A SPECHT FILTRATION OF AN INDUCED SPECHT MODULE

ANDREW MATHAS

To John Cannon and Derek Holt on the occasions of their smifibirthdays,
in recognition of their distinguished contributions to matnatics.

ABSTRACT. Let.7#, be a (degenerate or non-degenerate) Hecke algebra aftype, n),
defined over a commutative ring with one, and letS(n) be a Specht module fo#, .
This paper shows that the induced Specht modije) ® s, 1 has an explicit Specht
filtration.

1. INTRODUCTION

The Ariki-Koike algebras, and their rational degeneratioare interesting algebras
which appear naturally in the representation theory of affitecke algebras, quantum
groups, symmetric groups and general linear groups;s&&§] for details. They include
as special cases the group algebras of the Coxeter grougseot {the symmetric groups)
and the Coxeter groups of tyge (the hyperoctahedral groups).

Let 7, be an Ariki-Koike algebra, or a degenerate cyclotomic Healgebra, of type
G(¢,1,n), forintegers/,n > 1. For each multipartitions of n there is aSpecht module
S(w), which is a rights,-module. (All of the undefined terms and notation, here and
below, can be found in section 2.) Whe#,, is semisimple the Specht modules give a
complete set of pairwise non-isomorphic irreducib# -modules ag. runs through the
multipartitions ofn. In general, the Specht modules are not irreducible howevery
irreduciblesz;,-module arises, in a unique way, as the simple head of sonehSmedule.

The Hecke algebra#;, embeds into#;,. 1 so there are natural induction and restric-
tion functors,Ind andRes, between the categories of finite dimensiogg]-modules and
H;,+1-modules. By B, Proposition 1.9], in the Ariki-Koike case the restrictioh the
Specht moduleS () to 7,1 has a Specht filtration of the form

0=RyCR;yC--CR,=ResS(p),

such thatR;/R;_1 = S(p — p;), wherep; > ps > --- > p, are the removable nodes
of u. Consequently, i#7,. 1 is semisimple then by Frobenius reciprocity

IndS(p) = S(pUa)® - @ S(pUa),
whereay, .. ., a, are the addable nodes af This note generalizes this result to the case
when .7, is not necessarily semisimple. More precisely, we proveédhewing:

Main Theorem. Suppose that?;, is an Ariki-Koike algebra or a degenerate cyclotomic
Hecke algebra of typé&!(¢,1,n) and lety be a multipartition ofn. Then, as an#,, ;-
module, the induced modulad S(u) has a filtration

0=IyClC-Cl,=IndS(p),
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suchthatl;/I;_; = S(p U o), wherea; > as > --- > a, are the addable nodes pf.

This result is part of the folklore for the representatiosxdty of these algebras, however,
we have been unable to find a proof of it in the literature when 1. If ¢ = 1 then our
Main Theorem is an old result of Jamei2] §17] in the degenerate case (that is, for the
symmetric group), and it can be deduced fr@nilheorem 7.4] in the non-degenerate case
(the Hecke algebra of the symmetric group). We prove our M#&ieorem by giving an
explicit construction olnd S(A); see Corollary(3.7). Our argument is similar in spirit to
that originally used by JamesZ] for the symmetric groups in that we identify the induced
module as a quotient of the corresponding permutation neod@ur approach, which
uses cellular basis techniques, gives an explicit Spettatidn of the induced module; in
contrast, James’ approach is recursive.

Suppose now that#;, is defined over a field of characteristic > 0, or a suitable
discrete valuation ring. Then by projecting onto the blooks’;, the induction functor
Ind can be decomposed as a direct sum of subfunctors

Ind = @ i-Ind,
el

wherel = Z/pZ, in the degenerate case, ahe= { ¢"Q, | a € Zandl < s <r} in the
non-degenerate case. (If the parametgys. .., @, are all non-zero then, up to Morita
equivalence, it is enough to consider the cases whkte. ., Q, are all powers of; by
the main result of11]. In this case we can take= Z/eZ wheree is the smallest positive
integer such that 4+ ¢ + - - - + ¢°~! = 0.) The functori-Ind is a natural generalization of
Robinson’si-induction functor; see, 1.11] and 14, §8] for the precise definitions.

