GRADED INDUCTION FOR SPECHT MODULES

JUN HU AND ANDREW MATHAS

ABSTRACT. Recently Brundan, Kleshchev and Wang introduced a Z-grading on the Specht
modules of the degenerate and non-degenerate cyclotomic Hecke algebras of type G(¢, 1, n).
In this paper we show that induced Specht modules have an explicit filtration by shifts of
graded Specht modules. This proves a conjecture of Brundan, Kleshchev and Wang.

1. INTRODUCTION

In a remarkable series of papers Brundan and Kleshchev (and Wang) [6-8] have shown
that the cyclotomic Hecke algebras of type G (¢, 1,n) are Z-graded algebras and they have
proved a graded analogue of Ariki’s categorification theorem [1]. This work builds upon
the work of Khovanov and Lauda [16, §3.4] and Rouquier [25]’s introduction of the quiver
Hecke algebras which are certain graded algebras which categorify the negative part of
quantum group of an arbitrary Kac-Moody Lie algebra.

The representation theory of the cyclotomic Hecke algebras of type G(¢,1,n) is very
well developed with the Specht modules introduced in [3, 10] playing a central role. For
each multipartition g Brundan, Kleshchev and Wang [8] introduced a Z-grading on each
Specht module S* which is isomorphic to the (ungraded) Specht module upon forgetting
the grading. In [8, Theorem 4.11] they showed that restriction of the graded Specht module
has a graded Specht filtration. By Frobenius reciprocity in the Grothendieck group there
is an analogous formula for the induced graded Specht modules. Brundan, Kleshchev and
Wang conjectured that this should correspond to a filtration of the induced Specht module
by shifts of graded Specht modules. In this paper we prove this conjecture.

To state our main results, fix an integral domain R and an integer e € {0,2,3,4,...}
such that either e = 0 or e is invertible in R whenever e is not prime, let %’j{‘ be the graded
cyclotomic quiver Hecke algebra (over R) determined by e and the dominant weight A
(see Definition 3.1). The algebras " include the cyclotomic Hecke algebras of type
G(¢,1,n) as special cases. When R is a field there is a natural graded embedding JZ* —
A2 | which makes 2 | into a free .#*-module by the main theorem of [13]. There is
an induction functor

Ind :Mod-J%," — Mod-, \; M+ M ® yon H) .

By projecting onto the blocks of L%jﬁrl the induction functor decomposes as
Ind = @ i-Ind,
icl
where I = Z/eZ.
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Fix ¢ € I and let i be a multipartition of n. Let iy, ..., o, be the multipartitions of
n + 1 obtained by adding an addable i-node to w (see before Definition 3.3), ordered so
that a1 > - - - > at,, where > is the dominance order on multipartitions (see §2.1). Given an
addable node A of p then we define the integer d 4 (pt) in Definition 3.3 below. Finally, if
M is a graded ##*-module and d € Z then M (d) is the graded .#"*-module obtained by
shifting the grading on M by d; see Section 4.

Main Theorem. Suppose that R is an integral domain and that either ¢ = 0 or e is
invertible in R whenever e is not prime. Let u € &2, and i € 1. Then the induced graded
Specht module i-Ind S* has a graded Specht filtration. That is, there exists a filtration

0=IycCclC---Cl,=iIndS",
such that I;/1; 1 = S (da,(p)).

Our arguments easily extend to the analogous result for the induced graded dual Specht
modules S,,; see Corollary 4.6.

When e = 0 and ¢ = 2 this result can be deduced from [9, Lemma 3.4]. In the ungraded
setting, when ##* can be identified with the cyclotomic Hecke algebras of type G(¢,1,7),
this result was established by the second author [22]. The main observation in [22] is that
the filtration of the induced Specht module is the restriction of a Specht filtration of a
closely related family of ‘induced’ modules M (). In general, we do not know how to
construct graded lifts of the modules M (p) so we cannot use this approach here.

To prove our Main Theorem we instead use a beautiful construction of Ryom-Hansen
which gives an explicit filtration of the induced Specht modules for the Hecke algebras
of the symmetric group [26] — in the ungraded setting Ryom-Hansen gave the first proof
of our Main Theorem for the Hecke algebras of the symmetric groups. In order to adapt
Ryom-Hansen’s construction to the graded setting we use our recent construction of a
homogeneous cellular basis for .7 and our realization, up to shift, of the graded Specht
modules as graded submodules of %’j{‘; see [13].

The outline of this paper is as follows. In the Chapter 2 we recall the results that we need
from the ungraded representation theory of the Hecke algebras of type G (¢, 1,n) and use
this to establish a strong result (Theorem 2.12), about the transition matrices between the
standard and seminormal bases of these algebras in the semisimple case. In Chapter 3 we
prove an analogous result (Theorem 3.7), for the transition matrices between the standard
and homogeneous bases of the graded algebras. One consequence of these results is a
necessary condition for the products m.g1,, and 151, to be non-zero, where {m} and
{nyv} are the standard bases corresponding to the trivial and sign representations of .7¢;,
and {ts¢} and {1}, } are homogeneous analogues of these bases. In Chapter 4 we use this
non-vanishing condition, together with the ideas of Ryom-Hansen [26], to prove our Main
Theorem.

2. CYCLOTOMIC HECKE ALGEBRAS AND STRONG DOMINANCE

The aim of this paper is to understand the effect of the graded induction functors on the
Specht modules. To do this we first need to prove a strong result about certain structure
constants in the ungraded case.

2.1. Cyclotomic Hecke algebras. We start with the definition of the cyclotomic Hecke
algebras of type G(¢,1,n).

Fix an integral domain R and an integer ¢ > 1. Define §¢; = 1if £ = 1 and §¢; = 0
otherwise.
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2.1. Definition. Suppose that ¢ € R is invertible and that Q = (Q1, ..., Q) € R’. The
cyclotomic Hecke algebra 77, (¢, Q) = (&, Q) of type G(£, 1,n) and with parameters

& and Q is the unital associative R-algebra with generators Ly, ..., Ly, Ty, ..., T,_1 and
relations
(L1 = Q1) ... (L1 — Q) =0, L.Ly = LL,,
(Tr + 1)(TT - f) =0, T.L, + 551 = LrJrl(Tr - 6 + 1)7
TsTs1Ts = Ts41TsTs41,
T.L; = L, T,, ift#rr+1,
T.Ts =TT, iflr —s| >1,

wherel <r<n l<s<n-—-1landl <t <n.

This definition, which we used in [13], allows us to simultaneously treat the degenerate
and non-degenerate cyclotomic Hecke algebras of type G(¢,1,n). By the Morita equiva-
lence reductions of [11, Theorem 1.1] and [S, Theorem 5.19] it is enough to consider the
cases where the parameters Q are integral in the sense that each @5 is an integral power
of &, if ¢ #1,and Q € ZLif € = 1.

