AN INFRASOLVMANIFOLD WHICH DOES NOT
BOUND

J.A.-HILLMAN

ABSTRACT. Orientable 4-dimensional infrasolvmanifolds bound ori-
entably. We show that every non-orientable 4-dimensional infra-

solvmanifold M with 8 = 31(M;Q) > 0 or with geometry Nil* or

Sol? x E! bounds. However there are Sol{-manifolds which are not

boundaries. The question remains open for Nil? x E!-manifolds.

Any possible counter-examples have severely constrained funda-

mental groups. We also find simple cobounding 5-manifolds for

all but five of the 74 flat 4-manifolds, and investigate which flat

4-manifolds embed in R™, for n = 5,6 or 7.

1. INTRODUCTION

Flat n-manifolds are boundaries [8]. This result has been extended to
restricted classes of infranilmanifolds [7, 12]. We shall show that it does
not extend to all infrasolvmanifolds. Since every 3-manifold bounds,
and every orientable 3-manifold bounds orientably, dimension 4 is the
first case of interest. Here there is a geometric simplification. Every
4-dimensional infrasolvmanifold is either a mapping torus or the union
of two twisted /-bundles. Simple algebraic arguments show that every
such mapping torus bounds, while a geometric construction applies to
many of the others. We find severe constraints on possible counter-
examples, which lead to a Sol{-manifold which is not a boundary. In
the latter part of the paper we seek explicit constructions of 5-manifolds
with boundary a given flat 4-manifold, and we consider also the related
question of which flat 4-manifolds embed in low codimensions.

Every infrasolvmanifold is finitely covered by a quotient I'\\S, where
I' is a discrete cocompact subgroup of a 1-connected solvable Lie group
S [1]. Such quotients are parallelizable, and so the rational Pontr-
jagin classes of infrasolvmanifolds are 0. In particular, orientable 4-
dimensional infrasolvmanifolds have signature ¢ = 0. Therefore they
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bound orientably, and those with ws = 0 bound as Spin-manifolds,
since 4 and ;"™ are detected by o.

Non-orientable bordism is detected by Stiefel-Whitney numbers. In
our context, the only Stiefel-Whitney class of interest is w}. It fol-
lows easily that every 4-dimensional infrasolvmanifold M with g =
$1(M;Q) > 0 bounds non-orientably. (This class includes all Soly, , -
manifolds with m # n and all Solj-manifolds.) If 3 = 0 then 7 =
m (M) =2 Axc B, where A, B and C are fundamental groups of 3-
dimensional infranilmanifolds and [A : C] = [B:C] = 2. In §4-§9
we use a construction based on mapping cylinders of double covers to
show that many such manifolds bound. In particular, all Ni/%- and
Sol? x E!'-manifolds bound. We do not yet have a complete result for
the remaining two geometries.

In §10 we show that if 5 > 2 (and in many cases with 5 = 1) then
M is also the total space of an S'-bundle over a closed 3-manifold,
and so bounds the associated disc bundle. If the S'-bundle space M
is orientable then so is the disc bundle space. In §11 we show that the
mapping cylinder construction applies to most of the 24 flat 4-manifolds
which are not S!-bundle spaces. Closed hypersurfaces in euclidean
spaces bound. In §12 we show that, with one possible exception, all
flat 4-manifolds embed in R, while between 24 and 56 embed in RS
and between 11 and 13 embed in R®.

2. SOLVABLE LIE GEOMETRIES OF DIMENSION 4

If G is a group let G', (G and v/G denote its commutator subgroup,
centre and Hirsch-Plotkin radical, respectively. Let G = G/G’ be
the abelianization, and let I(G) = {¢g € G | In >0, ¢" € G'} be
the isolator subgroup. This is clearly a characteristic subgroup, since
G/I(G) is the maximal torsion-free abelian quotient of G. If S is a
subset of G then (S) shall denote the subgroup of G generated by S,
and ((S)) shall denote the normal closure of (S). We use the notation
of Chapter 8 of [9] for automorphisms of flat 3-manifold groups.

Every 4-dimensional infrasolvmanifold is geometric. There are six
relevant families of geometries: E*, Nil*, Nil3 x E!, Soli, Soli and
Sol,, .. (The final family includes the product geometry Sol® x E' =
Solﬁhm for all m > 0, as a somewhat exceptional case.)

Let GG be a 1-connected solvable Lie group of dimension 4 with a left
invariant metric, corresponding to a geometry G of solvable Lie type.
Let Isom(G) be the group of isometries, and let Ko < Isom(G) be the
stabilizer of the identity in G. Let m < Isom(G) be a discrete subgroup
which acts freely and cocompactly on G, and let M = 7\G. If g =
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£1(M;Q) > 1 then M is the mapping torus of a self-diffeomorphism of
a E3-, Nil3- or Sol3-manifold. If 8 = 1 the mapping torus structure is
essentially unique. If § > 2 then M also fibres over the torus 7', with
fibre T or the Klein bottle Kb. _

All orientable Solj-manifolds are coset spaces m\G with 7 a discrete
subgroup of a 1-connected solvable Lie group é, which in general de-
pends on 7. (See page 138 of [9].) In all other cases, the translation
subgroup G N7 is a lattice in G, and is a characteristic subgroup of 7
[4]. If G is nilpotent then G N 7w = /m; in general, /7 < G N, and
the holonomy 7/G N7 is finite.

If g : X — X is a self-homeomorphism let M(g) = X x[0,1]/(z,0) ~
(9(2),1) be the mapping torus of g, and let [z, t] be the image of (z, )
in M(g). If f:Y — Z let MCyl(f) be the mapping cylinder of f.

3. STIEFEL-WHITNEY CLASSES AND THE CASES WITH 3 > 1

We give first some simple observations on the Stiefel-Whitney classes
of 4-manifolds, which we shall use to show that 4-dimensional infrasolv-
manifolds with 5 > 1 are boundaries.

Lemma 3.1. Let M be a closed 4-manifold and w; = w;(M). Then
wy = w3 +wi and wiwz = 0.

