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1. Introduction

Assume that we observe a bivariate dataset {Xi, Yi}ni=1 that follows the regres-
sion model,

Yi = µ(Xi) + σ(Xi)εi, (1)

where µ is the regression function and σ is a deterministic scale function. Also,
εi and Xi are the error and random design variables respectively (both being
possibly long-range dependent) and Xi has cumulative distribution function
F = FX :R−→ [0, 1] that is strictly increasing.

We are interested in testing the presence of a change point in the slope of a
regression function µ and if one exists, estimating its location. We describe this
jump in the first derivative of µ as a kink and denote the change point by θ.
Knowledge of this change point will allow us to identify change in trends in the
underlying regression function of a non-parametric model. This could explain
the change in qualitative or quantitative behaviour of an underlying process.

1.1. Existing results

Before examining the kink estimation under the random design regression model
(1), we first look at other non-parametric and parametric models and their link
to the existing theory for kink point estimation. A change point estimation
technique was pioneered by Goldenshluger, Tsybakov and Zeevi (2006) for es-
timating change points in the regression function itself, not the kink scenario.
The underlying model assumed for their framework was the indirect model with
fixed design. The indirect model assumes that the regression function is not
observed in practice but a so called ‘blurred’ version of the regression function
is observed whereby the regression function has been transformed by a convo-
lution operator. More specifically, the indirect model assumes that observations
are realisations of the asymptotic model,

dY (x) = K µ(x) dx+ εdB(x). (2)

In the above model the function K µ(x) =
∫
RK(t − x)µ(x) dx represents the

convolution of µ and K and the noise is driven by a regular Brownian motion,
B(x) and controlled by ε � n−

1
2 where the statement an � bn means that the

ratio an/bn is bounded above and below by positive constants. The fixed design
implies that the design variables xi = i

n are equally spaced points on the unit
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interval. The asymptotic model (2) is considered due to a result by Brown and
Low (1996) that shows (2) is asymptotically equivalent to the model,

Yi = K µ(xi) + zi, (3)

where zi is an i.i.d. sequence of error variables.
The specific estimation technique that Goldenshluger, Tsybakov and Zeevi

(2006) formulated was the zero-crossing technique and it used a particular class
of kernel functions to identify the change point. Their technique will be adapted
for use in this article and is pursued in further detail in Section 4.1. At this stage
it will suffice to say that the main result of their paper established that the zero-
crossing technique is optimal in the minimax sense under the framework given
in (2).

The zero-crossing technique has been applied by Cheng and Raimondo (2008)
to estimate a kink instead of a jump point and was done in the direct model
in the fixed design setting. In this framework the observations are assumed to
follow a fixed design and realisations derived from the following asymptotic
model,

dY (x) = µ(x)dx+ εdB(x). (4)

Model (3) and its asymptotic equivalent is usually appropriate in practice when
a variable is observed at regular intervals indexed by time and the errors are
i.i.d. homoscedastic random variables.

More recently, Wishart (2009) extended the technique further to include long-
range dependent (LRD) noise observations instead of independent noise. The
kink estimation technique was extended to include the model,

dY (x) = µ(x)dx+ εαdBH(x), (5)

where BH(x) is a fractional Brownian motion with self-similarity index H ∈
[ 12 , 1). The noise process was normalised by εα where α = 2− 2H. Wang (1996)
has shown that Model (5) is the asymptotic equivalent to the discrete model,

yi = µ(xi) + ei, (6)

where ei is a LRD sequence of random variables.
In this paper we are interested in model (1), which extends the fixed design

cases given in models (3) and (6) above. They are extended in the sense that
the design points are no longer restricted to a uniform grid of points and the
scale function σ(·) allows heteroscedasticity for the error terms in the regression
model. The analysis of this random design model needs to be considered quite
carefully, since the asymptotic behaviour of the estimators will depend on the be-
haviour of the scale function and on the level of dependence present in the design
variables and errors themselves. It has been shown by Reiß (2008) that there ex-
ists an asymptotic equivalence between model (1) and (4) when σ(·) ≡ constant,
and the design variables are independent uniform random variables. However,
this is not the case in general. As noted in Kulik and Raimondo (2009a), with
LRD design variables, model (1) cannot be equivalent to any asymptotic model,
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which is in contrast to model (5) being the asymptotic equivalent to model (6)
in the fixed design case.

There is an extensive treatment in the literature on both parametric and non-
parametric methods for regression models with a random design framework that
assume i.i.d. design and error variables. The methodologies used include, but are
not limited to, kernel smoothing, wavelet decompositions and orthogonal series.
The methods of change point estimation for the random design case have been
considered in Gijbels, Hall and Kneip (1999); Huh and Park (2004); Korostelëv
and Tsybakov (1993)

There is also literature on the fixed design scenario in the presence of long-
range dependent errors and the introduction of dependence in the errors always
has a detrimental effect on estimation in this scenario. In the context of function
estimation some recent treatments of this topic include Cavalier (2004); Csörgő
and Mielniczuk (1995); Johnstone (1999); Johnstone and Silverman (1997); Ku-
lik and Raimondo (2009a); Wang (1996). For change point estimation work has
been done by Wang (1999); Wishart (2009).

Then there is a new emerging literature that attempts to combine the two sce-
narios with random design regression models where the design variables and/or
the error variables are LRD. When the framework includes a random design
and possibly LRD variables there is a more subtle asymptotic theory that is
based on a delicate balance between the behaviour of the σ function and the
level of dependence present. This is evident in a number of papers in the area
and will be the case here as well. The interested reader is referred to work
by Guo and Koul (2008); Robinson and Hidalgo (1997) for a parametric linear
model approach in this context and to Csörgő and Mielniczuk (1999); Kulik and
Raimondo (2009b); Mielniczuk and Wu (2004); Yang (2001) for regression esti-
mation in a non-parametric framework. Finally some studies to estimate change
points in the non-parametric context include Lin, Li and Chen (2008); Wang
(2008).

1.2. Article outline

Some preliminary framework is outlined in Section 2, setting up the class of
functions that are considered and specific dependence assumptions made in the
random design model. The main result of the paper is described in Section 3,
along with a brief discussion. The estimation method is explained in detail in
Section 4, with a brief outline of the zero-crossing technique in the fixed design
and its extension to the random design case. All the necessary proofs of the
results are given in Section 5.

2. Preliminaries

2.1. Smoothness assumptions and kernels

First we look at the smoothness of the regression function µ and the properties
of the kernel function that was constructed to use the zero-crossing technique by
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Cheng and Raimondo (2008). We define a class of functions that have domain
X ⊆ R, a kink at θ ∈ X and s ≥ 3 derivatives that exist in the neighbourhood
of θ.

Definition 1. We say that µ ∈ Fs(X , θ) if,

1. µ :X −→R
2. µ has a kink, that is, there exists a θ ∈ X and aµ ∈ R with aµ 6= 0 such

that,
[µ(1)](θ) = µ(1)(θ+)− µ(1)(θ−) = aµ,

where µ(1)(θ+) and µ(1)(θ−) are the right and left first derivatives of µ
respectively.

3. The higher order derivatives µ(i) exist and are finite everywhere and sat-
isfy,

µ(i)(θ+) = µ(i)(θ−) for i = 2,3,. . . ,s-1. (7)

4. For all x+ ∈ (0, supX − θ) and x− ∈ (inf X − θ, 0),

µ(1)(θ± + x±)− µ(1)(θ±) =

s−2∑
i=1

xi±µ
(i+1)(θ±)

i!
+O(xs−1± ). (8)

Condition 4. should be interpreted in the sense that µ(1) has a separate
Taylor expansion for points to the left and right of θ respectively. Condition
3. of Definition 1 might seem overly restrictive but is required to exploit the
class of kernel functions that are introduced later in this Section. We will also
denote Fs(θ) = Fs(R, θ). For completeness and comparison purposes we will
also introduce another smoothness class Gs to denote the class of functions that
do not have a kink. This class is identical to Fs(θ) except conditions 2. and 3.
are relaxed in Definition 1 in the sense that there does not exist a θ ∈ X such
that, [µ(1)](θ) 6= 0.

In the fixed design setting, we can assume that the domain of the regression
function is [0, 1] since any finite interval, [a, b] can be mapped to the [0, 1] interval
by an affine transformation. However this assumption is not always valid in the
general random design case. In particular, if the design variables are LRD then
it is required that they have a domain across the whole real line.

To use the zero-crossing technique for this class of regression functions Cheng
and Raimondo (2008) constructed a class of kernel functions via Legendre poly-
nomials and we will denote this class of functions by Ks. The full description
of the zero-crossing technique and the consequent technical details required of
the kernel functions are not covered here and the reader is referred to Goldensh-
luger, Tsybakov and Zeevi (2006) and Cheng and Raimondo (2008) respectively
for full treatment. However, some key aspects will be given and for our case we
will say K ∈ Ks, where s = 2k + 1 and k ∈ Z+ if,

K(x) = K(k, x) = ak

2k+2∑
j=k−1

bj,kx
2j−2k+2

1[−1,1](x) ,
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where the polynomial coefficients are defined by

ak :=
(4k + 5)!

24k+5(2k)!(2k + 2)!
, bj,k :=

(−1)k+j+1(2j)!

j!(2k − j + 2)!(2j − 2k + 2)!
.

This class of kernel functions is indexed by the level of smoothness s and is
constructed to exploit the extra smoothness of the class Fs(θ). To save on
notation we denote Ki = K(i), to represent the ith order derivative of K. The
kernels have the following properties:

Ki(−1) = Ki(1) = 0 for i = 1, 2, 3. and K1(0) = 0. (9)

∫ 1

−1
ujK3(u) du = 0 , j = 0, 1, . . . , 2k. (10)

Property (10) of Ks ensures that the smoothness of Fs (θ) can be exploited to

obtain faster rates of convergence of the estimator θ̂ in estimating θ. For our
purposes of estimation assume that µ ∈ Fs(θ) and σ ∈ Gr where s ∧ r ≥ 3.

2.2. Dependence assumptions

Throughout the paper there will be a dependence assumption either among the
design random variables or in the error random variables. In particular, the
assumed dependence structure is a causal LRD linear process that is defined
below.

Definition 2. Let ci be a set of square summable constant coefficients that are
defined,

ci :=

{
1, if i = 0,

i−(1+α)/2L(i), if i ≥ 1,

where L :R+ −→ R+ is a slowly varying function and 0 < α ≤ 1. Then, a
random variable ξi, is said to be a causal LRD linear process if,

ξi = µξ +

∞∑
j=0

cjηi−j

where |µξ| <∞ and ηi are i.i.d. random variables with density fη and moments

Eηt = 0 and Eη2t =
(∑∞

i=0 c
2
j

)−1
=: σ2

η.