(1.1). Corollary. Suppose that is a multipartition ofn andé € I. Theni-Ind S(u) has
a filtration

0=IhycCclC-CI,=1iInd S(p),
suchthatl;/I;_; = S(nUa;), wherea; > o > -+ - > o are the addablé-nodes ofu.

Proof. By [15] and [4], the Specht moduleS(u U ) andS (e U 3) are in the same block

if and only if & and 3 have the same residue. By the Main Theorem and the definifion o
the functori-Ind, the Specht modul§(u U «) is a subquotient of-Ind S(g) if and only

if «is ani-node €f. [2, Cor. 1.12]). This implies the result. ]

Recently Brundan and Kleshched] have shown tha7;, is naturallyZ-graded and
Brundan, Kleshchev and Wan§] [have shown thaf(w) admits a natural grading. There
should be a graded analogue of our induction theorem;&degmark 4.12] for a precise
conjecture. Unfortunately, the arguments of this paper abbautomatically lift to the
graded setting because it is not clear how to use our resuitsct a homogeneous basis of
the induced module.

2. ARIKI-KOIKE ALGEBRAS

In order to make this note self-contained, this section lduicecalls the definitions
and results that we need from the literature and, at the simnee $ets our notation. We
concentrate on the non-degenerate case as the degensrafelitavs in exactly the same
way, with only minor changes of notation, using the resultg3p56]. See the remarks at
the end of this section for more details.

Throughout this note we fix positive integérandn and letS,, be the symmetric group
of degreen. Forl <i <mnlets, = (i,i+1) € &,. Thensy,...,s,_; are the standard
Coxeter generators @,,.
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Let R be a commutative ring with and letq, Q4, ..., Q, be elements oR with ¢
invertible. The Ariki-Koike algebra#;, = 5% ¢.,(q, @1, - - -, Q¢) is the associative unital
R—-algebra with generatofl,, 71, . . ., T;,—1 and relations

(To — Q1) .- (To — Q) =0,
(Ti —¢)(T; +1) =0, for1 <i<n-—1,
ToT1 19Ty = ThToThTo,
Ti1 1T =TT Ty, forl <i<n-—2,
T,T; = T;T;, foro0<i<j—1<n-2.
Using the relations it follows that there is a unique antiri®rphism« : 77, — 7, such
thatT} =1T;,for0 <i < n.

Ariki and Koike [1, Theorem 3.10] showed tha#;, is free as ankR-module with
basis{ L{*...L¢"T, | 0<a1,...,a, < fandw € &, } whereL; = Tp andL;; =
¢ ', L;Tyfori=1,...,n—1,andT, =T}, ... T}, f w=s;, ...s;, €&, isareduced
expression (that ig; is minimal).

The Ariki-Koike basis theorem implies that there is a ndtamabedding of#;, in 77,11
and thats7;, 1, is free as aw#;,-module of rank/(n + 1). If M is an.s,-module let

Ind M = M Q ¢, Hi1

be the corresponding induced;, . -module. Note that induction is an exact functor since
H;,+1 1s free as awz;,-module.
We will need to the following easily proved property of thesisaelements0, 2.1].

(2.1). Supposethat < k <n,a € Randw € &; x &,,_;. Then
(L1 —a)...(Ly —a)Ty =Tyw(Ly —a)...(Lk — a).

The algebrasz;, has another basis which is crucial to this note. In order gridee it
recall that a partition of. is a weakly decreasing sequence- (\; > Ay > ...) of non-
negative integers such thgt| = >, A; = n. A multipartition , or ¢-partition, ofn is an
ordered/-tuple X = (A(M ... \®) of partitions such that\| = (XD |+ ..+ |XO| = n.
Let Azn be the set of multipartitions of. If A, u € AZn then\ dominates 1, and we
write X > pu, if

s—1 k s—1 k
STOIE A = SO+ 3l
t=1 i=1 t=1 i=1

for1 < s < {andforallk > 1. Dominance is a partial order cmzn.