Define the quantum characteristic of ¢ to be the smallest positive integer e such that
1+&+ -+ &1 =0; or 0 if no such positive integer exists. Then e € {0,2,3,4,...}.
We fix a multicharge x = (k1, ..., ) € Z° such

a) ife#0then k) — k41 >nforl <1< 4.
b) if ¢ =1then Q; = x; (mod e), for 1 <[ < /.
c) if€ £ 1then Q; = &%, for1 <1 < /.

This choice of multicharge plays a role in what follows only in helping us make a good
choice of modular system as in [13, §4.2]. The multicharge x determines the parameters
Q. Moreover, for a fixed choice of multicharge, 77, depends only on the quantum charac-
teristic e of &, and not on the choice of £ itself, by [6, Theorem 6.1]. Therefore, we write
%z = %z (67 K’)~

Let G,, be the symmetric group on {1,2,...,n}. Then &, is a Coxeter group and
{s1,...,8n—1} is its standard set of Coxeter generators, where s; = (i,i+ 1) for 1 <i <
n. Let £: &, — N be the length function on S,, so that £(w) = k if k is minimal such
that w = s;, ... s, for some s;; with 1 < i; < n. Ifw = 54, ...5;,, with k = {(w),
then set T, = T3, ... T;,. Then T}, depends only on w, and not on the choice of reduced
expression w = s;, ...s;, , because the braid relations hold in .77,; see, for example, [18,
Theorem 1.8].

Let #(S,,) be the R-submodule of .7, spanned by { T}, | w € &,, }. Then J#(S,,)
is isomorphic to the Iwahori-Hecke algebra of G,, with parameter £ by [2, Cor. 3.11].

In order to define the bases of .7Z;, which underpin this paper we now review the combi-
natorics of multipartitions and tableaux. Recall that a multicomposition of n is an ¢-tuple
w= (W, ..., 1) of compositions such that |(V] + - - 4 |u(?)] = n. For each mul-
ticomposition let &, = &,,1) x -+ X &) be the corresponding parabolic, or Young
subgroup, of &,, where we use the natural embedding &,, — &,,.

A multipartition of 7 is a multicomposition g = (1), ..., u(¥)) of n such that each
component () is a partition, for 1 < [ < ¢. The set of multicompositions of n becomes
a poset under the dominance order > where ,if A and p are multicompositions of n, then
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Al pif

-1 i -1 i

] l l
>3 = T+ D
k=1 j=1 k=1 j=1

forl <l</landi> 1. If A\ > pand XA # p then we write A > . Let &2, be the poset
of the multipartitions of n ordered by dominance.
We identify the multipartition g with its diagram

) ={(rel)|1<c<u®r>1andl1 <1<0}.

In this way, we will talk of the rows, columns and components of p. If u € 22, let u’ =
(u(@/, ceey u(l)/) be the conjugate multipartition which is obtained from p by reversing
the order of its components and then swapping the rows and columns in each component.
We frequently identify g and its diagram [g], which we think of as an ¢-tuple of arrays of
boxes in the plane.

Let p be a multicomposition of n. A u-tableau is a map t: [pu] — {1,2,...,n}. We
think of t as a labelling of the diagram of p and we define Shape(t) = p. A p-tableau
t is row standard if t(r, ¢,l) < t(r,c + 1,1) whenever (r,c, 1), (r,c + 1,1) € [p]. Let
RStd(u) be the set of row standard p-tableau. The conjugate of the p-tableau t is the
p/-tableau which is obtained from t by reversing its components and then swapping its
rows and columns in each component.

Suppose now that g is a multipartition. Then a p-tableau t is standard if t and t’ are
both row standard tableaux. Let Std(u) be the set of standard p-tableaux and Std*(u) =
{(s,t) | s,t € Std(p) } be the set of pairs of standard p-tableaux. For convenience we set

Std(2,) = |J Std(p) and Std*(2,) = (] Std*(n).

HEP, HEP,

Suppose that s is a row standard A-tableau and that t is a row standard p-tableau, for
multicompositions A and p of n. For each non-negative integer m define s,,, and t,,, to be
the subtableaux of s and t, respectively, which contain {1,2, ..., m}. Then s dominates t,
and we write s > {t, if

Shape(s,,) &> Shape(t,,), for1 <m <n.

It is straightforward to check that s ™ t if and only if t' > s’. Observe also that A > g if
and only if t* > t#.

We extend the dominance order to Std*(.22,) in two ways by declaring that if (s, t) €
Std?(A) and (u,v) € Std? () then

(5,t) > (u,0) ifApporA=pands >uandt> v,
(s5,t) »(u,0) ifs>uandtl> v.

By definition, (s, t) » (1, v) implies that (s, t) > (u, v), but the converse is false in general.
As above, we write (s,t) » (u,0), and (s,t) > (u,0), if (5,t) # (u,0) and (s, t) » (1, 0)
and (s,t) > (u,v), respectively. The partial order » is the strong dominance order on
Std*(2,,).

Suppose that p is a multicomposition of n and define t* to be the unique row standard
p-tableau such that t* > s whenever s is a row standard p-tableau. That is, t* is the
p-tableau with the numbers 1,2, ..., n entered in order from left to right along the rows of
each component of t*. Next if s € Std(u) let d(s) be the unique permutation in &,, such
that s = t*d(s).
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We are now ready to define the first bases of 77, that we will need. Let x : 7%, — 7,
be the unique anti-isomorphism of .7, which fixes each of the generators in Definition 2.1.
Let p be a multicomposition. Following [10, 20], set

I e

up=1] I -, tu= Y T,
k=2 m=1

weS,,
0—1 |pD 4| plEm R

" [ Ca-@ wu= > (o,

k=1 m=1 weS,,

S
I

— ot
and let m,, = u

w2y and ny, = u,y,. Finally, if p is a multipartition define

Mgt = T;( )mMTd(t) and Ngt = T;(g)nHTd(t),

S

for (s,t) € Std*(22,). It follows easily from the relations in .7, (see [10, Remark 3.7]),
that the elements x,, and u:;, and y,, and u,,, commute, so that mg, = mys and ng, = ngs.
We have the following important and well-known result.

2.2. Theorem. Suppose that R is an integral domain. Then:

a) {mse | (5,t) € Std*(P,) } is a cellular basis of .
b) {na | (5,1) € Std*(22,) } is a cellular basis of ;.

Part (a) is proved in [10, Theorem 3.26] and [3, Theorem 6.3] for the non-degenerate
(¢ # 1) and degenerate (£ = 1) cases, respectively. Part (b) is can be proved in the
same way or arguing by specialization from the case where .77, is defined over a ‘generic’
ground ring in which case .77, has a Z-linear automorphism which interchanges these two
bases; see, for example, [20, (3.1)].