Furthermore, a random variable ξi is said to be a causal LRD Gaussian linear
process if ξi satisfies Definition 2 and {. . . , ηi−1, ηi} are i.i.d N

(
0, σ2

η

)
. The case

of α = 1 is to be interpreted as a short range dependent case and by the con-
struction the random variable has Eξi = µξ and Varξi = 1. Moreover, it can be
shown that ξi is a second-order stationary process and has asymptotic covariance
structure Cov (ξ0, ξk) ∼ C2

0k
−αL2(k) where C2

0 = σ2
η

∫∞
0

(x2 + x)−(1+α)/2 dx.
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Therefore the process exhibits long-range dependence and a consequence of this
asymptotic covariance structure is that,

Var

(
n∑
i=1

ξi

)
∼ C2

1n
2−αL2(n),

Var

(
n∑
i=1

ξ2i

)
∼


C2

2n
2−2αL4(n), if 0 < α < 1

2 ,

C2
3n, if 1

2 < α < 1,

(11)

where C2
1 := 2C2

0/((1−α)(2−α)), C2
2 := 4C4

0/((1−2α)(2−2α)) and when 1/2 <
α < 1, the sequence Cov

(
ξ20 , ξ

2
i

)
is summable and C2

3 = 1+2
∑∞
i=0 Cov

(
ξ20 , ξ

2
i

)
.

Also, when α = 1/2, Var
(∑n

i=1 ξ
2
i

)
is asymptotically proportional to a term of

order n times another term involving slowly-varying functions. Now throughout
the paper, the design variables and error variables are assumed to follow one of
the following dependence conditions:

(A) The design variables, {Xi}ni=1 are i.i.d. random variables with domain
X ⊆ R and common density f such that f(x) > 0 for all x ∈ X and
supx∈X |f (s∧r)(x)| < ∞. The error variables {εi}ni=1 are a causal LRD
process with parameter αε. Furthermore, the random variables {εi}ni=1 are
assumed to be independent of {Xi}ni=1. Under (A), define the associated
set of σ-fields,

Gi := σ(. . . , ηi−1, ηi;X1, X2, . . . , Xi).

(B) The design variables, {Xi} are a causal LRD linear process with parameter

αx where f
(j)
η is a Lipschitz continuous function for j = 0, 1, . . . , s + 2

with fX(x) > 0 for all x ∈ R. The error variables {εi}ni=1, are centred and
i.i.d., with a finite variance, independent of {Xi}ni=1. Similarly, define the
associated set of σ-fields,

Fi = σ(. . . , ηi−1, ηi; ε1, ε2, . . . , εi).

In both cases, the support of the design variables will be denoted X . Let
F = FX be the cumulative distribution function of X which is strictly increasing
and denote by Fn(x) = n−1

∑n
i=1 1{Xi≤x} the empirical distribution function

of X. Also let Q = F−1 and Qn = F−1n be the quantile and empirical quantile
functions respectively. We require that Q is Lipschitz, that is, there exists an
LQ > 0 such that

|Q(x)−Q(y)| ≤ LQ|x− y|.
Finally, we need to impose some mild restrictions on σ. We assume σ is bounded
away from 0 and ∞ in the sense that,

0 < inf
t∈X

σ(t) < sup
t∈X

σ(t) <∞

and that σ ∈ Gr where r ≥ 3. Throughout the article we denote by C a general
constant that is assumed to be positive and finite but which possibly changes
from line to line.
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3. Main result

The main result of the paper is concerned with the construction and analysis
of an estimator, θ̂, of the kink location θ. The analysis of the estimator is given
in Theorem 1 and concerns the rate of convergence of θ̂ to the true the kink
location θ. The estimator, θ̂, will be constructed in Section 4 along with the
motivations and analysis.

Theorem 1. Suppose a bivariate sequence of observations {Xi, Yi} that follow

model (1) are observed such that µ ∈ Fs(θ) with s ≥ 3. Then an estimator, θ̂
of the change point, θ, can be constructed such that,

|θ̂ − θ| =


Op(n−

s
2s+1 ) if Assumption (A) holds and σ ≡ C,

Op
(
n−

s
2s+1 ∨

(
n−

αx
2 L(n)

))
if Assumption (B) holds and σ ∈ Gr.

where C is an arbitrary positive constant and s ∧ r ≥ 3.

It is worth noting at this stage that the further restriction that σ ≡ C under
Assumption (A) is unnecessary for the specific estimation technique and is only
required in the maximal deviation result to ensure that a kink can be detected
in practice. Further detailed discussion of this matter along with the proof of
Theorem 1 is given at the end of Section 4.

The minimax optimality of this result is not pursued in this paper since the
lower bounds on the convergence rate of θ̂ for the functional class Fs(θ) are not
determined in the framework of random design. However, it is worth making
the specific point that the obtained rate of convergence under Assumption (A)
is the same as the minimax rates for the fixed design case with i.i.d. errors (see
Cheng and Raimondo (2008)). Consequently, it seems reasonable to conjecture
that the rates of our estimator are optimal in the minimax sense.

4. Kink estimation method

In this section, the basis of the zero-crossing technique is studied and a brief
overview given. Firstly, the zero-crossing technique pioneered by Goldensh-
luger, Tsybakov and Zeevi (2006) and applied by Cheng and Raimondo (2008);
Wishart (2009) will be described briefly in Section 4.1 and then an adaptation
for the random design case constructed in Sections 4.2 - 4.7.

4.1. Approximation of the third derivative for the fixed design model

In the fixed design setting (cf. model (6)) it can be assumed without loss of
generality that the regression function µ has domain [0, 1]. More specifically,
assume that µ ∈ Fs([0, 1], λ) and estimate µ(3)(t) by,

κh(t) = κh(t, µ) := h−4
∫ 1

0

K3

(
x− t
h

)
µ(x) dx.
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where h = h(n) is the bandwidth that depends on n. Throughout the article it
will be assumed that the bandwidth satsifies, at the very least, h+ 1

nh → 0, as
n→∞. This is a standard regularity condition for kernel smoothing techniques
and additional conditions on the bandwidth will be stated as needed. Using the
functional class Fs(θ) and the properties of the kernel function it can be shown
that for t ∈ (h, 1− h),

κh(t) = h−2K1

(
λ− t
h

)
[µ(1)](λ) +O(hs−3) =: Lh(t) +O(hs−3), (12)

where Lh(t) is the localisation term. Indeed, by exploiting the conditions of K3

we can express κh(t) as follows. Change variable of integration to obtain,

κh(t) = h−4
∫ 1

0

K3

(
x− t
h

)
µ(x) dx

= h−3
∫ 1

−1
K3 (x)µ(t+ hx) dx.

The last equality follows because the domain of K is [−1, 1] and the values of
t are restricted to t ∈ (h, 1− h). This restriction is used to avoid possible edge
bias effects from the two sided kernel function. Using integration by parts and
exploiting the boundary condition (9),

κh(t) = −h−2
∫ 1

−1
K2 (x)µ(1)(t+ hx) dx. (13)

Let D = {t : |λ− t| < h} and τ = (λ− t)/h. Then |τ | < 1 for all t ∈ D. We now
split (13) into two integrals,

κh(t) = −h−2
∫ τ

−1
K2 (x)µ(1)(t+ hx) dx− h−2

∫ 1

τ

K2 (x)µ(1)(t+ hx) dx.

To exploit Fs([0, 1], λ) define,

Jh(t) := −h−2
(∫ τ

−1
K2 (x)

(
µ(1)(t+ hx)− µ(1)(λ−)

)
dx

+

∫ 1

τ

K2 (x)
(
µ(1)(t+ hx)− µ(1)(λ+)

)
dx

)
= O(hs−3).

The order bound follows by using (7) and (8) in combination with (10). There-
fore, this allows us to express κh(t) in the following way,

κh(t) = −h−2
∫ τ

−1
K2 (x)µ(1)(λ−) dx− h−2

∫ 1

τ

K2 (x)µ(1)(λ+) dx+ Jh(t)

= h−2K1(τ)[µ(1)](λ) + Jh(t) = Lh(t) + Jh(t).

Since the method is based on estimating a smoothed third derivative of µ, it is
assumed that s ≥ 3. This will guarantee that µ(3) exists and is finite and the
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method makes sense. Then the expansion in the above equation ensures that
κh(·) = O(h−2). More specifically we have the following,

κh(t) =

{
O(h−2), if µ ∈ Fs(θ) and t ∈ D
O(hs−3), if µ ∈ Gs with t ∈ [0, 1] or µ ∈ Fs(θ) with t /∈ D. (14)

As seen in all three of the aforementioned papers that use the zero-crossing
technique, the δ−separation rate Lemma given below is the technical result
that explains why the above representation is effective.

Lemma 1 (δ-separation rate). Let K ∈ Ks and µ ∈ Fs([0, 1], θ). In what
follows the constant 0 < q < 1 is the abscissa of the global minimum of K1. Let
h > 0, δ > 0 be such that δ < qh. Let Aδ,h = {t : δ < |t− θ| < qh}. Then for
κh(t) = κh(t, µ):

(a) |κh(θ)| ≤ Chs−3,
(b) for all t ∈ Aδ,h and δ ≥ Chs, |κh(t)| ≥ Cδh−3,
(c) for all t ∈ (0, 1) such that |θ − t| > h, |κh(t)| ≤ Chs−3.

The proof of this Lemma is given in Cheng and Raimondo (2008). Their proof
requires a minor correction as the extra regularity condition 3. is needed in the
smoothness class Fs(θ).

The main idea of Lemma 1 allows us to exploit the expansion given in (12) and
focus in on the location of the kink. The kernel function has specific properties
to guarantee that a unique global maximum and minimum occurs within order
h of the kink point. Furthermore, the estimator was constructed so that the rate
of convergence of kink location estimation is minimax for model (4). We will
seek to adapt these results to the random design setting.

4.2. Adapted random design Estimator of the third derivative

Now consider µ ∈ Fs (X , θ) in model (1). An estimator is constructed to exploit
the smoothed third derivative of µ and the argument built around Lemma 1 dis-
cussed in Section 4.1. The most natural extension would be to use the estimator,

κ̃h(t) =
1

nh4f̂X(t)

n∑
i=1

K3

(
Xi − t
h

)
Yi, (15)

where f̂X(t) is the estimate for the density of Xi at the point t given by,

f̂X(t) =
1

nh

n∑
i=1

K

(
Xi − t
h

)
.

Unfortunately, from a brief computational investigation, the estimator given
in (15) appears to suffer from poor numerical performance. Instead of using
(15), another estimator with better numerical performance is constructed by
rescaling the design variables by the distribution function F and defining a
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rescaled regression function µF (·) = µ(Q(·)). This new estimator of κh(t) in the
random design setting is given by,

κ̂h(t) =
1

nh4

n∑
i=1

YiK3

(
F (Xi)− t

h

)
. (16)

Apart from the gain in numerical computation benefits, the estimator κ̂h(t) has
some properties that can be exploited. It reduces the general random design
problem into a somewhat simpler framework. To see this, consider F (Xi) to be
the new random design variables of the regression problem. These new design
variables follow the theoretically easier uniform distribution on [0, 1]. The price
paid for this simplification is that the regression function that corresponds to
the new design variables is now µF . This simpler framework is useful for a couple
of reasons. Firstly, (16) is an unbiased estimate of the smoothed third derivative
of the rescaled regression function µF ,

Eκ̂h(t) = h−4Eµ(X1)K3

(
F (X1)− t

h

)
= h−4

∫
R
µ(u)K3

(
F (u)− t

h

)
dF (u)

= h−4
∫ 1

0

µF (x)K3

(
x− t
h

)
dx = κh(t, µF ), (17)

Thus, if µ ∈ Fs(θ), then µF ∈ Fs([0, 1], λ) where θ = Q(λ). So, the smoothed
third derivative of µF given in (17) can be exploited by Lemma 1 and the
argument shown in Section 4.1. Then the problem is equivalent to estimating a
kink location λ for the function µF in the fixed design setting.