Proof. The Wu formulae give v, = wy, vo = wy + w?, w3 = Sq¢*w, and
wy = wi+w?, since v3 = vy = 0. Hence Sq'z = w2, for z € H3(M;F,).
If z € H'(M;F,) then Sq'(zwy) = x*wy + £S¢ wy. Therefore

rwy = (w1 + 12wy = (wiz + 22)* + (w1r + 2H)w? = 2* + wy2®.
In particular, wjws = w* +w* = 0. O

If M is a 4-dimensional infrasolvmanifold then w4(M) = 0, since

wy(M) N [M] is the reduction of (M) = 0 mod (2). Therefore w} =

wiwy = w3 is the only Stiefel-Whitney class of interest.

Lemma 3.2. Let M be a closed n-manifold and x € H'(M;Fy). If
n>2 and 2”1 # 0 then 2™ # 0.

Proof. This follows easily from the non-degeneracy of Poincaré duality,
since 2 # 0 and H'(M;F,) is generated by = and Ker(z U —). O

Lemma 3.3. If N is a non-orientable 3-manifold then B1(N;Q) > 0.
Proof. This is clear, since x(NN) =0 and H3(/N;Q) = 0. O

Similarly, if M is an orientable 4-manifold with x(M) = 0 then
Bi(M;Q) > 0.
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Lemma 3.4. If a manifold M fibres over an r-manifold, with orientable
fibre, then wy(M)™ = 0.

Proof. This is clear, since wq(M) is induced from a class on the base
of the fibration. O

Theorem 3.5. Let M be a 4-dimensional infrasolvmanifold with [ =
B1(M;Q) > 0. Then M = OW for some 5-manifold W.

Proof. The manifold M is the mapping torus of a (based) self diffeo-
morphism f of a closed 3-manifold N. Let 7 = 7w (M) and v = m(N).
Then 7 and v are virtually polycyclic, and m = v xyZ, where 0 = 1 (f).
If N is not orientable then I(v) < v, by Lemma 3.3, and so I(v) = Z,
72 or T (Kb) = Z x_y Z. In the latter case I(I(v)) = Z. In all cases,
M fibres over a lower-dimensional manifold with orientable fibre, and
so wi = 0, by Lemma 3.4. Therefore all the Stiefel-Whitney numbers
of M are 0, and so M = 0W for some 5-manifold W. U

If M is a non-orientable Sol{-manifold then 8 = 0. There are non-
orientable manifolds with 5 > 0 for each of the other geometries.

For all but three flat 4-manifolds, either w? = 0 or wy = 0 or w? = ws
[10]. Hence wj = 0, so all Stiefel-Whitney numbers are 0, and the
manifold bounds. Two more are total spaces of S'-bundles, and so
bound the associated disc bundles. Thus only the example with group
Gl *4 By requires further argument. (See the next section.)

All Soly, ,-manifolds (with m # n) and all Solg-manifolds are map-
ping tori of self-diffeomorphisms of R®/Z3. (See Corollary 8.4.1 of [9].)
Thus they all bound.

We may assume henceforth that 5 = 0 (so the manifolds considered
are not orientable) and the geometry is Nil*, Nil3 x E!, Sol{ or Sol® x E!.
(However we shall also consider E* in some detail.)

We shall need the following more specialized lemmas later.

Lemma 3.6. Let w : 1 — Fy = Z/27Z be a homomorphism. Then
p:m— G=mr/{k*|w(k)=0) induces an isomorphism H'(G;F,) =
HY(m;Fy). If p*(uw) = 0 in H?*(m;Fy) then uw = 0 in H*(G;Fy).

Proof. If p*(uw) = 0 in H?(m;Fy) there is a function f : 7 — Fy
such that u(g)w(g’) = f(g9) + f(9') — f(gg'), for all g,¢g" € m. Let
K = Ker(w) and H = (k* | w(k) = 0). Then f|x is a homomorphism,
and so f(h) =0, for all h € H. Hence f(g) = f(gh), for all g € 7 and

h € H. Thus f factors through a function f : G — Fs, and so uw = 0
in H?(G;Fy). O

The next lemma uses the non-degeneracy of Poincaré duality.
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Lemma 3.7. Let M be a non-orientable closed 4-manifold with x (M) =
0, and let w = wi(M). Suppose that H*(M;Fy) = (u, w), where u? = 0.
Then

(1) if w?* # 0 and uw # 0, then w® = 0.
(2) if w? # 0 and vw = 0 then w* # 0 < wo(M) # 0 or w?.

Proof. (1). Since vuw? = vw*w? = 0 and wauw? = S¢*(uw?) =
u?w? = 0, we have uw? = 0, by Poincaré duality. Now [y(M,Fy) =
23,(M,Fy) —2 = 2. Since vw.w? = vw.uw = 0 but uw # 0 and w? # 0
we must have uww = w?, by Poincaré duality. Hence w?® = ww? = 0.
(2). Let v = wo(M) + w? = vy(M). If wy(M) # 0 or w? then
H?(M;TFy) = (w? v). Since x(M) = 0 we have v? = wy = 0. Therefore
w* = (w?)? = w?v # 0, by Poincaré duality. The converse is clear,
since v3 = wy = 0. U

The second condition may be generalized as follows. Let H' =
H(M;F,) for i = 1 and 2. If w? # 0, w; U — : H' — H? has rank
1, wy is not in the image of H' ® H! and H*> = (H' ® H', w,), then
wi # 0. However these conditions are harder to check if 3;(m;Fy) > 2.

There are two (flat) 4-manifolds which fibre over T with fibre Kb,
and thus bound, but for which none of the conditions w% =0, wy =0
or wy = w? hold. Thus these conditions are not necessary for a 4-
manifold to bound. Nevertheless, manifolds which are not mapping
tori and whose orientable double covers are not Spin 4-manifolds may
provide non-bounding examples.

4. 4-MANIFOLDS WITH y =3 =10

If M is a closed 4-manifold with x(M) = 0 and § = 0 then M
is non-orientable, and there is an epimorphism f : m — D, where
Do, = Z/27Z % Z/2Z is the infinite dihedral group, by Lemma 3.14 of
[9]. Hence m = Ax¢ B, where C' = Ker(f) and [A: C] = [B: C] =
2. Since Do, = 7Z x Z/2Z, the group 7 has a subgroup of index 2
which is a semidirect product C' x Z. Since § = 0 the Mayer-Vietoris
sequence for the homology of 7 gives an epimorphism from H;(C; Q)
to Hy(A; Q) @ Hy(B; Q), and s0 51(4; Q) + 5 (B; Q) < 4(C; Q).

