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Abstract. A group Γ is defined to be cofinitely Hopfian if every
homomorphism Γ → Γ whose image is of finite index is an auto-
morphism. Geometrically significant groups enjoying this property
include certain relatively hyperbolic groups and many lattices. A
knot group is cofinitely Hopfian if and only if the knot is not a
torus knot. A free-by-cyclic group is cofinitely Hopfian if and only
if it has trivial centre. Applications to the theory of open mappings
between manifolds are presented.

1. Introduction

A group Γ is said to be Hopfian (or to have the Hopf property) if
every surjective endomorphism of Γ is an automorphism. It is said to
be (finitely) co-Hopfian if every injective endomorphism (with image of
finite index) is an automorphism. These properties came to prominence
in Hopf’s work on self-maps of surfaces [23]. Related notions have since
played a significant role in many contexts, for instance combinatorial
group theory, e.g. [3, 35], and the study of approximate fibrations [11].
Here we will be concerned with a Hopf-type property that played a
central role in the work of Bridson, Hinkkanen and Martin on open
and quasi-regular mappings of compact negatively curved manifolds
[7].

We say that a group Γ is cofinitely Hopfian (or has the cofinite Hopf
property) if every homomorphism Γ → Γ whose image is of finite index
is an automorphism. This condition is stronger than both the Hopf
property and the finite co-Hopf property. In Section 5 we discuss its
relationship to other Hopf-type properties. In Section 2 we recall its
relationship to open mappings of manifolds.

If a torsion-free group is hyperbolic in the sense of Gromov, then
it is cofinitely Hopfian: this can be deduced from Zlil Sela’s profound
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study of the endomorphisms of such groups [35, 36]; see [7]. In the
present article, we shall extend this result to cover several other classes
of groups associated with non-positive curvature in group theory. Clas-
sical rigidity results imply that lattices in semisimple Lie groups with
trivial centre and no compact factors are cofinitely Hopfian (Section 4).
In the other classes that we consider the issue is more subtle. These
classes are the toral relatively hyperbolic groups, free-by-cyclic groups,
and (classical) knot groups. The following are special cases of the re-
sults that we prove in each case.

Theorem A. If a toral relatively hyperbolic group is co-Hopfian then
it is cofinitely Hopfian.

Theorem B. Let F be a finitely generated free group and let Γ =
F ⋊θ Z. The following conditions are equivalent:

(1) Γ is cofinitely Hopfian;
(2) Γ has trivial centre;
(3) θ has infinite order in Out(F ).

Theorem C. Let K be a knot in S3. The fundamental group of S3rK
is cofinitely Hopfian if and only if K is not a torus knot.

If one can prove that the groups in a certain class are cofinitely
Hopfian, one can immediately deduce constraints on the nature of open
mappings of manifolds whose fundamental groups lies in that class (see
Section 2). To exemplify this, in Section 7 we use Theorem C to prove:

Theorem D. Let K ⊂ S3 be a knot. If K is not a torus knot, then
every proper open self-mapping of S3rK is homotopic to a homeomor-
phism.

2. Topological Motivation

The work of John Walsh [44, Theorem 4.1] and Steven Smale [40]
establishes a strong connection between the cofinite Hopf property of
groups and open mappings of quite general spaces. For simplicity we
state their results only for manifolds, which is sufficient for our pur-
poses. Recall that a map is proper if the preimage of each compact set
is compact, and a light mapping is one for which the preimage of every
point is a totally disconnected space, for instance a Cantor set.

Proposition 2.1. Let M1 and M2 be connected manifolds (possibly
with boundary). If a map f :M1 →M2 is proper, open and surjective,
then the index of f∗π1M1 in π1M2 is finite. Moreover, f induces a
surjection on rational homology.