2.2. Seminormal forms and strong dominance. In this subsection we give a necessary
condition for the product mg¢n,, to be non-zero. To prove this we show that the tran-
sition matrices between the standard and seminormal bases of .7, are ordered by strong
dominance, a theme that continues throughout this paper.

Suppose that (s,t) € Std*(#,) and 1 < k < n. If k appears in row 7 and column ¢
of t!) then define

conty (k) = £Qu, ifeA£1,
t c—r+Q, if§=1

Then by [14, Prop. 3.7] and [3, Lemma 6.6], corresponding to the cases £ # 1 and £ = 1,
respectively,

2.3) meLy, = cont(k)mec + > TupMuw,
(u,0)€Std?(2,,)
(u,0)>(s,t)
for some r,, € R.

For the rest of this subsection we assume that R = K is a field and that /%, = £ is
semisimple. Equivalently, we assume that if 5,t € Std(<?,,) then conts(k) = cont(k),
forall1 <k < n,ifandonlyifs = t.

The following definition has its origins in the work of Murphy [23].
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2.4. Definition ( [21, Defn 3.1]). Suppose that A € P,, and (s,t) € Std*(\). Define

- Ly, — cont, (k) .
F = H H . % '
k=1 s€Std(P,) cont(k) — contg (k)
contg (k)F#cont (k)

Set for = FemgFt

By (2.3), fst = mst + Z(u7b)>(57,‘) TuwoMyy, for some ry,, € K. In particular, applying

Theorem 2.2 shows that { fs(} is a basis of 7. Moreover, if (s,t) € Std*(#,) and
1 < k < nthen

(2.5) fuoLlr = Contn(k)fuu

by [20, Prop. 2.6(iii)] and [3, Page 109].

If 5 is a tableau and 1 < k < n define comp, (k) = c if k appears in 5(°). If 5 and t
are tableau we write comp(s) < comp(t) if comp, (k) < comp, (k) for 1 < k < n. Then
comp(s) < comp(t) whenever s > t, but the converse is false in general.

The following result is well-known. We include a proof because we do not know of a
reference for it.

2.6. Lemma. Suppose that A\, i € &, and s € Std(\) and that there exist two integers
a < b which are in the same row of t* and in the same column of s. Then there exists an
element w € G4 q41,... by and an integer a < ¢ < b such that

a) sw is standard; and
b) ((d(s)w) = £(d(s)) + £(w); and
¢) c,c+ 1 are in the same row of t* and the same column of sw.

Proof. By assumption, the integers a, a+1, - - - , b are all in the same row of t* so because s
is standard we may assume, without loss of generality, that a appears in row 7 of () and
that b appears in row r 4 1 of s, where 1 < I < £. We now argue by induction on b — a.

If b — a = 1 then there is nothing to prove, so suppose that b —a > 1. Let ¢ < b be
maximal such that

a) comp,(c) < I or comp,(c) = [ and ¢ appears in the first 7 rows of 5, and

b) comp,(c+ 1) > I or comp,(c) = I and ¢ + 1 appears below row 7 of 5().
In particular, this means that the numbers ¢ + 1,c¢ + 2, --- , b all appear ‘below’ row r of
s, Let t = sw, where w = (c,e+1,...,b) = sp—1...8. € &,,. Thens > tand
£(d(t)) = ¢(d(s)) + ¢(w). The integers a < c are in the same row of t* and in the same
column of t = sw. Note that ¢ — @ < b — a. The Lemma now follows by induction.  [J

2.7. Proposition. Suppose that R = KC and X is a multicomposition of n > 0. Then there
exist scalars azy, € K such that

§ A
mx = auufuvv

(u,0)€Std?(2,)

and a, # 0 only if comp(t*) > comp(u), comp(t*) > comp(vb) and i and j are in
different columns of w and v whenever they are in the same column of t*.

Proof. We consider only the case when £ # 1. The case £ = 1 is similar and may be
proved using the results of [3, §6]. The only real difference between the cases £ # 1
and £ = 1 is the choice of content function: if £ # 1 then cont, (k) = £°7"Q,;, when
o(r,c,l) = k, and if £ = 1 then, instead, cont,(k) = ¢ — r + @;. Analogous minor
‘logarithmic’ adjustments are required in the argument below when £ = 1.
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By (2.3) there exist a » € K such that we can write

mx = foe + Z Ay fuv-

(u,0)2 (2, 1%)

Suppose that s; = (i,i + 1) € &, where 1 < i < n. Itis well-known and easy to check
that zx7T; = xx (see, for example, [18, Lemma 3.2]), so that mx7; = {mx. To compute
the action of T; on the right hand side of the last equation we need to recall how 7%, acts
on its seminormal basis.

By [20, Prop. 2.7], fuvTi; = £ fup if i and ¢ + 1 are in the same row of v and f,,,T; =
— fup if 2 and ¢ 4+ 1 are in the same column of v. Otherwise, 7 and 7 + 1 are in different
rows and columns of v so we set t = v(4,% + 1) and ¢, = cont,(¢) and ¢¢ = cont(i) =
conty (¢ + 1). Without loss of generality, v > t. Hence, by [20, Prop. 2.7] we have

fuuTz' = (5 il)Ct fut) + futa
(ce — cv)
_ (€eo —er)(eo — Eey) (€ —1ew
futh' - (Ctr — Ct)2 fun + (Cn — Ct) fut'

Therefore, a}), = 0 if i and i + 1 are in the same column. If v and t are both standard
tableau and v > t then

(€ —Dee 5 (v —ci)(eo —Eer)
(Ct _ Cn) CLun + (Cn _ Ct)2 aut

A p o, (=1
A = Qupy + ——————aj.
f ut uv (Cn o Ct) ut

Solving these equations shows that al, = (¢, —&ct)/(co —cy)-ay. In particular, agy, # 0 if
and only if )\ # 0, since ¢, # c¢ and ¢, # &c; (because #£° is semisimple), whenever i
and i + 1 are in the same row of t* and in different columns of v. Applying Lemma 2.6
and acting by G now shows that a}\, = 0 whenever there exist i and j which are in the
same column of v and the same row of t*.

