the direct sum of the irreducible Oﬁ—modules. We

consider Ség as a positively graded algebra under the Yoneda product.
For any module M let ¢ be the identity map on M. For example, {10 | v € @;} }
is a basis of (S§)o.

7.2. Theorem (Backelin [4]). Suppose that 8 € Q}} and Z = C. Then Sg s a
Koszul algebra, and there is an algebra isomorphism

O ~ B8 pB
Sg = Endps (Po: Po)
where Bg = @Veyg P¢ is a minimal projective generator for Oé\. Moreover, this
isomorphism sends Lpo to Lpy, forv e :@é\

Proof. The existence of such an isomorphism is proved by Backelin in [4, Theo-
rem 1.1]. The isomorphism identifies .0 and tpy by [4, Remark 3.8]. O
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We remark that Mazorchuk [38, Theorem 7.1] has given an algebraic proof of
Backelin’s result assuming that the Kazhdan-Lusztig conjecture holds for (’)’5\.

The algebra on the right hand side of Theorem 7.2 is a finite dimensional alge-
bra which, by definition, is the basic algebra for category Og. Thus, we have an
equivalence of categories Eg : O;} S Qg -Mod. For each v € 3%\ let Ly be the
unique irreducible Sg—module which is concentrated in degree zero and such that
Ly = Eg (Lp). We are abusing notation here because LY, is one dimensional so
that L is not the module obtained from LY, by forgetting the grading. Similarly,
let P% be the projective cover of LY, in Sg -Mod, so that P} = Eg (P5).

Category O has a duality ¢ which is induced by the anti-isomorphism of gl (C)
which maps a matrix to its transpose. Since (Lp)® = Lp, taking duals induces
natural isomorphisms

Extgs (LY. Ly) = Extgs (L), LY),

for \,v € 3%\ Therefore, o lifts to a homogeneous duality ¢ on Sg. Each simple
Sg—module LY, is one dimensional and concentrated in degree zero, so (LB)<> = Lo,
for all v € 99

7.3. Corollary. Suppose that 3 € Q} and v € 32113‘ Then the radical and grading
filtrations of the projective indecomposable module P} coincide. Moreover, if v €
ICQ then P4 is rigid with both its radical and socle filtrations being equal to its
grading filtration.

Proof. By construction, P¥/rad Pj = L¥. Moreover, if v € ICQ then (P§)° &
Py (k), for some k € Z, by [12, (2.52), Lemma 3.2]. Consequently, PZ has an
irreducible socle. Since Sg is Koszul by Theorem 7.2 the Corollary now follows by
Proposition 2.15 and Lemma 2.13. O

Let ég be the Verma module of highest weight wt(A) in (’)2. Then there is a
graded Sg)fmodule A such that A = Eg (éé‘)) by [5, Proposition 3.5.7] and the
proof of [4, Proposition 3.2]. Since A is indecomposable, we fix the grading on
Ag by requiring that the surjection Ag —» Lg is a homogeneous map of degree
zero in Sg) -Mod.

We are now ready to make the link between parabolic category O and the quiver
Schur algebras. The following result is a reformulation of some of Brundan and
Kleshchev’s main results from [9,12]. Our Theorem C from the introduction is a
graded analogue of this result.

7.4. Theorem (Brundan and Kleshchev). Suppose that B € Q;, e =0 and Z = C.
Then there is an equivalence of categories E[(}) : Oé\ —>§2 -Mod and an exact functor
Eg : OQHEQ -Mod such that the following diagram of functors commutes

EA
0 —=2 . 54-Mod

FA
o —B
k J
Rjs-Mod

Moreover, E[(})(Af‘g) ~ AN and Eg(L’é) =~ L*, for all \,pu € 2.

Proof. By [9, Theorem C] there is an equivalence of categories from Oé\ to Q/_]?JM -Mod
which sends A to APy and L% to LBy, for A, p € 9’9 Hence, by Theorem 6.13
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and the remarks above, there is an equivalence of categories Eg : (’)2 —>§g -Mod
such that E5(AY) = A* and ES(LY) = L*. Tf € = 1 then H2 is isomorphic to
a degenerate cyclotomic Hecke algebra. Hence, Brundan and Kleshchev [12, Theo-
rem 3.6] have shown that there exists an exact functor Eg : Og — Hg -Mod with the

required properties. By Theorem 3.7, 7—[2 = Eg, so this completes the proof. O

Consequently, there is an equivalence of categories

On = P SF-Mod = S -Mod.
BeQy
Henceforth we identify parabolic category O and §£ -Mod.

7.2. Comparing the KLR and category O gradings. We want to lift Theo-
rem 7.4 to the graded setting. As a first step we show that the KLR and category O
gradings induce the same grading on H2.