In the opposite direction we have:

Theorem 2.2. If M and N are compact connected PL manifolds and
f :M → N is a map with [π1N : f∗π1M ] <∞, then f is homotopic to
a light open mapping.
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In [7] these results were used in tandem with the fact that torsion-
free hyperbolic groups are cofinitely Hopfian to study discrete open
mappings between manifolds of negative curvature. Motivation for
this study comes from the Lichnerowicz problem of identifying those n–
manifolds which admit rational endomorphisms [29], and from a desire
to extend the scope of Mostow rigidity.

3. Toral Relatively Hyperbolic Groups

A finitely generated group Γ is toral relatively hyperbolic if it is
torsion-free and hyperbolic relative to a collection of free abelian sub-
groups. We refer the reader to [10] for a more expansive definition. For
our purposes, the following observations will be more useful than the
technicalites of the definition.

The following families of groups are toral relatively hyperbolic:

• Torsion-free (word) hyperbolic groups;
• Fundamental groups of finite-volume or geometrically finite hy-
perbolic manifolds whose cusp cross-sections are tori;

• limit groups [37] (otherwise known as fully residually free groups),
and more generally groups that act freely on Rn–trees (cf. [2,
9, 20]).

A great deal is known about toral relatively hyperbolic groups. In
particular, the isomorphism problem is solvable in this class [10]. They
are all Hopfian [19]. Degenerate examples such as Z are not finitely co-
Hopfian, but the following result shows that this is the only obstruction
to being cofinitely Hopfian.

Theorem 3.1. Let Γ be a toral relatively hyperbolic group and let ϕ :
Γ → Γ be a homomorphism so that ϕ(Γ) has finite index in Γ. Then ϕ
is an injection.

Proof. In order to obtain a contradiction we suppose that [Γ : ϕ(Γ)] <
∞ and that ϕ is not an injection. Since Γ is torsion-free and each ϕi(Γ)
has finite index in Γ, the groups Ki = ker (ϕ)∩ϕi(Γ) are all non-trivial.
Consequently, the kernels ker (ϕ) ⊂ ker (ϕ2) ⊂ . . . are all distinct, so
there is a properly descending sequence of epimorphisms:

Γ ։ ϕ(Γ) ։ ϕ2(Γ) ։ . . . .

But [19, Theorem 5.2] tells us that such sequences do not exist. (To see
that [19, Theorem 5.2] applies, note that each φi(Γ), being a finitely
generated subgroup of Γ, is a Γ-limit group.) This contradiction implies
that ϕ must in fact be an injection. �

Corollary 3.2. Let Γ be a co-Hopfian toral relatively hyperbolic group.
Then Γ is cofinitely Hopfian.
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4. Lattices

The discussions leading to this paper began with a desire to ex-
tend the results of [7] concerning convex cocompact Kleinian groups
to non-uniform lattices and geometrically finite groups. Corollary 3.2
represents progress in this direction since it applies to the fundamental
groups of finite volume hyperbolic manifolds whose cusp cross-sections
are tori. However, non-uniform lattices whose cusp cross-sections are
more general flat manifolds need not be toral relatively hyperbolic
(though they will always have a subgroup of finite index that is), so are
not covered by Corollary 3.2. To circumvent this difficulty we use the
following result of Hirshon [22] instead of Theorem 3.1 (cf. [7] Propo-
sition 4.4). Hirshon’s argument is a variant on the standard argument
for the Hopficity of residually finite groups.

Lemma 4.1. Let Γ be a finitely generated residually finite group with
no non-trivial finite normal subgroup. If ϕ : Γ → Γ is an endomorphism
with image of finite index then ϕ is a monomorphism.

Although our initial interest lay with lattices in SO(n, 1), it does
not seem any harder to deal with similar lattices in more general Lie
groups. We would like to have given an elementary proof1 covering
a class of lattices that includes those in SO(n, 1). However, we are
unable to find a proof using less machinery than what follows. (Some
alternative approaches are discussed in the next section.)