If, moreover, M is an infrasolvmanifold then A, B and C are the
fundamental groups of 3-dimensional infrasolvmanifolds X, Y and Z,
say, and M = MCyl(c) Uz MCyl(d), where ¢: Z - X and d: Z - Y
are double covers. The next two lemmas are clear.

Lemma 4.1. Ifc: Z — X is a double cover of an n-manifold X then
MCyl(c) is an (n + 1)-manifold with boundary Z. If Z is connected
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the mapping cylinder is orientable if and only if X is non-orientable
and c 1s the orientable double cover. U

In particular, if f is an orientation-preserving self-diffeomorphism of
a 3-manifold N then M (f?) bounds a non-orientable 5-manifold.

Lemma 4.2. Let X and Y be connected (n — 1)-manifolds which have
double covers ¢ : Z — X and d : Z — Y with the same domain,
and let M = MCyl(c) Uz MCyl(d). Suppose that X, Y and Z each
bound n- mamfolds X }: cmd Z and that ¢ and d extend to double
covers¢:Z — X andd: Z — Y. Let W = MCyl(c) Uy MCyl(d)
Then OW = M. If ¢ and d are the orientable covers of non-orientable
manifolds then W and M are orientable. O

We shall show that this construction applies to many 4-dimensional
infrasolvmanifolds.

Theorems 8.4-8.9 of [9] limit the possibilities for A, B and C. In
particular, if C is virtually Z® but 7 is not virtually abelian then C
has holonomy of order < 2. There are four such, two orientable: Z3
and Gy = 72 x_; Z, and two non-orientable: B, = Z x m (Kb) and
B,. Similarly, if C'is a Nil3-group but 7 is not virtually nilpotent then
[C': V/O] < 2. We shall not need to consider the possibility that C' be
a Sol3-group.

We note also the following simple result.

Lemma 4.3. If 1 = Axc B where [A: C]=[B:C]|=2and A, B and
C are the groups of 3-dimensional infranilmanifolds then the holonomy
of A maps injectively to the holonomy of . O

5. AMALGAMATION OVER FLAT 3-MANIFOLD GROUPS

If C' = Z? then A and B have holonomy of order < 2. Since 3,(4; Q)
and £1(B;Q) > 1 and £;(A4;Q) + 51(B; Q) < 3, we may assume that
A= Gy and B is not Z3. Let f,g and h be the involutions of S x D?
given by f(u,v) = (u,0), g(u,v) = (u,v) and h(u,v) = (u,uv), for all
(u,v) € S' x D% The boundaries of the mapping tori M(f), M(g) and
M (h) are the flat 3-manifolds with groups Go, By and By, respectively,
and in each case the mapping torus is doubly covered by S* x D? x S*,
with boundary the 3-torus R®/Z3. Therefore the mapping cylinder
construction shows that M is a boundary.

If C = G5 then £,(C;Q) = 1. We may assume that A = Gg and B
is one of G9, G4, Gg, B3 or By. If B = (G5 = (' then the inclusion of C'
into B induces an isomorphism C/I(C) = B/I(B), and is induced by
a double cover from M(f) to itself. Non-orientable 3-manifolds bound
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non-orientable 4-manifolds, and their orientable double covers bound
the orientable double covers of such manifolds. If f is the involution
of S* x D? defined above then M(f) has an orientation-preserving free
involution given by [u,v,t] — [—u, s, —t]. The quotient manifold has
boundary HW, the Hantzsche-Wendt flat 3-manifold with group Gé.
Thus the mapping cylinder construction applies, provided B 2 G4.

If C = By or By then A and B must be Bs or By, and [(I(A4)) =
I(I(B)) = I(C) = Z. Hence w/I(C) = A/I(C) %22 B/I(C) and so
is a 3-manifold group. The manifold M is then the total space of an
St-bundle. (The mapping cylinder construction can also be used here.)

There remains the possibility that A = Gg, B =G4 and C' = G,. In
this case the holonomy group Z/4Z of G4 does not act diagonally, and
there is no obvious construction of a 4-manifold with boundary the flat
3-manifold with group G4. Instead we may use algebraic arguments.
The group 7 then has a presentation

1 -2

tox,y, 2| eyl t =y yrty =272, 2 =ay, tatt Tl =™
Yy Yy Yy yxry Yy

2p
ry-,

tyQt—l — xZny—Zm’ tzt—l — IL'_erQSZ, t2 — xZaysz%

where a,b,m,n,p, € Z, r = (m — 1)a + pb, s = —na + (m + 1)b and
m? +np = —1. (We may assume also that 0 < a,b < 1.) Here
C = (2%,9% 2), and 7/C = D, is generated by the images of ¢t and
z. The automorphism of v/C' = (22,42, 2%) determined by conjugation
by tx has eigenvalues m + vm?+ 1. If m = 0 then 7 is virtually
abelian, and the corresponding manifold M is flat. In this case 7 is
also isomorphic to G5 *73 By, and so M bounds. Otherwise, 7 is not
virtually nilpotent, and M is a Sol® x E!-manifold.

The generators t, x and y in this presentation represent orientation-
reversing elements of 7. If m is even, or if m is odd and n, p are both
even, then /7" = (Z/4Z)?, and so w} = 0. Thus we may asume
that m,n are odd (and hence p is even). In this case /7' = Z/8Z &
7 /27, where the summands are generated by the images of tx~! and
x, respectively. Thus w = w; is projection onto the second summand.
Let w : @ — Z/2Z be the homomorphism determined by u(t) = 1
and u(z) = 0. Let H = (k? | w(k) =0), as in Lemma 3.6. Then
G=n/H==Z/AZ ® Z/2Z, and so u? = 0 and uw # 0 in H*(G;F,).
Hence uw # 0 in H*(m;Fy), by Lemma 3.6, and so w® = 0, by part (1)
of Lemma 3.7. Thus all such manifolds bound.

