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ABSTRACT. LetHn be a (degenerate or non-degenerate) Hecke algebra of typeG(ℓ, 1, n),
defined over a commutative ringR with one, and letS(µ) be a Specht module forHn.
This paper shows that the induced Specht moduleS(µ)⊗Hn

Hn+1 has an explicit Specht
filtration.

1. INTRODUCTION

The Ariki-Koike algebras, and their rational degenerations, are interesting algebras
which appear naturally in the representation theory of affine Hecke algebras, quantum
groups, symmetric groups and general linear groups; see [14,18] for details. They include
as special cases the group algebras of the Coxeter groups of typeA (the symmetric groups)
and the Coxeter groups of typeB (the hyperoctahedral groups).

Let Hn be an Ariki-Koike algebra, or a degenerate cyclotomic Heckealgebra, of type
G(ℓ, 1, n), for integersℓ, n ≥ 1. For each multipartitionµ of n there is aSpecht module
S(µ), which is a rightHn-module. (All of the undefined terms and notation, here and
below, can be found in section 2.) WhenHn is semisimple the Specht modules give a
complete set of pairwise non-isomorphic irreducibleHn-modules asµ runs through the
multipartitions ofn. In general, the Specht modules are not irreducible howeverevery
irreducibleHn-module arises, in a unique way, as the simple head of some Specht module.

The Hecke algebraHn embeds intoHn+1 so there are natural induction and restric-
tion functors,Ind andRes, between the categories of finite dimensionalHn-modules and
Hn±1-modules. By [2, Proposition 1.9], in the Ariki-Koike case the restrictionof the
Specht moduleS(µ) to Hn−1 has a Specht filtration of the form

0 = R0 ⊂ R1 ⊂ · · · ⊂ Rr = Res S(µ),

such thatRj/Rj−1
∼= S(µ − ρj), whereρ1 > ρ2 > · · · > ρr are the removable nodes

of µ. Consequently, ifHn+1 is semisimple then by Frobenius reciprocity

IndS(µ) ∼= S(µ ∪ α1) ⊕ · · · ⊕ S(µ ∪ αa),

whereα1, . . . , αa are the addable nodes ofµ. This note generalizes this result to the case
whenHn is not necessarily semisimple. More precisely, we prove thefollowing:

Main Theorem. Suppose thatHn is an Ariki-Koike algebra or a degenerate cyclotomic
Hecke algebra of typeG(ℓ, 1, n) and letµ be a multipartition ofn. Then, as anHn+1-
module, the induced moduleIndS(µ) has a filtration

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ia = IndS(µ),
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such thatIj/Ij−1
∼= S(µ ∪ αj), whereα1 > α2 > · · · > αa are the addable nodes ofµ.

This result is part of the folklore for the representation theory of these algebras, however,
we have been unable to find a proof of it in the literature whenℓ > 1. If ℓ = 1 then our
Main Theorem is an old result of James [12, §17] in the degenerate case (that is, for the
symmetric group), and it can be deduced from [9, Theorem 7.4] in the non-degenerate case
(the Hecke algebra of the symmetric group). We prove our MainTheorem by giving an
explicit construction ofIndS(λ); see Corollary(3.7). Our argument is similar in spirit to
that originally used by James [12] for the symmetric groups in that we identify the induced
module as a quotient of the corresponding permutation module. Our approach, which
uses cellular basis techniques, gives an explicit Specht filtration of the induced module; in
contrast, James’ approach is recursive.

Suppose now thatHn is defined over a field of characteristicp ≥ 0, or a suitable
discrete valuation ring. Then by projecting onto the blocksof Hn the induction functor
Ind can be decomposed as a direct sum of subfunctors

Ind =
⊕

i∈I

i-Ind,

whereI = Z/pZ, in the degenerate case, andI = { qaQs | a ∈ Z and1 ≤ s ≤ r } in the
non-degenerate case. (If the parametersQ1, . . . , Qr are all non-zero then, up to Morita
equivalence, it is enough to consider the cases whereQ1, . . . , Qr are all powers ofq by
the main result of [11]. In this case we can takeI = Z/eZ wheree is the smallest positive
integer such that1 + q + · · · + qe−1 = 0.) The functori-Ind is a natural generalization of
Robinson’si-induction functor; see [2, 1.11] and [14, §8] for the precise definitions.