Proposition 4.2. Let G be a connected semisimple Lie group with
trivial centre and no compact factors, and let Γ be a lattice in G. If
either

(1) Γ is cocompact or
(2) Γ is irreducible

then it is cofinitely Hopfian.

Proof. Since G is connected and centreless, the adjoint representation is
faithful and G is linear. Also, Γ is finitely generated (see, for example,
[28, IX.3.1.(ii), p.311]), and Mal’cev famously observed that finitely
generated linear groups are residually finite [27]. Moreover Γ has no
non-trivial finite normal subgroup (this follows from Borel’s Density
Theorem; see [49, Corollary 4.42]). Thus we are in the situation of
Lemma 4.1: if the image of ϕ : Γ → Γ has finite index then ϕ is
injective.

The group Γ has a torsion-free subgroup H of finite index, by Sel-
berg’s Lemma ([38]; see also [49, Theorem 4.60]). Let Hk = ϕ−k(H),
for k ≥ 0. Then [Γ : Hk] ≤ [Γ : H ] and Hk is torsion-free, since ϕ
is injective, for all k ≥ 0. Since Γ is finitely generated it has only
finitely many subgroups of index bounded by [Γ : H ]. Therefore there

1we thank Nicolas Monod for his thoughts on this
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are integers m,n > 0 such that Hm+n = Hn, and hence ϕm(Hn) ≤ Hn.
If Γ is cocompact then so is Hn and in this case ϕm(Hn) = Hn, by
Theorem 2 of [33] (or by using any suitable volume-type invariant, in
particular Löh and Sauer’s Lipschitz simplicial volume [26]). Since Γ
has no non-trivial finite normal subgroup, it follows that ϕm(Γ) = Γ
also, and hence ϕ is an automorphism.

If Γ is irreducible and G is not PSL(2,R) the result follows from
Mostow-Prasad rigidity [32, Theorem B]. If G = PSL(2,R) then Γ is
either cocompact or virtually free, and we may use multiplicativity of
the rational Euler characteristic, as indicated in the next section. �

Added in proof: Since writing this article we learned of the existence
of [24] in which Humphreys and Johnson study the finite co-Hopf prop-
erty for lattices. The first paragraph of the preceding proof reduces
Proposition 4.2 to a special case of their main theorem.

Products of irreducible lattices can be dealt with by combining the
above argument with consideration of the structure of centralisers. And
in the higher rank case, far more general results are implied by Margulis
super-rigidity [28].

Results such as Proposition 4.2 allow one to extend the range of
maps in classical rigidity theorems. For example:

Corollary 4.3. LetM1 andM2 be finite volume hyperbolic n–manifolds,
n ≥ 3. Suppose there are proper open surjective maps f : M1 → M2

and g :M2 → M1. Then M1 and M2 are isometric.

Proof. The compositions h = g◦f :M1 →M1 and h
′ = f◦g :M2 →M2

are proper, open and surjective. Thus by Proposition 2.1, h∗π1(M1) has
finite index in π1(M1) and similarly for h′

∗
. Proposition 4.2(2) tells us

that both h∗ and h′
∗
are in fact isomorphisms. Hence f∗ and g∗ are

isomorphisms and Mostow rigidity applies. �

Corollary 4.3 applies in particular to hyperbolic knot complements.
Knot complements will be studied in more detail in Section 7.

5. Various Hopf properties and volume-type invariants

There are several more notions related to the Hopf property that
we should consider. A group Γ is finitely co-Hopfian if every injective
endomorphism with image of finite index is an automorphism. It is
(finitely) hyper-Hopfian if every endomorphism ϕ such that ϕ(Γ) is a
normal subgroup with (finite) cyclic quotient Γ/ϕ(Γ) is an automor-
phism. Next, we say that Γ satisfies the volume condition if isomorphic
subgroups of finite index necessarily have the same index. Finally, we
say that Γ satisfies the rank condition if any proper subgroup of finite
index requires strictly more generators that Γ does.