These results apply immediately to the flat 4-manifolds with 5 = 0.
In the next section we shall use them to confirm that all Ni/*- and
Sol? x E!-manifolds are boundaries.
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6. Nil*- AND Sol® x E'-MANIFOLDS

Let M be a Nil*-manifold and let C' be the centralizer of I(\/7) = Z?
in /r. Then C' = Z3 and 1 < (/7 < I(y/7) < C < 7 is a
characteristic series with all successive quotients Z. (See Theorem 1.5
of [9].) In particular, C' is normal in 7 and 7/C has two ends. The
preimage in 7 of any finite normal subgroup of 7/C'is a flat 3-manifold
group which is normal in 7. This must be Z* by Theorem 8.4 of [9],
and so m/C has no non-trivial finite normal subgroup. Hence 7/C = Z
or Dy, and [r : /7] divides 4. In particular, if 5 = 0 the mapping
cylinder construction of §4 applies, and so all Nil*-manifolds bound.
(Note that since (/7 = Z the result of [7] applies here if and only if
either 7 = /7 or 7w /\/m = Z/2Z and acts by inversion on (+/7.)

If M is a Sol? x El-manifold then /7 = Z3 and the quotient 7/\/7
has two ends. Therefore 7 = A x¢ B, where /7 < C, [C : \/7] is finite
and [A: C] = [B : C] = 2, since we are assuming that § = 0. Since 7
is not virtually nilpotent, [C': /7] < 2, by Theorem 8.4 of [9]. In all
cases M is a boundary, by the results of §4.

7. AMALGAMATION OVER Nil3-MANIFOLD GROUPS

The other cases that we shall need to consider are when A, B and
C are fundamental groups of Nil>-manifolds. These have canonical
Seifert fibrations, with base a flat 2-orbifold with no reflector curves.
(There are seven such orbifolds: T', Kb, S(2,2,2,2), P(2,2), 5(2,4,4),
S(2,3,6) and S(3,3,3).) The quotients A = A/Cv/A, B = B/(\/B
and C' = C'/¢\/C are the orbifold fundamental groups of the bases. If
the image of ¢ € A generates a maximal finite cyclic subgroup of A

then (VA < (g), since (g, (V/A) is torsion-free and virtually Z.

Lemma 7.1. Suppose that m = A x¢c B, where C is a Nil>-group and
A= {(C,t) and B = (C,u), with t*,u*> € C. Then
(1) if VA:VC =2 orif C =C and AJ(NAX T2 x_; Z/27
then the automorphism of v/C /(+/C induced by conjugation by
tu has finite order;
(2) if m is not virtually nilpotent then VA=+vVB=C;
(3) if the inclusion of C into each of A and B induces isomorphisms

C/¢VCO =2 AJCVA and C/¢V/C = B/(VB then M bounds.

Proof. It [\/Z : \/5] = 2 then t € VA, and so t centralizes \/U/Q\/é
If C' is nilpotent and A/(VA = Z? x_; Z/2Z then t acts via —I on
VC/¢V/C. Since u? € C and [C : /(] is finite, in each case some
power of tu acts trivially on v/C /C V/C'. Hence 7 is virtually nilpotent.
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Part (2) is an immediate consequence of part (1).

The hypotheses of part (3) imply that 7/¢v/C = C/(VC x De.
(Hence 7 is virtually a product v/C x Z.) Let N = K(C,1) and let ¢
be the free involution of N x D? which is the antipodal map on the S*
fibres of N and reflection across a diameter of D?. Then the quotient
N x D?/{1) is a 5-manifold with boundary M = K (m,1). O

As in the flat case, £1(A; Q) + 51 (B;Q) < £,(C;Q) < 2. If C =/ C
we may assume that either A = +/A and K (B, 1) has base S(2,2,2,2),
or the bases for K(A,1) and K(B,1) are Kb or S(2,2,2,2).

If [C' : v/C] = 2 then K(C, 1) has base S(2,2,2,2) or Kb. In the first
case K(A,1) and K (B, 1) have base 5(2,2,2,2), P(2,2) or 5(2,4,4).
In the second case we may assume that K (A, 1) has base P(2,2) and
K(B,1) has base Kb or P(2,2).

Lemma 7.2. Suppose that m = A x¢c B, where C is a Nil>-group and
A= (C,t) and B = (C,u), with t*,u*> € C. Then w} =0 if either

(1) ¢ = [¢VC C\/@ﬂ\/@l] is even, and either C' = /C or t", u" €
¢V C for somen > 2; or

(2) C =+/C and K(A,1) and K(B,1) fibre over Kb; or

(3) K(C,1) has base S(2,2,2,2) and K(A,1) and K(B,1) both
have base S(2,4,4); or

(4) K(C,1) has base S(2,2,2,2) and K(A,1) and K(B,1) both
have base P(2,2).

Proof. Since Nil3-manifolds are orientable the orientation reversing el-
ements of m are of the form xc, where v € (AU B) \ C and ¢ € C.
In each case, such elements have images in w/7’ of order divisible by

4. U

This does not always hold if K(A, 1) has base P(2,2) and K (B, 1) has
base S(2,4,4). When (VA = (v/B = ¢+/C and K(C,1) and K(A,1)
have bases S(2,2,2,2) and P(2,2), respectively, the automorphism of
V/C/¢A/C induced by tu has matrix

E=0 )00 L) =050,

where m? + np = 1 if K(B,1) hase base P(2,2) and m? + np = —1 if
K(B,1) has base S(2,4,4). If m = 0 this has finite order, and so M is
a Nil® x E'-manifold. If m = 41 and np = 0 then K (B, 1) must also
have base P(2,2), and M is a Nil®> x El-manifold if n = p = 0, and is
a Ni/*-manifold if one of n or p is not 0. In all these cases w} = 0, and
so M bounds. Otherwise (if m* = 1 and np = —2, or if |m| > 1) the
eigenvalues of ¢ are not roots of unity, and so M is a Sol{-manifold.
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If [C' : v/C] > 2 then M must be a Nil? x E'-manifold. These cases
are considered in the next section. (In most such cases part (3) of
Lemma 7.1 applies.)