We need a graded analogue of the Hecke algebra H2 with the grading coming
from category OA. Define eg = ZMGICQ Lo € S[?. Then eg is a homogeneous

idempotent of degree zero. Now define

RE = e§s9e§ = Bxty ( D Li. P L7).

HEK] HEKS
By (2.10) there is an exact functor
(7.5) F$:S§-Mod —R§ -Mod; M +— Me§,  for M € S§ -Mod.
Observe that (eg)<> = eg so that the involution ¢ restricts to a graded anti-

involution of Rg.

Let ng =6 deZ(Rg)d be the decomposition of Rg into its homogeneous com-
ponents.

7.6. Proposition. Suppose that 3 € Q. Then:
a) Rg is a positively graded basic algebra;
b) (’Rg)o is semisimple;
¢) The ungraded algebras Bg, Eg and 7—[2 are Morita equivalent.

Proof. By Theorem 7.2 Ség is a Koszul algebra so it is positively graded and its de-
gree zero component is semisimple by the definition in section 2.5. Hence, parts (a)
and (b) follow because RS = e§SFe§. Finally, the algebras R and Rjs are Morita
equivalent by Theorem 7.4. Hence, (c¢) follows since Eg = Hé\ by Theorem 3.7 and
the remarks after (3.18). O

We need analogues of Specht modules, Young modules and simple modules for
the algebra Rg Recalling the functor Fg from (7.5), for p € IC/’% and A € 92
define

(7.7) DY =FG(LY), S5 =FF(A}) and Y =FF(P)).

Ifpe Kéx then Dy =~ Cu e is an irreducible Rg—module and Y} is the projective
cover of D¥, in Rg -Mod by Theorem 7.4, Theorem 7.2 and Theorem 2.12. More-
over, { D (k) | p € ICQ and k € Z} is a complete set of irreducible Rg—modules.
By construction, D%, is one dimensional and concentrated in degree zero, for all
peKs.

The next result, which is again a reformulation of results of Brundan and Kleshchev,
will allow us to compare the gradings on ’Rg and R2.
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7.8. Theorem (Brundan and Kleshchev [11,12]). Suppose that e =0, 3 € Q" and
Z=C and let A € ﬁé\ and p € le}. Then

dau(q) = [Sl\ 1 DF]g = [S(’; : Dg]q = [Ag\’) : Lg]q
is a parabolic Kazhdan-Lusztig polynomial. In particular, dx,(q) € dau + ¢N[q].
Proof. Since F§ is exact, [S5 : D], = [AY : L]y, for all A € 25 and p € K.

By [11, Theorem 5.14, Corollary 5.15], the projective indecomposable RA-modules
categorify the canonical basis of the integral highest weight module L(A) for U, (5A[€)
and the graded decomposition numbers give the transition matrix between the stan-
dard basis and the canonical basis of L(A). On the other hand, [12, Theorem 3.1 and
(2.18)] computes this transition matrix explicitly and shows that dx,(q) is equal to
the parabolic Kazhdan-Lusztig polynomial [Af‘g : L¥],. Note that when e = 0 the
papers [11,12] use the same bar involution so that the transition matrices appearing
in both papers coincide. See [12, §2.5] and the remarks after [11, (3.60)]. O

7.9. Remark. The graded decomposition numbers da,(q) = [AY : L], are de-
scribed explicitly as parabolic Kazhdan-Lusztig polynomials in [6, Remark 14]. See
also [12, (2.16) and Theorem 3.1].

By Proposition 5.6(d), the basic algebra of Rg is (isomorphic to) the algebra

"R} = Expra ( D Y*).
pneks

This is a Z-graded algebra which is graded Morita equivalent to Rg Let

. A ~bpA . A
(7.10) Ery : Rj-Mod == "Rj -Mod; M ~ HOMpa ( P v* M),
AeKy
be the corresponding equivalence of graded module categories.

Suppose that p € IC;} and let "Y# = Era (Y#) and "D* = Era (D#). Then "D*
is an irreducible bRg—module and °Y'* is the projective cover of D* in bRg -Mod.
Moreover, directly from the definitions, bRZB\ =6 perh "Y' as a C-vector space.

Recall from Corollary 2.8, and section 2.2, that Cra (q) = (c)\“(q))A7ME,C2 is

the Cartan matrix of Rg, and DRg () = (dxp(9))acon

A pekch is the decomposition

matrix, where cx,(g) = DIM HOMRQ (Y#, Y?) and
dxu(q) = [S* : D*], = Dim Homps (Y, SH).
Moreover, Cra(q) = Dra (q)”DR?3 (q).
The next result should be compared with Proposition 7.6.