With the previous argument in mind, an estimator θ̂ of a kink location of
the regression function µ in the random design setting is constructed that is
approximately the same as the estimator for kink location λ of µF in the fixed
design setting. This is done by estimating the value of λ by λ̂ using the estab-
lished zero-crossing technique in the fixed design setting and then rescaling λ
back by the quantile function to obtain an estimate of θ. Thus to assess the
performance of our estimator we need to check that the convergence of κ̂h(t) to
κh(t) is sufficiently fast. To do this consider the two following processes,

γi(t) = µ(Xi)K3

(
F (Xi)− t

h

)
ζi(t) = σ(Xi)K3

(
F (Xi)− t

h

)
.

(18)

With these definitions, the overall accuracy of the estimator can be decomposed
into,

κ̂h(t) = κh(t) + bh(t) + Zh(t), (19)
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where bh(t) and Zh(t) represent respectively the stochastic bias and stochastic
error contributions to the estimator and are given by,

bh(t) = n−1h−4
n∑
i=1

(γi(t)− Eγ1(t)) , Zh(t) = n−1h−4
n∑
i=1

ζi(t)εi.

The analysis of the above terms are given in the next subsection.

4.3. Probabilistic behaviour for the adapted estimator

In this section the analysis of the stochastic bias and stochastic error terms are
considered before proceeding to the next stage of the zero-crossing technique to
ensure that the stochastic contributions do not overwhelm the signal generated
by the κh(t) term. The proofs of the claims in this section will be deferred to
Section 5.

The first term to be considered is the stochastic bias term which did not ap-
pear in previous kink analyses pursued by Cheng and Raimondo (2008); Wishart
(2009) since there is some stochastic contribution by adapting the fixed design
estimator to the the random design framework. Therefore, this term needs to
be appropriately dealt with and the next Lemma is a useful tool that considers
this term.

Lemma 2. Consider a function µ :X −→R such that µ′ exists and is bounded.
Then define the function

γ∗i (t) = (µ(Xi)− µF (t))K3

(
F (Xi)− t

h

)
.

If the design variables follow Assumption (A) then,

sup
t∈(0,1)

∣∣∣∣∣
n∑
i=1

(γ∗i (t)− Eγ∗i (t))

∣∣∣∣∣ = oa.s.

(√
nh3 |log h|

)
.

If the design variables follow Assumption (B) then,

sup
t∈(0,1)

∣∣∣∣∣
n∑
i=1

(γ∗i (t)− E [γ∗i (t)| Fi−1])

∣∣∣∣∣ = Op
(√

nh3 |log h|
)
.

Note that the two claims in given in Lemma 2 are respectively a uniform law
of iterated logarithms for independent variables and a similar type of iterated
logarithm result for martingale difference sequences.

We now state some central and non-central limit theorems for the estima-
tor, κ̂h(t). The convergence of the estimator κ̂h(t) under both Assumption (A)
and (B) is contingent on the size of the bandwidth relative to the level of de-
pendence α. The specific details of this relationship between h and nα will be
shown in detail inside the Theorems. Roughly speaking, if the bandwidth is too
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‘large’ compared to α then the dependence of the random variables dominate
and the estimator converges to a process that needs to be normed by a sequence
that relies on α. Conversely, if the bandwidth is ‘small’ compared to α then
the dependence of the random variables is negligible and a regular central limit
theorem holds with a norming sequence that is not reliant on α. In the forth-
coming Theorems the extra smoothness of the regression and variance functions
are exploited to be able to obtain an estimator that is not as sensitive to the
level of dependence. In practice, this extra level of smoothness will most likely
be unknown. Due to its common occurrence in the subsequent Theorems, de-

fine the asymptotic variance term, υ2(t) :=
(
σ2
F (t) + µ2

F (t)
) ∫ 1

−1K
2
3 (x) dx. The

following Theorem deals with the case of Assumption (A).

Theorem 2. Let K ∈ Ks∧r, µ ∈ Fs, σ ∈ Gr with s ∧ r ≥ 3 and t ∈ (h, 1− h).
Also if the design variables and error random variables follow Assumption (A)
and the bandwidth h = h(n) also satisfies,

h2(s∧r)+1n1−αεL2(n)→ 0 as n→∞, (A1)

then the following convergence result holds,

√
nh7 (κ̂h(t)− κh(t))

D−→ N
(
0, υ2(t)

)
. (20)

Conversely, if the bandwidth h = h(n) satisfies,

h2(s∧r)+1n1−αεL2(n)→∞ as n→∞, (A2)

then,

n
αε
2 h3−(s∧r)

L(n)
(κ̂h(t)− κh(t))

D−→ N
(
0, C2

1υ
2
∗(t)

)
.

where

υ∗(t) =
σ
(s∧r)
F (t)

(s ∧ r)!

∫ 1

−1
xs∧rK3(x) dx.

Theorem 3 and Theorem 4 deal with case under Assumption (B) and give the
central limit theorems when there is a ‘small’ or ‘large’ bandwidth respectively.
In the ‘large’ bandwidth scenario a stronger assumption is used whereby the
design variables are a causal LRD Gaussian linear process.

Theorem 3. Let K ∈ Ks∧r, µ ∈ Fs, σ ∈ Gr with s ∧ r ≥ 3 and t ∈ (h, 1− h).
If the design variables and error random variables follow Assumption (B) and
the bandwidth h = h(n) satisfies,

h7n1−αxL2(n)→ 0 as n→∞, (B1)

then the estimator obeys the following law,

√
nh7 (κ̂h(t)− κh(t))

D−→ N
(
0, υ2(t)

)
. (21)
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Theorem 4. Let K ∈ Ks∧r, µ ∈ Fs, σ ∈ Gr with s ∧ r ≥ 3 and t ∈ (h, 1− h).
Assume the design variables and error random variables follow Assumption (B)
and that the design variables are a causal LRD Gaussion linear process. If the
bandwidth h = h(n) satisfies,

h7n1−αxL2(n)→∞ as n→∞, (B2)

and the estimator κ̂h(t) has a Hermite rank of 1 then the the estimator obeys
the following law,

n
αx
2

L(n)
(κ̂h(t)− κh(t))

D−→ N (0, C2
1H1(t))

where

H1(t) =
κh(t)

s3Xσηφ (Φ−1(t))

∫
R
φ

(
Φ−1 (t)− u

sX

)(
Φ−1 (t)− u

)
φ

(
u

ση

)
du,

s2X = 1 − σ2
η and φ and Φ are the standard normal density and cumulative

distribution functions respectively.

Remark 1. If the estimator κ̂h(t) has Hermite rank q for some q ∈ {2, 3, . . .}
then the asymptotic distribution depends on the size of the bandwidth relative
to qα. Firstly, if n1−qαxh7L2q(n) → ∞ then it can be shown using a similar
argument used in the Proof of Theorem 4 with the result of Theorem 2 of Avram

and Taqqu (1987) that the normed process nqαx/2L−q(n) (κ̂h(t)− κh(t))
D−→

Hq(t)Hq where,

Hq(t) =
κh(t)

s2Xσηφ (Φ−1(t))

∫
R
φ

(
Φ−1 (t)− u

sX

)
Hq

(
Φ−1 (t)− u

sX

)
φ

(
u

ση

)
du

and Hq(x) is the Hermite polynomial of degree q and Hq is the Hermite-
Rosenblatt process,

Hq = CH

∫
−∞<x1<x2...<xq<1

{∫ 1

0

q∏
i=1

(
(y − xi)+

)−α+1
2

dy

}
dB(x1) . . . dB(xq)

where CH = (q!(1 − qα)(2 − qα)/(2
(∫∞

0
(x2 + x)−(1+α)/2 dx

)q
))1/2 and B de-

notes a standard Brownian motion. In Avram and Taqqu (1987), they consid-
ered Appell polynomials for a generalised sequence of stationary LRD random
variables. In our case the LRD variables are Gaussian and consequently the
Appell polynomials reduce to the Hermite polynomials. On the other hand, if
the bandwidth satisfies n1−qαxh7L2q(n)→ 0 then (21) holds.

As will be seen in Section 4.5, some large deviations results are needed to
be able to distinguish between the signal generated by the κh(t) term and the
stochastic bias and noise contributions. Unfortunately, a slightly weaker large
deviations result is proved under Assumption (A) in Theorem 5. In particular
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we assume that the scale function, σ(·) ≡ σ, is constant however this restriction
could possibly be relaxed by using a different method. The large deviations
result for Assumption (B) in Theorem 6 does not carry this restriction and the
scale function need not be constant.

Theorem 5. Let K ∈ Ks∧r and the design and error variables satisfy Assump-
tion (A). Further assume that the bandwidth h = h(n) also satisfies,

|log h|3

nh3
+
L2(n) |log h|2

nαεh
4
3

→ 0 as n→∞. (22)

Then define,

SAn (t) :=

n∑
i=1

Ψi(t) =
1

υ(t)
√
nh

n∑
i=1

K3

(
F (Xi)− t

h

)
(µF (t) + σεi) .

where σ > 0 is constant. Also define,

Bn(x) =
√

2 log n+
x√

2 log n
− 1√

2 log n

(
1

2
log logn+ log

(
2
√
π
))

(23)

and a partition of [0, 1],

Tn = {tj = 2hj, j = 1, . . . ,mn − 1} (24)

where mn = d 1
2he. Then,

lim
n→∞

P

(
sup
t∈Tn

∣∣SAn (t)
∣∣ ≤ Bmn(x)

)
= e−2e

−x
,

for all x ∈ R.

Theorem 6. Let K ∈ Ks∧r, σ ∈ Gr with s ∧ r ≥ 3 and the design and error
variables satisfy Assumption (B) and assume that the bandwidth h = h(n) also
satisfies,

1

nh3
+
L2(n)

nαxh
8
3

+
h2(s∧r)+1n

|log h|
→ 0 as n→∞. (25)

Then define,

SBn (t) :=

n∑
i=1

Ξi(t) =
1

υ(t)
√
nh

n∑
i=1

K3

(
F (Xi)− t

h

)
(µF (t) + σ(Xi)εi) ,

then for Tn defined in (24) with mn =
⌈

1
2h

⌉
,

lim
n→∞

P

(
sup
t∈Tn

∣∣SBn (t)
∣∣ ≤√2 logmn

)
= 0.
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4.4. Localisation step

Recall from (12), that the probe function given by κh(t) gives a signal from the
localisation term, Lh(t) with some approximation error and the estimator adds
a stochastic bias and error term,

κ̂h(t) = Lh(t) +O(hs−3) + Zh(t) + bh(t). (26)

Clearly, h−2 > hs−3, since s ≥ 3. So to be able to discern the signal generated
from Lh(t) = O(h−2), it is required that Lh(t) dominates the stochastic terms,
Zh(t) and bh(t).