(1.1). Corollary. Suppose thatµ is a multipartition ofn andi ∈ I. Theni-IndS(µ) has
a filtration

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ib = i-IndS(µ),

such thatIj/Ij−1
∼= S(µ∪αj), whereα1 > α2 > · · · > αb are the addablei-nodes ofµ.

Proof. By [15] and [4], the Specht modulesS(µ∪α) andS(µ∪ β) are in the same block
if and only if α andβ have the same residue. By the Main Theorem and the definition of
the functori-Ind, the Specht moduleS(µ ∪ α) is a subquotient ofi-IndS(µ) if and only
if α is ani-node (cf. [2, Cor. 1.12]). This implies the result. ¤

Recently Brundan and Kleshchev [5] have shown thatHn is naturallyZ-graded and
Brundan, Kleshchev and Wang [8] have shown thatS(µ) admits a natural grading. There
should be a graded analogue of our induction theorem; see [8, Remark 4.12] for a precise
conjecture. Unfortunately, the arguments of this paper do not automatically lift to the
graded setting because it is not clear how to use our results to find a homogeneous basis of
the induced module.

2. ARIKI -KOIKE ALGEBRAS

In order to make this note self-contained, this section quickly recalls the definitions
and results that we need from the literature and, at the same time, sets our notation. We
concentrate on the non-degenerate case as the degenerate case follows in exactly the same
way, with only minor changes of notation, using the results of [3, §6]. See the remarks at
the end of this section for more details.

Throughout this note we fix positive integersℓ andn and letSn be the symmetric group
of degreen. For1 ≤ i < n let si = (i, i + 1) ∈ Sn. Thens1, . . . , sn−1 are the standard
Coxeter generators ofSn.
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Let R be a commutative ring with1 and letq,Q1, . . . , Qℓ be elements ofR with q
invertible. The Ariki–Koike algebraHn = HR,ℓ,n(q,Q1, . . . , Qℓ) is the associative unital
R–algebra with generatorsT0, T1, . . . , Tn−1 and relations

(T0 − Q1) . . . (T0 − Qℓ) = 0,
(Ti − q)(Ti + 1) = 0, for 1 ≤ i ≤ n − 1,

T0T1T0T1 = T1T0T1T0,
Ti+1TiTi+1 = TiTi+1Ti, for 1 ≤ i ≤ n − 2,

TiTj = TjTi, for 0 ≤ i < j − 1 ≤ n − 2.

Using the relations it follows that there is a unique anti-isomorphism∗ : Hn −→Hn such
thatT ∗

i = Ti, for 0 ≤ i < n.
Ariki and Koike [1, Theorem 3.10] showed thatHn is free as anR-module with

basis{La1
1 . . . Lan

n Tw | 0 ≤ a1, . . . , an < ℓ andw ∈ Sn } whereL1 = T0 andLi+1 =
q−1TiLiTi for i = 1, . . . , n−1, andTw = Ti1 . . . Tik

if w = si1 . . . sik
∈ Sn is a reduced

expression (that is,k is minimal).
The Ariki-Koike basis theorem implies that there is a natural embedding ofHn in Hn+1

and thatHn+1 is free as anHn-module of rankℓ(n + 1). If M is anHn-module let

IndM = M ⊗Hn
Hn+1

be the corresponding inducedHn+1-module. Note that induction is an exact functor since
Hn+1 is free as anHn-module.

We will need to the following easily proved property of the basis elements [10, 2.1].

(2.1). Suppose that1 ≤ k ≤ n, a ∈ R andw ∈ Sk × Sn−k. Then

(L1 − a) . . . (Lk − a)Tw = Tw(L1 − a) . . . (Lk − a).

The algebraHn has another basis which is crucial to this note. In order to describe it
recall that a partition ofn is a weakly decreasing sequenceλ = (λ1 ≥ λ2 ≥ . . . ) of non-
negative integers such that|λ| =

∑

i λi = n. A multipartition , or ℓ-partition, ofn is an
orderedℓ-tupleλ = (λ(1), . . . , λ(ℓ)) of partitions such that|λ| = |λ(1)|+ · · ·+ |λ(ℓ)| = n.
Let Λ+

ℓ,n be the set of multipartitions ofn. If λ,µ ∈ Λ+
ℓ,n thenλ dominatesµ, and we

write λ D µ, if
s−1
∑

t=1

|λ(t)| +

k
∑

i=1

λ
(s)
i ≥

s−1
∑

t=1

|µ(t)| +

k
∑

i=1

µ
(s)
i ,

for 1 ≤ s ≤ ℓ and for allk ≥ 1. Dominance is a partial order onΛ+
ℓ,n.