The mapping cylinder construction appears to have limited applica-
bility here. Let ©,, and ¥, be the self-diffeomorphisms of S! x D?
given by ©,,(u,d) = (u,u™d) and ¥, (u,d) = (u,u"d), for all (u,d) €
S x D? respectively, and let 6,, = ©,,|r and v,, = ¥, |7 be the restric-
tions to T = 9(S! x D?). The mapping tori M(0,,) and M(¥,) are
D*bundles over T and Kb, respectively. The double covers of M(©,,)
are all diffeomorphic to M (©,,,), while the double covers of M (¥,,) are
diffeomorphic to M(6s,) or M(W¥y,). In particular, if C = vA = VB
and K(A,1) and K(B,1) each fibre over Kb then M bounds.

8. Nil? x E'-MANIFOLDS

If M is an infranilmanifold with holonomy a finite 2-group which
acts effectively on (/7 then M bounds, by Proposition 1.3 of [7]. (The
hypotheses of the later result of [12] imply that M must be an orientable
Ni? x El-manifold, and so this is of limited interest for our problem.)

Let M be a Nil® x E'-manifold. Then /7 = T, x Z, for some ¢ > 1,
and so (/7 = Z? and /7/(/T = Z?. Moreover, I(y/7) = Z and
I(y7) < (7. Let 0w — Aut((/7), 0 : 7 — Aut((/7/1(/7)) and
W — Aut(y/7/(+/7) be the homomorphisms induced by conjugation
in 7. Since I(/7) is a characteristic subgroup of 7, the image of 6 lies
in the diagonal group (Z/27)% of GL(2,7Z). The manifold M is non-
orientable if and only if # is nontrivial. (In that case the holonomy
v = 7/4/7 acts by inversion on the Euclidean factor of Nil® x R.)

Let K = Ker(f). Then vK = /7, since /71 < K < 7. Moreover,
(vm < (K < VK, and so (K = (/. The quotient K/CK is a
flat 2-orbifold group with holonomy K/vK. Since K acts trivially
on (K this orbifold is orientable, and so K/vK is cyclic, of order
1, 2, 3, 4 or 6. The preimage in 7 of any finite normal subgroup of
7/I(y/7) is an infinite cyclic normal subgroup, and therefore is I(/7).
Therefore the induced action of v on +/w/I(y/7) is effective, and so
(¥,0) : v — GL(2,Z) x Z* is injective. Hence 7 is isomorphic to
a subgroup of Dy, x Z/2Z, for n = 4 or 6. All the possibilities are
realized, except for the products Ds, x Z/27Z, with n =3, 4 or 6 [5].

Although some Nil® x El-groups with 8 = 0 are amalgamated free
products T = A ¢ B with A, B and C virtually Z?, the cases with A =
G, B = G4 and C = (5 do not arise here, and so the corresponding
manifolds bound. Thus we may assume that 7 = A x¢c B, where A, B
and C are fundamental groups of Ni/*-manifolds. If K(C,1) has base
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P(2,2), S(2,4,4) or S(2,3,6) then A = B = C, and so M bounds,
by part (3) of Lemma 7.1. However, if K(C,1) has base 5(3,3,3)
then K(A, 1) or K(B,1) could have base S(2,3,6). In this case there
are non-normal subgroups of index 3, with similar structures Ax VG B ,
where K (A, 1) and K (B, 1) have base T or 5(2,2,2,2). Since coverings
of odd degree induce isomorphisms on cohomology with coefficients [Fy,
we may further assume that [C' : v/C] < 2, and that v = 7/y/7 is a
2-group, of order dividing 8.

If v = Z/2Z then v must act trivially on I(y/7) and via —I3 on
VT /I(/7) 2 Z3 (since = 0). Thus 7 acts effectively on (/7, and so
M bounds, by Proposition 1.3 of [7]. Thus we may assume that either
v=(Z/2Z)? and (m = I(y/7) (i.e., v does not act effectively on (/)
ory=Z/AZ, Z|AZ & Z)2Z, (Z]2Z)3 or Ds.

If C = \/C then the orientable double cover of M is a Spin 4-
manifold. If, moreover, either K(A,1) and K(B,1) both fibre over

Kbor q=[¢/C: /O N \/6/] is even then w} = 0 and so M bounds,
by part (1) of Lemma 7.2. If K(C,1) has base 5(2,2,2,2) and VA =
VB = +/C (and 7 is virtually nilpotent) then w? = 0. There are
mapping tori of self-diffeomorphisms of such K (C, 1) which are not Spin
[10]. Thus the cases when K(A,1) and K(C, 1) have base S(2,2,2,2)
may give examples of Nil® x E!-manifolds which are not boundaries.

9. Solt-MANIFOLDS

If M is a Solj-manifold then /7 = T, for some ¢ > 1, and 7//7 has
two ends. Therefore 7 = Axc B, where [A : C] = [B : C] = 2,
V7@ = /C and [C : /7] is finite. Thus A, B and C are funda-
mental groups of Nil3-manifolds. Since 7 is not virtually nilpotent,
[C': /7] <2, by Theorem 8.4 of [9], and so [A : /7| and [B : /7] are
each < 4. Moreover VA = VB = /C, by part (2) of Lemma 7.1. The
possibilities are limited further by the fact that = cannot have Z? as a
normal subgroup, since Sol{-manifolds are not Seifert fibred. In partic-
ular, K(C,1) cannot be fibred over Kb, for otherwise the characteristic
subgroup I(C) = Z? would be normal in 7.

If C = +/m then K(A,1) and K(B,1) are S'-bundles over Kb, by
part (1) of Lemma 7.1. The mapping cylinder construction then applies
to show that M bounds. If [C' : /7] = 2 then K(C,1) has base
5(2,2,2,2),and so K (A, 1) and K (B, 1) have bases P(2,2) or 5(2,4,4).
If the bases are the same then w? = 0, by parts (3) and (4) of Lemma
7.2, and so M bounds. There remains the possibility that K(A, 1) has
base S(2,4,4) and K(B,1) has base P(2,2).
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Theorem 9.1. Let M be a Sol{-manifold with m = 7 (M) = A x¢ B,
where K(A,1) is Seifert fibred over S(2,4,4) and K(B,1) is Seifert
fibred over P(2,2). If ¢ = [(V/C : (V/C'N \/5,] is odd then M bounds
if and only if w3 = 0.