By construction of the kernel function, (cf. Cheng and Raimondo (2008)),
K1(·) has two unique extrema in the form of a unique global minimum and
maximum in the interval [−1, 1]. This implies that K1(·/h) has the same unique
extrema in an interval of a length O(h). Consequently, Lh(·) has two unique
global extrema near t∗ = λ + O(h) and t∗ = λ − O(h). As in the fixed design
scenario considered by Cheng and Raimondo (2008); Wishart (2009) define,

t∗ := arg min
t∈(0,1)

Lh(t) , t∗ := arg max
t∈(0,1)

Lh(t).

However, in practice the location of t∗ and t∗ are not known and estimated using
κ̂h(t) with,

t̂∗ = arg min
t∈(0,1)

κ̂h(t) , t̂∗ = arg max
t∈(0,1)

κ̂h(t).

If µF ∈ Fs([0, 1], λ) then,

|Lh(t∗) + Lh(t∗)| ≥ Ch−2. (27)

There are two respective bandwidth restrictions, ((A1), (A2); (B1), (B2)) for the
asymptotic behaviour of the estimator under Assumption (A) and Assumption
(B) respectively. Starting with (A1) and (B1), to have a well defined signal, it is

required that, h−2 ≥ Cn− 1
2h−

7
2 ⇒ h ≥ Cn− 1

3 . Furthermore, since it is assumed
that s ∧ r ≥ 3, to ensure that (20) and (21) always hold it suffices to choose h

such that h ≤ Cn− 1
7+(αx∨αε)/7−δ, for some δ > 0 or,

Cn−
1
3+δ < h < Cn−

1
7−δ (28)

for some δ > 0. With this choice, the bandwidth restrictions given by (A1) and
(B1) will always hold.

It is worth noting that under this choice, the order of the stochastic terms
does not involve αx or αε, the level of dependence. Note that h is chosen in
a very similar manner if εi and Xi, i ≥ 1, were i.i.d. Consequently, there will
be no influence of the (long range) dependence on the change point estimation.
The influence of the long range dependence will only affect testing purposes of
the threshold used to determine if a signal is genuine and this will be discussed
in the next subsection.
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4.5. Kink detection step

For simplicity in notation, assume that [µF ](1)(λ) > 0, which means, t∗ < t∗ (a
similar argument follows if [µF ](1)(λ) < 0 ⇒ t∗ > t∗.) To detect a kink, first
standardise the statistic κ̂h(t) to have unit variance. This will allow us to ap-
propriately notice if there is a change-point present when the observed extrema
of κ̂h(t) exceed the threshold for the noise process. Define this standardised
process as,

Tκ̂(t) :=

√
nh7κ̂h(t)

υ(t)
.

Then by (26) the Tκ̂(t) process has expansion,

Tκ̂(t) =
n

1
2h

7
2

υ(t)
Lh(t) +O(n

1
2hs+

1
2 ) +

n
1
2h

7
2

υ(t)
(Zh(t) + bh(t)) . (29)

As seen earlier, the information regarding a kink is generated by the Lh(t)
process. A thresholding regime will be considered to be able to distinguish be-
tween the signal generated by Lh(t) against the noise signal generated by the
Zh(t) and bh(t) terms. This thresholding will be split into the two scenarios for
Assumption (A) and (B).

Begin by giving a general decomposition of the estimator for both cases by

using, γ∗i (t) := (µ(Xi)− µF (t))K3

(
F (Xi)−t

h

)
= γi(t)−µF (t)K3

(
F (Xi)−t

h

)
and

using (18) and (19). So,

Tκ̂(t) =

√
nh7

υ(t)
κh(t) +

1

υ(t)
√
nh

n∑
i=1

(γi(t)− Eγ1(t) + ζi(t)εi)

=

√
nh7

υ(t)
κh(t) +

1

υ(t)
√
nh

n∑
i=1

(
γ∗i (t)− Eγ∗1 (t)

+ µF (t)K3

(
F (Xi)− t

h

)
+ ζi(t)εi

)
. (30)

Focus on Assumption (A) and assume σ(·) ≡ C, constant. The assumption
that the scale function is constant is required in the proof of the maximal devia-
tion result in Theorem 5. It may be possible to relax this condition and have the
same result for σ ∈ Gr under Assumption (A) but remains a conjecture at this
stage. Nevertheless, to control the stochastic terms in (30) first apply Lemma 2
and use (10),

Tκ̂(t) =

√
nh7

υ(t)
κh(t) + oa.s.

(√
|log h|

)
+ SAn (t).

Then consider the values of t on the initial coarse grid Tn (see (24)) where the
increments are of size 2h. The grid values will be refined later in Section 4.6.
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From Theorem 5, it is known that supt∈Tn
∣∣SAn (t)

∣∣ will diverge to infinity no

faster than
√

2 |log 2h|. Also, if µ ∈ Gs, then from (14), κh(t) = O(hs−3) and

lim
n→∞

P

(
sup
t∈Tn
|Tκ̂(t)| ≥

√
2 |log 2h|

)
= 0. (31)

However, if µ ∈ Fs (θ), then (27) holds and by (29), maxt∈(t∗,t∗) Tκ̂(t) ≥
Cn

1
2h

3
2 >

√
2 |log 2h| and a kink is detected when,

max
t∈Tn
|Tκ̂(t)| ≥

√
2 |log 2h|. (32)

A very similar argument holds for Assumption (B). In this case assume that
the scale function σ ∈ Gr with r ≥ 3 and proceed as before. In conjunction with
(30) and (10) apply Lemma 2,

Tκ̂(t) =

√
nh7

υ(t)
κh(t) + SBn (t) +Dn(t) +Op

(
h
√
|log h|

)
where the extra term Dn(t) is defined,

Dn(t) :=
1

υ(t)
√
nh

n∑
i=1

{
E [γ∗i (t)| Fi−1]− Eγ∗i (t)

}
.

Using Lemma 3 (see Appendix in Section 5), with the bandwidth condition

(25), supt∈(h,1−h) |Dn(t)| = op

(√
|log h|

)
. Also, the bandwidth restriction (28)

guarantees that (25) and consequently Theorem 6 holds. Then for Assumption
(B) the same argument applies that was used to show (31) for Assumption (A).

This thresholding technique does raise some restrictions that could possibly
be removed by another technique. Recall from (28), that h > Cn−

1
3+δ for some

δ > 0 is required to be able to distinguish the signal from the stochastic terms.
Also, (22) and (25) are required to be able to apply Theorem 5 and Theorem 6
respectively and obtain a large deviation result for the process. Therefore to
ensure both conditions are satisfied, it is sufficient to consider αx >

8
9 or αε >

4
9 .

4.6. Zero-crossing technique

If a kink is detected (when (32) is satisfied) then the method can proceed to

the zero-crossing step. This step considers the interval Âh :=
[
t̂∗, t̂

∗], which

will contain λ and
∣∣t̂∗ − t̂∗∣∣ = O(h). The main idea behind the zero-crossing

technique is that for t ∈ Âh, κ̂h(t) ≈ κh(t). Using Lemma 1 we can locate the
zero-crossing-time of κh(t) which occurs at t = λ with an accuracy of order

δ, δ < h. This is done by minimising |κ̂h(t)| within the interval Âh:

λ̂ = arg min
t∈Âh

|κ̂h(t)| = arg min
t∈Âh

|Tκ̂(t)|.
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By comparing (12) with the bounds in Lemma 1 we see that the minimum is
well defined if,

δh−3 ≥ Chs−3 and δh−3 ≥ Cn− 1
2h−

7
2 . (33)

We will obtain the best possible accuracy if we choose δ as small as possible,
as long as both inequalities of (33) still hold. The left hand expression of (33)
implies that δ � hs and substituting this into the right hand expression of (33)
we derive the order of the smallest possible bandwidth

h∗ � n−
1

2s+1 .

We now apply Lemma 1 with δ∗ = hs∗ to locate the change point λ in µF with
an accuracy of order, ∣∣∣λ̂− λ∣∣∣ = δ∗ = hs∗ � n−

s
2s+1 .

Remark 2. There are some limitations to the procedure presented thus far in
terms of detection. More specifically, dependent on the location of λ relative to
the grid values in Tn, the detection phase may fail. Indeed, define the closest
grid value λ∗ := arg mint∈Tn |λ− t|. If λ∗ is too close to λ, that is, |λ− λ∗| < δ
then the procedure will not detect a kink since Lh(ti) = O

(
hs−3

)
for ti ∈

{λ∗ − 2h, λ∗, λ∗ + 2h} and consequently κh(ti) = O
(√
|log h|

)
and (32) will

not hold. However, if δ < |λ − λ∗| < h then a kink will be detected since
(32) holds and the aforementioned procedures in Sections 4.5 - 4.6 will follow.
Furthermore, the limitations imposed by the coarse Tn grid affect only the kink
detection step and will not influence on the zero-crossing step.

4.7. Modified estimator of kink

Recall that θ = Q(λ). In practice the true distribution function F is unknown,
so it is estimated in the usual manner by the empirical distribution function
Fn(x) = n−1

∑n
i=1 1{Xi≤x} and consequently can obtain an estimator of Q via

the empirical quantile function Qn(·). Estimate θ by, θ̂ = Qn(λ̂). The rate of
convergence of this estimator is evaluated below,

|θ̂ − θ| = |Qn(λ̂)−Q(λ)|

≤ |Qn(λ̂)−Q(λ̂)|+ |Q(λ̂)−Q(λ)|

≤ |Qn(λ̂)−Q(λ̂)|+ LQ|λ̂− λ|

≤ |Qn(λ̂)−Q(λ̂)|+Op(n−
s

2s+1 ). (34)

The rate of convergence in (34) is therefore contingent on the maximum of the
rate from the generalised quantile process for the design variables or the rate
from the initial unscaled kink estimator. Under Assumption (A), the quantile
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process involves independent and identically distributed design variables and for
all t ∈ (0, 1),

|Qn(t)−Q(t)| = Op(n−
1
2 ) (35)

(see Csörgő (1983) and references therein for a detailed treatment). For As-
sumption (B), the rate is dependent on αx and for all t ∈ (0, 1),

|Qn(t)−Q(t)| = Op(n−
αx
2 L(n)) (36)

(see Theorem 5.1 of Ho and Hsing (1996)). Therefore, using (35) and (36) in
(34),

|θ̂ − θ| =


Op(n−

s
2s+1 ) under Assumption (A) with σ ≡ C,

Op
(
n−

s
2s+1 ∨

(
n−

αx
2 L(n)

))
under Assumption (B) with σ ∈ Gr,

where s ∧ r ≥ 3 which proves Theorem 1.