Only a little argument is needed to see that if Γ is cofinitely Hopfian,
then Γ is finitely hyper-Hopfian and finitely co-Hopfian; that finitely
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hyper-Hopfian groups are Hopfian; and that groups satisfying the vol-
ume condition or the rank condition are finitely co-Hopfian. As recalled
earlier, residually finite groups are Hopfian.

A useful example to keep in mind is Z2 = Z/2Z, which is Hopfian
and co-Hopfian but not finitely hyper-Hopfian.

Non-abelian free groups of finite rank and hyperbolic surface groups
satisfy both the volume condition and the rank condition, by multi-
plicativity of the Euler characteristic, while irreducible lattices in semi-
simple Lie groups satisfy the volume condition but in general do not
satisfy the rank condition (consideration of hyperbolic 3-manifolds that
fibre over the circle is enough to prove this).

Less obviously, Reznikov [33] defined several “volume-type” invari-
ants of groups which take values in [0,∞) and are multiplicative on
passing to subgroups of finite index: if Γ0 < Γ is a subgroup of in-
dex d then the invariant of Γ0 is d times that of Γ. (These are called
multiplicative invariants in [24].) He showed that one such invariant,
the “rank volume” Vr(Γ) is strictly positive if Γ has a presentation of
deficiency greater than 1, and that Vr(Γ) ≥ Vr(Γ/H) for any H E Γ.
It follows that every group with deficiency greater than 1 satisfies the
volume condition, and that it is cofinitely Hopfian if it is Hopfian.

A more classical example of a volume-type invariant is the rational
Euler characteristic. We recall that if a group G has a subgroup H of
finite index that has a compact classifying space K(H, 1), then the ra-
tional Euler characteristic χvirt(Γ) := [G : H ]−1χ(H) is well defined and
multiplicative. Borel and Serre [5] proved that lattices in semisimple
Lie groups have a well-defined rational Euler characteristic.

Thinking of the rational Euler characteristic in topological terms,
one sees that it is an example of a volume-type invariant that arises in
the following way: one has a class of spaces (or orbispaces) on which an
invariant is defined; each space is defined uniquely up to some notion of
equivalence (e.g. homotopy equivalence or homeomorphism) by its fun-
damental group, and the invariant is constant on equivalence classes;
the class is closed under passage to finite-sheeted covers and the invari-
ant multiplies by the index on passage to a finite-sheeted cover. If a
group G is torsion-free, residually finite and is the fundamental group
of a space in the class that has non-zero invariant, then G is cofinitely
Hopfian.

Gromov’s simplicial volume [18] fulfills these conditions in classes
of manifolds that are determined up to homeomorphism by their fun-
damental group. Classes of manifolds satisfying this condition and for
which this volume is positive include compact locally-symmetric spaces
of non-compact type and of dimension 6= 4 [13, 25]. Löh and Sauer’s
notion of Lipschitz simplicial volume is a useful variant on Gromov’s
definition: this is non-zero in interesting cases where the simplicial
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volume vanishes, for example certain of the non-compact locally sym-
metric spaces that arise in the context of our Proposition 4.2. In partic-
ular, Theorem 1.5 and Corollary 1.6 of [26] imply that the fundamental
group of any locally symmetric space of non-compact type is cofinitely
Hopfian.

6. Free-by-cyclic groups

Finitely presented free-by-cyclic groups have received a great deal of
attention in recent years in part because they form a rich context in
which to draw out distinctions between the different notions of non-
positive curvature in group theory (cf. [6]). In this section we shall
determine which of these groups are cofinitely Hopfian.
Notation: In what follows we let Γ′, ZΓ and cd(Γ) denote the commu-
tator subgroup, centre and cohomological dimension, respectively, of
the group Γ. Let Fr denote the free group of rank r.

We need the following two lemmas.