Proof. Since K(C,1) is a double cover of each of K (A, 1) and K(B,1),
it is Seifert fibred over S(2,2,2,2), and VA = VB = v/C. The orb-
ifold fundamental groups of the bases A = 7°%(5(2,4,4)) and B =
7% (P(2,2)) have presentations (a, x | a* = (ax)?, [z,axa™'] = 1) and
(j,u | 7> = (ju*)? = 1), and their maximal abelian normal subgroups
are (r,aza™t) and (u?, (ju)?), respectively.

After suitable normalizations we may assume that A has a presen-
tation

(a, 2,y |y =azxa™, [z,y] = a®, d®za™? =27"),

and that C' = (a?, x,y). We may then assume that B has a presentation

1 m, n:2e

Gok,z,y | [, y] = 5% joj ' =a " jyi =y, kak! = aMy"5%

]{J’yk'_l — :L_py—ijf’ kf2 — :L,rijQg’ (jk’)z — xtijZh >’
where m is odd and p and n are even (since (', %, ) must be conjugate

to (§%)), and ru—ts = +1. Here C' is the subgroup (j, z,y), and we
may identify j with a®. Hence 7 has a presentation
(a,k, 2,y | axa™' =y, d’va ™ =27, kak™' = 2™y a™,

k”ykf_l — [L‘py_m(l4f, k,Z — :L,rysalélg’ ((1,2]{3)2 — [L'tyu(l4h, [l’,y] — a4q >

Abelianizing this presentation gives [x] = [y], 4¢[a] = 0, 2[z] = 0,
(m +n+1)[z] = dela], (m +p+1)[z] = 4fla], 2[k] = (r + s)[2] + 4g[a]
and 2[k] = (t + u)[z] +4(h — 1)[a]. Since m +n+ 1 and m +p+ 1 are
even two of these simplify to 4e[a] = 4f[a] = 0. Moreover 2q[k] = q[z].

Since r + s and ¢t + u cannot both be even, we can solve for [z] in
terms of [a] and [k]. If they are both odd then 7 /7' = Z/4GZ & Z/4Z,
where ¢ = h.c.f{q,e,f,g — h + 1}, and then w? = 0. Otherwise
m/m' 2 Z/AGZ & Z/2Z, where ¢ divides h.c.f{q,e, f}, and w} # 0. If
(say) r+ s is even then 2([k] —2g[a]) = 0 and so ka™? is an orientation
reversing element with image in 7/7’ of order 2.

The projection to the quotient 7/((a*, (ak)?, z)) = Dg induces an
isomorphism H'(Dg;Fy) = H'(m;Fy) = (u,w). Since uw = 0 in
H?(Dg;Fy) it follows that uw = 0 in H?(m;Fy) also.

The orientable double cover of M is the mapping torus of the self-
diffeomorphism of K(C, 1) corresponding to ¢ = ak, and is not a Spin
manifold, since ¢ is odd. (See §7 of [10].) Therefore wy(M) # 0 or w?.
It now follows from part (2) of Lemma 3.7 that w* # 0, and so M does
not bound. O



AN INFRASOLVMANIFOLD WHICH DOES NOT BOUND 13
In particular, the Sol{-manifold M whose group has presentation
(a,k,z,y | axza™ =y, a*va™? =27, kak™' = 2%y, kyk™' = 2%y,

K =y, (k) =2y?, [3,y] =d*).

is not a boundary.

10. S'-BUNDLE SPACES

In many cases a 4-dimensional infrasolvmanifold M is the boundary
of the total space of a D?*-bundle over a 3-manifold.

In all, 50 of the 74 flat 4-manifolds are total spaces of S'-bundles.
The exceptions have 5 < 1, and are three with group Gy x Z (all non-
orientable), three with group G x Z (all orientable), two with group
G4 x Z (both orientable), one with group G5 x Z (orientable), twelve
with group Gg X Z (seven orientable) and three with 5 = 0 and groups
Gy %4 By, Gg %4 B3 and Gg *4 By (all non-orientable). In §11 we shall
show that the mapping cylinder construction applies to most of these.

Coset spaces of Nil®> x R or Sol® x R are products N x S!, with N
a Nil3- or Sol3-coset space, respectively, and so bound N x D?. Coset
spaces of Nil* or Sol} are also S'-bundle spaces, since the action of the
centre R induces a free S'-action on the coset space. A Nil*-manifold
is such a coset space if and only if 3 = 2, while a Ni/? x E!-manifold
is such a coset space if and only if 3 = 3. These coset spaces are
orientable, and so bound orientably.

If M is a Nil*-manifold or a Nil? x E!'-manifold, but is not a coset
space, then 8 < 1 or § < 2, respectively. If M is non-orientable and
B > 0, or if M is an orientable Nil? x El-manifold and 8 = 2, then
T = v Xy Z, where v = Z3,Go, By or By. (See Theorems 8.4 and 8.9 of
[9].) The manifold M is the mapping torus of a self-diffeomorphism of
the corresponding flat 3-manifold N. (If M is orientable then v = Z3 or
Gy, and if M is a non-orientable Ni/*-manifold then v = Z3.) If v = Z3
or G5 then 0|,y has an eigenvalue £1, since 7 is virtually nilpotent.
(If 8 =1 and v = Z3 the eigenvalue must be —1.) The quotient of 7 by
the corresponding infinite cyclic normal subgroup is torsion-free, and
so M is also the total space of an S'-bundle over a closed 3-manifold.
A similar result holds if v = B; or By, for in these cases I(v) = Z.

Orientable Ni/3 x E!- and Ni/*-manifolds with 3 = 1, and all ori-
entable Soli-manifolds (which have 3 = 1) are mapping tori of diffeo-
morphisms of Ni/*>-manifolds. If the fibre is a Nil*-coset space, with
group v = /v, then 7/1(v) is torsion-free, and so the 4-manifold is the
total space of an S'-bundle over a Nil*>-manifold. However if v # /v
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then 7 has no infinite cyclic normal subgroup with torsion-free quo-
tient, and the manifold is not an S'-bundle space.