Remark 3. The method can be extended to the multiple kink scenario by observ-
ing multiple instances of (32). For each instance of (32) there is a correspond-

ing interval Âh and the localisation and zero-crossing-time steps are executed
on each of those intervals to produce an estimate for each kink location. The
interested reader is referred to Cheng and Raimondo (2008); Wishart (2009)
for a more detailed treatment of the method in the multiple kink scenario with
numerical examples. However, it is worth pointing out that there are some lim-
itations to the accuracy of this method in this situation. Problems will arise if
the multiple change-points are not well spaced apart in the sense that they are
within order h of each other. To see this, let λ1 and λ2 be two such change-
points. When t is within order h of both the change points, the localisation
term, Lh(t) will not produce two unique disjoint signals for the kinks. Instead
the signals generated by K1

(
λi−t
h

)
for i = 1, 2 will interact and be confounded

in one overlapping signal.

5. Mathematical Appendix

Before giving the proofs, some notation is described. Let X denote a random
variable and denote the Lp-norm ‖X‖pp = E |X|p and ‖·‖ = ‖·‖2. For a function
f :X −→R denote the sup-norm |f |∞ = supx∈X |f(x)|. Throughout this Section
a Taylor expansion of composite functions will be used to exploit the vanish-
ing moment condition of K3. For the Taylor expansion to be well defined, the
derivatives of the composite functions need to exist. A generalised chain rule for
composite functions exists (see the Faà di Bruno formula from Hernández Enci-
nas, Mart́ın del Rey and Muñoz Masqué (2005) and references therein), and
these are of the form,

dn

dxn
f(g(x)) :=

dn

dxn
(f ◦ g)(x) =

∑
k∈Kn

n!

k1!k2! . . . kn!
(f (k) ◦ g)(x)

n∏
i=1

(
g(i)(x)

i!

)ki
(37)
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where Kn = {ki ∈ {Z+ ∪ 0} : k1 + 2k2 + . . .+ nkn = n} and k =
∑n
i=1 ki. Also,

through tedious but elementary calculus it can be shown that, the nth derivative
of Q = F−1 will exist, and the Taylor expansions of µF and σF up to order n
will exist if f (n) exists.

Proof of Lemma 2. Begin with the proof of the first claim under Assumption
(A). Since γ∗i (t) will be non-zero only if F (Xi) ∈ (t − h, t + h), there exists a
τi ∈ (−1, 1) that depends on Xi such that,

γ∗i (t) = K3

(
F (Xi)− t

h

)
(µF (t+ τih)− µF (t))

= hτiK3

(
F (Xi)− t

h

)
µ
(1)
F (t+ hξi |τi|h) =: hνi(t),

and ξi depends on τi. The νi(t) terms are independent random variables, each
of which have variance that is of order h. Therefore by the Law of Iterated
Logarithm (see Bingham (1986)) we have the following result,

lim sup
n→∞

1√
nh log log n

n∑
i=1

(
νi(t)− Eνi(t)

)
= C a.s.

− lim inf
n→∞

1√
nh log log n

n∑
i=1

(
νi(t)− Eνi(t)

)
= C a.s.

Therefore we have,

n∑
i=1

(
γ∗i (t)− Eγ∗i (t)

)
= h

n∑
i=1

(
νi(t)− Eνi(t)

)
= Oa.s.

(√
nh3 log log n

)
= oa.s.

(√
nh3 |log h|

)
which proves the first claim of the Lemma. Now to concentrate on the claim for
Assumption (B), a proof of a similar claim in Lemma 4 of Zhao and Wu (2006)
is adapted to our framework. This technique bounds the martingale difference
sequence γ∗i (t)− E [γ∗i (t)| Fi−1] above and below by two discretised martingale
difference sequences and uses an exponential martingale inequality to gain the
required probabilistic bounds. To do this, again exploit the Taylor expansion
of µ in Definition 1 and use the fact that Support(K3) = [−1, 1], which means
that there exists a τi dependent on Xi with |τi| ≤ 1 such that F (Xi) = t+ τih
and,

γ∗i (t) = K3

(
F (Xi)− t

h

)
(µF (t+ τih)− µF (t))1(t−h,t+h) (F (Xi))

= τihK3

(
F (Xi)− t

h

)
µ
(1)
F (t+ ξ |τi|h)1(t−h,t+h) (F (Xi)) , (38)

where |ξ| ≤ 1. Then split the function in (38) into its positive and negative parts

by defining ξi := t + ξ |τi|h and τiµ
(1)
F (ξi) =

(
τiµ

(1)
F (ξi)

)+
−
(
τiµ

(1)
F (ξi)

)−
=:
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µ+
F,1(ξi) − µ−F,1(ξi) where f+ = (f ∨ 0), f− = (−f ∧ 0) denote the respective

positive and negative parts of f . Then,

γ∗i (t) = h
(
µ+
F,1(ξi)− µ−F,1(ξi)

)(
K+

3

(
F (Xi)− t

h

)
−K−3

(
F (Xi)− t

h

))
= h

(
µ+
F,1(ξi)K

+
3

(
F (Xi)− t

h

)
− µ+

F,1(ξi)K
−
3

(
F (Xi)− t

h

)
−µ−F,1(ξi)K

+
3

(
F (Xi)− t

h

)
+ µ−F,1(ξi)K

−
3

(
F (Xi)− t

h

))
:=
(
ς++
i (t)− ς+−i (t)− ς−+i (t) + ς−−i (t)

)
, (39)

By the linearity of the conditional expectation operator and (39) we can decom-
pose the martingale difference sequence into parts,

γ∗i (t)− E [γ∗i (t)| Fi−1]

= ς++
i (t)− E

[
ς++
i (t)

∣∣Fi−1]− (ς+−i (t)− E
[
ς+−i (t)

∣∣Fi−1])
−
(
ς−+i (t)− E

[
ς−+i (t)

∣∣Fi−1])+ ς−−i (t)− E
[
ς−−i (t)

∣∣Fi−1] (40)

To begin with we will concentrate on the first martingale difference term on the
RHS of (40) and bound it above and below by a discretised version that does

not depend on t directly. For this discretization let N = d
(
nh−3

) 1
2 e and tj = j

N
where 0 ≤ j ≤ N. Then for any t ∈ [0, 1] there exists a j such that t ∈ [tj , tj+1)
and the distance |tj+1 − tj | = O(N−1). Define the two new tweaked martingale
difference sequences versions of ς++

i (t),

ς++
i,j = hµ+

F,1(ξi,j)
1

2

{
K+

3

(
F (Xi)− tj

h

)
+K+

3

(
F (Xi)− tj+1

h

)}
1χj (F (Xi))

ς++
i,j = hµ+

F,1(ξi,j)K
+
3

(
F (Xi)− tj

h

)
1(tj+1−h,tj+h)(F (Xi))

where ξi,j = ξi − (t − tj) and χj = (tj − h, tj+1 + h). It can be shown that,
the martingale difference sequence ς++

i (t) − E
[
ς++
i (t)

∣∣Fi−1] can be bounded
uniformly in t above and below by,

ς++
i (t)− E

[
ς++
i (t)

∣∣Fi−1] ≤ ς++
i,j − E

[
ς++
i,j

∣∣Fi−1]+ CN−1

ς++
i (t)− E

[
ς++
i (t)

∣∣Fi−1] ≥ ς++
i,j − E

[
ς++
i,j

∣∣∣Fi−1]− CN−1.
We have the following result,

sup
t∈(0,1)

∣∣∣∣∣
n∑
i=1

(
ς++
i (t)− E

[
ς++
i (t)

∣∣Fi−1])
∣∣∣∣∣

≤ max
0≤j≤N−1

(∣∣Sn(j)
∣∣+
∣∣Sn(j)

∣∣)+ CnN−1

= max
0≤j≤N−1

(∣∣Sn(j)
∣∣+
∣∣Sn(j)

∣∣)+ o
(√

nh3 |log h|
)
,
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where for each fixed j, Sn(j) and Sn(j) are martingales with respect to the
filtration Fn and are defined,

Sn(j) =

n∑
i=1

(
ς++
i,j − E

[
ς++
i,j

∣∣∣Fi−1])
Sn(j) =

n∑
i=1

(
ς++
i,j − E

[
ς++
i,j

∣∣Fi−1]) .
These martingales will be bounded by an exponential martingale inequality.
Consider firstly the martingale Sn(j), its martingale differences are bounded∣∣∣ς++
i,j − E

[
ς++
i,j

∣∣∣Fi−1]∣∣∣ ≤ 2h
∣∣µ(1)

∣∣
∞ |K3|∞ =: Cbh. Also using the Lipschitz

property of Q and the bounded domain of K3,

E

[(
ς++
i,j − E

[
ς++
i,j

∣∣∣Fi−1])2
∣∣∣∣∣Fi−1

]

≤
∫
R

(
hµ+

F,1(u)K+
3

(
F (u)− tj

h

))2

fX(u| Fi−1) du

≤ 2h3LQ |K3|2∞
∣∣∣µ+
F,1

∣∣∣
∞
|fη|∞ =: Ccvh

3.

Then, a martingale inequality for bounded differences given by Theorem 1.5A
of de la Peña (1999) can be used to yield,

P
(
Sn(j) ≥ x

)
≤ exp

{
− x

2a
sinh−1

(
ax

2y

)}
, (41)

where a = Cbh and y = Ccvnh
3. Furthermore if ax/2y = o(1) then using a

Taylor expansion of sinh−1,

sinh−1
(
ax

2y

)
=
ax

2y
+ o

((
ax

2y

)2
)
. (42)

Now consider the chance that max1≤j≤n Sn(j) exceeds the threshold with order

x = CT
√
nh3 |log h| for some CT > 0 which combined with a = Cbh and

y = Ccvnh
3 implies, ax/2y = O

(√
|log h| /nh

)
= o(1) and by (41) and (42),

P
(
Sn(j) ≥ CT

√
nh3 |log h|

)
≤ exp

{
− C2

T

4Ccv
|log h|+ o (1)

}
(43)

So, fix ε > 0 and use (43),

P

(
max

0≤j≤N−1
Sn(j) ≥ CT

√
nh3 |log h|

)
≤
N−1∑
j=0

P
(
Sn(j) ≥ CT

√
nh3 |log h|

)
≤ N exp

{
− C2

T

4Ccv
|log h|

}
exp {o (1)}

≤ Cn 1
2hC

2
T /4Ccv− 3

2 . (44)
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By choosing CT large enough will ensure that Cn
1
2hC

2
T /4Ccv− 3

2 < ε. The similar
conclusion can be reached that for any ε > 0 there exists a finite constant C
such that,

P

(
− max

0≤j≤N−1
Sn(j) ≥ C

√
nh3 |log h|

)
< ε. (45)

Therefore, (44) and (45) ensure that,

max
0≤j≤N−1

Sn(j) = Op(
√
nh3 |log h|).

Using a comparable argument, the same conclusion can be reached for the Sn(j),

max
0≤j≤N−1

∣∣Sn(j)
∣∣ = Op(

√
nh3 |log h|).

Also, a similar technique can be used to bound the other martingale difference
terms given in (40), details omitted.