If Xis a multipartition letS = &, x --- X &, be the corresponding parabolic
subgroup of5,, and set? = Y771 [A®)], for 1 < s < ¢, and puta),, = n — 1. Define
my = uixA where

¢ a
uf =[[1]Zx—Qs) and ax= > T,

s=2 k=1 weS
Thenu;\rxx =mxy = SCAU,; by (21)
Let X be a multipartition (of:). Thediagram of X is the set of nodes
A ={(res)|1<A® <candl <s</}.

More generally anode is any element oN x N x {1,...,¢}, which we consider as a
partially ordered set where, ¢, s) > (', ¢, s') if eithers > ', ors = s andr < /. For
the sake of Corollaryl1.1) only, define theesidue of the node(r, ¢, s) to beg“~" Q.
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An addable node of A is any nodea ¢ [A] such thatiA] U {a} is the diagram of
some multipartition. Let\ U a be the multipartition such thak U o] = [A] U {a}.
Similarly, aremovablenode of) is a nodep € [A] such thafA] — {p} is the diagram of a
multipartition; letA — p be this multipartition. Note that the set of addable and reabte
nodes forA are both totally ordered by.

If X is a set then aiX -valuedA-tableau is a functioff : [A] — X. If T is aA-tableau
then we writeShape(T) = X. For convenience we identif§f = (T, ... T®) with a
labeling of the diagran\] by elements ofX in the obvious way. Thus, we can talk of the
rows, columns and componentsf

A standard A-tableauis a mapt: [A\] — {1,2,...,n} such that fors = 1,...,¢ the
entries in each row of®) increase from left to right and the entries in each columtif
increase from top to bottom. LEES'Y(\) be the set of standatkHtableaux.

Let t* be the standard-tableau such that the entriesth increase from left to right
along the rows of*"” ... 2 in order. Iftis a standard\-tableau letl(t) € &,, be the
unique permutation such thet= t*d(t). Definems, = T, maTu, for s, t € TSYN).
By [10, Theorem 3.26], the set

{mase | s,t € TSN andA € AL, }
is a cellular basis af7;,. Consequently, i, () is the R-module spanned by
{mae | 5.t € T5%p) for somep € Af, with puo> A},

thens7;,(\) is a two-sided ideal of7;,.

TheSpecht moduleS(A) is the submodule of7, / 77, (X) generated byny + 57, (\).
It follows from the general theory of cellular algebras tI5&f\) is free as anR-module
with basis{ m | t € TSY\) }, wherem = mu + 2, (X) for t € 7SYN).

Let M be ans7,-module. ThenV/ has aSpecht filtration if there exists a filtration

O=MyCcM,C---CM,=M

and multipartitions\y, . . ., i such that\; /M; _; = S(\;), fori=1,... k.

For each multipartitionps € AZn let M (p) = my22,. The final result that we will need
gives an explicit Specht filtration df/ (1+). The proof of our Main Theorem is inspired by
this filtration.

Given two tuple(s, s) and(j, t) write (¢, s) < (4, %) if eithers < ¢, ors = ¢t andi < j.

(2.2). Definition ( [10, Definition 4.4]) Suppose thak, u € AZn and letT: [A\] —
N x {1,2,...,¢} be aX-tableau. Then:

a) T is a tableau oftype  if 1) = # {2z e [\|T(x)=(i,s)}, forall i > 1
andl < s < /.
b) T is semistandard if the entries in each compone‘ﬁfs), forl < s </ ofT are:
i) weakly increasing from left to right along each row (withpest to=);
ii) strictly increasing from top to bottom down columns; and,
iii) (j,t) appears inT() only ift > s.
Let 7,75(\) be the set of semistandad-tableau of typg: and let775'(A}, ) =
Uneat. 7,.75'UA) be the set of all semistandard tableaux of type

Lett be a standard—tableau. Defing:(t) to be the tableau obtained frarby replacing
each entry;j in t with (i, s) if j appears in row of . The tableays(t) is aA—tableau
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of type u; it is not necessarily semistandard. Finallysit 7,75 A) andt € 75(X) set

msy = § Mgt

seTS9(N)
n(s)=S

(2.3)([10, Theorem 4.14 and Corollary 4.15]puppose thak, u € Ajn Then:
a) M (u) is free as ankR—module with basis

{ms¢| S € T2%N), t € TSUX) for someX € ALY

b) Suppose thaf,>s"{A/ ) = {S1,..., S} ordered so that < j wheneveR,; &> A;,
whereA; = Shape(S;). Let M; be the R-submodule of\/ (p) spanned by the
elementy{ ms; | j <iand € 75Y\;) }, Then

OZMQCM1C"'CMm:M(M)
is an.#;,-module filtration ofM (u) and M; /M;_1 = S(X\;), for1 <i < m.