To complete the proof we need to show that comp(t*) > comp(u) and comp(t*) >
comp(v). In fact, since my = mj it is enough to show that comp(t*) > comp(v). Let
1 < 1 < ¢ be minimal such that [A| > 0. If | = ¢ then comp(t}) > comp(v) for
any tableau v so in this case there is nothing to prove. Suppose then that 1 < [ < ¢ and
fix (s,t) € Std(2,) with a}, # 0. Let v be the multicomposition with v(*) = \(*) if
kE # 1,1 +1,v® = (0) and where v(*+1) is the composition obtained by concatenating
AD and A\H+D| Let m = AP, Then x5 = z,, and

A
§agy, =

tA

m

H L = Qus1) = > ally fuo [ (L = Qi)

(u,0)€Std2(2,,) k=1

Thus, a, = a%,(conty, (1) —Qi11) . . . (cont, (m) —Q41) by (2.5). By induction a¥, # 0
only if comp(t”) > comp(v). In particular, if a¥, # 0 then comp, (k) < comp (k) =
compy. (k) whenever m < k < n. Consequently, if comp(t*) » comp(v) then there
must exist a k with 1 < k < m and comp,, (k) = [ + 1. Therefore, since v is standard and
comp, (k') < compy. (k'), there exists 1 < k’ < k in the first row and column of p(+1)
so that cont, (k') = Ql+1 Consequently, a, = 0 and f,, does not appear in 1 in this

case. It follows that a2, # 0 only if comp(t)‘) > comp(v) as required. O
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2.8. Corollary. Suppose that p € P, is a multipartition of n. Then there exist scalars

Ay € K such that
my = Z Ay fuo-

(u,0)€Std?(2,,)

(u,0) B (£,4)
Proof. Suppose that a,, # 0 for some (u,v) € Std*(#,). By Proposition 2.7 ay, # 0
only if comp(v) < comp(t*) and ¢ and j are in different columns of v whenever they
are in the same row of t#. These two conditions imply that if 1 < m < n then the node
containing m in v is never below the node which contains m in t*. This implies that
v > t*. Similarly, or by applying the involution %, u > t#. ]

We want to generalize result to an arbitrary basis element mg. To do this we use the
following two technical results, the first of which is due to Murphy [24]. First, recall
from [18, Theorem 3.8] that if © and v are two row standard v-tableaux then v > o if and
only if d(v) < d(b) where < is the Bruhat order on &,,. That is, u < v if u has a reduced
expression which is a subexpression of some reduced expression of v.

2.9. Lemma (Murphy [24, Lemma 3.5]). Suppose that 6 € RStd(u), s € Std(p) and
u,w € &, such that u < w, v > s, du is row standard, s > sw and ((d(s)w) = £(d(s)) +
{(w). Then du > sw.

When comparing our statement of Lemma 2.9 with Murphy’s result note that Murphy
considers row standard ji-tableaux, where y is a composition. Let ¥ = (M v ... v (0
be the composition obtained by concatenating the parts of p. Then any row standard p-
tableau t corresponds to the row standard jV-tableau tV = t(1) v ... v () obtained by
concatenating the rows of t. This observation allows us to rewrite Murphy’s lemma in the
form above.

2.10. Lemma. Suppose that u,v € Std(v) and t € Std(w) are standard tableaux such
that v > t* and that © € &,, with x < d(t). Then my,T, can be written as a linear
combination of terms mq such that ¢ > uand 0 > t.

Proof. Observe that x, 7(6,,) is the permutation module for % (&,,), in the sense
of [18, Chapt. 3], which is indexed by the composition vV which is obtained by concate-
nating the components of v. By [18, Cor. 3.4], { 2, Ty(v) | b € RStd(v) }is a basis of the
Hz(6,,)-module z,, 57 (S,,). Moreover, the same result shows that if 1 < ¢ < n then

f.%'l,Td(n), if vs; ¢ RStd(V),
Q1D 2Ty T =4 20 Tuw)ss if v > vs; € RStd(v),
ngTd(u)si + (f - 1)171,Td(0), ifo<vs; € RStd(u)

We note that if vs; € RStd(v) then either v > vs; or vs; > v. Applying (2.11) recursively,
we see that x,Ty() T is a linear combination of terms of the form x, Ty(,) where b =
t¥d(b)u € RStd(v), 0 is a row standard v-tableau such that 6 > v, u < x < d(t) and
0(d(®)u) = £(d(v)) + £(u). Thus, we have b € RStd(v), b = du € RStd(v) and
o > b > t¥. Hence, setting s = t* and w = d(t) we see that all of the conditions in
Murphy’s Lemma 2.9 are satisfied so that b = dbu > sw = t. That is, qud(D)TI can be
written as a linear combination of x,, Ty(,) where b € RStd(v) and b I> t.

We have shown that m,, T}, can we written as a linear combination of terms of the form
Myp, Where b > tis row standard. Hence, by [10, Prop. 3.18] we can write m,, T, as a
linear combination of elements of the form m., where ¢ > u and 0 > t. (Note that the
standard tableaux ¢ and 9 do not necessarily have shape p.) This completes the proof. [
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2.12. Theorem. Suppose that R = K and (s,t) € Std*(2,,). Then:

a) There exist scalars ay, € K such that

Mgt = fot + Z Ayo fuo-
(u,0)€Std?(2,,)
(u,0)(s,t)

b) There exist scalars by, € K such that

Jst = Mg + Z by My -
(u,0)€Std>(P,)
(u,0)p(s,t)
Proof. We first prove part (b) using induction on ». If 5 = ((n),(0),...,(0)) then,
directly from the definitions, fingn = mne = m,. Hence, (b) is automatically true in
this case. Notice also that (t7,¢7) » (s, 1), for all (s,t) € Std*(2,). Suppose now that
(s,t) € Std?*(p) and (s,t) # (£7,¢7). Then, by Corollary 2.8 and induction, there exist
scalars a,, € K such that

fenw =my, + E QupMyyp -
(u,0) 0 (£, t1)

Suppose that (s,t) € StdQ(,u). By [20, Proposition 4.1 and Lemma 4.3], there exists
elements ®,, &y € J%(S,,) such that fo¢ = ®F fiuew D¢. (In [20] this is proved only in the
case when & # 1. The case when £ = 1 follows by exactly the same argument.) Therefore,
by the last displayed equation,

fa =i fww®i= D aw®imued,

(u,0) B (4, 84)

where for convenience we set aw= = 1. By the argument of [20, Proposition 4.1(ii)],
D, = Zbgd(t) pw Ty, for some py, € K where, in the sum, b € &, (with pyg) = 1).
By Lemma 2.10 we can write m,,, T}, as a linear combination of elements of the form m,
with ¢ > uand 0 > t. Hence, we can write m,, P¢ as a linear combination of terms m.,
with (c,d) » (t#,t). Applying the left handed version of Lemma 2.10 to each of the terms
®Imcy, we see that each ®;m,,, ¢ can be written as a linear combination of elements
of the form mgp with (a, b) » (s,t). Hence, fs¢ can be written as a linear combination
of elements mgqp with (a,b) B (s,t) giving (b). Inverting the equations in (b) gives (a),
completing the proof. (I

We can now prove the promised criterion for the product msny, to be non-zero. Notice
that unlike Theorem 2.12, which requires R = /C, the next results are valid over an arbitrary
integral domain.