Proof of Theorem 2. To prove the Theorem we appeal to similar results that
were shown by Kulik (2008); Wu and Mielniczuk (2002) by decomposing the
stochastic terms into two parts, a martingale part and a LRD part. This is done
by defining,

χi(t) =
(ζi(t)− Eζ1(t)) εi + γi(t)− Eγ1(t)√

n (Varζ1(t) + Varγ1(t))

and then decomposing the standardised estimator κ̂h(t) into two terms,

√
nh7 (κ̂h(t)− κh(t)) =

√
nh7 (Zh(t) + bh(t))

=
1√
nh

(
n∑
i=1

ζi(t)εi +

n∑
i=1

(γi(t)− Eγ1(t))

)

=
√
h−1 (Varζ1(t) + Varγ1(t))

n∑
i=1

χi(t) +
Eζ1(t)√
nh

n∑
i=1

εi.

(46)

The Theorem will follow by showing that either the first or last term on the RHS
of (46) dominates under the bandwidth conditions (A1) or (A2) respectively.
More specifically, it will be shown that the dominating term will follow a CLT
and the other term converges to zero in probability; then Slutsky’s Theorem
completes the proof. Firstly consider the case where (A1) holds, then apply the
martingale CLT of Brown (1971) to show,

n∑
i=1

χi(t)
D−→ N (0, 1). (47)

Note that {χi(t),Gi} form a martingale difference sequence. So it remains to
check that the sum of the conditional variances converge in probability to the
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unconditional sum and the Lindeberg condition holds. Before we prove the Lin-
deberg condition note that for t ∈ (h, 1− h),

Eζ21 (t) =

∫
R
σ2(x)K2

3

(
F (x)− t

h

)
dF (x) = h

∫ 1

−1
σ2
F (t+ hu)K2

3 (u) du. (48)

Exploiting (10) and the assumption that σ ∈ Gr,

Eζi(t) = h

∫ 1

−1
σF (t+ hu)K3 (u) du

=
h(s∧r)+1

(s ∧ r)!

∫ 1

−1
σ
(s∧r)
F (t+ τhu)us∧rK3 (u) du = h(s∧r)+1υ∗(t), (49)

where τ ∈ (0, 1). Therefore, using (48) and (49),

Varζ1(t) = h

∫ 1

−1
σ2
F (t+ hu)K2

3 (u) du

− h2(s∧r)+2

((s ∧ r)!)2

(∫ 1

−1
σ
(s∧r)
F (t+ τhu)us∧rK3 (u) du

)2

.

Due to the fact that the bandwidth is assumed to follow h ∈ (0, 1), there exists
a h0 such that for all 0 < h ≤ h0 < 1,

Varζ1(t) ≥
h infx∈R

∣∣σ2(x)
∣∣

2

∫ 1

−1
K2

3 (u) du. (50)

From (48), it follows h−1Eζ21 (t)→ σ2
F (t)

∫ 1

−1K
2
3 (u) du and similarly from (49),

h−
1
2Eζ1(t) = o(1). Therefore, h−1Varζ1(t) → σ2

F (t)
∫ 1

−1K
2
3 (u) du. Also, the

same argument applies for the γi(t) term to yield,

h−1 (Varζ1(t) + Varγ1(t))
h→0−→ υ2(t).

Now the Lindeberg condition is shown to hold. Let ε > 0 be arbitrary,

n∑
i=1

Eχ2
i (t)1{|χi(t)|>ε} = nEχ2

1(t)1{|χ1(t)|>ε}

=
E
[
(ε1 (ζ1(t)− Eζ1(t)) + γ1(t)− Eγ1(t))

2
1An

]
Varζ1(t) + Varγ1(t)

. (51)

where An = {|χ1(t)| > ε}. The size of this set can be maximised using (50),

An ⊂
{

2 |K3|∞ |ε1| (|σ|∞ + |µ|∞) > ε
√
nVarζ1(t)

}
⊂

2 |K3|∞ |ε1| (|σ|∞ + |µ|∞) > ε

√
nh

infx∈R |σ2(x)|
2

∫ 1

−1
K2

3 (u) du

 .

(52)
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Using the fact that nh → ∞ and h → 0 as n → ∞ we see that An → ∅, the
empty set. Consequently with (51), (52) and nEχ2

1(t) <∞ imply that,

n∑
i=1

Eχ2
i (t)1{|χi(t)|>ε}

n→∞−→ 0,

and the Lindeberg condition holds. By a consequence of (11), let ε > 0 be
arbitrary,

P

(∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣ > ε

)
≤ 1

n2ε2
Var

(
n∑
i=1

εi

)
≤ C2

1n
−αL2(n)

ε2
,

P

(∣∣∣∣∣ 1n
n∑
i=1

ε2i − 1

∣∣∣∣∣ > ε

)
≤ 1

n2ε2
Var

(
n∑
i=1

ε2i

)
≤
(
C2

2n
−1 ∨ C2

3n
−2αL2(n)

)
ε2

,

with both of the above equations being o(1). So, the sum of the conditional
variances to converge in probability to one:

n∑
i=1

E
[
χ2
i (t)

∣∣Gi−1] =
1

n

n∑
i=1

ε2i
Varζ1(t)

Varζ1(t) + Varγ1(t)
+

Varγ1(t)

Varζ1(t) + Varγ1(t)

+
1

n

n∑
i=1

εi
2Cov (ζ1(t), γ1(t))

Varζ1(t) + Varγ1(t)

p−→ 1,

and by the martingale CLT, (47) follows.
Now we show that the last term on the RHS of (46) converges in probability

to zero. Consider an arbitrary ε > 0, then using (49) and (11),

P

(∣∣∣∣∣Eζ1(t)√
nh

n∑
i=1

εi

∣∣∣∣∣ > ε

)
≤ (Eζ1(t))

2

ε2nh
Var

(
n∑
i=1

εi

)
≤ Ch2(s∧r)+1n1−αL2(n)

= o(1),

and the last line follows by the bandwidth restriction given in (A1). Thus, the
proof of the first claim under the ‘small’ bandwidth scenario holds.

Consider now the ‘large’ bandwidth scenario. Using (46), (47) and (49),

κ̂h(t)− κh(t) = Op
(
n−

1
2h−

7
2

)
+

υ∗(t)

nh3−(s∧r)

n∑
i=1

εi. (53)

Also, from Ho and Hsing (1997), it is known that

1

n1−
α
2 L(n)

n∑
i=1

εi
D−→ N (0, C2

1 ). (54)
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Therefore, normalising the expression on (53),

n
α
2 h3−(s∧r)

L(n)
(κ̂h(t)− κh(t)) = Op

(
h−

1
2−(s∧r)n−

1−α
2

L(n)

)
+

υ∗(t)

n1−
α
2 L(n)

n∑
i=1

εi,

and the result follows from (A2) and (54) with Slutsky’s Theorem

Proof of Theorem 3. First break down the estimator into its separate martingale
and LRD part in a similar fashion to the method employed in the proof of
Theorem 2. Using (30), apply Lemma 2,

κ̂h(t)− κh(t)

=
1

nh4

n∑
i=1

(
γi(t)− Eγi(t) + ζi(t)εi

)
= Op

(√
|log h|
nh5

)
+

1

nh4

n∑
i=1

(
E [γ∗i (t)| Fi−1]− Eγ∗i (t)

)
+

1

nh4

n∑
i=1

(
µF (t)K3

(
F (Xi)− t

h

)
+ ζi(t)εi

)
=
µF (t)

nh4

n∑
i=1

(
K3

(
F (Xi)− t

h

)
− E

[
K3

(
F (Xi)− t

h

)∣∣∣∣Fi−1])

+
1

nh4

n∑
i=1

ζi(t)εi +
1

nh4

n∑
i=1

(
E [γi(t)| Fi−1]− Eγi(t)

)
+Op

(√
|log h|
nh5

)
(55)

Define the standardised stochastic terms,

∆i(t) :=
ζi(t)εi + µF (t)

(
K3

(
F (Xi)−t

h

)
− E

[
K3

(
F (Xi)−t

h

)∣∣∣Fi−1])
υ(t)
√
nh

.

Then in a similar fashion to the Proof of Theorem 2 it will be shown by the
martingale CLT of Brown (1971) that,

n∑
i=1

∆i(t)
D−→ N (0, 1). (56)

Indeed, ∆i(t) is a martingale difference sequence with respect to the σ-fields
{Fi}. Thus we need to check that the Lindeberg condition holds and that the
sum of the conditional variances converge in probability to 1. First, focus on
the convergence of the conditional variances. The conditional variances can be
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broken into two parts,

n∑
i=1

E
[
∆2
i (t)

∣∣Fi−1]
=

µ2
F (t)

nhυ2(t)

n∑
i=1

E

[(
K3

(
F (Xi)− t

h

)
− E

[
K3

(
F (Xi)− t

h

)∣∣∣∣Fi−1])2
∣∣∣∣∣Fi−1

]

+

n∑
i=1

E
[
ζ2i (t)

∣∣Fi−1]
nhυ2(t)

. (57)

Dealing with the second term on the RHS of (57), use Lemma 1 of Zhao and
Wu (2008),

1

nh

n∑
i=1

E
[
ζ2i (t)

∣∣Fi−1] =
1

nh

n∑
i=1

Eζ2i (t) +
1

nh

n∑
i=1

(
E
[
ζ2i (t)

∣∣Fi−1]− Eζ2i (t)
)

=

∫ 1−t
h

− t
h

σ2
F (t+ hx)K2

3 (x) dx+Op(n−
α
2 L(n))

= σ2
F (t)

∫ 1

−1
K2

3 (x) dx+O(h2) +Op(n−
α
2 L(n)) (58)

A bound is required for E
[
K3

(
F (Xi)−t

h

)∣∣∣Fi−1]2 to deal with the first term of

(57). Define Xi,i−1 := Xi − ηi = µX +
∑∞
j=1 cjηi−j and Zi := s−1X (Xi,i−1 − µX)

and define f̃η(x) := fX
(
x
∣∣Fi−1) = fη(x−Xi,i−1) and g(x) = 1/x. Then Xi,i−1

and Zi are Fi−1-measurable and for all t ∈ (h, 1−h) the conditional expectation
can be evaluated as follows.

E
[
K3

(
F (Xi)− t

h

) ∣∣∣∣Fi−1]
=

∫
R
K3

(
F (v)− t

h

)
fX
(
v
∣∣Fi−1) dv

= h

∫ 1

−1
K3 (x)

(
f̃η ◦Q

)
(t+ hx) (g ◦ fX ◦Q) (t+ hx) dx. (59)

Use a Taylor expansion of the composite functions, p(t) :=
(
f̃η ◦Q

)
(t) and

q(t) := (g ◦ fX ◦Q) (t) by using the Faà di Bruno chain rule given in (37);
starting with the latter Taylor expansion,

(g ◦ fX ◦Q)(t+ hx)

=

s∧r−1∑
j=0

hjxj (g ◦ fX ◦Q)
(j)

(t)

j!
+
hs∧rxs∧r (g ◦ fX ◦Q)

(s∧r)
(t+ τhx)

(s ∧ r)!
,

(60)
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where |τ | < 1. The intermediate derivatives for j = 0, 1, . . . , s ∧ r are given by

(g ◦ fX ◦Q)(j)(t) =
∑
k∈Kj

(−1)kk! ((fX ◦Q)(t))
−(k+1)

j∏
`=1

(
(fX ◦Q)

(`)
(t)

j!