If λ is a multipartition letSλ = Sλ(1) × · · · × Sλ(ℓ) be the corresponding parabolic
subgroup ofSn and setaλ

s =
∑s−1

t=1 |λ(t)|, for 1 ≤ s ≤ ℓ, and putaλ
ℓ+1 = n − 1. Define

mλ = u+
λxλ where

u+
λ =

ℓ
∏

s=2

aλ
s

∏

k=1

(Lk − Qs) and xλ =
∑

w∈Sλ

Tw.

Thenu+
λxλ = mλ = xλu+

λ by (2.1).
Let λ be a multipartition (ofn). Thediagram of λ is the set of nodes

[λ] = { (r, c, s) | 1 ≤ λ(s)
r ≤ c and1 ≤ s ≤ ℓ } .

More generally anode is any element ofN × N × {1, . . . , ℓ}, which we consider as a
partially ordered set where(r, c, s) ≥ (r′, c′, s′) if eithers > s′, or s = s′ andr < r′. For
the sake of Corollary(1.1)only, define theresidueof the node(r, c, s) to beqc−rQs.
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An addable node ofλ is any nodeα /∈ [λ] such that[λ] ∪ {α} is the diagram of
some multipartition. Letλ ∪ α be the multipartition such that[λ ∪ α] = [λ] ∪ {α}.
Similarly, aremovablenode ofλ is a nodeρ ∈ [λ] such that[λ]−{ρ} is the diagram of a
multipartition; letλ − ρ be this multipartition. Note that the set of addable and removable
nodes forλ are both totally ordered by>.

If X is a set then anX-valuedλ-tableau is a functionT : [λ]−→X. If T is aλ-tableau
then we writeShape(T) = λ. For convenience we identifyT = (T(1), . . . ,T(ℓ)) with a
labeling of the diagram[λ] by elements ofX in the obvious way. Thus, we can talk of the
rows, columns and components ofT.

A standard λ-tableau is a mapt : [λ]−→{1, 2, . . . , n} such that fors = 1, . . . , ℓ the
entries in each row oft(s) increase from left to right and the entries in each column oft

(s)

increase from top to bottom. LetT Std(λ) be the set of standardλ-tableaux.
Let t

λ be the standardλ-tableau such that the entries intλ increase from left to right
along the rows oftλ

(1)

, . . . , tλ
(ℓ)

in order. If t is a standardλ-tableau letd(t) ∈ Sn be the
unique permutation such thatt = t

λd(t). Definemst = T ∗
d(s)mλTd(t), for s, t ∈ T Std(λ).

By [10, Theorem 3.26], the set

{mst | s, t ∈ T Std(λ) andλ ∈ Λ+
ℓ,n }

is a cellular basis ofHn. Consequently, ifHn(λ) is theR-module spanned by

{mst | s, t ∈ T Std(µ) for someµ ∈ Λ+
ℓ,n with µ ⊲ λ } ,

thenHn(λ) is a two-sided ideal ofHn.
TheSpecht moduleS(λ) is the submodule ofHn/Hn(λ) generated bymλ +Hn(λ).

It follows from the general theory of cellular algebras thatS(λ) is free as anR-module
with basis{mt | t ∈ T Std(λ) }, wheremt = mtµt + Hn(λ) for t ∈ T Std(λ).

Let M be anHn-module. ThenM has aSpecht filtration if there exists a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mk = M

and multipartitionsλ1, . . . ,λk such thatMi/Mi−1
∼= S(λi), for i = 1, . . . , k.

For each multipartitionµ ∈ Λ+
ℓ,n letM(µ) = mµHn. The final result that we will need

gives an explicit Specht filtration ofM(µ). The proof of our Main Theorem is inspired by
this filtration.

Given two tuples(i, s) and(j, t) write (i, s) ¹ (j, t) if eithers < t, or s = t andi ≤ j.