2.13. Corollary. Suppose that R is an integral domain and that (s, t), (u,v) € Std*(2,,).
Then:

a) mgNyp 7 0 only if W > t, and,

b) nywmse 7 0 only if o' > s,

Proof. Parts (a) and (b) are equivalent by applying the anti-isomorphism * of .7Z;, which
fixes each generator, so we prove only (a). Let K be the field of fractions of R. Then
by embedding 2 into s#X and choosing a suitable modular system (O, K, K) (see
[13, §4.2] for example), we can reduce to the case where R = K. Following [20], if
(u,0) € StdQ(Wn) then define g,, = Fy/nuuFy. Then by repeating the arguments of
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Theorem 2.12 (or by applying a suitable automorphism in the generic case as in the proof
of [20, Prop. 3.4]), it follows that

Nuo = GJuo + Z chQch
(6,000 (1,0)

for some scalars d.; € K. Hence, by Theorem 2.12 we have

0 # Msinyy = (fst + Z Cabfab) (gun + Z dcagca)~

(a,6)p(s,t) (c,0)»(u,0)

Hence, there exist tableaux (a, b) » (s, t) and (¢, 0) » (u, v) such that fupgco # 0. By [20,
Corollary 3.8], fasgco # 0 only if ¢/ = b. Therefore, W' > ¢/ = b > t, so thatu’ > tas
required. O

2.14. Remark. Both the statement and proof of part (b) of Corollary 2.13 is essentially
the same as [19, Lemma 5.4]. Unfortunately, in [19] the second author confused the two
partial orders > and » on Std*(#,), so all that was actually proved in that paper was
that Shape(u’) > Shape(t) whenever mginy, # 0. As a consequence, the current paper
completes the proof of [19, Lemma 5.8] which requires the full strength of Corollary 2.13
(and Lemma 2.6).

2.15. Corollary. Suppose that R is an integral domain, 1 < k < nand (s,t) € Std*(2,,).
Then there exist scalars c,, € R such that

mse Ly, = conte(k)mgy + Z CupMuyy -
(u,0)€Std?(2,,)
(u,0)p(s,t)
Proof. As in the proof of Corollary 2.13 it is enough to consider the case when R = K
and %’C is semisimple. Using parts (a) and (b) of Theorem 2.12, to switch between the
standard and seminormal bases, together with (2.5) for the second equality we see that

MeeLy = (fst + Z aunfun>Lk
(u,0)€Std?(2,,)
(u,0)p(s,t)
= conty(k) fst + Z conty (k)ayw fuo
(u,0)€Std*(2,)
(u,0)p(s,t)
= cont¢(k)ms¢ + Z conty (k)cyp My,

(u,0)€Std?(2,,)
(u,0)p(s,t)

for some ¢, € K. This completes the proof. (I

We remark that it is not hard to see that Corollary 2.8, Corollary 2.15 and the two
statements in Theorem 2.12 are all, in fact, equivalent. There are analogous (equivalent)
statements for the basis {ns}. We leave the details to the interested reader.

Similarly, one can show that ng¢ L) = conty (k)ns¢ plus a linear combination of terms
Nyp With (1, 0) » (s, ).
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3. CYCLOTOMIC QUIVER HECKE ALGEBRAS AND GRADED SPECHT MODULES

We now switch to the cyclotomic quiver Hecke algebras, which were introduced in a
series of papers by Khovanov-Lauda [16], Rouquier [25] and Brundan and Kleshchev [6].
These algebras are certain naturally graded algebras which depend on e. As we recall,
when they are defined over suitable fields, they are isomorphic to the cyclotomic Hecke
algebras of the last section if we take e to be equal to the quantum characteristic of the
parameter £ and choose appropriate parameters.

3.1. Cyclotomic Quiver Hecke algebras and graded induction. Recall from the intro-
duction that we have fixed an integer e € {0,2, 3,4, ...} and that [ = Z/eZ. Let T be the
oriented quiver with vertex set I and directed edges ¢ — i + 1, for ¢ € I. To the quiver I'
we attach the standard Lie theoretic data of a Cartan matrix (a;;); jer, fundamental weights

{Ai| i eI}, positive weights X+ = 3. NA;, positive roots Q1 = @, ; Na; and we
let (-, -) be the bilinear form determined by
(ai,aj) = aij and (Ai,O{j) = 5ija fOfi,j S I

More details can be found, for example, in [15, Chapt. 1].

3.1. Definition. The cyclotomic quiver Hecke algebra, or cyclotomic Khovanov-Lauda—

Rouquier algebra, .%,‘L\ of weight A and type T, is the unital associative R-algebra with
generators

{wl,...,¢n_1}U{y1,...,yn}U{€(i)|i61n}

and relations

yi"e(i) =0, e(i)e(i) = dye(i), Siemeld) =1,
yre(i) = e()yr, Yre(i) = e(s,1)¢r, YrlYs = YsYr,
UrYs = YsPr, ifs#rr+1,
Yrhs = Ysr, iffr—s| > 1,
Yryrire(i) = {(yr'(/}r + Detd). zfz,« B Z:TH’
yrpre(i), if iy # et
poentreli) = {(zbryr + 1e(i), ifir = irs1,
Yryre(i), iy #irt
0, if ir = ipt1,
e(i), ifip #ipy1 =1,
2e() = { (g1 — w)e(d), ife £ 2and oy = ir +1,
(Yr — yrr1)e(i), ife#2and i,y =i — 1,
(Yr+1 = Yr)(Yr — Yr+1)e(i), ife=2andi,1 =i, +1
(’l/)rJrl"/)rerrl + l)e(i)a ife 7£ 2and iy o =iy = irp1 — 1,
(Yrp1¥rthryr — 1e(i), ife#2andiyig =iy = ipqp1 + 1,

werJrlee(i) = (wrﬁ-lwrwr-i-l +Yr
—2Yp41 + yr+2)e(i), ife=2and 10 =1, = ip41 + 1,
UVrp1Prthryr1e(i), otherwise.
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fori,j € I and all admissible r and s. Moreover, %,’} is naturally Z-graded with degree
function determined by

dege(i) =0, degy, =2 and degse(i) = —ai, i, >
for1<r<n 1<s<nandiel"

To make the link between the cyclotomic Hecke algebra .77, and the quiver Hecke al-
gebra #2 suppose that R = K is a field of characteristic p > 0. Fix non-zero element &
of K andlete € {0,2,3,4,...} is the quantum characteristic of £. As noted after Defini-
tion 2.1, if the parameters Q are integral then the algebra /7%, = 7, (e, k) is determined
by e and the multicharge . Let A = A, € X be the unique positive weight such that

Aoay))=#{1<I</l|k=i(mode) }, foralli e I.

We define S22 = 7, (e, k), where A = A,..

Next observe that (2.3) together with Theorem 2.2 implies that #* decomposes into a
direct sum of (simultaneous) generalized eigenspaces for the elements L1, ..., L,,. More-
over, the possible eigenvalues for L1, ..., L, are precisely the integers in I, if £ = 1,
and otherwise they are belong to the set { &' | i € I'}, if & # 1. Hence, the generalized
eigenspaces for these elements are indexed by I™. For each i € I™ let e(i) be the corre-
sponding idempotent in /> (or zero if the corresponding eigenspace is zero).