(2.4). Remark. Very few changes need to be made to the results above in temerge
case. The analogue of the cellular bagis,;} in the degenerate case is constructedin [
§6]. Using this basis of the degenerate Hecke algebra, thetremtion of the Specht filtra-
tion of the idealsM () follows easily using the arguments df(] §4]; cf. [7, Cor. 6.13].
The arguments in the next section, modulo minor differermcdse meaning of the sym-
bols, applies to both the degenerate and non-degenerat® cas

3. INDUCING SPECHT MODULES

We are now ready to start proving the Main Theorem. Fix a mpaiftition po € A,Tn
Asin (2.3)we let735(A} ) = {S1,...,Sm} be the set of semistandard tableau of type
w ordered so that < j whenever\; > X, whereX; = Shape(S;) for 1 < i <m. So, in
particular,S,, = T# = p(t*) is the unique semistandagdtableaux of typeu.

Throughout this section we freely identifi;, with its image under the natural embed-
ding 7, — J%,,1. In particular, we will think of the basis element,; as an element
of J#, 1, for standard\-tableauxs, t € 759\) with A € AZn. This embedding also
identifiesInd M (u) with a submodule of7;, ;.

The following simple Lemma contains the idea which drives oof.

(3.1). Lemma. Suppose thafs is a multipartition ofn and letw be the lowest addable
node ofu (that is,a > w whenever is an addable node gf). Then:

a) Ind M(p) = M(pUw).
b) The induced modullnd M () has a filtration

0=NyCNy---C N, =Ind M(p)
such thatV; /N;_1 = Ind S(\;), whereX; = Shape(S;) for1 <i < m.
Proof. By definition,m,, = m,. using the embedding?, — 77, . Therefore,
Ind M(p) = mu 5 @, Hpir = mpdlnsr = Mpuw oy = M(pUw),
proving (a). As induction is exact, part (b) follows from péa) and(2.3)b). O

If w=((n),(0),...,(0)) thenS(pn) = M(p). The Main Theorem in this special case
is just part (b) of the Lemma. To prove the theorem whe ((n), (0),...,(0)) we
explicitly describe the filtration ofnd M (1) given by the Lemma in terms of the basis of
M (p Uw) from (2.3).
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Let w be the lowest addable node af Thenw = (z,1,¢), wherez > 1 is minimal
such that(z,1,/) ¢ [u]. Suppose thal € 7,75(\), for somex € A/, and that3 is an

addable node ak. LetS U 3 be the semistandafd\ U 3)-tableau given by

S(n), ifnelA,
(2,0), ifn=040.

ThusS U g is the semistandar@X U j)-tableau of typeu U w obtained by adding the
nodeg to S with label(z, £). Let 7,339(S) be the set of semistandard tableau of typew
obtained in this way fron$ as/ runs over the addable nodesXf It is easy to see that
every semistandard tableau of typeJ w arises uniquely in this way, so
(32) Toosh ) =TI ZaSis).

SGTjsw(AZn)

(SuB)mn) = {

Armed with this notation, observe thatSfe 7,35(X) thenmsix = msys)aus, as an
element of’7, 1, whereg is the lowest addable node af

Suppose that < a < b < n. Let&, ;, be the symmetric group ofu,a+1,...,b} and
setspq = (b,b+1)...(a,a+1) € &, andTy, = Ty, , = Ty, ... T,. For convenience,
we setl}, , = 1if b < a. The following useful identity is surely known.