)k`
= O(1)

due to restrictions imposed in Assumption (B). Similarly,

(
f̃η ◦Q

)
(t+hx) =

s∧r−1∑
j=0

hjxj

j!

(
f̃η ◦Q

)(j)
(t)+

hs∧rxs∧r

(s ∧ r)!

(
f̃η ◦Q

)(s∧r)
(t+δhx)

(61)
where |δ| ≤ 1. Therefore, using (61) and (60) in (59) with the vanishing moment
condition (10) implies that,

E
[
K3

(
F (Xi)− t

h

) ∣∣∣∣Fi−1]
= hs∧r+1

{
s∧r−1∑
j=0

s∧r−1∑
`=0

j+`≥s∧r

h`+j−s∧r
p(j)(t)q(`)(t)

j!`!

∫ 1

−1
x`+jK3(x) dx

+

s∧r−1∑
j=0

p(j)(t)hj

(s ∧ r)!j!

∫ 1

−1
xs∧r+jK3(x)q(s∧r)(t+ τhx) dx

+

s∧r−1∑
`=0

q(`)(t)h`

(s ∧ r)!`!

∫ 1

−1
xs∧r+`K3(x)p(s∧r)(t+ δhx) dx

+
hs∧r

((s ∧ r)!)2
∫ 1

−1
x2(s∧r)K3(x)q(s∧r)(t+ τhx)p(s∧r)(t+ δhx) dx

}
.

However, by Assumption (B), f
(j)
η and Q are Lipschitz continuous for j =

0, . . . , s and therefore bounded. Consequently p(j) and q(j) are also bounded
which means that uniformly in t,

K̃3(Xi,i−1, t) := E
[
K3

(
F (Xi)− t

h

)∣∣∣∣Fi−1] < Chs∧r+1 a.s. (62)

Define, g(Xi,i−1, t) := K̃3

2
(Xi,i−1, t) − EK̃3

2
(Xi,i−1, t), then Eg(Xi,i−1, t) = 0

and by Jensen’s Inequality EK̃3(Xi,i−1, t)
2 <∞. It will be shown by an applica-

tion of Theorem 1 of Wu (2007) that
∑n
i=1 g(Xi,i−1, t) = Op

(
hs∧r+2n1−

α
2 L(n)

)
.

Define, ϑi = supt∈(h,1−h) ‖E [g(Xi,i−1, t)| F0]− E [g(Xi,i−1, t)| F−1]‖ to mea-
sure the physical dependence. To bound ϑi, let η′0 be an i.i.d. copy of η0 and
define X∗i,i−1 = Xi,i−1 − ciη0 + ciη

′
0 with the associated sigma field F∗i =

σ (ηi, ηi−1, . . . , η1, η
′
0, η1, . . . ; ε1, . . . , εi). Then by Theorem 1 of Wu (2005) it

was shown that there is a bound ϑi ≤ supt∈(h,1−h)
∥∥g(Xi,i−1, t)− g(X∗i,i−1, t)

∥∥.
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Using this, (62) and the Lipschitz property of fη it will be shown that ϑi <
Chs∧r+2i−βL(i),

ϑi ≤ sup
t∈(h,1−h)

∥∥g(Xi,i−1, t)− g(X∗i,i−1, t)
∥∥

≤ Chs∧r+1 sup
t∈(h,1−h)

∥∥∥K̃3 (Xi,i−1, t)− K̃3

(
X∗i,i−1, t

)∥∥∥
≤ Chs∧r+1 sup

t∈(h,1−h)

∫
R

∣∣∣∣K3

(
F (u)− t

h

)∣∣∣∣ du∥∥Xi,i−1 −X∗i,i−1
∥∥

≤ Chs∧r+2 ‖η0 − η′0‖ ci = Chs∧r+2i−βL(i),

where the last line follows due to the Lipschitz property of Q and the bounded
domain of K3. Then by Theorem 1 of Wu (2007) and Karamata’s Theorem,

‖
∑n
i=1 g(Xi,i−1, t)‖

2
= O

(
h2(s∧r)+4n2−αL2(n)

)
. Using this and (62),

1

nh

n∑
i=1

K̃3

2
(Xi,i−1, t) =

1

nh

n∑
i=1

g(Xi,i−1, t) +
1

nh

n∑
i=1

EK̃3

2
(Xi,i−1, t)

= Op
(
hs∧r+1n−

α
2 L(n)

)
+O

(
h2(s∧r)+2

)
= op(1) (63)

Then the first term on the RHS of (57) can be bounded by (63) and a similar
application of Lemma 1 of Zhao and Wu (2008),

µ2
F (t)

nh

n∑
i=1

E

[(
K3

(
F (Xi)− t

h

)
− E

[
K3

(
F (Xi)− t

h

)∣∣∣∣Fi−1])2
∣∣∣∣∣Fi−1

]

=
µ2
F (t)

nh

n∑
i=1

{
EK2

3

(
F (Xi)− t

h

)
+ E

[
K3

(
F (Xi)− t

h

)∣∣∣∣Fi−1]2
+

(
E
[
K2

3

(
F (Xi)− t

h

)∣∣∣∣Fi−1]− EK2
3

(
F (Xi)− t

h

))}

= µ2
F (t)

∫ 1

−1
K2

3 (x) dx+Op(n−
α
2 L(n)) +O

(
h2
)

(64)

Substituting (64) and (58) into (57) implies that,

n∑
i=1

E
[
∆2
i (t)

∣∣Fi−1] p−→ 1.

For the Lindeberg condition, let ε > 0 and define An = {|∆1(t)| > ε}, then
similar to the procedure used in the Proof of Theorem 2, it can be shown that
An → ∅ and the Lindeberg condition holds. Thus by the martingale CLT, (56)
holds and by using (B1) in the decomposition given in (55) the result follows
by Slutsky’s Theorem.
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Proof of Theorem 4. Again, use the decomposition (55) used in the Proof of
Theorem 3. Then, define the standardised process,

Υi(t) :=
E [γi(t)| Fi−1]− Eγi(t)
h4n1−

α
2 L(n)H1(t)

.

It will be shown via use of a Hermite expansion of the LRD variables that,

n∑
i=1

Υi(t)
D−→ N (0, C2

1 ). (65)

To do this, split the LRD variable Xi into two parts, Xi = ηi + Xi,i−1. De-
fine the standardised version of Xi,i−1, Zi = s−1X (Xi,i−1 − µX), Zi ∼ N (0, 1).
Notice that Υi(t) and Zi are both Fi−1-measurable and define G(Zi, t) :=
E [γi(t)| Fi−1] − Eγi(t). Then clearly, EG(Zi, t) = 0 and by Jensen’s inequal-
ity, EG(Zi, t)

2 < ∞. So by Taqqu (1975), G(Zi, t) can be re-expressed by its
Hermite expansion,

G(Zi, t) =

∞∑
m=1

am
m!

Hm(Zi)

where am = E [Hm(Z1)G(Z1, t)] is the mth Hermite coefficient. For our case it
is assumed that a1 6= 0. Evaluating a1,

a1 = E [Z1G(Z1, t)]

= E
[
Z1

1

ση

∫
R
µ(u+ µX + sXZ1)K3

(
Φ(u+ sXZ1)− t

h

)
φ

(
u

ση

)
du

]
=

1

ση

∫
R

∫
R
zµ(u+ µX + sXz)K3

(
Φ(u+ sXz)− t

h

)
φ(z)φ

(
u

ση

)
dz du

=
h

s2Xση

∫
R

∫ 1−t
h

− t
h

Φ−1(t+ hw)− u
φ(Φ−1(t+ hw))

µF (t+ hw)K3 (w)

× φ
(

Φ−1(t+ hw)− u
sX

)
φ

(
u

ση

)
dw du.

By exploiting the Faà di Bruno formula further, it can be shown via Taylor
expansions that the asymptotic behaviour of a1 satisfies,

a1 ∼
h4κh(t)

s3Xσηφ (Φ−1(t))

∫
R
φ

(
Φ−1 (t)− u

sX

)(
Φ−1 (t)− u

)
φ

(
u

ση

)
du = h4H1(t)

From Corollary 5.1 of Taqqu (1975),

n∑
i=1

Υi(t) ∼
1

n1−
α
2 L(n)

n∑
i=1

Zi
D−→ N (0, C2

1 )

Therefore (65) holds by Slutsky’s Theorem in the decomposition given in (55)
in conjuction with (56), (65) and (B2).
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Proof of Theorem 5. First, choose distinct integers 0 ≤ j1, j2, . . . , jk ≤ mn for
some fixed k ∈ N. We adapt the proof of Theorem 5 of Zhao and Wu (2008) to
our case. The proof of their result was reliant on another result given by Theorem
1 of Grama and Haeusler (2006) which requires a martingale difference sequence
that has third order moments. We obtain such a sequence below. Define,

SAn,k(t) =

n∑
i=1

Ψi(t) =
[
SAn (tj1), SAn (tj2), . . . , SAn (tjk)

]T
.

and the associated sigma field Ai = σ(Xi, . . . , X1; ηi+1, ηi, . . .). Then the se-

quence
{
SAn,k(t),An

}
n∈Z

is a martingale since EK3

(
F (Xi)−t

h

)
= 0 for all

t ∈ (h, 1− h). Let Q be the quadratic characteristic matrix of SAn,k, that is,

Q =

n∑
i=1

E
[
Ψi(t)Ψi(t)T

∣∣Ai−1] := (Qrr′)1≤r,r′≤k .

Qrr′ =
E
(
K3

(
F (X1)−tjr

h

)
K3

(
F (X1)−tj

r′
h

))
nh
√
υ(tjr )υ(tjr′ )

{
σ2

n∑
i=1

ε2i

+
(
µF (tjr ) + µF (tjr′ )

)
σ

n∑
i=1

εi + nµF (tjr )µF (tjr′ )

}
.

However, by construction, if r 6= r′, then |tjr − tjr′ | ≥ 2h and the kernel
function K3 : [−1, 1]−→R which implies that the set

{
h−1 |F (x)− tjr | ≤ 1

}
∩{

h−1
∣∣F (x)− tjr′

∣∣ ≤ 1
}

is empty for all x ∈ R. Therefore when r 6= r′, Qrr′ = 0.
If r = r′, then by (11),

Qrr =
1

n (σ2 + µ2
F (tjr ))

n∑
i=1

(
σ2ε2i + 2µF (tjr )σεi + µ2

F (tjr )
)
.

‖Qrr − 1‖ ≤ 1

n (σ2 + µ2
F (tjr ))

(
σ2

∥∥∥∥∥
n∑
i=1

(
ε2i − 1

)∥∥∥∥∥+ 2 |µF (tjr )|

∥∥∥∥∥
n∑
i=1

σεi

∥∥∥∥∥
)

= O
(
n−

α
2 L(n)

)
.