Lemma 6.1. Let Γ = Fr ⋊ Z and suppose that ϕ : Γ → Γ is an
endomorphism such that N = ϕ(Γ) is normal in Γ and Γ/N ∼= Z.
Then, either Γ ∼= Fr × Z or Γ ∼= Z ⋊−1 Z.

Proof. The non-trivial assertion in the lemma concerns the case r ≥ 2.
Thus we assume that r ≥ 2 and that Γ has no decomposition Fρ ⋊ Z

with ρ < r.
The group Γ is coherent [14], and so the finitely generated subgroup

N is finitely presentable, and cd(N) ≤ cd(Γ) = 2. Therefore cd(N) =
cd(Γ)−cd(Z) = 1, by Theorem 5.6 of [4]. Hence N is also free, of finite
rank s, say. Clearly s ≥ r, by minimality of r.

Let p : Γ → Z be an epimorphism with kernel F ∼= Fr. The image
of F in N is a finitely generated normal subgroup. Therefore either
ϕ(F ) = 1 or ϕ(F ) has finite index in N . If ϕ(F ) = 1 then N is cyclic,
contrary to the hypothesis r > 1. Hence [N : ϕ(F )] is finite, and
so ϕ(F ) is free of finite rank t, say. Now χ(ϕ(F )) = 1 − t = [N :
ϕ(F )]χ(N) = [N : ϕ(F )](1 − s) 6= 0, and t ≤ r ≤ s, since ϕ(F ) is
a quotient of F . Hence ϕ(F ) = N and t = s, so s = r. Therefore
ϕ|F : F → N is an isomorphism, by the Hopficity of Fr. Let q =
(ϕ|F )

−1 ◦ ϕ : Γ → F . Then (q, p) : Γ → F × Z is an isomorphism. �

The groups Γ ∼= Fr × Z and Γ ∼= Z ⋊−1 Z are residually finite but
are not finitely hyper-Hopfian.

Lemma 6.2. If θ ∈ Out(Fr) has infinite order, then the set of integers
{n | ∃ψ with ψn = θ} is finite.

Proof. This is an immediate consequence of a theorem of Emina Al-
ibegović [1]. Her result is cast in the language of translation lengths.
Recall that the translation length τ(g) of an element g in a group G
with finite generating set A is defined to be limm d(1, g

m)/m, where d
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is the word metric associated to A. Since τ(gn) = |n|τ(g) for all n ∈ Z,
the lemma would be proved if we knew that there was a positive con-
stant ǫr > 0 such that τ(θ) > ǫr for all θ ∈ Out(Fr) of infinite order.
And this is exactly what Alibegović proves. �

Theorem 6.3. Let Γ = Fr ⋊θ Z. Then the following are equivalent:

(1) Γ is cofinitely Hopfian;
(2) Γ is finitely co-Hopfian;
(3) Γ is hyper-Hopfian;
(4) Γ is finitely hyper-Hopfian.
(5) Γ has trivial centre.

Proof. The theorem is obvious if r = 1, so we assume that r ≥ 2 is
minimal among the ranks of all free normal subgroups of Γ with cyclic
quotient.

The implications (1) ⇒ (2), (1) ⇒ (4) and (3) ⇒ (4) are clear,
while (2) ⇒ (1) follows from Lemma 4.1, since Γ is finitely generated,
residually finite and torsion free. The implication (4) ⇒ (3) follows
from Lemma 6.1, since neither Γ ∼= Fr × Z nor Γ ∼= Z ⋊−1 Z is finitely
hyper-Hopfian.

Let [θ] be the image of θ in Out(Fr) and note that ZΓ = 1 if and only
if [θ] has infinite order. Suppose that [θ]d = 1 for some finite d > 0. If
s ≡ 1 mod d, then [θs] = [θ], and so Γ ∼= Fr⋊θs Z, which is isomorphic
to a normal subgroup of index s in Γ, with quotient Z/sZ. Thus π is
not finitely hyper-Hopfian, and so (4) ⇒ (5).