(3.3). Lemma. Suppose that < a < b < n. Then

(> )ha=Ta( > T)

weS, b vES&a11,b41

Proof. It is easy to check tha®, sy, = 5b,684+1,0+1 and thats, , is a distinguished
(G4.b, Sat1,0+1)-double coset representative (in the sens&@fiProp. 4.4], for example).
Therefore, ifw € &, andv = s, ,wspq € Gaq1p11 thenTy Ty o = Tws, ,, = Tsy 00 =
Ty.o T, by [16, Prop. 3.3]. This implies the Lemma. O

(3.4). Lemma. Suppose thak € Azn andv = AU 8, wheres = (r, ¢, e) is an addable
node of\. ThenT},_; o 1m0y, € maHpr, Wherea = a + -+ a> + A9 + ... 4 A9,

Proof. Let Dyq = 1+ Ty + Taae1 + -+ + To.q, Whered = a — \\”) + 1. ThenD,,,
is the sum of distinguished right coset representativessgy, in &4,441. Therefore,
2aTn—1,a+1Dd,a = Th-1,a+12, by Lemma(3.3). On the other hand, it follows directly
from the definitions that,; = UI(L(L?-H —Qy) ... (Lné+1+1 —Qe+1)- Therefore, writing

mx = zauj and using2.1)we see that

m>‘< H Taiﬂ,a?ﬂ(La?H - QS)>T‘1?+1,a+1Dd7a =Tn1,a+1My,
s={,...,.e+1

where the product on the left-hand side is read in order, fedtrio right, with decreasing
values ofs. (Recall that, for conveniencey, ; = n — 1 andT},_1,, = 1.) O

Let < be the Bruhat order o®,,; see, for example 16, p.30]. IfS is a semistandard
A-tableau of typgu let S be the unique standasitableau such thai(S) = S andd(S) <
d(s) wheneves € 751 \) andu(s) = S. Such a tableat exists by L3, Lemma 3.9].

(3.5). Lemma. Suppose tha§ € 7,55'(\) and thatU € 7,35%(S). Letr = Shape(U).
Thenmye € mgpx G 41.
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Proof. Definition, mgix = >, mga Whered(s) runs over a set of righ® ,-coset rep-
resentatives in the double cos@t\d(S)GH. Therefore,mgix = hsT;(S)m)\ for some
hs € #,(6,). (Explicitly, hs = >, Ty whered runs over the set of distinguished left
coset representatives &, N d(S)Gxd(S)~1in &,,.)

As in Lemma(3.4), write v = A U 3, where8 = (r,c,e) and seta = a + --- +
ad + N9+ 1 A9, ThenU = SuU 8. Therefore,d(U) = s,1, ., ,d($), so that
myww — hT;(S)Tn—l,a-i-lml/-

Finally, T,,_1 o+1my = mahy 4, fOr someh,, , € 5%,1, by Lemma(3.4). Therefore,

myy = hST;(S)Tn,LaJrlmy = hsT; mahy o = Msahy o € Mgx I 41,

®)
as required. |

We can now make the filtration of Lemn§&.1)b) explicit. As a result we will show
that we can obtain a basis for the induced module by addingla fabeled z, ¢) to the
basis elements af/(u) in all possible ways.

(3.6). Theorem. Suppose that € A, and order735(A;, ) = {S1,...,Sx} as above,
with A; = Shape(S;). Let N; be theR-submodule ofi/ (i U w) spanned by the elements

{mys | U € T35YS;), v € T5Shape(U)) for 1 < j < i},
fori =0,1,...,m. ThenN; is ans#, ;-submodule ofnd M (A) and
Ind S(X;) = N;/N;_1,
forl1 <i<m.
Proof. By Lemma(3.1)a),Ind M (u) = M (p U w) and by(3.2)the set of elements
{muye | U € Tijﬁf’(%)m € T5Y%Shape(U)) for1 < j <m}

is precisely the basis df/ (i U w) given by(2.3), soM (u Uw) = N,,,. Moreover, since
H+1(v) is a two-sided ideal of7;, 1, for all v € AZnH, the action of’#,1, on the
basis{my, } respects dominance, $§ is a submodule of/ (n Uw), for0 < i < m.

Recall the filtration0 = My C My C --- C M, = M(X) of M(A) given in(2.3).
By Lemma(3.1)b), to prove the Theorem it is enough to show by induction: ahat
Ind M; = N;, for0 < i < m. This is trivially true wheni = 0 so we may assume that
1> 0.