(2.2). Definition ( [10, Definition 4.4]). Suppose thatλ,µ ∈ Λ+
ℓ,n and letT : [λ] −→

N × {1, 2, . . . , ℓ} be aλ-tableau. Then:

a) T is a tableau oftype µ if µ
(s)
i = # {x ∈ [λ] | T(x) = (i, s) }, for all i ≥ 1

and1 ≤ s ≤ ℓ.
b) T is semistandard if the entries in each componentT(s), for 1 ≤ s ≤ ℓ, of T are:

i) weakly increasing from left to right along each row (with respect to¹);
ii) strictly increasing from top to bottom down columns; and,

iii) (j, t) appears inT(s) only if t ≥ s.
LetT SStd

µ (λ) be the set of semistandardλ–tableau of typeµ and letT SStd
µ (Λ+

ℓ,n) =
⋃

λ∈Λ+
ℓ,n

T SStd
µ (λ) be the set of all semistandard tableaux of typeµ.

Let t be a standardλ–tableau. Defineµ(t) to be the tableau obtained fromt by replacing
each entryj in t with (i, s) if j appears in rowi of t

µ(s)

. The tableauµ(t) is aλ–tableau
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of typeµ; it is not necessarily semistandard. Finally, ifS ∈ T SStd
µ (λ) andt ∈ T Std(λ) set

mSt =
∑

s∈T
Std(λ)

µ(s)=S

mst.

(2.3) ( [10, Theorem 4.14 and Corollary 4.15]). Suppose thatλ,µ ∈ Λ+
ℓ,n. Then:

a) M(µ) is free as anR–module with basis

{mSt | S ∈ T SStd
µ (λ), t ∈ T Std(λ) for someλ ∈ Λ+

ℓ,n } .

b) Suppose thatT SStd
µ (Λ+

ℓ,n) = {S1, . . . ,Sm} ordered so thati ≤ j wheneverλi D λj ,
whereλi = Shape(Si). Let Mi be theR-submodule ofM(µ) spanned by the
elements{mSjt | j ≤ i and ∈ T Std(λj) }, Then

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M(µ)

is anHn-module filtration ofM(µ) andMi/Mi−1
∼= S(λi), for 1 ≤ i ≤ m.

(2.4). Remark. Very few changes need to be made to the results above in the degenerate
case. The analogue of the cellular basis{mst} in the degenerate case is constructed in [3,
§6]. Using this basis of the degenerate Hecke algebra, the construction of the Specht filtra-
tion of the idealsM(µ) follows easily using the arguments of [10, §4]; cf. [7, Cor. 6.13].
The arguments in the next section, modulo minor differencesin the meaning of the sym-
bols, applies to both the degenerate and non-degenerate cases.

3. INDUCING SPECHT MODULES

We are now ready to start proving the Main Theorem. Fix a multipartitionµ ∈ Λ+
ℓ,n.

As in (2.3)we letT SStd
µ (Λ+

ℓ,n) = {S1, . . . ,Sm} be the set of semistandard tableau of type
µ ordered so thati ≤ j wheneverλi D λj , whereλi = Shape(Si) for 1 ≤ i ≤ m. So, in
particular,Sm = Tµ = µ(tµ) is the unique semistandardµ-tableaux of typeµ.

Throughout this section we freely identifyHn with its image under the natural embed-
ding Hn →֒ Hn+1. In particular, we will think of the basis elementmst as an element
of Hn+1, for standardλ-tableauxs, t ∈ T Std(λ) with λ ∈ Λ+

ℓ,n. This embedding also
identifiesIndM(µ) with a submodule ofHn+1.

The following simple Lemma contains the idea which drives our proof.

(3.1). Lemma. Suppose thatµ is a multipartition ofn and letω be the lowest addable
node ofµ (that is,α ≥ ω wheneverα is an addable node ofµ). Then :

a) IndM(µ) = M(µ ∪ ω).
b) The induced moduleIndM(µ) has a filtration

0 = N0 ⊂ N1 · · · ⊂ Nm = IndM(µ)

such thatNi/Ni−1
∼= IndS(λi), whereλi = Shape(Si) for 1 ≤ i ≤ m.