3.2. Theorem (Brundan-Kleshchev). Suppose that R = K is a field, ¢ € K as above,
and that A = M. Then there is an isomorphism of algebras %’fl‘ = %ﬁlA which sends
e(i) — e(i), foralli e I and

S (A& Lye(i), iFE#L

Y ieln
Z (LT - ir)e(i)’ ifg=1.
icln
s — Z (T + Pr(1) Q- (1) te(d),
iern

where P.(1), Q,(1) € Rlyr, yr+1), for 1 <r <mnandl < s <n.

We abuse notation and identify the algebras %7[; and %”HA under this isomorphism. In
particular, we will not distinguish between the homogeneous generators of % and their
images in %" under the isomorphism of Theorem 3.2.

The algebra Z2 = 7" has a unique anti-isomorphism % : Z» — %»: a — a* which
fixes each of the homogeneous generators. We note that the automorphism x is, in gen-
eral, not equal to the anti-automorphism * which fixes each of the (non-homogeneous)
generators of .7 in Definition 2.1.

Until further notice fix a multipartition p € &,,. If i € I then an i-node is a triple
(r,e,l) € N>x {1,2,...,4} such thati = ¢ —r+x; (mod €) . An i-node A is an addable
i-node of p if A ¢ [u] and [pu] U {A} is the diagram of a multipartition. Similarly, an
i-node B € [u] is a removable i-node of p if [p] \ { B} is the diagram of a multipartition.
Given two nodes A = (r,¢,l) and B = (s,d, m) then A is below B, or B is above A, if
either ] > m,or{ = mandr > s.

Following Brundan, Kleshchev and Wang , we make the following definitions.
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3.3. Definition (Brundan, Kleshchev and Wang [8, Defn. 3.5]). Suppose that p € &, and
that A is a removable or addable i-node of u, for some i € I. Define integers

addable i-nodes of removable i-nodes of p
da(p) = #{ - #{ 3

strictly below A strictly below A

and

d(p) = #
If tis a standard p-tableau then its degree and codegree are defined inductively by setting
degt =0 =codegt, ifn =0, and ifn > 0 then
degt=degt, | +da(v) and codegt= codegt, ; +d*(v)
where A = t~1(n) and v = Shape(t,,_1).

{ addable i-nodes of } { removable i-nodes of p }

strictly above A strictly above A

If t is a standard tableau define res(t) = (res((1),...,res¢((n)) € I", where res;(k) =
¢ —r + k; (mod €) if k appears in row 7 and column ¢ of t), for 1 < k < n. This
definition is compatible with our previous definition of cont, (k) in the sense thatif R = K
then cont¢(k) = res¢(k) (mod e), if € = 1, and cont(k) = £*5¢(F) if £ £ 1.

3.4. Definition ( [13, Definitions 4.9, 5.1 and 6.9]). Suppose that p € %,. Leti, =
res(ty) and i* = res(t*) and set e, = e(i*) and e, = e(i,,) and define
d! d!
Yp = yfl ...yg" and yit =Yy ... Yn",
where dy, = da,, (tt,,), diyy = d4m (pal,,), p,, = Shape(t#), !, = Shape((t,)m), and
A, and A, are the nodes such that t*(A,,) = m and t,,/(A},) = m.

For the rest of this paper, fix a reduced expression d(u) = s;, ...Ss;, for each row
standard p-tableau w and set Vg = Vi, .. .1, Suppose that (s,t) € Std?(u) and
define 15y = Q/J;(s)euyuwd(t) and Q%t = w;(g)e;,l,yijwd(t)'

We warn the reader that, in general, the elements vq(s), Vq(1), Vst and g, all depend
upon the choices of reduced expression for d(s) and d(t) that we have fixed, once and for

all, in Definition 3.4. See [13, Example 5.6] for an explicit example.
The following result can be viewed as a graded analogue of Theorem 2.2.

3.5. Theorem (Hu-Mathas [13, Theorems 5.8 and 6.11]).

a) { s | (5,t) € Std*(22,) } is a graded cellular basis of H>.
b) {4l | (s,t) € Std*(2,) } is a graded cellular basis of ™.

In particular, if (s,t) € Std*(2,,) then
degtps = degs + degt and degl, = codegs’ + codegt’.
Graded cellular algebras were introduced in [13]. They are a natural extension of Gra-
ham and Lehrer’s [12] definition of a cellular algebra to the graded setting.

We close this section by extending results in the last subsection about strong dominance
to the 1) and v’-bases.

3.6. Lemma. Suppose that R = K and p € ,,. Then
Yipgpn = Z TupMyy  and wiutu = Z SuvTup,
(u,0) B (t4,t4) (u,0) B (t#,4)

Sfor some 1y, Syp € K such that ryew # 0 and sy # 0.
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Proof. As in [13, Definition 4.3] we fix a modular system (O, K, K) with parameters
ve Oand Q° = (QY,...,QF) € O such that X = #° @0 K is split semisimple
and 2K =2 0 @0 K, where #° = #° (v, Q). By [13, Defn. 4.12], there exist ele-
ments y$ and e in 7" such that e, y,, = €5yS ®o 1. Moreover, by [13, Lemma 4.13]
there exist scalars 7, € K such that in /2~

0,0 _
Cupy = Z Ts fas-

s>tH
res(s)=i"

Therefore, by Theorem 2.13, there exist X, € K such that
W=D MM
(u,0) B (tH,tH)

However, e§y$ € #.° and my, € HC for all (u,v) € Std*(2,) so, in fact, 7, € O.
Hence, we can reduce this equation modulo the maximal ideal of O to write e,,y,, = Y n
in the required form.

We leave the proof of the formula for (... to the reader. It is proved in exactly same
way except that [13, Lemma 6.5] is used in place of [13, Lemma 4.13]. (I

3.7. Theorem. Suppose that R = K and (s,t) € Std*(2,,). Then
Vst = Z Quo My, Mgt = Z Cuv Yuvs

(u,0) B (s,t) (u,0) B (s,t)
77[};{ = z buo Mo, Nt = z dup 7/1;0
(u,0) B (s,t) (u,0) B (s,t)

for some scalars a,y, by, Cyp and dy,, in K such that agy, bsy, cs¢ and dgy are all non-zero.