We shall show that (4) ⇒ (2) in the course of showing that (5) ⇒ (2).
Suppose that ϕ is an injective endomorphism of Γ = Fr ⋊θ Z with
image N of finite index d. Let M = ϕ(Fr). Let Γτ < Γ be the
preimage of the torsion subgroup of Γab = Γ/Γ′. Then Γ′ ≤ Γτ and
Γ/Γτ ∼= Zβ. The image of N/N τ ∼= Zβ in Γ/Γτ has finite index, since
[Γ : N ] < ∞. Therefore there is an epimorphism g : Γ → Z such
that M = N ∩ ker (g). In particular, M has finite index in ker (g).
Hence M = ker (g), by minimality of r, and so N is normal in Γ and
Γ/N ∼= Z/dZ. Thus (4) ⇒ (2), and we have proved that the first four
conditions are equivalent.

Continuing with the notation of the previous paragraph, we have
Γ/M ∼= Z. Fix t ∈ Γ such that g(t) generates G/M . Conjugation by
t induces an automorphism ψ ∈ Aut(M). Then N is generated by M
and td and ϕ induces an isomorphism from Γ = Fr⋊θZ toN =M⋊ψdZ

that is compatible with the given semidirect product decompositions.
It follows that the image of φ is conjugate to the image of ψd in Out(Fr).
By considering iterates of ϕ, we conclude that the image of θ has a dn-
root in Out(Fr) for all positive integers n. By Lemma 6.2, it follows
that θ has finite order. Thus (5) ⇒ (2). This completes the proof. �

If Γ/Γτ ∼= Z then the preceding proof can be simplified. First, the
implication (4) ⇒ (1) follows from the observation that if Γ = N ⋊θ Z
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where N is cofinitely Hopfian and ϕ : Γ → Γ is an endomorphism with
image of finite index and ϕ(N) ≤ N , then ϕ is a monomorphism onto a
normal subgroup and Γ/ϕ(Γ) is finite cyclic. And in proving (5) ⇒ (2)
one does not need Lemma 6.2.

Remark 6.4. The conditions listed in the preceding theorem do not
imply that Γ is co-Hopfian. For instance, if K is a composite of fibred
knots or is an algebraic knot other than a torus knot and Γ is the
fundamental group of S3 r K, then Γ/Γ′ ∼= Z, Γ′ is free and ZΓ = 1
but Γ is not co-Hopfian [17].

Let G = F∗θ be an ascending HNN extension, where F = Fr for
some r > 1 and θ : F → F is a monomorphism with image a proper
subgroup. Then G has trivial centre and is Hopfian [16]. Is it cofinitely
Hopfian? Lemma 6.1 may be adapted to exclude such groups, while
the implications (1) ⇔ (2), (1) ⇒ (4) and (3) ⇒ (4) of Theorem 6.3
hold. Does (4) ⇒ (2)? (If r = 1 then G is a solvable Baumslag-Solitar
group, which is not finitely hyper-Hopfian.)

7. 3-Manifolds and Knot groups

LetM be a compact orientable 3-manifold and let π = π1(M). Then
M is Haken, hyperbolic or Seifert fibred, as a consequence of Thurston’s
Geometrisation Conjecture, now proven by Perelman. In each case π
is residually-finite and hence Hopfian [21, 42]. If M is closed then π is
co-Hopfian if and only if M is irreducible and has no finite cover which
is a direct product of a (closed) surface with S1 or a torus bundle over
S1 [46]. If M is irreducible and has nonempty toral boundary then π
is co-Hopfian if and only if it is not Z2 and no non-trivial Seifert fibred
piece of the JSJ decomposition of M meets ∂M , by Theorem 2.5 of
[17]. The group π satisfies the volume condition (as defined in Section
5 above) if and only if it is either a proper free product other than
Z/2∗Z/2 or ifM is irreducible and has no finite cover which is a direct
product of a surface with S1 or a torus bundle over S1 [46, 47].