Proof. By definition,mµ = mµ∪ω using the embeddingHn →֒ Hn+1. Therefore,

IndM(µ) = mµHn ⊗Hn
Hn+1 = mµHn+1 = mµ∪ωHn+1 = M(µ ∪ ω),

proving (a). As induction is exact, part (b) follows from part (a) and(2.3)(b). ¤

If µ = ((n), (0), . . . , (0)) thenS(µ) = M(µ). The Main Theorem in this special case
is just part (b) of the Lemma. To prove the theorem whenµ 6= ((n), (0), . . . , (0)) we
explicitly describe the filtration ofIndM(µ) given by the Lemma in terms of the basis of
M(µ ∪ ω) from (2.3).
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Let ω be the lowest addable node ofµ. Thenω = (z, 1, ℓ), wherez ≥ 1 is minimal
such that(z, 1, ℓ) /∈ [µ]. Suppose thatS ∈ T SStd

µ (λ), for someλ ∈ Λ+
ℓ,n, and thatβ is an

addable node ofλ. Let S ∪ β be the semistandard(λ ∪ β)-tableau given by

(S ∪ β)(η) =

{

S(η), if η ∈ [λ],

(z, ℓ), if η = β.

ThusS ∪ β is the semistandard(λ ∪ β)-tableau of typeµ ∪ ω obtained by adding the
nodeβ to S with label(z, ℓ). LetT SStd

µ∪ω(S) be the set of semistandard tableau of typeµ∪ω
obtained in this way fromS asβ runs over the addable nodes ofλ. It is easy to see that
every semistandard tableau of typeµ ∪ ω arises uniquely in this way, so

(3.2) T SStd
µ∪ω(Λ+

ℓ,n+1) =
∐

S∈T SStd
µ (Λ+

ℓ,n
)

T SStd
µ∪ω(S).

Armed with this notation, observe that ifS ∈ T SStd
µ (λ) thenmStλ = m(S∪β)tλ∪β , as an

element ofHn+1, whereβ is the lowest addable node ofλ.
Suppose that1 ≤ a ≤ b < n. LetSa,b be the symmetric group on{a, a+1, . . . , b} and

setsb,a = (b, b + 1) . . . (a, a + 1) ∈ Sn andTb,a = Tsb,a
= Tb . . . Ta. For convenience,

we setTb,a = 1 if b < a. The following useful identity is surely known.

(3.3). Lemma. Suppose that1 ≤ a < b ≤ n. Then
(

∑

w∈Sa,b

Tw

)

Tb,a = Tb,a

(

∑

v∈Sa+1,b+1

Tv

)

.

Proof. It is easy to check thatSa,bsb,a = sb,aSa+1,b+1 and thatsb,a is a distinguished
(Sa,b,Sa+1,b+1)-double coset representative (in the sense of [16, Prop. 4.4], for example).
Therefore, ifw ∈ Sa,b andv = sb,awsb,a ∈ Sa+1,b+1 thenTwTb,a = Twsb,a

= Tsb,av =
Tb,aTv by [16, Prop. 3.3]. This implies the Lemma. ¤

(3.4). Lemma. Suppose thatλ ∈ Λ+
ℓ,n andν = λ ∪ β, whereβ = (r, c, e) is an addable

node ofλ. ThenTn−1,a+1mν ∈ mλHn+1, wherea = aλ
1 + · · ·+ aλ

e + λ
(e)
1 + · · ·+ λ

(e)
r .

Proof. Let Dd,a = 1 + Ta + Ta,a−1 + · · · + Ta,d, whered = a − λ
(e)
r + 1. ThenDd,a

is the sum of distinguished right coset representatives forSd,a in Sd,a+1. Therefore,
xλTn−1,a+1Dd,a = Tn−1,a+1xν by Lemma(3.3). On the other hand, it follows directly
from the definitions thatu+

ν = u+
λ (Laλ

ℓ
+1−Qℓ) . . . (Laλ

e+1+1−Qe+1). Therefore, writing

mλ = xλu+
λ and using(2.1)we see that

mλ

(

∏

s=ℓ,...,e+1

Taλ
s+1,aλ

s +1(Laλ
s +1 − Qs)

)

Taλ
e+1,a+1Dd,a = Tn−1,a+1mν ,

where the product on the left-hand side is read in order, fromleft to right, with decreasing
values ofs. (Recall that, for convenience,aλ

ℓ+1 = n − 1 andTn−1,n = 1.) ¤

Let ≤ be the Bruhat order onSn; see, for example, [16, p.30]. If S is a semistandard
λ-tableau of typeµ let Ṡ be the unique standardλ-tableau such thatµ(Ṡ) = S andd(Ṡ) ≤

d(s) whenevers ∈ T Std(λ) andµ(s) = S. Such a tableau̇S exists by [13, Lemma 3.9].