7.11. Proposition. Suppose that 3 € Q. Then:
a) As ungraded algebras, bEg % Eg
b) DIMbRg = DiM Rg, S0 bRg is a positively graded algebra.
¢) The degree zero component obeg is semisimple and isomorphic to
(R§)o = € "D+
pneKs

Proof. The algebras Rg and bRg‘ are both basic algebras, so Ry = "Eg by Propo-
sition 7.6(c). (In particular, this implies that dim RY = dimb’R,/B\.)
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For part (b), calculating directly from the definitions

DiM’RE = ) Div HoMpa (Y#,Y?) = > eaule)
A peKs )\,ueng

By Corollary 2.8, can(q) = >, dua(q)dup(g). Similarly,
DIMRG = > D HoMpo (YY), Y2).

A pel)
Therefore, by BGG reciprocity and Theorem 7.8, DiM*R% = Dim Rg In particu-
lar, b’Rg is positively graded.

It remains to show that the degree zero component of bRg is semisimple. By
Theorem 7.8, dyu(q) € dup + gN[g] 50 cup(q) € dup +¢N[g] and DIMbRIH\ is a poly-
nomial in N[g] with constant term |IC§| It follows that the degree zero component
of bRg is exactly the span of the identity maps on Y* for u € K4, which is a
semisimple algebra. In particular, (bR/B\)O is equal to ®uelcg "D as claimed. (]

7.12. Corollary. Suppose that 8 € Q;Fand p € ng. Then socYh = (Y5 )2det g =
DE(2def B) and soc’Y# = ("Y' H)sqer g =2 °DH(2def 3).

Proof. If p € Kj then (Y#)® = Y#(—2def ) by Corollary 5.8. In view of the
Proposition, this implies the result. O

Since Fg is fully faithful on projectives by Lemma 2.11, there is an isomorphism

of graded algebras
O Y
(7.13) RE 2 ENDso ( P ry).
ung

Henceforth, we identify these two algebras. The advantage of working with Pp is
that P% is rigid by Corollary 7.3, for p € ICQ. Using this fact we now construct a
basis of Sg using radical filtrations of P, for p € ,@é\:

Ph =r1ad’ P Drad' Ph o -+ Drad” Ph D0,

for some z > 0. By Corollary 7.3, P} is rigid with its radical filtrating being equal
to its grading filtration. Therefore,

rad? P/ rad® Pl = () (L(d))®,

Aez}
. _ (d) d (d) : A
for 0 < d < z. Here we write can(q) = > 4503, for ¢y, € N. Fix A € &3
and d > 0 with c()iz # 0. Since P}(d) is the projective cover of L(d) there exist

homogeneous maps Gg\i’ts) € Howmgo (P}, rad® P%) such that the diagrams commute

(7.14)
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for 1 < s< c()‘d;. By embedding rad? P4 into P} we consider Hgif) as a homoge-

neous element of Sg of degree d.
7.15. Lemma. Suppose that 3 € Q. Then
d,s d
0F = {030 | 1<s< b, 0<d<2deff and X\, p € 2} }

is a homogeneous basis of RY =2 ENDséo (@”e,cg PY). Moreover, deg 9%;5) =d for

all 050 € 9.

Proof. Suppose that A\, u € ﬂé\ The set {Gg\dlf) | 1<s< cg\d& and d > 0} is lin-
early independent by construction, so it is a homogeneous basis of Hom s9 (P), PY)

by counting (graded) dimensions. If A, u € IC/’% then c&d& =0if d > 2def 8 by

Corollary 7.12 (moreover, c(fud A —0if A # p), so the lemma follows. O

We want to use the same construction to give a basis of HOMSQ(P)‘,P"),
when A\, u € Kg. Unfortunately, we are not yet able to identify the radical filtration

of P* with a grading filtration because Sé\ is not positively graded in general. To
remedy this define a filtration of P* by setting

PH(f) = > im0,
0eHomsg(P’*,P“),
deg 0> f,AEK)

for f > 0. We remark that it can happen that P*(f’) = PH*(f) for f' # f.
For example, direct calculations show that if A = ¢Ay and 8 = g then IC? =
{(0]...]0/]1)} and if g = (0]...|0J]1) then P* is evenly graded (that is, all of the
homogeneous elements of P# have even degree), so that P*(2f — 1) = P#(2f) for
all f > 1.

7.16. Lemma. Suppose that p € IC?. Then

PP =PHO)D PH(1)D--- D PH*(2defB) DO

is a filtration of P*. Moreover, if X € K§ then [P*(f) : L}(f)] = cf\fg and L*(s)
is a composition factor of P*(f) only if s > f.

Proof. 1t is immediate that the construction above defines a filtration of P*. More-
over, P¥(f) = 0if f > 2def 8 by Corollary 7.12. By Theorem 7.8, if A, u € ICQ then
[P¥: LX), € 6y x+qN[g]. Therefore, L*(s) is a composition factor of P#(f) only if
s > f and, moreover, if k > f then L*(k) is not a composition factor of P*/PH(f).
Hence, the remaining statement in the lemma follows from Theorem 7.8. O

7.17. Proposition. Suppose that A\, pu € IC% and d > 0. Then
[rad? P*/rad®™ PH . [}, = cg\dqu = [rad? P4 /rad®™! Pk : L},

Proof. First consider P5. By Corollary 7.3, P4 is rigid with both its radical and
socle filtrations being equal to its grading filtration. Since [P : L}], = caulq) by
Theorem 7.8 (and Corollary 4.34), this proves the right hand equality for P}.