If M is a Sol® x E'-manifold then / < 2, and if 3 = 2 then 7 =
73 xq Z. In this case 0 has an eigenvalue 1, and so M is an S!-bundle
space. This is also the case if 3 = 1 and 7 = Z3 x4 Z, as one eigenvalue
of 8 must be £1. Otherwise either f# = 1 and m = ¢ x Z, where o is
the group of a Sol3-manifold, or 3 = 0.

11. MAPPING CYLINDER CONSTRUCTIONS

The mapping cylinder construction of Lemma 4.1 and 4.2 apply to
many of the flat 4-manifolds which are not realizable by S!-bundle
spaces. We note here the following variation: if ¢: Z — X is a double
cover and f is a self-diffecomorphism X such that f.c,m(Z) = c.m(Z2)
then f extends to a self-diffeomorphism F' of MCyl(c), and so M(f) =
OM(F).

All the mapping tori of self-diffeomorphisms of orientable flat 3-
manifolds with cyclic holonomy and 8 = 1 also fibre over Kb, and
so their groups map onto D.,. The groups Gg Xy Z corresponding to
the outer automorphism classes 6 = a, ab,i and ei also map onto Dy.
The groups corresponding to cej, abcej and j have abelianization Z,
and so Lemma 4.2 does not apply to these. The classes ace = (ci)?,
bee = (ei)? and and abcej = j* are squares in Out(Gg) (as are 1 = 12
and ab = (cei)?). These bound, since M(f?) bounds the mapping
cylinder of the canonical double cover of M(f). (Since cei and ci are
orientation-reversing, two of these mapping cylinders are orientable.)
The classes a, ce, cet, ci and j are not squares, since they are orientation-
reversing. The classes ¢ and ei are not squares, as they have order 4
and Out(Gs) has no elements of order 8. The class cej is not a square,
as it has order 6 and Out(Gg) has no elements of order 12.

The mapping cylinder construction applies to show that each of the
four flat 4-manifolds with § = 0 is a boundary. There remain five flat
4-manifolds (corresponding to ce, cei, cej, ¢i and j) for which we do not
yet have simple cobounding 5-manifolds, and a further two orientable
flat 4-manifolds (corresponding to abcej and bee) for which we do not
have simple orientable cobounding 5-manifolds.

12. EMBEDDING FLAT 4-MANIFOLDS IN R"

If a closed smooth n-manifold embeds in R* then the kth normal
Stiefel-Whitney classes wy (M) is 0, since this is the mod-(2) normal
Euler class. (See Theorem 10.2 of [11].) This necessary condition is
also sufficient when n = 4 and k£ = 3: a closed smooth 4-manifold
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M embeds in R if and only if w3(M) = 0 [6]. (Note that ws(M) =
wy(M)+wy (M)? = Sqrwe(M)+wi(M)3, by the Whitney sum theorem
and the Wu formulae.) In particular, every orientable closed smooth
4-manifold embeds in R”. An orientable closed smooth 4-manifold M
embeds in RS if and only if wy(M) = 0 and o(M) = 0 [2]. However,
there is as yet no general criterion for non-orientable 4-manifolds to
embed in RS,

It follows from these results (and Lemma 3.1) that if a 4-dimensional
infrasolvmanifold M is a boundary and w3(M) = 0 then M embeds in
R, since w] = 0 implies w? = 0, by Lemma 3.2, and then w3(M) = 0.
If M is orientable then it embeds in R® if and only if wy(M) = 0.

In [10] it is shown that ws is integral (and hence ws = 0) for all but at
most two flat 4-manifolds. The exceptions have groups m = G4 x; Z or
Ge*g Bs. When m = Gg X; Z, the Wang sequence for 7 as an extension
of Z and the Universal Coefficient Theorem imply that H?(m; Z/4Z) =
(Z/4Z)* maps onto H?(rm; Fy). Therefore wy = Sq*wy = 0. Thus, with
one possible exception, every 4 flat 4-manifold embeds smoothly in R”.

Three orientable flat 4-manifolds have wy # 0; they are mapping
tori of self-diffeomorphisms of HW, corresponding to 6 = e, bce or ei in
Out(Gg). The other 24 embed in RS. Since wy(M) = wy(M)+w; (M)?,
non-orientable flat 4-manifolds which embed in R® must have Pin~-
structures. This condition excludes 15 of the 47 non-orientable flat
4-manifolds, but we do not know whether all the others embed in RS.

If M embeds in R® then it bounds a compact region and is s-
parallelizable. Thus M is parallelizable if also x(M) = 0. Moreover,
if X and Y are the closures of the components of S®\ M then X
and Y are connected and H'(X) @& H'(Y) = H'(M). In particu-
lar, if 8 = 1 then M has an essentially unique infinite cyclic covering
M’, and this bounds a covering of X, say. Let ¢ generate the cover-
ing group, and let T be the maximal finite submodule of Hy(M;A).
Then Poincaré duality with coefficients in the group ring A = Z[t, t™!]
and the Universal coefficient spectral sequence together give an isomor-
phism 7' = Ext3 (T, A). This is equivalent to a non-degenerate pairing
l, : T xT — Q/Z, with an isometric action of the covering group.
When M’ is homotopy equivalent to a 3-manifold this pairing is the
standard torsion linking pairing on M’, with the action of the covering
group (t). (In knot theory this pairing is known as the Farber-Levine
pairing.) If M = OW and p extends to a homomorphism from (W)
to Z then K = Ker(: T'— H;(W;A) is a submodule which is its own
annihilator with respect to ¢,. Hence ¢, is metabolic.
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Every closed 3-manifold N embeds in R® [13]. The normal bun-
dle of an embedding j : N — R’ is classified by an Euler class
e(j) € H*(N;Z") = H,(N;Z). If M is the boundary of a regular
neighbourhood of j then M is the total space of an S'-bundle over N,
and e(j) is also the class of the corresponding extension of (V) by
Z. If N is orientable the normal bundle is trivial, and so M = N x S!.