(3.5). Lemma. Suppose thatS ∈ T SStd
µ (λ) and thatU ∈ T SStd

µ∪ω(S). Let ν = Shape(U).
ThenmUtν ∈ mStλHn+1.
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Proof. Definition, mStλ =
∑

s
mstλ whered(s) runs over a set of rightSµ-coset rep-

resentatives in the double cosetSλd(Ṡ)Sµ. Therefore,mStλ = hST
∗

d(Ṡ)
mλ for some

hS ∈ Hq(Sµ). (Explicitly, hS =
∑

d Td whered runs over the set of distinguished left
coset representatives ofSµ ∩ d(Ṡ)Sλd(Ṡ)−1 in Sµ.)

As in Lemma(3.4), write ν = λ ∪ β, whereβ = (r, c, e) and seta = aλ
1 + · · · +

aλ
e + λ

(e)
1 + · · · + λ

(e)
r . ThenU = S ∪ β. Therefore,d(U̇) = s−1

n−1,a+1d(Ṡ), so that
mUtν = hT ∗

d(Ṡ)
Tn−1,a+1mν .

Finally, Tn−1,a+1mν = mλhν,a, for somehν,a ∈ Hn+1, by Lemma(3.4). Therefore,

mUtν = hST
∗

d(Ṡ)
Tn−1,a+1mν = hST

∗

d(Ṡ)
mλhν,a = mStλhν,a ∈ mStλHn+1,

as required. ¤

We can now make the filtration of Lemma(3.1)(b) explicit. As a result we will show
that we can obtain a basis for the induced module by adding a node labeled(z, ℓ) to the
basis elements ofM(µ) in all possible ways.

(3.6). Theorem. Suppose thatµ ∈ Λ+
ℓ,n and orderT SStd

µ (Λ+
ℓ,n) = {S1, . . . ,Sm} as above,

with λi = Shape(Si). LetNi be theR-submodule ofM(µ ∪ ω) spanned by the elements

{mUv | U ∈ T SStd
µ∪ω(Sj), v ∈ T Std(Shape(U)) for 1 ≤ j ≤ i } ,

for i = 0, 1, . . . ,m. ThenNi is anHn+1-submodule ofIndM(λ) and

IndS(λi) ∼= Ni/Ni−1,

for 1 ≤ i ≤ m.

Proof. By Lemma(3.1)(a), IndM(µ) = M(µ ∪ ω) and by(3.2) the set of elements

{mUv | U ∈ T SStd
µ∪ω(Sj), v ∈ T Std(Shape(U)) for 1 ≤ j ≤ m }

is precisely the basis ofM(µ ∪ ω) given by(2.3), soM(µ ∪ ω) = Nm. Moreover, since
Hn+1(ν) is a two-sided ideal ofHn+1 for all ν ∈ Λ+

ℓ,n+1, the action ofHn+1 on the
basis{mUv} respects dominance, soNi is a submodule ofM(µ ∪ ω), for 0 ≤ i ≤ m.

Recall the filtration0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M(λ) of M(λ) given in (2.3).
By Lemma(3.1)(b), to prove the Theorem it is enough to show by induction oni that
IndMi = Ni, for 0 ≤ i < m. This is trivially true wheni = 0 so we may assume that
i > 0.

To show thatIndMi ⊆ Ni note thatmSit
λi ∈ Ni and mSit

λi + Mi−1 generates
Mi/Mi−1 as anHn-module. Therefore,IndMi ⊆ Ni by induction oni.

To prove the reverse inclusion, suppose thatU ∈ T SStd
µ∪ω(Si) and letν = Shape(U).

ThenmUtν ∈ mSit
λi Hn+1 ⊆ IndMi by Lemma(3.5). Therefore,mUv ∈ IndMi, for

anyv ∈ T Std(ν). It follows by induction thatNi ⊆ IndMi as required. ¤

For each addable nodeβ of µ let Nβ be the submodule ofM(µ ∪ ω) spanned by

{mUv | U ∈ T SStd
µ∪ω(λ), v ∈ T Std(λ) whereλ ∈ Λ+

ℓ,n+1 andλ ⊲ µ ∪ β } + Nm−1,

whereNm−1 is the submodule ofM(µ∪ω) defined in Theorem(3.6). Note, in particular,
thatNα = Nm−1.