Let (urr′)1≤r,r′≤k be the k × k identity matrix. Then by the above argument

E|Qrr′ − urr′ |
3
2 = O

(
n−

3α
4 L

3
2 (n)

)
uniformly over 1 ≤ r, r′ ≤ k. Additionally,∑n

i=1 E|Ψi(t)|3 = O(n−
1
2h−

1
2 ). Combining the two yields,

∑n
i=1 E|Ψi(t)|3 +

E|Qrr′ − urr′ |
3
2 = O((nh)−

1
2 + n−

3α
4 L3/2(n)). Considering the asymptotic be-

haviour of (23), (1 +Bmn(x))
4

exp
{
B2
mn

(x)

2

}
= O

(
h−1 |log h|

3
2

)
and using (22)

it follows that (1 +Bmn(x))
4

exp
{
B2
mn

(x)

2

}
Λn → 0. Therefore the same frame-

work and argument applies that was used in the proof of Theorem 5 of Zhao
and Wu (2008) and the result follows.
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Proof of Theorem 6. The proof of the Theorem uses similar moderate devia-
tion inequalities from Grama and Haeusler (2006) that were used in the proof
of Theorem 5. However, slight modification is needed. Firstly fix k ∈ N and
choose distinct integers 1 ≤ j1, j2, . . . , jk < mn then modify SBn (t) to obtain a
martingale by adding and subtracting the conditional expectation. Define,

SB
∗

n (t) :=

n∑
i=1

Ξ∗i (t) =

n∑
i=1

(
Ξi(t)−

µF (t)

υ(t)
√
nh

E
[
K3

(
F (Xi)− t

h

)∣∣∣∣Fi−1]) .
With this definition,

{
SB
∗

n (t),Fn
}
n∈Z+ is a martingale and

SBn (t) =SB
∗

n (t) +
µF (t)

υ(t)
√
nh

n∑
i=1

E
[
K3

(
F (Xi)− t

h

)∣∣∣∣Fi−1] . (66)

Define RB
∗

n (t) := µF (t)/(υ(t)
√
nh)

∑n
i=1 E

[
K3

(
F (Xi)−t

h

)∣∣∣Fi−1] . The proof of

the result will follow if it can be shown that the supremum over Tn for both

terms of (66) are op

(√
|log h|

)
. Starting with the latter term, from (62) and

(25) it follows that n−
1
2h−

1
2

∑n
i=1 E

[
K3

(
F (Xi)−t

h

)∣∣∣Fi−1] = Oa.s.

(
n

1
2hs∧r+

1
2

)
.

Also, since k is fixed E
[
suptjr

∣∣RB∗n (t)
∣∣]2 = O

(
nh2(s∧r)+1

)
= o(1) so by the

Chebyshev inequality,

P

(
sup
tjr

∣∣∣RB∗n (tjr )
∣∣∣ ≥√2 |log h|

)
= o(1). (67)

Now turn attention to the first term on the RHS of (66) and apply a moderate
deviation martingale result from Corollary 2 of Grama and Haeusler (2006).

To be able to use their Corollary a bound is needed on the trace norm of the
quadratic characteristic matrix of the martingale and a bound on the Euclidean
norm of the martingale difference sequence. These will be investigated, starting
with the former. For a symmetric k×k matrix U define the trace norm ‖U‖tr :=∑p
i=1 |ei| where ei are the eigenvalues of U . For a sequence x = {x1, x2, . . . , xn}

define the usual Euclidean norm of a sequence |x|2 :=
(∑

i x
2
i

) 1
2 . Now let Q be
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the quadratic characteristic matrix of SB
∗

n,k(t), that is,

Q =

n∑
i=1

E
[
Ξ∗i (t)Ξ∗i (t)T

∣∣Fi−1] := (Qrr′)1≤r,r′≤k .

Qrr′ =

n∑
i=1

E
[
Ξ∗i (tjr )Ξ

∗
i (tjr′ )

∣∣Fi−1]

=

n∑
i=1

E
[
σ2(Xi)K3

(
F (Xi)−tjr

h

)
K3

(
F (Xi)−tj

r′
h

)∣∣∣Fi−1]
nhυ(tjr )υ(tjr′ )

+
µF (tjr )µF

(
tjr′
)

nhυ(tjr )υ(tjr′ )

n∑
i=1

E
[
K3

(
F (Xi)− tjr

h

)
K3

(
F (Xi)− tjr′

h

)∣∣∣∣Fi−1]

−
µF (tjr )µF

(
tjr′
)

nhυ(tjr )υ(tjr′ )

n∑
i=1

K̃3

2
(Xi,i−1, t). (68)

By a similar domain argument that was presented in the proof of Theorem 5, if
r 6= r′, the first and second terms on the RHS of (68) are zero. Using this fact
with (62) it follows that,

Qrr′ = Oa.s.

(
h2(s∧r)+1

)
, (69)

for r 6= r′. On the other hand, if r = r′, then,

Qrr =
1

nhυ2(tjr )

n∑
i=1

{
E
[
σ2(Xi)K

2
3

(
F (Xi)− tjr

h

)∣∣∣∣Fi−1]
+ µ2

F (tjr )E
[
K2

3

(
F (Xi)− tjr

h

)∣∣∣∣Fi−1]
− µ2

F (tjr )E
[
K3

(
F (Xi)− tjr

h

)∣∣∣∣Fi−1]2
}
. (70)

Define the eigenvalues of Q to be e1 ≤ e2 ≤ . . . ≤ ek. To evaluate the trace
norm of Q consider,

‖Q − I‖2tr ≤
k∑
r=1

(er − 1)2 =

k∑
r=1

(
Q2
)
rr
− 2

k∑
r=1

Qrr + k

=

k∑
r=1

((
Q2
)
rr
− 1
)
− 2

k∑
r=1

(Qrr − 1) (71)

Using (58) and (64) in (70),

E |Qrr − 1|2 = O(n−αL2(n) + h4) (72)
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The diagonal terms of Q2 can be evaluated by virtue of (69),

(
Q2
)
rr

=

k∑
j=1

QrjQjr = (Qrr)2 +

k∑
j=1
j 6=r

QrjQjr = (Qrr)2 +Oa.s.

(
h4(s∧r)+2

)
(73)

Then with (73) and (72) we have,(
Q2
)
rr
− 1 = (Qrr)2 − 1 +Oa.s.

(
h4(s∧r)+2

)
= Op

(
n−

α
2 L(n) + h2

)
(74)

Using the bounds in (74) and (72) in (71) with the Lyapunov inequality we find,

E ‖Q − I‖
3
2
tr ≤

(
E ‖Q − I‖2tr

) 3
4

= O
(
n−

3α
8 L

3
4 (n) + h

3
2

)
(75)

Turn attention now to the Euclidean norm of the martingale differences.

|Ξ∗i (t)|2 =

(
k∑
r=1

Ξ∗2i (tjr )

) 1
2

≤
√
k sup

1≤r≤k
|Ξ∗i (tjr )|

≤ Cn−1h−1
(
|µ|∞ sup

1≤r≤k

∣∣∣∣K3

(
F (Xi)− tjr

h

)
− K̃3(Xi,i−1, tjr )

∣∣∣∣
+ |εi| sup

1≤r≤k
|ζi(tjr )|

)

= Cn−1h−1

(
sup

1≤r≤k

∣∣∣∣K3

(
F (Xi)− tjr

h

)∣∣∣∣+ |εi| sup
1≤r≤k

|ζi(tjr )|

)
+Oa.s.

(
n−

1
2h(s∧r)+

1
2

)
.

Then consider the third power of the above statement and expand,

|Ξ∗i (t)|32 ≤ Cn
− 3

2h−
3
2

((
sup

1≤r≤k

∣∣∣∣K3

(
F (Xi)− tjr

h

)∣∣∣∣)3

+ |εi|3
(

sup
1≤r≤k

|ζi(tjr )|
)3
)

+Oa.s.

(
n−

3
2h3(s∧r)+

3
2

)
. (76)

To give a bound on the expectation of the above term, it is sufficient to look at
the higher order expectation terms and apply the Lyapunov inequality. Starting
with the expected value of the suprema of the kernel function, using the fact
that the kernel function has support on [−1, 1] and

∣∣tjr − tjr′ ∣∣ ≥ 2h for r 6= r′,

E
(

sup
1≤r≤k

∣∣∣∣K3

(
F (Xi)− tjr

h

)∣∣∣∣)3

=

k∑
r=1

∫
R

∣∣∣∣K3

(
F (x)− tjr

h

)∣∣∣∣3 dF (x)

= O(h) (77)
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since there is at most one value of tjr where K3(h−1(F (x)− tjr )) is non-zero for
any given x ∈ R and fixed k ∈ N. The scale function σ is also bounded, so by a
similar procedure it can be shown that,

E
(

sup
1≤r≤k

|ζi(tjr )|
)3

= O(h). (78)

Using the bounds given in (77) and (78) in (76) and applying the expectation
operator yields,

n∑
i=1

E |Ξ∗i (t)|32 = O
(
n−

1
2h−

1
2 + n−

1
2h3(s∧r)+

1
2

)
= O

(
n−

1
2h−

1
2

)
. (79)

Using (25) with (75) and (79) ensure that

n∑
i=1

E |Ξ∗i (t)|32 + E ‖Q− I‖
3
2
tr = o(h),

which in turn ensures that the required condition

1

2h
≤ C

(
n∑
i=1

E |Ξ∗i (t)|32 + E ‖Q− I‖
3
2
tr

)−1
holds. Therefore the conditions are satisfied, so apply Corollary 2 of Grama and
Haeusler (2006) and there exists a q ∈ (0, 1] such that,

P

(
sup
t∈Tn

∣∣∣SB∗n (t)
∣∣∣ ≥√2 logmn

)
≤ P

(∣∣∣SB∗n (t)
∣∣∣
2
≥
√

2 logmn

)
≤ 1

2
k
2−1Γ

(
k
2

)m−qn (2q logmn)
k
2−1 (1 + o (1))

= O
(
hq |log h|

k
2−1
)

= o(1). (80)

The proof then follows as a direct result of (66), (67) and (80).

Lemma 3. Assume that µ ∈ Gs, K ∈ Ks∧r with s∧ r ≥ 3 and Assumption (B)
holds. Then,

sup
t∈(h,1−h)

|Dn(t)| = Op
(
hs∧r+

1
2n

1−α
2 L(n)

)
.

Proof of Lemma 3. Using Assumption (B), the higher order derivatives of the
densities fη exist and are bounded. Combining this with (Zhao and Wu, 2008,
Lemma 1) it can be shown that for m = 0, 1, . . . , s ∧ r;∥∥∥∥∥ sup

t∈(h,1−h)

∣∣∣∣ dmdtm I [n](t)
∣∣∣∣
∥∥∥∥∥ = O

(
n1−

α
2 L(n)

)
,

where I [n](t) :=
∑n
i=1 {fX(x|Fi−1)− fX(x)}. The result then follows by us-

ing the vanishing moment property of K in conjuction with the Faà di Bruno
formula in a similar manner to the procedure that proved (62).
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Csörgő, S. and Mielniczuk, J. (1995). Nonparametric regression under long-
range dependent normal errors. Ann. Statist. 23 1000–1014. MR1345211
(96k:62091)
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