Proof. For convenience, let i* = res(s) and i* = res(t). By Theorem 3.2 and Defini-
tion 3.4,if d(t) = sy, ... s;, is reduced then

Vg = Yoo (Th, + Piy (11))Qiy (i) “te(in) . ... .. (Ti\, + Py, (in)) Qi (in) " "e(ir),
where i; = (i*)°1 and i; = 1j_’1 for all 2 < j < k with &,, acting on I" from the

right in the natural way. (Thus, iy = i'.) Using the relations we can rewrite the ex-
pression for g e(i') as er(t)e(it) plus a linear combination of terms of the form LT,
where r € K is non-zero, u < d(t) and L € (L4,...,L,). By Lemma 3.6 and Corol-
lary 2.13, ¥ L can be written as linear combinations of elements of form m,, with
(u,0) » (t*, t#). Therefore, applying Lemma 2.10 to the elements my,7T,, shows that
¢ can be written as a linear combination of elements m,,, with (u, 0) B (t#,t). Using
the same argument to act with e(is)wg(ﬁ) from the left shows that 15 can be written in the
required form. Arguing by induction on the strong dominance order » we can now invert
this equation to show that m is a linear combination of elements 1, with (u, ) B (s, t).

The other equations can be proved similarly. ]

3.8. Corollary. Suppose that R = K and (s,t), (u,v0) € Std*(2,). Then ys)l, # 0
only if w' ©> tand ) s # 0 only if o' > s.

Proof. By Theorem 3.7 there exist scalars a., and by, such that

Vo ¥st = ( > ba ncb) ( > aw mab)-

(,0) B (u;0) (a,6) B (s,1)
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Therefore, 1,15t # 0 only if there exist tableaux a, b, ¢ and d such that npmqp 7 0 and
(¢,0) » (u,v) and (a, b) » (s,t). By Corollary 2.13 this happens only if ' > a. Therefore,
v’ > o' > a > s as required. The result for 51}, now follows by applying the graded
involution *. (]

We leave the following result as an exercise for the reader. It follows easily using
Theorem 3.2 and Corollary 2.13.

3.9. Corollary. Suppose that R = K and let (s,t) € Std*(2,,). Then there exist scalars
QAyyp, Dy € K such that

wstyr = Z Qup Yup  and '(/);tyr = Z bao w;b-

(u,0)p(s5,t) (a,b)p(s,t)

Moreover, ayy, and bay are non-zero only when res(u) = res(s), res(v) = res(t), res(a) =
res(s), res(b) = res(t) and degu + degv = degs + degt + 2, codega’ + codegb’ =
codeg s’ + codegt’ + 2.

4. GRADED INDUCTION AND GRADED SPECHT MODULES

Before starting the proof of our Main Theorem we recall the facts that we need about
Z-graded algebras and the construction of the graded Specht modules and their duals.

Suppose that A = P, ., Ay is a Z-graded algebra. If a € Ay, then a is homogeneous
of degree dega = k. If M = €D, My, is a graded A-module let M (s) be the graded
R-module obtained by shifting the grading on M upwards by s; that is, M (s);, = Mj._s,
for k € Z. Let Mod-A be the category of finite dimensional graded (right) A-module with
homomorphisms being the degree preserving maps (of degree zero). If A has a degree
preserving anti-involution * then the contragredient dual of M is the graded A-module

M® = P Homs(M(d), K)
deZ

where the action of A is givenby (fa)(m) = f(ma*),forall f € M®,a € Aandm € M.

4.1. Graded Specht modules. Following the standard construction from the theory of
(graded) cellular algebras, the two graded cellular bases of Theorem 3.5 define graded cell
modules for 7. More explicitly, for each multipartition g € 7, the graded Specht
module S* and the graded dual Specht module S, are the graded #*-modules such
that

SH(deg th) = (Yuw + H) A" and Sy (codegty) = (Viuw + ) A,

where J7, is the two-sided ideal of %’jLA spanned by the elements 1,,,, where (u,b) €
Std*(v), v > p and H,, is spanned by the 1)y, for (u,v) € Std*(v) with v > . Thus,
S* has a natural basis {9 | t € Std(p) }, and S, has a basis { ¢; | t € Std(p) }, where
the action on both modules in induced by the action of /" upon the 1 and ¢ bases of
A0, respectively, and deg 1y = degt, deg vy, = codegt/, for t € Std(pu). In particular,
by [13, Prop. 6.19], S* is isomorphic to the graded Specht module defined by Brundan,
Kleshchev and Wang [8]. See [13, §2] for more details.

To explain the relationship between the graded Specht module and its dual we need
to recall the description of the blocks of JZ*. Let f € Q. be a positive root with
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Sier(Ai,B) =nandset I? = {i€ " |a; +--+a;, =B}Yandeg = Y ;s e(i).
By [17, Theorem 2.11] and [4, Theorem 1],
AN = EB %A, where %A = eg 1,
BEQ+, IP#D
where %A is an indecomposable two-sided ideal of /" whenever es # 0. Following
Brundan and Kleshchev [8, (3.4)], if 8 € Q4 with eg # 0 then define the defect of %%A
by
1
defﬁ ::(Awﬁ04_ 5(5)5)

Then def B8 > 0. Let #5 = {p € P, |i* € I°} and suppose that u € 5. Then,
by [13, Prop. 6.19],

SH = Sf:), (def 53),
where SS), is the graded dual of S,,-. This justifies calling S, a graded dual Specht module.
For the rest of this section we fix 5 € ()4 and p € &3 such that eg # 0.

To prove our Main Theorem we need to compute i-Ind S*, for i € I. To do this we will
use another construction of the graded Specht modules which, up to shift, realizes them as
submodules of ijf‘. Recall that t* is the unique standard p-tableau such that t# > { for all
t € Std(p). Let t,, be the unique standard p-tableau such that t &> t,, for all ¢ € Std(u).
Then t,, is the standard p-tableau which has the numbers 1, 2, ..., n entered in order down
its columns in the components from right to left. Equivalently, t,, is the tableau conjugate
to t*'. Define w,, = d(t,) € G,,. Itis easy to check that w,' = wp = d(ty).

4.1. Definition. Suppose that p € P, for € Q4. Define z,, = y;ﬂ/’wu/ eplp-
Consulting the definitions, z,, = w:u, Ve = 1/)1“/ o Yt The connection be-
tween these elements and the graded Specht modules is the following.
4.2. Lemma ( [13, §6.4]). Suppose that p € Pg. Then, as graded AN -modules,
SH(def B+ codegt,,) = 2, " and S, (def B+ degtH) = z*f%’j{\.
Hence, to determine i-Ind S* it suffices to describe the 2 ;-module i-Ind 2,52

To do this we adapt ideas which Ryom-Hansen [26] used to describe the induced Specht
modules of .z (S,,).

4.2. Graded induction of Specht modules. We are now ready to prove our main theorem.
We start by describing the i-induction functors for .2 more explicitly.
Recall that I = Z/eZ. For each i € I define

€in = Z B(J \ Z) € %ﬁ-l
jern
Then >, ; €in = Y ;erni1 €(i) is the identity element of %, = %2, . Let Mod-J2*

be the category of finite dimensional graded .7#*-modules, with morphisms being .72 -
module homomorphisms of degree zero.