We can now prove a more explicit version of the Main Theorem ofthis paper.
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(3.7). Corollary. Suppose thatµ is a multipartition ofn and letα1 = α > · · · > αa = ω
be the addable nodes ofµ. ThenIndS(µ) ∼= M(µ∪ω)/Nα is a freeR-module with basis

{mUv + Nα | U ∈ T SStd
µ∪ω(µ ∪ αj), v ∈ T Std(µ ∪ αj), for 1 ≤ j ≤ a } .

In particular, IndS(µ) has a filtration0 = I0 ⊂ I1 ⊂ · · · ⊂ Ia = IndS(µ) such that
Ij/Ij−1

∼= S(µ ∪ αj), for j = 1, . . . , a.

Proof. That IndS(µ) ∼= M(µ ∪ ω)/Nα is a special case of Theorem(3.6). The second
claim follows from (2.3) by settingIj = Nαj+1/Nα, for 0 ≤ j < a. To prove that
S(µ ∪ αj) ∼= Ij/Ij−1, for 1 ≤ j ≤ a, observe that the bijective map

S(µ ∪ αj) −→ Ij/Ij−1;ms 7→ m(Tµ∪αj)s + Ij−1, for s ∈ T Std(µ ∪ αj),

commutes with the action ofHn+1. (Here,Tµ = µ(tµ) is the unique semistandardµ-
tableau of typeµ.) ¤

(3.8). Remark. Maintain the notation of Theorem(3.6) and define integersai and mul-
tipartitionsλi,j by writing {λi,1 ⊲ · · · ⊲ λi,ai

} = {Shape(U) | U ∈ T SStd
µ∪ω(Si) }, for i =

1, . . . ,m. Theorem(3.6)then implies, just as in the proof of Corollary(3.7), thatM(µ∪ω)
has a Specht filtration

0 ⊂ I1,1 ⊂ · · · ⊂ I1,a1
⊂ I2,1 ⊂ · · · ⊂ Im,am

= M(µ ∪ ω),

with Ii,a/I<
i,a

∼= S(λi,a), whereIi,a is the submodule ofM(µ ∪ ω) with basis

{mUv | U ∈ T SStd
µ∪ω(λj,b), v ∈ T Std(λj,b) wherej < i, or j = i andb ≤ a }

and whereI<
i,a = Ii,a−1 if a > 1, I<

i,1 = Ii−1,ai−1
if i > 1 andI<

1,1 = 0.
Fred Goodman has pointed out that this filtration ofM(µ ∪ ω) is, in general, different

to that given by(2.3)because the order in which the Specht modules appear does nothave
to be compatible with the dominance ordering–note, however, that the Specht modules in
each ‘layer’Ni/Ni−1 are totally ordered by dominance. For example, suppose thatℓ = 1
and letµ = (32, 1) so thatµ ∪ α = (4, 3, 1) andµ ∪ ω = (32, 12). Then

U =
1 1 1 2

2 2

3 4

is a semistandardν-tableau of typeµ ∪ ω, whereν = (4, 22). (As ℓ = 1 we can label
semistandard tableaux with the integers1, . . . , n.) However,µ∪α⊲ν even thoughν 6= µ∪β
for any addable nodeβ of µ.

As induction and restriction are both exact functors the main result of this note, together
with [2, Prop. 1.9] (and the corresponding argument for the degenerate case), shows that
the full subcategory ofHn-mod which consists of modules which have a Specht filtration
is closed under induction and restriction.

(3.9). Corollary. Suppose thatM has a Specht filtration. Then the modulesRes M and
IndM both have Specht filtrations.

In [17, Theorem 3.6] and [6, Theorem 4.6] it is shown that for each multipartitionµ ∈
Λ+

ℓ,n there exists an indecomposableHn-moduleY (µ), aYoung module, such that

M(µ) ∼= Y (µ) ⊕
⊕

λ⊲µ

Y (λ)⊕cλµ

for some non-negative integerscλµ. Each Young moduleY (µ) has a Specht filtration.
Therefore, by Corollary(3.9), Res Y (µ) andIndY (µ) both have Specht filtrations.
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