To show thatlnd M; C N; note thatmg , € N; andms », + M; 1 generates
M, /M;_, as ansZ,-module. Therefordnd M; C N; by induction or.

To prove the reverse inclusion, suppose that 7,35(S;) and letv = Shape(U).
Thenmye € mg i, 74,41 € Ind M; by Lemma(3.5). Therefore,ny, € Ind M;, for
anyv € 759w). It follows by induction thatV; C Ind M; as required. O

For each addable nogeof i let N° be the submodule af/ (i U w) spanned by

{muo | U € T,259(N), 0 € T9N) whereX € Af, ., andAo pU B} + Ny,

whereN,,,_ is the submodule o/ (p Uw) defined in Theoren(3.6). Note, in particular,

that N = Npp—1.
We can now prove a more explicit version of the Main Theorerthisf paper.
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(3.7). Corollary. Suppose thagt is a multipartition ofn and leta; = a > - > ay = w
be the addable nodes pf ThenInd S(u) =2 M (pUw)/N© is a freeR-module with basis

{mus + N* U € T35 nUa;),0 € TSpnuaq,), fort <j<a}.

In particular, Ind S(p) has a filtration0 = Iy € I; C --- C I, = Ind S(u) such that
Ij/ijl = S(uUaj), forj =1,...,a.
Proof. ThatInd S(p) = M(p Uw)/N* is a special case of Theorefd.6). The second

claim follows from(2.3) by settingl; = N+ /N®, for 0 < j < a. To prove that
S(pUaj)=1;/1;_4,forl < j < a, observe that the bijective map

S(MUO(]‘) — j/Ij_l;ms = M(Truay)s +Ij_1, fors e TStd(HU ozj),

commutes with the action of#, 1. (Here, T* = u(t*) is the unique semistandayg
tableau of typeu.) O

(3.8). Remark. Maintain the notation of Theorerf8.6) and define integers; and mul-
tipartitions X; ; by writing {X; 1 &>+ > X; o, } = {Shape(U) | U € 7359S;) }, fori =
1,...,m. Theorem3.6)then implies, just as in the proof of Corollaf§.7), thatM (pUw)
has a Specht filtration

0cC 11,1 c---C Il,al C 1271 [@GIEERNE Im,am = M(MUU)),
with Im/Ifa = S(Ai0), Wherel, , is the submodule al/ (¢ U w) with basis

{muo | U € T353M(N;0),0 € TS(N;,) wherej < i, orj =iandb < a}

and where[zfa =1 q1ifa>1, Ifl =1 14_,1fi>1 andIf_’1 =0.

Fred Goodman has pointed out that this filtratioméfu U w) is, in general, different
to that given by(2.3) because the order in which the Specht modules appear dobaveot
to be compatible with the dominance ordering—note, howehat the Specht modules in
each ‘layer'N; /N;_ are totally ordered by dominance. For example, suppose that

and lety = (3%,1) so thatu U a = (4,3,1) andp Uw = (3%,1%). Then
1[1]1]2]
U=[2]2
34

is a semistandard-tableau of typeu U w, wherev = (4,22). (As/¢ = 1 we can label
semistandard tableaux with the integérs. . , n.) HoweveruUav even thoughy # pUs
for any addable nodg of .

As induction and restriction are both exact functors thenrmasult of this note, together
with [2, Prop. 1.9] (and the corresponding argument for the degémense), shows that
the full subcategory of7;,-mod which consists of modules which have a Specht filtration
is closed under induction and restriction.

(3.9). Corollary. Suppose thal/ has a Specht filtration. Then the modukss M and
Ind M both have Specht filtrations.

In [17, Theorem 3.6] andg, Theorem 4.6] it is shown that for each multipartitipne
AZn there exists an indecomposabté,-moduleY (n), a Young module, such that

M) =Y () & DY (N) 7o
A> L

for some non-negative integetg,,. Each Young modul@ (x) has a Specht filtration.
Therefore, by Corollary3.9), Res Y () andInd Y (1) both have Specht filtrations.
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