To prove the result for P* we argue by induction on d. If d = 0 the result is
automatic since P* is the projective cover of L* in Sé‘ -Mod. Suppose then that
d > 0. By Theorem 7.4, Eg(ﬂ‘é) ~ P* 50 E(;(radd Py = rad? P*. Therefore,
[rad® P¥/rad?™ p¥ . [ = cgﬁ. Therefore, to complete the proof it is enough to

show that L*(s) is a composition factor of rad? P#/rad*™ P* only if s = d since



QUIVER SCHUR ALGEBRAS 47

[P¥ : L*), = cap(q) by Theorem 7.8. Refining the filtration from Lemma 7.16, if
necessary, shows that P* has a filtration of the form

PH=PhODP D---DP_1DPF =0,

such that Py/Py1 is semisimple for 0 < k < [ and P#(f) = P,, for some integers
0=po <p1 <.... Now P} isrigid by Corollary 7.3, so P* is rigid by Theorem 7.4.
Therefore, the radical filtration is the unique filtration of P* which has semisimple
subquotients and length ¢¢(P*#), the Loewy length of PH*. So, if [ = ¢¢(P*) then
rad® P# = P, for k > 0. Otherwise, | > 2¢(P*) and by omitting some of the
modules in the displayed equation above we can construct a filtration of P* of
length ¢¢(P*) which has semisimple quotients. Therefore, by rigidity there exist
integers 0 = 19 > r1 > ... such that rad® P* = P,, for k > 0. Consequently, for
any two non-negative integers d and f either rad? P# C PH(f)or PE(f) C rad? P,

We are now ready to complete the proof. First observe that, since Eg (P%) = P*,

(7.18) [rad? P#*/rad®*! P# : L] = [rad® P% / rad™ P* . L] = c§0.

Therefore, if cg\dg = 0 then L*(s) is not a composition factor of rad? P#/rad®™* p#,

for any s € Z, so the result holds. Suppose then that cg\d; # 0 and let L*(s) be a
composition factor of rad? P / rad?* P¥. Using induction for the second equality,
k
rad? P LN, = [P#: L], — [P*/rad PP L), = Y ",
k>d
so s > d. Using the construction of (7.14) this implies that P#(d) C rad® P#. If
PE(d) C rad®™ P# then [rad? P#/rad®™ PH . LA (s)] < [rad? PH/PH(d) : L (s)]
which is non-zero only if s < d using the definition of P*(d). This is a contradic-

tion, so rad®*! P~ C PH(d) by the last paragraph. Let f be maximal such that
rad?™! P# C PE(f). Then f > d+ 1 and

[rad? P#/rad®™ P : L], > [rad? P*/P*(f) : L],

-1
= [PH(d)/PH(f) : LMy =D chd",
k=d

where last two equalities come from Lemma 7.16. Therefore, by (7.18), either
f=d+1lor f>d+1 and cg\djl) = ... = cg\f“_l) = 0. Consequently, L* is
a composition factor of rad? P+ / rad?! P# with graded multiplicity cg‘d&qd. This
completes the proof of the inductive step and, hence, the proposition. O

Just as in (7.13), in order to apply this result we now identify b’Rg with a
subalgebra of the basic algebra of S, which is the algebra

boA _ A
ME(@;}
Mimicking (7.10), let Ega : S} -Mod — 'S4 -Mod; M — HOMsr (B e oy PH, M)
be corresponding equivalence of graded module categories and let E, be the inverse
s
equivalence. If A € 32113‘ let °PA = Esg (P*) be projective indecomposable ng—

module which corresponds to P¥ under this equivalence. As in (7.13), there is an
isomorphism

(7.19) "R} = Enngy (€D P¥)
ung
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of graded algebras. We now identify these two algebras.