From these results we see: if K is a knot in S3, then the knot group
πK is Hopfian; it is co-Hopfian if and only if K is not a torus knot,
cable knot or composite knot; and it satisfies the volume condition
(and is finitely co-Hopfian) if and only if K is not a torus knot. (See
Corollaries 2.6 and 7.5 of [17], [47] and subsection 7.1 below.) The
following theorem provides the complementary classification for the
cofinite Hopf property.

We note also the following standard facts from knot theory. Let K
be a knot with group π = πK . Then the abelianization π/π′ is infinite
cyclic. If K is non-trivial then the image of the fundamental group of
a Seifert surface of minimal genus is a non-abelian free subgroup of π.
In particular, the group of a fibred knot is free-by-cyclic. Torus knots
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are fibred and their groups have infinite cyclic centres. (See [34], for
example.)

Theorem 7.1. Let K be a knot in S3. The knot group πK is cofinitely
Hopfian if and only if K is not a torus knot.

Proof. If K is a torus knot then π′

K is a finitely generated free group
and ZπK 6= 1. Therefore πK is not cofinitely Hopfian, by Theorem 6.3.
(A more explicit proof is given below.)

Conversely, if K is not a torus knot then πK is finitely co-Hopfian
[17]. Since πK is finitely generated, residually finite and torsion free
Lemma 4.1 then implies that πK is cofinitely Hopfian. �

We recover the following result of [39].

Corollary 7.2. Let K be a knot in S3. Then πK is hyper-Hopfian if
and only if K is not a torus knot.

Proof. Let π = πK and assume that K is not a torus knot. Then K is
non-trivial and π is non-abelian. Let ϕ : π → π be an endomorphism
with ϕ(π) a normal subgroup of π and π/ϕ(π) cyclic. Then π′ ≤ ϕ(π),
since knot groups have abelianization Z. If ϕ(π) = π′, then π′ is
finitely generated. But then K is fibred and so π′ is free [41]. Since
π and ϕ(π) have cyclic abelianization this is only possible if π ∼= Z,
which is contrary to our assumption. Therefore π/ϕ(π) is finite, and
so ϕ is an automorphism by Theorem 7.1. �

The complement of any knot in S3 is aspherical [31] and hence is
determined up to homotopy equivalence by its fundamental group. But,
famously, the fundamental group does not determine the knot exterior
up to homeomorphism. For example, the granny knot (the sum of two
copies of the left hand trefoil knot) and the reef knot (the sum of a
trefoil knot and its reflection) have the same group, but their exteriors
are not homeomorphic. On the other hand, Waldhausen [45] proved
that any homotopy equivalence of knot complements that preserves the
peripheral structure is homotopic to a homeomorphism. More precisely,
he shows that ifX is the complement of an open regular neighbourhood
of a knot K, then any homotopy equivalence of the pair (X, ∂X) is
homotopic to a homeomorphism (and it is easy to extend this to the
whole of S3 rK).

Theorem 7.3. Let K be a knot that is not a torus knot and let f
be a proper open self-map of the knot complement S3 rK. Then f is
homotopic to a homeomorphism.

Proof. Since f is proper and open and S3 rK is connected, f is sur-
jective. Therefore n = [πK : f∗(πK)] is finite, by Proposition 2.1. Since
K is not a torus knot, Theorem 7.1 tells us that f∗ is an isomorphism.
And since knot complements are aspherical, it follows that f is a homo-
topy equivalence. By the work of Waldhausen quoted above, we will
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be done provided that we can argue that f preserves the peripheral
structure of the knot. For the benefit of readers who are not specialists
in 3-manifold theory, we explain why this is true with a proof that has
a group-theoretic flavour.