4.3. Lemma. Suppose that R = K is ﬁeld and that © € 1. Then there is a (non-unital)
embedding of graded algebras F, A 1 given by

6(]) e(.] \ Z)a Yr €inYr and ws — ei,nwsa
forjeI™, 1 <r <nandl < s < n. This map induces an exact functor
F;:Mod- ) — Mod-6) ; M — M ® yen €0 560 1.
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R G . .
Moreover, F; = z—Ind(%p;j;rl is the graded induction functor from Mod-¢," to Mod- 72 ,.

Proof. The images of the homogeneous generators of j‘fj{\ under this embedding commute
with e; ,,, which implies that this defines a non-unital degree preserving homomorphism
from ° to %ﬂnﬁ_l This map is an embedding by Theorem 3.2. The remaining claims
follow because e; ,, is idempotent and ), <1 €i,n 18 the identity element of %’jﬁ_l O

We now fix a multipartition g € &2, and introduce the notation that we need to prove
our main result. Let A;,..., A, be the addable i-nodes of p ordered so that A; ;1 is
below A;, for 1 <4 < z. Finally, let o; be the multipartition of n 4 1 obtained by adding
A; to p, so that [ay;] = [u] U{A4;}, for 1 <4 < Z. Then a3 > g > - - - > «x, because we
arranged the nodes A1, ..., A, in “downwards order”. For notational convenience in what
follows we set « = ¢1 and w = ox,.

The two extremal multipartitions o and w will be particularly important in what fol-
lows: « is the most dominant multipartition obtained from g by adding an ¢-node and w is
the least dominant such multipartition. Define z,1; = €; 2, to be the image of z,, under
the algebra embedding of Lemma 4.3. Then by Definition 3.4 and Definition 4.1

!
Zuti = €inYu Vw,, euYulin-

Therefore, by Lemma 4.2 and Lemma 4.3, we have the following.

4.4. Lemma. Suppose that p € &g and i € 1. Then there is an isomorphism of graded

L, -modules,

i-Ind S*(def B + codeg t,,) = 2,4, 560 1.

n

To prove our main theorem we show that Zu’ri%’;ﬁﬂ has a filtration by graded Specht

modules. Foreach 1 < k < z, define tz‘k to be the unique standard ay-tableau such that
(tgk)n = tu.
4.5. Proposition. Suppose that p € Pz and i € 1. Then
B, = {ei)ny;_‘/'(/}tzkt |te Std(ay) for1 <k <z}
is a basis of 21 A2 1.

Proof. Let I* be the vector space spanned by B,, ;. By [7, Corollary 5.8] and Lemma 4.4,
we know that
dim 24,72 | = dimi-Ind S* = #B,,; > dim I*.

n

Therefore, to prove the Proposition, it suffices to show that z,,4; 7% | C I*.

For each multipartition p of n let p™ be the multipartition of n + 1 obtained by adding
its lowest addable node. Similarly, if s € Std(p) then define sT to be the unique standard
pT-tableau such that s;7 = s. Note that it is not necessarily true that res,+(n + 1) = @
since the lowest addable node of p need not be an ¢-node.

Suppose that h € jfnj\ﬂ. We want to show that z,1;h € I*. By definition, z,4; =
ei,ny;,wt“tu €;,n.- Moreover, under the natural embedding %’j{‘ > ij{}rl of ungraded

algebras, my, i = m 6 () Therefore, applying Theorem 3.7 twice,

Zuti = ei,ny;,/( Z ast%t) €ins
(st)€Std?(Pni1)
(5.0 » (g, ()7)
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for some as¢ € K. Therefore, z,1;h is equal to a linear combination of elements of the
form e; Y, ¥st, where s, t € Std(X), ress(n+1) = i and A is a multipartition 7+ 1 such
that X > u. In particular, Shape(s,,) > p.

On the other hand, since e}, y,, = i/fiu/t“/ and e;,, € Klyi, - ,Yn+1), applying
Theorem 3.7 and Corollary 3.9 shows that ei,neiuyiu is equal to a linear combination of
elements v, such that u > (¢')* and v > (t*')*. By Corollary 3.8, ¢/, 1s # 0 only
if v/ > 5. Therefore, eime;‘,y;ﬂj}st # 0 only if t, > s, because t, = (t",)’ > (0'),.
Therefore, by the last paragraph, z,,4;h = ei,nyL,wtuwei,nh = 6i,n6;‘/y1,/1/)tuw6i,nh is
equal to a linear combination of the elements of the form ei,ny;,/wst, where s,t € Std(A),
Shape(s,,) > p, ress(n + 1) = 4, and A is a multipartition of n + 1 such that t, > s,,. It
follows that s = tfﬁ and A = o, for some j with 1 < j < 2. Hence, z,4:h € I* and the
proof is complete. U

We can now prove our main theorem.

Proof of Main Theorem. By Lemma 4.4, i-Ind S*(def 8 + codegt,,) 2 z,4; 1 so it
remains to show that zmi%ﬁl’il has a suitable Specht filtration. For 0 < j < n define

Ij = <€i’ny;l/¢t,0:k{ ‘ te Std(ak) for 1 <k < j>

Then I; is a submodule of ZuTi%/}H by Theorem 3.5 and the proof of Proposition 4.5.
Furthermore, the map

S5 (2codegt,, +degty’) 2 I;/I; 151 €i7n/y2’/wtz‘jt + 14,

for t € Std(c;) is an isomorphism since B, ; is linearly independent. Notice that this map
can also be viewed as left multiplication:

—‘y—jfu — eiyny;ﬂ +Ij,1,

6ot it
for t € Std(a;). To complete the proof we need to check that the degree shifts in the
Specht filtration are as predicted by the Main Theorem. We have deg tﬁj = degt, +

d 4, (p). Moreover, codeg t,, + degt, = def 3 by [8, Lemma 3.12]. Therefore,
2codeg t,, + degty’ = def 8 + codeg t,, + da;(p),

so that S (def 3 +codegt, +da,(p)) = I;/1;_1. Applying Lemma 4.4 now completes
the proof of our Main Theorem. (I

Finally, we note that we also have the following description of the induced graded
dual Specht module. This can be proved either using the isomorphism S* = Sff, (def B)
from [13, Prop. 6.19], or by essentially repeating the argument above starting with the iso-
morphism S,/ (def 3 + deg t*) = 2% from Lemma 4.2. We leave the details to the
reader.

4.6. Corollary. Suppose that i € &y, and i € 1. Then i-Ind S, has a filtration
0= JZ+1 cJ,c---CJ; = i—IndSu/,

such that Ji,/ Ji+1 = S, (dA%(w)), for 1 < k < 2, where {A; < Ay < -+ < A} is
the set of addable i-nodes of ' ordered so that ., > - - - > avy, where o, = p’ U { Ay} for
1<k<z
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