7.20. Theorem. Suppose that e = 0, Z = C and B € Q. Then there is an
isomorphism = : ’Rg) = b’Rg of graded algebras.

Proof. By Theorem 7.4 the algebras §g and Qg are Morita equivalent, so there is
an isomorphism of (ungraded) basic algebras =: Qg) —>"§2 such that Z(Pp) = P>
as bQg—modules, for all A € Wé\ Using the identifications in (7.13) and (7.19),

restricts to an isomorphism Eg = bEg which, by abuse of notation, we also
denote by =.
Recall from Lemma 7.15 that @O = {H(d "1 is a basis of HOMso (P}, Ph). For

each Hgi’f) € @ set ﬂ(d ¥ = E*A 0Zo H(d D oz-1o Esg- Forgetting the gradings

for the moment, this implies that {ﬁg‘d‘f } is a basis of Homga (P>, P*). Moreover,

by (7.14) there is a commutative diagram

A
d,s —
0 —— rad?™(P*) —— rad?(P*) Ire 0

ds)

By Proposition 7.17, 79 is a non-zero homogeneous element of degree d, possibly

modulo terms of h1gher degree. By replacing 19(d *) with the projection onto its

(d,s)

degree d component, if necessary, we may assume that degﬁ = d. Since multi-

plication in Sg and in bSé‘ respects degrees, it is stralghtforward to check that the
map Gg\dl’f) — ﬂgi’f) is an isomorphism of graded algebras. O

The proof of Theorem 7.20 is quite subtle in that we have to work with the
projective indecomposable modules P* for the quiver Schur algebra Sg and use
the fact that these modules are rigid. In many ways it would be more natural to
prove this result using the graded Young modules Y# but as these modules are not
known to be rigid we cannot argue this way. In all of the examples that we have
computed it turns out that the Young modules are rigid. We do not know whether

or not this is true in general.

7.3. Graded decomposition numbers when ¢ = 0. Now that we have shown
that the KLR and category O gradings coincide at the level of the Hecke algebras
the next step is to show that the gradings on the Schur algebras SE? and Sé\ agree.

Recall from the last section that Y5 = ng(Pg)7 for p € 2%, is a Young module
for Rg. Similarly, let Y* = ER/B\ (Y*) be a Young module for bRg. Using the
isomorphism = : Rg = bRg from Theorem 7.20 we can consider Y as a bR/ﬁ\—
module.

7.21. Lemma. Suppose that p € gzé\ Then Y H = Y8 (au) as bRg—modules, for
some a, € Z.

Proof. By [9, Lemma 6.11] (and Lemma 6.11), Y4 is a graded lift of Y*. By
Proposition 5.6, Y* is indecomposable so, up to shift, it has a unique graded lift
as an bRg—module; see section 2.1. That is, Y # = Y (ay), for some a, € Z. O
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7.22. Theorem. Suppose that e =0, Z =C and 8 € Q. Then
boA _ o
DiM’Sy = Dim Sy
In particular, bSé\ 1s positively graded.

Proof. For any A\, pu € ﬁg, let cap(q) and cfu(q) be the graded Cartan numbers of
bSé\ and Sg, respectively. (Then ca,(q) = c?u(q) by Theorem 7.8, for A\, pu € IC?)
Then DiM "Sg = Zk,ueﬂg‘ cap(q). By definition,

cau(q) = DM HOMgA (PH, P)

= Dim HOMRQ (YR, Y, by Lemma 2.11,
=DM HOMbRg(bYM, Y applying (7.10),
= DivHowmzo (Y& (au), Y2 (ar)), by Lemma 7.21,

= ¢~ D HoMgo (Y4, Y2)

= qa)‘iau Cg\/)u (Q)
By graded BGG reciprocity, cf”(q) = cl?)‘(q)7 so that cau(q) = qQ(“*_““)c“A(q).
However, the Cartan matrix of Sé\ is symmetric by Corollary 2.8. Therefore, ay =
a, forall A\, u € @é‘ since Sé,\ is indecomposable by Theorem 4.36. (In fact, a,, =0
for all p € ICQ because if p € ICQ then *D# = E(D%) by Corollary 5.9 since both
modules are concentrated in degree zero.) Therefore, can(q) = cfu(q) € Nig].
Hence, DiM bSé\ = DM Sg so that bSé\ is positively graded as claimed. O

7.23. Corollary. Suppose that e = 0, Z = C and 8 € Q. Then ng = Ség as
graded algebras. In particular, bSé\ is Koszul.

Proof. Since 8[? is Koszul by Theorem 7.2, and bSé\ is positively graded by the
Theorem, this follows immediately from [5, Corollary 2.5.2]. More directly, using
Lemma 2.11 twice, there are homogeneous isomorphisms

S§ = Engo ( P ry) = ENDro ( P vs)

ue@g ue@g
= END: 4 (P ) = ENDgy ( p pP+)=’ss,
weZh nePh

where the third isomorphism follows from Lemma 7.21 using the fact that a, =0
for all pu € @g, as was noted in the proof of Theorem 7.22. Hence, bSé\ ~ Sg is
Koszul by Theorem 7.2.