Let N ∼= S1 × D2 be a closed regular neighbourhood of K, where D

is the open unit disc in R2. Let rD be the disc of radius r ∈ (0, 1], let
rN be the corresponding neighourhood of K and let Ur = rN r K.
The closure X of S3 r N is a compact manifold with boundary ∂X a
torus, and X →֒ S3 r K is a homotopy equivalence. Adjusting f by
a homotopy if necessary, we may assume that f(X) ⊆ X . Moreover,
since f is proper, we may assume that it maps each Ur inside a suitable
Ur′ (since the sets Ur form a cofinal system of closed neighbourhoods
of the single end of the noncompact 3-manifold S3 r K). Therefore,
adjusting by a radial projection, we can arrange that f(∂X) ⊂ ∂X .
We fix a basepoint x0 ∈ ∂X and homotope f so that f(x0) = x0.

Since K is non-trivial, π1(∂X, x0) → πK = π1(S
3rK, x0) is injective

(cf. [31]); let P denote its image. We will be done if we can prove that
f |∂X induces an isomorphism P → P .

Since f∗ is injective, f−1
∗

(P ) ∼= Z2, so if f∗(P ) were not the whole of
P then there would be elements of πKrP that commuted with P . But
then Γ = πK∗PπK would contain a copy of Z3, and Γ is the fundamental
group of the closed, aspherical 3-manifold Y obtained by doubling X
along its boundary. Since infinite coverings of 3-manifolds collapse to
2-complexes, Z3 cannot be the fundamental group of an infinite-sheeted
covering of Y , so π1(Y ) would be virtually abelian. But this is absurd,
since π1(Y ) contains πK and non-trivial knot groups have non-abelian
free subgroups. This contradiction completes the proof. �

Corollary 7.4. Let K be a knot and let f : S3 → S3 be an open
mapping of finite degree not equal to 1 such that f−1(K) = K. Then
K is a torus knot.

Proof. The map f is surjective, since it is open and S3 is compact.
Therefore f(K) = K and the restriction f : S3 r K → S3 r K is
proper, open and surjective. Since the degree of f is not 1, f cannot
be homotopic to a homeomorphism. Thus Theorem 7.3 implies K is a
torus knot. �

A map is said to be discrete if the preimage of each point in the
target is a discrete set.

Corollary 7.5. Let K be a non-torus knot and let f : S3 → S3 be a
discrete open mapping such that f−1(K) = K. Then f is a homeomor-
phism.

Proof. A discrete open mapping homotopic to a homeomorphism is a
homeomorphism – see [8, 43]. �
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Notice, with regard to the context of [7], that the above corollary im-
plies that the branch set of a quasiregular map cannot be a completely
invariant non-torus knot. The assumption here that the mapping is
discrete (as opposed to light) is necessary due to the counterexamples
constructed in [48].

7.1. Torus knots are not cofinitely Hopfian. The fundamental
group of a torus knot has the form

Γm,n = 〈a, b | an = bm〉.

The centre of such a group is infinite cyclic, generated by z := an = bm.
Let Q ∼= (Z/n) ∗ (Z/m) be the quotient by the centre.

We consider maps ϕ : Γm,n → Γm,n of the form

ϕ(a) = azp and ϕ(b) = bzq.

This formula defines a homomorphism if and only if ϕ(an) = ϕ(bm),
that is, np = mq (which we write as r− 1). The image of ϕ is of finite
index because it maps onto Q and intersects Z = 〈z〉 non-trivially. The
normal form theorem for amalgamated free products shows that ϕ is
injective. Since no commutators lie in the kernel, ϕ−1(Z) = Z. And
since ϕ(z) = ϕ(an) = zr, we see that ϕ is not onto unless p = q = 0.
Thus we have proved:

Proposition 7.6. If Γm,n = 〈a, b | an = bm〉 and r is an integer, with
r ≡ 1 mod n and r ≡ 1 mod m, then [ϕ(a) := ar, ϕ(b) := br] defines
a monomorphism ϕ : Γm,n → Γm,n whose image has finite index. But
ϕ is onto only if r = ±1.
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