The six orientable flat 4-manifolds which are products N x St (with
groups G; X Z, for 1 <i < 6) all embed in R®. Since G = Z & Z/37
and G = Z ® Z/2Z, the flat 4-manifolds with groups G; x¢ Z (for
i=3or4)and 8 =1 do not embed in R%. The group G% = (Z/42)*
does not have a subgroup which is its own annihilator with respect to
the torsion linking pairing of HW, and so no flat 4-manifold with group
G X Z and B = 1 can embed in R®. However, such considerations do
not apply to the flat 4-manifold with group G5 xy Z and g = 1, since
G =~ 7 is torsion-free. In this case Hy(w) & Z & Z/2Z is the sum
of two cyclic groups. Since the corresponding flat 4-manifold M has
wo(M) = 0 and o(M) = 0, it embeds in R5, by Theorem 6.2 of [3].

If 7 = 73 xp Z has cyclic holonomy and 3 = 2, then any basis for
7/I(7) = Z? will contain at least one element whose image generates
the holonomy. Therefore if M embeds in S° with closed complemen-
tary regions X and Y there will be an infinite cyclic cover M’ with
fundamental group an orientable flat 3-manifold group with the same
holonomy, which bounds an infinite cyclic cover of X, say. This is again
impossible if the holonomy has order 3 or 4.

The remaining six orientable flat 4-manifolds are mapping tori of self-
diffeomorphisms of the half-turn flat 3-manifold, with groups G %y Z,
and five of these have § = 1. These also fibre over non-orientable flat
3-manifolds. In three of these cases the group is a semidirect product
Z ¥y B;, where w = wy(Bs) and 2 < i < 4. These correspond to
Sl-bundles with a section, i.e., to bundles with Euler class 0. We shall
show that they each embed in RS.

If a flat 4-manifold M is the boundary of a regular neighbourhood
of an embedding j of a non-orientable flat 3-manifold N in R®, then
m = m (M) is a non-trivial extension of 7 (N) by Z, 8 = (1(N) and
e(j) must have finite order. In particular, if m(N) = B; or By then
T = Gy X Z or Z X, By. The semidirect product is the only orientable,
virtually abelian extension of By by Z, since H;(Bs;7Z) is torsion-free.
If my(N) = B3 or By then § = 1, 1 = G5 Xy Z and the holonomy is
(Z)27).

Since Kb embeds in Gy, Kb x S' embeds in R® with normal Euler
class 0, and so the flat 4-manifold with group Z x,, By embeds. (This
is of course G x S'.) Let R be the orientation preserving involution of



AN INFRASOLVMANIFOLD WHICH DOES NOT BOUND 17

D? x D? which swaps the factors. Then R restricts to an orientation-
reversing involution of 7' = S! x S', and M(Rr) & K(Bs,,1) embeds
in M(R) = S' x D* C R®. Since this embedding can be isotoped off
itself, the flat 3-manifold K(Bs,1) embeds in R® with normal Euler
class 0.

Two of the non-orientable flat 3-manifolds fibre over the torus, while
the other two fibre over the Klein bottle. Let p; : E; — F be the
projection of the associated R2-bundle, let s : ' — E; be the O-section,
and let j; : K(B;,1) — E; be the natural inclusion of the unit circle
bundle. Note that j; may be isotoped to a disjoint nearby embedding.
Let n; be the line bundle over F' with wy(n;) = s*w;(E;). Then the
Whitney sum p; @ n; is an R*-bundle over F, with orientable total
space EZ = E(p; ®n;)-

If i = 2 or 4 the fibres of the projections p;j; have image 0 in
H,(B;;Fy), and so p;j; induces isomorphisms H?(F';Fq) = H(B;;Fy),
for ¢ < 2. Since wy = w? for any 3-manifold, by the Wu relations, the
Whitney sum formula gives wg(E\i) = 0. Regular neighbourhoods of
any embedding of T' or Kb in R® are D3-bundles with parallelizable to-
tal space. Therefore if ¢+ = 2 or 4 then EZ embeds in R®. Hence the flat
3-manifold K (B;, 1) also embeds in R®, with normal Euler class 0. The
boundary of a regular neighbourhood is an orientable flat 4-manifold
with group Z x,, B;.

When ¢ =1 or 3 it is not so clear that wg(E\i) = (. Instead we use
more explicit constructions. We have already done this for : = 1. We
may embed Kb in S x D? as the subset {(u? x,yu) | ue S, z,y €
R, x* + y? = 1}. Let h be the orientation-preserving diffeomorphism
of S* x D3 given by h(u,x,y,2) = (4, x,y,—z). Then h reverses the S*
factor, h(Kb) = Kb and h fixes pointwise the fibre of Kb over u = 1.
The mapping torus M(h) is an orientable D3-bundle over Kb, and
M (h|ky) = Bs. Since h|g has 1-dimensional fixed point set, the bound-
ary of M(h) is the orientable S?-bundle over Kb with wy = 0, and so
wo(M(h)) = 0. Therefore M(h) embeds in R® as a regular neighbour-
hood of an embedding of Kb. Hence K(Bs, 1) also embeds in R, with
normal Euler class 0. The boundary of a regular neighbourhood is an
orientable flat 4-manifold with group Z X, Bs.

One of the three remaining groups G5 x Z has abelianization Z &
Z/4Z. The corresponding flat 4-manifold embeds in R®, by Theorem
6.2 of [3]. The group is a non-split extension of By by Z, and so the
normal Euler class is a non-zero torsion class.

The two undecided cases have groups with presentations

(t, oy, 2z | tot™ = a7 tyz, ty = yt, tat™t =271,
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xyx_l = y_l, xza = z_l,yz = 2y)
and
(o, y,z | tot P =7t tyt ™ =2, tat =y,
vyr =yt wzrt = 27y = 2y),

respectively. These manifolds are Spin, and so embed in R®. In each
case the Farber-Levine pairing is metabolic, and so provides no obstruc-
tion to an embedding in R®. On the other hand, the abelianizations
each need at least three generators, and so the result of [3] does not

apply.
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