Define non-negative integers d(;‘l by dap(q) = Zszo dgilqs, for A\, pu € ,@é\

7.24. Corollary. Suppose thate =0, Z =C and € Q;} and let \,p € ,@é\ Then
dxu(q) € oap + qN[g] and cxpn(q) € dxp + gN[g] and if s > 0 then

[rad® A*/rad®tt A : LH(s)], = d(;;

Proof. Since bSé\ is positively graded dxp(q) € 0 + gN[g] by Corollary 4.34. Con-
sequently, ca,(q) € dan+9N[g] by Proposition 2.8. Finally, since A#*/rad A* = L#*
is irreducible the last statement follows from Corollary 7.23 and Lemma 2.13. [

Combining the results in this section we obtain a more precise version of Theo-
rem C from the introduction.
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7.25. Theorem. Suppose that 8 € QF, e =0 and Z = C. Then there is an equiva-
lence of categories Eg : (’)/5\ —>S§ -Mod such that the following diagram commutes:

EF
A A
(95 Sﬁ -Mod
FA
@) B
Fs ‘

R -Mod

Moreover, EJ (A) = A* and EF (L) = L*, for all X\, p € PN

7.4. The Fock Space. The aim of this subsection is to realize the tilting and
irreducible modules for S as canonical and dual canonical bases of the higher level
Fock space. Throughout this subsection, we work over C.

Let Rep(S2) be the Grothendieck group of finitely generated S-modules. If M
is an S2*-module let [M] be its image in Rep(S2). Observe that Rep(S?) is naturally
a Z[q, ¢ ']-module where q acts by grading shift: ¢[M] = [M(1)], for M € S} -Mod.
Similarly, let Proj(S) be the Grothendieck group for the category of finitely gener-
ated projective S2-modules. The Cartan pairing is the sesquilinear map (anti-linear
in the first argument, linear in the second)

(1 ): Proj(82) x Rep(S24) —Zlg.q7"],  ([P),[M]) = Divt Honga (P, M),

for [P] € Proj(S2) and [M] € Rep(S2). There is a natural embedding Proj(S2) <
Rep(S2).

Define the combinatorial Fock space of weight A to be

§* = P Rep(S)).

n>0

Thus, §* is a free Z[q, ¢~ ']-module of infinite rank. Let 9" = Un>o PA. The
Fock space " is equipped with the following distinguished bases:

The irreducible modules: { [L*] | p € 2 1.

The standard modules { [A*] | p € 221,

The projective indecomposable modules { [P*] | u € 22},
The twisted tilting modules { [T,,] | p € Z*}.

These all gives bases for §* as a Z[q, ¢~ !]-module because the graded decomposition
matrix of S2 is invertible over Z[q, ¢~!] by Corollary 7.24.

The aim of this section is to clarify the relationships between these bases and to
give an algorithm for computing the graded decomposition numbers of S2.

There is a natural duality on Rep(S2) which induces an involution on §*. Let M
be an S2-module. Recall that M® = Homc(M, C) is the contragredient dual of M.
Similarly, define M# = Homga(M,S2), where S3 acts on M# by (f - s)(z) =
s*f(z), for f € M# and x € M,s € S}. Then # restricts to a duality on Proj(S2).

7.26. Lemma. Suppose that M is an S>-module. Then

([P7], [M]) = ([P], [M®]),
for all [P] € Proj(S}) and [M] € Rep(S2). Moreover, if p € &2 then (L*)® =
L*, (Ty)® = T,, and (P*)# = Ph.

Proof. The first statement is well-known; see, for example, [11, Lemma 2.5]. This
implies that (P*)# = P# since (L*)® = L* by Theorem 2.5. Finally, (7},)® =T,
by Theorem 5.22. O
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A map f:M — N of Z[g,q !]-modules is semilinear if it is Z-linear and
f(g*m) = ¢ *f(m), for all m € M and k € Z.

7.27. Lemma. The maps ® and # induce semilinear involutions on § such that
(M{d)® = M®(~d)  and  (N(d))* = N¥(-d),
for all [M] € Rep(S2), [N] € Proj(S2) and d € Z.

Proof. Tt follows easily from the definitions that ® is a duality on Rep(S2) and that
# is a duality on Proj(S2). This immediately implies that ® induces an involution
on §* with the required properties. Moreover, # extends to an automorphism of F*
because { [P*] | p € 2} is a Z[q, ¢ ']-basis of F*. The map induced by # is an
involution because (P*)# =2 P¥* by Lemma 7.26, for pu € 2. O

We emphasize that both of these maps are semilinear — that is, Z-linear but not
Z[q,q 1]-linear. This is implicit in the displayed equation of Lemma 7.27 because,
for example, (g[M))® = [M(1)]® = [M®(~1)] = ¢~}[M®].

Recall from section 2.1 that the bar involution on Z[g,q~!] is the Z-linear
automorphism of Z[q, ¢ '] determined by § = ¢~!. A Laurent polynomial f(q)
in Z[q, ¢ '] is bar invariant if f(q) = f(q).

7.28. Lemma. Suppose that X\ € ). Then

[AMN® = [A* + § (@) and [AN# =AM + § : (g
ne?h neP}
ADp Adp

for some Laurent polynomials fxu(q), gau(q) € Zlg,q7].
Proof. Recall that (dxu(q))A7“€@£

(eAH(q)))\#e@Q be the inverse graded decomposition matrix. Using Lemma 7.28
we compute:

is the graded decomposition matrix of S2. Let

P2 (X dw@it) = X daala I

since (L*)® = L* by Theorem 4.25. Therefore,

[AA]®: Z d)\u(q_l) Z evn(q)[AY]

pe vep?
A p pbv

=N+ Y (Y aw@du) a7,
ve?d  pep?
)\l>l/ A urv
where the last line follows because both the graded decomposition matrix and its
inverse are triangular with respect to dominance by Corollary 4.34. The formula
for [A*]# is proved in exactly the same way by first writing [A*] = > aap dun(@)[PH].
O

By a well-known result of Lusztig [34, Lemma 24.2.1], Lemma 7.28 implies
that § has several uniquely determined ‘canonical bases’ which are invariant
under ® and #. Using Corollary 7.24 we can describe these bases explicitly.
Let ) be the Z[g]-sublattice of F* with basis the images of the standard mod-
ules {[A#] | p€ 22} in FA. Similarly, let 2 be the Z[g~!]-sublattice of F*
spanned by these elements.
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7.29. Theorem. Suppose that e =0 and Z = C. Then the three bases
(P | pe2™}, {[M|pet}y and {[T,] | pe"}

are “canonical bases” of & which, for p € PN, are uniquely determined by:
a) [PHM# = [PH] and [P*] = [A*] (mod ¢T2) .
b) [LH]® = [L*] and [L*] = [A*] (mod ¢FY) .
¢) [Tu)® = [T,] and [T,) = [A#] (mod ¢7'FL) .

Proof. The existence and uniqueness of bases of F* with these properties follows
from what is by now a standard argument (see [34, Lemma 24.2.1]), using the
triangularity of the involutions ® and # from Lemma 7.28. If u € 2 then
[PH)# = [PH], (L*)® = LM and (T,)® = T, by Lemma 7.26. Furthermore,
[P#] = 3\ dau(@)[A*] and [L#] = 30, exn(q)[A], where dxu(g) and exp(q) are
polynomials in Z[g] with constant term dx,(0) = dx, = ean(q) by Corollary 7.24.
Therefore, if u € 2* then [P*] and [L*] belong to §) and, moreover,

[PH] = [AP] (mod ¢F3) and [AM] = [LM] (mod ¢F))

Hence, parts (a) and (b) follow. Finally, the twisted tilting module [T},] € F& and
[T,.] = [A¥] (mod ¢~ 'F4) Theorem 5.22. This completes the proof. O

We call { [P#] | u € 2"} the canonical basis of §* and {[L*] | u € 2"} the
dual canonical basis because these two bases are dual under the Cartan pairing
on §*. By Theorem 5.19, Ringel duality induces a automorphism of §* which
interchanges, setwise, the canonical basis {[P*]} and the basis {[Ta]|A\} of twisted
tilting modules. We remark that Theorem 7.29 should lift to a categorification of
the canonical bases of §* as a U, (gl )-module.

7.30. Remark. Abusing notation slightly, let # be the involution on Rep(R2) de-
fined by M# = HoMga(M,R}). Then, as noted in [11, Remark 4.7], it follows

from Theorem 3.20 and [40, Theorem 3.1] that there is an isomorphism of functors
# = (2def ) o ®. Therefore,

{q*"P[D*] | peK§ for BeQT}

is a #-invariant basis of @, <, Rep(R2) which has similar uniqueness properties
to the twisted tilting module basis of F*. Similarly, { ¢~ fA[YH] | u € K§}isa
‘canonical’ ®-invariant basis of @, -, Rep(R2).

7.5. An LLT algorithm for S». If A = Ay then H» = RA is isomorphic to the
Iwahori-Hecke algebra of the symmetric group. In this case, Lascoux, Leclerc and
Thibon [32] have given an efficient algorithm for computing the canonical bases of
the irreducible U, (sl)-module L(Ag). By Ariki’s Theorem [1,11], the LLT algorithm
computes the (graded) decomposition matrices of the Iwahori-Hecke algebra of the
symmetric group.

In this section we give an LLT-like algorithm for computing the canonical basis
of F. By Theorem 7.29 this gives an algorithm for computing the graded decom-
position numbers of RA and S». To this end, if f(q) = Y ez faq? is a non-zero
Laurent polynomial in Z[g, ¢~ '] let mindeg f(¢) =min{d € Z | f4 #0}.

Suppose that pu € ﬂg, for 8 € Q7. Recall from (5.1) that Z# = \I!”Sé\.

7.31. Lemma. Suppose that p € PN, Then (Z¥)# = ZF and

7% = P* & P pur(@) P,
AD p

for some bar invariant polynomials px,(q) € N[g,q .



QUIVER SCHUR ALGEBRAS 53

Proof. By definition, Z* is a direct summand of S§7 so (ZM)# = ZK. We al-
ready noted in (5.4) that Z¥ = P* & @, panu(q) P>, for some Laurent polynomials
Pap(q) € Nlg], because Z* is projective. In view of Lemma 7.26 these polynomials
are bar invariant. (|

Next observe that (5.3) implies that in §*
(7.32) [Z“] — [A“’] + Z qdegs—deg tH [Au].
v>p
seStdH (v)

We now show how to use Lemma 7.31 and (7.32) to inductively compute [P¥],
for p € 22 as a linear combination of standard modules in F*. Since [P*] =
> dap(q)[A*] this will give an algorithm for computing the graded decomposition
numbers of Sé\

If p is maximal in Qé}, with respect to dominance, then Z¥# = P* = A# by
Lemma 7.31. So [P¥] = [A#] in this case and there is nothing to do.

Now suppose that g is not maximal in #2 and that [P*] is known whenever
A€ 22 and A > p. By (7.32) we can write

(2] = [A*]+ ) 2u(@)[A”]

v p

for some Laurent polynomials 2,,(q) € N[g,¢!] which are not all zero since p is
not maximal in ﬂé\ Let A > p be any multipartition such that zx,(q) # 0 and

mindeg zx,,(¢) < mindeg 2., (q),

for all v € Wé\ Let d = mindeg zx,(q).

If d > 0 then [Z#] = [A#] (mod F}) by (7.32). Now [ZH]# = [Z*], by Lemma 7.31,
so this forces [Z#] = [P*] because in this case [Z*] satisfies the two properties which
uniquely determine [P*] in Theorem 7.29(a).

Now suppose that d < 0. Let zg\'ﬂ be the coefficient of ¢ in zx,(g) and set

Sl P ¢ if d = 0.

@ {zg\‘ﬁ(qd +q79), ifd<0,
Ap?

Since [P¥] = [A¥] (mod §f) for all v € 2%, the minimally of d together with

(d)
Ap

by induction we can now replace [Z#] with [Z#] _pg\d& [P?], which is still #-invariant.
By repeating this process of stripping off the bar invariant minimal degree terms
we can rewrite [Z#] as a linear combination of canonical bases elements as in
Lemma 7.31. This recursively computes [P¥] and so determines the graded de-
composition numbers dx,.(q).

Note that the Laurent polynomials px,(¢q) in Lemma 7.31 are given by px,(q) =

Lemma 7.31 implies that p}, P* is a direct summand of Z*. Since [P"] is known

> od<o pg\dz. Hence, this algorithm also decomposes Z* into a direct sum of projective
modules.

7.33. Remark. Note that (E#)® = E# by Theorem 5.14. An equivalent version
of this algorithm computes [T#] by applying the same “straightening algorithm”
to the element [E*] = [E*]®, where we use Corollary 5.12 in place of (7.32) and
Corollary 5.12 in place of Lemma 7.31.

7.34. Example Suppose that e = 0, A = 3Ag and that § = a_1+3ap+a;+az+as.
Then Sé\ is a block of defect 4. The maximal multipartition in ,@g is (4,2|1]0) so
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pl2IL0) — A0 Taking p = (4,1]1]1) the tableaux in Std*(274) are
(1 2|3|4|‘@‘> <1 - 3|4|’B‘>
5] 56
B) (1 2|3[4] ‘B)
5
Therefore, [Z#] = [A®GIID] 4 g[A®20D]) 4 (g2 4+ 1)[AE2UD] Applying our

T | (5]
5|7 6
algorithm, [Z#] = [PH] + [P™21110)]. Using our LLT algorithm, the full graded

decomposition matrix of Sé\ in characteristic zero is:

(0] 114,2)| 1
(0[4,2]1) | ¢ 1
(110 14,2) | ¢ .
(11 4,1) | ¢ . q 1
(1112 [4) q 1
(1] 4 12) | . q
(14,11) |¢* ¢ ¢ & q q
(1]4,2]0) ¢ ¢ q> . . 1
(1] 1 ]4) ¢ ¢ q . . 1
(17 4 1) A e q 1
(4] 1 11?) q @ . q . . o1
T T e A N e R
@11 |¢ q +q ¢ @ & & @ g @ q
(4,2 0 |1) ¢ ¢ q> . . A |
4201000 |¢ ¢ ¢ . . . @& q . g . q ¢ q 1

The Kleshchev multipartitions in this block are (0[1|4,2) and (1]1]4,1). If £ = 2 then
the graded decomposition numbers of S;J} are always monomials in ¢ by [14, (5.14)].

This is one of the smallest examples of a block R/ﬂ\ that has a graded decomposition
number which is not a monomial. O
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